WO2016206488A1 - 光伏逆变器的绝缘阻抗检测方法及装置 - Google Patents

光伏逆变器的绝缘阻抗检测方法及装置 Download PDF

Info

Publication number
WO2016206488A1
WO2016206488A1 PCT/CN2016/081613 CN2016081613W WO2016206488A1 WO 2016206488 A1 WO2016206488 A1 WO 2016206488A1 CN 2016081613 W CN2016081613 W CN 2016081613W WO 2016206488 A1 WO2016206488 A1 WO 2016206488A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
insulation resistance
detection
photovoltaic
photovoltaic array
Prior art date
Application number
PCT/CN2016/081613
Other languages
English (en)
French (fr)
Inventor
魏学海
李建国
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016206488A1 publication Critical patent/WO2016206488A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/20Measuring earth resistance; Measuring contact resistance, e.g. of earth connections, e.g. plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This paper relates to, but is not limited to, the field of photovoltaic inverter power generation, and in particular to a method and device for detecting insulation resistance of a photovoltaic inverter.
  • the insulation resistance is detected by the positive and negative busbars.
  • the photovoltaic array of the photovoltaic inverter is placed outdoors, it is greatly affected by the environment. After a long period of exposure to sunlight, rain, aging of photovoltaic components, lightning strikes, etc., the insulation resistance changes, and the insulation resistance decreases, which leads to DC.
  • the busbar discharges to the ground, which may cause damage to the inverter and cause a series of faults.
  • the PV inverter needs to detect the insulation resistance of the PV array to the ground in real time, not only before the inverter is started, but also when the inverter is running. When the environmental factors change and the insulation changes, it can detect and perform the fault in real time. Indication, if the inverter is connected to the grid in severe cases.
  • the insulation detection technology generally adopts the bridge method, that is, by changing the resistance to change the difference between the positive and negative terminals of the photovoltaic array to the ground, and detecting the insulation resistance to the ground through the detection of the voltage between the positive and negative terminals of the photovoltaic array.
  • the research found that most of the current insulation detection methods focus on the improvement of detection accuracy.
  • the common problems caused by these methods are the increased complexity, the low real-time detection, and little economical consideration.
  • Embodiments of the present invention provide an insulation resistance detecting device and method for a photovoltaic inverter, which realize multi-channel insulation resistance detection, reduce hardware cost, and improve detection efficiency.
  • Embodiments of the present invention provide an insulation resistance detecting device for a photovoltaic inverter, including at least two The road detection module, the control module, the acquisition module, and the MCU unit; wherein, the control module is configured to control only one detection module to connect with the photovoltaic array of the photovoltaic inverter at a time, and control the detection module to be in different detection states, and control
  • the acquisition module is configured to: when the detection module connected to the photovoltaic array of the photovoltaic inverter is in different detection states, the control module of the control module collects the voltage of the positive end of the photovoltaic array and the negative end of the photovoltaic array respectively
  • the MCU unit is configured to calculate and obtain an insulation resistance according to a voltage value corresponding to each of the detection modules.
  • the detecting module includes an unbalanced bridge circuit and a first electronic switch, the second electronic switch, the first electronic switch is configured to change the bridge arm resistance value, and the second electronic switch is connected to the unbalanced bridge circuit. Between the two upper arms and the nodes of the two lower arms; the first electronic switch and the second electronic switch are respectively connected to the control module.
  • control module is configured to control the bridge arm circuit of the detecting module to be turned on, and control the collecting module to collect the voltage of the positive end of the photovoltaic array corresponding to the detecting module and the negative end of the photovoltaic array respectively.
  • the detecting module is further configured with a corresponding module number
  • the control module control is further configured to generate a driving identifier when the bridge arm circuit of the detecting module is turned on;
  • the collecting module is configured to According to the module number and the driving identifier of the detecting module, the voltage of the positive end of the photovoltaic array and the negative end of the photovoltaic array are respectively grounded.
  • the MCU unit is further configured to perform sampling resistance compensation when calculating the insulation resistance.
  • the insulation resistance detecting device of the photovoltaic inverter further includes a startup detection determination module and a module number generation module; and the startup detection determination module is configured to collect a voltage of a photovoltaic array corresponding to each detection module, when When the voltage of the photovoltaic array is greater than the voltage threshold, the startup identifier is set; the module number generation module is configured to generate a module number according to the startup identifier, and the control module is further set according to the module number. Control the corresponding detection module.
  • the insulation resistance detecting device of the photovoltaic inverter further includes a fault judging module, and the fault judging module is configured to obtain, at the MCU unit, a positive end of the photovoltaic array and a negative end of the photovoltaic array corresponding to each detecting module.
  • the fault judging module is configured to obtain, at the MCU unit, a positive end of the photovoltaic array and a negative end of the photovoltaic array corresponding to each detecting module.
  • the insulation resistance detecting device of the photovoltaic inverter further includes a communication module, and the communication module is configured to send the insulation impedance calculated by the MCU unit to an external device for display and fault determination.
  • an embodiment of the present invention further provides a method for detecting insulation resistance of a photovoltaic inverter, comprising the following steps:
  • the driving detection module is in different detection states, and when the detection module connected to the photovoltaic array of the photovoltaic inverter is in different detection states, the voltage of the positive end of the photovoltaic array and the negative end of the photovoltaic array respectively to the ground;
  • the insulation resistance is calculated.
  • the method further includes:
  • the startup identifier is set
  • the module number is generated according to the startup identifier to control the corresponding detection module according to the module number.
  • the calculating after obtaining the insulation resistance according to the voltage value corresponding to each channel detection module, further includes:
  • Performing fault display and alarm when obtaining the insulation resistance of the positive end of the photovoltaic array corresponding to each detection module and the negative end of the photovoltaic array to the ground is less than the resistance threshold;
  • the obtained insulation resistance is sent to an external device for display and fault determination.
  • the multi-channel detection module is set, and the control module controls the detection module to have only one detection module and the photovoltaic array of the photovoltaic inverter at the same time, thereby not only achieving multi-channel insulation resistance detection, but also reducing hardware cost;
  • the electronic switch is turned on and off at a time, and the working mode is single, which not only ensures a certain precision requirement, but also simplifies the program complexity.
  • FIG. 1 is a schematic diagram of functional modules of a first embodiment of an insulation resistance detecting device for a photovoltaic inverter according to the present invention
  • FIG. 2 is a diagram showing an example of a circuit structure of the detecting module of FIG. 1;
  • FIG. 3 is a diagram showing an example of detection timing of an insulation resistance detecting device of a photovoltaic inverter according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of functional modules of a second embodiment of an insulation resistance detecting device for a photovoltaic inverter according to the present invention.
  • FIG. 5 is a schematic flow chart of a first embodiment of an insulation resistance detecting method for a photovoltaic inverter according to the present invention
  • FIG. 6 is a schematic flow chart of a second embodiment of a method for detecting insulation resistance of a photovoltaic inverter according to the present invention.
  • FIG. 7 is a schematic flow chart of a third embodiment of an insulation resistance detecting method for a photovoltaic inverter according to the present invention.
  • the embodiment of the invention provides an insulation resistance detection scheme for a photovoltaic inverter, which realizes multi-channel insulation impedance detection and reduces hardware cost; and the electronic switch in time insulation conduction detection is turned on and the working mode is single, which not only ensures Certain accuracy requirements, but also simplify the complexity of the program.
  • an insulation resistance detecting device for a photovoltaic inverter As shown in FIG. 1, an insulation resistance detecting device for a photovoltaic inverter according to an embodiment of the present invention is shown.
  • the insulation resistance detecting device of the photovoltaic inverter includes at least two detection modules 110, a control module 120, an acquisition module 130, and a micro control unit MCU unit 140.
  • the control module 120 is configured to control only one detection module 110 at a time.
  • the photovoltaic array of the photovoltaic inverter is connected, and the control module is controlled to be in different detection states; the acquisition module 130 is set to be associated with the photovoltaic inverter When the detection module 110 connected to the photovoltaic array is in different detection states, the voltages respectively connected to the positive end of the photovoltaic array and the negative end of the photovoltaic array are respectively collected; the MCU unit 140 is set according to the voltage value corresponding to each detection module 110. , calculate the insulation resistance.
  • the detection module 110 can be configured as four paths, and the detection module 110 is configured to perform insulation resistance detection by using an unbalanced bridge method. As shown in FIG. 2, the detection module 110 includes an unbalanced bridge circuit and two first electronic switches 112 and a second electronic switch 113. The first electronic switch 112 is configured to change a bridge arm resistance value. The two electronic switches 113 are connected between the nodes of the two upper bridge arms and the two lower bridge arms in the unbalanced bridge circuit; the first electronic switch 112 and the second electronic switch 113 are respectively connected to the control module.
  • the unbalanced bridge circuit includes a first resistor R1, a second resistor R2, two third resistors R3, and two fourth resistors R4, wherein the first resistor R1 is an insulation resistance of the positive end of the photovoltaic array to the ground.
  • the second resistor R2 is an insulation resistance of the negative end of the photovoltaic array to ground. It should be noted that the insulation resistance is not an actual resistance, and is merely a form of resistance added for convenience of description.
  • the first resistor R1 and the second resistor R2 correspond to a set of upper and lower arms of the unbalanced bridge circuit.
  • the third resistor R3 and the fourth resistor R4 are configured as another set of upper and lower arms. Further, a first electronic switch 112 is connected in parallel to the fourth resistor R4. By controlling the on or off of the first electronic switch 112, the upper and lower arms of the unbalanced bridge circuit 111 can be divided differently, thereby detecting the positive end of the photovoltaic array and the negative end of the photovoltaic array respectively under different partial pressure conditions. Voltage.
  • the first electronic switch 112 is controlled such that the detection module 110 is in two states: one is to control the electronic switch 112a in the first electronic switch 112 to be turned on, and the electronic switch 112b is turned off; One is to control the electronic switch 112b in the first electronic switch 112 to be turned on, and the electronic switch 112a is turned off.
  • the collecting module 130 collects the voltages of the positive and negative ends of the photovoltaic array when the detecting module 110 is in different states, and includes: the collecting module 130 includes a first collecting circuit and a second collecting circuit, wherein one end of the first collecting circuit Connected to the positive terminal of the photovoltaic array and the connection node of the first resistor R1, the other end of the first acquisition circuit is connected to the MCU unit 140, and is configured to collect the voltage of the positive end of the photovoltaic array to the ground; one end of the second acquisition circuit Connected to the negative terminal of the photovoltaic array and the connection node of the second resistor R2, the other end of the second acquisition circuit 132 is connected to the MCU unit 140, and is configured to collect the negative end of the photovoltaic array to the ground.
  • the detecting module 110 When the detecting module 110 is in the state of detecting the voltage of the positive end and the negative end of the photovoltaic array in different states, the detecting module 110 is in the different state, the voltage of the positive end of the photovoltaic array collected by the first collecting circuit is grounded to the ground. And the voltage PV+ of the positive end of the photovoltaic array corresponding to the detecting module 110; the sum of the voltages of the negative end of the photovoltaic array collected by the second collecting circuit in the different states of the detecting module 110 is used as the The voltage PV- of the negative end of the photovoltaic array corresponding to the detection module 110 is grounded.
  • the MCU unit 140 calculates the resistance values of the first resistor R1 and the second resistor R2 according to the relationship between the voltage PV+ and the PV-voltage and the impedance.
  • the second electronic switch 113 is disposed between the two upper arms and the nodes of the lower arm in the unbalanced bridge circuit.
  • one end of the second electronic switch 113 is connected to two fourth resistors R4, and the other end of the second electronic switch 113 is connected to a connection node of the first resistor R1 and the second resistor R2.
  • any one of the detecting modules 110 can detect the insulation resistance of the photovoltaic array connected thereto.
  • the connection manner of the multi-channel photovoltaic array and the multi-channel detection module is not limited, and may be connected one-to-one or one-to-many.
  • the plurality of sampling modules 130 form a mutual standby relationship, thereby improving the reliability and safety of the photovoltaic inverter.
  • control module 120 is configured to control the bridge arm circuit of the detecting module 110 to be turned on, and control the collecting module 130 to collect the positive end of the photovoltaic array corresponding to the detecting module 110 and the negative end of the photovoltaic array respectively. Voltage,
  • the control module 120 controls the bridge arm circuit in the detection module 110. For example, when the upper bridge arm is turned on, that is, while the first electronic switch 112a is controlled to be turned on, the acquisition module 130 collects the positive end of the photovoltaic array corresponding to the detection module 110 and the photovoltaic array. Negative voltage to ground. Similarly, the control module 120 controls the bridge arm circuit in the detecting module 110, for example, the lower arm is turned on, that is, while the first electronic switch 112b is controlled to be turned on, the collecting module 130 collects the negative end of the photovoltaic array corresponding to the detecting module 110 and the photovoltaic device. The voltage at the negative side of the array to ground. Therefore, by the control of the control module 120, the driving of the detecting module 110 and the voltage collection of the collecting module 130 are synchronized, thereby avoiding driving. Asynchronous causes sampling errors.
  • the detecting module 110 may be configured with a corresponding module number, and when the control module controls the bridge arm circuit of the detecting module to be turned on, generating a driving identifier; and the collecting module is configured according to the module number and the driving identifier of the detecting module.
  • the voltage of the positive end of the photovoltaic array and the negative end of the photovoltaic array are respectively grounded.
  • the module number may be sequentially generated, that is, the module number 0-2-3 is cyclically generated to instruct the control module 120 to drive the detection module corresponding to the module number. 110. Perform insulation resistance detection on the photovoltaic array. For example, if the current module number is 1, the control module 120 controls the second electronic switch in the second detecting module to generate a driving identifier to control the corresponding second electronic switch according to the driving identifier.
  • 1 indicates that the electronic switch corresponding to the upper arm is turned on
  • 0 indicates that the electronic switch corresponding to the lower arm is turned on.
  • the module number and the driving identifier are transmitted to the collecting module 130, so that the sampling module realizes the synchronous collecting function according to the module number and the driving identifier.
  • the sampling voltages collected by the acquisition module 130 are separately stored for digital filtering.
  • (1) indicates the generated module number, and the time interval is set to T seconds.
  • (2) is the drive sign of the upper and lower tubes, logic 1 indicates the upper tube drive, logic 0 indicates the lower tube drive, and the upper and lower tube drive times each account for 0.5T.
  • (3) is the drive signal of the upper tube.
  • (4) is the drive signal of the lower tube.
  • the MCU unit 140 is further configured to perform sampling resistance compensation when calculating the insulation resistance. Since the voltage is collected by the sampling resistor in the collecting module 130, the impedance obtained by calculating the impedance of the positive terminal voltage of the photovoltaic array and the negative terminal voltage of the photovoltaic array is actually a parallel resistance between the ground impedance and the sampling resistor, so Obtaining an accurate insulation resistance, the MCU unit 140 compensates the impedance of the impedance after calculating the impedance, thereby further improving the detection accuracy of the insulation resistance.
  • the insulation resistance detecting device of the photovoltaic inverter further includes a fault judging module 150, and the fault judging module 150 is configured to obtain each of the MCU units 140.
  • the fault display and alarm are performed when the insulation resistance of the positive end of the photovoltaic array corresponding to the road detection module 110 and the negative end of the photovoltaic array is less than the resistance threshold.
  • the insulation resistance detecting device of the photovoltaic inverter further includes a communication module 160, and the communication module 160 is configured to send the insulation impedance calculated by the MCU unit 140 to an external device for display and fault determination.
  • the communication module 160 can adopt a CAN communication method.
  • the insulation resistance detecting device of the photovoltaic inverter further includes a startup detection determination module and a module number generation module, where the startup detection determination module is configured to collect a voltage of a photovoltaic array corresponding to each detection module 110, when the photovoltaic When the voltage of the array is greater than the voltage threshold, the startup identifier is set; the module number generation module is configured to generate a module number according to the startup identifier, so that the control module 120 controls the corresponding detection module 110 according to the module number.
  • the voltage of the photovoltaic array corresponding to the detection module 110 is sequentially collected, that is, the conduction or the off of the first electronic switch in each detection module 110 is controlled, thereby collecting the photovoltaic array.
  • the voltage between the positive terminal and the negative terminal of the photovoltaic array to the ground, and the sum of the voltages of the positive and negative terminals of the photovoltaic array to the ground is taken as the voltage PV of the photovoltaic array.
  • the startup flag that is, detecting the insulation resistance of the corresponding PV array of the detection module. If the voltage PV is less than or equal to the voltage threshold, the startup flag is cleared, that is, the insulation resistance of the corresponding PV array is not detected.
  • the comparison of the voltage and the voltage threshold may be performed after multiple comparisons to finally determine whether the activation flag is to be set. For example, if the voltage PV is greater than the voltage threshold, the accumulated count is accumulated, and the start flag is set when the count sum is greater than a certain value. If the PV voltage is less than or equal to the normal voltage threshold, the accumulated down count is performed. When the count value is less than or equal to zero, the start flag is cleared. The detection of the insulation resistance can be initiated and stopped by the start flag.
  • an embodiment of the present invention provides an insulation resistance detecting method for a photovoltaic inverter using the insulation resistance detecting device of the above photovoltaic inverter.
  • the insulation resistance detecting method of the photovoltaic inverter includes the following steps:
  • Step S110 sequentially controlling the connection between each detection module and the photovoltaic array of the photovoltaic inverter
  • Step S120 The driving detection module is in different detection states, and when the detection module connected to the photovoltaic array of the photovoltaic inverter is in different detection states, the voltages respectively corresponding to the positive ends of the photovoltaic array and the negative ends of the photovoltaic array are respectively collected;
  • Step S130 Calculate and obtain an insulation resistance according to a voltage value corresponding to each channel detection module.
  • the first detection module 110 can be connected to the photovoltaic array at the same time, so that the detection module
  • the two electronic switches are time-divisionally conductive and have a single working mode, which not only satisfies the accuracy requirements, but also simplifies the program complexity.
  • any one of the detecting modules 110 can detect the insulation resistance of the photovoltaic array connected thereto.
  • the connection manner of the multi-channel photovoltaic array and the multi-channel detection module is not limited, and may be connected one-to-one or one-to-many.
  • the plurality of sampling modules 130 form a mutual standby relationship, thereby improving the reliability and safety of the photovoltaic inverter.
  • the first electronic switch 112 is controlled such that the detection module 110 is in two states: one is to control the electronic switch 112a in the first electronic switch 112 to be turned on, and the electronic switch 112b is turned off; One is to control the electronic switch 112b in the first electronic switch 112 to be turned on, and the electronic switch 112a is turned off.
  • the acquisition module 130 collects the voltages of the positive and negative ends of the photovoltaic array to the ground when the detection module 110 is in different states.
  • the collecting module 130 includes a first collecting circuit and a second collecting circuit, wherein one end of the first collecting circuit is connected to a positive end of the photovoltaic array and a connecting node of the first resistor R1, and the other end of the first collecting circuit is
  • the MCU unit 140 is connected to collect the voltage of the positive terminal to the ground of the photovoltaic array; one end of the second collecting circuit is connected to the negative end of the photovoltaic array and the connection node of the second resistor R2, and the other end of the second collecting circuit 132 is
  • the MCU unit 140 is connected and arranged to collect the voltage of the negative terminal of the photovoltaic array to ground.
  • the detecting module 110 When the detecting module 110 is in the state of detecting the voltage of the positive end and the negative end of the photovoltaic array in different states, the detecting module 110 is in the different state, the voltage of the positive end of the photovoltaic array collected by the first collecting circuit is grounded to the ground. And the voltage PV+ of the positive end of the photovoltaic array corresponding to the detecting module 110; the collecting module 130 sets the detecting module 110 to be in a different state, the second collecting circuit The sum of the voltages of the negative ends of the collected PV arrays to the ground is the voltage PV- of the negative end of the photovoltaic array corresponding to the detection module 110.
  • the MCU unit 140 calculates the resistance values of the first resistor R1 and the second resistor R2 according to the relationship between the voltage PV+ and the PV-voltage and the impedance.
  • the step S130 further includes: performing sampling resistance compensation when calculating the insulation resistance. Since the voltage is collected by the sampling resistor in the sampling module 130, the impedance obtained by calculating the positive voltage of the photovoltaic array and the negative voltage of the photovoltaic array is actually a parallel resistance between the ground impedance and the sampling resistor, so Obtaining an accurate insulation resistance, the MCU unit 140 compensates the impedance of the impedance after calculating the impedance, thereby further improving the detection accuracy of the insulation resistance.
  • the method further includes:
  • Step S140 collecting a voltage of a photovoltaic array corresponding to each detection module
  • Step S150 When the voltage of the photovoltaic array corresponding to the detection module is greater than a voltage threshold, set the startup identifier
  • Step S160 Generate a module number according to the startup identifier, to control the corresponding detection module according to the module number.
  • the voltage of the photovoltaic array corresponding to the detection module 110 is sequentially collected, that is, the conduction or the off of the first electronic switch in each detection module 110 is controlled, thereby collecting the positive end of the photovoltaic array and the photovoltaic.
  • the voltage at the negative terminal of the array is grounded, and the sum of the voltages of the positive and negative terminals of the photovoltaic array to ground is taken as the voltage PV of the photovoltaic array.
  • the startup flag that is, detecting the insulation resistance of the corresponding PV array of the detection module. If the voltage PV is less than or equal to the voltage threshold, the startup flag is cleared, that is, the insulation resistance of the corresponding PV array is not detected.
  • the comparison of the voltage and the voltage threshold may be performed by repeatedly determining whether the activation flag is to be set. For example, if the voltage PV is greater than the voltage threshold, the accumulated count is accumulated, and the start flag is set when the count sum is greater than a certain value. If the PV voltage is less than or equal to the normal voltage threshold, the accumulated down count is performed. When the count value is less than or equal to zero, the start flag is cleared. By starting The flag can initiate and stop the detection of the insulation resistance.
  • the method further includes:
  • Step S170 Perform fault display and alarm when the insulation resistance of the positive end of the photovoltaic array corresponding to each detection module and the negative end of the photovoltaic array is less than the resistance threshold; and/or,
  • step S180 the obtained insulation resistance is sent to an external device for display and fault determination.
  • the fault display and alarm reminder will be performed.
  • the insulation resistance calculated in step S130 can also be sent to an external device for display and fault determination.
  • the transmission method will adopt CAN communication mode.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • the invention is not limited to any specific form of combination of hardware and software.
  • the above technical solution not only realizes multi-channel insulation impedance detection, but also reduces the hardware cost; and realizes a single working mode, which not only ensures a certain precision requirement, but also simplifies the program complexity.

Abstract

一种光伏逆变器的绝缘阻抗检测装置,包括至少两路检测模块(110)、控制模块(120)、采集模块(130)、MCU单元(140);其中,控制模块(120)控制一个时刻仅有一路检测模块(110)与光伏逆变器的光伏阵列连接,并控制检测模块(110)处于不同的检测状态;所述采集模块(130)采集与光伏逆变器的光伏阵列连接的检测模块(110)处于不同的检测状态时,光伏阵列正端和光伏阵列负端分别对地的电压;所述MCU单元(140)根据每一路检测模块(110)对应采集的电压值,计算获得绝缘阻抗。上述装置实现了多路绝缘阻抗检测,降低了硬件成本。

Description

光伏逆变器的绝缘阻抗检测方法及装置 技术领域
本文涉及但不限于光伏逆变发电领域,尤其涉及一种光伏逆变器的绝缘阻抗检测方法及装置。
背景技术
对于光伏逆变器的使用安全,通过正负母线对地绝缘阻抗检测,当绝缘阻抗值超出限制值R=Vmax pv/30mA时,指示故障,并禁止光伏逆变器并网。但是,由于光伏逆变器的光伏阵列安放在室外,受环境的影响很大,长时间经过日晒、雨淋,光伏组件老化,雷击等问题都能导致绝缘阻抗变化,绝缘阻抗降低会导致直流母线对地放电,严重时可能导致逆变器损坏、产生一系列的故障。因此,光伏逆变器需要实时检测光伏阵列对地绝缘阻抗,不仅是在逆变器启动前,更重要是在逆变器运行中,环境因素变换导致绝缘发生变化时,能实时检测并进行故障指示,严重时禁止逆变器并网。
目前,绝缘检测技术普遍采用的是电桥法,也就是通过改变电阻达到改变光伏阵列正负端对地分压的不同,通过光伏阵列正负端对地电压的检测进而计算出对地绝缘阻抗。经研究发现,目前的绝缘检测方法,大部分注重检测精度的提高,这些方法普遍都带来的问题是复杂程度提高了,检测实时性相对较低,且在经济实用性上考虑不多。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种光伏逆变器的绝缘阻抗检测装置及方法,实现了多路绝缘阻抗检测,降低了硬件成本,提高了检测效率。
本发明实施例提供了一种光伏逆变器的绝缘阻抗检测装置,包括至少两 路检测模块、控制模块、采集模块、MCU单元;其中,控制模块设置为,控制一个时刻仅有一路检测模块与光伏逆变器的光伏阵列连接,并控制检测模块处于不同的检测状态,以及控制采集模块;所述采集模块设置为,在与光伏逆变器的光伏阵列连接的检测模块处于不同的检测状态时,接收控制模块的控制采集光伏阵列正端和光伏阵列负端分别对地的电压;所述MCU单元设置为,根据每一路检测模块对应采集的电压值,计算获得绝缘阻抗。
可选地,所述检测模块包括非平衡电桥电路以及第一电子开关、第二电子开关,所述第一电子开关设置为,改变桥臂电阻值,第二电子开关连接在非平衡桥电路中两上桥臂与两下桥臂的节点之间;所述第一电子开关与第二电子开关分别与所述控制模块连接。
可选地,所述控制模块是设置为控制所述检测模块的桥臂电路导通的同时,控制所述采集模块采集该检测模块对应的光伏阵列正端和光伏阵列负端分别对地的电压。
可选地,所述检测模块,还设置有对应的模块号,且控制模块控制还设置为,在所述检测模块的桥臂电路导通时,产生驱动标识;所述采集模块是设置为,根据该检测模块的模块号与驱动标识,进行光伏阵列正端和光伏阵列负端分别对地的电压。
可选地,所述MCU单元还设置为,计算绝缘阻抗时,进行采样电阻补偿。
可选地,所述光伏逆变器的绝缘阻抗检测装置还包括启动检测判断模块和模块号产生模块;所述启动检测判断模块设置为,采集每个检测模块对应的光伏阵列的电压,当该光伏阵列的电压大于电压门限时,对启动标识进行置位;所述模块号产生模块设置为,根据所述启动标识为检测模块产生模块号,所述控制模块,还设置为根据所述模块号控制对应的检测模块。
可选地,所述光伏逆变器的绝缘阻抗检测装置还包括故障判断模块,所述故障判断模块设置为,在所述MCU单元获得每一路检测模块对应的光伏阵列正端和光伏阵列负端对地的绝缘阻抗小于电阻门限时,进行故障显示、告警;和/或,
所述光伏逆变器的绝缘阻抗检测装置还包括通讯模块,所述通讯模块设置为,将所述MCU单元计算获得的绝缘阻抗发送至外部设备进行显示、故障判断。
此外,本发明实施例还提供了一种光伏逆变器的绝缘阻抗检测方法,包括以下步骤:
依次控制每路检测模块与光伏逆变器的光伏阵列连接;
驱动检测模块处于不同的检测状态,同时采集与光伏逆变器的光伏阵列连接的检测模块处于不同的检测状态时,光伏阵列正端和光伏阵列负端分别对地的电压;
根据每一路检测模块对应采集的电压值,计算获得绝缘阻抗。
可选地,所述依次控制每路检测模块与光伏逆变器的光伏阵列连接之前还包括:
采集每路检测模块对应的光伏阵列的电压;
当检测模块对应的光伏阵列的电压大于电压门限时,对启动标识进行置位;
根据启动标识产生模块号,以根据该模块号控制对应的检测模块。
可选地,所述根据每一路检测模块对应采集的电压值,计算获得绝缘阻抗之后还包括:
在获得每一路检测模块对应的光伏阵列正端和光伏阵列负端对地的绝缘阻抗小于电阻门限时,进行故障显示、告警;和/或,
获得的绝缘阻抗发送至外部设备进行显示、故障判断。
本发明实施例通过设置多路检测模块,且控制模块控制检测模块同一时刻仅有一路检测模块与光伏逆变器的光伏阵列连接,不但实现了多路绝缘阻抗检测,降低了硬件成本;而且绝缘阻抗检测中电子开关分时导通,工作模式单一,不但保证了一定的精度要求,而且还简化了程序复杂度。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明光伏逆变器的绝缘阻抗检测装置第一实施例的功能模块示意图;
图2为图1中检测模块的电路结构示例图;
图3为本发明实施例光伏逆变器的绝缘阻抗检测装置的检测时序示例图;
图4为本发明光伏逆变器的绝缘阻抗检测装置第二实施例的功能模块示意图;
图5为本发明光伏逆变器的绝缘阻抗检测方法第一实施例的流程示意图;
图6为本发明光伏逆变器的绝缘阻抗检测方法第二实施例的流程示意图;
图7为本发明光伏逆变器的绝缘阻抗检测方法第三实施例的流程示意图。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提出了一种光伏逆变器的绝缘阻抗检测方案,实现了多路绝缘阻抗检测,降低了硬件成本;而且绝缘阻抗检测中电子开关分时导通,工作模式单一,不但保证了一定的精度要求,而且还简化了程序复杂度。
如图1所示,示出了本发明实施例一种光伏逆变器的绝缘阻抗检测装置。该光伏逆变器的绝缘阻抗检测装置包括至少两路检测模块110、控制模块120、采集模块130、微控制单元MCU单元140;其中,控制模块120设置为控制一个时刻仅有一路检测模块110与光伏逆变器的光伏阵列连接,并控制检测模块处于不同的检测状态;所述采集模块130设置为当与光伏逆变 器的光伏阵列连接的检测模块110处于不同的检测状态时,采集光伏阵列正端和光伏阵列负端分别对地的电压;所述MCU单元140设置为根据每一路检测模块110对应采集的电压值,计算获得绝缘阻抗。
上述检测模块110可选为四路,且该检测模块110设置为采用非平衡电桥法,进行绝缘阻抗的检测。如图2所示,该检测模块110包括非平衡电桥电路以及两个第一电子开关112、一个第二电子开关113,所述第一电子开关112设置为改变桥臂电阻值;所述第二电子开关113连接在非平衡电桥电路中两上桥臂与两下桥臂的节点之间;所述第一电子开关112与第二电子开关113分别与所述控制模块连接。
其中,该非平衡电桥电路包括第一电阻R1、第二电阻R2、两个第三电阻R3、两个第四电阻R4,其中,第一电阻R1为光伏阵列正端对地的绝缘阻抗,第二电阻R2为光伏阵列负端对地的绝缘阻抗。需要说明的是,该绝缘阻抗并不是实际的电阻,这里只是为了方便描述而添加的形式上的电阻。该第一电阻R1和第二电阻R2对应为非平衡电桥电路的一组上桥臂和下桥臂。为了检测出该第一电阻R1和第二电阻R2的阻抗,将第三电阻R3和第四电阻R4构造成另一组上桥臂和下桥臂。而且第四电阻R4上并联有第一电子开关112。通过控制该第一电子开关112的导通或截止,可以使得非平衡电桥电路111的上下桥臂分压不同,进而检测不同分压情况下光伏阵列正端和光伏阵列负端分别对地的电压。
通过该检测模块110进行绝缘阻抗的检测时,控制第一电子开关112,使得检测模块110处于两种状态:一种为控制第一电子开关112中的电子开关112a开启、电子开关112b关闭;另一种为控制第一电子开关112中的电子开关112b开启、电子开关112a关闭。同时,采集模块130采集检测模块110处于不同状态时光伏阵列的正端和负端对地的电压,包括:该采集模块130包括第一采集电路、第二采集电路,其中第一采集电路的一端与光伏阵列的正端以及第一电阻R1的连接节点连接,第一采集电路的另一端与所述MCU单元140连接,设置为采集光伏阵列的正端对地的电压;第二采集电路的一端与光伏阵列的负端以及第二电阻R2的连接节点连接,第二采集电路132的另一端与所述MCU单元140连接,设置为采集光伏阵列的负端对地的 电压。采集模块130在检测模块110处于不同的状态下光伏阵列的正端和负端对地的电压时,将检测模块110处于不同的状态下第一采集电路所采集光伏阵列的正端对地的电压之和作为该检测模块110对应的光伏阵列正端对地的电压PV+;采集模块130将检测模块110处于不同的状态下第二采集电路所采集光伏阵列的负端对地的电压之和作为该检测模块110对应的光伏阵列负端对地的电压PV-。所述MCU单元140根据该电压PV+和PV-电压与阻抗之间的关系,计算获得第一电阻R1和第二电阻R2的阻值。
上述第二电子开关113设置在非平衡电桥电路中两上桥臂与下桥臂的节点之间。例如,该第二电子开关113一端与两个第四电阻R4连接节点连接,该第二电子开关113的另一端与第一电阻R1和第二电阻R2的连接节点连接。通过控制该第二电子开关113的导通或截止,可以使得同一时刻仅有一路检测模块110与光伏阵列连接,从而使得检测模块中的第二电子开关分时导通,工作模式单一,不但满足了精度要求,而且还简化了程序复杂度。同时,通过控制每一路检测模块110对应的第二电子开关113,可以实现任意一路检测模块110对与其连接的光伏阵列进行绝缘阻抗的检测。另外,多路光伏阵列与多路检测模块的连接方式也不受限制,可以一对一连接,也可以一对多连接。而且一对多连接时,多个采样模块130形成了互备关系,从而提高了光伏逆变器的可靠性与安全性。
可选地,上述控制模块120设置为控制所述检测模块110的桥臂电路导通的同时,控制所述采集模块130采集该检测模块110对应的光伏阵列正端和光伏阵列负端分别对地的电压,
包括:控制模块120控制检测模块110中的桥臂电路,例如上桥臂导通,即控制第一电子开关112a开启的同时,采集模块130采集该检测模块110对应的光伏阵列正端和光伏阵列负端对地的电压。同理,控制模块120控制检测模块110中的桥臂电路,例如下桥臂导通,即控制第一电子开关112b开启的同时,采集模块130采集该检测模块110对应的光伏阵列负端和光伏阵列负端对地的电压。因此,通过该控制模块120的控制,实现了检测模块110的驱动与采集模块130的电压采集的同步进行,从而避免了驱动采 样异步导致采样错误的情况。
可选地,上述检测模块110可设置有对应的模块号,且控制模块控制所述检测模块的桥臂电路导通时,产生驱动标识;所述采集模块根据该检测模块的模块号与驱动标识,采集光伏阵列正端和光伏阵列负端分别对地的电压。
假设有四路检测模块110,分别设置模块号0、1、2、3。其中0表示第一路检测模块,1表示第二路检测模块,依次类推。若该四路检测模块110都需要进行光伏阵列的绝缘阻抗的检测,则可以依次产生模块号,即模块号0-1-2-3循环产生,以指示控制模块120驱动模块号对应的检测模块110,对光伏阵列进行绝缘阻抗的检测。例如当前模块号为1,则控制模块120控制第二路检测模块中的第二电子开关,即产生驱动标识,以根据该驱动标识控制相应的第二电子开关。例如1表示上桥臂对应的电子开关导通,0表示下桥臂对应的电子开关导通。同时,该模块号与驱动标识均将传给采集模块130,以使该采样模块根据模块号和驱动标识,实现同步采集功能。
可选地,由于上下桥臂驱动对应的采样电压也不同,因此采集模块130所采集到的采样电压将分别进行存储,以便进行数字滤波处理。如图3所示,(1)表示产生的模块序号,时间间隔设置T秒。(2)是上下管的驱动标志,逻辑1表示上管驱动,逻辑0表示下管驱动,上下管驱动时间各占0.5T。(3)是上管的驱动信号。(4)是下管的驱动信号。当四路采样完成后,在t=cp时刻用滤波后的电压,再进行绝缘阻抗的计算。
可选地,上述MCU单元140还设置为:计算绝缘阻抗时,进行采样电阻补偿。由于该采集模块130中通过采样电阻进行电压的采集,因此根据采集到的光伏阵列正端电压和光伏阵列负端电压,计算获得的阻抗实际上是对地阻抗与采样电阻的并联电阻,因此为了获得准确的绝缘阻抗,MCU单元140在计算获得阻抗后,将对该阻抗进行采样电阻的补偿,从而进一步提高了绝缘阻抗的检测精度。
可选地,如图4所示,上述光伏逆变器的绝缘阻抗检测装置还包括故障判断模块150,所述故障判断模块150设置为在所述MCU单元140获得每一 路检测模块110对应的光伏阵列正端和光伏阵列负端对地的绝缘阻抗小于电阻门限时,进行故障显示、告警。
另外,上述光伏逆变器的绝缘阻抗检测装置还包括通讯模块160,所述通讯模块160设置为将所述MCU单元140计算获得的绝缘阻抗发送至外部设备进行显示、故障判断。该通讯模块160可以采用CAN通讯方式。
可选地,上述光伏逆变器的绝缘阻抗检测装置还包括启动检测判断模块和模块号产生模块,所述启动检测判断模块设置为采集每个检测模块110对应的光伏阵列的电压,当该光伏阵列的电压大于电压门限时,对启动标识进行置位;所述模块号产生模块设置为根据所述启动标识产生模块号,以使控制模块120根据该模块号控制对应的检测模块110。
可选的,在对光伏阵列进行绝缘阻抗检测之前,可以通过依次采集检测模块110对应的光伏阵列的电压,即控制每一路检测模块110中第一电子开关的导通或截止,从而采集光伏阵列正端和光伏阵列负端对地的电压,并将光伏阵列正端和负端对地的电压之和作为光伏阵列的电压PV。然后,将该采集的光伏阵列的电压PV与电压门限进行比较,若该电压PV大于电压门限,则对启动标识位进行置位,即要对该检测模块对应的光伏阵列进行绝缘阻抗的检测;若该电压PV小于或等于电压门限,则对启动标识位进行清零,即不要对该检测模块对应的光伏阵列进行绝缘阻抗的检测。
可选地,上述电压与电压门限的比较可以通过多次比较后再最终确定是否要对启动标识位进行置位。例如若该电压PV大于电压门限,则累计加计数,当计数和大于一定值时将启动标志置位。如果PV电压小于或等于正常电压门限,进行累计减计数,当计数值小于等于零时,将启动标志清零。通过启动标志就可以启动和停止绝缘阻抗的检测。
对应地,本发明实施例提出了一种使用上述光伏逆变器的绝缘阻抗检测装置进行光伏逆变器的绝缘阻抗检测方法。如图5所示,该光伏逆变器的绝缘阻抗检测方法包括以下步骤:
步骤S110、依次控制每路检测模块与光伏逆变器的光伏阵列连接;
步骤S120、驱动检测模块处于不同的检测状态,同时在与光伏逆变器的光伏阵列连接的检测模块处于不同的检测状态时,采集光伏阵列正端和光伏阵列负端分别对地的电压;
步骤S130、根据每一路检测模块对应采集的电压值,计算获得绝缘阻抗。
可选的,本发明实施例中,基于上述检测装置,通过控制第二电子开关113的导通或截止,可以使得同一时刻仅有一路检测模块110与光伏阵列连接,从而使得检测模块中的第二电子开关分时导通,工作模式单一,不但满足了精度要求,而且还简化了程序复杂度。同时,通过控制每一路检测模块110对应的第二电子开关113,可以实现任意一路检测模块110对与其连接的光伏阵列进行绝缘阻抗的检测。另外,多路光伏阵列与多路检测模块的连接方式也不受限制,可以一对一连接,也可以一对多连接。而且一对多连接时,多个采样模块130形成了互备关系,从而提高了光伏逆变器的可靠性与安全性。
通过该检测模块110进行绝缘阻抗的检测时,控制第一电子开关112,使得检测模块110处于两种状态:一种为控制第一电子开关112中的电子开关112a开启、电子开关112b关闭;另一种为控制第一电子开关112中的电子开关112b开启、电子开关112a关闭。同时,采集模块130采集检测模块110处于不同状态时光伏阵列的正端和负端对地的电压。包括:该采集模块130包括第一采集电路、第二采集电路,其中第一采集电路的一端与光伏阵列的正端以及第一电阻R1的连接节点连接,第一采集电路的另一端与所述MCU单元140连接,设置为采集光伏阵列的正端对地的电压;第二采集电路的一端与光伏阵列的负端以及第二电阻R2的连接节点连接,第二采集电路132的另一端与所述MCU单元140连接,设置为采集光伏阵列的负端对地的电压。采集模块130在检测模块110处于不同的状态下光伏阵列的正端和负端对地的电压时,将检测模块110处于不同的状态下第一采集电路所采集光伏阵列的正端对地的电压之和作为该检测模块110对应的光伏阵列正端对地的电压PV+;采集模块130将检测模块110处于不同的状态下第二采集电路 所采集光伏阵列的负端对地的电压之和作为该检测模块110对应的光伏阵列负端对地的电压PV-。所述MCU单元140根据该电压PV+和PV-电压与阻抗之间的关系,计算获得第一电阻R1和第二电阻R2的阻值。
可选地,上述步骤S130中还包括:计算绝缘阻抗时,进行采样电阻补偿。由于该采样模块130中通过采样电阻进行电压的采集,因此根据采集到的光伏阵列正端电压和光伏阵列负端电压,计算获得的阻抗实际上是对地阻抗与采样电阻的并联电阻,因此为了获得准确的绝缘阻抗,MCU单元140在计算获得阻抗后,将对该阻抗进行采样电阻的补偿,从而进一步提高了绝缘阻抗的检测精度。
可选地,如图6所示,上述步骤S110之前还包括:
步骤S140、采集每路检测模块对应的光伏阵列的电压;
步骤S150、当检测模块对应的光伏阵列的电压大于电压门限时,对启动标识进行置位;
步骤S160、根据启动标识产生模块号,以根据该模块号控制对应的检测模块。
在对光伏阵列进行绝缘阻抗检测之前,可以通过依次采集检测模块110对应的光伏阵列的电压,即控制每一路检测模块110中第一电子开关的导通或截止,从而采集光伏阵列正端和光伏阵列负端对地的电压,并将光伏阵列正端和负端对地的电压之和作为光伏阵列的电压PV。然后,将该采集的光伏阵列的电压PV与电压门限进行比较,若该电压PV大于电压门限,则对启动标识位进行置位,即要对该检测模块对应的光伏阵列进行绝缘阻抗的检测;若该电压PV小于或等于电压门限,则对启动标识位进行清零,即不要对该检测模块对应的光伏阵列进行绝缘阻抗的检测。
可选地,上述电压与电压门限的比较可以通过多次再最终确定是否要对启动标识位进行置位。例如若该电压PV大于电压门限,则累计加计数,当计数和大于一定值时将启动标志置位。如果PV电压小于或等于正常电压门限,进行累计减计数,当计数值小于等于零时,将启动标志清零。通过启动 标志就可以启动和停止绝缘阻抗的检测。
可选地,如图7所示,上述步骤S130之后还包括:
步骤S170、在获得每一路检测模块对应的光伏阵列正端和光伏阵列负端对地的绝缘阻抗小于电阻门限时,进行故障显示、告警;和/或,
步骤S180、获得的绝缘阻抗发送至外部设备进行显示、故障判断。
当光伏阵列争端和光伏阵列负端对地的绝缘阻抗小于电阻门限时,将进行故障显示以及告警提醒。当然,还可以将步骤S130所计算的绝缘阻抗发送至外部设备进行显示以及故障判断。该发送方式将采用CAN通讯方式。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明不限制于任何特定形式的硬件和软件的结合。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。
工业实用性
上述技术方案不但实现了多路绝缘阻抗检测,降低了硬件成本;而且实现工作模式单一,不但保证了一定的精度要求,而且还简化了程序复杂度。

Claims (10)

  1. 一种光伏逆变器的绝缘阻抗检测装置,所述光伏逆变器的绝缘阻抗检测装置包括至少两路检测模块、控制模块、采集模块、微控制单元MCU;
    所述控制模块设置为,控制一个时刻仅有一路检测模块与光伏逆变器的光伏阵列连接,并控制检测模块处于不同的检测状态,以及控制采集模块;
    所述采集模块设置为,在与光伏逆变器的光伏阵列连接的检测模块处于不同的检测状态时,接收控制模块的控制采集光伏阵列正端和光伏阵列负端分别对地的电压;
    所述MCU单元设置为,根据每一路检测模块对应采集的电压值,计算获得绝缘阻抗。
  2. 如权利要求1所述的光伏逆变器的绝缘阻抗检测装置,其中,所述检测模块包括非平衡电桥电路以及第一电子开关、第二电子开关,
    所述第一电子开关设置为,改变桥臂电阻值;
    第二电子开关连接在非平衡桥电路中两上桥臂与两下桥臂的节点之间;
    所述第一电子开关与第二电子开关分别与所述控制模块连接。
  3. 如权利要求2所述的光伏逆变器的绝缘阻抗检测装置,其中,
    所述控制模块是设置为控制所述检测模块的桥臂电路导通的同时,控制所述采集模块采集该检测模块对应的光伏阵列正端和光伏阵列负端分别对地的电压。
  4. 如权利要求2所述的光伏逆变器的绝缘阻抗检测装置,
    所述检测模块,还设置有对应的模块号;
    控制模块控制还设置为,在所述检测模块的桥臂电路导通时,产生驱动标识;
    所述采集模块是设置为,根据该检测模块的模块号与驱动标识,进行光伏阵列正端和光伏阵列负端分别对地的电压。
  5. 如权利要求1-4任一项所述的光伏逆变器的绝缘阻抗检测装置,
    所述MCU单元还设置为,计算绝缘阻抗时,进行采样电阻补偿。
  6. 如权利要求1-4任一项所述的光伏逆变器的绝缘阻抗检测装置,所述光伏逆变器的绝缘阻抗检测装置还包括:启动检测判断模块和模块号产生模块;
    所述启动检测判断模块设置为,采集每个检测模块对应的光伏阵列的电压,当该光伏阵列的电压大于电压门限时,对启动标识进行置位;
    所述模块号产生模块设置为,根据所述启动标识为检测模块产生模块号;
    所述控制模块,还设置为根据所述模块号控制对应的检测模块。
  7. 如权利要求1所述的光伏逆变器的绝缘阻抗检测装置,所述光伏逆变器的绝缘阻抗检测装置还包括:故障判断模块;
    所述故障判断模块设置为,在所述MCU单元获得每一路检测模块对应的光伏阵列正端和光伏阵列负端对地的绝缘阻抗小于电阻门限时,进行故障显示、告警;和/或,
    所述光伏逆变器的绝缘阻抗检测装置还包括通讯模块,所述通讯模块设置为,将所述MCU单元计算获得的绝缘阻抗发送至外部设备进行显示、故障判断。
  8. 一种使用权利要求1~7中任一项所述的光伏逆变器的绝缘阻抗检测装置进行绝缘阻抗检测的方法,所述光伏逆变器的绝缘阻抗检测方法包括:
    依次控制每路检测模块与光伏逆变器的光伏阵列连接;
    驱动检测模块处于不同的检测状态,同时采集与光伏逆变器的光伏阵列连接的检测模块处于不同的检测状态时,光伏阵列正端和光伏阵列负端分别对地的电压;
    根据每一路检测模块对应采集的电压值,计算获得绝缘阻抗。
  9. 如权利要求8所述的光伏逆变器的绝缘阻抗检测方法,还包括:
    所述依次控制每路检测模块与光伏逆变器的光伏阵列连接之前,采集每路检测模块对应的光伏阵列的电压;
    当检测模块对应的光伏阵列的电压大于电压门限时,对启动标识进行置位;
    根据启动标识产生模块号,以根据该模块号控制对应的检测模块。
  10. 如权利要求8所述的光伏逆变器的绝缘阻抗检测方法,还包括:
    所述根据每一路检测模块对应采集的电压值,计算获得绝缘阻抗之后,在获得每一路检测模块对应的光伏阵列正端和光伏阵列负端对地的绝缘阻抗小于电阻门限时,进行故障显示、告警;和/或,
    获得的绝缘阻抗发送至外部设备进行显示、故障判断。
PCT/CN2016/081613 2015-06-24 2016-05-10 光伏逆变器的绝缘阻抗检测方法及装置 WO2016206488A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510355233.8A CN106324359B (zh) 2015-06-24 2015-06-24 光伏逆变器的绝缘阻抗检测方法及装置
CN201510355233.8 2015-06-24

Publications (1)

Publication Number Publication Date
WO2016206488A1 true WO2016206488A1 (zh) 2016-12-29

Family

ID=57584652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081613 WO2016206488A1 (zh) 2015-06-24 2016-05-10 光伏逆变器的绝缘阻抗检测方法及装置

Country Status (2)

Country Link
CN (1) CN106324359B (zh)
WO (1) WO2016206488A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103975A (zh) * 2018-09-20 2018-12-28 江苏为恒智能科技有限公司 一种带绝缘检测功能的电池双向充放电设备
CN112083229A (zh) * 2020-09-04 2020-12-15 爱士惟新能源技术(江苏)有限公司 光伏逆变器的对地绝缘阻抗检测电路及方法
CN112327055A (zh) * 2020-11-09 2021-02-05 爱士惟新能源技术(扬中)有限公司 一种用于光伏逆变器的绝缘阻抗检测电路及方法
CN112595895A (zh) * 2020-12-02 2021-04-02 爱士惟新能源技术(江苏)有限公司 一种光伏逆变器的绝缘阻抗检测电路及方法
CN112684309A (zh) * 2021-01-11 2021-04-20 深圳市法拉第电驱动有限公司 基于新能源汽车电机驱动系统的驱动器及其绝缘检测方法
CN114167140A (zh) * 2021-12-03 2022-03-11 国网江苏省电力有限公司常州供电分公司 直流系统绝缘对地电阻的检测方法和系统
CN112327055B (zh) * 2020-11-09 2024-05-14 爱士惟新能源技术(扬中)有限公司 一种用于光伏逆变器的绝缘阻抗检测电路及方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017113192B3 (de) * 2017-06-14 2018-07-12 Sma Solar Technology Ag Einfehlersichere Isolationswiderstandsbestimmung in einer Photovoltaikanlage
CN109725202B (zh) * 2018-12-27 2021-08-03 科华数据股份有限公司 多路mppt绝缘阻抗检测装置及方法
CN111766448B (zh) * 2020-08-07 2023-03-24 锦浪科技股份有限公司 一种用于光伏储能系统的绝缘检测模块的控制方法
CN112083230B (zh) * 2020-09-07 2023-05-23 爱士惟科技股份有限公司 并网逆变器的对地绝缘阻抗检测电路及方法
CN112557754B (zh) * 2020-11-20 2021-11-16 珠海格力电器股份有限公司 光伏逆变器的绝缘阻抗检测方法及装置
CN113504438B (zh) * 2021-06-08 2023-11-28 漳州科华电气技术有限公司 用于列头柜绝缘阻抗检测的方法、装置及列头柜
CN113328463A (zh) * 2021-07-09 2021-08-31 阳光电源股份有限公司 一种光伏逆变系统及其绝缘故障检测方法
CN115656637B (zh) * 2022-10-24 2024-03-26 中南大学 一种低成本光伏板对地绝缘阻抗检测电路及检测方法
CN115792382B (zh) * 2022-11-29 2024-01-05 上能电气股份有限公司 一种光储逆变器对地绝缘阻抗检测装置及方法
CN116413516B (zh) * 2023-06-12 2023-08-29 深圳市首航新能源股份有限公司 绝缘阻抗检测方法及电路、光伏逆变器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120223734A1 (en) * 2011-03-04 2012-09-06 Shinichi Takada Measurement of insulation resistance of configurable photovoltaic panels in a photovoltaic array
CN102798761A (zh) * 2012-08-31 2012-11-28 阳光电源股份有限公司 一种对地绝缘阻抗检测方法、电路及具有该电路的设备
KR101248592B1 (ko) * 2012-06-25 2013-04-02 주식회사 광명전기 태양광 모듈의 절연저항 및 누설전류 계측 시스템
CN103116107A (zh) * 2012-12-28 2013-05-22 广东志成冠军集团有限公司 一种高压直流电源绝缘监察装置
US20130176042A1 (en) * 2012-01-05 2013-07-11 Sk Innovation Co., Ltd. Circuit for measuring insulation resistance
KR20130101247A (ko) * 2012-03-05 2013-09-13 주식회사 엘지화학 절연 저항 검출 장치 및 이의 진단 장치
CN203396842U (zh) * 2013-08-08 2014-01-15 成都天奥测控技术有限公司 一种多通道自动线路检查仪
CN104020421A (zh) * 2014-06-06 2014-09-03 浙江工商职业技术学院 一种多点的电动汽车绝缘测试系统及检测方法
CN104049150A (zh) * 2014-06-30 2014-09-17 阳光电源股份有限公司 光伏组件对地绝缘性检测装置及方法及光伏并网发电系统
CN104422825A (zh) * 2013-08-29 2015-03-18 浙江万向太阳能有限公司 一种直流电源对地绝缘阻抗检测装置和方法
CN104678217A (zh) * 2015-02-09 2015-06-03 南车株洲电力机车研究所有限公司 用于复合供电变流器的绝缘检测系统及方法
CN105548712A (zh) * 2015-12-21 2016-05-04 珠海格力电器股份有限公司 逆变器及其方阵绝缘阻抗检测系统、方法和计算单元

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2390148B1 (es) * 2010-12-17 2013-08-08 Zigor Corporacion, S. A. Procedimiento y dispositivo para medir la resistencia de aislamiento eléctrico de una fuente de tensión continua.
CN102508039B (zh) * 2011-11-24 2015-07-15 深圳市英威腾电气股份有限公司 一种电池板对地阻抗检测电路及方法
CN102539931B (zh) * 2012-03-07 2014-03-26 深圳市英威腾电气股份有限公司 一种绝缘检测方法及绝缘检测装置
CN203249968U (zh) * 2013-05-21 2013-10-23 江苏宝丰新能源科技有限公司 光伏并网逆变器的对地绝缘阻抗的实时检测电路
CN103983855B (zh) * 2014-05-28 2017-02-15 阳光电源股份有限公司 一种绝缘阻抗检测方法及电路
CN104378068B (zh) * 2014-11-21 2018-03-16 艾思玛新能源技术(江苏)有限公司 一种光伏组件阵列对地绝缘阻抗检测方法及电路

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120223734A1 (en) * 2011-03-04 2012-09-06 Shinichi Takada Measurement of insulation resistance of configurable photovoltaic panels in a photovoltaic array
US20130176042A1 (en) * 2012-01-05 2013-07-11 Sk Innovation Co., Ltd. Circuit for measuring insulation resistance
KR20130101247A (ko) * 2012-03-05 2013-09-13 주식회사 엘지화학 절연 저항 검출 장치 및 이의 진단 장치
KR101248592B1 (ko) * 2012-06-25 2013-04-02 주식회사 광명전기 태양광 모듈의 절연저항 및 누설전류 계측 시스템
CN102798761A (zh) * 2012-08-31 2012-11-28 阳光电源股份有限公司 一种对地绝缘阻抗检测方法、电路及具有该电路的设备
CN103116107A (zh) * 2012-12-28 2013-05-22 广东志成冠军集团有限公司 一种高压直流电源绝缘监察装置
CN203396842U (zh) * 2013-08-08 2014-01-15 成都天奥测控技术有限公司 一种多通道自动线路检查仪
CN104422825A (zh) * 2013-08-29 2015-03-18 浙江万向太阳能有限公司 一种直流电源对地绝缘阻抗检测装置和方法
CN104020421A (zh) * 2014-06-06 2014-09-03 浙江工商职业技术学院 一种多点的电动汽车绝缘测试系统及检测方法
CN104049150A (zh) * 2014-06-30 2014-09-17 阳光电源股份有限公司 光伏组件对地绝缘性检测装置及方法及光伏并网发电系统
CN104678217A (zh) * 2015-02-09 2015-06-03 南车株洲电力机车研究所有限公司 用于复合供电变流器的绝缘检测系统及方法
CN105548712A (zh) * 2015-12-21 2016-05-04 珠海格力电器股份有限公司 逆变器及其方阵绝缘阻抗检测系统、方法和计算单元

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103975A (zh) * 2018-09-20 2018-12-28 江苏为恒智能科技有限公司 一种带绝缘检测功能的电池双向充放电设备
CN109103975B (zh) * 2018-09-20 2024-03-26 江苏为恒智能科技有限公司 一种带绝缘检测功能的电池双向充放电设备
CN112083229A (zh) * 2020-09-04 2020-12-15 爱士惟新能源技术(江苏)有限公司 光伏逆变器的对地绝缘阻抗检测电路及方法
CN112083229B (zh) * 2020-09-04 2023-04-11 爱士惟科技股份有限公司 光伏逆变器的对地绝缘阻抗检测电路及方法
CN112327055A (zh) * 2020-11-09 2021-02-05 爱士惟新能源技术(扬中)有限公司 一种用于光伏逆变器的绝缘阻抗检测电路及方法
CN112327055B (zh) * 2020-11-09 2024-05-14 爱士惟新能源技术(扬中)有限公司 一种用于光伏逆变器的绝缘阻抗检测电路及方法
CN112595895A (zh) * 2020-12-02 2021-04-02 爱士惟新能源技术(江苏)有限公司 一种光伏逆变器的绝缘阻抗检测电路及方法
CN112684309A (zh) * 2021-01-11 2021-04-20 深圳市法拉第电驱动有限公司 基于新能源汽车电机驱动系统的驱动器及其绝缘检测方法
CN112684309B (zh) * 2021-01-11 2023-12-22 深圳市法拉第电驱动有限公司 基于新能源汽车电机驱动系统的驱动器及其绝缘检测方法
CN114167140A (zh) * 2021-12-03 2022-03-11 国网江苏省电力有限公司常州供电分公司 直流系统绝缘对地电阻的检测方法和系统
CN114167140B (zh) * 2021-12-03 2023-10-27 国网江苏省电力有限公司常州供电分公司 直流系统绝缘对地电阻的检测方法和系统

Also Published As

Publication number Publication date
CN106324359A (zh) 2017-01-11
CN106324359B (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2016206488A1 (zh) 光伏逆变器的绝缘阻抗检测方法及装置
CN102890235B (zh) 一种故障检测方法及装置
US10503126B2 (en) Access control method for parallel direct current power supplies and device thereof
CN104716393A (zh) 电池参数采集控制方法、装置及电池管理系统
CN102751894B (zh) 检测太阳能电池板及电网侧绝缘电阻的逆变器及检测方法
CN102901936A (zh) 交流电源断电检测方法及直流变频压缩机的断电保护方法
CN102967766B (zh) 双路光伏逆变器对地绝缘电阻的无开关管检测系统及方法
JP2018009864A (ja) 漏電検知装置および漏電検知システム
CN202837520U (zh) 交流电源断电检测电路及直流变频空调器
CN103545569A (zh) 一种用于控制电池加热的方法及装置
CN103217572A (zh) 交流电电压及其过零点检测装置及方法
CN102353832B (zh) 级联型逆变器多路直流电压检测系统
CN103063927A (zh) 光伏逆变器的对地阻抗检测电路及方法
CN105510833A (zh) 蓄电池健康状态检测方法、装置及系统
CN103545573A (zh) 一种用于控制电池加热的方法及装置
CN109581176A (zh) 一种晶闸管及其脉冲触发回路小电流测试方法
CN103558503A (zh) 光伏逆变器接地故障检测电路
CN112748367A (zh) 一种电池管理系统和一种电池断线故障的检测方法
CN107807305B (zh) 一种组件式逆变器接线检测方法、装置及系统
CN103063905A (zh) 一种单体电池电压隔离检测系统
CN207817152U (zh) 一种逆变电路双触点继电器故障检测电路
WO2022082503A1 (zh) 继电器粘连检测电路、方法及系统
CN103683420A (zh) 一种电动汽车串联超级电容模组的电压均衡电路
CN207184436U (zh) 千安培大电流脉冲信号产生装置及didt测试设备
WO2013177976A1 (zh) 一种电荷放大器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16813604

Country of ref document: EP

Kind code of ref document: A1