WO2016208761A1 - 薬物複合体 - Google Patents

薬物複合体 Download PDF

Info

Publication number
WO2016208761A1
WO2016208761A1 PCT/JP2016/068934 JP2016068934W WO2016208761A1 WO 2016208761 A1 WO2016208761 A1 WO 2016208761A1 JP 2016068934 W JP2016068934 W JP 2016068934W WO 2016208761 A1 WO2016208761 A1 WO 2016208761A1
Authority
WO
WIPO (PCT)
Prior art keywords
vegf
amino acid
peptide
block
binding peptide
Prior art date
Application number
PCT/JP2016/068934
Other languages
English (en)
French (fr)
Inventor
藤井 郁雄
Original Assignee
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪府立大学 filed Critical 公立大学法人大阪府立大学
Priority to US15/738,919 priority Critical patent/US20180264124A1/en
Priority to JP2017525472A priority patent/JP6583411B2/ja
Priority to EP16814530.8A priority patent/EP3338805A4/en
Publication of WO2016208761A1 publication Critical patent/WO2016208761A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/07Tetrapeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2/00Peptides of undefined number of amino acids; Derivatives thereof

Definitions

  • the present invention relates to a drug complex, more specifically, a peptide-drug complex in which a drug is bound to a VGEF-binding peptide.
  • Vascular endothelial growth factor (VEGF: Vascular Endothelial Growth Facto r ) is commonly known as a protein that promotes angiogenesis. This VEGF plays an important role in the formation of the circulatory system and the construction of many tissues in the vertebrate embryonic stage and early childhood, but in the mature stage and beyond, cancer growth, metastasis, and rheumatoid arthritis Because it is involved in pathogenesis and promotion, diabetic retinopathy, etc., it is regarded as important in such pathological conditions.
  • VEGF Vascular Endothelial Growth Facto r
  • VEGF exerts its biological action by binding to or interacting with the transmembrane tyrosine kinase receptor VEGFR. Therefore, by inhibiting the binding or interaction between VEGF and VEGFR, angiogenesis is suppressed, suppression of cancer growth and metastasis, rheumatoid arthritis, diabetic retinopathy, and promotion of pathological conditions of age-related macular degeneration, etc. It is expected to be connected.
  • bevacizumab (trade name, Avastin), a monoclonal antibody that binds to VEGFR and inhibits the binding or interaction with VEGF, is marketed and used as an anticancer agent for metastatic colorectal cancer and metastatic breast cancer. ing.
  • a peptide having a regulated three-dimensional structure is generally selected.
  • Many steric structures of peptides are stabilized by intrapeptide disulfide bonds.
  • the disulfide bond is cleaved and the steric structure is easily broken under reducing conditions in the cell.
  • it has the disadvantage of being degraded by in vivo protease and having a short half-life in serum. Accordingly, there is a need for peptides that are more stable in vivo.
  • Patent Document 1 discloses a peptide having a helix-loop-helix structure (Helix-Loop-Helix structure) as a stabilized peptide not having such drawbacks.
  • a peptide having a helix-loop-helix structure is composed of an N-terminal amino acid sequence (N-terminal helix: A block), a C-terminal amino acid sequence (C-terminal helix: C block), an A block and a C block.
  • the A block and the C block each form an ⁇ -helical coiled coil structure due to the presence of a linker.
  • this peptide has a low molecular structure, it has a stable secondary structure in a solution, and it is easy to introduce a functional group having a chemically different property into a portion of the molecule exposed on the solvent side. Utilizing such properties, various peptides having a helix-loop-helix structure with physiological activity have been proposed.
  • VEGF-binding peptide complex that has VEGF binding and inhibits the binding between VEGF receptor and VEGF (Patent Document 2).
  • This complex is a complex in which thioredoxin is bound to the C-terminal side of a peptide having a helix-loop-helix structure having VEGF binding properties.
  • the VEGF-binding peptide does not inhibit the interaction between VEGF and VEGF receptor, or its inhibitory ability is extremely small, and it is considered that the VEGF-binding peptide alone cannot exert a sufficient anticancer effect.
  • steric hindrance caused by binding a molecule with a large steric structure such as thioredoxin to a VEGF-binding peptide inhibits the binding or interaction of VEGF and VEGF receptors, suppresses angiogenesis, and The purpose was to demonstrate the action of cancer. However, it cannot be said that the binding inhibitory activity between the two in this complex is still sufficient. In addition, when the molecule of the complex becomes large, there is a problem that the binding property of the VEGF-binding peptide itself is weakened or the production thereof is difficult, and a new cancer therapeutic agent that overcomes these problems is demanded. .
  • the problem to be solved by the present invention is a drug delivery system capable of specifically delivering a cytotoxic drug in cells expressing VEGF receptors, particularly cancer cells, without affecting normal cells. Is to provide.
  • the inventor of the present application utilizes the above-mentioned VEGF binding by utilizing endocytosis in which the VEGF receptor expressed on the cell surface is taken into the cell as it is when VEGF binds to the extracellular binding site. Focusing on the fact that sex peptides are also taken up into cells, the present invention has been completed. That is, in the present invention, a drug complex in which a drug is bound to a peptide having a helix-loop-helix structure having VEGF binding property is used, and the drug is taken into cells expressing the VEGF receptor.
  • cytotoxic drugs can be specifically delivered into cells expressing VEGF receptors, particularly cancer cells, and cancer cells can be specifically damaged.
  • FIG. 1 is a conceptual diagram of a drug complex according to the present invention.
  • FIG. 2 is a conceptual diagram showing an example of a method for synthesizing a VEGF-binding peptide M49K to which a drug can bind.
  • FIG. 3 is a diagram showing the measurement results for the secondary structure of VEGF-binding peptide M49K to which a drug can bind.
  • a is a sensorgram of M49K (C1A) for VEGF by SPR method
  • b is a sensorgram of cyclized M49
  • c is a CD spectrum of M49 and M49K (C1A).
  • FIG. 1 is a conceptual diagram of a drug complex according to the present invention.
  • FIG. 2 is a conceptual diagram showing an example of a method for synthesizing a VEGF-binding peptide M49K to which a drug can bind.
  • FIG. 3 is a diagram showing the measurement results for the secondary structure of VEGF-bind
  • FIG. 4 is a confocal laser scanning microscope image showing intracellular uptake of a drug-binding VEGF-binding peptide M49K, where I is HUVEC supplemented with Cy5-M49K and AlexaA488-VEGF, and II is Alexa 488- HUVEC to which only VEGF was added and III to HUVEC to which only Cy5-M49K was added.
  • A shows the shape of cells taken with a phase-contrast microscope, and
  • B) shows the green fluorescence of Alexa 488.
  • C is a cross-sectional view of cells observed for red fluorescence of Cy5, and
  • D is a merge image of (B) and (C).
  • FIG. 5 shows the results of a cell uptake test of VEGF-binding peptide M49K to which a drug can bind using a flow cytometer.
  • A shows untreated HUVEC
  • B shows HUVEC treated with Alexa488-VEGF
  • C shows HUVEC treated with Cy5.1-M49K
  • D shows HUVEC treated with Alexa488-VEGF and Cy5.1-M49K.
  • FIG. 6 is a synthesis scheme of a drug conjugate which is one embodiment of the present invention.
  • FIG. 7 shows the results of measuring the binding activity of drug complex M49K-Cem to VEGF using the SPR method.
  • FIG. 8 is a diagram showing the results of a HUVEC growth inhibition test of the drug complex M49K-Cem, where M49K is a VEGF-binding peptide M46K that can be bound by a control drug, and YTI-Cem is a control non-VEGF-binding peptide. -Shows the drug complex YT1-Cem.
  • the drug conjugate according to the present invention comprises an A block consisting of a peptide forming an ⁇ -helix structure and located on the N-terminal side, a C block consisting of a peptide forming an ⁇ -helix structure and located on the C-terminal side, A VEGF-binding peptide-drug complex in which a drug is bound to a VEGF-binding peptide having a helix-loop-helix structure consisting of a B block composed of a peptide that covalently connects a block and a C block, the drug comprising: A VEGF-binding peptide-drug complex that binds directly or indirectly to the N-terminal amino acid and / or C-terminal amino acid of the VEGF-binding peptide and is taken into the VEGF receptor-expressing cell by the VEGF receptor endocytose It is.
  • the VEGF-binding peptide used in the present invention is not particularly limited as long as it is a peptide having the helix-loop-helix structure and having VEGF binding properties. Since the VEGF-binding peptide is considered to be taken into cells together with the bound VEGF, a VEGF-binding peptide that exhibits strong binding to VEGF is preferred. Specific examples of such peptides exhibiting strong VEGF binding properties are disclosed in Patent Document 2. Therefore, in this specification, the description of Patent Document 2 can be referred to as appropriate.
  • the helix-loop-helix structure is also called an ⁇ -helical coiled coil structure, and a peptide having this structure exists stably in solution as a single molecule.
  • This peptide is stabilized by the hydrophobic interaction of leucine located between two helices (A block and C block).
  • a salt bridge (B block) is formed between the glutamic acid side chain of the N-terminal ⁇ -helix (A block) and the lysine side chain of the C-terminal ⁇ -helix (C block). Yes.
  • this peptide retains a stable three-dimensional structure even if other residues are randomized.
  • the VEGF-binding peptide according to the present invention is a peptide having such a basic structure and has a binding property to VEGF.
  • the presence or absence of binding to VEGF can be determined by the dissociation constant (K D ) for VEGF determined by the method described in Patent Document 2.
  • K D dissociation constant
  • a dissociation constant (K D ) of 10,000 nM or less is judged to have binding properties to VEGF.
  • the dissociation constant (K D ) between the cyclic peptide and VEGF is 10,000 nM.
  • VEGF-binding peptides exhibiting a dissociation constant (K D ) of preferably 1,000 nM or less, more preferably 500 nM or less, and more desirably 10 nM or less are preferred.
  • the amino acid sequence of the B block consists of the amino acid sequences shown in SEQ ID NO: 3 (GTYRASTWWWG), SEQ ID NO: 4 (GPDLMVWWGWD), SEQ ID NO: 5 (GNSDYPWIGWG), and SEQ ID NO: 6 (GPWKGYPIPYG).
  • VEGF binding peptides are preferred.
  • a peptide having a helix-loop-helix structure having a peptide consisting of the amino acid sequences shown in SEQ ID NOs: 3 to 6 in the B block exhibits good VEGF binding properties.
  • the amino acid sequences of the A block and the C block are not particularly limited as long as they have the above basic structure.
  • the peptide of the A block may be a peptide having the amino acid sequence shown in SEQ ID NO: 7 (CAAELAALEAELAALE).
  • the peptide of the C block is, for example, a peptide consisting of the amino acid sequence shown in SEQ ID NO: 8 (KLAALKAKLAALKAAC), and preferably a three-dimensional structure of the amino acid sequence shown in SEQ ID NO: 9 (peptide consisting of the amino acid sequence shown in KLXXLKXKLXXLKXAC).
  • amino acid (X) that is not essential for maintenance is a peptide in which any amino acid other than threonine, alanine, and proline is substituted, and more preferably SEQ ID NO: 10 (KLFQLKNKLHQLKYAC), SEQ ID NO: 11 (KLNQLKHKLDHLKVAC), SEQ ID NO: 12 (KLGELKQKLLKLKNAC) ), A peptide consisting of the amino acid sequence shown in SEQ ID NO: 13 (KLQFLIKKLKQLKVAC).
  • the amino acid constituting the peptide is a naturally occurring L-amino acid, particularly preferably an amino acid constituting a protein, and may be a D-amino acid as long as the three-dimensional structure is maintained.
  • the amino acid sequence of the B block is important, and the amino acid sequence of the A block and the amino acid sequence of the C block may be arbitrary. Therefore, in the present invention, the B block consisting of the amino acid sequence shown in any of SEQ ID NOs: 3 to 6 may be combined with the C block consisting of the amino acid sequence shown in any of SEQ ID NOs: 10 to 13. . More specifically, a VEGF-binding peptide having the amino acid sequence shown in SEQ ID NOs: 14 to 17 is preferably used. Needless to say, amino acid sequences in which one or two amino acids are deleted, substituted, or inserted from these amino acid sequences can also be used. Preferred amino acid sequences in the present invention are summarized in Table 1.
  • M49 has the same amino acid sequence as Clone49, and M49K is based on M49. It is a cyclic VEGF-binding peptide having a free condensable functional group capable of binding a drug at the N-terminal amino acid of the A block.
  • the complex according to the present invention is a complex in which a drug is bound to the VEGF-binding peptide.
  • the binding position of the drug is the N-terminal amino acid or C-terminal amino acid of the VEGF-binding peptide, preferably the N-terminal amino acid.
  • the binding mode with the drug is not limited, and can be selected in consideration of the production process of the complex, the effect expression of the drug, and the like.
  • a binding mode that is easily detached in the cell can be employed.
  • the bonding mode for example, a condensable functional group possessed by the N-terminal amino acid or the C-terminal amino acid can be used.
  • the condensable functional group is an esterification reaction (including a thioesterification reaction) or an amide between a VEGF-binding peptide and a drug such as a thiol group, a hydroxyl group, an amino group, a carboxyl group, or an aldehyde group. It means a functional group capable of causing an addition / elimination reaction such as an oxidization reaction or aldol condensation.
  • This condensable functional group may be a functional group possessed by the N-terminal amino acid or the C-terminal amino acid itself of the VEGF-binding peptide, or may be a functional group introduced artificially.
  • the functional group possessed by the amino acid itself is, for example, a thiol group possessed by cysteine, an ⁇ -position amino group in an amino acid at the N-terminus, a hydroxyl group possessed by a serine group, and a carboxyl group of aspartic acid or glutamic acid at the N-terminus.
  • a carboxyl group of an amino acid at the C-terminus is, for example, a thiol group possessed by cysteine, an ⁇ -position amino group in an amino acid at the N-terminus, a hydroxyl group possessed by a serine group, and a carboxyl group of aspartic acid or glutamic acid at the N-terminus.
  • such a condensable functional group is provided in the VEGF-binding peptide having the amino acid sequence shown in SEQ ID NOs: 14 to 17, for example, so that the drug can be bound.
  • a VEGF-binding peptide can be easily obtained by, for example, inserting an amino acid having the above functional group into the N-terminal or C-terminal, or substituting the N-terminal or C-terminal amino acid.
  • a cyclic VEGF-binding peptide in which an N-terminal amino acid and a C-terminal amino acid are bonded directly or indirectly is preferably used. Even when not having a cyclic structure, the VEGF-binding peptide is stable due to the interaction between the A block and the C block, but the cyclic structure makes the VEGF-binding peptide more stable and strong.
  • the term “directly bonded” means, for example, the case where the N-terminal amino acid of the A block and the C-terminal amino acid of the C block are bonded by an amide bond (peptide bond), or the cysteine and C block at the N terminal of the A block.
  • N-terminal amino acid of the A block and the C-terminal amino acid of the C block are bonded via a linker, as in the case where the C-terminal cysteine is bonded by a disulfide bond (SS bond).
  • SS bond disulfide bond
  • Indirectly bound means that the N-terminal amino acid of the A block and the C-terminal amino acid of the C block are bound via a linker.
  • the structure of the linker is not particularly limited, and examples thereof include a linker in which carbon atoms are linearly bonded and a linker in which amino acids are peptide-bonded. The length of the linker is appropriately determined according to the stability of the peptide, the uptake into the cell, the effect expression of the drug, and the like.
  • the amino acid constituting the linker is not limited, but glycine is preferable from the viewpoint of a simple structure, and a peptide chain composed only of glycine is desirable as the linker.
  • a linker comprising a peptide chain does not have an ⁇ -helix structure, and a sequence that does not affect the ⁇ -helix structure of the A block or the ⁇ -helix structure of the C block is employed.
  • the VEGF-binding peptide having the condensable functional group in the present invention the amino acid sequence of the A block and / or the C block exemplified above, unless the helix-loop-helix structure is prevented from being stabilized,
  • an amino acid sequence in which one or two amino acids are deleted, substituted, or inserted from the amino acid sequence of M49K, for example, provided with a linker can also be used.
  • the drug to be bound to the VEGF-binding peptide is a drug that can be taken up by endocytosis in cells expressing the VEGF receptor.
  • a drug that can be taken up by endocytosis is a drug that is taken up into a cell without inhibiting the binding of VEGF and a VEGF receptor due to steric hindrance when the drug is bound to a VEGF-binding peptide.
  • the molecular weight of such drugs is approximately 30,000 or less, preferably 20,000 or less, more preferably 10,000 or less, and desirably 5,000 or less.
  • the upper limit molecular weight is only a guideline, and in the present invention, it is important that the drug is bulky, that is, a molecule having a size that does not cause steric hindrance in the VEGF-binding peptide-drug complex.
  • the drug when a cancer cell is assumed as a target tissue, a poisonous drug exhibiting cytotoxicity is preferably exemplified.
  • Examples of the drug include doxorubicin hydrochloride, pepromycin hydrochloride, nitrogen mustard-N-oxide, cyclofasfamide, thiodepa, carbocon, nimustine hydrochloride, bleomycin hydrochloride, bleomycin sulfate, pepromycin sulfate, aclarubicin hydrochloride, idarubicin hydrochloride, epirubicin hydrochloride , Daunorubicin hydrochloride, pirarubicin hydrochloride, dinostatin stimaramer, neocartinostatin, etoposide, teniposide, irinotecan sulfate, vincristine sulfate, vindesine sulfate, vinblastine sulfate, L-asparaginase, mitoxantrone hydrochloride, cisplatin, carboplatin, nedaplatin
  • the drug complex according to the present invention is typically used as a pharmaceutical composition.
  • the pharmaceutical composition may contain pharmacologically acceptable auxiliaries for the formulation.
  • the auxiliaries can be, for example, excipients, binders, disintegrants, lubricants, coating agents, flavoring agents, solubilizers.
  • the composition is provided as a form (dosage form) that can be applied orally or parenterally to animals including humans.
  • the dosage form can be, for example, a tablet, a granule, a powder, a liquid, an injection, or a suppository.
  • the dose of the VEFG-binding peptide-drug complex is appropriately determined by those skilled in the art according to sex, body weight, age, race, symptoms and the like.
  • the lower limit of the dose is, for example, 0.001 ⁇ g / kg body weight, 0.01 ⁇ g / kg body weight, 0.1 ⁇ g / kg body weight, 0.001 mg / kg body weight, 0.01 mg / kg.
  • the upper limit is, for example, 1000 mg / kg body weight, 100 mg / kg body weight, 10 mg / kg body weight, 5 mg / kg body weight, and 1 mg / kg body weight.
  • VEGF-binding peptide derivatives A VEGF-binding peptide derivative in which a linker for drug binding is introduced to the cyclic VEGF target peptide (M49) stabilized by a disulfide bond and the main chain of the peptide is cyclized to stabilize the peptide (M49K) was synthesized (FIG. 1).
  • Table 2 shows the amino acid sequences of peptide M49 and peptide M49K.
  • the sequence of peptide M49 has an A block having the amino acid sequence shown in SEQ ID NO: 7, a B block having the amino acid sequence shown in SEQ ID NO: 6, and a C block having the amino acid sequence shown in SEQ ID NO: 13.
  • FIG. 1 A VEGF-binding peptide derivative in which a linker for drug binding is introduced to the cyclic VEGF target peptide (M49) stabilized by a disulfide bond and the main chain of the peptide is cyclized to stabilize the peptide (M49
  • Peptide M49K lacks one amino acid (alanine) from the A block, lacks the C-terminal cysteine of the C block, and cyclizes four glycines as linkers.
  • Fmoc-Gly-OH, DIEA and DMF / DCM were added to 2-chlorotrityl chloride resin to bind Fmoc-glycine, and then DIEA / MeOH / DCM was added to cap the unreacted trityl group.
  • a capped Fmoc-Gly-trityl resin a peptide having the amino acid sequence shown in SEQ ID NO: 2 was synthesized by the Fmoc solid phase synthesis method. After solid-phase synthesis, the resin was removed with DCM / TFE / AcOH (FIG. 2 (I)).
  • the C-terminal and N-terminal were condensed by the following native chemical ligation reaction to synthesize a cyclized peptide M49K.
  • the thioesterified M49 of FIG. 2 (II) was dissolved in water and added dropwise to a reaction solution containing 200 mM Na 2 HPO 4 , 2 mM MPAA, 20 mM TCEP ⁇ HCl. After completion of the reaction, lyophilization was performed, and the resulting powder was dissolved in a 0.1% TFA solution and purified by RP-HPLC (FIG. 2 (III).
  • a peptide derivative M49K (C1A) in which the C-terminal cysteine residue of M49K was substituted with an alanine residue in the desulfurization reaction in order to prevent formation of a dimer via a thiol group. was also synthesized.
  • the obtained M49K was added to a reaction solution containing 400 mM Tris, 250 mM TCEP ⁇ HCl, 200 mM VA-044, and glutathione, and reacted at room temperature to obtain M49K (C1A).
  • M49K was also confirmed by MALDI-TOF-MS, it was confirmed that the target peptide was synthesized.
  • peptide M49K C1A
  • the dissociation constant for VEGF was measured by the surface plasmon resonance (SPR) method, and the dichroism (CD) spectrum was used to measure the dissociation constant. Information about the following structure was obtained. Binding parameters were calculated using a 1: 1 binding model from sensorgrams obtained by immobilizing 300 RU of VEGF on sensor chip CM5 by amine coupling and adding each concentration of peptide. The CD spectrum was measured at 20 ° C. in a 20 mM phosphate buffer (pH 7.0) with a peptide concentration of 20 ⁇ M. As shown in FIG. 3 and Table 3, peptide M49 and its modified peptide derivative M49K (C1A) retain the same physical properties, and cyclically stabilized peptide M49K retains the same physical properties as M49. It was concluded that
  • the fluorescence intensity of the cells was measured with a flow cytometer.
  • 96-well flat-bottom plate was seeded with HUVEC, VEGF (2 ⁇ g / mL) fluorescently labeled with Alexa-488 and / or M49K (100 nM) fluorescently labeled with Cy5 was added, and then in a 37% 5% CO 2 incubator for 48 hours Left to stand. Thereafter, trypsin treatment was performed, the plate was washed with PBS, and then analyzed with a flow cytometer. As a result, in the HUVEC that was not treated at all, the fluorescence intensity of Cy5 and Alexa488 was low (FIG. 5A).
  • CemCH 2 —SH was synthesized according to the scheme of FIG. First, 4-Cyanobenzaldehyde (1) was dissolved in anhydrous THF to which LiAlH 4 was added, reacted under reflux in a nitrogen atmosphere, then NaOH was added and (4- (aminomethyl) phenyl) methanol (2) was added. Obtained. The amino group of Compound 2 was protected with a Boc group and then reacted with di-tert-butyl dicarbonate in tBuOH / NaOH. The reaction solution was extracted with a saturated aqueous sodium hydrogen carbonate solution and ethyl acetate to obtain tert-butyl 4- (hydroxymethyl) benzylcarbamate (3).
  • N, N-dimethylvalyl-valyl-N-methylvalyl-prolyl-proline (6) was synthesized by Fmoc solid phase synthesis using 2-chlorotrityl chloride resin as a carrier.
  • Fmoc-Pro-OH, DIEA and DMF / DCM were added to 2-chlorotrityl chloride resin to bind Fmoc-proline, and then DIEA / MeOH / DCM was added to cap the unreacted trityl group.
  • DIEA / MeOH / DCM was added to cap the unreacted trityl group.
  • a solution of amino acids, HATU and DIEA dissolved in DMF was added to the resin for solid phase synthesis.
  • CemCH 2 -SH and 2,2′-Dithiobis (5-nitropyridine) were dissolved in THF, reacted at room temperature for 2 hours, and the solvent was distilled off to obtain CemCH 2 -S-TNB.
  • the obtained CemCH 2 -S-TNB and M49K were dissolved in PBS and reacted at room temperature to synthesize M49K-Cem.
  • the synthesized M49K-Cem was purified by RP-HPLC. When the purity was measured by RP-HPLC, the purity of the purified M49K-Cem was 95%.
  • the calculated value of [M + H] + of the complex M49K-Cem was 5407.052, and it was confirmed that the target compound, M49K-Cem, was synthesized.
  • HUVEC cell growth inhibition test with M49K-Cem
  • a growth inhibition test of HUVEC was performed using M49K-Cem.
  • HUVEC (3000 cells / 100 ⁇ L / well) suspended in EBM-2 medium was added to a 96-well flat bottom plate, and cultured overnight at 37 ° C. and 5% CO 2 .
  • the medium was extracted, and DMEM medium (0.2% FCS) containing 25 ng / mL VEGF and each concentration sample was added thereto.
  • the degree of cell increase was examined by the WST-1 assay (Ishiyama, M. et al., Biol. Pharm. Bull. 19, 1518-1520 (1996)).
  • YT1 is a helix-loop-helix peptide having the amino acid sequence shown in SEQ ID NO: 18 that does not bind to VEGF, and is obtained by reacting YT1-Cys (CAELAALEAELAALEGGGGGGGKLAALKAKLAALKA-NH 2 ) and CemCH 2 -S-TNB in PBS. It is done.
  • M49K-Cem was taken up into cells and the bond between the peptide and CemCH 2 -SH was cleaved. This is because CemCH 2 -SH does not exert toxicity unless it is cleaved from the peptide.
  • YT1-Cem is not taken up into cells, the bond between the peptide and CemCH 2 -SH is not cut, and it is presumed that the cytotoxicity was not exhibited.
  • a new drug delivery system that exerts a medicinal effect in cells expressing the VEGF receptor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

【課題】VEGF受容体を発現している細胞内に薬物を送達できるドラッグデリバリーシステムを提供する。 【解決手段】α-ヘリックス構造を形成するペプチドからなりN末端側に位置するAブロックと、α-ヘリックス構造を形成するペプチドからなりC末端側に位置するCブロックと、AブロックとCブロックを共有結合で結ぶペプチドからなるBブロックとからなるヘリックス-ループ-ヘリックス構造を有するVEGF結合性ペプチドのC末端アミノ酸/又はN末端アミノ酸に薬物を結合させ、VEGF受容体のエンドサイトースによりVEGF受容体発現細胞内に取り込まれるVEGF結合性ペプチド-薬物複合体を提供する。

Description

薬物複合体
 本発明は薬物複合体、より具体的にはVGEF結合性ペプチドに薬物を結合したペプチド-薬物複合体に関する。
 血管内皮増殖因子(VEGF: Vascular Endothelial Growth Factor)は、一般的に血管新生を促進するタンパク質として知られている。このVEGFは、脊椎動物の胎生期、幼少期における循環器系の形成や多くの組織の構築に重要な役割を果たすが、成熟期以降では、がんの増殖、転移形性、慢性関節リューマチの病態形成や促進、糖尿病性網膜症などにも関与することから、このような病的条件において重要視されている。
 VEGFは膜貫通型チロシンキナーゼ受容体VEGFRと結合ないし相互作用することで、その生物学的作用を発揮する。従って、VEGFとVEGFRとの結合ないし相互作用を阻害することで血管新生が抑制され、がんの増殖や転移抑制、慢性関節リューマチや糖尿病性網膜症、加齢黄斑変性の病態促進の抑止等に繋がることが期待される。事実、VEGFRに結合して、VEGFとの結合ないし相互作用を阻害するモノクローナル抗体であるベバシズマブ(商品名、アバスチン)が上市され、転移性大腸がんや転移性乳がんの抗がん剤として使用されている。
 ところで、アンタゴニストがペプチドである場合、一般的に立体構造が規制されたペプチドが選択される。多くの立体構造が規制されたペプチドはペプチド内ジスルフィド結合によりその立体構造が安定化されている。しかしながら、細胞内の還元条件下ではジスルフィド結合が開裂して立体構造が壊れやすいという欠点があった。また、生体内プロテアーゼにより分解され、血清中での半減期が短いという欠点もある。従って、生体内でより安定なペプチドが求められている。
 このような欠点を持たない安定化されたペプチドとして、ヘリックス-ループ-ヘリックス構造(Helix-Loop-Helix構造)を有するペプチドが特許文献1などに開示されている。ヘリックス-ループ-ヘリックス構造を有するペプチドは、N末側のアミノ酸配列(N末端側ヘリックス:Aブロック)と、C末側のアミノ酸配列(C末端側ヘリックス:Cブロック)と、AブロックとCブロックを結合するリンカー(Bブロック)を有する。AブロックとCブロックは、リンカーの存在によりそれぞれα-ヘリカルコイルドコイル構造を形成する。このペプチドは低分子構造でありながら溶液中で安定した二次構造を取り、分子中の溶媒側に露出する部分に化学的に異なる性質の官能基を導入しやすい。このような性質を利用して、生理活性を有するヘリックス-ループ-ヘリックス構造を有する種々のペプチドが提案されている。
 こうした状況下において、本願発明者は、VEGF結合性を有し、VEGF受容体とVEGFとの結合を阻害するVEGF結合ペプチド複合体を提案している(特許文献2)。この複合体は、VEGF結合性を有するヘリックス-ループ-ヘリックス構造を有するペプチドのC末端側に、チオレドキシンが結合した複合体である。VEGF結合性ペプチドはVEGFとVEGF受容体の相互作用を阻害しないか、あるいはその阻害能は極めて小さく、VEGF結合性ペプチド単体では十分な抗がん作用を発揮できないことが考えられた。そこで、チオレドキシンのような大きな立体構造を有する分子をVEGF結合性ペプチドに結合させることでもたらされる立体障害によって、VEGFとVEGF受容体の結合ないし相互作用を阻害し、血管新生を抑制し、抗がん作用などを発揮させることを目的としていた。しかしながら、この複合体における両者間の結合阻害活性が未だ十分であるとは言えなかった。また、複合体の分子が大きくなると、VEGF結合性ペプチドそのものの結合性を弱めたり、その製造が困難になるという問題もあり、これらの問題を克服する新たながん治療剤が求められている。
特開平10-245397号公報 特開2014-245397号公報
 本願発明が解決しようとする課題は、正常な細胞には影響を与えず、VEGF受容体を発現している細胞、特にがん細胞内に細胞毒性を示す薬物を特異的に送達できるドラッグデリバリーシステムを提供することである。
 本願発明者は、細胞表面に発現したVEGF受容体が、細胞外結合部位にVEGFが結合すると、その結合体がそのまま細胞内に取り込まれるという、エンドサイトーシスをすることを利用し、上記VEGF結合性ペプチドも同様に細胞内に取り込まれることに着目して、本願発明を完成するに至った。すなわち、本発明では、VEGF結合性を有するヘリックス-ループ-ヘリックス構造を有するペプチドに薬物を結合させた薬物複合体とし、VEGF受容体を発現している細胞内に薬物を取り込ませることにした。
 本発明によると、細胞毒性を示す薬物を、VEGF受容体を発現している細胞、特にがん細胞内に特異的に届けることができ、がん細胞を特異的に障害させることができる。
図1は本発明に係る薬物複合体の概念図である。 図2は薬物が結合可能なVEGF結合性ペプチドM49Kの合成方法の一例を示す概念図である。 図3は薬物が結合可能なVEGF結合性ペプチドM49Kの二次構造についての測定結果を示す図である。aはSPR法によるM49K(C1A)のVEGFに対するセンサーグラム、bは環状化したM49のセンサーグラム、cはM49とM49K(C1A)のCDスペクトルを示す図である。 図4は薬物が結合可能なVEGF結合性ペプチドM49Kの細胞内取り込みを示す共焦点レーザー走査型顕微鏡画像であって、IはCy5-M49K及びAlexa 488-VEGFを添加したHUVEC、IIはAlexa 488-VEGFのみを添加したHUVEC、IIIはCy5-M49Kのみを添加したHUVECをそれぞれ示し、各行においてそれぞれ、(A)は位相差顕微鏡で撮影した細胞の形状、(B)はAlexa 488の緑色蛍光を観察した細胞断面図、(C)はCy5の赤色蛍光を観察した細胞断面図、(D)は(B)と(C)のMerge画像を示す。 図5はフローサイトメーターによる薬物が結合可能なVEGF結合性ペプチドM49Kの細胞取り込み試験の結果を示す図である。Aは未処理のHUVEC、BはAlexa488-VEGFを処理したHUVEC、CはCy5.1-M49Kを処理したHUVEC、DはAlexa488-VEGFとCy5.1-M49Kを処理したHUVECを示す。 図6は本発明の一実施形態である薬物複合体の合成スキームである。 図7はSPR法を用いた薬物複合体M49K-CemのVEGFに対する結合活性の測定結果を示す図である。 図8は薬物複合体M49K-CemのHUVEC増殖阻害試験の結果を示す図である、M49Kは対照である薬物が結合可能なVEGF結合性ペプチドM46K、YTI-Cemは対照である非VEGF結合性ペプチド-薬物複合体YT1-Cemを示す。
 本発明に係る薬物複合体は、α-ヘリックス構造を形成するペプチドからなりN末端側に位置するAブロックと、α-ヘリックス構造を形成するペプチドからなりC末端側に位置するCブロックと、AブロックとCブロックを共有結合で結ぶペプチドからなるBブロックとからなるヘリックス-ループ-ヘリックス構造を有するVEGF結合性ペプチドと薬物が結合したVEGF結合性ペプチド-薬物複合体であって、前記薬物が、前記VEGF結合性ペプチドのN末端のアミノ酸及び/又はC末端のアミノ酸に直接又は間接に結合し、VEGF受容体のエンドサイトースによりVEGF受容体発現細胞内に取り込まれるVEGF結合性ペプチド-薬物複合体である。
 本発明において用いられるVEGF結合性ペプチドは、前記ヘリックス-ループ-ヘリックス構造を有しVEGF結合性を有するペプチドであれば特に限定されない。VEGF結合性ペプチドは、結合したVEGFと共に細胞内に取り込まれると考えられるので、強いVEGFとの結合性を示すVEGF結合性ペプチドが好ましい。このような強いVEGF結合性を示すペプチドの具体例は特許文献2に開示されている。従って、本明細書においては特許文献2の記載が適宜参照し得る。
 ヘリックス-ループ-ヘリックス構造は、α-ヘリカルコイルドコイル構造とも呼ばれ、この構造を有するペプチドは単一分子として溶液中で安定に存在する。このペプチドは2つのヘリックス(AブロックとCブロック)間に配置されたロイシンの疎水性相互作用によって安定化されている。さらにN末端側α-ヘリックス(Aブロック)のグルタミン酸側鎖と、C末端側α‐ヘリックス(Cブロック)のリジン側鎖との間に塩橋(Bブロック)が形成されるようにデザインされている。このペプチドは、これら立体構造の形成に重要なアミノ酸残基さえ残せば、他の残基をランダム化しても安定な立体構造を保持する。
 本発明に係るVEGF結合性ペプチドはこのような基本構造を有するペプチドであって、VEGFに対して結合性を有する。VEGFに対する結合性の有無は、特許文献2に記載の方法によって求められるVEGFに対する解離定数(KD)によって判断することが可能である。例えば、10,000nM以下の解離定数(KD)であればVEGFに対して結合性を有すると判断される。また、AブロックのN末端にあるアミノ酸とCブロックのC末端にあるアミノ酸を共有結合させて閉環させた環状ペプチドとした場合に、当該環状ペプチドとVEGFとの解離定数(KD)が10,000nM以下、好ましくは1,000nM以下、さらに好ましくは500nM以下、より望ましくは10nM以下の解離定数(KD)を示すVEGF結合性ペプチドが好ましい。
 より具体的な配列として、本発明では、Bブロックのアミノ酸配列が配列番号3(GTYRASTWWWG)、配列番号4(GPDLMVWWGWD)、配列番号5(GNSDYPWIGWG)、配列番号6(GPWKGYPIPYG)に示すアミノ酸配列からなるVEGF結合性ペプチドが好ましい。配列番号3~6に示すアミノ酸配列からなるペプチドをBブロックに有するヘリックス-ループ-ヘリックス構造のペプチドが良好なVEGF結合性を示す。
 AブロックやCブロックのアミノ酸配列も前記基本構造を有する限り特に制約されず、例えば、Aブロックのペプチドは配列番号7(CAAELAALEAELAALE)に示すアミノ酸配列からなるペプチドであり得る。また、Cブロックのペプチドは、例えば配列番号8(KLAALKAKLAALKAAC)に示すアミノ酸配列からなるペプチドであり、好ましくは配列番号9(KLXXLKXKLXXLKXACに示すアミノ酸配列からなるペプチド)に示すアミノ酸配列のうち、立体構造の維持に必須でないアミノ酸(X)が、スレオニン、アラニン及びプロリン以外の任意のアミノ酸に置換されたペプチドであり、さらに好ましくは配列番号10(KLFQLKNKLHQLKYAC)、配列番号11(KLNQLKHKLDHLKVAC)、配列番号12(KLGELKQKLLKLKNAC)、配列番号13(KLQFLIKKLKQLKVAC)に示すアミノ酸配列からなるペプチドである。なお、本発明において、ペプチドを構成するアミノ酸は天然に存在するL-アミノ酸、特に好ましくはタンパク質を構成するアミノ酸であり、立体構造を維持する限りD-アミノ酸であってもよい。
 本発明においてはBブロックのアミノ酸配列が重要であり、Aブロックのアミノ酸配列やCブロックのアミノ酸配列は任意のものであっても差し支えないと考えられる。従って、本発明においては、配列番号3~6の何れかに示されたアミノ酸配列からなるBブロックに、配列番号10~13の何れかに示されたアミノ酸配列からなるCブロックを組み合わせてもよい。さらに具体的には、配列番号14~17に示されたアミノ酸配列を有するVEGF結合性ペプチドが好適に用いられる。また、これらのアミノ酸配列からそれぞれ1つ又は2つのアミノ酸が欠失又は置換、挿入されたアミノ酸配列を用いることもできるのは言うまでもない。本発明において好ましいアミノ酸配列を表1にまとめた。なお、表1に示したClone31,41,42,49は特許文献2に記載されたClone31,41,42,49に相当し、M49はClone49と同一のアミノ酸配列を有し、M49KはM49を元にして薬物を結合可能にした遊離の縮合性官能基をAブロックのN末端のアミノ酸に備えた環状のVEGF結合性ペプチドである。
Figure JPOXMLDOC01-appb-T000001
 本発明に係る複合体は、前記VEGF結合性ペプチドに薬物が結合した複合体である。薬物の結合位置は、VEGF結合性ペプチドのN末端のアミノ酸又はC末端のアミノ酸であり、好ましくはN末端のアミノ酸である。
 薬物との結合様式は問われず、複合体の製造工程や薬物の効果発現性などを考慮して選択され得る。例えば、細胞内に取り込まれた薬物が複合体から脱離することで薬効を発揮する場合には、細胞内において脱離されやすい結合様式が採用され得る。また、正常細胞にまで毒性を与えないようにするとの観点からは、血液中では離脱され難い結合様式で薬物を結合させることが好ましい。結合様式は、例えば、N末端のアミノ酸又はC末端のアミノ酸が有する縮合性官能基が利用され得る。ここにおいて、縮合性官能基とは、チオール基や水酸基、アミノ基、カルボキシル基、アルデヒド基のように、VEGF結合性ペプチドと薬物との間で、エステル化反応(チオエステル化反応も含む)やアミド化反応、アルドール縮合などのように、付加脱離反応を起こし得る官能基を意味する。
 この縮合性官能基は、前記VEGF結合性ペプチドのN末端のアミノ酸又はC末端のアミノ酸自身が有する官能基でもあり、また、人工的に導入された官能基でもあり得る。アミノ酸自身が有する官能基は、例えば、システインが有するチオール基であり、N末端にあるアミノ酸におけるα位のアミノ基であり、セリン基が有する水酸基であり、N末端にあるアスパラギン酸やグルタミン酸のカルボキシル基であり、C末端にあるアミノ酸のカルボキシル基である。本発明においては、このような縮合性官能基を、例えば、配列番号14~17に示されたアミノ酸配列を有する前記VEGF結合性ペプチドに備えることで、薬物を結合可能としている。このようなVEGF結合性ペプチドは、例えば、上記官能基を有するアミノ酸をN末端やC末端に挿入し、又はN末端やC末端のアミノ酸を置換することで容易に得られる。
 本発明では、N末端のアミノ酸とC末端のアミノ酸が直接又は間接に結合した環状構造のVEGF結合性ペプチドが好ましく用いられる。環状構造をとらない場合でも、当該VEGF結合性ペプチドはAブロックとCブロックとの相互作用により安定しているが、環状構造とすることでより安定で強力なVEGF結合性ペプチドとなる。ここで、直接に結合したとは、例えば、AブロックのN末端のアミノ酸とCブロックのC末端のアミノ酸がアミド結合(ペプチド結合)で結合した場合や、AブロックのN末端のシステインとCブロックのC末端のシステインがジスルフィド結合(SS結合)で結合した場合のように、AブロックのN末端のアミノ酸とCブロックのC末端のアミノ酸がリンカーを介さずに結合したことを意味する。間接に結合したとは、AブロックのN末端のアミノ酸とCブロックのC末端のアミノ酸がリンカーを介して結合したことを意味する。リンカーの構造は特に限定されるものではなく、例えば、炭素原子が直鎖状に結合したリンカーやアミノ酸がペプチド結合したリンカーなどが示される。リンカーの長さはペプチドの安定性や細胞内への取り込み、薬物の効果発現性などに応じて適宜定められる。例えば、1~10個のメチレン基が直鎖状に結合したリンカーや、1~9個、好ましくは1~5個、さらに望ましくは1~4個のアミノ酸がアミド結合により結合したペプチド鎖である。リンカーを構成するアミノ酸は制約されるものではないが、単純な構造とする観点からはグリシンが好ましく、グリシンのみから構成されるペプチド鎖がリンカーとして望ましい。また、ペプチド鎖からなるリンカーはα-ヘリックス構造をとらず、前記Aブロックのα-ヘリックス構造や前記Cブロックのα-ヘリックス構造に影響を与えない配列が採用される。
 また、本発明における上記縮合性官能基を有するVEGF結合性ペプチドは、ヘリックス-ループ-ヘリックス構造の安定化が妨げられない限り、上記例示した前記Aブロック及び/又は前記Cブロックのアミノ酸配列や、リンカーを備えた例えばM49Kのアミノ酸配列からそれぞれ1つ又は2つのアミノ酸が欠失又は置換、挿入されたアミノ酸配列を用いることもできる。
 VEGF結合性ペプチドに結合させる薬物は、VEGF受容体を発現した細胞においてエンドサイトーシスにより取り込み可能な薬物である。本発明において、エンドサイトーシスにより取り込み可能な薬物とは、薬物がVEGF結合性ペプチドに結合した場合、その立体障害によってVEGFとVEGF受容体の結合を阻害することなく、細胞内に取り込まれる薬物を意味する。このような薬物の分子量は、概ね30,000以下、好ましくは20,000以下、さらに好ましくは10,000以下、望ましくは5,000以下である。上限となる分子量はあくまでも目安であり、本発明では薬物のかさ高さ、つまりVEGF結合性ペプチド-薬物複合体が立体障害を起こさない程度の大きさの分子であることが重要である。当該薬物の一例として、標的とする組織としてがん細胞を想定した場合には、細胞毒性を示す毒物性の薬物が好ましく挙げられる。薬物としては、例えば、塩酸ドキソルビシン、塩酸ペプロマイシン、塩酸ナイトロジェンマスタード-N-オキシド、シクロファスファミド、チオデパ、カルボコン、塩酸ニムスチン、塩酸ブレオマイシン、硫酸ブレオマイシン、硫酸ペプロマイシン、塩酸アクラルビシン、塩酸イダルビシン、塩酸エピルビシン、塩酸ダウノルビシン、塩酸ピラルビシン、ジノスタチンスチマラマー、ネオカルチノスタチン、エトポシド、テニポシド、塩酸イリノテカン、硫酸ビンクリスチン、硫酸ビンデシン、硫酸ビンブラスチン、L-アスパラギナーゼ、塩酸ミトキサントロン、シスプラチン、カルボプラチン、ネダプラチン、ペントスタチン、ジゾフィラン、ポルフィマーナトリウム、イファスファミド、カタルバジン、メルカプトプリン、チオイノシン、シタラビン、エノシタビン、フルオロウラシル、テガフール、塩酸アンシタビン、メトトレキサート、カルモフール、マイトマイシンC、アクチノマイシン、塩酸ブレオマイシン、タキソールが示される。薬物はAブロックのN末端又はCブロックのC末端の何れか一方又は双方に結合され得るが、双方に結合した場合にはVEGFとVEGF受容体の結合を阻害しないことが必要である。
 本発明に係る薬物複合体は、典型的には医薬組成物として使用される。医薬組成物は、有効量のVEFG結合性ペプチド-薬物複合体の他に薬理学的に許容し得る製剤用の助剤を含み得る。助剤は、例えば、賦形剤、結合剤、崩壊剤、潤沢剤、被覆剤、矯味剤、可溶化剤であり得る。当該組成物はヒトを含む動物に経口又は非経口で適用し得る形態(剤型)として提供される。当該剤型は、例えば、錠剤であり、顆粒剤であり、散剤であり、液剤であり、注射剤であり、座剤であり得る。
 VEFG結合性ペプチド-薬物複合体の投与量は、性別や体重、年齢、人種、症状等に応じて当業者により適宜決定される。その投与量の下限は、例えば、0.001μg/kg体重であり、0.01μg/kg体重であり、0.1μg/kg体重であり、0.001mg/kg体重であり、0.01mg/kg体重であり、0.05mg/kg体重であり、0.1mg/kg体重であり得る。また、その上限は、例えば、1000mg/kg体重であり、100mg/kg体重であり、10mg/kg体重であり、5mg/kg体重であり、1mg/kg体重であり得る。
 次に本発明について下記の実施例に基づいてさらに詳しく説明するが、本発明は下記の実施例に限られないのは言うまでもない。
 〔VEGF結合性ペプチド誘導体の合成〕
 ジスルフィド結合により安定化された環状VEGF標的ペプチド(M49)に対して、薬物結合用のリンカーを導入するとともに、ペプチドの安定化を図るためにペプチドの主鎖部分を環状化したVEGF結合性ペプチド誘導体(M49K)を合成した(図1)。表2にペプチドM49及びペプチドM49Kのアミノ酸配列を示した。ペプチドM49の配列は、配列番号7に示すアミノ酸配列を有するAブロックと、配列番号6に示すアミノ酸配列を有するBブロックと、配列番号13に示すアミノ酸配列を有するCブロックを有する。なお、図1にはN末端のアミノ酸であるシステインとC末端のアミノ酸であるシステインがSS結合により環化されており、C末端のカルボキシル基がアミノ化されたものを示している。ペプチドM49Kは、Aブロックから1つのアミノ酸(アラニン)が欠落し、CブロックのC末端のシステインを欠き、4つのグリシンをリンカーとして結合させて環状化したものである。
Figure JPOXMLDOC01-appb-T000002
 2-クロロトリチルクロリドレジンに、Fmoc-Gly-OH、DIEA、DMF/DCMを加えてFmoc-グリシンを結合させた後、DIEA/MeOH/DCMを加えて未反応のトリチル基をキャッピングした。キャッピングしたFmoc-Gly-tritylレジンを使用し、Fmoc固相合成法により配列番号2に示すアミノ酸配列を有するペプチドを合成した。固相合成の後、DCM/TFE/AcOHで脱樹脂した(図2(I))。脱樹脂して得られた残渣にBOP、DIEA、3-mercaptopropionate、クロロホルムを加えて室温で撹拌し、C末端をチオエステル化した。反応終了後、溶媒を除去して得られた残渣にTFA/H2O/フェノール/TIS(88/5/5/2)を加えて室温で撹拌し、ペプチドの側鎖保護基の脱保護を行った。反応終了後、ジエチルエーテルを加え沈殿したペプチドを遠心分離により回収し、乾燥させた。得られた粗ペプチドは0.1%TFA水溶液に溶かし、RP-HPLCで精製した(図2(II))。次に、下記のネイティブケミカルライゲーション反応によりC末端とN末端を縮合し、環状化されたペプチドM49Kを合成した。図2(II)のチオエステル化したM49を水に溶かし、200mM Na2HPO4、2mM MPAA、20mM TCEP・HClを含む反応溶液に滴下した。反応終了後、凍結乾燥を行い、得られた粉末を0.1% TFA溶液に溶かし、RP-HPLCで精製した(図2(III)。精製したペプチドM49KはRP-HPLCで純度を測定し、MALDI-TOF-MSで分子量を確認した(純度:95%、[M+H]+:計算値4724.656:実測値4724.66)。
 また、ペプチドM49Kの物性を測定する際に、チオール基を介した二量体の形成を防ぐため、脱硫反応でM49KのC末端のシステイン残基をアラニン残基に置換したペプチド誘導体M49K(C1A)も合成した。得られたM49Kを400mM Tris、250mM TCEP・HClと200mM VA-044、グルタチオンを含む反応溶液に加え、室温で反応させてM49K(C1A)を得た。このペプチド誘導体も、MALDI-TOF-MSで分子量を確認したところ、目的のペプチドが合成されたことが確認された。
 次に、ペプチドM49K(C1A)がペプチドM49と同等の物性を保持しているか調べるために、表面プラズモン共鳴(SPR)法によりVEGFに対する解離定数を測定し、円二色性(CD)スペクトルにより二次構造に関する情報を得た。VEGFをセンサーチップCM5にアミンカップリングで300RU固定化し、各濃度のペプチドを添加して得られたセンサーグラムから1:1の結合モデルを用いて結合パラメーターを算出した。また、ペプチド濃度20μMの20mMリン酸緩衝液(pH7.0)中、20℃でCDスペクトルを測定した。図3及び表3に示すように、ペプチドM49とそれに修飾を施したペプチド誘導体M49K(C1A)は同様の物性を保持しており、環状に安定化したペプチドM49KはM49と同様の物性を保持していると結論づけられた。
Figure JPOXMLDOC01-appb-T000003
 〔ペプチド誘導体M49Kの細胞内取り込み〕
 ペプチド誘導体M49KはVEGFとVEGF受容体との相互作用を阻害しない。そこで次に、M49KがVEGFと共にVEGF受容体を介したエンドサイトーシスでHUVEC(ヒト臍帯静脈内皮細胞:Human Umbilical Vein Endothelial Cells )内に取り込まれるか調べた。ガラスベースディッシュにHUVECを播種、培養した。そこへ、Alexa-488で蛍光標識したVEGFと、Cy5で蛍光標識したM49KをHUVECに添加し、6時間後にレーザー共焦点顕微鏡観察を行った。その結果、図4に示すようにAlexa-488の蛍光とCy5の蛍光が細胞内で観察できた。また、これらの蛍光が共局在していたことから、M49KはVEGFとともに細胞内へ取り込まれていることが判明した。
 また、フローサイトメーターで細胞の蛍光強度を測定した。96穴平底プレートにHUVECを播種し、Alexa-488で蛍光標識したVEGF(2μg/mL)及び/又はCy5で蛍光標識したM49K(100nM)を添加して37℃の5%CO2インキュベーターで48時間静置した。その後、トリプシン処理を行い、PBSで洗浄した後、フローサイトメーターで解析した。その結果、何も処理していないHUVECでは、Cy5とAlexa488の蛍光強度はともに低かった(図5A)。VEGF-Alexa488をのみを添加したところ、Alexa-488の蛍光強度が強い領域に細胞集団が観測された(同図B)。M49K-Cy5のみをHUVECに添加したところ、細胞集団の蛍光強度は、未処理のHUVECと同じ領域に観測された(同図C)。最後に、M49K-Cy5とVEGF-Alexa488を同時に添加したところ、細胞集団は、Cy5とAlexa488の蛍光強度がともに高い領域にシフトした(同図D)。つまり、M49Kは、VEGF存在下でのみHUVECへ取り込まれることが示された。
 〔環状VEGF標的ペプチド-薬物複合体の合成〕
 次にペプチド誘導体M49Kに薬物を結合し、薬物複合体を合成した。薬物には、チューブリン重合阻害剤であるセマドチン(Cemadotin)の類縁体であるCemCH2-SHを用いて、M49Kのシステイン残基とジスルフィド結合を介して結合させた。CemCH2-SHは公知の化合物である(Bernardes, G. J. L. et al. Angew. Chem. Int. Ed. 124, 965-968 (2012))。細胞内は、存在する多量のグルタチオンのために還元条件下であると考えられるため、M49K-薬物複合体が取り込まれると、このジスルフィド結合は切断され、薬物が毒性を発揮すると想像される。
 CemCH2-SHを図6のスキームに従って合成した。まず、4-Cyanobenzaldehyde(1)をLiAlH4を加えた無水THFに溶解して、窒素雰囲気下で還流しながら反応させた後、NaOHを加えて(4-(aminomethyl)phenyl)methanol(2)を得た。当該化合物2のアミノ基をBoc基で保護した後、tBuOH/NaOH中でdi-tert-butyl dicarbonateと反応させた。反応液から飽和炭酸水素ナトリウム水溶液と酢酸エチルで抽出してtert-butyl 4-(hydroxymethyl)benzylcarbamate(3)を得た。次に、当該化合物3とTriphenylphospineとチオ酢酸を無水THFに溶かし、Diisopropyl azodicarboxylateを加えて0℃で反応させた後、ジエチルエーテルを加えて有機層を取得した。有機溶媒を減圧留去することで、S-4-(((tert-Butoxycarbonyl)amino)methyl)benzyl ethanethioate(4)を得た。当該化合物4をジクロロメタンに溶かしTFAを加えることでBoc基を脱保護して、S-4-(Aminomethyl)benzyl ethanethioate(5)を得た。
 これとは別に、N,N-dimethylvalyl-valyl-N-methylvalyl-prolyl-proline(6)を2-クロロトリチルクロリドレジンを担体としたFmoc固相合成法で合成した。2-クロロトリチルクロリドレジンに、Fmoc-Pro-OH、DIEA、DMF/DCMを加えてFmoc-プロリンを結合させた後、DIEA/MeOH/DCMを加えて未反応のトリチル基をキャッピングした。キャッピングしたFmoc-Pro-tritylレジンを使用し、アミノ酸とHATUとDIEAをDMFに溶かした溶液をレジンに加えて固相合成を行った。DCM/TFE/AcOHでクリベージを行い、N,N-dimethylvalyl-valyl-N-methylvalyl-prolyl-proline(6)を得た。当該化合物6とHATUとDIEAをDMFに溶解して攪拌した。そこに、化合物5を加えて撹拌しながら反応させた。DMFを減圧留去し、水/アセトニトリルに溶解して高速液体クロマトグラフィーにより精製し、CemCH2-SAc(7)を得た。化合物(7)をメタノールに溶かし、NaOH存在下でチオエステルをチオエーテル基に変換し、tris緩衝液とDTTを加えて反応を止め、CemCH2-SHを合成した。
 CemCH2-SHと2,2'-Dithiobis(5-nitropyridine)をTHFに溶かし、室温で2時間反応させて溶媒を留去することで、CemCH2-S-TNBを得た。得られたCemCH2-S-TNBとM49KをPBSに溶かし、室温で反応させることでM49K-Cemを合成した。合成したM49K-CemはRP-HPLCで精製した。RP-HPLCで純度を測定したところ、精製したM49K-Cemの純度は95%であった。また、MALDI-TOF-MSにより分子量を確認したところ、その実測値はm/z=5407.076であった。複合体M49K-Cemの[M+H]+の計算値は5407.052であり、目的の化合物であるM49K-Cemが合成されたものと確認された。
 次いで、VEGFに対する結合活性を、上記M49K(C1A)と同様にしてSPR法で測定した(図7)。その結果、kaは6.6×105(1/Ms)、kdは3.9×10-4(1/s)、解離定数KDは0.6nMであった。よって、M49KへのCemCH2-SHのコンジュゲートは、VEGFとの結合に影響しないことがわかった。
 〔M49K-Cemによる細胞増殖阻害試験〕
 M49K-Cemを用いてHUVECの増殖阻害試験を実施した。96穴平底プレートにEBM-2培地で懸濁したHUVEC(3000cells/100μL/well)を添加し、37℃、5%CO2での一晩培養した。次に、培地を抜き取り、そこへ25ng/mLのVEGFと各濃度のサンプルを含むDMEM培地(0.2%FCS)を添加した。37℃、5%CO2で24時間培養後、WST-1アッセイ(Ishiyama, M.et al., Biol. Pharm. Bull. 19, 1518-1520 (1996))により細胞増埴度を調べた。その結果、図8に示すように、M49K-Cemは濃度依存的に細胞増殖を阻害し、HUVECに対するIC50値は45nMであった。一方、対照であるM49KとYT1-Cemは細胞増殖を阻害しなかった。YT1はVEGFに結合しない配列番号18に示すアミノ酸配列を有するヘリックス-ループ-ヘリックスペプチドであって、YT1-Cys(CAELAALEAELAALEGGGGGGGKLAALKAKLAALKA-NH2)とCemCH2-S-TNBをPBS中で反応させることで得られる。
 M49K-Cemは細胞内に取り込まれて、ペプチドとCemCH2-SHの結合が切断されたと考えられる。なぜなら、CemCH2-SHはペプチドから切断されないと毒性を発揮しないからである。また、YT1-Cemは細胞内に取り込まれないため、ペプチドとCemCH2-SHの結合が切れず、細胞毒性を発揮しなかったと推測される。
 本発明によれば、VEGF受容体を発現している細胞において薬効を発揮させる新たなドラッグデリバシーシステムが提供される。

Claims (15)

  1.  α-ヘリックス構造を形成するペプチドからなりN末端側に位置するAブロックと、α-ヘリックス構造を形成するペプチドからなりC末端側に位置するCブロックと、AブロックとCブロックを共有結合で結ぶペプチドからなるBブロックとからなるヘリックス-ループ-ヘリックス構造を有するVEGF結合性ペプチドと薬物が結合したVEGF結合性ペプチド-薬物複合体であって、
     前記薬物が、前記VEGF結合性ペプチドのN末端のアミノ酸及び/又はC末端のアミノ酸に直接又は間接に結合し、
     VEGF受容体のエンドサイトースによりVEGF受容体発現細胞内に取り込まれるVEGF結合性ペプチド-薬物複合体。
  2.  前記薬物は、細胞内酵素により切断されうる結合様式にて前記VEGF結合性ペプチドのN末端アミノ酸又はC末端アミノ酸に結合した請求項1項に記載のVEGF結合性ペプチド-薬物複合体。
  3.  前記薬物は、前記VEGF結合性ペプチドのN末端のアミノ酸又はC末端のアミノ酸が有する縮合性官能基に直接結合した請求項1又は2に記載のVEGF結合性ペプチド-薬物複合体。
  4.  前記縮合性官能基は、チオール基、アミノ基、水酸基、カルボキシル基、アルデヒド基の何れかである請求項1又は2に記載のVEGF結合性ペプチド-薬物複合体。
  5.  前記VEGF結合性ペプチドのN末端のアミノ酸と当該VEGF結合性ペプチドのC末端のアミノ酸が、直接又は間接に結合した請求項1~4の何れか1項に記載のVEGF結合性ペプチド-薬物複合体。
  6.  前記AブロックのN末端アミノ酸と前記BブロックのC末端アミノ酸が、1~数個のアミノ酸からなるリンカーで結合した請求項5に記載のVEGF結合性ペプチド-薬物複合体。
  7.  前記Bブロックは、配列番号3~6に記載の何れかのアミノ酸配列からなるペプチドである請求項1~6の何れか1項に記載のVEGF結合性ペプチド-薬物複合体。
  8.  前記Aブロックは配列番号7に記載のアミノ酸配列からなるペプチドであり、前記Cブロックは配列番号8に記載のアミノ酸配列からなるペプチドであることを特徴とする請求項7に記載のVEGF結合性ペプチド-薬物複合体。
  9.  前記Aブロックは配列番号7に記載のアミノ酸配列からなるペプチドであり、前記Cブロックは配列番号9(KLXXLKXKLXXLKXAC:但し、Xはスレオニン、アラニン及びプロリン以外のアミノ酸)に記載のアミノ酸配列からなるペプチドである請求項7に記載のVEGF結合性ペプチド-薬物複合体。
  10.  前記Aブロックは配列番号7に記載のアミノ酸配列からなるペプチドであり、前記Cブロックは配列番号10~13に記載の何れかのアミノ酸配列からなるペプチドである請求項7に記載のVEGF結合性ペプチド-薬物複合体。
  11.  α-ヘリックス構造を形成するペプチドからなりN末端側に位置するAブロックと、α-ヘリックス構造を形成するペプチドからなりC末端側に位置するCブロックと、AブロックとCブロックを共有結合で結ぶペプチドからなるBブロックとからなるヘリックス-ループ-ヘリックス構造を有するVEGF結合性ペプチドであって、
     当該VEGF結合性ペプチドのN末端のアミノ酸及び/又はC末端のアミノ酸が遊離の縮合性官能基を有する非環状のVEGF結合性ペプチド(但し、N末端アミノ酸及びC末端アミノ酸のいずれもがシステインであるものを除く)。
  12.  α-ヘリックス構造を形成するペプチドからなりN末端側に位置するAブロックと、α-ヘリックス構造を形成するペプチドからなりC末端側に位置するCブロックと、AブロックとCブロックを共有結合で結ぶペプチドからなるBブロックとからなるヘリックス-ループ-ヘリックス構造を有するVEGF結合性ペプチドであって、
     当該VEGF結合性ペプチドのN末端のアミノ酸又はC末端のアミノ酸が遊離の縮合性官能基を有し、かつ、
     当該VEGF結合性ペプチドのN末端アミノ酸と当該VEGF結合性ペプチドのC末端アミノ酸が直接又は間接に結合して、環状化されたVEGF結合性ペプチド(ただし、N末端のアミノ酸とC末端のアミノ酸がSS結合により直接結合したVEGF結合性ペプチドを除く)。
  13.  前記VEGF結合性ペプチドのN末端アミノ酸と当該VEGF結合性ペプチドのC末端アミノ酸が、酸アミド結合で結合した請求項12に記載のVEGF結合性ペプチド。
  14.  前記AブロックのN末端アミノ酸と前記CブロックのC末端アミノ酸が、1~数個のアミノ酸からなるリンカーで結合した請求項12に記載のVEGF結合性ペプチド。
  15.  前記縮合性官能基は、チオール基、水酸基、アミノ基、カルボキシル基、アルデヒド基の何れかである請求項11~14の何れか1項に記載のVEGF結合性ペプチド。
PCT/JP2016/068934 2015-06-25 2016-06-25 薬物複合体 WO2016208761A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/738,919 US20180264124A1 (en) 2015-06-25 2016-06-25 Drug complex
JP2017525472A JP6583411B2 (ja) 2015-06-25 2016-06-25 薬物複合体
EP16814530.8A EP3338805A4 (en) 2015-06-25 2016-06-25 Drug complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-128028 2015-06-25
JP2015128028 2015-06-25

Publications (1)

Publication Number Publication Date
WO2016208761A1 true WO2016208761A1 (ja) 2016-12-29

Family

ID=57586178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068934 WO2016208761A1 (ja) 2015-06-25 2016-06-25 薬物複合体

Country Status (4)

Country Link
US (1) US20180264124A1 (ja)
EP (1) EP3338805A4 (ja)
JP (1) JP6583411B2 (ja)
WO (1) WO2016208761A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172647A (ja) * 2018-03-29 2019-10-10 公立大学法人大阪府立大学 Vegf結合阻害ペプチド
JP2019196326A (ja) * 2018-05-09 2019-11-14 公立大学法人大阪府立大学 Vegf結合阻害剤
JP2022082754A (ja) * 2019-03-22 2022-06-02 リフレクション ファーマシューティカルズ, インコーポレイテッド Vegfのためのd-ペプチド性化合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231085A (ja) * 2010-04-30 2011-11-17 Osaka Prefecture Univ 環状ペプチド
JP2014047156A (ja) * 2012-08-30 2014-03-17 Osaka Prefecture Univ Vegf結合性融合ペプチド

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231085A (ja) * 2010-04-30 2011-11-17 Osaka Prefecture Univ 環状ペプチド
JP2014047156A (ja) * 2012-08-30 2014-03-17 Osaka Prefecture Univ Vegf結合性融合ペプチド

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KUNIO FUJII: "Beyond Antibodies: Directed evolution of molecular-Targeting peptides in phage-displayed libraries of conformationally constrained Peptides", DRUG DELIVERY SYSTEM, vol. 26, no. 6, 2011, pages 593 - 603, XP002758789, DOI: doi:10.2745/dds.26.593 *
See also references of EP3338805A4 *
TAHAHASHI KENTARO ET AL.: "Chemical Synthesis of Head-to-Tail Cyclized Anti-VEGF Microantibody", PEPT. SCI., vol. 14, 20 March 2015 (2015-03-20), pages 143 - 144, XP009505635 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172647A (ja) * 2018-03-29 2019-10-10 公立大学法人大阪府立大学 Vegf結合阻害ペプチド
JP7138909B2 (ja) 2018-03-29 2022-09-20 公立大学法人大阪 Vegf結合阻害ペプチド
JP2019196326A (ja) * 2018-05-09 2019-11-14 公立大学法人大阪府立大学 Vegf結合阻害剤
JP2022082754A (ja) * 2019-03-22 2022-06-02 リフレクション ファーマシューティカルズ, インコーポレイテッド Vegfのためのd-ペプチド性化合物

Also Published As

Publication number Publication date
JPWO2016208761A1 (ja) 2018-04-12
EP3338805A1 (en) 2018-06-27
EP3338805A4 (en) 2018-10-31
JP6583411B2 (ja) 2019-10-02
US20180264124A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
US10407468B2 (en) Methods for synthesizing α4β7 peptide antagonists
US20210101932A1 (en) Bicyclic peptide ligands specific for pd-l1
JP7250814B2 (ja) 新規glp-1類似体
AU2018385697A1 (en) Stabilized peptide-mediated targeted protein degradation
CN111447941B (zh) 用于细胞内递送装订肽的多肽缀合物
WO2021167107A1 (ja) ヒトトランスフェリンレセプター結合ペプチド
JP2009529509A (ja) 造血を促進する修飾分子
JP5744844B2 (ja) 副甲状腺ホルモン(pth)受容体アゴニストとしての短鎖ペプチド
US20220411461A1 (en) Methods of making incretin analogs
JP6633523B2 (ja) Psd−95の二量体阻害剤脂肪酸誘導体
JP6583411B2 (ja) 薬物複合体
CN112585157A (zh) 用于结合整联蛋白αvβ3的肽配体
US20230287051A1 (en) Inhibitors of complement factor c3 and their medical uses
WO2023027125A1 (ja) ヒトトランスフェリンレセプター結合抗体-ペプチドコンジュゲート
CN116284224B (zh) 一种结合Claudin 18.2的环肽及其应用
EP4410816A1 (en) Peptide
WO2024029242A1 (ja) 新規lrp1結合ペプチド
JP2024523280A (ja) Ghr結合ペプチドおよびそれを含む組成物
Fulcher From Therapeutic Discovery to Structural Biology: Applications of Chemical Protein and Peptide Synthesis
CN114106091A (zh) 蛋白类似物及其缀合物
CZ200132A3 (cs) Podávači systém

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525472

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016814530

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15738919

Country of ref document: US