WO2016206409A1 - 一种局部路由的恢复方法及装置 - Google Patents

一种局部路由的恢复方法及装置 Download PDF

Info

Publication number
WO2016206409A1
WO2016206409A1 PCT/CN2016/076306 CN2016076306W WO2016206409A1 WO 2016206409 A1 WO2016206409 A1 WO 2016206409A1 CN 2016076306 W CN2016076306 W CN 2016076306W WO 2016206409 A1 WO2016206409 A1 WO 2016206409A1
Authority
WO
WIPO (PCT)
Prior art keywords
core network
service
network link
link
route
Prior art date
Application number
PCT/CN2016/076306
Other languages
English (en)
French (fr)
Inventor
肖红运
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016206409A1 publication Critical patent/WO2016206409A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery

Definitions

  • the present invention relates to a communication network, and in particular, to a method and apparatus for restoring a local route.
  • a network In a communication network, a network consists of a number of communication device nodes, which are called network elements.
  • the network elements are connected by communication lines, including fiber optic cables and the like.
  • the network elements are distributed in various regions. For example, some network elements are in the communication building laboratory in the city, and some network elements are in remote areas.
  • the devices of these network elements need to be configured, maintained, and monitored. It is impossible to assign them to each location. This requires a central network management control system, which is placed in the central computer room to configure and maintain various nodes on the network through remote communication. And monitoring.
  • Managing the network through the controller is an emerging network management control system.
  • Controllers can be hierarchically organized in a tree to correlate large-scale networks.
  • 1 is a hierarchical structure diagram of a controller in an SDN network provided by the related art. As shown in FIG. 1 , a controller is used to control a network, and a lowermost layer is a network element device, and a regional network is formed, and a node identified as “DC” is The domain controller (Down-controller, DC), the node identified as "SC” is a super-controller (Super-Controller, SC), and there may be more levels of controllers.
  • DC Down-controller
  • SC super-controller
  • the uppermost node is a layer 1 SC.
  • 2 is a schematic diagram of a relationship between a controller and other entities in an SDN network provided by the related art.
  • the controller manages the network device through the southbound interface, and also accesses the network APP of the application layer through the northbound interface for network management. It is also possible to communicate management information with the network element management system EMS, the network management system NMS, or the operation support system OSS through the side interface.
  • the network APP is an actual service application to the network. It uses the resources provided by the controller to issue requests for service establishment, deletion, and modification.
  • the controller establishes, deletes, and modifies services according to the request of the network APP, and performs service protection and recovery. Wait for operations and monitor the alarms and performance of the service.
  • DC directly manages the communication network, and can also communicate with the traditional network management system, and finally provide resources and services to the APP.
  • faults may be encountered.
  • faults such as fiber breaks may cause interruption of some services, which seriously affects service quality.
  • a protection route when the service is interrupted, it will be switched to the protection route first, and a new protection route will be generated in real time. If there is no protection route, a new protection route will be generated in real time and immediately switched.
  • the traditional route recovery method is generally used to perform end-to-end route recovery for the complete route of the service.
  • the network scale becomes larger and larger, the number of services becomes larger and larger, and the route recovery after a certain fault occurs is difficult and efficient. Therefore, high requirements are placed on the performance of the controller or the central network management control system. This high requirement is difficult to achieve, It also makes it difficult to realize the engineering of the controller or the central network management control system in the field of service route recovery.
  • the traffic volume of the core network is generally large, and the traffic carried by the core network link is generally 10 times that of the core network peripheral link.
  • a local route recovery method including:
  • the core network link formed between the core network elements and the bandwidth utilization, and the service carried by the core network link it is determined that the faulty core network chain can be recovered when the core network link fails.
  • the recovery route of the service carried by the road
  • the service data on the faulty core network link is sent through the previously determined recovery route of the foregoing service.
  • the method further includes: marking the faulty core network link as an unavailable link, and updating the core network. Network Topology.
  • the method further includes:
  • the bandwidth of the core network link is monitored, and when the bandwidth of the core network link is changed, the bandwidth utilization of the core network link is updated.
  • it also includes:
  • the updated core network topology and the bandwidth utilization of the core network link are used to re-determine the recovery route of services carried by other core network links.
  • it also includes:
  • a local route recovery apparatus including:
  • the recovery route calculation module is configured to determine, according to the core network element, the core network link formed between the core network elements, the bandwidth utilization, and the service carried by the core network link, to determine that the core network link fails.
  • the recovery route of the service carried by the faulty core network link can be restored;
  • the link fault monitoring module is configured to monitor faults of the core network link
  • the local route recovery module is configured to send the service data on the faulty core network link to the resume route of the foregoing determined service when the fault of a certain core network link is detected.
  • it also includes:
  • a network topology determining module configured to mark the faulty core network link as an unavailable link and update the core network before transmitting the service data on the faulty core network link to the previously determined recovery route of the foregoing service Network Topology.
  • it also includes:
  • the bandwidth utilization determining module is configured to monitor the bandwidth of the core network link after the service data on the faulty core network link is sent through the previously determined recovery route of the foregoing service, and monitor the core network chain When the bandwidth of the road changes, the bandwidth utilization of the above core network link is updated.
  • the recovery route calculation module is further configured to re-determine the recovery route of the service carried by the other core network link by using the updated core network topology and the bandwidth utilization of the core network link.
  • the local route recovery module deletes the recovery route of the service, and reuses the core network link to send the service. Business data.
  • FIG. 1 is a hierarchical structure diagram of a controller in an SDN network provided by a related art
  • FIG. 2 is a schematic diagram of a relationship between a controller and other entities in an SDN network provided by the related art
  • FIG. 3 is a network hierarchy diagram provided by a related art
  • FIG. 4 is a flowchart of a local route recovery method according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a local route recovery apparatus according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a service local recovery process according to an embodiment of the present invention.
  • FIG. 7 is a network topology diagram of service route recovery according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a local route recovery method according to an embodiment of the present invention. As shown in FIG. 4, the steps include:
  • Step S101 Determine, according to the core network element, the core network link formed between the network elements of the core network, the bandwidth utilization, and the service carried by the core network link, to recover when the core network link fails.
  • the recovery route of the service carried by the faulty core network link is
  • the core network element may be manually specified or automatically determined by the system. However, to improve the calculation efficiency, the number of network elements of the core network needs to be limited, for example, to be less than 20.
  • Step S102 monitoring faults of the core network link
  • the fault of the core network link is monitored, which is mainly implemented by monitoring an alarm message reported by the network element of the core network to notify the link fault.
  • Step S103 When it is detected that a certain core network link fails, first marking the faulty core network link as an unavailable link, and updating the core network topology, and then connecting the faulty core network link.
  • the service data is sent through the previously determined recovery route of the service, and the bandwidth of the core network link is monitored. If the bandwidth change of the core network link is monitored, the bandwidth utilization of the core network link is updated. In order to utilize the updated core network topology and the bandwidth utilization of the core network link, the recovery route of the services carried by other core network links is re-determined.
  • FIG. 5 is a block diagram of a local route recovery apparatus according to an embodiment of the present invention. As shown in FIG. 5, the apparatus is disposed on a southbound interface connected to a network device, a northbound interface connected to a network APP, and a side connected to an EMS.
  • the controller of the interface, the resource management module, and the service management module includes: a core network and link management module 10, a service local recovery management module 20, and an alarm module 30.
  • the service local recovery management module 30 includes the following modules:
  • the recovery route calculation module is configured to determine that the core network link is faulty according to the core network element, the core network link formed between the core network elements, the bandwidth utilization, and the service carried by the core network link. Recovering the recovery route of the service carried by the faulty core network link;
  • the link fault monitoring module is configured to monitor faults of the core network link
  • the local route recovery module is configured to send the service data on the faulty core network link to the previously determined recovery route of the service when a certain core network link fails.
  • the core network and link management module 10 includes the following modules:
  • a network topology determining module configured to mark the faulty core network link as an unavailable link before transmitting the service data on the faulty core network link via the previously determined recovery route of the service, and Update the core network topology
  • a bandwidth utilization determining module configured to monitor bandwidth of the core network link after transmitting the service data on the faulty core network link through the previously determined recovery route of the service, and monitor the core
  • the bandwidth utilization of the core network link is updated, so that the recovery route calculation module uses the updated core network topology and the bandwidth utilization of the core network link to re-determine other core network chains. The recovery route of the service carried by the road.
  • the link fault monitoring module detects the fault of the core network link carrying the service
  • the local route recovery module deletes the recovery route of the service, and reuses the core network chain.
  • the road sends the service data of the service.
  • the invention is applied to a communication network, in particular, a network managed by a Software Defined Netwok (SDN) controller, which utilizes a controller or a central network management system to perform local route recovery based on a network hierarchy.
  • SDN Software Defined Netwok
  • FIG. 6 is a flowchart of a service local recovery process according to an embodiment of the present invention. As shown in FIG. 6, the steps include:
  • Step 1 The core network and link management module 10 of the system determines, according to the system command, the core network element (ie, the core network element) and the core layer link (ie, the core network link) of the network through automatic or manual designation. Then, according to the core layer link, the service list that each link passes through is searched, and the link with the service protection route is also searched, added to the corresponding relationship, and identified.
  • the core network element ie, the core network element
  • the core layer link ie, the core network link
  • N the number of core layer NEs, for example, 20, and the core layer link is theoretically smaller than N ⁇ (N ⁇ 1).
  • the service list forms a M:N correspondence with the core layer link (which may involve multiple segments of the core layer link), where M is the number of services passing through the core layer link;
  • Step 2 After receiving the relevant system notification (for example, the bandwidth utilization change notification), the core network and link management module 10 notifies the service local recovery management module 20 to calculate the restoration route.
  • the relevant system notification for example, the bandwidth utilization change notification
  • Step 3 The service local recovery management module 20 pre-calculates the recovery route of each service according to the above information and the bandwidth utilization of each core layer link, and saves the calculated recovery route of each service in the memory.
  • Step 4 The system monitors the core layer link and bandwidth utilization in real time.
  • the core layer link fault is detected in real time.
  • the core layer network element detects that the core layer link is faulty, the core layer network element reports an alarm to the alarm module 30 of the system, and step 5 is performed.
  • the bandwidth of the core layer link is monitored in real time.
  • the core network and the link management module 10 update the bandwidth utilization of the core layer link, and step 2 is performed.
  • Step 5 The alarm module 30 sends an alert notification (ie, a notification that the core layer link is faulty) to the core network and the link management module 10, so that the core network and the link management module 10 determine that the core layer link appears according to the alarm notification. Failure, update the core layer topology, and mark the failed core layer link as unavailable.
  • an alert notification ie, a notification that the core layer link is faulty
  • Step 6 The alarm module 30 sends an alarm notification (ie, a notification that the core layer link is faulty) to the service local recovery management module 20 to notify the service local recovery processing module that the core layer link is faulty.
  • an alarm notification ie, a notification that the core layer link is faulty
  • Step 7 After receiving the alarm notification of the link fault of the core layer, the service local recovery processing module 20 immediately performs protection switching on the affected service with the protected route; for all the affected services, the pre-computed recovery route is performed. Send to the network element.
  • Step 8 The network element replies the execution result to the service local recovery processing module 20.
  • the service local recovery processing module 20 recalculates the end-to-end recovery route to the network element, and recalculates the pre-saved recovery route for each service.
  • Step 9 When the core layer link fault is cleared, the core layer NE notifies the alarm module 30 that the alarm disappears.
  • Step 10 The alarm module 30 sends an alarm notification to the core network and the link management module 10 (ie, the notification that the core layer link failure disappears), so that the core network and the link management module 10 determine the core layer link failure according to the alarm notification. Eliminate and update the core layer topology.
  • Step 11 The alarm module 30 sends an alarm notification (ie, a notification that the core layer link failure disappears) to the service local recovery management module 20 to notify the service local recovery processing module that the core layer link fault is eliminated.
  • an alarm notification ie, a notification that the core layer link failure disappears
  • Step 12 For the service recovery that is set to the return type, the service local recovery management module 20 performs the return switching of the service route after receiving the notification that the link fault of the core layer disappears, that is, switching from the restored route to the original working route, using the original
  • the core layer link transmits the service data, and the recovery route is deleted and the notification is sent to the network element before the service route is returned and switched.
  • the service local recovery management module 20 needs to recalculate and save the pre-saved recovery route for each service.
  • Steps 2 through 12 above form a loop process until the system exits. .
  • FIG. 7 is a network topology diagram of service route recovery according to an embodiment of the present invention, and a specific networking and service instance shown in FIG. 7 .
  • the network hierarchy is:
  • Access ring J1 A1, A2, A3, A4, A5, bandwidth 1GE;
  • Access ring J2 B1, B2, B3, B4, bandwidth 1GE;
  • Access ring J3 E1, E2, E3, E4, bandwidth 1GE;
  • Access ring J4 F1, F2, F3, F4, F5, bandwidth 1GE;
  • Convergence ring H1 C1, C2, C3, bandwidth 10GE;
  • Convergence ring H2 D1, D2, D3, bandwidth is 10GE;
  • the core ring Core1 N1, N2, N3, and N4 has a bandwidth of 10GE.
  • the source and sink network elements are respectively on the access rings J1, J2, J3, and J4, and pass through the convergence rings H1 and H2.
  • the service route recovery process includes:
  • Step 1 Determine that N1 to N4 are core rings; N1-N2, N2-N3, N3-N4, N1-N4, and N2-N3 are core ring links.
  • Step 2 Search for the services passing through the links of N1 to N4 and give a list.
  • N1-N2 has services S1, S2, S3;
  • the S1 service passes through B1-B2-C2-C3-N1-N2-D1-D2-E3-E4 with a bandwidth of 50M;
  • the S2 service passes through B4-B3-C3-N1-N2-D1-E2-E1 with a bandwidth of 100M.
  • the S3 service passes through B4-B3-C3-N1-N2-D1-F2-F1 and has a protection route.
  • the core layer link is N3-N4 and the bandwidth is 80M.
  • Step 3 Calculate the recovery route for the service on N1-N2:
  • the recovery routes of S1, S2, and S3 on N1-N2 are calculated. Since the total bandwidth occupied by the three services is 230M, the bandwidth utilization on the N1-N3-N2 link is only 35%, that is, 3.5GE bandwidth is used. The recovery routes of the service are unified to N1-N3-N2.
  • Step 4 When the N1-N2 link has an interrupt failure, the system receives the relevant alarm notification, and the system first updates the N1-N2 link as unavailable.
  • Step 5 Directly save the saved pre-calculated recovery route to the involved network element to implement fast service route recovery.
  • the protection route is preferentially used.
  • the S3 service has a protection route.
  • the N1-N2 link has an interruption fault, it can be switched to the protection route first, and the restoration route can be used as a backup.
  • Step 6 According to the updated topology and bandwidth utilization, pre-calculate the recovery route of the services that other core layer links have passed, and save.
  • Step 7 After the N1-N2 link fault is removed, the recovery route N1-N3-N2 is deleted for the service recovery set as the return type, and the notification is sent to the network element, and the service S1, S2 is transmitted by using N1-N2. S3 business data.
  • Step 8 Recalculate the recovery routes that need to be saved in advance for each business.
  • the present invention first determines the network elements and links involved in the core network, and performs pre-recovery routing calculations for the services passing through the links.
  • the pre-storage may be performed according to the foregoing.
  • the recovery route performs local route recovery on the affected service, thereby greatly improving the recovery efficiency and reducing the processing difficulty.
  • the link failure in the general network layer at the periphery of the core network the number of services affected by the link is relatively small, and the conventional The business route recovery method is handled.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种局部路由恢复方法及装置,涉及通讯网络,所述方法包括:根据核心网网元、所述核心网网元间形成的核心网链路及带宽利用率、所述核心网链路承载的业务,确定用来在核心网链路发生故障时能够恢复所述故障核心网链路承载的业务的恢复路由;对核心网链路的故障进行监测;当监测到某一核心网链路发生故障时,将所述故障核心网链路上的业务数据经由在前确定的所述业务的恢复路由发送。本发明在核心网出现光纤中断等核心网链路故障时,可根据预先保存的恢复路由对受影响业务进行局部路由恢复,从而大幅提高恢复效率,减低处理难度。

Description

一种局部路由的恢复方法及装置 技术领域
本发明涉及通讯网络,特别涉及一种局部路由的恢复方法及装置。
背景技术
在通讯网络中,网络由许多通讯设备节点组成,这些网络节点称为网元。网元之间通过通讯线路进行连接,包括光纤电缆等多种形式。网元分散分布在各个地区,例如,有的网元在城市里的通讯大楼实验室里,有的网元在偏远地区。然而这些网元的设备需要进行配置、维护和监控,不可能每处都派人值守,这样就需要一个中心网络管理控制系统,放在中心机房,通过远程通讯对网络上各个节点进行配置、维护和监控。
通过控制器管理网络是一种新出现的网络管理控制系统。在这个控制系统中,把传统网管中对业务资源的控制功能独立出来,仅仅关注业务管理。控制器可以按树型层次化组织,以便关联大规模网络。图1是相关技术提供的SDN网络中控制器层次化结构图,如图1所示,使用控制器管控网络,最下层是网元设备,并形成一个区域网络,标识为“DC”的节点是域控制器(Domain-controller,DC),标识为“SC”的节点是超级控制器(Super-Controller,SC),还可以有更多层次的控制器,这里,最上层节点是1层SC。图2是相关技术提供的SDN网络中控制器与其他实体的关系示意图,如图2所示,控制器除了通过南向接口管理网络设备,还通过北向接口接入应用层的网络APP进行网络管理,还可以通过侧接口同网元管理系统EMS、网络管理系统NMS,或者操作支撑系统OSS沟通管理信息。网络APP是对网络的实际业务应用,它会使用控制器提供的资源,发出业务建立、删除、修改的请求,而控制器根据网络APP的请求建立、删除、修改业务,以及进行业务保护、恢复等操作,并对业务的告警、性能进行监控。其中,DC直接管理通讯网络,同时还可以和传统网络管理系统进行交流,最终提供给APP提供资源和服务。
网络实际运行过程中,可能会遇到故障,特别是光纤中断等故障会造成一些业务的路由中断,严重影响业务质量。对于质量要求高的业务,要求业务中断时如果有保护路由,则先倒换到保护路由,并实时产生新的保护路由;如果没有保护路由,则实时产生新的保护路由并立即倒换。
传统路由恢复的处理方法一般是针对业务的完整路由进行端到端的路由恢复,由于网络规模越来越大,业务数量越来越大,某处故障发生后进行路由恢复的处理难度大,效率慢,从而对控制器或中心网络管理控制系统的性能提出了很高的要求,这种高要求由于很难达到, 又造成了控制器或中心网络管理控制系统在业务路由恢复领域的工程化难以实现。
通过分析如图3所示的PTN网络的网络分层结构可知,核心网经过的业务量一般都很大,核心网链路承载的业务量一般是核心网外围链路承载的业务量的10倍以上,因此,按照传统的路由恢复方法,处理的业务数量大且需要进行端到端恢复,其处理效率难以高效。
发明内容
本发明的目的在于提供一种局部路由的恢复方法及装置,能更好地解决核心网链路故障时快速恢复业务路由的问题。
根据本发明实施例的一个方面,提供了一种局部路由恢复方法,包括:
根据核心网网元、上述核心网网元间形成的核心网链路及带宽利用率、上述核心网链路承载的业务,确定用来在核心网链路发生故障时能够恢复上述故障核心网链路承载的业务的恢复路由;
对核心网链路的故障进行监测;
当监测到某一核心网链路发生故障时,将上述故障核心网链路上的业务数据经由在前确定的上述业务的恢复路由发送。
可选地,在将上述故障核心网链路上的业务数据经由在前确定的上述业务的恢复路由发送之前,还包括:将上述故障核心网链路标记为不可用链路,并更新核心网网络拓扑结构。
可选地,在将上述故障核心网链路上的业务数据经由在前确定的上述业务的恢复路由发送之后,还包括:
对核心网链路的带宽进行监测,并当监测到核心网链路的带宽变化时,更新上述核心网链路的带宽利用率。
可选地,还包括:
利用更新的核心网网络拓扑结构和核心网链路的带宽利用率,重新确定其它核心网链路承载的业务的恢复路由。
可选地,还包括:
当监测到承载业务的核心网链路的故障消除时,将上述业务的恢复路由删除,并重新利用上述核心网链路发送上述业务的业务数据。
根据本发明实施例的另一方面,提供了一种局部路由恢复装置,包括:
恢复路由计算模块,设置为根据核心网网元、上述核心网网元间形成的核心网链路及带宽利用率、上述核心网链路承载的业务,确定用来在核心网链路发生故障时能够恢复上述故障核心网链路承载的业务的恢复路由;
链路故障监测模块,设置为对核心网链路的故障进行监测;
局部路由恢复模块,设置为当监测到某一核心网链路发生故障时,将上述故障核心网链路上的业务数据经由在前确定的上述业务的恢复路由发送。
可选地,还包括:
网络拓扑确定模块,设置为在将上述故障核心网链路上的业务数据经由在前确定的上述业务的恢复路由发送之前,将上述故障核心网链路标记为不可用链路,并更新核心网网络拓扑结构。
可选地,还包括:
带宽利用率确定模块,设置为在将上述故障核心网链路上的业务数据经由在前确定的上述业务的恢复路由发送之后,对核心网链路的带宽进行监测,并当监测到核心网链路的带宽变化时,更新上述核心网链路的带宽利用率。
可选地,上述恢复路由计算模块还设置为利用更新的核心网网络拓扑结构和核心网链路的带宽利用率,重新确定其它核心网链路承载的业务的恢复路由。
可选地,当上述链路故障监测模块监测到承载业务的核心网链路的故障消除时,上述局部路由恢复模块将上述业务的恢复路由删除,并重新利用上述核心网链路发送上述业务的业务数据。
与相关技术相比较,本发明实施例的有益效果在于:
本发明实施例在核心网出现光纤中断等核心网链路故障时,可根据预先保存的恢复路由对受影响业务进行局部路由恢复,从而大幅提高恢复效率,减低处理难度。
附图说明
图1是相关技术提供的SDN网络中控制器层次化结构图;
图2是相关技术提供的SDN网络中控制器与其他实体的关系示意图;
图3是相关技术提供的网络层次结构图;
图4是本发明实施例提供的局部路由恢复方法流程图;
图5是本发明实施例提供的局部路由恢复装置框图;
图6是本发明实施例提供的业务局部恢复处理流程图;
图7是本发明实施例提供的业务路由恢复的网络拓扑图。
具体实施方式
以下结合附图对本发明的优选实施例进行详细说明,应当理解,以下所说明的优选实施 例仅用于说明和解释本发明,并不用于限定本发明。
图4是本发明实施例提供的局部路由恢复方法流程图,如图4所示,步骤包括:
步骤S101:根据核心网网元、所述核心网网元间形成的核心网链路及带宽利用率、所述核心网链路承载的业务,确定用来在核心网链路发生故障时能够恢复所述故障核心网链路承载的业务的恢复路由。
具体地说,根据系统命令,确定核心网网元、所述核心网网元间形成的核心网链路及带宽利用率、所述核心网链路承载的业务,然后根据所确定的上述信息,计算恢复路由。其中,核心网网元可以由人工指定,也可以由系统自动确定,但为提高计算效率,需要限制核心网网元数量,例如设定为20个以下。
步骤S102:对核心网链路的故障进行监测;
具体地说,对核心网链路的故障进行监测,主要通过监测核心网网元上报的用来通知链路故障的告警消息实现。
步骤S103:当监测到某一核心网链路发生故障时,首先将所述故障核心网链路标记为不可用链路,并更新核心网网络拓扑结构,然后将所述故障核心网链路上的业务数据经由在前确定的所述业务的恢复路由发送,并对核心网链路的带宽进行监测,若监测到核心网链路的带宽变化,则更新所述核心网链路的带宽利用率,以便利用更新的核心网网络拓扑结构和核心网链路的带宽利用率,重新确定其它核心网链路承载的业务的恢复路由。
需要说明的是,如果故障消除,那么将所述业务的恢复路由删除,并重新利用所述核心网链路发送所述业务的业务数据。
图5是本发明实施例提供的局部路由恢复装置框图,如图5所示,所述装置设置在具有与网络设备连接的南向接口、与网络APP连接的北向接口、与EMS等连接的侧接口、资源管理模块和业务管理模块的控制器中,包括:核心网络及链路管理模块10、业务局部恢复管理模块20和告警模块30。
其中,所述业务局部恢复管理模块30包括以下模块:
恢复路由计算模块用于根据核心网网元、所述核心网网元间形成的核心网链路及带宽利用率、所述核心网链路承载的业务,确定用来在核心网链路发生故障时能够恢复所述故障核心网链路承载的业务的恢复路由;
链路故障监测模块用于对核心网链路的故障进行监测;
局部路由恢复模块用于当监测到某一核心网链路发生故障时,将所述故障核心网链路上的业务数据经由在前确定的所述业务的恢复路由发送。
其中,所述核心网络及链路管理模块10包括以下模块:
网络拓扑确定模块,用于在将所述故障核心网链路上的业务数据经由在前确定的所述业务的恢复路由发送之前,将所述故障核心网链路标记为不可用链路,并更新核心网网络拓扑结构;
带宽利用率确定模块,用于在将所述故障核心网链路上的业务数据经由在前确定的所述业务的恢复路由发送之后,对核心网链路的带宽进行监测,并当监测到核心网链路的带宽变化时,更新所述核心网链路的带宽利用率,以供恢复路由计算模块利用更新的核心网网络拓扑结构和核心网链路的带宽利用率,重新确定其它核心网链路承载的业务的恢复路由。
需要说明的是,当所述链路故障监测模块监测到承载业务的核心网链路的故障消除时,所述局部路由恢复模块将所述业务的恢复路由删除,并重新利用所述核心网链路发送所述业务的业务数据。
本发明应用于通讯网络中,特别是使用软件定义网络(Software Defined Netwok,SDN)控制器管理的网络中,利用控制器或中心网络管理系统,基于网络层次结构,进行局部路由恢复。
图6是本发明实施例提供的业务局部恢复处理流程图,如图6所示,步骤包括:
步骤1:系统的核心网络及链路管理模块10根据系统命令,系统通过自动或人工指定方式确定网络的核心层网元(即核心网网元)及核心层链路(即核心网链路),然后根据核心层链路,搜索出每段链路经过的业务列表,其中,具有业务保护路由的链路也要搜索出来,加入对应关系,并加以标识。
可选地,为提高恢复路由的计算效率,建议为核心层网元数量N设定一个阈值,比如20,核心层链路理论上小于N×(N-1)。
可选地,业务列表与核心层链路(可能涉及多段核心层链路)形成一个M:N的对应关系,其中M是经过核心层链路的业务数量;
步骤2:核心网络及链路管理模块10接收到有关系统通知(例如带宽利用率变化通知)后,通知业务局部恢复管理模块20计算恢复路由。
步骤3:业务局部恢复管理模块20根据上述信息以及每条核心层链路的带宽利用率,预先计算每条业务的恢复路由,并将计算得到的每条业务的恢复路由保存在内存中。
可选地,计算恢复路由时,将所有业务所需带宽与可用路由的带宽进行比对,尽量将业务累加到同一条恢复路由,以便提高计算效率。
步骤4:系统实时监测核心层链路及带宽利用率。
可选说,实时监测核心层链路故障,当核心层网元监测到核心层链路出现故障时,核心层网元向系统的告警模块30上报告警,并执行步骤5。
可选说,实时监测核心层链路的带宽,当核心层链路出现带宽变化时,核心网络及链路管理模块10更新该核心层链路的带宽利用率,并执行步骤2。
步骤5:告警模块30向核心网络及链路管理模块10发送告警通知(即核心层链路出现故障的通知),使核心网络及链路管理模块10根据所述告警通知确定核心层链路出现故障,更新核心层拓扑,并将出现故障的核心层链路标记为不可用。
步骤6:告警模块30向业务局部恢复管理模块20发送告警通知(即核心层链路出现故障的通知),以通知业务局部恢复处理模块核心层链路出现故障。
步骤7:业务局部恢复处理模块20收到核心层链路故障的告警通知后,对有保护路由的受到影响的业务立刻执行保护倒换;对所有受到影响的业务,将预先计算好的恢复路由下发到网元。
步骤8:网元将执行结果回复给业务局部恢复处理模块20。
其中,对于网元反馈为执行失败的部分业务,业务局部恢复处理模块20重新计算端到端的恢复路由,并下发到网元,同时,重新为每条业务计算预先保存的恢复路由。
步骤9:监测到核心层链路故障消除时,核心层网元通知告警模块30告警消失。
步骤10:告警模块30向核心网络及链路管理模块10发送告警通知(即核心层链路故障消失的通知),使核心网络及链路管理模块10根据所述告警通知确定核心层链路故障消除,并更新核心层拓扑。
步骤11:告警模块30向业务局部恢复管理模块20发送告警通知(即核心层链路故障消失的通知),以通知业务局部恢复处理模块核心层链路故障消除。
步骤12:对于设置为返回式的业务恢复,业务局部恢复管理模块20收到核心层链路故障消失的通知后,执行业务路由的返回倒换,即从恢复路由倒换至原来的工作路由,使用原来的核心层链路传输业务数据,而在执行业务路由返回倒换前,删除所述恢复路由,并向网元下发通知。
需要注意的是,对于设置为返回式的业务恢复,业务局部恢复管理模块20需要重新为每条业务计算预先保存的恢复路由并保存。
上述步骤2至步骤12形成一个循环处理,直到系统退出。.
图7是本发明实施例提供的业务路由恢复的网络拓扑图,如图7所示的一个具体组网和业务实例。
在一个城域网中,有多个接入环、多个汇聚环和一个核心环,相关多条经过核心环的业务,网络层次结构为:
接入环J1:A1、A2、A3、A4、A5,带宽为1GE;
接入环J2:B1、B2、B3、B4,带宽为1GE;
接入环J3:E1、E2、E3、E4,带宽为1GE;
接入环J4:F1、F2、F3、F4、F5,带宽为1GE;
汇聚环H1:C1、C2、C3,带宽为10GE;
汇聚环H2:D1、D2、D3,带宽为10GE;
核心环Core1:N1、N2、N3、N4,带宽为10GE。
经过网元N1、N2的业务有3条,分别是S1、S2、S3;
源宿网元分别是在接入环J1、J2、J3、J4上,经过汇聚环H1、H2。
业务路由恢复流程包括:
第1步:确定N1~N4为核心环;N1-N2、N2-N3、N3-N4、N1-N4、N2-N3为核心环链路。
第2步:搜索经过N1~N4各链路的业务,给出列表。
N1-N2有业务S1、S2、S3;
S1业务经过B1-B2-C2-C3-N1-N2-D1-D2-E3-E4,带宽50M;
S2业务经过B4-B3-C3-N1-N2-D1-E2-E1,带宽100M;
S3业务经过B4-B3-C3-N1-N2-D1-F2-F1,有保护路由,经过核心层链路为N3-N4,带宽80M。
第3步:计算N1-N2上业务的恢复路由:
S1、S2、S3在N1-N2上的恢复路由经计算,由于三条业务占用带宽合计为230M,假设N1-N3-N2链路上带宽利用率只有35%,即使用了3.5GE带宽,所以3条业务的恢复路由统一为N1-N3-N2。
第4步:当N1-N2链路出现中断故障时,系统收到有关告警通知,系统首先更新N1-N2的链路为不可用。
第5步:直接将保存的预先算好的恢复路由下发到所涉及的网元上,实现快速的业务路由恢复。
对于有保护路由的业务,优先使用保护路由,例如S3业务具有保护路由,当N1-N2链路出现中断故障时,可以先倒换至保护路由,而恢复路由可作为备用。
第6步:根据更新后的拓扑和带宽利用率,再预先计算其他核心层链路所经过业务的恢复路由,并保存。
第7步:当N1-N2链路故障消除后,对于设置为返回式的业务恢复,删除恢复路由N1-N3-N2,并向网元下发通知,使用N1-N2传输业务S1、S2、S3的业务数据。
第8步:重新为每条业务计算需要预先保存的恢复路由。
综上所述,本发明首先确定核心网所涉及的网元及链路,并针对经过这些链路的业务,预先进行恢复路由的计算,当核心网络出现光纤中断等故障时,可根据预先保存的恢复路由对受影响业务进行局部路由恢复,从而大幅提高恢复效率,减低处理难度,而对于核心网外围的一般网络层次中的链路故障,由于其影响的业务数量相对较少,可以按照传统的业务路由恢复方法处理。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,根据核心网网元、核心网网元间形成的核心网链路及带宽利用率、核心网链路承载的业务,确定用来在核心网链路发生故障时能够恢复故障核心网链路承载的业务的恢复路由;
S2,对核心网链路的故障进行监测;
S3,当监测到某一核心网链路发生故障时,将故障核心网链路上的业务数据经由在前确定的业务的恢复路由发送。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例在核心网出现光纤中断等核心网链路故障时,可根据预先保存的恢复路由对受影响业务进行局部路由恢复,从而大幅提高恢复效率,减低处理难度。

Claims (10)

  1. 一种局部路由恢复方法,包括:
    根据核心网网元、所述核心网网元间形成的核心网链路及带宽利用率、所述核心网链路承载的业务,确定用来在核心网链路发生故障时能够恢复所述故障核心网链路承载的业务的恢复路由;
    对核心网链路的故障进行监测;
    当监测到某一核心网链路发生故障时,将所述故障核心网链路上的业务数据经由在前确定的所述业务的恢复路由发送。
  2. 根据权利要求1所述的方法,其中,在将所述故障核心网链路上的业务数据经由在前确定的所述业务的恢复路由发送之前,还包括:将所述故障核心网链路标记为不可用链路,并更新核心网网络拓扑结构。
  3. 根据权利要求2所述的方法,其中,在将所述故障核心网链路上的业务数据经由在前确定的所述业务的恢复路由发送之后,还包括:
    对核心网链路的带宽进行监测,并当监测到核心网链路的带宽变化时,更新所述核心网链路的带宽利用率。
  4. 根据权利要求3所述的方法,其中,还包括:
    利用更新的核心网网络拓扑结构和核心网链路的带宽利用率,重新确定其它核心网链路承载的业务的恢复路由。
  5. 根据权利要求1-4任意一项所述的方法,其中,还包括:
    当监测到承载业务的核心网链路的故障消除时,将所述业务的恢复路由删除,并重新利用所述核心网链路发送所述业务的业务数据。
  6. 一种局部路由恢复装置,包括:
    恢复路由计算模块,设置为根据核心网网元、所述核心网网元间形成的核心网链路及带宽利用率、所述核心网链路承载的业务,确定用来在核心网链路发生故障时能够恢复所述故障核心网链路承载的业务的恢复路由;
    链路故障监测模块,设置为对核心网链路的故障进行监测;
    局部路由恢复模块,设置为当监测到某一核心网链路发生故障时,将所述故障核心网链路上的业务数据经由在前确定的所述业务的恢复路由发送。
  7. 根据权利要求6所述的装置,其中,还包括:
    网络拓扑确定模块,设置为在将所述故障核心网链路上的业务数据经由在前确定的所述业务的恢复路由发送之前,将所述故障核心网链路标记为不可用链路,并更新核心 网网络拓扑结构。
  8. 根据权利要求7所述的装置,其中,还包括:
    带宽利用率确定模块,设置为在将所述故障核心网链路上的业务数据经由在前确定的所述业务的恢复路由发送之后,对核心网链路的带宽进行监测,并当监测到核心网链路的带宽变化时,更新所述核心网链路的带宽利用率。
  9. 根据权利要求8所述的装置,其中,所述恢复路由计算模块还设置为利用更新的核心网网络拓扑结构和核心网链路的带宽利用率,重新确定其它核心网链路承载的业务的恢复路由。
  10. 根据权利要求6-9任意一项所述的装置,其中,当所述链路故障监测模块监测到承载业务的核心网链路的故障消除时,所述局部路由恢复模块将所述业务的恢复路由删除,并重新利用所述核心网链路发送所述业务的业务数据。
PCT/CN2016/076306 2015-06-24 2016-03-14 一种局部路由的恢复方法及装置 WO2016206409A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510349702.5 2015-06-24
CN201510349702.5A CN106330698B (zh) 2015-06-24 2015-06-24 一种局部路由的恢复方法及装置

Publications (1)

Publication Number Publication Date
WO2016206409A1 true WO2016206409A1 (zh) 2016-12-29

Family

ID=57584389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076306 WO2016206409A1 (zh) 2015-06-24 2016-03-14 一种局部路由的恢复方法及装置

Country Status (2)

Country Link
CN (1) CN106330698B (zh)
WO (1) WO2016206409A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109996130A (zh) * 2018-01-02 2019-07-09 中国移动通信有限公司研究院 基于sdn的光传送网保护恢复方法、设备及存储介质
CN110190996B (zh) * 2019-05-30 2022-11-25 深圳市中航比特通讯技术股份有限公司 一种基于sdn通信网络故障隧道修复方法
CN113010354A (zh) * 2021-03-22 2021-06-22 北京灵汐科技有限公司 核分类方法、映射方法、数据传输方法及装置、芯片
CN115604185A (zh) * 2021-07-09 2023-01-13 展讯半导体(南京)有限公司(Cn) 数据路由方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304343A (zh) * 2008-06-10 2008-11-12 华为技术有限公司 一种网络故障检测的方法、网络设备和网络系统
CN101431702A (zh) * 2008-12-18 2009-05-13 北京邮电大学 一种相邻onu互相保护的方法
CN101605091A (zh) * 2009-02-13 2009-12-16 华为技术有限公司 一种多端口负载分担方法、装置和网络系统
CN101854565A (zh) * 2009-03-31 2010-10-06 华为技术有限公司 信息传送方法、业务保护方法及系统和设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140093231A1 (en) * 2012-10-02 2014-04-03 Kenneth Martin Fisher Procedure, apparatus, system, and computer program for network recovery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304343A (zh) * 2008-06-10 2008-11-12 华为技术有限公司 一种网络故障检测的方法、网络设备和网络系统
CN101431702A (zh) * 2008-12-18 2009-05-13 北京邮电大学 一种相邻onu互相保护的方法
CN101605091A (zh) * 2009-02-13 2009-12-16 华为技术有限公司 一种多端口负载分担方法、装置和网络系统
CN101854565A (zh) * 2009-03-31 2010-10-06 华为技术有限公司 信息传送方法、业务保护方法及系统和设备

Also Published As

Publication number Publication date
CN106330698A (zh) 2017-01-11
CN106330698B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2016206409A1 (zh) 一种局部路由的恢复方法及装置
US8743679B2 (en) Client diversity policy sharing with the transport layer
EP2045965B1 (en) Resource state monitoring method, device and communication network
US9692637B2 (en) Fault protection method and fault protection apparatus in a multi-domain network
US7961644B2 (en) Communication node apparatus, communication system, and path resource assignment method
CN103782552A (zh) 一种业务路径的保护方法、控制器、设备及系统
US9323618B2 (en) Method and apparatus for coordinating fault recovery techniques among domains
JP5747281B2 (ja) 通信システム、通信方法、及び、網管理装置
CN101001170A (zh) 业务故障恢复方法
US9774493B2 (en) Retention of a sub-network connection home path
CN100387035C (zh) 一种在格状网中利用共享备用通道进行故障恢复的方法
WO2016177231A1 (zh) 基于双主控的主备倒换方法及装置
CN101789879B (zh) 一种关联链路的动态维护方法及装置
WO2014202026A1 (zh) 虚拟网络映射保护方法、系统及计算机存储介质
WO2016206502A1 (zh) 一种业务控制方法及装置、计算机存储介质
WO2016165061A1 (zh) 一种业务保护方法及装置
EP3355530B1 (en) Method and apparatus for processing service failure
CN101969581B (zh) 多层网络的流量切换方法、装置和系统
KR20070087182A (ko) 링 시스템의 복구 방법
CN108174417B (zh) 一种主备切换方法、装置、相关电子设备及可读存储介质
WO2016202104A1 (zh) 光通讯网络中的业务控制方法及装置
JP2003258907A (ja) 上位ノードおよびネットワークおよびプログラムおよび記録媒体
JP3689062B2 (ja) 上位ノードおよびネットワークおよびプログラムおよび記録媒体
CN101686186B (zh) 一种检测链路标签状态的方法、设备与系统
CN101453387A (zh) 一种资源状态监控方法及装置以及通信网络

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16813525

Country of ref document: EP

Kind code of ref document: A1