WO2016204818A1 - Cross-domain time series data conversion apparatus, methods, and systems - Google Patents
Cross-domain time series data conversion apparatus, methods, and systems Download PDFInfo
- Publication number
- WO2016204818A1 WO2016204818A1 PCT/US2016/014441 US2016014441W WO2016204818A1 WO 2016204818 A1 WO2016204818 A1 WO 2016204818A1 US 2016014441 W US2016014441 W US 2016014441W WO 2016204818 A1 WO2016204818 A1 WO 2016204818A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- type
- time series
- distributed representation
- different
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
- G06N3/0442—Recurrent networks, e.g. Hopfield networks characterised by memory or gating, e.g. long short-term memory [LSTM] or gated recurrent units [GRU]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
Definitions
- the data type C can be directly converted to or from any other data type in the data type conversion graph 650.
- data type F 612 cannot be directly converted to data type D 608.
- there are two sequences of two data type conversions e.g., F to C and C to D, or F to E and E to D.
- Accelerometers that detect vibration in rotating components can provide early detection of potential problems with the equipment and enable the facility operator to take preventative action of repairing or shutting down the piece of equipment before failure occurs.
- Vibration time series data is generally collected from accelerometers that are permanently mounted near rotating components.
- a single rotating component may be monitored by multiple accelerometers.
- a common technique involves monitoring a rotating component with three accelerometers, one each to measure vibration along the vertical (X), tangential (Y), and radial (Z) axes.
- X vertical
- Y tangential
- Z radial
- data type C 606, data type E 610, and data type F 612 may be fused to create a data type G.
- an already fused data type e.g., data type XY 706
- another non-fused data type e.g., data type U
- another already fused data type e.g., data type UVW
- Embodiment 7 The method of Embodiment 1, wherein the first distributed representation has a reduced dimensionality compared with the first time series of the first type of data.
- Embodiment 14 The method of Embodiment 1, wherein the analysis model is arranged to determine that the steam trap is faulty using the second time series of the second type of data.
- Embodiment 18 The method of Embodiment 17, further comprising transmitting at least one of the first distributed representation, the second distributed representation, the second time series, the third distributed representation, and the third time series from a first device to a second device.
- An apparatus comprising: a data collection device configured to collect a first type of data over a period of time, the first type of data being indicative of a first parameter; a memory configured to store time series data collected by the data collection device; an encoder configured to convert the first time series of the first type of data into a first distributed representation for the first type of data; a data type converter configured to convert the first distributed representation into a second distributed representation for a second type of data, the second type of data being indicative of a second parameter which is different from the first parameter; an analyzer configured to receive an input that is based on the second distributed representation, and to run an analysis model on the input to detect or predict an event based on behavior of the second parameter; and an output module configured to transmit an output from the analysis model that corresponds to an event detected or predicted by the analysis model, wherein behavior of the first parameter and behavior of the second parameter provide information about a common phenomenon, and wherein behavior of the first parameter is incompatible with the analysis model.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Probability & Statistics with Applications (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Image Analysis (AREA)
- Radiation Pyrometers (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017565763A JP6676077B2 (ja) | 2015-06-19 | 2016-01-22 | クロスドメイン時系列データ変換装置、方法、およびシステム |
| EP16812063.2A EP3311310A4 (en) | 2015-06-19 | 2016-01-22 | DEVICE, METHOD AND SYSTEMS FOR DOMAIN-RELATED TIME-DATA-DATA-CONVERSION |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/744,475 US10460251B2 (en) | 2015-06-19 | 2015-06-19 | Cross-domain time series data conversion apparatus, methods, and systems |
| US14/744,475 | 2015-06-19 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2016204818A1 true WO2016204818A1 (en) | 2016-12-22 |
Family
ID=57545925
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2016/014441 Ceased WO2016204818A1 (en) | 2015-06-19 | 2016-01-22 | Cross-domain time series data conversion apparatus, methods, and systems |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US10460251B2 (enExample) |
| EP (1) | EP3311310A4 (enExample) |
| JP (3) | JP6676077B2 (enExample) |
| WO (1) | WO2016204818A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110766132A (zh) * | 2019-09-10 | 2020-02-07 | 淮阴工学院 | 一种基于物联网的果园产量智能预测系统 |
Families Citing this family (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10891558B2 (en) * | 2015-01-21 | 2021-01-12 | Anodot Ltd. | Creation of metric relationship graph based on windowed time series data for anomaly detection |
| CN111367187B (zh) | 2015-08-27 | 2023-10-24 | 江森自控泰科知识产权控股有限责任公司 | 用于改进对分布式网络中的传感器流数据的处理的方法 |
| US10410113B2 (en) * | 2016-01-14 | 2019-09-10 | Preferred Networks, Inc. | Time series data adaptation and sensor fusion systems, methods, and apparatus |
| TWI748035B (zh) * | 2017-01-20 | 2021-12-01 | 日商半導體能源硏究所股份有限公司 | 顯示系統及電子裝置 |
| JP6791780B2 (ja) * | 2017-02-16 | 2020-11-25 | 株式会社日立製作所 | 文章作成装置 |
| WO2018173121A1 (ja) | 2017-03-21 | 2018-09-27 | 株式会社Preferred Networks | サーバ装置、学習済モデル提供プログラム、学習済モデル提供方法及び学習済モデル提供システム |
| JP6828807B2 (ja) * | 2017-03-28 | 2021-02-10 | 日本電気株式会社 | データ解析装置、データ解析方法およびデータ解析プログラム |
| US10749594B1 (en) * | 2017-08-18 | 2020-08-18 | DeepSig Inc. | Learning-based space communications systems |
| CN109521725A (zh) * | 2017-09-20 | 2019-03-26 | 西门子公司 | 检测异常数据的方法、装置和设备以及机器可读介质 |
| US10551297B2 (en) * | 2017-09-22 | 2020-02-04 | Saudi Arabian Oil Company | Thermography image processing with neural networks to identify corrosion under insulation (CUI) |
| US10482600B2 (en) * | 2018-01-16 | 2019-11-19 | Siemens Healthcare Gmbh | Cross-domain image analysis and cross-domain image synthesis using deep image-to-image networks and adversarial networks |
| CN108537327B (zh) * | 2018-03-28 | 2020-11-03 | 北京航空航天大学 | 一种基于时间序列bp神经网络预测方法及装置 |
| US11099925B2 (en) | 2018-07-10 | 2021-08-24 | EMC IP Holding Company LLC | Datacenter preemptive measures for improving protection using IoT sensors |
| FR3086622B1 (fr) * | 2018-09-28 | 2022-06-24 | Renault Sas | Dispositif de planification d'un chemin et/ou d'une trajectoire d'un vehicule automobile |
| US11106528B2 (en) * | 2018-10-10 | 2021-08-31 | EMC IP Holding Company LLC | Datacenter IoT-triggered preemptive measures using machine learning |
| US12276638B2 (en) * | 2019-02-20 | 2025-04-15 | Latency, LLC | Systems, methods, and media for generating alerts of water hammer events in steam pipes |
| KR20200141672A (ko) * | 2019-06-11 | 2020-12-21 | 주식회사 룩시드랩스 | 감정 인식 방법 및 이를 이용한 감정 인식용 디바이스 |
| US11125386B2 (en) * | 2019-07-15 | 2021-09-21 | Consolidated Edison Company Of New York, Inc. | Sensor for steam trap and method of operation |
| US11112349B2 (en) * | 2019-07-16 | 2021-09-07 | Saudi Arabian Oil Company | Metal loss determinations based on thermography machine learning approach for insulated structures |
| US11226302B2 (en) * | 2019-08-07 | 2022-01-18 | Everactive, Inc. | Steam trap monitoring devices, systems, and related techniques |
| AT522926A1 (de) * | 2019-08-21 | 2021-03-15 | Suessco Sensors Gmbh | Messen von Positionen, mechanischen Verschiebungen und Rotationen von Körpern |
| US10853728B1 (en) * | 2019-08-23 | 2020-12-01 | Capital One Services, Llc | Automated data ingestion using an autoencoder |
| US20210116322A1 (en) * | 2019-10-16 | 2021-04-22 | Everactive, Inc. | Monitoring techniques for pressurized systems |
| US11245545B2 (en) * | 2019-10-24 | 2022-02-08 | Dell Products L.P. | Implementation of internet of things-enabled connectivity devices for processing operation information of devices lacking network connectivity |
| US11201801B2 (en) | 2019-10-24 | 2021-12-14 | Dell Products L.P. | Machine learning-based determinations of lifespan information for devices in an internet of things environment |
| US11070584B1 (en) * | 2020-01-06 | 2021-07-20 | General Electric Company | Graceful neutralization of industrial assett attack using cruise control |
| US11509521B2 (en) | 2020-02-03 | 2022-11-22 | Fenix Group, Inc. | Multiple communication modes and network services in a self-contained unit |
| GB202009983D0 (en) * | 2020-06-30 | 2020-08-12 | Microsoft Technology Licensing Llc | Partially-observed sequential variational auto encoder |
| US11749284B2 (en) * | 2020-11-13 | 2023-09-05 | Google Llc | Dynamically adapting on-device models, of grouped assistant devices, for cooperative processing of assistant requests |
| CN112583898B (zh) * | 2020-11-30 | 2023-08-15 | 北京百度网讯科技有限公司 | 业务流程编排方法、装置、以及可读介质 |
| CN112388655B (zh) * | 2020-12-04 | 2021-06-04 | 齐鲁工业大学 | 一种基于触觉振动信号与视觉图像融合的抓取物识别方法 |
| PL4036453T3 (pl) * | 2021-01-28 | 2024-08-05 | Eneon Spółka Z Ograniczoną Odpowiedzialnością | Sposób oraz system wyboru i monitorowania odwadniacza z zastosowaniem głębokiej sieci neuronowej |
| JP7336477B2 (ja) * | 2021-03-05 | 2023-08-31 | 横河電機株式会社 | 学習装置、評価装置、評価システム、学習方法、学習プログラム、評価方法、および評価プログラム |
| WO2022192738A1 (en) * | 2021-03-12 | 2022-09-15 | DataRobot, Inc. | Systems and methods for time series modeling |
| EP4315341A1 (en) * | 2021-04-01 | 2024-02-07 | Illumina, Inc. | Systems and methods for identifying subcomponent failure in sequencing instruments |
| CN116897272A (zh) * | 2021-05-31 | 2023-10-17 | 尼得科株式会社 | 角度检测方法及角度检测装置 |
| US20230147442A1 (en) * | 2021-06-04 | 2023-05-11 | Apple Inc. | Modular Machine Learning Architecture |
| JP7739775B2 (ja) * | 2021-06-10 | 2025-09-17 | 富士通株式会社 | 計算プログラム、計算方法、および計算装置 |
| JP7353328B2 (ja) * | 2021-07-12 | 2023-09-29 | ヤフー株式会社 | 端末装置、情報処理方法及び情報処理プログラム |
| JP7291177B2 (ja) * | 2021-07-12 | 2023-06-14 | ヤフー株式会社 | 端末装置、情報処理方法及び情報処理プログラム |
| US12481253B2 (en) | 2021-11-11 | 2025-11-25 | Saudi Arabian Oil Company | Method and system for determining steam trap data using machine learning |
| US11748779B2 (en) * | 2022-01-28 | 2023-09-05 | Walmart Apollo, Llc | Real-time dayparting management |
| WO2024134784A1 (ja) * | 2022-12-20 | 2024-06-27 | 株式会社Fronteo | データ解析装置およびデータ解析プログラム |
| US12461797B2 (en) * | 2023-08-04 | 2025-11-04 | Anumana, Inc. | Apparatus and method for unpaired time series data translation |
| CN118297934B (zh) * | 2024-05-06 | 2025-10-31 | 交通运输部水运科学研究所 | 海上风电动力机组的故障实时智能预测方法 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090040367A1 (en) * | 2002-05-20 | 2009-02-12 | Radoslaw Romuald Zakrzewski | Method for detection and recognition of fog presence within an aircraft compartment using video images |
| US20090086905A1 (en) * | 2007-09-28 | 2009-04-02 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | X-ray fluorescence visualizer, imager, or information provider |
| US20140096146A1 (en) * | 2012-09-28 | 2014-04-03 | Hewlett-Packard Development Company, L.P. | Translating time-stamped events to performance indicators |
| WO2014207545A1 (en) * | 2013-06-28 | 2014-12-31 | Diagnostic Engineering Solutions S.R.L. | Modular device for structural diagnostics of various materials and structure, using thermographic techniques based on multiple excitations |
Family Cites Families (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5627941A (en) | 1992-08-28 | 1997-05-06 | Hitachi, Ltd. | Method of configuring a neural network and a diagnosis/control system using the neural network |
| US5598509A (en) | 1992-08-28 | 1997-01-28 | Hitachi, Ltd. | Method of configuring a neural network and a diagnosis/recognition system using the same |
| JPH0675934A (ja) | 1992-08-28 | 1994-03-18 | Hitachi Ltd | ニューラルネットワーク構成法および該ネットワークを用いた設備異常診断法 |
| JP2847468B2 (ja) | 1994-04-29 | 1999-01-20 | 川崎重工業株式会社 | ごみ焼却炉のごみ性状推定方法および推定装置 |
| CA2154406C (en) | 1994-07-22 | 2000-01-25 | Tomoharu Kiyuna | System for predicting internal condition of live body |
| JP2560651B2 (ja) | 1994-11-08 | 1996-12-04 | 日本電気株式会社 | 生体内部状態推定装置 |
| JPH0895949A (ja) * | 1994-09-21 | 1996-04-12 | Nippon Telegr & Teleph Corp <Ntt> | 時系列データの予測装置 |
| US7220966B2 (en) * | 2003-07-29 | 2007-05-22 | Toyota Motor Manufacturing North America, Inc. | Systems and methods for inspecting coatings, surfaces and interfaces |
| JP4543644B2 (ja) * | 2003-09-16 | 2010-09-15 | 富士ゼロックス株式会社 | データ認識装置 |
| JP2007240464A (ja) | 2006-03-10 | 2007-09-20 | Toshiba Corp | 沸騰水型原子炉炉心状態監視装置 |
| US9135686B2 (en) * | 2006-10-25 | 2015-09-15 | The Invention Science Fund I Llc | Distorting feature compensating |
| US7605924B2 (en) * | 2006-12-06 | 2009-10-20 | Lockheed Martin Corporation | Laser-ultrasound inspection using infrared thermography |
| JP5387877B2 (ja) | 2008-03-18 | 2014-01-15 | 富士電機株式会社 | 油入電気機器の余寿命推定方法 |
| US9635285B2 (en) * | 2009-03-02 | 2017-04-25 | Flir Systems, Inc. | Infrared imaging enhancement with fusion |
| WO2012000648A1 (en) * | 2010-06-28 | 2012-01-05 | Precitec Kg | Method for closed-loop controlling a laser processing operation and laser material processing head using the same |
| US9364171B2 (en) * | 2010-12-22 | 2016-06-14 | Veebot Systems, Inc. | Systems and methods for autonomous intravenous needle insertion |
| KR20140102994A (ko) * | 2013-02-15 | 2014-08-25 | 삼성전자주식회사 | 관심 영역 내에 다중 초점을 형성하는 초음파를 생성하는 방법, 장치 및 hifu 시스템 |
| WO2014203038A1 (en) * | 2013-06-19 | 2014-12-24 | Aselsan Elektronik Sanayi Ve Ticaret Anonim Sirketi | System and method for implementing reservoir computing in magnetic resonance imaging device using elastography techniques |
| CA2951723C (en) * | 2014-06-10 | 2021-04-27 | Sightline Innovation Inc. | System and method for network based application development and implementation |
| JP6282193B2 (ja) * | 2014-07-28 | 2018-02-21 | クラリオン株式会社 | 物体検出装置 |
| JP2016071597A (ja) * | 2014-09-30 | 2016-05-09 | ソニー株式会社 | 情報処理装置、情報処理方法及びプログラム |
| US9659384B2 (en) * | 2014-10-03 | 2017-05-23 | EyeEm Mobile GmbH. | Systems, methods, and computer program products for searching and sorting images by aesthetic quality |
-
2015
- 2015-06-19 US US14/744,475 patent/US10460251B2/en active Active
-
2016
- 2016-01-22 WO PCT/US2016/014441 patent/WO2016204818A1/en not_active Ceased
- 2016-01-22 EP EP16812063.2A patent/EP3311310A4/en not_active Ceased
- 2016-01-22 JP JP2017565763A patent/JP6676077B2/ja active Active
-
2019
- 2019-09-23 US US16/579,552 patent/US12106232B2/en active Active
-
2020
- 2020-03-09 JP JP2020040063A patent/JP6942833B2/ja active Active
-
2021
- 2021-09-09 JP JP2021147132A patent/JP7253596B2/ja active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090040367A1 (en) * | 2002-05-20 | 2009-02-12 | Radoslaw Romuald Zakrzewski | Method for detection and recognition of fog presence within an aircraft compartment using video images |
| US20090086905A1 (en) * | 2007-09-28 | 2009-04-02 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | X-ray fluorescence visualizer, imager, or information provider |
| US20140096146A1 (en) * | 2012-09-28 | 2014-04-03 | Hewlett-Packard Development Company, L.P. | Translating time-stamped events to performance indicators |
| WO2014207545A1 (en) * | 2013-06-28 | 2014-12-31 | Diagnostic Engineering Solutions S.R.L. | Modular device for structural diagnostics of various materials and structure, using thermographic techniques based on multiple excitations |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP3311310A4 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110766132A (zh) * | 2019-09-10 | 2020-02-07 | 淮阴工学院 | 一种基于物联网的果园产量智能预测系统 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2018524711A (ja) | 2018-08-30 |
| US20200019877A1 (en) | 2020-01-16 |
| EP3311310A1 (en) | 2018-04-25 |
| JP6942833B2 (ja) | 2021-09-29 |
| JP2021192300A (ja) | 2021-12-16 |
| US20160371316A1 (en) | 2016-12-22 |
| EP3311310A4 (en) | 2019-02-13 |
| JP7253596B2 (ja) | 2023-04-06 |
| US10460251B2 (en) | 2019-10-29 |
| JP2020098646A (ja) | 2020-06-25 |
| US12106232B2 (en) | 2024-10-01 |
| JP6676077B2 (ja) | 2020-04-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12106232B2 (en) | Cross-domain time series data conversion apparatus, methods, and systems | |
| US10410113B2 (en) | Time series data adaptation and sensor fusion systems, methods, and apparatus | |
| US12395818B2 (en) | Web services for smart entity management for sensor systems | |
| US12086701B2 (en) | Computer-implemented method, computer program product and system for anomaly detection and/or predictive maintenance | |
| US11162837B2 (en) | Detecting faults in rotor driven equipment | |
| US10598520B2 (en) | Method and apparatus for pneumatically conveying particulate material including a user-visible IoT-based classification and predictive maintenance system noting maintenance state as being acceptable, cautionary, or dangerous | |
| Abdallah et al. | Anomaly detection through transfer learning in agriculture and manufacturing IoT systems | |
| CN119091594A (zh) | 一种基于多源监测数据变化的边坡稳定性预警方法 | |
| CN119881371A (zh) | 在数字网上生成旋转数据和/或对所述旋转数据进行编码 | |
| Mali | IoT-Based Data Acquisition and Machine Learning for Process Optimization | |
| Wang et al. | An integrated approach for mechanical fault diagnosis using maximum mean square discrepancy representation and CNN-based mixed information fusion | |
| KR102761092B1 (ko) | 회전 기계 설비의 탁월 주파수 결정 방법, 및 이를 수행하는 컴퓨팅 시스템 | |
| KR102444941B1 (ko) | 화재모니터링장치 및 그 동작 방법 | |
| Chibani et al. | An uncertainty-aware road anomalies detection based on dempster–shafer theory | |
| CN116913039A (zh) | 一种微气象灾害预警系统及方法 | |
| Lee et al. | (POSTER) Enhancing Structural Health Monitoring with On-device AI | |
| Li et al. | Smartphone-Based Structural Health Monitoring with Neural Network Regression for Damage & Detection | |
| Zhang et al. | Real-time on-site structural safety assessment of metro tunnel linings via WSN and edge computing | |
| CN121146287A (zh) | 煤矿人员安全态势动态感知方法、装置、设备及介质 | |
| Dilip et al. | Smartphone‐Based Train Safety Mechanism Using Sensor Data Analysis | |
| Juvanna et al. | Real-time mobile phones defacement capturer.(For insurance claim) | |
| Mary et al. | Deep Learning Approaches for Real-Time Data Analytics in IoT | |
| CN116703037A (zh) | 一种基于道路施工的监控方法及装置 | |
| CN120316662A (zh) | 车辆事故异常的检测方法及车辆 | |
| CN117370897A (zh) | 道路健康状态检测方法、电子设备和计算机可读介质 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16812063 Country of ref document: EP Kind code of ref document: A1 |
|
| REEP | Request for entry into the european phase |
Ref document number: 2016812063 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2017565763 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |