WO2016206318A1 - 一种利用混合组分工质的低温热源热电转换系统及方法 - Google Patents

一种利用混合组分工质的低温热源热电转换系统及方法 Download PDF

Info

Publication number
WO2016206318A1
WO2016206318A1 PCT/CN2015/097090 CN2015097090W WO2016206318A1 WO 2016206318 A1 WO2016206318 A1 WO 2016206318A1 CN 2015097090 W CN2015097090 W CN 2015097090W WO 2016206318 A1 WO2016206318 A1 WO 2016206318A1
Authority
WO
WIPO (PCT)
Prior art keywords
working medium
mixed component
heater
temperature
heat source
Prior art date
Application number
PCT/CN2015/097090
Other languages
English (en)
French (fr)
Inventor
张高佐
Original Assignee
张高佐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张高佐 filed Critical 张高佐
Priority to US15/108,477 priority Critical patent/US10436076B2/en
Publication of WO2016206318A1 publication Critical patent/WO2016206318A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/106Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/021Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes in which flows a non-specified heating fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B27/00Instantaneous or flash steam boilers
    • F22B27/16Instantaneous or flash steam boilers involving spray nozzles for sprinkling or injecting water particles on to or into hot heat-exchange elements, e.g. into tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines

Definitions

  • the invention relates to a low temperature heat source thermoelectric conversion system, in particular to a low temperature heat source thermoelectric conversion system using a mixed component working fluid.
  • thermodynamic systems use a single-component working medium with a fixed boiling point, using the Rankine cycle technology.
  • the efficiency of this thermodynamic system is limited by the constant boiling point temperature because the latent heat of vaporization is large and the heat source is During the heat dissipation process, the temperature decreases linearly.
  • the working medium with a fixed boiling point has the same linearity as the heat dissipation characteristics of the heat source before the endothermic process reaches the boiling point.
  • the working medium continues to absorb heat and vaporizes after reaching the boiling temperature, but the temperature remains unchanged during the vaporization process until all the liquid working medium becomes a vapor working medium. That is to say, the vaporization process must absorb a large amount of thermal energy from the heat source, but the temperature difference with the heat source cannot maintain a linear relationship, resulting in limitation of the efficiency of the entire thermodynamic system.
  • a Karina cycle technique is described in the document US Pat. No. 4,346,561 issued to Alexander I. Kalina.
  • the Kalina cycle is an "improvement” based on the Rankine cycle, which will “pure” the cycle.
  • the medium becomes a "mixture” of ammonia and water.
  • the physical properties of the ammonia-water mixture are different from pure water and pure ammonia. It uses two different working media with stable boiling points and capable of forming an unfixed boiling point.
  • the working fluid can be maintained not only in the liquid endothermic process.
  • thermodynamic system It is parallel with the linear temperature drop characteristic of the heat dissipation process of the heat source, and the temperature rise characteristic of the heat source is also approximately parallel with the linear temperature drop characteristic of the heat dissipation process during the vaporization phase change process, thereby improving the efficiency of the entire thermodynamic system.
  • the process of the Kalina cycle is as follows: the working fluid is sent from the hot well to the separate heat exchanger via the ammonia pump, and the heated working fluid is separated into ammonia-rich gas and lean ammonia water through the separator, and the ammonia-rich gas is sent.
  • the ammonia steam turbine is used for work, the exhausted steam is sent to the condenser, and the lean ammonia water is also sent to the condenser.
  • the vapor working medium is gradually absorbed by the liquid working medium, and the mixture is finally sent into the hot well in liquid form to complete a Thermoelectric conversion cycle process.
  • the flow ratio of steam and liquid working fluid is the most important.
  • it is only operated by manual or electric valve operation based on the experience of the operator. Since the actual flow rate, temperature and density of the liquid working medium leaving the separator cannot be known online, Even if it is operated by skilled operators, the actual flow deviation of the liquid and vapor working medium during manual adjustment of “lean ammonia ⁇ condenser” will usually exceed 10% ⁇ 15% of the design value, so that the working fluid cannot be mixed in precise proportion.
  • the technical problem to be solved by the invention is how to precisely control the flow ratio of the steam and liquid working fluids, so that the liquid working fluid can be completely absorbed and liquefied after the vapor working medium, thereby improving the system circulation efficiency.
  • the technical proposal of the present invention is to provide a low-temperature heat source thermoelectric conversion system using a mixed component working medium, which is characterized in that: a steam generator is provided, and a shower is arranged in the steam generator from top to bottom.
  • the first heater, the second heater, and the hot well containing the mixed component working fluid are connected to the shower through a pipeline with a pressurized infusion pump; the upper part of the steam generator is provided with a dry steamer, and the dry steamer passes through the pipe
  • the road is connected to the inlet end of the turbine, the turbine is connected to the generator, and the exhaust end of the turbine is connected to the mixer through a pipeline; the lower part of the steam generator is provided with a reflux device, the reflux device is connected to the mixer through a pipeline, and the mixer is connected to the condenser.
  • the mixed component working medium satisfies the following two conditions simultaneously: one or two working compositions having stable chemical components; and two or more different working media having stable boiling points and capable of forming an unfixed boiling point.
  • the first heater and the second heater share the same low temperature heat source, that is, the low temperature heat source first enters the first heater, and then exits the first heater and then enters the second heater.
  • the heat transfer surface temperatures of the first heater and the second heater are both higher than the boiling temperature of the mixed component working fluid.
  • the condenser has a source of cooling water therein.
  • a flow regulating valve is arranged on the pipeline connecting the reflux device to the mixer.
  • the liquid level line in the steam generator is located below the first heater.
  • the invention also provides a low-temperature heat source thermoelectric conversion method using a mixed component working medium, and adopts the above-mentioned low-temperature heat source thermoelectric conversion system using a mixed component working medium, the steps are as follows:
  • Step 1 The mixed component working fluid in the hot well is sent to the shower in the steam generating device via the pressurized infusion pump, and the mixed component working fluid is firstly passed through the shower and the first heater having a boiling temperature higher than the mixed component working fluid. Surface contact and vaporization of a portion of the working fluid having a boiling point lower than a surface temperature of the first heater;
  • Step 2 The first batch of vaporous working fluid flows to the dry steamer, and the unvaporized mixed component working fluid enters the lower part of the steam generator and forms a liquid level line; the working fluid below the liquid level line continues to be higher than the mixing The heat transfer surface of the second heater of the boiling point of the component working fluid continues to be heated, and the vaporous working fluid flow continues to escape to the dry steamer, and the liquid particles in the vapor working medium are removed in the dry steamer;
  • Step 3 The dry vapor working medium from the dry steamer is transported to the turbine, and the vapor working medium is expanded into mechanical energy in the blade flow passage of the turbine, and the generator is driven to supply power to the power grid in the form of electric energy;
  • the exhaust steam that the turbine has worked on is discharged to the mixer;
  • Step 4 The working medium remaining below the liquid level line in the steam generator and having a partial boiling point temperature lower than the surface temperature of the first heater and having been vaporized continues to undergo deep vaporization under the heating of the heat conducting surface of the second heater, The vaporized, higher density working medium tends to stay in the lower portion of the steam generating unit, and the lowest concentration region of the working medium component having a boiling point temperature lower than the first heater surface temperature is formed in the refluxing device;
  • Step 5 According to the total amount of the pressurized infusion pump and the boiling point temperature is lower than the composition ratio of the working medium of the first heater surface temperature and the design liquid level line, the liquid working medium is taken out from the reflux device and sent to The mixer mixes with the exhaust steam that has been exhausted in the turbine; the spent steam and the unvaporized mixed component working medium are thoroughly mixed in the mixer and then led to the condenser, and the vapor and liquid mixture passes through the condenser. After cooling, the vaporous working medium in the vapor and liquid mixture is gradually absorbed by the liquid working medium; the mixture finally enters the hot well in a liquid state to complete a thermoelectric conversion cycle.
  • the amount of liquid working medium taken out from the reflux device is precisely adjusted by multi-impact control of the liquid level line of the steam generator.
  • the measurement parameters of the multi-impact control of the liquid level line of the steam generator include: flow rate, temperature and density of the steam inlet working fluid of the turbine, flow rate, temperature and density of the liquid working medium at the outlet of the pressurized infusion pump The flow rate, temperature, and density of the liquid working medium on the inlet of the mixer to the inlet of the mixer.
  • the present invention has the following beneficial effects:
  • the mixer is designed and arranged in the condenser, so that the liquid working fluid from the returning device and the vapor working medium discharged from the turbine can be accurately entered in the weight flow rate, and the vapor-liquid working medium can be evenly distributed. distributed;
  • Figure 1 is a schematic diagram of the Karina cycle process
  • FIG. 2 is a schematic diagram of a low temperature heat source thermoelectric conversion system using a mixed component working medium according to the present invention
  • FIG. 3 is a schematic diagram of a system cycle process provided by the present invention.
  • the invention provides a low-temperature heat source thermoelectric conversion system using a mixed component working medium, wherein the mixed component working medium satisfies the following two conditions: (1) two or more chemical components stable working medium; (2) two or more boiling points are stable and Can form a different working medium with a fixed boiling point.
  • the item (1) refers to two or more mechanical mixtures that do not chemically react with each other, such as ammonia, a mixture of ammonia and water in any proportion of water, a mixture of ammonia, water and other working substances.
  • the low-temperature heat source refers to a heat source whose heat source temperature is higher than the boiling point temperature of the working fluid, and contains various industrial process waste heat, solar energy and geothermal heat.
  • Thermoelectric conversion refers to the conversion of low-grade heat source low-grade thermal energy into electrical energy output to the grid.
  • FIG. 2 is a schematic diagram of a low-temperature heat source thermoelectric conversion system using a mixed component working medium according to the present invention, wherein the low-temperature heat source thermoelectric conversion system using a mixed component working medium includes a hot well 1 containing a mixed component working medium, and a pressurized infusion solution One end of the pump 11 is connected to the hot well 1 through a pipeline, and the other end is connected to the steam generator 8 through a pipeline.
  • the upper part of the steam generator 8 is equipped with a dry steamer 6, and the dry steamer 6 is connected to the intake end of the turbine 5 through a pipeline, and the turbine 5 Connected to the generator 4, the exhaust end of the turbine 5 is connected to the mixer 3 through a pipeline, the lower portion of the steam generator 8 is equipped with a reflux device 10, the reflux device 10 is connected to the mixer 3 through a pipeline, and the mixer 3 is connected to the condenser 2, and the condenser 3 is connected.
  • a cooling water source 12 is passed through the boiler 2.
  • the steam generator 8 is provided with a shower 7, a first heater 9-1 and a second heater 9-2 from top to bottom.
  • the shower 7 is located at the top of the steam generator 8, and the shower 7 is connected.
  • the pressurized infusion pump 11; the first heater 9-1 and the second heater 9-2 share the same low-temperature heat source, that is, the low-temperature heat source first enters the first heater 9-1, and then comes out of the first heater 9-1. Enter the second heater 9-2.
  • a flow regulating valve 13 is installed in the line of the reflux unit 10 connected to the mixer 3.
  • the mixed component working medium in the hot well 1 is sent to the steam generator 8 via the pressurized infusion pump 11, and the mixed component working medium from the pressurized infusion pump 11 is firstly connected to the working medium having a higher concentration than the mixed component via the shower 7
  • the first heater 9-1 of the boiling temperature is in surface contact and vaporizes the working medium portion of the mixed component working medium having a boiling point temperature lower than the surface temperature of the first heater 9-1.
  • the first batch of vaporous working fluid flows to the dry gas burner 6, and the unvaporized mixed component working medium enters the lower portion of the steam generating unit 8 and forms a liquid level line 9-0.
  • the working medium below the liquid level line 9-0 continues to be heated by the heat transfer surface of the second heater 9-2 having a boiling temperature higher than the boiling temperature of the working medium of the mixed component, and continues to precipitate the vaporous medium flow to the dry gas 6
  • the liquid particles in the vaporous working medium are removed in the dry gas burner 6.
  • the dry working medium vapor which is passed through the dry gas 6 to remove the liquid particles is transported to the turbine 5.
  • the internal energy (pressure and enthalpy) of the vaporous working medium is expanded in the turbine blade 5 flow passage to convert the work into mechanical energy, and the generator 4 is driven to supply power to the grid in the form of electrical energy.
  • the exhaust steam that has been subjected to work by the turbine 5 is discharged to the mixer 3.
  • the higher-density working medium that is not vaporized tends to stay in the lower portion of the steam generator 8, and the working medium component having the boiling point temperature lower than the surface temperature of the first heater 9-1 is formed in the reflux unit 10 to have the lowest concentration. region.
  • the liquid working medium is sent to the mixer 3 to be mixed with the spent steam which is discharged in the turbine 5.
  • the spent steam and the unvaporized mixed component working medium are thoroughly mixed in the mixer 3 and then introduced into the condenser 2, and the steam and liquid mixture is cooled by the cooling water system 12 in the condenser 2, and the vapor and liquid mixture are cooled.
  • the vaporous working medium in the medium is gradually absorbed by the liquid working medium.
  • the mixture eventually enters the hot well 1 in a liquid state to complete a thermoelectric conversion cycle.
  • the present invention precisely controls the liquid working medium taken out from the reflux unit 10 by a multi-pulse controller for designing the liquid level line 9-0.
  • the amount thereby increasing the degree of mixing of the liquid working medium delivered to the mixer 3 with the spent steam discharged in the turbine 5, increases the absorption efficiency of the vaporous working medium in the condenser 2 by the liquid working medium.
  • the amount of liquid working fluid taken out from the reflux device 10 can be obtained, and the liquid and vapor working medium in the mixer 3 can be adjusted by the adjustment of the flow regulating valve 13.
  • the precise mixing ratio allows the liquid working fluid to completely liquefy the vapor working medium, stabilize the turbine back pressure, and improve the cycle efficiency. At the same time, it also facilitates the adjustment of cooling water volume and cooling tower working conditions.
  • the invention sets a control target for the "return device ⁇ mixer” process and achieves the control target by a plurality of control impulses, and the control precision is not less than 1%, and the present invention is compared with the US434656 patent.
  • the efficiency is increased by about 10%, and the cycle efficiency is increased by about 2%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种利用混合组分工质的低温热源热电转换系统,包括产汽器(8),产汽器(8)内从上至下依次设有喷淋器(7)、第一加热器(9-1)、第二加热器(9-2),盛有混合组分工质的热井(1)通过带有加压输液泵(11)的管路连接喷淋器(7);产汽器(8)上部设有干汽器(6),干汽器(6)通过管路连接涡轮机(5)进气端,涡轮机(5)连接发电机(4),涡轮机(5)排气端通过管路连接混合器(3);产汽器(8)下部设有回流器(10),回流器(10)通过管路连接混合器(3),混合器连接凝汽器(2)。一种利用混合组分工质的低温热源热电转换方法,可以精确控制回流器中汽、液态工质的流量比例,使液态工质能够对汽态工质完全吸收后液化,从而提高了系统的循环效率,改善了涡轮机工作条件;系统结构简单,成本低,运行操作方便。

Description

一种利用混合组分工质的低温热源热电转换系统及方法 技术领域
本发明涉及一种低温热源热电转换系统,尤其涉及一种利用混合组分工质的低温热源热电转换系统。
背景技术
目前,绝大多数的热动力系统都是利用具有固定沸点的单一组分工作介质,采用朗肯循环技术,这种热动力系统的效率受到沸点温度恒定的限制,因为汽化潜热较大,热源在散热过程中温度呈线性下降,具有固定沸点的工作介质在吸热过程在达到沸点之前,其温升与热源散热特性相同也呈线性。但是该工作介质在达到沸点温度后即继续吸收热量蒸发汽化,在汽化过程中但是温度保持不变直至全部液态工作介质变成汽态工质。也就是说,其汽化过程必须从热源中吸收大量热能,但是与热源的温差不能保持线性关系,导致整个热动力系统的效率受到限制。
在授予Alexander I.Kalina的美国专利号为US4346561的文件中介绍了一种卡琳娜循环技术,卡琳娜循环是在朗肯循环基础上的一种“改进”,它将“纯”的循环介质变成了氨和水的“混合物”。氨-水混合物的物理特性既不同于纯水,又不同于纯氨,它采用了两种沸点稳定且能形成不固定沸点的相异工作介质,该工质不但在液态吸热过程中能保持与热源散热过程线性的温降特性平行,而且在汽化相变过程中也能使其温升特性与热源散热过程线性的温降特性近似保持平行,从而提高了整个热动力系统的效率。
结合图1,卡琳娜循环的过程大致如下:工质从热井经氨泵送入分离式热交换器,加热后的工质经分离器分为富氨气和贫氨水,富氨气送入氨汽轮机做功,排出的乏汽送入冷凝器,贫氨水也输送至冷凝器,通过冷源降温后,汽态工质逐渐被液态工质吸收,混合物最终呈液态送入热井,完成一个热电转换循环过程。
由上述循环过程可知,对非单一组分循环工质而言,实现一个循环的关键是进入凝汽器中的液态工质对汽态工质的吸收效率。该吸收效率取决于下列因素:
1)汽轮机背压;
2)汽、液态工质的流量比例;
3)将汽态工质被液态工质吸收后释放出的热量携离的冷却水温度及流量。
在上列因素中,汽、液态工质的流量比例最为重要。在US434656专利文件实施“贫氨水→冷凝器”的过程操作时,仅依靠操作人员经验,通过手动或电动阀门操作实施,由于对离开分离器液态工质的真实流量、温度和密度不能在线知晓,即使通过熟练运行人员操作,手动调节“贫氨水→冷凝器”过程中液态和汽态工作介质的实际流量偏差通常会超过设计值的10%~15%以上,致使工质不能按精确比例相混合,导致液、汽态工质不能完全液化,使系统循环效率下降,汽轮机背压无法稳定在设计值。同时,也给冷却水量和冷却塔工况调节带来困难。
另外,根据上述循环过程又可知:由于待加热工质从离开加压泵后,陆续经过分离式的各加热器、汽水分离器以及与各分离设备相关的隔离阀、调节阀以及连接管道,不但造成了占地和布置的困难,提高了工程成本,而且提高了汽轮机入口前工质的管道沿程和局部阻力损失约8%-10%,减少了汽轮机的输出轴功率和发电机的有效输出电功率约7%-9%。
发明内容
本发明要解决的技术问题是如何精确控制汽、液态工质的流量比例,使液态工质能够对汽态工质完全吸收后液化,从而提高系统循环效率。
为了解决上述技术问题,本发明的技术方案是提供一种利用混合组分工质的低温热源热电转换系统,其特征在于:包括产汽器,产汽器内从上至下依次设有喷淋器、第一加热器、第二加热器,盛有混合组分工质的热井通过带有加压输液泵的管路连接喷淋器;产汽器上部设有干汽器,干汽器通过管路连接涡轮机进气端,涡轮机连接发电机,涡轮机排气端通过管路连接混合器;产汽器下部设有回流器,回流器通过管路连接混合器,混合器连接凝汽器。
优选地,所述混合组分工质同时满足以下两个条件:一、两种以上化学成分稳定的工作介质;二、两种以上沸点稳定且能形成不固定沸点的相异工作介质。
优选地,所述第一加热器与第二加热器共用同一低温热源,即低温热源先进入第一加热器,从第一加热器出来后再进入第二加热器。
优选地,所述第一加热器与第二加热器的传热面温度均高于所述混合组分工质的沸点温度。
优选地,所述凝汽器内通有冷却水源。
优选地,所述回流器连接混合器的管路上设有流量调节阀。
优选地,所述产汽器中的液位线位于第一加热器以下。
本发明还提供一种利用混合组分工质的低温热源热电转换方法,采用上述利用混合组分工质的低温热源热电转换系统,步骤为:
步骤1:热井中的混合组分工质经由加压输液泵送入产汽器内的喷淋器,混合组分工质经由喷淋器先与具有高于混合组分工质沸点温度的第一加热器表面接触并使混合组分工质中沸点温度低于第一加热器表面温度的工质部分汽化;
步骤2:首批析出的汽态工质流逸至干汽器,未汽化的混合组分工质则进入产汽器下部并形成液位线;液位线以下的工质继续被具有高于混合组分工质沸点温度的第二加热器传热面继续加热,并继续析出汽态工质流逸往干汽器,汽态工质中的液态颗粒在干汽器中被去除;
步骤3:从干汽器出来的干汽态工质被输导往涡轮机,该汽态工质在涡轮机的叶片流道中被膨胀作功转换成机械能,驱动发电机以电能形式向电网供电;经涡轮机作过功的乏汽被排往混合器;
步骤4:位于产汽器中液位线下方的、部分沸点温度低于第一加热器表面温度且已被汽化后剩余的工作介质在第二加热器热传导面的加热下继续发生深度汽化,未被汽化的、密度较高的工作介质趋向于停留在产汽器下部,在回流器中形成沸点温度低于第一加热器表面温度的工作介质组分浓度最低区域;
步骤5:根据加压输液泵送入产汽器的总量和沸点温度低于第一加热器表面温度工作介质的组分比例及设计液位线,从回流器中取出液态工质,输送至混合器中与在涡轮机中作过功排出的乏汽混合;乏汽和未汽化混合组分工作介质在混合器中充分混合之后被引往凝汽器中,该汽、液混合物通过凝汽器降温后,汽、液混合物中的汽态工作介质逐渐被液态工作介质吸收;该混合物最终呈液态进入热井,完成一个热电转换循环过程
优选地,所述步骤5中,利用对产汽器的液位线的多冲量控制精确调节从回流器中取出的液态工质的量。
优选地,所述对产汽器的液位线的多冲量控制的测量参数包括:涡轮机进口汽态工质的流量、温度和密度,加压输液泵出口液态工作介质的流量、温度、密 度,回流器出口至混合器入口管道上的液态工作介质的流量、温度、密度。
相比现有技术,本发明具有如下有益效果:
1、将传统技术中使用的分离式混合工质加热器、分离器、液态工质回流装置组合成为一体式装置,优化了系统功能,减少了项目投资,减少了涡轮机入口前工质的流动阻力,提高了热源的热电转换效率;
2、循环凝汽过程效率提高,相应提高了循环效率;
3、两级加热器的使用提高了汽液分离效率;
4、汽液分离效率的提高,改善了涡轮机工作条件和效率;
5、在凝汽器中设计布置了混合器,使得来自回流器的液态工质和涡轮机排出的汽态工质在重量流量上实现了按精确比例进入,还能实现汽-液态工质的均匀分布;
6、将热井和凝汽器组合成一体,简化了流程,降低了涡轮机背压,有利于提高热源的热点转换效率;
7、设备部件减少,系统结构简单,成本低,运行操作方便。
附图说明
图1为卡琳娜循环过程示意图;
图2为本发明提供的利用混合组分工质的低温热源热电转换系统示意图;
图3为本发明提供的系统循环过程示意图。
具体实施方式
为使本发明更明显易懂,兹以一优选实施例,并配合附图作详细说明如下。
本发明提供了一种利用混合组分工质的低温热源热电转换系统,混合组分工质满足以下两个条件:(1)两种以上化学成分稳定的工作介质;(2)两种以上沸点稳定且能形成不固定沸点的相异工作介质。其中,第(1)条是指两种以上相互不发生化学反应的机械混合物,如:氨、水比例任意的氨-水混合物,氨、水及其它工质组成的混合物。低温热源是指热源温度高于工质沸点温度的热源,含各种工业工艺废热、太阳能及地热等。热电转换是指低温热源低品位热能转换成向电网输出的电能。
图2为本发明提供的利用混合组分工质的低温热源热电转换系统示意图,所述的利用混合组分工质的低温热源热电转换系统包括盛有混合组分工作介质的热井1,加压输液泵11一端通过管路连接热井1,另一端通过管路连接产汽器8,产汽器8上部装有干汽器6,干汽器6通过管路连接涡轮机5进气端,涡轮机5连接发电机4,涡轮机5排气端通过管路连接混合器3,产汽器8下部装有回流器10,回流器10通过管路连接混合器3,混合器3连接凝汽器2,凝汽器2内通有冷却水源12。
产汽器8内从上至下依次设有喷淋器7、第一加热器9-1、第二加热器9-2,喷淋器7位于产汽器8内顶部,喷淋器7连接加压输液泵11;第一加热器9-1与第二加热器9-2共用同一低温热源,即低温热源先进入第一加热器9-1,从第一加热器9-1出来后再进入第二加热器9-2。
回流器10连接混合器3的管路上装有流量调节阀13。
结合图3,上述系统的工作方法如下:
热井1中的混合组分工作介质经由加压输液泵11送入产汽器8,来自加压输液泵11的混合组分工作介质经由喷淋器7先与具有高于混合组分工作介质沸点温度的第一加热器9-1表面接触并使混合组分工作介质中沸点温度低于第一加热器9-1表面温度的工作介质部分汽化。
首批析出的汽态工质流逸至干汽器6,未汽化的混合组分工作介质则进入产汽器8下部并形成液位线9-0。液位线9-0以下的工作介质继续被具有高于混合组分工作介质沸点温度的第二加热器9-2传热面继续加热,并继续析出汽态工质流逸往干汽器6,汽态工质中的液态颗粒在干汽器6中被去除。
经过干汽器6除去液态颗粒的干工作介质汽体被输导往涡轮机5。该汽态工作介质的内能(压力及热焓)在涡轮机5叶片流道中被膨胀作功转换成机械能,驱动发电机4以电能形式向电网供电。
经涡轮机5作过功的乏汽被排往混合器3。
位于产汽器8中液位线9-0下方的、部分沸点温度低于第一加热器9-1表面温度且已被汽化后剩余的工作介质在第二加热器9-2热传导面的加热下继续发生深度汽化。未被汽化的、密度较高的工作介质趋向于停留在产汽器8下部,在回流器10中形成沸点温度低于第一加热器9-1表面温度的工作介质组分浓度最低 区域。
根据加压输液泵11送入产汽器8的总量和沸点温度低于第一加热器9-1表面温度工作介质的组分比例及设计液位线9-0,从回流器10中取出液态工质,输送至混合器3中与在涡轮机5中作过功排出的乏汽混合。乏汽和未汽化混合组分工作介质在混合器3中充分混合之后被引往凝汽器2中,该汽、液混合物通过凝汽器2中的冷却水系统12降温后,汽、液混合物中的汽态工作介质逐渐被液态工作介质吸收。该混合物最终呈液态进入热井1,完成一个热电转换循环过程。
本发明在“从回流器10中取出液态工质输送至混合器3”的过程中,利用对设计液位线9-0的多冲量控制器精确控制从回流器10中取出的液态工质的量,从而提高输送至混合器3中的液态工质与在涡轮机5中作过功排出的乏汽的混合度,提高凝汽器2中汽态工作介质被液态工作介质的吸收效率。具体如下方法如下:
1、在产汽器8中设置液位线9-0,并根据不同热源和输出功率将此液位线设计成控制目标;
2、在涡轮机5进口设置汽态工质流量、温度和密度测点。该参数群配合加压输液泵11运行控制输出功率和实现对液位线控制;
3、在加压输液泵11出口管道上对泵出液态工作介质的流量、温度、密度等运行参数设置采样点。该参数群除作为输出功率控制依据外,还用作进入混合器3液态流量的控制比较依据;
4、在回流器10出口至混合器3入口管道上对液态工作介质的流量、温度和密度等运行参数设置采样点。该参数群用作进入混合器3液态流量的控制比较和在线设定依据。
利用上列控制参数,采用PID控制算法,经过运算后,可获得从回流器10中取出的液态工质的量,通过流量调节阀13的调节,使得混合器3中液态和汽态工质能按精确比例相混合,使得液态工质能够对汽态工质完全吸收后液化,稳定了涡轮机背压,提高了循环效率。同时,也给冷却水量和冷却塔工况调节带来便利。
本发明由于对“回流器→混合器”过程设定了控制目标和通过多个控制冲量实现控制目标,以控制精度不低于1%计,本发明与US434656专利相比,混合 效率提高10%左右,循环效率提高2%左右。

Claims (10)

  1. 一种利用混合组分工质的低温热源热电转换系统,其特征在于:包括产汽器(8),产汽器(8)内从上至下依次设有喷淋器(7)、第一加热器(9-1)、第二加热器(9-2),盛有混合组分工质的热井(1)通过带有加压输液泵(11)的管路连接喷淋器(7);产汽器(8)上部设有干汽器(6),干汽器(6)通过管路连接涡轮机(5)进气端,涡轮机(5)连接发电机(4),涡轮机(5)排气端通过管路连接混合器(3);产汽器(8)下部设有回流器(10),回流器(10)通过管路连接混合器(3),混合器(3)连接凝汽器(2)。
  2. 如权利要求1所述的一种利用混合组分工质的低温热源热电转换系统,其特征在于:所述混合组分工质同时满足以下两个条件:一、两种以上化学成分稳定的工作介质;二、两种以上沸点稳定且能形成不固定沸点的相异工作介质。
  3. 如权利要求1所述的一种利用混合组分工质的低温热源热电转换系统,其特征在于:所述第一加热器(9-1)与第二加热器(9-2)共用同一低温热源,即低温热源先进入第一加热器(9-1),从第一加热器(9-1)出来后再进入第二加热器(9-2)。
  4. 如权利要求1或3所述的一种利用混合组分工质的低温热源热电转换系统,其特征在于:所述第一加热器(9-1)与第二加热器(9-2)的传热面温度均高于所述混合组分工质的沸点温度。
  5. 如权利要求1所述的一种利用混合组分工质的低温热源热电转换系统,其特征在于:所述凝汽器(2)内通有冷却水源(12)。
  6. 如权利要求1所述的一种利用混合组分工质的低温热源热电转换系统,其特征在于:所述回流器(10)连接混合器(3)的管路上设有流量调节阀(13)。
  7. 如权利要求1所述的一种利用混合组分工质的低温热源热电转换系统,其特征在于:所述产汽器(8)中的液位线(9-0)位于第一加热器(9-1)以下。
  8. 一种利用混合组分工质的低温热源热电转换方法,其特征在于:采用如权利要求1~7任一项所述的利用混合组分工质的低温热源热电转换系统,步骤为:
    步骤1:热井(1)中的混合组分工质经由加压输液泵(11)送入产汽器(8)内的喷淋器(7),混合组分工质经由喷淋器(7)先与具有高于混合组分工质沸点温度的第一加热器(9-1)表面接触并使混合组分工质中沸点温度低于第一加 热器(9-1)表面温度的工质部分汽化;
    步骤2:首批析出的汽态工质流逸至干汽器(6),未汽化的混合组分工质则进入产汽器(8)下部并形成液位线(9-0);液位线(9-0)以下的工质继续被具有高于混合组分工质沸点温度的第二加热器(9-2)传热面继续加热,并继续析出汽态工质流逸往干汽器(6),汽态工质中的液态颗粒在干汽器(6)中被去除;
    步骤3:从干汽器(6)出来的干汽态工质被输导往涡轮机(5),该汽态工质在涡轮机(5)的叶片流道中被膨胀作功转换成机械能,驱动发电机(4)以电能形式向电网供电;经涡轮机(5)作过功的乏汽被排往混合器(3);
    步骤4:位于产汽器(8)中液位线(9-0)下方的、部分沸点温度低于第一加热器(9-1)表面温度且已被汽化后剩余的工作介质在第二加热器(9-2)热传导面的加热下继续发生深度汽化,未被汽化的、密度较高的工作介质趋向于停留在产汽器(8)下部,在回流器(10)中形成沸点温度低于第一加热器(9-1)表面温度的工作介质组分浓度最低区域;
    步骤5:根据加压输液泵(11)送入产汽器(8)的总量和沸点温度低于第一加热器(9-1)表面温度工作介质的组分比例及液位线(9-0),从回流器(10)中取出液态工质,输送至混合器(3)中与在涡轮机(5)中作过功排出的乏汽混合;乏汽和未汽化混合组分工作介质在混合器(3)中充分混合之后被引往凝汽器(2)中,该汽、液混合物通过凝汽器(2)降温后,汽、液混合物中的汽态工作介质逐渐被液态工作介质吸收;该混合物最终呈液态进入热井(1),完成一个热电转换循环过程。
  9. 如权利要求8所述的一种利用混合组分工质的低温热源热电转换方法,其特征在于:所述步骤5中,利用对产汽器(8)的液位线(9-0)的多冲量控制精确调节从回流器(10)中取出的液态工质的量。
  10. 如权利要求9所述的一种利用混合组分工质的低温热源热电转换方法,其特征在于:所述对产汽器(8)的液位线(9-0)的多冲量控制的参考参数包括:涡轮机(5)进口汽态工质的流量、温度和密度,加压输液泵(11)出口液态工作介质的流量、温度、密度,回流器(10)出口至混合器(3)入口管道上的液态工作介质的流量、温度、密度。
PCT/CN2015/097090 2015-06-24 2015-12-11 一种利用混合组分工质的低温热源热电转换系统及方法 WO2016206318A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/108,477 US10436076B2 (en) 2015-06-24 2015-12-11 Low temperature heat source thermoelectric conversion system using blend refrigerant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510354427.6 2015-06-24
CN201510354427.6A CN104929708B (zh) 2015-06-24 2015-06-24 一种利用混合组分工质的低温热源热电转换系统及方法

Publications (1)

Publication Number Publication Date
WO2016206318A1 true WO2016206318A1 (zh) 2016-12-29

Family

ID=54117094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097090 WO2016206318A1 (zh) 2015-06-24 2015-12-11 一种利用混合组分工质的低温热源热电转换系统及方法

Country Status (4)

Country Link
US (1) US10436076B2 (zh)
CN (1) CN104929708B (zh)
TW (1) TWI631272B (zh)
WO (1) WO2016206318A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6785581B2 (ja) * 2016-05-25 2020-11-18 ヤンマーパワーテクノロジー株式会社 熱電発電装置
CN107321127A (zh) * 2017-07-06 2017-11-07 大唐东北电力试验研究所有限公司 火电厂凝汽器内氨液回收系统及方法
NL1043535B1 (nl) * 2020-01-07 2022-06-24 Mim Patrick Walthie Drs De vacuümverdamper.
CN111425840A (zh) * 2020-03-25 2020-07-17 浙江宝威电气有限公司 喷蒸式蒸汽发生器
CN111425837A (zh) * 2020-04-14 2020-07-17 浙江宝威电气有限公司 太阳能热管加热的喷蒸式蒸汽发生系统
CN111425834A (zh) * 2020-04-14 2020-07-17 浙江宝威电气有限公司 热管获取太阳能的喷蒸式蒸汽产生方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346561A (en) * 1979-11-08 1982-08-31 Kalina Alexander Ifaevich Generation of energy by means of a working fluid, and regeneration of a working fluid
CN101520253A (zh) * 2009-03-26 2009-09-02 上海交通大学 吸附式低温热源发电制冷方法
CN101709661A (zh) * 2009-12-11 2010-05-19 中冶京诚工程技术有限公司 余热发电系统及发电方法
CN102312687A (zh) * 2011-09-16 2012-01-11 东南大学 一种溶液冷却吸收式氨水动力循环装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1601003A1 (de) * 1966-12-02 1970-07-16 Gohee Mamiya Energieerzeugungssystem
US3908381A (en) * 1974-11-20 1975-09-30 Sperry Rand Corp Geothermal energy conversion system for maximum energy extraction
US4503682A (en) * 1982-07-21 1985-03-12 Synthetic Sink Low temperature engine system
US5557936A (en) * 1995-07-27 1996-09-24 Praxair Technology, Inc. Thermodynamic power generation system employing a three component working fluid
US6065280A (en) * 1998-04-08 2000-05-23 General Electric Co. Method of heating gas turbine fuel in a combined cycle power plant using multi-component flow mixtures
ME01101B (me) * 2004-04-16 2013-03-20 Siemens Ag Postupak i instalacija za izvođenje termodinamičkog kružnog procesa
GB0909242D0 (en) * 2009-05-29 2009-07-15 Al Mayahi Abdulsalam Boiling water reactor
WO2014179583A2 (en) * 2013-05-01 2014-11-06 United Technologies Corporation Falling film evaporator for power generation systems
CN203348020U (zh) * 2013-05-29 2013-12-18 上海盛合新能源科技有限公司 一种采用光热二次蒸发的地热发电系统
CN204900001U (zh) * 2015-06-24 2015-12-23 张高佐 利用混合组分工质的低温热源热电转换系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346561A (en) * 1979-11-08 1982-08-31 Kalina Alexander Ifaevich Generation of energy by means of a working fluid, and regeneration of a working fluid
CN101520253A (zh) * 2009-03-26 2009-09-02 上海交通大学 吸附式低温热源发电制冷方法
CN101709661A (zh) * 2009-12-11 2010-05-19 中冶京诚工程技术有限公司 余热发电系统及发电方法
CN102312687A (zh) * 2011-09-16 2012-01-11 东南大学 一种溶液冷却吸收式氨水动力循环装置

Also Published As

Publication number Publication date
US20170145866A1 (en) 2017-05-25
US10436076B2 (en) 2019-10-08
CN104929708A (zh) 2015-09-23
TWI631272B (zh) 2018-08-01
CN104929708B (zh) 2016-09-21
TW201700854A (zh) 2017-01-01

Similar Documents

Publication Publication Date Title
WO2016206318A1 (zh) 一种利用混合组分工质的低温热源热电转换系统及方法
Yu et al. Theoretical study on a novel ammonia–water cogeneration system with adjustable cooling to power ratios
Wang et al. Assessment of off-design performance of a Kalina cycle driven by low-grade heat source
CN204552850U (zh) 卡琳娜循环和闪蒸循环相结合的新型热电联供系统
CN104420906B (zh) 蒸汽轮机设备
CN102797525A (zh) 采用非共沸混合工质变组分的低温朗肯循环系统
CN103089356A (zh) 闪蒸-双工质联合发电装置
CN107939548A (zh) 新型内燃机余热利用冷热电联供系统及其工作方法
US4102133A (en) Multiple well dual fluid geothermal power cycle
KR101917430B1 (ko) 발전장치
CN203532054U (zh) 一种基于可再生能源的微型燃气轮机联合循环系统
CN109869205A (zh) 一种用于热电联产机组的储热、发电和供热系统
CN204900001U (zh) 利用混合组分工质的低温热源热电转换系统
CN203962062U (zh) 一种工质浓度可调的氨水动力循环系统
RU2605878C1 (ru) Турбодетандерная система утилизации теплоты циркуляционной воды на конденсационных блоках паровых турбин тепловой электрической станции
CN104990065A (zh) 汽轮机发电机组中的锅炉给水循环除氧系统
CN203656895U (zh) 一种防止省煤器受热面低温腐蚀的装置
CN205747584U (zh) 发电机驱动水源压缩式热泵水蒸汽调制机
CN104074565A (zh) 一种工质浓度可调的氨水动力循环系统
RU164323U1 (ru) Установка электро-тепло-водо-холодоснабжения
Mikielewicz et al. Optimal boiling temperature for ORC installation
CN104296420B (zh) 一种可控水温的太阳能热电联产系统
Zebbar et al. Inert Gas and Refrigerating Vapor Mass Flow Rates Ratio: A Much Promising Parameter for Diffusion-Absorption-Refrigeration Systems Performances Evaluation.
RU158799U1 (ru) Тепловая схема водогрейной котельной
RU2523087C1 (ru) Парогазотурбинная установка

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15108477

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896201

Country of ref document: EP

Kind code of ref document: A1