WO2016206046A1 - 快速可调谐的可变栅格激光器 - Google Patents

快速可调谐的可变栅格激光器 Download PDF

Info

Publication number
WO2016206046A1
WO2016206046A1 PCT/CN2015/082344 CN2015082344W WO2016206046A1 WO 2016206046 A1 WO2016206046 A1 WO 2016206046A1 CN 2015082344 W CN2015082344 W CN 2015082344W WO 2016206046 A1 WO2016206046 A1 WO 2016206046A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
signal
mmi coupler
target
cavity
Prior art date
Application number
PCT/CN2015/082344
Other languages
English (en)
French (fr)
Inventor
吴波
邱少锋
马雅男
邓宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580080800.1A priority Critical patent/CN107710528A/zh
Priority to PCT/CN2015/082344 priority patent/WO2016206046A1/zh
Publication of WO2016206046A1 publication Critical patent/WO2016206046A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating

Definitions

  • Embodiments of the present invention relate to semiconductor optoelectronic technology, and more particularly to a fast tunable variable grid laser.
  • Tunable Lasers In the current optical transmission or switching network technology, Tunable Lasers (TL) have important functions; the TL can output the wavelength required by the transmitting end according to the control information, and the TL can be in a larger wavelength range. Any tuning is implemented within.
  • the existing switching technologies include: electrical switching and optical switching. Among them, optical switching has the advantages of large capacity and low power consumption, and can be divided into optical path switching and optical burst switching (OBS), optical packet switching. (Optical Packet Switching, OPS for short) is a representative of all-photon wavelength switching. The implementation of all-photon wavelength switching in OBS and OPS optical networks relies on a range of key device technologies such as fast optical switches, Array Waveguide Grating (AWG), and Fast Tunable Lasers (FTL). )Wait.
  • AMG Array Waveguide Grating
  • FTL Fast Tunable Lasers
  • FTL Sampling Grating Distributed Bragg Reflector (SG-DBR) laser, Modulated Grating-Y branch (MG-Y) laser and digital super-mode distributed The Bragg mirror (Digital Super-mode Distributed Bragg Reflector, DS-DBR) laser; the tuning principle of the above three lasers is to change the carrier concentration of the grating selection region by changing the injection current, causing the refractive index The change causes the grating reflection wavelength to change, and the laser's lasing frequency changes.
  • the existing three FTL lasers can provide a minimum wavelength interval of 50 GHz. In the existing fixed-frame structure, such as when only transmitting 10 Gbps signals, a wavelength interval of 50 GHz is required. Therefore, the waste of fiber bandwidth resources is caused.
  • the embodiment of the invention provides a fast tunable variable grid laser, which realizes fine tuning of the wavelength corresponding to the external modulation signal, so that the variable grid laser can be the largest
  • the use of bandwidth resources to the extent of the use of fiber bandwidth resources.
  • an embodiment of the present invention provides a fast tunable variable grid laser, including:
  • An active cavity, a silicon-based waveguide, a micro-ring waveguide, and a multi-mode interference MMI coupler attached to the substrate includes: an illumination cavity and a phase modulation zone PMR;
  • the silicon-based waveguide includes: an upper waveguide and a lower waveguide;
  • a PN junction is disposed between the inner and outer rings of the microring waveguide; wherein an output end of the illumination cavity is cascaded to an input end of the PMR, and an output end of the PMR is cascaded to the upper waveguide, a microring waveguide disposed between the upper waveguide and the lower waveguide, an output end of the lower waveguide being cascaded at an input end of the MMI coupler, and a first output end of the MMI coupler cascading the illumination An input end of the cavity, the second output end of the MMI coupler is coupled to the lens coupling end face;
  • the illumination cavity is used to implement primary tuning of a preset frequency interval
  • the PMR is configured to modulate an optical carrier output by the illumination cavity according to an input external modulation signal, to generate a first modulated optical signal including a carrier frequency and a sideband;
  • the upper waveguide is configured to transmit the first modulated optical signal to the micro-ring waveguide
  • the microring waveguide is configured to adjust a filter window of the microring waveguide by tuning an input current of the PN junction, and determine a target sideband signal from the first modulated optical signal;
  • the lower waveguide is configured to transmit the target sideband signal to an input end of the MMI coupler
  • the first output end of the MMI coupler is configured to feed back the target sideband signal to the illumination cavity, and the target sideband signal is used as the main light in the frequency traction effect, so that the illumination cavity is generated and A target optical carrier having the same frequency of the target sideband signal; a second output of the MMI coupler for transmitting the target optical carrier to the lens coupling end face.
  • the illumination cavity comprises: a tail grating, a gain region, a phase region, and a front grating; wherein the output end of the tail grating is cascaded An input end of the gain region, an output end of the gain region is cascaded to an input end of the phase region, an output end of the phase region is cascaded to an input end of the front grating, and an output end of the front grating is cascaded An input end of the PMR; wherein an output end of the front grating serves as an output end of the illumination cavity, and an input end of the tail grating serves as an input end of the illumination cavity.
  • the micro-ring waveguide is specifically configured to: tune an input current of the PN junction, according to The free carrier dispersion FCD effect biases the filtering window of the microring waveguide Shifting; determining a target sideband signal from the first modulated optical signal according to the filtering window after the offset occurs.
  • the upper waveguide is a straight waveguide
  • the lower waveguide It is a U-shaped waveguide.
  • the electrode of the PMR is connected to the high frequency clock electrical signal .
  • the illuminating cavity realizes a wavelength by using a current lookup table Coarse-grained primary tuning with a particle size of 50 GHz or 100 GHz.
  • an embodiment of the present invention provides a fast tunable method for a variable grid laser, the variable grid laser including: an active cavity attached to a substrate, a silicon-based waveguide, a micro-ring waveguide, and a plurality of a mode interference MMI coupler;
  • the active cavity includes: an illumination cavity and a phase modulation zone PMR;
  • the silicon-based waveguide includes: an upper waveguide and a lower waveguide; and a PN junction is disposed between the inner and outer rings of the micro-ring waveguide;
  • An output end of the illumination cavity is cascaded to an input end of the PMR, an output end of the PMR is cascaded to the upper waveguide, and the microring waveguide is disposed between the upper waveguide and the lower waveguide, the lower waveguide
  • the output end is cascaded to the input end of the MMI coupler, the first output end of the MMI coupler is cascaded to the input end of the illumination cavity, and the second output end of the MMI coupler is cascaded to the
  • the illumination cavity performs primary tuning of a preset frequency interval, and transmits the tuned optical signal to the PMR;
  • the PMR modulates an optical carrier output by the illumination cavity according to an input external modulation signal, generates a first modulated optical signal including a carrier frequency and a sideband, and transmits the first modulated optical signal through the upper waveguide To the microring waveguide;
  • the microring waveguide adjusts a filter window of the microring waveguide by tuning an input current of the PN junction, determines a target sideband signal from the first modulated optical signal, and determines the target sideband signal Transmitting to the input end of the MMI coupler through the lower waveguide;
  • the MMI coupler feeds back the target sideband signal to the illumination cavity through a first output end of the MMI coupler, and the target sideband signal is used as the main light in the frequency traction effect. Having the illumination cavity generate a target optical carrier having the same frequency as the target sideband signal; the MMI coupler transmitting the target optical carrier to the lens coupling end face through a second output of the MMI coupler .
  • the micro-ring waveguide adjusts a filter window of the micro-ring waveguide by tuning an input current of the PN junction, from the first Determining the target sideband signal in the modulated optical signal includes:
  • the microring waveguide offsets a filter window of the microring waveguide according to a free carrier dispersion FCD effect by tuning an input current of the PN junction; and according to the filtering window after the offset occurs A target sideband signal is determined in the first modulated optical signal.
  • the illuminating cavity performs a primary tuning of a preset frequency interval, including:
  • the illumination cavity achieves coarse-grained primary tuning with a wavelength granularity of 50 GHz or 100 GHz by means of a current look-up table.
  • the fast tunable variable grid laser of the present invention comprises: an active cavity attached to a substrate, a silicon-based waveguide, a micro-ring waveguide and a multi-mode interference MMI coupler, the active cavity comprising: an illumination cavity And a phase modulation region PMR;
  • the silicon-based waveguide includes: an upper waveguide and a lower waveguide; a PN junction is disposed between the inner and outer rings of the micro-ring waveguide; wherein an output end of the illumination cavity is cascaded to an input end of the PMR
  • the output end of the PMR is cascaded between the upper waveguide, the micro-ring waveguide is disposed between the upper waveguide and the lower waveguide, and an output end of the lower waveguide is cascaded at an input end of the MMI coupler a first output end of the MMI coupler is cascaded to an input end of the illumination cavity, and a second output end of the MMI coupler is coupled to a lens coupling end face; wherein the illumination cavity is configured to implement a prese
  • Embodiment 1 is a schematic structural view of Embodiment 1 of a fast tunable variable grid laser according to the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of a fast tunable variable grid laser according to the present invention.
  • 3A is a schematic diagram of a local sideband component generated after the light emitted by the illumination cavity is phase-modulated by the PMR;
  • FIG. 3B is a schematic diagram of the simulation corresponding to FIG. 3A; FIG.
  • 3C is a schematic diagram of a local sideband component after filtering by a microring waveguide
  • 3D is a schematic diagram of simulation corresponding to FIG. 3C;
  • Embodiment 4 is a schematic flow chart of Embodiment 1 of a fast tunable method of a variable grid laser according to the present invention.
  • the minimum wavelength interval that the existing three FTL technologies can provide is 50 GHz (that is, a fixed grid), and in order to meet the development needs of the future elastic optical network and better increase the bandwidth utilization of the optical fiber, it is required to propose Flex-Grid Optical Networks technology, such as
  • the variable grid (Flex-Grid) is 6.25 GHz, 12.5 GHz, 37.5 GHz, 62.5 GHz, 75 GHz, 87.25 GHz (multiple of 6.25 GHz), etc., and requires an optical transmitter capable of achieving a frequency interval of 6.25 GHz. Laser.
  • OPS optical networks relies on a range of key components such as fast optical switches, AWGs, FTLs, and more.
  • FTL is widely used, and can be applied to a transmitting end, an intermediate network node, a receiving end, and the like.
  • a nano-scale fast-adjustable laser is needed: 1) In an OBS network that allocates a receive path by wavelength, according to different target nodes, the FTL of the originating end modulates the signal onto different optical carriers, and the signal can be allocated according to the distribution.
  • the wavelength is transmitted to the corresponding node; 2) at the intermediate switching node, the FTL can modulate different optical burst (OB) signals to different wavelengths, and complete the exchange in the wavelength router (for example, AWG); 3) At the receiving end, the FTL can be used as a local oscillator laser for a high-speed burst coherent optical communication receiver.
  • OB optical burst
  • the present invention proposes a microstructure of a rapidly tunable variable grid laser; alternatively, the variable grid laser achieves coarse tuning at 50 GHz or 100 GHz wavelength intervals through an illumination cavity; further, The phase modulation area PMR modulates the optical carrier output by the illumination cavity according to the input external modulation signal to generate a first modulated optical signal including a carrier frequency and a side frequency; further, the micro-ring waveguide passes the tuning of the PN junction Input current is adjusted to filter window of the micro-ring waveguide, and a target side-frequency signal is determined from the first modulated optical signal; further, a first output end of the MMI coupler is to use the target side-frequency signal Feedback to the illumination cavity to change the frequency of the optical signal generated by the illumination cavity by a frequency pulling effect, thereby achieving wavelength fine tuning of the frequency granularity corresponding to the external modulation signal.
  • the fast tunable variable grid laser of the present embodiment may include: an active cavity 101 attached to a substrate, a silicon-based waveguide 102, a micro-ring waveguide 103, and a multi-mode interference MMI coupler 104.
  • the active cavity 101 includes: an illumination cavity 1011 and a phase modulation zone PMR 1012; the silicon-based waveguide 102 includes: an upper waveguide 1021 and a lower waveguide 1022; and the micro-ring waveguide 103 is provided with a PN junction inside and outside the ring;
  • the output end of the illumination cavity 1011 is cascaded to the input end of the PMR 1012, and the output end of the PMR 1012 is cascaded to the upper waveguide 1021, the micro-ring waveguide 103 is disposed between the upper waveguide 1021 and the lower waveguide 1022, the output end of the lower waveguide 1022 is cascaded at an input end of the MMI coupler 104, and the first output end of the MMI coupler 104 is cascaded
  • the input end of the illumination cavity 1011, the second output end of the MMI coupler is coupled to the lens coupling end face;
  • the illumination cavity is used to implement primary tuning of a preset frequency interval
  • the PMR is configured to modulate an optical carrier output by the illumination cavity according to an input external modulation signal, to generate a first modulated optical signal including a carrier frequency and a sideband;
  • the upper waveguide is configured to transmit the first modulated optical signal to the micro-ring waveguide
  • the microring waveguide is configured to adjust a filter window of the microring waveguide by tuning an input current of the PN junction, and determine a target sideband signal from the first modulated optical signal;
  • the lower waveguide is configured to transmit the target sideband signal to an input end of the MMI coupler
  • the first output end of the MMI coupler is configured to feed back the target sideband signal to the illumination cavity, and the target sideband signal is used as the main light in the frequency traction effect, so that the illumination cavity is generated and A target optical carrier having the same frequency of the target sideband signal; a second output of the MMI coupler for transmitting the target optical carrier to the lens coupling end face.
  • the fast tunable variable grid laser in the embodiment of the present invention may include: an active cavity 101 attached to the substrate, a silicon-based waveguide 102, a micro-ring waveguide 103, and a multi-mode interference MMI coupler 104;
  • the active cavity 101 includes: a primary tuned illumination cavity 1011 for achieving a predetermined frequency interval (optionally, the illumination cavity 1011 can achieve coarse-grained primary tuning with a wavelength granularity of 50 GHz or 100 GHz; optionally, the The illumination cavity realizes a coarse-grained primary tuning with a wavelength granularity of 50 GHz or 100 GHz by means of a current look-up table; optionally, each wavelength corresponds to a gain zone current, a phase zone current, a front grating zone current, and a tail grating zone current, respectively.
  • the current value, the four sets of current values corresponding to each wavelength form a current look-up table), and the phase modulation area PMR 1012 (optionally, the PMR is used to output light to the illumination cavity according to the input external modulation signal)
  • the carrier is modulated to generate a first modulated optical signal including a carrier frequency and a side frequency; optionally, the electrode of the PMR is coupled to the high frequency clock electrical signal, that is, the external modulated signal is the high frequency clock electrical signal;
  • the frequency of the external modulated signal may be set according to a minimum granularity required to achieve tuning.
  • Illumination cavity 1011 and the PMR 1012 A III-V material of an Indium Phosphorus (InP) substrate can be prepared by epitaxial growth and integrated on a silicon-based substrate by a die bonding technique;
  • the silicon-based waveguide 102 includes an upper waveguide 1021 and a lower waveguide 1022 (optionally, the upper waveguide is a straight waveguide, the lower waveguide is a U-shaped waveguide); a PN junction is provided between the inner and outer rings of the micro-ring waveguide 103 (optionally, the micro-ring waveguide a P+ doped semiconductor region is buried in the ring, correspondingly, the N+ doped semiconductor region is buried outside the ring of the microring waveguide; or the P+ doped semiconductor region is buried outside the ring of the microring waveguide, correspondingly, The N+ doped semiconductor region is buried in the ring of the micro-ring wave
  • an optical carrier (optionally, the frequency of the optical carrier may be 50 GHz or 100 GHz) transmitted by the illumination cavity 1011 is transmitted to the PMR 1012, and the PMR 1012 is externally modulated according to an external input signal.
  • the light load output to the illumination cavity The wave is modulated to generate a first modulated optical signal comprising a carrier frequency and a plurality of side frequencies (optionally, the carrier frequency and an interval between any two adjacent frequency components of the plurality of side frequencies are a frequency value corresponding to the external modulation signal, such as 6.25 GHz); further, the first modulated optical signal is transmitted to the micro-ring waveguide 103 through the upper waveguide 1021, due to the inner and outer sides of the ring of the micro-ring waveguide 103 A P+ doped semiconductor region and an N+ doped semiconductor region (ie, a PN junction), respectively (when no current flows through the PN junction, the filtering window of the microring waveguide 103 is fixed in the standards organization of the International Telecommunication Union (ITU- T) a specified 50 GHz or 100 GHz corresponding window), the refractive index of the micro-ring waveguide 103 can be tuned by tuning the injection current of the PN junction, thereby changing the effective cavity length of the micro-
  • ITU- T International
  • the micro-ring waveguide is specifically configured to: tune an input current of the PN junction, and offset a filter window of the micro-ring waveguide according to a free carrier dispersion FCD effect;
  • the filtering window determines a target sideband signal from the first modulated optical signal.
  • the refractive index of the micro-ring waveguide is tuned according to the free carrier dispersion FCD effect, thereby making the micro-ring waveguide effective.
  • the filter window of the micro-ring waveguide is shifted; and the target side-frequency signal is determined from the first modulated optical signal according to the filtered window after the offset occurs.
  • the P+ doped semiconductor region and the N+ doped semiconductor region are respectively provided with an electrode, and an input current of the PN junction is tuned by the electrode.
  • this can be achieved by tuning the magnitude of the current flowing through the PN junction within the microring waveguide, such as by adjusting through the PN.
  • the current of the junction can change the refractive index of the micro-ring waveguide, wherein the larger the current change, the larger the refractive index change and the larger the effective cavity length change, the larger the filter window offset of the micro-ring waveguide is.
  • a farther target sideband can be filtered out, such as 12.5 Ghz, 25 GHz, etc.
  • the first output of the coupler feeds the farther target sideband signal back to the illumination cavity,
  • the target sideband signal is used as the main light in the frequency pulling effect, so that the illumination cavity generates a target optical carrier having the same frequency as the target sideband signal;
  • the second output of the MMI coupler is used to An optical carrier is transmitted to the lens coupling end face; thereby achieving wavelength fine tuning of the frequency granularity corresponding to the external modulated signal (ie, implementing a variable grid laser).
  • the fast tunable variable grid laser in the embodiment of the invention comprises: an active cavity attached to the substrate, a silicon-based waveguide, a micro-ring waveguide and a multi-mode interference MMI coupler, the active cavity comprising: An illumination cavity and a phase modulation zone PMR;
  • the silicon-based waveguide includes: an upper waveguide and a lower waveguide; a PN junction is disposed between the inner and outer rings of the micro-ring waveguide; wherein an output end of the illumination cavity is cascaded with the PMR An input end, the output end of the PMR is cascaded with the upper waveguide, the micro-ring waveguide is disposed between the upper waveguide and the lower waveguide, and an output end of the lower waveguide is cascaded with the MMI coupler An input end of the MMI coupler is cascaded with an input end of the illumination cavity, and a second output end of the MMI coupler is coupled to the lens coupling end face; wherein the illumination cavity is used to implement a preset Primary tuning of the frequency interval;
  • variable grid laser in an optical transmission and switching network, can be used as a wavelength, sub-wavelength (burst/packet) transmitter laser; it can also be used as an uplink signal at the user end of the optical access network.
  • FIG. 2 is a schematic structural view of a second embodiment of a fast tunable variable grid laser according to the present invention.
  • FIG. 3A is a schematic diagram of a local sideband component generated by the PMR phase modulation of the light emitted by the illumination cavity
  • FIG. 3B is a simulation corresponding to FIG. 3A.
  • Schematic FIG. 3C is a schematic diagram of a local sideband component after filtering by a microring waveguide
  • FIG. 3D is a schematic diagram corresponding to FIG. 3C. As shown in FIG.
  • the light-emitting cavity 1011 of the fast tunable variable-array laser of the present embodiment includes: a tail grating 1011A, a gain region 1011B, a phase region 1011C, and a front grating 1011D;
  • the output end of the tail grating 1011A is cascaded to the input end of the gain region 1011B, the output end of the gain region 1011B is cascaded to the input end of the phase region 1011C, and the output terminal of the phase region 1011C is cascaded.
  • An input end of the front grating 1011D, an output end of the front grating 1011D is cascaded to an input end of the PMR 1012; wherein an output end of the front grating 1011D serves as an output end of the illumination cavity 1011, the tail grating
  • the input end of the 1011A serves as an input end of the illumination cavity 1011; optionally, the upper waveguide is a straight waveguide, and the lower waveguide is a U-shaped waveguide; the MMI coupler is a 1*2 MMI coupler, The first output of the MMI coupler cascades the input of the illumination cavity, and the second output of the MMI coupler cascades the lens to the end face.
  • the illumination cavity 1011 including the tail grating 1011A, the gain region 1011B, the phase region 1011C, and the front grating 1011D can realize a tunable laser such as 50 GHz or 100 GHz (ie, primary tuning to achieve a 50 GHz or 100 GHz frequency interval);
  • the tail grating and the front grating form a reflection cavity.
  • the wavelength or frequency reflected by the two is slightly different. Usually only one peak can be aligned, so the two can be called the caliper effect of the selected frequency or the selected wavelength (Venier Effect);
  • the gain region provides gain to compensate for the loss of the laser within the cavity; the phase region fine-tunes the wavelength over a small range.
  • the optical carrier emitted by the illumination cavity 1011 (optionally, the frequency of the optical carrier may be 50 GHz) is transmitted to the PMR 1012, and the PMR 1012 is based on an externally input external modulation signal (eg, 6.25 GHz).
  • the optical carrier outputted by the illumination cavity is modulated to generate a first modulated optical signal including a carrier frequency and a plurality of side frequencies (optionally, the carrier frequency and any two adjacent frequency components of the plurality of side frequencies)
  • the interval between the frequency is the frequency value corresponding to the external modulation signal, such as 6.25 GHz.
  • the optical frequency of one channel specified by the standard is the center frequency.
  • the interval between adjacent side frequencies is equal to the frequency of the external modulation signal, such as 6.25 GHz.
  • Figure 3B shows the optical modulation signal with an external modulation frequency of 6.25 GHz in the range of +/- 50 GHz.
  • the first modulated optical signal is transmitted to the micro-ring waveguide 103 through the upper waveguide 1021, since the inner and outer sides of the ring of the micro-ring waveguide 103 are respectively P+ doped semiconductor regions and N+ doped Miscellaneous semiconductor region (ie, forming a PN junction) (when there is no).
  • the filtering window of the micro-ring waveguide 103 is fixed in a window corresponding to the ITU-T specified 50 GHz, and the refraction of the micro-ring waveguide 103 can be tuned according to the FCD effect by tuning the injection current of the PN junction.
  • the filtering window of the micro-ring waveguide 103 is offset, thereby quickly determining a target side-frequency signal from the first modulated optical signal (eg As shown in FIG. 3C, the micro-ring waveguide 103 filters out the side frequency of No. 1; as shown in FIG. 3D, the side frequency of the first frequency is about 40 dB larger than the power of other frequency components in the first modulated optical signal. Further, the target sideband signal (ie, the side frequency signal No.
  • the MMI coupler transmits the target sideband signal Performing a shunt, and directly transmitting, by the second output end of the MMI coupler, the first part of the target side frequency signal (ie, the side frequency signal No. 1) after the shunting to the lens coupling end surface,
  • the first output of the MMI coupler will be described in the second part of the split
  • the edge frequency signal ie, the side frequency signal No.
  • the target side frequency signal is the main light in the frequency pulling effect
  • a target optical carrier having the same frequency of the target sideband signal ie, a frequency of the optical carrier generated by the illumination cavity is shifted by 6.25 GHz from an originally generated optical carrier frequency
  • the target optical carrier passes the active
  • the cavity, the silicon-based waveguide, and the micro-ring waveguide are directly transmitted to the MMI coupler, and the second output end of the MMI coupler transmits the target optical carrier to the
  • the lens coupling end face is realized; the wavelength fine-tuning corresponding to the external modulation signal is realized (that is, the variable grid laser is realized), so that the variable grid laser can utilize the bandwidth resource to the maximum extent and avoid the fiber bandwidth resource.
  • the side frequency in the first modulated optical signal is a laser load Frequency spectrum shifting (ie, the wavelength stability of the sideband directly replicates the performance of the laser carrier frequency), thus maintaining the frequency stability of the laser during fast fine tuning.
  • this can be achieved by tuning the magnitude of the current flowing through the PN junction within the microring waveguide, such as by adjusting through the PN.
  • the current of the junction can change the refractive index of the micro-ring waveguide, wherein the larger the current change, the larger the refractive index change and the larger the effective cavity length change, the larger the filter window offset of the micro-ring waveguide is.
  • a farther target sideband can be filtered out, such as 12.5 Ghz, 25 GHz, etc.
  • the first output of the coupler feeds the farther target sideband signal back to the illumination cavity,
  • the target sideband signal is used as the main light in the frequency pulling effect, so that the illumination cavity generates a target optical carrier having the same frequency as the target sideband signal;
  • the second output of the MMI coupler is used to An optical carrier is transmitted to the lens coupling end face.
  • the variable grid laser includes: an active cavity attached to the substrate, a silicon-based waveguide, a micro-ring waveguide, and a multi-mode interference MMI coupler; the active cavity includes: an illumination cavity and a phase modulation zone PMR;
  • the silicon-based waveguide includes: an upper waveguide and a lower waveguide; a PN junction is disposed between the inner and outer rings of the micro-ring waveguide; an output end of the illumination cavity is cascaded to an input end of the PMR, and an output end of the PMR is cascaded
  • the upper waveguide, the microring waveguide is disposed between the upper waveguide and the lower waveguide, and an output end of the lower waveguide is cascaded to an input end of the MMI coupler, the first of the MMI coupler The output end is cascaded to the input end of the illumination cavity, and the second output end of the MMI coupler is coupled to the lens coup
  • the illumination cavity performs a primary tuning of a preset frequency interval, and transmits the tuned optical signal to the PMR;
  • the PMR modulates an optical carrier output by the illumination cavity according to an input external modulation signal, generates a first modulated optical signal including a carrier frequency and a sideband, and passes the first modulated optical signal through the Transmitting a waveguide to the microring waveguide;
  • the microring waveguide adjusts a filtering window of the microring waveguide by tuning an input current of the PN junction, determining a target sideband signal from the first modulated optical signal, and determining the target edge.
  • a frequency signal is transmitted through the lower waveguide to an input end of the MMI coupler;
  • the MMI coupler feeds back the target sideband signal to the illumination cavity through a first output end of the MMI coupler, and the target sideband signal is used as a main light in a frequency pulling effect, so that The illumination cavity generates a target optical carrier of the same frequency as the target sideband signal; the MMI coupler transmits the target optical carrier to the lens coupling end face through a second output of the MMI coupler.
  • the micro-ring waveguide adjusts a filtering window of the micro-ring waveguide by tuning an input current of the PN junction, and determining a target side-frequency signal from the first modulated optical signal includes:
  • the microring waveguide offsets a filter window of the microring waveguide according to a free carrier dispersion FCD effect by tuning an input current of the PN junction; and according to the filtering window after the offset occurs A target sideband signal is determined in the first modulated optical signal.
  • the illumination cavity performs a primary tuning of a preset frequency interval, including:
  • the illumination cavity achieves coarse-grained primary tuning with a wavelength granularity of 50 GHz or 100 GHz by means of a current look-up table.
  • variable grid laser according to any of the above embodiments of the fast tunable variable-array laser.
  • the implementation principle and technical effects are similar, and details are not described herein again.

Abstract

一种快速可调谐的可变栅格激光器,包括:贴于衬底上的有源腔(101)、硅基波导(102)、微环波导(103)和多模干涉MMI耦合器(104)。有源腔(101)包括发光腔(1011)及相位调制区PMR(1012)。硅基波导(102)包括上波导(1021)及下波导(1022)。微环波导(103)的环内外间设有PN结。其中,发光腔(1011)的输出端级联相位调制区PMR(1012)的输入端,相位调制区PMR(1012)的输出端级联上波导(1021),微环波导(103)设置于上波导(1021)和下波导(1022)之间,下波导(1022)的输出端级联多模干涉MMI耦合器(104)的输入端,多模干涉MMI耦合器(104)的第二输出端级联透镜耦合端面。这种快速可调谐的可变栅格激光器实现了与外部调制信号对应频率粒度的波长精细调谐,提高了光纤带宽资源的利用效率。

Description

快速可调谐的可变栅格激光器 技术领域
本发明实施例涉及半导体光电子技术,尤其涉及一种快速可调谐的可变栅格激光器。
背景技术
在当前的光传送或交换网络技术中,可调谐激光器(Tunable Lasers,简称TL)具有重要的功能;所述TL可根据控制信息输出发射端所需的波长,TL能够在较大的波长范围之内实现任意调谐。现有的交换技术包括:电交换及光交换;其中,光交换具有大容量且低功耗的优势,可以分为光路交换和以光突发交换(Optical Burst Switching,简称OBS)、光分组交换(Optical Packet Switching,简称OPS)为代表的全光子波长交换。在OBS、OPS光网络中实现全光子波长交换技术依赖于一系列的关键器件技术,例如快速光开关、阵列波导光栅(Array Waveguide Grating,简称AWG)、快速可调谐激光器(Fast Tunable Lasers,简称FTL)等。
目前FTL主要有三种:采样光栅分布式布拉格反射镜(Sampling Grating Distributed Bragg Reflector,简称SG-DBR)激光器、调制光栅Y型(Modulating Grating-Y branch,简称MG-Y)激光器及数字超模分布式布拉格反射镜(Digital Super-mode Distributed Bragg Reflector,简称DS-DBR)激光器;上述三种激光器的调谐原理均是通过改变注入电流的方法使得光栅选频区的载流子浓度发生变化,引起折射率变化,从而导致光栅反射波长发生变化,最终激光器的激射频率发生变化。但现有的三种FTL激光器能够提供的最小波长间隔均为50GHz,在现有的固定栅格(Fix-Grid)的结构中,如当只传输10Gbps信号时,也需要采用50GHz的波长间隔,因此,造成了光纤带宽资源的浪费。
发明内容
本发明实施例提供一种快速可调谐的可变栅格激光器,实现了与所述外部调制信号对应频率粒度的波长精细调谐,从而可变栅格激光器可以最大 程度地利用带宽资源,提高了光纤带宽资源的利用效率。
第一方面,本发明实施例提供一种快速可调谐的可变栅格激光器,包括:
贴于衬底上的有源腔、硅基波导、微环波导及多模干涉MMI耦合器,所述有源腔包括:发光腔及相位调制区PMR;所述硅基波导包括:上波导及下波导;所述微环波导的环内外间设有PN结;其中,所述发光腔的输出端级联所述PMR的输入端,所述PMR的输出端级联所述上波导,所述微环波导设置于所述上波导与所述下波导之间,所述下波导的输出端级联所述MMI耦合器的输入端,所述MMI耦合器的第一输出端级联所述发光腔的输入端,所述MMI耦合器的第二输出端级联透镜耦合端面;
其中,所述发光腔用于实现预设频率间隔的初级调谐;
所述PMR用于根据输入的外部调制信号,对所述发光腔输出的光载波进行调制,生成包含载频和边频的第一调制光信号;
所述上波导用于将所述第一调制光信号传输至所述微环波导;
所述微环波导用于通过调谐所述PN结的输入电流对所述微环波导的滤波窗口进行调整,从所述第一调制光信号中确定出目标边频信号;
所述下波导用于将所述目标边频信号传输至所述MMI耦合器的输入端;
所述MMI耦合器的第一输出端用于将所述目标边频信号反馈给所述发光腔,所述目标边频信号作为频率牵引效应中的主光,使所述发光腔产生与所述目标边频信号的频率相同的目标光载波;所述MMI耦合器的第二输出端用于将所述目标光载波传输至所述透镜耦合端面。
结合第一方面,在第一方面的第一种可能的实现方式中,所述发光腔包括:尾光栅、增益区、相位区及前光栅;其中,所述尾光栅的输出端级联所述增益区的输入端、所述增益区的输出端级联所述相位区的输入端,所述相位区的输出端级联所述前光栅的输入端,所述前光栅的输出端级联所述PMR的输入端;其中,所述前光栅的输出端作为所述发光腔的输出端,所述尾光栅的输入端作为所述发光腔的输入端。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述微环波导具体用于:调谐所述PN结的输入电流,根据自由载流子色散FCD效应使所述微环波导的滤波窗口发生偏 移;根据发生偏移后的所述滤波窗口从所述第一调制光信号中确定出目标边频信号。
结合第一方面、第一方面的第一种或第二种任一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述上波导为直波导,所述下波导为U型波导。
结合第一方面、第一方面的第一种至第三种任一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述PMR的电极连接至高频时钟电信号。
结合第一方面、第一方面的第一种至第四种任一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述发光腔通过电流查找表的方式实现波长粒度为50GHz或100GHz的粗粒度初级调谐。
第二方面,本发明实施例提供一种可变栅格激光器的快速可调谐方法,所述可变栅格激光器包括:贴于衬底上的有源腔、硅基波导、微环波导及多模干涉MMI耦合器;所述有源腔包括:发光腔及相位调制区PMR;所述硅基波导包括:上波导及下波导;所述微环波导的环内外间设有PN结;所述发光腔的输出端级联所述PMR的输入端,所述PMR的输出端级联所述上波导,所述微环波导设置于所述上波导与所述下波导之间,所述下波导的输出端级联所述MMI耦合器的输入端,所述MMI耦合器的第一输出端级联所述发光腔的输入端,所述MMI耦合器的第二输出端级联透镜耦合端面;所述方法包括:
所述发光腔进行预设频率间隔的初级调谐,并将调谐后的光信号传输至所述PMR;
所述PMR根据输入的外部调制信号对所述发光腔输出的光载波进行调制,生成包含载频和边频的第一调制光信号,并将所述第一调制光信号通过所述上波导传输至所述微环波导;
所述微环波导通过调谐所述PN结的输入电流对所述微环波导的滤波窗口进行调整,从所述第一调制光信号中确定出目标边频信号,并将所述目标边频信号通过所述下波导传输至所述MMI耦合器的输入端;
所述MMI耦合器通过所述MMI耦合器的第一输出端将所述目标边频信号反馈给所述发光腔,所述目标边频信号作为频率牵引效应中的主光, 使所述发光腔产生与所述目标边频信号的频率相同的目标光载波;所述MMI耦合器通过所述MMI耦合器的第二输出端将所述目标光载波传输至所述透镜耦合端面。
结合第二方面,在第二方面的第一种可能的实现方式中,所述微环波导通过调谐所述PN结的输入电流对所述微环波导的滤波窗口进行调整,从所述第一调制光信号中确定出目标边频信号包括:
所述微环波导通过调谐所述PN结的输入电流,根据自由载流子色散FCD效应使所述微环波导的滤波窗口发生偏移;并根据发生偏移后的所述滤波窗口从所述第一调制光信号中确定出目标边频信号。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述发光腔进行预设频率间隔的初级调谐,包括:
所述发光腔通过电流查找表的方式实现波长粒度为50GHz或100GHz的粗粒度初级调谐。
本发明中的快速可调谐的可变栅格激光器,包括:贴于衬底上的有源腔、硅基波导、微环波导及多模干涉MMI耦合器,所述有源腔包括:发光腔及相位调制区PMR;所述硅基波导包括:上波导及下波导;所述微环波导的环内外间设有PN结;其中,所述发光腔的输出端级联所述PMR的输入端,所述PMR的输出端级联所述上波导,所述微环波导设置于所述上波导与所述下波导之间,所述下波导的输出端级联所述MMI耦合器的输入端,所述MMI耦合器的第一输出端级联所述发光腔的输入端,所述MMI耦合器的第二输出端级联透镜耦合端面;其中,所述发光腔用于实现预设频率间隔的初级调谐;所述PMR用于根据输入的外部调制信号,对所述发光腔输出的光载波进行调制,生成包含载频和边频的第一调制光信号;所述上波导用于将所述第一调制光信号传输至所述微环波导;所述微环波导用于通过调谐所述PN结的输入电流对所述微环波导的滤波窗口进行调整,从所述第一调制光信号中确定出目标边频信号;所述下波导用于将所述目标边频信号传输至所述MMI耦合器的输入端;所述MMI耦合器的第一输出端用于将所述目标边频信号反馈给所述发光腔,所述目标边频信号作为频率牵引效应中的主光,使所述发光腔产生与所述目标边频信号的频率相同的目标光载波;所述MMI耦合器的第二输出端用于将所述目标光 载波传输至所述透镜耦合端面;实现了与所述外部调制信号对应频率粒度的波长精细调谐(即实现了可变栅格激光器),从而可变栅格激光器可以最大程度地利用带宽资源,避免了光纤带宽资源的浪费,提高了光纤带宽资源的利用效率;同时在快速精细调谐过程中,可保持激光器的频率稳定性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明快速可调谐的可变栅格激光器实施例一的结构示意图;
图2为本发明快速可调谐的可变栅格激光器实施例二的结构示意图;
图3A为发光腔发出的光经PMR相位调制之后产生的局部边频分量示意图;
图3B为对应图3A的仿真示意图;
图3C为经微环波导滤波之后的局部边频分量示意图;
图3D为对应图3C的仿真示意图;
图4为本发明可变栅格激光器的快速可调谐方法实施例一的流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
现有的三种FTL技术能够提供的最小的波长间隔均是为50GHz(即为固定栅格),而为了适应未来弹性光网络的发展需求及更好地增大光纤的带宽利用率,需要提出可变栅格的光网络(Flex-Grid Optical Networks)技术,如 可变栅格(Flex-Grid)为6.25GHz、12.5GHz、37.5GHz、62.5GHz、75GHz、87.25GHz(6.25GHz的倍数)等,则需要一个可以实现精细到6.25GHz频率间隔的光发射机的激光器。
另一方面,在OBS、OPS光网络中实现全光子波长交换技术依赖于一系列的关键器件,例如快速光开关、AWG、FTL等等。其中,FTL的用途非常广泛,可应用于发射端、中间网络节点、接收端等。而且在以下场景还需要纳米级快速可调的激光器:1)在以波长分配接收路径的OBS网络中,根据目标节点的不同,发端的FTL将信号调制到不同光载波上,信号便可根据分配的波长传输到相应的节点;2)在中间交换节点处,FTL可以将不同的光突发(Optical Burst,简称OB)信号调制到不同波长,在波长路由器(例如AWG)中完成交换;3)在接收端FTL可以作为高速突发相干光通信接收机的本振激光器。
结合以上两个特点,未来网络需要纳米级别调谐速率而且最小的调谐精度在6.25GHz-Grid(或者更小栅格)的可调激光器。因此,本发明提出了一种快速可调谐的可变栅格激光器的微结构;可选地,所述可变栅格激光器通过发光腔实现以50GHz或100GHz为波长间隔的粗调谐;进一步地,相位调制区PMR根据输入的外部调制信号,对所述发光腔输出的光载波进行调制,生成包含载频和边频的第一调制光信号;进一步地,微环波导通过调谐所述PN结的输入电流对所述微环波导的滤波窗口进行调整,从所述第一调制光信号中确定出目标边频信号;进一步地,所述MMI耦合器的第一输出端将所述目标边频信号反馈给所述发光腔,以便通过频率牵引效应改变所述发光腔产生的光信号频率,从而实现与所述外部调制信号对应频率粒度的波长精细调谐。
图1为本发明快速可调谐的可变栅格激光器实施例一的结构示意图。如图1所示,本实施例的快速可调谐的可变栅格激光器可以包括:贴于衬底上的有源腔101、硅基波导102、微环波导103及多模干涉MMI耦合器104,所述有源腔101包括:发光腔1011及相位调制区PMR 1012;所述硅基波导102包括:上波导1021及下波导1022;所述微环波导103的环内外间设有PN结;其中,所述发光腔1011的输出端级联所述PMR 1012的输入端,所述PMR 1012的输出端级联所述上波导1021,所述微环波导 103设置于所述上波导1021与所述下波导1022之间,所述下波导1022的输出端级联所述MMI耦合器104的输入端,所述MMI耦合器104的第一输出端级联所述发光腔1011的输入端,所述MMI耦合器的第二输出端级联透镜耦合端面;
其中,所述发光腔用于实现预设频率间隔的初级调谐;
所述PMR用于根据输入的外部调制信号,对所述发光腔输出的光载波进行调制,生成包含载频和边频的第一调制光信号;
所述上波导用于将所述第一调制光信号传输至所述微环波导;
所述微环波导用于通过调谐所述PN结的输入电流对所述微环波导的滤波窗口进行调整,从所述第一调制光信号中确定出目标边频信号;
所述下波导用于将所述目标边频信号传输至所述MMI耦合器的输入端;
所述MMI耦合器的第一输出端用于将所述目标边频信号反馈给所述发光腔,所述目标边频信号作为频率牵引效应中的主光,使所述发光腔产生与所述目标边频信号的频率相同的目标光载波;所述MMI耦合器的第二输出端用于将所述目标光载波传输至所述透镜耦合端面。
本发明实施例中的快速可调谐的可变栅格激光器,可包括:贴于衬底上的有源腔101、硅基波导102、微环波导103及多模干涉MMI耦合器104;所述有源腔101包括:用于实现预设频率间隔的初级调谐的发光腔1011(可选地,所述发光腔1011可实现波长粒度为50GHz或100GHz的粗粒度初级调谐;可选地,所述发光腔通过电流查找表的方式实现波长粒度为50GHz或100GHz的粗粒度初级调谐;可选地,每个波长分别对应于增益区电流、相位区电流、前光栅区电流及尾光栅区电流4组电流值,每个波长对应的4组电流值形成一个电流查找表),以及相位调制区PMR 1012(可选地,所述PMR用于根据输入的外部调制信号,对所述发光腔输出的光载波进行调制,生成包含载频和边频的第一调制光信号;可选地,所述PMR的电极连接至高频时钟电信号,即所述外部调制信号为所述高频时钟电信号;可选地,所述外部调制信号的频率可根据需要实现调谐的最小粒度进行设置,如若要求实现最小粒度为6.25GHz的调谐,则所述外部调制信号必须设置为6.25GHz);可选地,所述发光腔1011及所述PMR 1012 可采用磷化铟(Indium Phosphorus,简称InP)衬底的III-V族材料通过外延生长制备,通过芯片键合技术集成在硅基衬底上;所述硅基波导102包括:上波导1021及下波导1022(可选地,所述上波导为直波导,所述下波导为U型波导);所述微环波导103的环内外间设有PN结(可选地,所述微环波导的环内掩埋P+掺杂半导体区,对应地,所述微环波导的环外掩埋N+掺杂半导体区;或者,所述微环波导的环外掩埋P+掺杂半导体区,对应地,所述微环波导的环内掩埋N+掺杂半导体区;本发明实施例中,以后者为例进行详细说明),以便通过PN结实现间接电光效应,即通过自由载流子色散效应(Free Carrier Dispersion,简称FCD)改变所述微环波导103的折射率(其中,通过FCD效应调节微环波导的折射率的速度非常快,可以为纳米级别),从而快速调谐所述微环波导103的滤波窗口;其中,所述发光腔1011的输出端级联所述PMR 1012的输入端,所述PMR 1012的输出端级联用于将所述第一调制光信号传输至所述上波导1021,所述微环波导103设置于所述上波导1021与所述下波导1022之间,所述微环波导用于通过调谐所述PN结的输入电流对所述微环波导的滤波窗口进行调整(即所述微环波导的滤波窗口发生偏移),从所述第一调制光信号中确定出目标边频信号(可选地,所述微环波导的自由光谱区FSR与所述外部调制信号的频率一致,如50GHz或者100GHz);所述下波导1022的输出端级联所述MMI耦合器104的输入端,所述MMI耦合器104的第一输出端级联所述发光腔1011的输入端,所述下波导用于将所述目标边频信号传输至所述MMI耦合器的输入端,所述MMI耦合器的第一输出端用于将所述目标边频信号反馈给所述发光腔,以便通过频率牵引效应(所述目标边频信号作为频率牵引效应中的主光)使所述发光腔产生与所述目标边频信号的频率相同的目标光载波,进一步地,所述目标光载波通过有源腔、硅基波导及微环波导直接传输至所述MMI耦合器,所述MMI耦合器的第二输出端将所述目标光载波传输至所述透镜耦合端面,从而实现与所述外部调制信号对应频率粒度的波长精细调谐。
本发明实施例中,所述发光腔1011发出的光载波(可选地,所述光载波的频率可为50GHz或100GHz)传输至所述PMR 1012,所述PMR 1012根据外部输入的外部调制信号(如6.25GHz),对所述发光腔输出的光载 波进行调制,生成包含载频和多个边频的第一调制光信号(可选地,所述载频和所述多个边频中任意两个相邻频率分量之间的间隔为所述外部调制信号对应的频率值,如6.25GHz);进一步地,所述第一调制光信号通过所述上波导1021传输至所述微环波导103,由于所述微环波导103的环内外两侧分别是P+掺杂半导体区及N+掺杂半导体区(即形成PN结)(当没有电流经过所述PN结时,所述微环波导103的滤波窗口固定在国际电信联盟的标准组织(ITU-T)规定的50GHz或者100GHz对应的窗口),通过调谐PN结的注入电流可以调谐所述微环波导103的折射率,从而使所述微环波导103的有效腔长变化,所述微环波导103的滤波窗口发生偏移,从而快速地从所述第一调制光信号中确定出一个目标边频信号;进一步地,通过所述下波导1022将所述目标边频信号传输至所述MMI耦合器104,所述MMI耦合器的第一输出端将所述目标边频信号反馈给所述发光腔,以便通过频率牵引效应(所述目标边频信号作为频率牵引效应中的主光)使所述发光腔产生与所述目标边频信号的频率相同的目标光载波(即所述发光腔产生的目标光载波的频率比原来产生的光载波频率偏移了所述外部调制信号对应的频率值,如6.25GHz),进一步地,所述目标光载波通过有源腔、硅基波导及微环波导直接传输至所述MMI耦合器,所述MMI耦合器的第二输出端将所述目标光载波传输至所述透镜耦合端面,实现了与所述外部调制信号对应频率粒度的波长精细调谐(即实现了可变栅格激光器),从而可变栅格激光器可以最大程度地利用带宽资源,避免了光纤带宽资源的浪费,提高了光纤带宽资源的利用效率;另外,由于所述第一调制光信号是PMR根据外部输入的外部调制信号进行调制生成的,所述第一调制光信号中的边频是激光器载频的频谱搬移(即所述边频的波长稳定度直接复制激光器载频的性能),因此,在快速精细调谐过程中,可保持激光器的频率稳定性能。
可选地,所述微环波导具体用于:调谐所述PN结的输入电流,根据自由载流子色散FCD效应使所述微环波导的滤波窗口发生偏移;根据发生偏移后的所述滤波窗口从所述第一调制光信号中确定出目标边频信号。
本发明实施例中,通过调谐所述PN结的输入电流,根据自由载流子色散FCD效应调谐所述微环波导的折射率,从而使所述微环波导的有效 腔长变化,则所述微环波导的滤波窗口发生偏移;进而根据发生偏移后的所述滤波窗口从所述第一调制光信号中确定出目标边频信号。可选地,所述P+掺杂半导体区及所述N+掺杂半导体区分别设置一个电极,通过所述电极调谐所述PN结的输入电流。
进一步地,若需要实现其他频率的偏移(如6.25GHz的倍数),则通过调谐流经所述微环波导内的所述PN结的电流大小便可实现,如通过调节流经所述PN结的电流便可改变所述微环波导的折射率大小,其中,当电流变化越大,则折射率变化越大、有效腔长变化越大,则微环波导的滤波窗口偏移越大,从而可以滤出更远的目标边频,例如12.5Ghz、25GHz等等;进一步地,所述耦合器的第一输出端将更远的所述目标边频信号反馈给所述发光腔,所述目标边频信号作为频率牵引效应中的主光,使所述发光腔产生与所述目标边频信号的频率相同的目标光载波;所述MMI耦合器的第二输出端用于将所述目标光载波传输至所述透镜耦合端面;从而实现了与所述外部调制信号对应频率粒度的波长精细调谐(即实现了可变栅格激光器)。
本发明实施例中的快速可调谐的可变栅格激光器,包括:贴于衬底上的有源腔、硅基波导、微环波导及多模干涉MMI耦合器,所述有源腔包括:发光腔及相位调制区PMR;所述硅基波导包括:上波导及下波导;所述微环波导的环内外间设有PN结;其中,所述发光腔的输出端级联所述PMR的输入端,所述PMR的输出端级联所述上波导,所述微环波导设置于所述上波导与所述下波导之间,所述下波导的输出端级联所述MMI耦合器的输入端,所述MMI耦合器的第一输出端级联所述发光腔的输入端,所述MMI耦合器的第二输出端级联透镜耦合端面;其中,所述发光腔用于实现预设频率间隔的初级调谐;所述PMR用于根据输入的外部调制信号,对所述发光腔输出的光载波进行调制,生成包含载频和边频的第一调制光信号;所述上波导用于将所述第一调制光信号传输至所述微环波导;所述微环波导用于通过调谐所述PN结的输入电流对所述微环波导的滤波窗口进行调整,从所述第一调制光信号中确定出目标边频信号;所述下波导用于将所述目标边频信号传输至所述MMI耦合器的输入端;所述MMI耦合器的第一输出端用于将所述目标边频信号反馈给所述发光腔,所述目标边 频信号作为频率牵引效应中的主光,使所述发光腔产生与所述目标边频信号的频率相同的目标光载波;所述MMI耦合器的第二输出端用于将所述目标光载波传输至所述透镜耦合端面;实现了与所述外部调制信号对应频率粒度的波长精细调谐(即实现了可变栅格激光器),从而可变栅格激光器可以最大程度地利用带宽资源,避免了光纤带宽资源的浪费,提高了光纤带宽资源的利用效率;同时在快速精细调谐过程中,可保持激光器的频率稳定性能。
可选地,在光传送和交换网络中,可变栅格激光器可以用作波长、子波长(突发/分组)的发射机激光器;在光接入网的用户端也可以用作上行信号的发射激光器;也可以用作相干光通信系统的接收机的本振激光器。
图2为本发明快速可调谐的可变栅格激光器实施例二的结构示意图,图3A为发光腔发出的光经PMR相位调制之后产生的局部边频分量示意图,图3B为对应图3A的仿真示意图,图3C为经微环波导滤波之后的局部边频分量示意图,图3D为对应图3C的仿真示意图。如图2所示,在上述实施例的基础上,本实施例的快速可调谐的可变栅格激光器的发光腔1011包括:尾光栅1011A、增益区1011B、相位区1011C及前光栅1011D;其中,所述尾光栅1011A的输出端级联所述增益区1011B的输入端、所述增益区1011B的输出端级联所述相位区1011C的输入端,所述相位区1011C的输出端级联所述前光栅1011D的输入端,所述前光栅1011D的输出端级联所述PMR 1012的输入端;其中,所述前光栅1011D的输出端作为所述发光腔1011的输出端,所述尾光栅1011A的输入端作为所述发光腔1011的输入端;可选地,所述上波导为直波导,所述下波导为U型波导;所述MMI耦合器为1*2的MMI耦合器,所述MMI耦合器的第一输出端级联所述发光腔的输入端,所述MMI耦合器的第二输出端级联透镜耦合端面。
本发明实施例中,包含尾光栅1011A、增益区1011B、相位区1011C及前光栅1011D的发光腔1011可以实现如50GHz或100GHz的可调激光器(即实现50GHz或100GHz频率间隔的初级调谐);其中,尾光栅和前光栅构成一个反射腔,二者反射的波长或者频率有微小的差别,通常只有一个峰值能够对准,所以可将二者叫做选频率或者选波长的卡尺效应(Venier 效应);增益区提供增益来补偿激光在腔内的损耗;相位区在很小的范围内微调波长。所述发光腔1011发出的光载波(可选地,所述光载波的频率可为50GHz)传输至所述PMR 1012,所述PMR 1012根据外部输入的外部调制信号(如6.25GHz),对所述发光腔输出的光载波进行调制,生成包含载频和多个边频的第一调制光信号(可选地,所述载频和所述多个边频中任意两个相邻频率分量之间的间隔为所述外部调制信号对应的频率值,如6.25GHz)(如图3A所示,调制过程完成之后,以F0为中心频率产生了很多边频,其中,F0代表ITU-T的WDM标准规定的一个通道的光频率即中心频率,相邻边频的间隔等于外部调制信号的频率,如6.25GHz;图3B所示为+/-50GHz范围内外部调制频率为6.25GHz光相位调制信号光谱);进一步地,所述第一调制光信号通过所述上波导1021传输至所述微环波导103,由于所述微环波导103的环内外两侧分别是P+掺杂半导体区及N+掺杂半导体区(即形成PN结)(当没有电流经过所述PN结时,所述微环波导103的滤波窗口固定在ITU-T规定的50GHz对应的窗口),通过调谐PN结的注入电流可以根据FCD效应调谐所述微环波导103的折射率,从而使所述微环波导103的有效腔长变化,所述微环波导103的滤波窗口发生偏移,从而快速地从所述第一调制光信号中确定出一个目标边频信号(如图3C所示,所述微环波导103滤出①号边频;如图3D所示,所述①号边频比所述第一调制光信号中的其他频率分量的功率大了约40dB);进一步地,通过所述下波导1022将所述目标边频信号(即①号边频信号)传输至所述1*2的MMI耦合器104,所述MMI耦合器将所述目标边频信号进行分路,并通过所述MMI耦合器的第二输出端直接将分路后的第一部分所述目标边频信号(即①号边频信号)传输至所述透镜耦合端面,同时通过所述MMI耦合器的第一输出端将分路后的第二部分所述目标边频信号(即①号边频信号)反馈给所述发光腔的尾光栅,以便通过频率牵引效应(所述目标边频信号作为频率牵引效应中的主光)使所述发光腔产生与所述目标边频信号的频率相同的目标光载波(即所述发光腔产生的光载波的频率比原来产生的光载波频率偏移了6.25GHz),进一步地,所述目标光载波通过有源腔、硅基波导及微环波导直接传输至所述MMI耦合器,所述MMI耦合器的第二输出端将所述目标光载波传输至所 述透镜耦合端面;实现了与所述外部调制信号对应频率粒度的波长精细调谐(即实现了可变栅格激光器),从而可变栅格激光器可以最大程度地利用带宽资源,避免了光纤带宽资源的浪费,提高了光纤带宽资源的利用效率;另外,由于所述第一调制光信号是PMR根据外部输入的外部调制信号进行调制生成的,所述第一调制光信号中的边频是激光器载频的频谱搬移(即所述边频的波长稳定度直接复制激光器载频的性能),因此,在快速精细调谐过程中,可保持激光器的频率稳定性能。
进一步地,若需要实现其他频率的偏移(如6.25GHz的倍数),则通过调谐流经所述微环波导内的所述PN结的电流大小便可实现,如通过调节流经所述PN结的电流便可改变所述微环波导的折射率大小,其中,当电流变化越大,则折射率变化越大、有效腔长变化越大,则微环波导的滤波窗口偏移越大,从而可以滤出更远的目标边频,例如12.5Ghz、25GHz等等;进一步地,所述耦合器的第一输出端将更远的所述目标边频信号反馈给所述发光腔,所述目标边频信号作为频率牵引效应中的主光,使所述发光腔产生与所述目标边频信号的频率相同的目标光载波;所述MMI耦合器的第二输出端用于将所述目标光载波传输至所述透镜耦合端面。
图4为本发明可变栅格激光器的快速可调谐方法实施例一的流程示意图。所述可变栅格激光器包括:贴于衬底上的有源腔、硅基波导、微环波导及多模干涉MMI耦合器;所述有源腔包括:发光腔及相位调制区PMR;所述硅基波导包括:上波导及下波导;所述微环波导的环内外间设有PN结;所述发光腔的输出端级联所述PMR的输入端,所述PMR的输出端级联所述上波导,所述微环波导设置于所述上波导与所述下波导之间,所述下波导的输出端级联所述MMI耦合器的输入端,所述MMI耦合器的第一输出端级联所述发光腔的输入端,所述MMI耦合器的第二输出端级联透镜耦合端面;如图4所示,本实施例的方法可以包括:
S401、所述发光腔进行预设频率间隔的初级调谐,并将调谐后的光信号传输至所述PMR;
S402、所述PMR根据输入的外部调制信号对所述发光腔输出的光载波进行调制,生成包含载频和边频的第一调制光信号,并将所述第一调制光信号通过所述上波导传输至所述微环波导;
S403、所述微环波导通过调谐所述PN结的输入电流对所述微环波导的滤波窗口进行调整,从所述第一调制光信号中确定出目标边频信号,并将所述目标边频信号通过所述下波导传输至所述MMI耦合器的输入端;
S404、所述MMI耦合器通过所述MMI耦合器的第一输出端将所述目标边频信号反馈给所述发光腔,所述目标边频信号作为频率牵引效应中的主光,使所述发光腔产生与所述目标边频信号的频率相同的目标光载波;所述MMI耦合器通过所述MMI耦合器的第二输出端将所述目标光载波传输至所述透镜耦合端面。
可选地,所述微环波导通过调谐所述PN结的输入电流对所述微环波导的滤波窗口进行调整,从所述第一调制光信号中确定出目标边频信号包括:
所述微环波导通过调谐所述PN结的输入电流,根据自由载流子色散FCD效应使所述微环波导的滤波窗口发生偏移;并根据发生偏移后的所述滤波窗口从所述第一调制光信号中确定出目标边频信号。
可选地,所述发光腔进行预设频率间隔的初级调谐,包括:
所述发光腔通过电流查找表的方式实现波长粒度为50GHz或100GHz的粗粒度初级调谐。
本实施例的方法,可以采用如上述快速可调谐的可变栅格激光器任意实施例中任一所述的可变栅格激光器实现,其实现原理和技术效果类似,此处不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种快速可调谐的可变栅格激光器,其特征在于,包括:
    贴于衬底上的有源腔、硅基波导、微环波导及多模干涉MMI耦合器,所述有源腔包括:发光腔及相位调制区PMR;所述硅基波导包括:上波导及下波导;所述微环波导的环内外间设有PN结;其中,所述发光腔的输出端级联所述PMR的输入端,所述PMR的输出端级联所述上波导,所述微环波导设置于所述上波导与所述下波导之间,所述下波导的输出端级联所述MMI耦合器的输入端,所述MMI耦合器的第一输出端级联所述发光腔的输入端,所述MMI耦合器的第二输出端级联透镜耦合端面;
    其中,所述发光腔用于实现预设频率间隔的初级调谐;
    所述PMR用于根据输入的外部调制信号,对所述发光腔输出的光载波进行调制,生成包含载频和边频的第一调制光信号;
    所述上波导用于将所述第一调制光信号传输至所述微环波导;
    所述微环波导用于通过调谐所述PN结的输入电流对所述微环波导的滤波窗口进行调整,从所述第一调制光信号中确定出目标边频信号;
    所述下波导用于将所述目标边频信号传输至所述MMI耦合器的输入端;
    所述MMI耦合器的第一输出端用于将所述目标边频信号反馈给所述发光腔,所述目标边频信号作为频率牵引效应中的主光,使所述发光腔产生与所述目标边频信号的频率相同的目标光载波;所述MMI耦合器的第二输出端用于将所述目标光载波传输至所述透镜耦合端面。
  2. 根据权利要求1所述的快速可调谐的可变栅格激光器,其特征在于,所述发光腔包括:尾光栅、增益区、相位区及前光栅;其中,所述尾光栅的输出端级联所述增益区的输入端、所述增益区的输出端级联所述相位区的输入端,所述相位区的输出端级联所述前光栅的输入端,所述前光栅的输出端级联所述PMR的输入端;其中,所述前光栅的输出端作为所述发光腔的输出端,所述尾光栅的输入端作为所述发光腔的输入端。
  3. 根据权利要求1或2所述的快速可调谐的可变栅格激光器,其特征在于,所述微环波导具体用于:
    调谐所述PN结的输入电流,根据自由载流子色散FCD效应使所述微 环波导的滤波窗口发生偏移;
    根据发生偏移后的所述滤波窗口从所述第一调制光信号中确定出目标边频信号。
  4. 根据权利要求1-3中任一项所述的快速可调谐的可变栅格激光器,其特征在于,所述上波导为直波导,所述下波导为U型波导。
  5. 根据权利要求1-4中任一项所述的快速可调谐的可变栅格激光器,其特征在于,所述PMR的电极连接至高频时钟电信号。
  6. 根据权利要求1-5中任一项所述的快速可调谐的可变栅格激光器,其特征在于,所述发光腔通过电流查找表的方式实现波长粒度为50GHz或100GHz的粗粒度初级调谐。
  7. 一种可变栅格激光器的快速可调谐方法,其特征在于,所述可变栅格激光器包括:贴于衬底上的有源腔、硅基波导、微环波导及多模干涉MMI耦合器;所述有源腔包括:发光腔及相位调制区PMR;所述硅基波导包括:上波导及下波导;所述微环波导的环内外间设有PN结;所述发光腔的输出端级联所述PMR的输入端,所述PMR的输出端级联所述上波导,所述微环波导设置于所述上波导与所述下波导之间,所述下波导的输出端级联所述MMI耦合器的输入端,所述MMI耦合器的第一输出端级联所述发光腔的输入端,所述MMI耦合器的第二输出端级联透镜耦合端面;所述方法包括:
    所述发光腔进行预设频率间隔的初级调谐,并将调谐后的光信号传输至所述PMR;
    所述PMR根据输入的外部调制信号对所述发光腔输出的光载波进行调制,生成包含载频和边频的第一调制光信号,并将所述第一调制光信号通过所述上波导传输至所述微环波导;
    所述微环波导通过调谐所述PN结的输入电流对所述微环波导的滤波窗口进行调整,从所述第一调制光信号中确定出目标边频信号,并将所述目标边频信号通过所述下波导传输至所述MMI耦合器的输入端;
    所述MMI耦合器通过所述MMI耦合器的第一输出端将所述目标边频信号反馈给所述发光腔,所述目标边频信号作为频率牵引效应中的主光,使所述发光腔产生与所述目标边频信号的频率相同的目标光载波;所述 MMI耦合器通过所述MMI耦合器的第二输出端将所述目标光载波传输至所述透镜耦合端面。
  8. 根据权利要求7所述的方法,其特征在于,所述微环波导通过调谐所述PN结的输入电流对所述微环波导的滤波窗口进行调整,从所述第一调制光信号中确定出目标边频信号包括:
    所述微环波导通过调谐所述PN结的输入电流,根据自由载流子色散FCD效应使所述微环波导的滤波窗口发生偏移;并根据发生偏移后的所述滤波窗口从所述第一调制光信号中确定出目标边频信号。
  9. 根据权利要求7或8所述的方法,其特征在于,所述发光腔进行预设频率间隔的初级调谐,包括:
    所述发光腔通过电流查找表的方式实现波长粒度为50GHz或100GHz的粗粒度初级调谐。
PCT/CN2015/082344 2015-06-25 2015-06-25 快速可调谐的可变栅格激光器 WO2016206046A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580080800.1A CN107710528A (zh) 2015-06-25 2015-06-25 快速可调谐的可变栅格激光器
PCT/CN2015/082344 WO2016206046A1 (zh) 2015-06-25 2015-06-25 快速可调谐的可变栅格激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082344 WO2016206046A1 (zh) 2015-06-25 2015-06-25 快速可调谐的可变栅格激光器

Publications (1)

Publication Number Publication Date
WO2016206046A1 true WO2016206046A1 (zh) 2016-12-29

Family

ID=57584498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082344 WO2016206046A1 (zh) 2015-06-25 2015-06-25 快速可调谐的可变栅格激光器

Country Status (2)

Country Link
CN (1) CN107710528A (zh)
WO (1) WO2016206046A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147828A1 (zh) * 2019-01-18 2020-07-23 华为技术有限公司 可调谐激光器
WO2023217679A1 (en) 2022-05-09 2023-11-16 The Governing Council Of The University Of Toronto Mass-tag labeling of the cellular secretome

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109361149B (zh) * 2018-11-30 2020-01-07 武汉邮电科学研究院有限公司 一种硅基可调谐激光器
CN110849843A (zh) * 2019-11-06 2020-02-28 东南大学 基于级联u型波导嵌套微环的硅基折射率传感器
CN112289884A (zh) * 2020-11-11 2021-01-29 中国科学院上海微系统与信息技术研究所 一种激光冗余的光电集成电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163941A1 (en) * 2001-04-10 2002-11-07 Hrl Laboratories, Llc Bandwidth enhanced self-injection locked DFB laser with narrow linewidth
US20030219045A1 (en) * 2002-05-14 2003-11-27 Lambda Crossing Ltd. Tunable laser using microring resonator
US20140161146A1 (en) * 2011-07-11 2014-06-12 Commissariat A L 'energie Atomique Et Aux Energies Alternatives Laser device having a looped cavity capable of being functionalized
CN103904555A (zh) * 2012-12-28 2014-07-02 上海贝尔股份有限公司 光学器件、可调激光器以及实现可调激光器的方法
CN104253655A (zh) * 2013-06-25 2014-12-31 上海贝尔股份有限公司 用于twdm-pon的波长可调的发射器和光网路单元
CN104272538A (zh) * 2012-03-27 2015-01-07 光电波股份有限公司 具有运行于选定调制边带上的光学谐振滤波器的可调谐光电振荡器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018919A1 (en) * 1999-09-03 2001-03-15 The Regents Of The University Of California Tunable laser source with integrated optical modulator
CN1153320C (zh) * 2001-01-15 2004-06-09 中国科学院半导体研究所 波长可调谐电吸收调制分布反馈激光器和制作方法
US6483863B2 (en) * 2001-01-19 2002-11-19 The Trustees Of Princeton University Asymmetric waveguide electroabsorption-modulated laser
US20040076199A1 (en) * 2002-08-22 2004-04-22 Agility Communications, Inc. Chirp control of integrated laser-modulators having multiple sections
US7257142B2 (en) * 2004-03-29 2007-08-14 Intel Corporation Semi-integrated designs for external cavity tunable lasers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163941A1 (en) * 2001-04-10 2002-11-07 Hrl Laboratories, Llc Bandwidth enhanced self-injection locked DFB laser with narrow linewidth
US20030219045A1 (en) * 2002-05-14 2003-11-27 Lambda Crossing Ltd. Tunable laser using microring resonator
US20140161146A1 (en) * 2011-07-11 2014-06-12 Commissariat A L 'energie Atomique Et Aux Energies Alternatives Laser device having a looped cavity capable of being functionalized
CN104272538A (zh) * 2012-03-27 2015-01-07 光电波股份有限公司 具有运行于选定调制边带上的光学谐振滤波器的可调谐光电振荡器
CN103904555A (zh) * 2012-12-28 2014-07-02 上海贝尔股份有限公司 光学器件、可调激光器以及实现可调激光器的方法
CN104253655A (zh) * 2013-06-25 2014-12-31 上海贝尔股份有限公司 用于twdm-pon的波长可调的发射器和光网路单元

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147828A1 (zh) * 2019-01-18 2020-07-23 华为技术有限公司 可调谐激光器
WO2023217679A1 (en) 2022-05-09 2023-11-16 The Governing Council Of The University Of Toronto Mass-tag labeling of the cellular secretome

Also Published As

Publication number Publication date
CN107710528A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
US11876560B2 (en) System and methods for distribution of heterogeneous wavelength multiplexed signals over optical access network
US10904647B2 (en) Systems and methods for intelligent edge to edge optical system and wavelength provisioning
WO2016206046A1 (zh) 快速可调谐的可变栅格激光器
JP5785589B2 (ja) バースト光信号送信装置及びバースト光信号送信装置の制御方法
US20150236809A1 (en) Multi-Wavelength Laser Apparatus And Methods
US9136666B1 (en) Mode-hop tolerant semiconductor laser design
TW201501483A (zh) 用於混合分時和波多工的被動光存取網路(twdm-pon)的波長可調的發射器和光網路單元
CN104503023B (zh) 基于多模干涉器结构的外调制型少模光通信发射芯片
KR20220046855A (ko) 테라헤르츠 신호 송신 장치 및 이를 이용한 테라헤르츠 신호 송신 방법
Ward et al. Monolithic integration of AlInGaAs DS-DBR tunable laser and AlInGaAs MZ modulator with small footprint, low power dissipation and long-haul 10Gb/s performance
CN104767584A (zh) 一种用于twdm-pon系统的光网络单元的反射光调制器
KR102427147B1 (ko) 지능형 에지 투 에지 광학 시스템 및 파장 프로비저닝을 위한 시스템들 및 방법들
CN107664792B (zh) 光信号产生器、光线路终端以及产生光信号的方法
CN100373824C (zh) 用于长距离光通信系统的脉冲光源
US11233375B2 (en) Two-kappa DBR laser
Debrégeas et al. Components for high speed 5G access
Guan et al. Enabling 5G services in PON with a novel smart edge based on SiP MRM
de Valicourt et al. Integrated 5-channel WDM hybrid III-V/Si transmitter enabling 100Gb/s and beyond
Muciaccia et al. Proposal for an SDN-like innovative metro-access optical network architecture
Urban et al. 1.25-10 Gbit/s reconfigurable access network architecture
WO2024065174A1 (zh) 光发射机、光发射方法、光模块、设备及系统
Udvary Enhancement of RSOA direct modulation bandwidth with optimized optical filter
Kakitsuka et al. 20-km transmission of 40-Gb/s signal using frequency modulated DBR laser
Shandilya et al. New Design of DWDM based on DCF Technique
MIYATA et al. + 18 dBm High-Power Tunable Laser Modules for Digital Coherent Optical Communication Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895946

Country of ref document: EP

Kind code of ref document: A1