WO2016204515A1 - Stat3 gene specific sirna, double-helical oligo rna structure including sirna, composition containing same, and use thereof - Google Patents

Stat3 gene specific sirna, double-helical oligo rna structure including sirna, composition containing same, and use thereof Download PDF

Info

Publication number
WO2016204515A1
WO2016204515A1 PCT/KR2016/006363 KR2016006363W WO2016204515A1 WO 2016204515 A1 WO2016204515 A1 WO 2016204515A1 KR 2016006363 W KR2016006363 W KR 2016006363W WO 2016204515 A1 WO2016204515 A1 WO 2016204515A1
Authority
WO
WIPO (PCT)
Prior art keywords
sirna
double
stat3
cancer
oligo rna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2016/006363
Other languages
French (fr)
Korean (ko)
Inventor
윤평오
고영호
김한나
배선주
이지영
윤성일
박준홍
정준수
최종덕
권태우
박한오
김태림
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuhan Corp
Bioneer Corp
Original Assignee
Yuhan Corp
Bioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuhan Corp, Bioneer Corp filed Critical Yuhan Corp
Priority claimed from KR1020160074570A external-priority patent/KR20160147674A/en
Publication of WO2016204515A1 publication Critical patent/WO2016204515A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention relates to a STAT3 gene specific siRNA, a high efficiency double-stranded oligo RNA construct comprising the same, a pharmaceutical composition comprising the same, and a use thereof, and more particularly, to a STAT3 gene specific siRNA, including the same, and efficiently delivered into a cell.
  • Double-stranded oligo RNA structure an aqueous solution, in which a hydrophilic material and a hydrophobic material are bonded to both ends of a double-stranded RNA (siRNA) by using simple covalent bonds or linker-mediated covalent bonds.
  • siRNA double-stranded RNA
  • nanoparticles that can be produced by hydrophobic interaction of the double helix oligo RNA structures.
  • the present invention also relates to a method for producing the double helix oligo RNA construct, and a pharmaceutical composition comprising the double helix oligo RNA construct and use thereof.
  • RNA interference interfering RNA
  • 'RNAi' interfering RNA
  • RNA is converted into RNA, hereinafter called siRNA, and siRNA binds to an RNA-induced silencing complex (RISC), whereby the guide (antisense) strand recognizes and degrades the target mRNA to sequence-express the expression of the target gene.
  • RISC RNA-induced silencing complex
  • siRNA against the same target gene is superior to antisense oligonucleotides (ASOs) in inhibiting mRNA expression in vitro and in vivo , and the effect lasts for a long time.
  • ASOs antisense oligonucleotides
  • the siRNA action mechanism complementarily binds to the target mRNA and regulates the expression of the target gene in a sequence-specific manner, which is why it is possible to apply a target to an antibody-based drug or a small molecule drug. It has the advantage that it can be expanded (Progress Towards in vivo Use of siRNAs. MOLECULAR THERAPY. 2006 13 (4): 664-670).
  • siRNAs must be effectively delivered to target cells by improving their stability and improving cell delivery efficiency in order for siRNAs to be developed as therapeutic agents (Harnessing in vivo siRNAs). delivery for drug discovery and therapeutic development.Drug Discov Today. 2006 Jan; 11 (1-2): 67-73).
  • nucleotides or backbones of siRNA are modified to have nuclease resistance or viral vectors, liposomes or nanoparticles, etc., to improve the stability in the body. Research into the use of the carrier is actively attempted.
  • Non-viral delivery systems containing nanoparticles have lower cell delivery efficiency than viral delivery systems, but have high safety in vivo and target specific delivery. It has the advantage of improved transfer effect such as uptake and internalization of nested RNAi oligonucleotides into cells or tissues, as well as little cytotoxicity and immune stimulation. It is currently being evaluated as a viable delivery method compared to viral delivery systems (Nonviral delivery of synthetic siRNAs in vivo . J Clin Invest. 2007 December 3; 117 (12): 3623-3632).
  • a method of using a nanocarrier is used to form nanoparticles by using various polymers such as liposomes and cationic polymer complexes, and siRNA is added to these nanoparticles, that is, nanocarriers. It has a form to be supported and delivered to the cell.
  • polymer nanoparticles, polymer micelles, lipoplexes, etc. are mainly used.
  • lipoplexes are composed of cationic lipids. It interacts with the anionic lipids of the endosome of endosome, induces the destabilizing effect of the endosome and delivers it into cells (Proc. Natl. Acad. Sci. 15; 93 (21): 11493-8, 1996).
  • siRNAs in the form of conjugated polymer compounds such as polyethylene glycol (PEG)
  • PEG polyethylene glycol
  • micelles composed of polymer complexes are extremely uniform in size and spontaneously formed, compared to other systems used as drug delivery vehicles, such as microspheres or nanoparticles. There is an advantage that it is easy to ensure the quality control and reproducibility of the formulation.
  • siRNA conjugate conjugated to a technique for securing the stability of the siRNA and efficient cell membrane permeability has been developed (Korean Patent No. 883471).
  • a hydrophilic material e.g., polyethylene glycol, PEG
  • PEGylation polyethylene glycol
  • a double-stranded oligo RNA structure in which hydrophilic and hydrophobic materials are coupled to oligonucleotides, especially double-stranded oligo RNA such as siRNA, has been developed.
  • the structure is prepared by SAMiRNA TM (self assembled) by hydrophobic interaction of hydrophobic materials. self-assembled nanoparticles called micelle inhibitory RNA) (see Korean Patent No. 1224828).
  • SAMiRNA TM technology yields very small and homogenous nanoparticles compared to conventional delivery technologies. It has the advantage of being able to.
  • Cancer is one of the world's most fatalities, and the development of innovative cancer treatments can reduce the cost of medical treatment and create high added value.
  • the treatment of cancer is divided into surgery, radiation therapy, chemotherapy, and biological therapy.
  • chemotherapy is a chemical substance that inhibits or kills the proliferation of cancer cells.
  • the anticancer drug is effective, the resistance is lost after a certain period of time, but the development of an anticancer drug that selectively acts on cancer cells and does not develop resistance is urgently needed. 2004. 6 (19).
  • Psoriasis is a chronic autoimmune inflammatory skin disorder characterized by epidermal hyperproliferation of keratinocytes and endothelial cells, and inflammatory cell accumulation (such as activated T cells) (Griffiths CE, J. Eur. Acad. Dermatol. Venereol. 2003, 17 Suppl 2: 1-5; Creamer JD, et al., Clin.Exp.Dermatol. 1995, 20 (1): 6-9).
  • Psoriasis is characterized by abnormal and rapid growth of the epidermal layer of the skin. The abnormal production of these skin cells generally produces skin cells every 28 to 30 days, but in the case of psoriasis it is replaced every 3 to 5 days.
  • This change is mainly due to the increase of endothelial cells, including dendritic cells, macrophage and T cells, to proliferate immature keratinocytes.
  • These immune cells migrated from cells to envelope cells are TNF- ⁇ , interleukin-1 ⁇ , IL-1 ⁇ , interleukin-6 (IL-6), and interleukin-36 (IL- 36) and secrete various cytokines such as interleukin-22 (IL-22) and these cytokines have been reported to stimulate the proliferation of keratinocytes (Nestle FO et al., N Engl J Med. 2009; 361). (5): 496-509; Beautywag, Jaymie et al., Cytokine. 2015; 73 (2): 342-350).
  • dendritic cells connect the innate immune system to the adaptive immune system, and psoriasis-induced T cells migrate to the envelope cells to release interleukin-17 (IL-17) and interferon-gamma (IFN- ⁇ ).
  • IL-17 interleukin-17
  • IFN- ⁇ interferon-gamma
  • Secrete and interleukin-23 (IL-23) stimulates the production of interleukin-22 (IL-22) and interleukin-17 (IL-17), which are interleukin-17 (IL-22) 17) may exacerbate psoriasis by stimulating keratinocytes (Ouyang W., Cytokine Growth Factor Rev. 2010; 21 (6): 435-41; Mudigonda P et al., Dermatol Online J. 2012; 18 (10): 1).
  • Topical treatments include steroids, coal tar, anthraline, vitamin D3 and analogs thereof, retinoids and sunburn, and the like, which have the side effects of skin thinning, stretch marks, burns, irritation and photosensitivity.
  • Drugs used in oral administration are for the treatment of psoriasis through immunosuppression or inflammatory response.
  • Many psoriasis treatments developed to date do not fundamentally cure psoriasis and provide only temporary relief of symptoms.
  • Because of suppressing the immune system of the human body if the drug is used for a long time due to the deterioration of the immune function of the human body can cause various infections, including cancer, tuberculosis, and the like.
  • atopy is a term that has the meaning "weird” or "inappropriate” in origin.
  • Atopic dermatitis is a relatively common chronic inflammatory skin disease that occurs most often in infancy and childhood, and improves and worsens.It can be diagnosed with three characteristics: individual or family history of atopy, severe itching, and eczema. May be exacerbated by seasonal and climate change, irritation and allergies.
  • atopic dermatitis is considered to be a genetic disease involving immunological abnormalities.
  • STAT3 genes have been reported to influence the development of atopic dermatitis (Diminished allergic disease in patients with STAT3 mutations reveals a role for STAT3 signaling in mast cell degranulation, J. Allergy and Clinical Immunology, Vol. 132, 2013. Pp. 1388-1396).
  • steroid hormones that is, topical corticosteroids
  • topical corticosteroids to improve the inflammatory response along with moisturizers that keep the skin's surface moisturized.
  • topical corticosteroids when used for a long time, there are problems that cause various skin side effects such as skin atrophy, vasodilation, pigmentation and swelling ancestors.
  • patients with severe atopic dermatitis may be given phototherapy, such as appropriate UV treatment, interferon gamma, immunosuppressants such as cyclosporin, and immunoglobulin intravenous injection. Therefore, there is a need to develop a raw material or pharmaceuticals for treating atopic dermatitis having an anti-inflammatory effect without showing such side effects.
  • Allergic dermatitis is a recurrent eczema lesion accompanied by a chronic itching.
  • the rash tends to appear on the face, neck, elbows, knees, and other flexures, and may worsen and spread throughout the body.
  • the number of patients with allergic dermatitis increases year by year, depending on the environment in which various allergens are increased, dietary changes, and the like, and the symptoms tend to be severe.
  • Treatment of allergic dermatitis is mainly drug therapy, and corticosteroids, immunosuppressants, and antihistamines are used. These drugs may only relieve symptoms or settle inflammation, but are only temporary.
  • corticosteroids and immunosuppressants are known to have side effects of infection and poisoning.
  • rheumatoid arthritis known as STAT3-mediated inflammatory disease, degenerative arthritis (Korean Publication No. 10-2014-0032925), osteoporosis, hyperimmunoglobulinemia, anemia, nephritis, chronic thyroiditis, Crohn's disease, pancreatitis, etc. (Korean Publication No. 10-1416149) And the like can be the object of prevention and treatment according to the present invention.
  • RNA interference is known to inhibit gene expression with high specificity and efficiency
  • siRNAs targeting various genes have been studied as a therapeutic agent for cancer. These genes include cancer cells such as oncogenes, anti-apoptotic molecules, telomerases, growth factor receptor genes, and signaling molecules. Inhibiting the expression of genes necessary for survival or inducing apoptosis is the main direction (RNA interference in cancer. Biomolecular Engineering. 2006; 23: 17-34).
  • STAT3 signal transducer and activator of transcription 3 is a transcription factor that promotes transcription by delivering extracellular extracellular growth factor and cytokine signals to the nucleus.
  • STAT3 inhibitors for cancer therapy Have all roads been explored- Jak-Stat. 2013; 1; 2 (1): e22882).
  • Phosphorylated STAT3 (p-STAT3) binds to the DNA of the nucleus and induces the expression of a broad range of target genes involved in tumorigenesis, such as proliferation and differentiation of cells. It is constantly active in about 70% (Role of STAT3 in cancer metastasis and translational advances. BioMed research international. 2013; 2013: 421821).
  • siRNA specific to the STAT3 gene can specifically inhibit the activity of the STAT3 gene, and a double-stranded oligo RNA structure comprising the same and a drug containing the same
  • the present invention was completed by confirming that the anticancer effect, the skin disease and the inflammatory disease of the pharmaceutical composition are very excellent.
  • An object of the present invention is to solve the above problems, a novel siRNA that can inhibit its expression with a very high efficiency specific to STAT3 and a double-stranded oligo RNA structure comprising the same, and such a double-stranded oligo RNA structure It is to provide a method of manufacturing.
  • Another object of the present invention is to provide a pharmaceutical composition comprising the STAT3-specific siRNA or a double-stranded oligo RNA structure comprising such siRNA as an active ingredient.
  • Still another object of the present invention is to provide a method for preventing or treating cancer, skin disease or inflammatory disease using the STAT3-specific siRNA or a double-stranded oligo RNA structure comprising such siRNA.
  • the present invention provides a STAT3 specific siRNA comprising a sense strand comprising any sequence selected from SEQ ID NO: 1 to SEQ ID NO: 200 and an antisense strand comprising a sequence complementary thereto. to provide.
  • STAT3 specific siRNA in the present invention means siRNA specific to a gene encoding a STAT3 protein.
  • one or more bases include a sequence substituted, deleted, or inserted. It is apparent to those skilled in the art that STAT3 specific siRNAs including sense strands and antisense strands are also included in the scope of the present invention.
  • SEQ ID NO: 1 to SEQ ID NO: 200 is the sense strand sequence of STAT3 specific siRNA.
  • the sense strand or the anti-sense strand of the siRNA is not limited to the number of nucleotides if it can perform the function of siRNA, preferably it may be characterized in that consisting of 19 to 31 nucleotides.
  • the siRNA preferably comprises a sense strand of STAT3 specific siRNA according to SEQ ID NO: 12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, 171 It may be characterized by, more preferably comprising a sense strand of STAT3 specific siRNA according to SEQ ID NO: 17, 42, 101, 119, 137, most preferably SEQ ID NO: 42, 101 , 137 may be characterized in that it comprises a sense strand of the STAT3-specific siRNA.
  • STAT3 specific siRNA provided in the present invention has a base sequence designed to complementarily bind to the mRNA encoding the gene, it is characterized in that it can effectively suppress the expression of the gene.
  • the siRNA may include an overhang, which is a structure including one or two or more unpaired nucleotides at the 3 ′ end of the siRNA.
  • the siRNA may be characterized in that it comprises a variety of modification (modification) for imparting nuclease resistance resistance and non-specific immune response to improve the stability in vivo. Modifications of the siRNAs have been described in which the —OH group at the 2 ′ carbon position of the sugar structure in one or more nucleotides is —CH 3 (methyl), —OCH 3 (methoxy), —NH 2 , —F (fluorine), —O-2-methicone.
  • STAT3 specific siRNA provided by the present invention not only inhibits the expression of the gene of interest, but also significantly inhibits the expression of the protein of interest.
  • STAT3 specific siRNA of the present invention can be used in combination with existing radiation or chemotherapy.
  • a conjugate in which a hydrophilic substance and a hydrophobic substance are conjugated to both ends of an siRNA for efficient delivery and stability of breast cancer associated genes, particularly STAT3 specific siRNA, in vivo.
  • siRNA conjugates in which a hydrophilic material and a hydrophobic material are bound to siRNA, self-assembled nanoparticles are formed by hydrophobic interaction of the hydrophobic material (see Korean Patent Registration No. 1224828). And not only the stability in the body is extremely excellent, but also the particle size is very uniform through the improvement of the structure is easy to QC (Quality control), there is an advantage that the manufacturing process as a drug is simple (see WO2015002511).
  • the double-stranded oligo RNA structure comprising the STAT3 specific siRNA according to the present invention preferably comprises a structure as shown in the following structural formula (1).
  • A is a hydrophilic monomer
  • B is a hydrophobic substance
  • J is a m-hydrophilic monomer, or a linker connecting m hydrophilic monomers and oligonucleotides to each other
  • n is a hydrophilic monomer.
  • the number of repetitions of the repeated hydrophilic material blocks, X and Y are each independently a simple covalent bond or a linker mediated covalent bond
  • R is a STAT3 specific siRNA
  • m is an integer from 1 to 10, preferably 6, n is an integer of 1-10, Preferably it is 4.
  • the STAT3-specific siRNA may not only not only match perfect sequences but also some sequences when the antisense strand of the siRNA is 100% nucleotide complementary to the binding site of the STAT3 gene. If not, that is, there is a mismatch.
  • Such siRNA is preferably at least 70%, more preferably at least 80%, even more preferably at least 90%, even more preferably at least 95%, most preferably 100% relative to a portion of the mRNA sequence of the STAT3 gene It may consist of a sequence having a homology of.
  • siRNAs may be duplexed and may also include single molecule polynucleotides, but are not limited to antisense oligonucleotides or microRNAs (miRNAs).
  • the double-stranded oligo RNA structure comprising STAT3-specific siRNA according to the present invention has the structure of the following structural formula (2).
  • A, B, J, m, n, X and Y in the formula (2) is the same as the definition in the formula (1), S is the sense strand of STAT3-specific siRNA, AS is antisense of STAT3-specific siRNA Means strand.
  • the double-stranded oligo RNA construct comprising STAT3-specific siRNA has the structure of formula (3) below.
  • One to three phosphate groups may be bonded to the 5 ′ end of the antisense strand of the double-stranded oligo RNA structure comprising the STAT3-specific siRNAs in the formulas (1) to (3), It is apparent to those skilled in the art that shRNA may be used instead of siRNA.
  • the hydrophilic material monomers (A) in the structural formulas (1) to (3) can be used without limitation as long as they meet the object of the present invention among the monomers of the nonionic hydrophilic polymer, preferably in Table 1
  • the hydrophobic material (B) in the structural formulas (1) to (3) serves to form nanoparticles composed of the oligonucleotide structure according to the structural formula (1) through hydrophobic interaction.
  • the hydrophobic material preferably has a molecular weight of 250 to 1,000, steroid derivatives, glyceride derivatives, glycerol ether, polypropylene glycol, C 12 to C 50 unsaturated or saturated hydrocarbons, diacylphosphatidylcholine, fatty acids, phospholipids, lipopolyamines, and the like may be used, but are not limited thereto. Any hydrophobic material can be used as long as it can be understood by those skilled in the art to which the present invention pertains.
  • the steroid derivative may be selected from the group consisting of cholesterol, cholestanol, cholic acid, chosteryl formate, cotestanyl formate and colistanylamine, the glyceride derivative is Mono-, di- and tri-glycerides and the like, wherein the fatty acid of the glyceride is preferably C 12 to C 50 unsaturated or saturated fatty acid.
  • hydrophobic substances saturated or unsaturated hydrocarbons or cholesterols are preferable in that they have the advantage of being easily bonded in the synthesis step of the oligonucleotide structure according to the present invention.
  • the hydrophobic material is bound to the distal end of the hydrophilic material, and may be bonded at any position of the sense strand or the antisense strand of the siRNA.
  • the hydrophilic or hydrophobic material and the STAT3-specific siRNA in the structural formulas (1) to (3) according to the present invention are bound by simple covalent bonds or linker-mediated covalent bonds (X or Y).
  • the linker that mediates the covalent bond is not particularly limited as long as it provides covalent bond at the end of the STAT3-specific siRNA with a hydrophilic substance or a hydrophobic substance, and can be decomposed in a specific environment as necessary.
  • the linker can be used any compound that binds to activate the STAT3-specific siRNA and / or hydrophilic material (or hydrophobic material) during the preparation of the double helix oligo RNA structure according to the present invention.
  • the covalent bond may be any of non-degradable bonds or degradable bonds.
  • the non-degradable bonds include amide bonds or phosphorylation bonds
  • the degradable bonds include disulfide bonds, acid decomposable bonds, ester bonds, anhydride bonds, biodegradable bonds or enzymatic bonds, but are not limited thereto. .
  • STAT3 specific siRNAs represented by R (or S and AS) in the above formulas (1) to (3) can be used without limitation as long as all siRNAs have properties that can specifically bind to STAT3,
  • the present invention may be characterized by consisting of a sense strand comprising any one sequence selected from SEQ ID NO: 1 to SEQ ID NO: 200 and an antisense strand comprising a complementary sequence thereto.
  • the siRNA preferably comprises a sense strand of STAT3 specific siRNA according to SEQ ID NO: 12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, 171, More preferably the sense strand of the STAT3 specific siRNA according to SEQ ID NO: 17, 42, 101, 119, 137, most preferably the sense strand of the STAT3 specific siRNA according to SEQ ID NO: 42, 101, 137 It may be characterized in that it comprises a.
  • Tumor tissue is very robust and has diffusion-limitation compared to normal tissue, which can adversely affect the movement of waste products such as nutrients, oxygen and carbon dioxide, which are necessary for tumor growth.
  • Angiogenesis overcomes diffusion limitations by forming blood vessels around. Blood vessels in tumor tissue formed through angiogenesis have a leaky and defective blood vessel having a gap of about 100 nm to 2 um depending on the type of tumor. As a result, nanoparticles pass through the capillary endothelium of cancerous tissues, which contain loose blood vessel structures, compared to the organized capillaries of normal tissues, thereby facilitating access to tumor interstitium during blood circulation. In addition, there is no lymphatic drainage in tumor tissues, which results in the accumulation of drugs.
  • EPR enhanced permeation and retention
  • Active targeting uses target cell surface specific or overexpressed carbohydrates, receptors, and antigens (targeting moieties) that have the ability to bind to antigens (Nanotechnology in cancer). therapeutics: bioconjugated nanoparticles for drug delivery.Mol Cancer Ther 2006; 5 (8): 1909-1917).
  • the target moiety can be efficiently promoted to a target cell, and at a relatively low concentration, It can be delivered to target cells and exhibit high target gene expression regulating function, and can prevent delivery of non-specific STAT3 specific siRNA to other organs and cells.
  • the present invention provides a receptor (L), particularly a receptor for enhancing internalization of a target cell through receptor-mediated endocytosis (RME), in a construct according to Structural Formulas (1) to (3).
  • a receptor particularly a receptor for enhancing internalization of a target cell through receptor-mediated endocytosis (RME), in a construct according to Structural Formulas (1) to (3).
  • RME receptor-mediated endocytosis
  • L is receptor-mediated endocytosis
  • RME refers to a ligand having a property of specifically binding to a receptor that promotes target cell internalization
  • i means an integer of 1 to 5, preferably an integer of 1 to 3
  • Z is It is a linker that mediates the binding of a ligand to a hydrophilic monomer in a simple covalent or hydrophilic block of materials.
  • the ligand in the above formula (4) is preferably a target receptor-specific antibody or aptamer having the characteristics of receptor-mediated endocytosis (RME) that promotes internalization specifically to the target cell.
  • RME receptor-mediated endocytosis
  • Peptides; Or folic acid (Folate, in general, folate and folic acid are used interchangeably with each other, folic acid in the present invention means folate that is active in the natural state or human body), N-acetyl galactosamine (N-acetyl Galactosamine, NAG Hexamine (hexoamine), glucose (glucose), mannose, and other chemicals, such as sugar or carbohydrate (carbohydrate), such as, but is not limited to this, preferably glucose.
  • the present invention provides a method for preparing a double-stranded oligo RNA construct comprising the STAT3 specific siRNA.
  • the process for preparing a double helix oligo RNA construct comprising a STAT3 specific siRNA according to the invention is, for example,
  • the solid support is preferably Controlled Pore Glass (CPG), but is not limited thereto.
  • CPG Controlled Pore Glass
  • the diameter is preferably 40 to 180 ⁇ m, and preferably has a pore size of 500 ⁇ s to 3000 ⁇ m.
  • the purified RNA-polymer construct and RNA single strand can be determined by measuring the molecular weight with a MALDI-TOF mass spectrometer to prepare the desired RNA-polymer construct and RNA single strand.
  • the step (4) of synthesizing the RNA single strand of the sequence complementary to the sequence of the RNA single strand synthesized in step (2) is performed before (1) or (1) to (5) It can be done during a process.
  • RNA single strand comprising the RNA single strand and the complementary sequence synthesized in step (2) may be a manufacturing method characterized in that used in the form of a phosphate group bonded to the 5 'end.
  • the present invention also provides a method for preparing a double-stranded oligo RNA structure in which ligand is additionally bound to a double-stranded oligo RNA structure comprising a STAT3-specific siRNA.
  • Methods for preparing oligo RNA constructs comprising STAT3 specific siRNAs with bound ligands are, for example,
  • the ligand-RNA-polymer structure and the RNA single strand of the complementary sequence is separated and purified, and then the desired ligand-RNA-polymer structure and complement by measuring the molecular weight with a MALDI-TOF mass spectrometer. You can check whether the RNA is prepared.
  • Ligand-double-stranded oligo RNA structures can be prepared by annealing RNA single strands of sequences complementary to the prepared ligand-RNA-polymer constructs.
  • the step (4) of synthesizing the RNA single strand of the sequence complementary to the sequence of the RNA single strand synthesized in step (3) is an independent synthesis process before (1) or (1) to ( 6) may be performed during any of the steps.
  • a nanoparticle comprising a double helix oligo RNA construct comprising a STAT3 specific siRNA.
  • the double-stranded oligo RNA structure containing STAT3-specific siRNA is amphiphilic containing both hydrophobic and hydrophilic substances, and the hydrophilic portion is formed by interacting with hydrogen molecules and water molecules in the body. They have an affinity and are directed outwards, and hydrophobic materials are directed inward through hydrophobic interactions between them, forming thermodynamically stable nanoparticles. That is, the hydrophobic material is located in the center of the nanoparticles, and the hydrophilic material is located in the outward direction of the STAT3 specific siRNA to form a nanoparticle that protects the STAT3 specific siRNA. The thus formed nanoparticles enhance the intracellular delivery of STAT3-specific siRNA and the siRNA efficacy.
  • Nanoparticles according to the invention may be formed of a double-stranded oligo RNA structure comprising siRNA having the same sequence, or may be composed of a double-stranded oligo RNA structure comprising siRNA comprising different sequences
  • siRNAs comprising different sequences in the present invention may be different target genes, for example, STAT3 specific siRNAs, and may include cases in which the sequences are different while having the same target gene specificity.
  • double-stranded oligo RNA constructs comprising other cancer specific target gene specific siRNAs in addition to STAT3-specific siRNAs may also be included in the nanoparticles according to the invention.
  • the present invention provides a method for preventing or treating cancer, skin disease or inflammatory disease comprising STAT3-specific siRNA, a double-stranded oligo RNA structure comprising the same, and / or nanoparticles comprising the double-stranded oligo RNA structure. It provides a composition for.
  • a double-stranded oligo RNA structure comprising the same and / or a composition comprising nanoparticles consisting of the double-stranded oligo RNA structure as an active ingredient induces the proliferation of cancer cells and the death of cancer cells, or keratin It induces proliferation and death of forming cells and thus induces the activity of abnormal immune cells, thereby preventing or treating cancer, skin disease or inflammatory disease.
  • the STAT3-specific siRNA and the composition comprising the same according to the present invention can be used for various cancers, including gastric cancer, lung cancer, pancreatic cancer, colorectal cancer, liver cancer, prostate cancer, ovarian cancer and kidney cancer, including breast cancer in which the gene is reported to be overactivated. It is effective in preventing or treating skin diseases and inflammatory diseases including cancer or psoriasis.
  • siRNA specific to cancer, skin disease or inflammatory disease specific target genes other than STAT3 or a double-stranded oligo RNA construct comprising the same may be additionally included in the composition according to the present invention.
  • the cancer further includes all of the double-stranded oligo RNA construct comprising siRNA specific to cancer, skin disease or inflammatory disease specific target gene other than STAT3.
  • a composition for the prevention or treatment of skin diseases or inflammatory diseases synergistic effects can be achieved, such as combination therapy, which is often used to treat cancer, skin diseases or inflammatory diseases.
  • Cancers that can be prevented or treated by the composition according to the present invention may exemplify breast cancer, stomach cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, ovarian cancer, kidney cancer and lung cancer, but are not limited thereto.
  • Psoriasis, atopic dermatitis, ringworm and allergic skin diseases can be exemplified, but not limited thereto.
  • Inflammatory diseases may include rheumatoid arthritis, degenerative arthritis, hyperimmunoglobulinemia, chronic thyroiditis, Crohn's disease, and pancreatitis. It is not limited to this
  • composition of the present invention may be prepared by including at least one pharmaceutically acceptable carrier in addition to the above-mentioned effective ingredient.
  • Pharmaceutically acceptable carriers must be compatible with the active ingredients of the present invention and include saline solution, sterile water, Ringer's solution, buffered saline solution, dextrose solution, maltodextrin solution, glycerol, ethanol and one or more of these ingredients. It can mix and use, and if needed, other conventional additives, such as antioxidant, buffer, and bacteriostatic agent, can be added.
  • diluents, dispersants, surfactants, binders and lubricants may be additionally added to formulate injectable formulations such as aqueous solutions, suspensions, emulsions and the like.
  • injectable formulations such as aqueous solutions, suspensions, emulsions and the like.
  • it may be preferably formulated according to each disease or component by a suitable method in the art or using a method disclosed in Remington's pharmaceutical Science, Mack Publishing Company, Easton PA.
  • composition of the present invention can be determined by a person of ordinary skill in the art based on the symptoms and severity of the disease of a typical patient. It may also be formulated in various forms, such as powders, tablets, capsules, solutions, injections, ointments, syrups, and the like, and may also be provided in unit-dose or multi-dose containers, such as sealed ampoules and bottles.
  • composition of the present invention can be administered orally or parenterally.
  • Routes of administration of the compositions according to the invention include, but are not limited to, for example, bronchial, oral, intravenous, intramuscular, intraarterial, intramedullary, intradural, intracardiac, transdermal, subcutaneous, intraperitoneal, intestinal Sublingual, or topical administration is possible.
  • the dosage of the composition according to the present invention may vary in the range depending on the weight, age, sex, health condition, diet, time of administration, method, excretion rate or severity of the disease, etc. of the patient, and is easily available to those skilled in the art. Can decide.
  • the compositions of the present invention can be formulated into suitable formulations using known techniques for clinical administration.
  • STAT3-specific siRNA according to the present invention, a double-stranded oligo RNA structure comprising the siRNA, a composition or a nanoparticle comprising the same for use in the manufacture of a medicament for the prevention or treatment of cancer, skin diseases or inflammatory diseases To provide.
  • the present invention also provides a method for preventing and treating cancer, skin disease or inflammatory disease comprising administering a double-stranded oligo RNA structure, a composition or a nanoparticle comprising the same to a patient in need thereof. to provide.
  • FIG. 1 is a schematic diagram of nanoparticles composed of a double helix oligo RNA structure according to the present invention.
  • oligo RNA structure comprising an siRNA comprising a sequence of SEQ ID NO: 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 or 171 according to the present invention as a sense strand It is a measurement graph of the size (size) and polydispersity index (PDI) of the nanoparticles made.
  • Figure 3 is a graph of the expression inhibition of the identified target gene after transforming the siRNA having the sense strand of SEQ ID NO: 1 to 200 of the present invention in the MCF-7 cell line at a concentration of 5 nM.
  • Figure 4 is a graph of the expression inhibition of the identified target genes after transforming the siRNA having the sense strand of SEQ ID NO: 1 to 200 of the present invention in the MCF-7 cell line at a concentration of 1 nM.
  • the siRNA having the sense strand is transformed into the MDA-MB-231 cell line at a concentration of 0.2 nM, 1 nM or 5 nM, and then a graph of the target gene expression inhibition confirmed.
  • FIG. 6 shows siRNA having a sense strand having a sequence of SEQ ID NOs. 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 or 171 of the present invention as 1.6 pM, 8 pM, 40 pM, It is a graph of the target gene expression inhibition confirmed after transforming the MCF-7 cell line at a concentration of 200 pM, 1 nM or 5 nM.
  • RNA 7 is 1.6 pM, 8 pM, 40 pM, siRNA having a sense strand of the sequence SEQ ID NO: 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 or 171 of the present invention, After transforming MDA-MB-231 cell line at a concentration of 200 pM, 1 nM or 5 nM, it is a graph of confirmed target gene expression inhibition.
  • Figure 8 is an analysis of the IC50 (inhibition concentration 50%) of siRNA having a sense strand of the sequence of SEQ ID NO: 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 or 171 of the present invention
  • A is the MCF-7 cell line
  • B is the MDA-MB-231 cell line.
  • Figure 9 shows the target gene expression after transforming the siRNA having the sense strand of SEQ ID NO: 17, 42, 101, 119, 137 of the present invention in a 5 nM or 50 nM MDA-MB-231 cell line Inhibition amount and thus cell viability reduction amount graph, A is the target gene expression inhibition amount, B is the cell viability reduction amount.
  • RNA 10 is a nano-contained double-stranded RNA structure comprising an siRNA having a sense strand of SEQ ID NO: 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 or 171 of the present invention
  • siRNA having a sense strand of SEQ ID NO: 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 or 171 of the present invention
  • Figure 11 is a ligand (at a concentration of 100 nM, 200 nM or 500 nM of nanoparticles consisting of a double-stranded oligo RNA structure comprising all of the siRNA comprising the sense strand of SEQ ID NO: 42, 101, 137 according to the present invention) Inhibition amount of the target gene according to the presence or absence of glucose) is a graph analyzed in the MDA-MB-231 cell line.
  • Figure 12 is a ligand to the same nanoparticles (SAMiRNA-STAT3-Combo) consisting of a double-stranded oligo RNA structure comprising all of the siRNA comprising the sequence of SEQ ID NO: 42, 101, 137 as the sense strand according to the present invention It is a graph measuring the size and polydispersity index (PDI) of glucose-containing nanoparticles (Glucose-SAMiRNA-STAT3-Combo).
  • PDI polydispersity index
  • Figure 13 is a microvenous administration of mouse breast cancer xenograft model of the nanoparticles (SAMiRNA-STAT3-Combo) containing all of the double-stranded RNA structure comprising a siRNA having the sense strand of SEQ ID NO: 42, 101, 137 of the present invention
  • SAMiRNA-STAT3-Combo siRNA having the sense strand of SEQ ID NO: 42, 101, 137 of the present invention
  • PBS PBS (excipient) administration control group
  • SAMiRNA-CONT nanoparticle 5 mg / kg body weight administration control comprising siRNA having the sense strand of SEQ ID NO: 201
  • Two-way ANOVA with Bonferroni postests was used with GraphPad PRISM5 software (La Jolla, Calif.), And p ⁇ 0.05 was determined as a significant difference between experimental groups.
  • Figure 14 includes all of the double-stranded RNA structure comprising a siRNA having a sense strand of SEQ ID NO: 42, 101, 137 of the present invention, nanoparticles containing glucose as a ligand (Glucose-SAMiRNA-STAT3-Combo)
  • Glucose-SAMiRNA-STAT3-Combo nanoparticles containing glucose as a ligand
  • PBS PBS (excipient) administration control group
  • Glucose-SAMiRNA-CONT nanoparticle 5 mg / kg body weight administration control comprising siRNA having the sense strand of SEQ ID NO: 201; 1 mg / kg body weight or 5 mg / kg body weight of nanoparticles (Glucose-SAMiRNA-CONT-Combo) containing all of the siRNAs having the sense strand of Glucose-SAMiRNA-STAT3, SEQ ID NOs: 42, 101, and 137 Means the experimental group administered.
  • the nanoparticles SAMiRNA-STAT3-Combo, FIG. 15
  • the nanoparticles including all the double-stranded RNA structures including siRNAs having the sense strands of SEQ ID NOs: 42, 101, and 137 of the present invention.
  • the tumors after the administration of the microparticles of the nanoparticles Is a graph confirming the weight (angle A of FIGS. 15 and 16) and the percentage of tumor weight to weight ratio (angle B of FIGS. 15 and 16).
  • PBS PBS (excipient) administration control group
  • SAMiRNA-CONT nanoparticle 5 mg / kg body weight administration control comprising siRNA having the sense strand of SEQ ID NO: 201
  • Experimental group for administration of 1 mg / kg body weight or 5 mg / kg body weight of nanoparticles (SAMiRNA-CONT-Combo) including all siRNAs having a sense strand of the sequence of SAMiRNA-STAT3, SEQ ID NOs: 42, 101, and 137
  • Glucose-SAMiRNA-CONT nanoparticle 5 mg / kg body weight administration control comprising siRNA having the sense strand of SEQ ID NO: 201; 1 mg / kg body weight or 5 mg / kg body weight of nanoparticles (Glucose-SAMiRNA-CONT-Combo) containing all of the siRNAs having the sense strand of Glucose-SAMiRNA-STAT3, SEQ ID NOs: 42, 101, and 137 Means the experimental group administered
  • Figure 17 shows the expression of the identified target gene after transforming the siRNA having a sense strand of the SEQ ID NO: 42 of the present invention into a HaCaT cell line at a concentration of 50, 100, 200, 500 nM or 1 ⁇ M Inhibition graph.
  • siRNAs for the STAT3 gene of the present invention is a double stranded structure consisting of a sense strand consisting of 19 nucleotides and an antisense strand complementary thereto.
  • siCONT SEQ ID NO: 201
  • siRNA a siRNA having a sequence that does not inhibit expression of any gene.
  • the siRNA was prepared by linking phosphodiester bonds forming an RNA backbone structure using ⁇ -cyanoethyl phosphoramidite (Nucleic Acids Research, 12: 4539-4557, 1984).
  • a RNA synthesizer 384 Synthesizer, BIONEER, Korea
  • a series of processes consisting of deblocking, coupling, oxidation, and capping on a solid support to which nucleotides are attached was repeated to obtain a reaction containing RNA of the desired length.
  • the reaction was isolated and purified by HPLC LC918 (Japan Analytical Industry, Japan) equipped with Daisogel C18 (Daiso, Japan) column and matched with target sequence using MALDI-TOF mass spectrometer (Shimadzu, Japan). Confirmed. Then, the desired double-stranded siRNA (SEQ ID NOS: 1-201) was prepared by combining the sense and antisense RNA strands (see Table 2).
  • the double-stranded oligo RNA structure prepared in the present invention has a structure as shown in the following structural formula (5).
  • S is the sense strand of the siRNA
  • AS is the antisense strand of the siRNA
  • PO 4 is a phosphate group
  • ethylene glycol is a hydrophilic monomer (monomer) is a repeating frequency of A of the formula (3)
  • hydrophilic monomer m is as 6 hexaethylene glycol (hexa ethylene glycol) linker (J) a phosphoric acid group (PO 3 -) by being coupled through the repetition number (n) of hydrophilic material block 4
  • C 24 is a hydrophobic material
  • Tetradocosane which contains disulfide bonds
  • 5 'and 3' refer to the terminal orientation of the double helix oligo RNA
  • glucose is a ligand that enhances receptor mediated intracellularization (RME).
  • the sense strand of siRNA in the above formula (5) is ⁇ -cyanoethyl in the manner mentioned above using DMT-hexaethylin glycol-CPG prepared according to the method described in Example 1 of the existing patent (WO2015002511) as a support.
  • phosphamidite to connect phosphodiester bonds forming an RNA framework
  • oligo RNA-hydrophilic substance structures including a sense strand having hexaethylene glycol bonded to the 3 'terminal are synthesized.
  • Tetradocoic acid containing disulfide bonds was bound to the 5 'end to prepare a sense strand of a desired RNA-polymer construct.
  • the antisense strand of the sequence complementary to the sense strand was prepared through the reaction mentioned above.
  • RNA single-strand and RNA-polymer constructs were separated from CPG by treating 28% (v / v) ammonia in a 60 ° C water bath. The protective residue was removed through the reaction. RNA single-stranded and RNA-polymerized structures with no protective residues were added in a volume ratio of N-methylpyrrolidon, triethylamine and triethylaminetrihydrofluoride in an oven at 70 ° C. 2 'TBDMS (tert-butyldimethylsilyl) was removed by treatment at a ratio of 10: 3: 4.
  • reaction was isolated and purified by HPLC LC918 (Japan Analytical Industry, Japan) equipped with Daisogel C18 (Daiso, Japan) column and matched with target sequence using MALDI-TOF mass spectrometer (Shimadzu, Japan). Confirmed.
  • each double-stranded oligo RNA structure 1 ⁇ annealing buffer (30 mM HEPES, 100 mM potassium acetate), 2 mM magnesium acetate, pH 7.0 -7.5), reacted for 3 minutes in a 90 ° C constant temperature water bath and then again at 37 ° C, SEQ ID NOs: 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170, 171 and Double-stranded oligo RNA constructs comprising siRNA having the sense strand of siRNA 201 (hereinafter SAMiRNA-STAT3 # 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170, 171 and SAMiRNA- Each called CONT). It was confirmed that the prepared double helix oligo RNA structure was annealed through electrophoresis.
  • the double-stranded oligo RNA structure synthesized in Example 2 forms a micelle (micelle) as nanoparticles by hydrophobic interaction between hydrophobic materials bound to the ends of the double-stranded oligo RNA (see FIG. 1).
  • nanoparticles composed of the corresponding SAMiRNA was confirmed by analyzing the size (diameter, d.nm) and polydispersity index (hereinafter, PDI (polydispersity index)) of the nanoparticles consisting of SAMiRNA-STAT3 and SAMiRNA-CONT.
  • PDI polydispersity index
  • SAMiRNA-STAT3 # 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170, 171 and SAMiRNA-CONT synthesized in Example 2 were added to 1.5 ml Phosphate Buffered Saline (PBS). After dissolving at a concentration of / ml, to prepare a nanoparticle powder by lyophilization for 48 hours at -75 °C, 5mTorr conditions, dissolved in 1.5 ml PBS solvent to prepare homogenized nanoparticles were used for cell experiments.
  • PBS Phosphate Buffered Saline
  • Example 2 The same amount of SAMiRNA-STAT3 # 42, # 101, # 137 synthesized in Example 2 was mixed and dissolved in 1 ml PBS (Phosphate Buffered Saline) at a concentration of 250 ⁇ g / ml, and then, at -75 ° C. and 5 mTorr conditions. Nanoparticle powders were prepared by daily freeze-drying, and then dissolved in 0.2 ml PBS, a solvent, to prepare homogenized nanoparticles and used in animal experiments.
  • PBS Phosphate Buffered Saline
  • the prepared SAMiRNA-CONT homogenizer and SAMiRNA-STAT3 homogenizer were diluted 1/25 in PBS and used for cell transformation confirmation experiments of animal nanoparticles at a concentration of 50 ⁇ g / ml.
  • Example 3-3 Nanoparticle Size and PDI Measurement
  • the size and dispersion of the nanoparticles were measured by a dynamic light-scattering method.
  • the homogenized nanoparticles prepared in Examples 3-1 and 3-2 were measured for size and dispersion with a dynamic light scattering meter (Nano-ZS, MALVERN, UK), the refractive index of the material (Refractive index) is 1.459, the absorption rate (Absorption index) was 0.000, the temperature of the solvent PBS 25 °C and the resulting viscosity (viscosity) was measured by entering the value of 1.0200 and the refractive index of 1.335.
  • One measurement consisted of a size measurement consisting of 15 repetitions, which were repeated six times.
  • the particles were evenly distributed, and the nanoparticles of the present invention were found to have a very uniform size.
  • Human breast cancer cell line, MCF-7 was transformed using siRNA having a sense strand of SEQ ID Nos. 1 to 201 prepared in Example 1, and the expression pattern of the target gene was analyzed in the transformed cell line.
  • Example 4-1 Culture of Human Breast Cancer Cell Line, MCF-7
  • Opti-MEM medium GEBCO, USA
  • the Opti-MEM medium was removed and 1 ml of RPMI 1640 culture medium was dispensed per well. Incubated for 24 hours at 37 ° C. and 5% (v / v) CO 2 conditions.
  • cDNA was prepared by extracting total RNA from the cell line transfected in Example 4-2, mRNA expression of the target gene was quantified relative to each other using real-time PCR.
  • Example 4-3-1 RNA Isolation and cDNA Preparation from Transfected Cells
  • RNA extraction kit (AccuPrep Cell total RNA extraction kit, BIONEER, Korea) the total RNA is extracted from the cell line transfected in Example 4-2, the extracted RNA is RNA reverse transcriptase (AccuPower RocketScript Cycle RT Premix) / dT20, Bioneer, Korea), to prepare a cDNA in the following manner. Specifically, 1 ⁇ g of RNA extracted per tube was added to AccuPower RocketScript Cycle RT Premix / dT20 (Bioneer, South Korea) contained in 0.25 ml Eppendorf tubes and treated with DEPC (diethyl pyrocarbonate) to achieve a total volume of 20 ⁇ l. Distilled water was added.
  • RNA reverse transcriptase (AccuPower RocketScript Cycle RT Premix) / dT20, Bioneer, Korea)
  • MyGenie TM 96 Gradient Thermal Block BIONEER, Korea
  • the relative amount of STAT3 gene mRNA was quantified by real-time PCR in the following manner.
  • the cDNA prepared in Example 4-3-1 was diluted 5 times with distilled water, 3 ⁇ l of diluted cDNA and 25 ⁇ l of 2 ⁇ GreenStar TM PCR master mix (BIONEER, Korea), 16 ⁇ l of distilled water, STAT3 qPCR primer (F , 10 pmole / ⁇ l of each of the mixture, BIONEER, Korea, see Table 3) 6 ⁇ l of the mixture was placed in a 96-well PCR plate.
  • GAPDH Glyceraldehyde 3-phosphate dehydrogenase
  • HK gene housekeeping gene
  • ⁇ Ct value was calculated
  • ⁇ Ct value and the formula 2 ( ⁇ Ct) ⁇ 100 the expression level of the target gene of the cells treated with STAT3-specific siRNA was quantified (see FIG. 3, 5 nM concentration siRNA treatment; see FIG. 4, 1 nM). Concentration siRNA treatment).
  • siRNAs having a high mRNA expression level for a target gene were reduced at 1 nM and 5 nM concentrations (SEQ ID NOs: 12, 17, 42, 55, 91, 95, 101, 108, 111, 114, 116, 119, 137, 139, 141, 152, 166, 168, 170, 171 with sense strands).
  • Example 2 Prepared in Example 1, and selected from SEQ ID NOs: 12, 17, 42, 55, 91, 95, 101, 108, 111, 114, 116, 119, 137, 139, 141, 152
  • Another human breast cancer cell line, MDA-MB-231 was transformed using siRNA having sense strands 166, 168, 170, and 171, and the expression pattern of the target gene was analyzed in the transformed cell line.
  • Example 5-1 Culture of Human Breast Cancer Cell Line, MDA-MB-231
  • MDA-MB-231 Human breast cancer cell line, MDA-MB-231, obtained from the American Type Culture Collection (ATCC) was cultured under the same conditions as in Example 4-1.
  • the MDA-MB-231 cell line cultured in Example 5-1 was used in a 12-well plate at 37 ° C., 5% (v / v) CO 2, in an RPMI 1640 culture medium for 18 hours at a cell number of 0.8 ⁇ 10 5 per well. After culturing under conditions, 500 ⁇ l of Opti-MEM medium (GIBCO, USA) was dispensed per well after removing the medium.
  • Opti-MEM medium GEBCO, USA
  • siRNA solution having a concentration of 0.8 nM, 4 nM or 20 nM in the final 250 ⁇ l amount.
  • the lipofectamine RNAi Max (Lipofectamine TM RNAi Max) mixture and the siRNA solution were mixed and reacted for 15 minutes at room temperature to prepare a solution for transfection.
  • Opti-MEM medium was removed and 1 ml of RPMI 1640 culture medium was dispensed per well. Incubated for 24 hours at 37 ° C. and 5% (v / v) CO 2 conditions.
  • siRNAs with high efficiency at all siRNA concentrations of 0.2 nM, 1 nM and 5 nM were selected (SEQ ID NOs: 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170, 171 sequence having sense strand).
  • Example 6 Measurement of IC 50 (inhibition concentration 50%) in human breast cancer cell lines (MCF-7, MDA-MB-231)
  • siRNA prepared in Example 1 and having the sense strand of the sequence of SEQ ID NOs 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 and 171 selected in Example 5-3 The human breast cancer cell line (MCF-7, MDA-MB-231) was transformed, and the exact efficiency of siRNA was analyzed by confirming the IC 50 value by analyzing the expression level of the target gene in the transformed cell line.
  • Example 6-1 Culture of Human Breast Cancer Cell Lines (MCF-7, MDA-MB-231)
  • MCF-7 Human breast cancer cell lines (MCF-7, MDA-MB-231) obtained from the American Type Culture Collection (ATCC) were cultured under the same conditions as in Example 4-1.
  • Example 6-2 Transfection of Target siRNA in Human Breast Cancer Cell Lines (MCF-7, MDA-MB-231)
  • the MCF-7 and MDA-MB-231 cell lines cultured in Examples 4-1 and 5-1 above were RPMI 1640 for 18 hours in a 12-well plate at 37 ° C. and 5% (v / v) CO 2 . After incubation in culture medium, 500 ⁇ l of Opti-MEM medium (GIBCO, USA) was dispensed per well after removing the medium.
  • the Opti-MEM medium was removed and 1 ml of RPMI 1640 culture medium was dispensed. Incubation was performed under conditions of 37 ° C. and 5% (v / v) CO 2 for a period of time.
  • Example 6 After extracting the entire RNA from the cell line transfected in Example 6-2 to prepare a cDNA, using the real-time PCR (real-time PCR) the mRNA expression amount of the target gene in the same manner as in Example 4-3 Relative quantification (see Figure 6, MCF-7 cell line; see Figure 7, MDA-MB-231 cell line).
  • Example 6-3 SoftMax Pro program (Molecular Devices, USA) was used to confirm the IC 50 value based on the results identified in Example 6-3.
  • Nonlinear regression analysis was performed by converting the% expression level of the target gene into the% inhibition rate by siRNA, graphing the log of the concentration of the siRNA, and substituting it into the 4-parameter logistics model. The IC 50 value was confirmed through (see FIG. 8).
  • IC 50 values in two breast cancer cells clearly identified the efficacy of each siRNA (see Table 4, SEQ ID NOs: 17, 42, 101, 119, 137, five sequences were selected).
  • a breast cancer cell line, MDA-MB-231 was transformed at a concentration of 5, 50 nM of an siRNA having a sense strand of SEQ ID NOs: 17, 42, 101, 119, and 137, which are the highly efficient siRNA selected in Example 6-4. After the expression of the target gene expression inhibition and cell growth inhibition was confirmed.
  • the MDA-MB-231 cell line cultured in Example 5-1 was RPMI for 18 hours at a cell number of 0.6 ⁇ 10 5 per well in a 12-well plate under conditions of 5% (v / v) CO 2 at 37 ° C. After incubation in -1640 culture medium, 500 ⁇ l of Opti-MEM medium (GIBCO, USA) was dispensed per well after the medium was removed.
  • Opti-MEM medium GIBCO, USA
  • Example 7-2 Quantitative Analysis of Target Gene mRNA
  • Example 7-1 The cells transformed in Example 7-1 were washed twice with 500 ⁇ l of DPBS per well, and 500 ⁇ l of TrypLETM Express with Phenol Red (1 ⁇ , Gibco, USA) per well was used at 37 ° C. for 5% (v / v) The cells were suspended by treatment for 2 minutes under conditions of CO 2 . Stop the reaction by adding 500 ⁇ l RPMI 1640 culture medium per well, mix 100 ⁇ l with the same amount of 2x Trypan Blue Solution, and take 10 ⁇ l of LUNATM Automated Cell Counter (Logos Biosystems, USA). ) was used to measure the number of cells. The measurement was performed three times (see Fig. 9, B).
  • siRNA having the sense strand of SEQ ID NO: 42, 101, 137 was treated with 50 nM.
  • the experimental group was found to have about 40% inhibition in vitro .
  • MDA-MB-231 using a nanoparticle comprising (SAMiRNA-STAT3 # 12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, 171). Expression patterns were analyzed.
  • Example 8-1 Culture of Human Breast Cancer Cell Line, MDA-MB-231
  • MDA-MB-231 Human breast cancer cell line, MDA-MB-231, obtained from the American Type Culture Collection (ATCC) was cultured under the same conditions as in Example 5-1.
  • Example 8-2 Treatment of SAMiRNA-STAT3 in Human Breast Cancer Cell Line, MDA-MB-231
  • MDA-MB-231 cell line incubated in Example 5-1 in a 12-well plate at 37 °C, 5% (v / v) CO in RPMI 1640 culture medium for 18 hours at a cell number of 0.6 ⁇ 10 5 per well The culture was carried out under the conditions of 2 .
  • SAMiRNA treatment solution 26.6 ⁇ l or 53.2 ⁇ l of each was prepared in Example 3-1 and 50 ⁇ g selected in Example 5-3 in each 973.4 ⁇ l or 946.8 ⁇ l of OPTI-MEM medium.
  • Example 9 According to the presence or absence of Glucose Ligand of Nanoparticles (SAMiRNA-STAT3-Combo) consisting of a double-stranded oligo RNA construct containing all STAT3-specific siRNAs for animal experiments in human breast cancer cell line, MDA-MB-231 Comparison of expression inhibition of target genes
  • Example 3-2 Prepared in Example 3-2, the same as the animal experimental nanoparticles (SAMiRNA-STAT3-Combo) containing all of the siRNA having a sense strand of SEQ ID NO: 42, 101, 137 selected in Example 7-3 nano Inhibition of target gene expression by nanoparticles (Glucose-SAMiRNA-STAT3-Combo) with glucose as the ligand in the particles was compared and analyzed in human breast cancer cell line, MDA-MB-231.
  • SAMiRNA-STAT3-Combo animal experimental nanoparticles containing all of the siRNA having a sense strand of SEQ ID NO: 42, 101, 137 selected in Example 7-3 nano Inhibition of target gene expression by nanoparticles (Glucose-SAMiRNA-STAT3-Combo) with glucose as the ligand in the particles was compared and analyzed in human breast cancer cell line, MDA-MB-231.
  • Example 9-1 Culture of Human Breast Cancer Cell Line, MDA-MB-231
  • MDA-MB-231 Human breast cancer cell line, MDA-MB-231, obtained from the American Type Culture Collection (ATCC) was cultured under the same conditions as in Example 5-1.
  • Example 9-2 Treatment of Nanoparticles in Human Breast Cancer Cell Line, MDA-MB-231
  • MDA-MB-231 cell line incubated in Example 5-1 in a 12-well plate at 37 °C, 5% (v / v) CO in RPMI 1640 culture medium for 18 hours at a cell number of 0.6 ⁇ 10 5 per well The culture was carried out under the conditions of 2 .
  • SAMiRNA-treated solutions 100 nM, 200 nM or 500 nM were prepared by mixing SAMiRNA-STAT3-Combo or Glucose-SAMiRNA-STAT3-Combo at a concentration of / ml (13.3 uM).
  • Example 3-2 Prepared in Example 3-2, the same as the animal experimental nanoparticles (SAMiRNA-STAT3-Combo) containing all siRNA having a sense strand of SEQ ID NO: 42, 101, 137 selected in Example 7-3 Tumor growth inhibitory effect in mouse breast cancer xenograft model by glucose nanoparticles (Glucose-SAMiRNA-STAT3-Combo) as a ligand to the nanoparticles was confirmed.
  • SAMiRNA-STAT3-Combo animal experimental nanoparticles containing all siRNA having a sense strand of SEQ ID NO: 42, 101, 137 selected in Example 7-3
  • Example 10-1 Construction of mouse breast cancer xenograft model
  • Example 10-2 Confirmation of weight change by nanoparticles consisting of a double-stranded oligo RNA structure containing STAT3-specific siRNA
  • Nanoparticles having glucose as a ligand to the same nanoparticles as animal experimental nanoparticles (SAMiRNA-STAT3-Combo) containing all of the siRNA having a sense strand of SEQ ID NO: 42, 101, 137 prepared in Example 3-2
  • the body weight was measured at two-day intervals (see Table 5, SAMiRNA-STAT3-Combo-administered group; Table 6). See Glucose-SAMiRNA-STAT3-Combo administration group).
  • Glucose-SAMiRNA-STAT3-Combo the body weight was measured at two-day intervals (see Table 5, SAMiRNA-STAT3-Combo-administered group; Table 6). See Glucose-SAMiRNA-STAT3-Combo administration group).
  • no significant weight gain or weight loss was observed, indicating that there were no external factors that could affect the interpretation of the results.
  • Example 10-3 Confirmation of tumor growth inhibition by nanoparticles consisting of double helix oligo RNA constructs containing STAT3-specific siRNA
  • Example 3-2 Prepared in Example 3-2, the same as the animal experimental nanoparticles (SAMiRNA-STAT3-Combo) containing all of the siRNA having a sense strand of SEQ ID NO: 42, 101, 137 selected in Example 7-3 nano Tumor growth inhibitory effect in mouse breast cancer xenograft model by nanoparticles (Glucose-SAMiRNA-STAT3-Combo) having glucose as ligand in the particles was confirmed.
  • SAMiRNA-STAT3-Combo animal experimental nanoparticles containing all of the siRNA having a sense strand of SEQ ID NO: 42, 101, 137 selected in Example 7-3
  • nano Tumor growth inhibitory effect in mouse breast cancer xenograft model by nanoparticles Glucose-SAMiRNA-STAT3-Combo having glucose as ligand in the particles was confirmed.
  • Example 10-3-1 Experimental grouping of mouse breast cancer xenograft model
  • Example 8-1 When the average tumor size of the mouse breast cancer model produced in Example 8-1 was 140 mm 3, the experimental groups were organized in groups of 6 per group according to the tumor size.
  • Example 10-3-2 Administration of nanoparticles consisting of a double helix oligo RNA construct comprising STAT3-specific siRNA
  • Example 3-2 Prepared in Example 3-2, the same as the animal experimental nanoparticles (SAMiRNA-STAT3-Combo) containing all of the siRNA having a sense strand of SEQ ID NO: 42, 101, 137 selected in Example 7-3 nano
  • nanoparticles Glucose-SAMiRNA-STAT3-Combo
  • glucose as a ligand in the particles were used, and 100 ⁇ l of the dose was injected into 1 ml syringe (0.25 mm x 8 mm, 31 Gauge).
  • BD328820, USA was administered intravenously to the experimental animal group configured in Example 10-3-1 once a day for 2 weeks, for a total of 14 consecutive weeks, and all the following administration groups were blind. ).
  • Administration group PBS, PBS (excipient) administration control group; SAMiRNA-CONT, nanoparticle 5 mg / kg body weight administration control comprising siRNA having the sense strand of SEQ ID NO: 201; Experimental group for administration of 1 mg / kg body weight or 5 mg / kg body weight of nanoparticles (SAMiRNA-CONT-Combo) including all siRNAs having a sense strand of the sequence of SAMiRNA-STAT3, SEQ ID NOs: 42, 101, and 137; Glucose-SAMiRNA-CONT, nanoparticle 5 mg / kg body weight administration control comprising siRNA having the sense strand of SEQ ID NO: 201; Administration of 1 mg / kg body weight or 5 mg / kg body weight of nanoparticles (Glucose-SAMiRNA-CONT-Combo) containing all siRNAs having the sense strand of Glucose-SAMiRNA-STAT3, SEQ ID NOs: 42, 101, and 137 Experimental group
  • Tumor size was measured at 2, 4, 6, 8, 10, 12, and 14 days after administration during the 14-day continuous administration period of Example 10-3-2 (see FIGS. 13 and 14).
  • 30% of SAMiRNA-STAT3 (1mg / kg body weight) and 37% of SAMiRNA-STAT3 (5mg / kg body weight) were compared with PBS, an excipient control group.
  • SAMiRNA-STAT3 (1 mg / kg body weight) was 24% and SAMiRNA-STAT3 (5mg / kg body weight) was 31%.
  • Glucose-SAMiRNA-STAT3 (1 mg / kg body weight) was 9%, Glucose-SAMiRNA-STAT3 (5 mg / kg body weight) was 46%, and a negative control Glucose-SAMiRNA-CONT was used.
  • Glucose-SAMiRNA-STAT3 (1mg / kg body weight) was -15% and Glucose-SAMiRNA-STAT3 (5mg / kg body weight) was 32%. Tumor growth inhibitory effect was not shown, but Glucose-SAMiRNA-STAT3 (5mg / kg body weight) showed significant tumor growth inhibition effect.
  • SAMiRNA-STAT3 (1mg / kg body weight) was 30%, 27% and SAMiRNA-STAT3 (5mg / kg body weight) was 43% and 43% compared to PBS, an excipient control group.
  • SAMiRNA-STAT3 (1 mg / kg body weight) was 32% and 30%, and SAMiRNA-STAT3 (5 mg / kg body weight) was 45% and 46%, compared to SAMiRNA-CONT, a negative control.
  • Glucose-SAMiRNA-STAT3 (1mg / kg body weight) was -10%, -18%, and Glucose-SAMiRNA-STAT3 (5mg / kg body weight) was 40% and 39% compared to PBS, an excipient control group.
  • Glucose-SAMiRNA-STAT3 (5mg / kg body weight) showed a significant anticancer effect.
  • Glucose-SAMiRNA-STAT3 (1mg / kg body weight) was -30% and -40%, and Glucose-SAMiRNA-STAT3 (5mg / kg body weight) was 30% and 28%, respectively. Tumor growth inhibitory effect was not shown by (1mg / kg body weight), but anti-cancer effect was shown in Glucose-SAMiRNA-STAT3 (5mg / kg body weight).
  • Example 10-4 Regulations on handling, care and disposal of laboratory animals
  • Example 11-1 Human Epidermal Keratin-forming Cell Line (Keratinocyte Cell Line), Culture of HaCaT
  • HaCaT a human keratinocytes cell line obtained from the American Type Culture Collection (ATCC), is a DMEM (Dulbecco's modified Eagle's medium) culture medium (GIBCO / Invitrogen, USA, 10% (v / v) fetal bovine serum, penicillin 100 units / ml and streptomycin 100 ⁇ g / ml) at 37 ° C. under 5% (v / v) CO 2 .
  • DMEM Dynamic fetal bovine serum
  • penicillin 100 units / ml penicillin 100 units / ml
  • streptomycin 100 ⁇ g / ml
  • Example 11-2 Treatment of SAMiRNA-STAT3 in the Human Epidermal Keratin-forming Cell Line (Keratinous Cell Line), HaCaT
  • HaCaT cell lines cultured in Example 11-1 were incubated in 12-well plates at 37 ° C., 5% (v / v) CO 2 in DMEM culture medium for 18 hours at a cell number of 0.6 ⁇ 10 5 per well.
  • Example 3-1 Prepared in Example 3-1 of 2.8, 5.6, 11.2, 28.1 ⁇ l or 56.1 ⁇ l each in 997, 994, 989, 972 ⁇ l or 944 ⁇ l of OPTI-MEM medium to prepare a SAMiRNA treatment solution.
  • SAMiRNA treatments of 50, 100, 200, 500 nM or 1 ⁇ M were prepared by mixing SAMiRNA-STAT3 # 42 or SAMiRNA-CONT at 250 ⁇ g / ml (17.8 ⁇ M) concentrations selected in Example 5-3.
  • STAT3 specific siRNA a composition for the treatment of cancer, skin disease or inflammatory disease comprising a double-stranded oligo RNA structure comprising the same by inhibiting the expression of STAT3 with high efficiency without side effects, including cancer, in particular breast cancer, psoriasis Since it can have a therapeutic effect on skin diseases or inflammatory diseases, it can be very useful for the treatment of breast cancer, skin diseases or inflammatory diseases which do not currently have an appropriate therapeutic agent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to: a STAT3 gene specific siRNA; a highly efficient double-helical oligo RNA structure including the same; a pharmaceutical composition containing the same; and a use thereof and, more particularly, to: a STAT3 gene specific siRNA; a double-helical oligo RNA structure, which includes the same and has a structure in which hydrophilic materials and hydrophobic materials are bound to both ends of the double-helical RNA (siRNA), by using a simple covalent bond or a linker-mediated covalent bond, so as to be effectively transferred into a cell; nanoparticles capable of being produced, in an aqueous solution, by hydrophobic interactions between the double-helical oligo RNA structures; a method for producing the double-helical oligo RNA structure; and a pharmaceutical composition for preventing or treating cancers, especially breast cancer, skin diseases including psoriasis, or inflammatory diseases, containing the double-helical oligo RNA structure. According to the present invention, the STAT3 specific siRNA and the composition for treating cancers, skin diseases, or inflammatory diseases, containing the double-helical oligo RNA structure including the same can achieve a therapeutic effect on cancers, especially breast cancer, skin diseases including psoriasis, or inflammatory diseases by inhibiting the expression of STAT3 with high efficiency without causing side effects, and thus the present invention can be useful in treating breast cancer, skin diseases, or inflammatory diseases for which there currently is no suitable therapeutic agent.

Description

STAT3 유전자 특이적 siRNA, 그러한 siRNA를 포함하는 이중나선 올리고 RNA 구조체, 이를 포함하는 조성물 및 이의 용도STAT3 gene specific siRNAs, double-stranded oligo RNA constructs comprising such siRNAs, compositions comprising them and uses thereof

본 발명은 STAT3 유전자 특이적 siRNA, 이를 포함하는 고효율 이중나선 올리고 RNA 구조체, 이를 포함하는 약학적 조성물 및 이의 용도에 관한 것으로, 보다 구체적으로 STAT3 유전자 특이적 siRNA, 이를 포함하고, 세포 내로 효율적으로 전달되도록 하기 위하여 이중나선 RNA(siRNA)의 양 말단에 친수성 물질 및 소수성 물질을 단순 공유결합 또는 링커-매개(linker-mediated) 공유결합을 이용하여 접합된 형태의 구조를 가지는 이중나선 올리고 RNA 구조체, 수용액에서 상기 이중나선 올리고 RNA 구조체들의 소수성 상호작용에 의해 생성될 수 있는 나노입자에 관한 것이다.The present invention relates to a STAT3 gene specific siRNA, a high efficiency double-stranded oligo RNA construct comprising the same, a pharmaceutical composition comprising the same, and a use thereof, and more particularly, to a STAT3 gene specific siRNA, including the same, and efficiently delivered into a cell. Double-stranded oligo RNA structure, an aqueous solution, in which a hydrophilic material and a hydrophobic material are bonded to both ends of a double-stranded RNA (siRNA) by using simple covalent bonds or linker-mediated covalent bonds. And to nanoparticles that can be produced by hydrophobic interaction of the double helix oligo RNA structures.

본 발명은 또한, 상기 이중나선 올리고 RNA 구조체의 제조방법 및 상기 이중나선 올리고 RNA 구조체를 포함하는 약제학적 조성물 및 이의 용도에 관한 것이다. The present invention also relates to a method for producing the double helix oligo RNA construct, and a pharmaceutical composition comprising the double helix oligo RNA construct and use thereof.

유전자의 발현을 억제하는 기술은 질병치료를 위한 치료제 개발 및 표적 검증에서 중요한 도구이다. 이 기술 중, 간섭 RNA(RNA interference, 이하 ‘RNAi’라고 한다)는 그 역할이 발견된 이후로, 다양한 종류의 포유동물 세포(mammalian cell)에서 서열 특이적 mRNA에 작용한다는 사실이 밝혀졌다 (Silence of the transcripts: RNA interference in medicine. J Mol Med (2005) 83: 764-773). 긴 사슬의 RNA 이중가닥이 세포로 전달되면, 전달된 RNA 이중가닥은 Dicer라는 엔도뉴클라아제(endonuclease)에 의하여 21 내지 23개의 이중가닥(base pair, bp)으로 프로세싱된 짧은 간섭 RNA (small interfering RNA, 이하 ‘siRNA’라고 한다)로 변환되며, siRNA 는 RISC(RNA-induced silencing complex)에 결합하여 가이드(안티센스) 가닥이 타겟 mRNA를 인식하여 분해하는 과정을 통해 타겟 유전자의 발현을 서열 특이적으로 저해한다 (NUCLEIC-ACID THERAPEUTICS: BASIC PRINCIPLES AND RECENT APPLICATIONS. Nature Reviews Drug Discovery. 2002. 1, 503-514).Techniques for inhibiting gene expression are important tools in the development of therapeutics and target validation for the treatment of diseases. Among these techniques, it has been found that interfering RNA (RNA interference, hereinafter referred to as 'RNAi') acts on sequence specific mRNA in various kinds of mammalian cells since its role was discovered (Silence). of the transcripts: RNA interference in medicine.J Mol Med (2005) 83: 764-773). Once the long-stranded RNA double strand is delivered to the cell, the delivered RNA double strand is small interfering processed into 21 to 23 base pairs (bp) by an endonuclease called Dicer. RNA is converted into RNA, hereinafter called siRNA, and siRNA binds to an RNA-induced silencing complex (RISC), whereby the guide (antisense) strand recognizes and degrades the target mRNA to sequence-express the expression of the target gene. (NUCLEIC-ACID THERAPEUTICS: BASIC PRINCIPLES AND RECENT APPLICATIONS. Nature Reviews Drug Discovery. 2002. 1, 503-514).

베르트랑(Bertrand) 연구진에 따르면 동일한 타겟 유전자에 대한 siRNA가 안티센스 올리고뉴클레오티드(Antisense oligonucleotide, ASO)에 비하여 생체 내/외(in vitroin vivo)에서 mRNA 발현의 저해효과가 뛰어나고, 해당 효과가 오랫동안 지속되는 효과를 포함하는 것으로 밝혀졌다(Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem. Biophys. Res.Commun. 2002. 296: 1000-1004). 또한 siRNA의 작용 기작은 타겟 mRNA와 상보적으로 결합하여 서열 특이적으로 타겟 유전자의 발현을 조절하기 때문에, 기존의 항체 기반 의약품이나 화학물질 (small molecule drug)에 비하여 적용할 수 있는 대상이 획기적으로 확대될 수 있다는 장점을 가진다(Progress Towards in vivo Use of siRNAs. MOLECULAR THERAPY. 2006 13(4):664-670).According to Bertrand researchers, siRNA against the same target gene is superior to antisense oligonucleotides (ASOs) in inhibiting mRNA expression in vitro and in vivo , and the effect lasts for a long time. (Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo . Biochem. Biophys. Res. Comm. 2002. 296: 1000-1004). In addition, the siRNA action mechanism complementarily binds to the target mRNA and regulates the expression of the target gene in a sequence-specific manner, which is why it is possible to apply a target to an antibody-based drug or a small molecule drug. It has the advantage that it can be expanded (Progress Towards in vivo Use of siRNAs. MOLECULAR THERAPY. 2006 13 (4): 664-670).

siRNA의 뛰어난 효과 및 다양한 사용범위에도 불구하고, siRNA가 치료제로 개발되기 위해서는 체내에서의 siRNA의 안정성(stability) 개선과 세포 전달 효율 개선을 통해 siRNA가 타겟 세포에 효과적으로 전달되어야 한다(Harnessing in vivo siRNA delivery for drug discovery and therapeutic development. Drug Discov Today. 2006 Jan; 11(1-2):67-73). Despite the excellent effects of siRNAs and their wide range of uses, siRNAs must be effectively delivered to target cells by improving their stability and improving cell delivery efficiency in order for siRNAs to be developed as therapeutic agents (Harnessing in vivo siRNAs). delivery for drug discovery and therapeutic development.Drug Discov Today. 2006 Jan; 11 (1-2): 67-73).

상기 문제를 해결하기 위하여, 체내 안정성 개선을 위하여 siRNA의 일부 뉴클레오티드 또는 골격(backbone)을 핵산분해효소 저항성을 가지도록 변형(modification)하거나 바이러스성 벡터(viral vector), 리포좀 또는 나노입자(nanoparticle) 등의 전달체의 이용 등에 대한 연구가 활발하게 시도되고 있다. In order to solve the above problems, some nucleotides or backbones of siRNA are modified to have nuclease resistance or viral vectors, liposomes or nanoparticles, etc., to improve the stability in the body. Research into the use of the carrier is actively attempted.

아데노바이러스나 레트로바이러스 등의 바이러스성) 벡터를 이용한 전달 시스템은 형질주입 효율(transfection efficiency)이 높지만, 면역원성(immunogenicity) 및 발암성(oncogenicity)이 높다. 반면에 나노입자를 포함하는 비바이러스성(non-viral) 전달 시스템은 바이러스성 전달 시스템에 비하여 세포전달효율은 낮은 편이지만, 생체 내(in vivo)에서의 안전성이 높고, 타겟 특이적으로 전달이 가능하며, 내포되어 있는 RNAi 올리고뉴클레오타이드를 세포 또는 조직으로 흡수(uptake) 및 내재화(internalization) 등의 개선된 전달 효과가 높을 뿐 아니라, 세포독성 및 면역 유발(immune stimulation)이 거의 없다는 장점을 가지고 있어, 현재는 바이러스성 전달 시스템에 비해 유력한 전달방법으로 평가되어지고 있다 (Nonviral delivery of synthetic siRNA s in vivo. J Clin Invest. 2007 December 3; 117(12): 3623-3632). Delivery systems using viral vectors such as adenoviruses or retroviruses have high transfection efficiency, but high immunogenicity and oncogenicity. On the other hand, non-viral delivery systems containing nanoparticles have lower cell delivery efficiency than viral delivery systems, but have high safety in vivo and target specific delivery. It has the advantage of improved transfer effect such as uptake and internalization of nested RNAi oligonucleotides into cells or tissues, as well as little cytotoxicity and immune stimulation. It is currently being evaluated as a viable delivery method compared to viral delivery systems (Nonviral delivery of synthetic siRNAs in vivo . J Clin Invest. 2007 December 3; 117 (12): 3623-3632).

상기 비바이러스성 전달 시스템 중에서 나노전달체(nanocarrier)를 이용하는 방법은 리포좀, 양이온 고분자 복합체 등의 다양한 고분자를 사용함으로써 나노입자를 형성하고, siRNA를 이러한 나노입자(nanoparticle), 즉 나노전달체(nanocarrier)에 담지하여 세포에 전달하는 형태를 가진다. 나노전달체를 이용하는 방법 중 주로 활용되는 방법은 고분자 나노입자(polymeric nanoparticle), 고분자 미셀(polymer micelle), 리포플렉스(lipoplex) 등이 있는데, 이 중에서 리포플렉스를 이용한 방법은 양이온성 지질로 구성되어 세포의 엔도좀(endosome)의 음이온성 지질과 상호작용하여 엔도좀의 탈 안정화 효과를 유발하여 세포 내로 전달하는 역할을 한다(Proc. Natl. Acad. Sci. 15; 93(21):11493-8, 1996).In the non-viral delivery system, a method of using a nanocarrier is used to form nanoparticles by using various polymers such as liposomes and cationic polymer complexes, and siRNA is added to these nanoparticles, that is, nanocarriers. It has a form to be supported and delivered to the cell. Among the methods using nanocarriers, polymer nanoparticles, polymer micelles, lipoplexes, etc. are mainly used. Among them, lipoplexes are composed of cationic lipids. It interacts with the anionic lipids of the endosome of endosome, induces the destabilizing effect of the endosome and delivers it into cells (Proc. Natl. Acad. Sci. 15; 93 (21): 11493-8, 1996).

또한, siRNA 패신저(passenger; 센스(sense)) 가닥의 말단 부위에 화학물질 등을 연결하여 증진된 약동력학(pharmacokinetics)적 특징을 갖도록 하여 생체 내(in vivo)에서 높은 효율을 유도할 수 있다는 것이 알려져 있다(Nature 11; 432(7014):173-8, 2004). 이 때 siRNA 센스(sense; 패신저(passenger)) 또는 안티센스 (antisense; 가이드(guide)) 가닥의 말단에 결합된 화학 물질의 성질에 따라 siRNA 의 안정성이 달라진다. 예를 들어, 폴리에틸렌 글리콜(polyethylene glycol, PEG)과 같은 고분자 화합물이 접합된 형태의 siRNA는 양이온성 물질이 존재하는 조건에서 siRNA의 음이온성 인산기와 상호작용하여 복합체를 형성함으로써, 개선된 siRNA 안정성을 가진 전달체가 된다(J Control Release 129(2):107-16, 2008). 특히 고분자 복합체로 구성된 미셀(micelle)들은 약물 전달 운반체로 쓰이는 다른 시스템인, 미소구체(microsphere) 또는 나노입자(nanoparticle) 등에 비해 그 크기가 극히 작으면서도 분포가 매우 일정하고, 자발적으로 형성되는 구조이므로 제제의 품질 관리 및 재현성 확보가 용이하다는 장점이 있다. In addition, it is possible to induce high efficiency in vivo by connecting chemicals and the like to the end of the siRNA passenger (sense) strand to have enhanced pharmacokinetic characteristics. (Nature 11; 432 (7014): 173-8, 2004). In this case, the stability of the siRNA depends on the nature of the chemical bound to the ends of the siRNA sense (passenger) or antisense (guide) strand. For example, siRNAs in the form of conjugated polymer compounds, such as polyethylene glycol (PEG), form complexes by interacting with the anionic phosphate groups of the siRNAs in the presence of cationic materials, thereby improving improved siRNA stability. Excitation carrier (J Control Release 129 (2): 107-16, 2008). In particular, micelles composed of polymer complexes are extremely uniform in size and spontaneously formed, compared to other systems used as drug delivery vehicles, such as microspheres or nanoparticles. There is an advantage that it is easy to ensure the quality control and reproducibility of the formulation.

또한, siRNA 의 세포 내 전달 효율성을 향상시키기 위해, siRNA 에 생체 적합성 고분 자인 친수성 물질(예를 들면, 폴리에틸렌 글리콜(polyethylene glycol, PEG))을 단순 공유결합 또는 링커-매개(linker-mediated) 공유결합으로 접합시킨 siRNA 접합체를 통해, siRNA 의 안정성 확보 및 효율적인 세포막 투과성을 위한 기술이 개발되었다(대한민국 등록특허 제883471호). 하지만 siRNA의 화학적 변형 및 폴리에틸렌 글리콜(polyethylene glycol, PEG)을 접합시키는 것(PEGylation)만으로는 생체 내에서의 낮은 안정성과 타깃 장기로의 전달이 원활하지 못하다는 단점은 여전히 가진다. 이러한 단점을 해결하기 위하여 올리고뉴클레오티드, 특히 siRNA와 같은 이중나선 올리고 RNA에 친수성 및 소수성 물질이 결합된 이중나선 올리고 RNA 구조체가 개발되었는데, 상기 구조체는 소수성 물질의 소수성 상호작용에 의하여 SAMiRNA™(self assembled micelle inhibitory RNA) 라고 명명된 자가조립 나노입자를 형성하게 되는데(대한민국 등록 특허 제1224828호 참조), SAMiRNA™ 기술은 기존의 전달기술들에 비해 매우 사이즈가 작으면서도 균일한(homogenous) 나노입자를 수득할 수 있다는 장점을 가진다. In addition, in order to improve the intracellular delivery efficiency of siRNA, a simple covalent or linker-mediated covalent association of a hydrophilic material (e.g., polyethylene glycol, PEG) that is a biocompatible polymer to siRNA Through the siRNA conjugate conjugated to, a technique for securing the stability of the siRNA and efficient cell membrane permeability has been developed (Korean Patent No. 883471). However, the chemical modification of siRNA and the conjugation of polyethylene glycol (PEGylation) alone (PEGylation) still have the disadvantages of low stability in vivo and delivery to the target organ is not smooth. In order to solve this shortcoming, a double-stranded oligo RNA structure in which hydrophilic and hydrophobic materials are coupled to oligonucleotides, especially double-stranded oligo RNA such as siRNA, has been developed. The structure is prepared by SAMiRNA ™ (self assembled) by hydrophobic interaction of hydrophobic materials. self-assembled nanoparticles called micelle inhibitory RNA) (see Korean Patent No. 1224828). SAMiRNA ™ technology yields very small and homogenous nanoparticles compared to conventional delivery technologies. It has the advantage of being able to.

한편, 우리나라에서는 인구 4명 중 1명이 암(사망원인 1위)으로 사망하고 있으며, 해마다 진단방법과 자료수집 방법의 발전과 인구의 고령화와 환경변화 등으로 인해 그 숫자가 현저히 증가하는 추세이다. 또한 세계적인 암 발생 및 암으로 인한 사망 역시 증가하는 추세에 있어 암 정복을 위한 예방, 진단 및 치료기술은 인류공통의 시급한 과제이다(BT 기술 동향 보고서, 주요 질환 별 신약개발 동향, 생명공학정책연구센터, 2007, 총서 제 72권). On the other hand, in Korea, one out of four people is dying of cancer (the number one cause of death), and the number is increasing considerably each year due to the development of diagnostic methods and data collection methods, aging population and environmental changes. In addition, global cancer incidence and cancer deaths are on the rise, and prevention, diagnosis, and treatment technologies for cancer conquest are urgent tasks for humankind (BT technology trend report, new drug development trend by major diseases, and Biotechnology Policy Research Center). , 2007, Vol. 72).

암은 전세계적으로 가장 많은 사망자를 내는 질병 중 하나로, 혁신적인 암 치료제의 개발은 이에 대한 치료 시 발생되는 의료비를 절감할 수 있음과 동시에 고부가가치를 창출할 수 있다. 암의 치료는 수술, 방사선치료, 화학요법, 생물학적 치료로 구분되는데, 이 중에 화학요법은 화학물질로서 암 세포의 증식을 억제하거나 죽이는 치료법으로 항암제에 의하여 나타나는 독성은 상당부분 정상세포에서도 나타나기 때문에 일정 정도의 독성을 나타내며, 항암제가 효과를 나타내다가도 일정 기간의 사용 후에는 효과가 상실되는 내성이 발생하기 때문에 암세포에 선택적으로 작용하고 내성이 생기지 않는 항암제의 개발이 절실하다(암 정복의 현주소 Biowave 2004. 6(19)). 최근 암에 대한 분자유전정보의 확보를 통해 암의 분자적 특성을 표적으로 한 새로운 항암제의 개발이 진행되고 있으며, 암세포만이 가지고 있는 특징적인 분자적 표적(molecular target)을 겨냥하는 항암제들은 약제 내성이 생기지 않는다는 보고도 있다. 따라서 암세포만 가지고 있는 특징적인 분자적 표적을 겨냥한 유전자 치료제의 개발을 통해 기존 항암제에 비하여 효과가 뛰어나고 부작용이 적은 치료제의 개발이 가능하다. Cancer is one of the world's most fatalities, and the development of innovative cancer treatments can reduce the cost of medical treatment and create high added value. The treatment of cancer is divided into surgery, radiation therapy, chemotherapy, and biological therapy. Among these, chemotherapy is a chemical substance that inhibits or kills the proliferation of cancer cells. Even though the anticancer drug is effective, the resistance is lost after a certain period of time, but the development of an anticancer drug that selectively acts on cancer cells and does not develop resistance is urgently needed. 2004. 6 (19). Recently, the development of new anticancer drugs targeting molecular characteristics of cancer by securing molecular genetic information on cancer, and anticancer drugs targeting specific molecular targets that only cancer cells have It is reported that this does not occur. Therefore, it is possible to develop a therapeutic agent that is more effective and has fewer side effects than conventional anticancer drugs through the development of a gene therapeutic agent targeting a characteristic molecular target having only cancer cells.

건선은 각질세포 및 내피 세포의 표피 과증식, 및 염증 세포 축적 (예컨대 활성화된 T 세포)을 특징으로 하는 만성의 자가면역 염증성 피부 장애이다 (Griffiths CE, J. Eur. Acad. Dermatol. Venereol. 2003, 17 Suppl 2:1-5; Creamer JD, et al., Clin. Exp. Dermatol. 1995, 20(1):6-9). 건선은 피부의 표피세포층의 비정상적이고 빠른 성장을 특징으로 하며 이러한 피부 세포의 비정상적인 생산으로 일반적으로 피부세포는 28~30일을 주기로 생성되나, 건선의 경우는 3~5일 주기로 교체된다. 이러한 변화는 덴드리틱 세포(dendritic cells), 대식세포(macrophage)와 T 세포를 포함하는 면역세포들이 내피세포에서 증가되어 미성숙된 케라티노사이트 (keratinocytes)를 증식하는 것이 주된 원인으로 보여지며, 내피세포부터 외피세포로 이동된 이러한 면역세포들은 티엔에프-알파 (TNF-α), 인터루킨-1베타 (interleukin-1β, IL-1β), 인터루킨-6 (IL-6), 인터루킨-36 (IL-36) 그리고 인터루킨-22 (IL-22)같은 다양한 사이토카인을 분비하고 이러한 사이토카인들이 케라티노사이트 (keratinocyte)의 증식을 자극하는 것으로 보고되었다 (Nestle FO etal., N Engl J Med. 2009; 361 (5): 496-509; Baliwag, Jaymie et al., Cytokine. 2015; 73 (2): 342-350). 특히 덴드리틱 세포 (dendritic cell)은 innate immune system과 adaptive immune system을 연결해주고 건선을 유발하는 T cell은 외피세포로 이동하여 인터루킨 -17 (IL-17)과 인터페론-감마 (IFN-γ)를 분비하고 인터루킨-23 (IL-23)은 인터루킨-22 (IL-22)와 인터루킨-17 (IL-17)의 생산을 자극하고, 이 인터루킨-22 (IL-22)는 인터루킨-17 (IL-17) 과 함께 케라티노사이트를 자극하여 건선을 악화시킬 수 있다 (Ouyang W., Cytokine Growth Factor Rev. 2010; 21 (6): 435-41; Mudigonda P et al., Dermatol Online J. 2012; 18 (10): 1). Psoriasis is a chronic autoimmune inflammatory skin disorder characterized by epidermal hyperproliferation of keratinocytes and endothelial cells, and inflammatory cell accumulation (such as activated T cells) (Griffiths CE, J. Eur. Acad. Dermatol. Venereol. 2003, 17 Suppl 2: 1-5; Creamer JD, et al., Clin.Exp.Dermatol. 1995, 20 (1): 6-9). Psoriasis is characterized by abnormal and rapid growth of the epidermal layer of the skin. The abnormal production of these skin cells generally produces skin cells every 28 to 30 days, but in the case of psoriasis it is replaced every 3 to 5 days. This change is mainly due to the increase of endothelial cells, including dendritic cells, macrophage and T cells, to proliferate immature keratinocytes. These immune cells migrated from cells to envelope cells are TNF-α, interleukin-1β, IL-1β, interleukin-6 (IL-6), and interleukin-36 (IL- 36) and secrete various cytokines such as interleukin-22 (IL-22) and these cytokines have been reported to stimulate the proliferation of keratinocytes (Nestle FO et al., N Engl J Med. 2009; 361). (5): 496-509; Baliwag, Jaymie et al., Cytokine. 2015; 73 (2): 342-350). In particular, dendritic cells connect the innate immune system to the adaptive immune system, and psoriasis-induced T cells migrate to the envelope cells to release interleukin-17 (IL-17) and interferon-gamma (IFN-γ). Secrete and interleukin-23 (IL-23) stimulates the production of interleukin-22 (IL-22) and interleukin-17 (IL-17), which are interleukin-17 (IL-22) 17) may exacerbate psoriasis by stimulating keratinocytes (Ouyang W., Cytokine Growth Factor Rev. 2010; 21 (6): 435-41; Mudigonda P et al., Dermatol Online J. 2012; 18 (10): 1).

최근에는 STAT3 유전자가 건선의 발병에 결정적으로 관여한다고 보고 된 바 있다(Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model, Nature Medicine. Vol. 11, 2005. Pp. 43-49; Stat3 as a therapeutic target for the treatment of psoriasis: a clinical feasibility study with STA-21, a stat3 inhibitor, J. Invest. Dermatol. Vol. 131. 2011. pp. 108-117). 임상적으로, 건선의 주요 증상은, 적색이며 아래에 염증이 있는 피부상의 회색 또는 은색 판상 패치(flaky patch)이다. Recently, the STAT3 gene has been reported to be critically involved in the development of psoriasis (Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model, Nature Medicine.Vol. 11, 2005.Pp. 43-49 Stat3 as a therapeutic target for the treatment of psoriasis: a clinical feasibility study with STA-21, a stat3 inhibitor, J. Invest.Dermatol.Vol. 131. 2011. pp. 108-117). Clinically, the main symptom of psoriasis is a gray or silver flaky patch on the skin that is red and inflamed below.

건선의 일반적인 치료에는 국소 투약, 광선 요법 및 내복 투약법이 있다. 국소 치료는 스테로이드, 콜타르, 안트랄린, 비타민 D3 및 그의 유사체, 레티노이드 및 햇볕 등을 포함하는 치료이며, 이러한 국소 치료는 피부 얇아짐, 튼살, 화상, 자극 및 광과민증의 부작용이 있다.Common treatments for psoriasis include topical dosing, phototherapy and oral dosing. Topical treatments are therapies including steroids, coal tar, anthraline, vitamin D3 and analogs thereof, retinoids and sunburn, and the like, which have the side effects of skin thinning, stretch marks, burns, irritation and photosensitivity.

내복 투약에 쓰이는 약물은 면역 억제 또는 염증반응 억제를 통하여 건선을 치료하기 위한 것으로서, 현재까지 개발된 많은 건선치료제들이 건선을 근본적으로 치료하지 못하고 일시적인 증세의 경감 효과만을 제공할 뿐이며, 약물들의 작용기전이 인체의 면역을 억제하기 때문에 약물을 장시간 사용할 경우에 인체의 면역기능의 저하로 인하여 암, 결핵 등을 포함하여 여러 가지 감염증 등을 일으킬 수 있다는 단점이 있다.Drugs used in oral administration are for the treatment of psoriasis through immunosuppression or inflammatory response. Many psoriasis treatments developed to date do not fundamentally cure psoriasis and provide only temporary relief of symptoms. Because of suppressing the immune system of the human body, if the drug is used for a long time due to the deterioration of the immune function of the human body can cause various infections, including cancer, tuberculosis, and the like.

아토피라는 용어는 어원상 "이상한" 또는 "부적절한"이란 의미를 갖는 용어이다. 아토피성 피부염은 대부분 유아기나 소아 때 발생하여 호전과 악화를 반복하는 비교적 흔한 만성 염증성 피부질환으로, 아토피의 개인 또는 가족력, 심한 가려움증 및 습진의 3가지 특징으로 진단할 수 있으며 감염, 정신적인 스트레스, 계절과 기후변화, 자극 및 알레르기에 의해 악화될 수 있다. 아토피 피부염의 병인론은 아직 확실히 밝혀 있지 않지만, 현재까지의 연구에 의하면 IgE 항체의 증가에 따른 과감작 반응에 의하거나, 세포매개성 면역기능의 저하로 나타나는 T 림프구의 불균열 분화에 의한 기능적 결여, 피부에 존재하는 아드레날린 수용체의 차단 등이 발병의 원인이라는 설 등이 있다. 따라서, 아토피 피부염은 면역학적인 이상이 관여하는 유전적인 질환으로 생각되고 있다. 최근에는 STAT3 유전자가 아토피성 피부염의 발달에 영향을 미친다고 보고되었다(Diminished allergic disease in patients with STAT3 mutations reveals a role for STAT3 signaling in mast cell degranulation, J. Allergy and Clinical Immunology, Vol. 132, 2013. Pp. 1388-1396).The term atopy is a term that has the meaning "weird" or "inappropriate" in origin. Atopic dermatitis is a relatively common chronic inflammatory skin disease that occurs most often in infancy and childhood, and improves and worsens.It can be diagnosed with three characteristics: individual or family history of atopy, severe itching, and eczema. May be exacerbated by seasonal and climate change, irritation and allergies. The etiology of atopic dermatitis is not yet clear, but studies to date indicate a lack of functionalities due to hypersensitivity reactions with increased IgE antibodies, or due to undifferentiated differentiation of T lymphocytes resulting from decreased cellular mediated immune function, Blockage of adrenergic receptors present in the skin is the cause of the onset. Therefore, atopic dermatitis is considered to be a genetic disease involving immunological abnormalities. Recently, STAT3 genes have been reported to influence the development of atopic dermatitis (Diminished allergic disease in patients with STAT3 mutations reveals a role for STAT3 signaling in mast cell degranulation, J. Allergy and Clinical Immunology, Vol. 132, 2013. Pp. 1388-1396).

아토피성 피부염의 치료 및 관리를 위해, 대부분의 피부과 진료 시 피부 표면의 수분을 유지시켜주는 보습제와 함께 염증반응을 호전시키기 위한 스테로이드 호르몬 즉, 국소 부신피질호르몬 제제를 동시에 처방하는 하는 것이 일반적이다. 하지만, 국소 부신피질호르몬을 장기간 사용하는 경우, 피부 위축, 혈관 확장, 색소 탈실 및 팽창 선조의 발생 등 다양한 피부 부작용을 야기 시킨다는 문제점이 있다. 또한, 심한 아토피 피부염 환자의 경우는 증상에 따라 적정한 자외선 치료와 같은 광선치료, 인터페론 감마, 사이클로스포린과 같은 면역 억제제, 면역글로불린 정맥 주사 등을 투여하는 경우도 있다. 따라서, 이러한 부작용을 나타내지 않으면서, 항염증 효능을 보유하는 아토피 치료용 원료나 제약의 개발 필요성이 꾸준히 대두되고 있는 상황이다.For the treatment and management of atopic dermatitis, it is common for most dermatologists to prescribe steroid hormones, that is, topical corticosteroids, to improve the inflammatory response along with moisturizers that keep the skin's surface moisturized. However, when the topical corticosteroids are used for a long time, there are problems that cause various skin side effects such as skin atrophy, vasodilation, pigmentation and swelling ancestors. In addition, patients with severe atopic dermatitis may be given phototherapy, such as appropriate UV treatment, interferon gamma, immunosuppressants such as cyclosporin, and immunoglobulin intravenous injection. Therefore, there is a need to develop a raw material or pharmaceuticals for treating atopic dermatitis having an anti-inflammatory effect without showing such side effects.

알레르기성 피부염은 만성으로 경과되는 강한 가려움을 수반한 재발성의 습진 병변이다. 발진은 얼굴이나 목,팔꿈치나 무릎 등의 굴곡 부위에 나타나기 쉽고, 악화가 심해지면 전신으로 퍼지는 경우도 있다. 다양한 알레르겐이 증가하는 환경이 된 것이나 식생활의 변화 등에 따라서, 알레르기성 피부염의 환자수는 해마다 증가하고 있고, 그의 증상도 중증화 경향에 있다. 알레르기성 피부염의 치료는 주로 약물 요법으로, 부신 피질 스테로이드나 면역 억제제, 항히스타민약 등이 이용된다. 이들 약제로써는 증상이 완화되거나 염증이 침정화되지만 일시적인 것에 지나지 않는다. 또한 부신피질 스테로이드나 면역 억제제로써는 감염증이나 중독의 부작용이 있는 것으로 알려져 있다.Allergic dermatitis is a recurrent eczema lesion accompanied by a chronic itching. The rash tends to appear on the face, neck, elbows, knees, and other flexures, and may worsen and spread throughout the body. The number of patients with allergic dermatitis increases year by year, depending on the environment in which various allergens are increased, dietary changes, and the like, and the symptoms tend to be severe. Treatment of allergic dermatitis is mainly drug therapy, and corticosteroids, immunosuppressants, and antihistamines are used. These drugs may only relieve symptoms or settle inflammation, but are only temporary. In addition, corticosteroids and immunosuppressants are known to have side effects of infection and poisoning.

따라서, 현재의 알레르기성 피부염의 치료제는 효과 및 부작용 경감에 있어서 충분히 만족할 수 있는 것은 아니다.Therefore, current therapeutic agents for allergic dermatitis may not be sufficiently satisfactory in their effectiveness and alleviation of side effects.

이외에도 STAT3 매개 염증성 질환으로 알려진 류마티스 관절염, 퇴행성 관절염 (한국 공개번호 10-2014-0032925), 골다공증, 초면역글로불린 혈증, 빈혈, 신염, 만성 갑상선염, 크론병, 췌장염 등 (한국 공개번호 10-1416149) 등이 본 발명에 의한 예방 및 치료 대상이 될 수 있다. In addition, rheumatoid arthritis known as STAT3-mediated inflammatory disease, degenerative arthritis (Korean Publication No. 10-2014-0032925), osteoporosis, hyperimmunoglobulinemia, anemia, nephritis, chronic thyroiditis, Crohn's disease, pancreatitis, etc. (Korean Publication No. 10-1416149) And the like can be the object of prevention and treatment according to the present invention.

RNA 간섭 현상을 이용하여 높은 특이성과 효율로 유전자 발현을 저해할 수 있음이 알려진 이후로 암에 대한 치료제로 다양한 유전자를 타겟으로 하는 siRNA 들이 연구되고 있다. 이들 유전자는 종양유전자(oncogene)을 비롯하여 항-세포자살물질(anti-apoptotic molecule), 텔로머레이즈(telomerase), 성장인자 수용체 유전자(growth factor receptor gene), 신호전달물질 (signaling molecule) 등으로 암세포의 생존에 필요한 유전자의 발현을 저해시키거나 세포자살을 유도하는 것이 주된 방향이다(RNA interference in cancer. Biomolecular Engineering. 2006; 23:17-34). Since RNA interference is known to inhibit gene expression with high specificity and efficiency, siRNAs targeting various genes have been studied as a therapeutic agent for cancer. These genes include cancer cells such as oncogenes, anti-apoptotic molecules, telomerases, growth factor receptor genes, and signaling molecules. Inhibiting the expression of genes necessary for survival or inducing apoptosis is the main direction (RNA interference in cancer. Biomolecular Engineering. 2006; 23: 17-34).

STAT3 (signal transducer and activator of transcription 3)는 세포외부의 다양한 성장인자(growth factor)와 사이토카인(cytokine)의 신호를 핵에 전달하여 전사를 촉진하는 전사조절인자(transcription factor)로, 세포질 내 비활성 상태에서 전사활성 도메인(transactivation domain)의 타이로신 잔기가 인산화되어 활성화되면 핵 안으로 유입된다 (STAT3 inhibitors for cancer therapy: Have all roads been explored- Jak-Stat. 2013; 1;2(1):e22882). 인산화된 STAT3(p-STAT3)는 핵의 DNA와 결합하여 세포의 성장(proliferation)과 분화(differentiation) 등의 종양형성(tumorigenesis)에 관련된 광범위한 표적유전자의 발현을 유도하며, 고형암 및 혈액암 환자의 약 70%에서 상시 활성화 되어있다 (Role of STAT3 in cancer metastasis and translational advances. BioMed research international. 2013; 2013:421821).STAT3 (signal transducer and activator of transcription 3) is a transcription factor that promotes transcription by delivering extracellular extracellular growth factor and cytokine signals to the nucleus. When tyrosine residues of the transactivation domain are phosphorylated and activated in the state, they enter the nucleus (STAT3 inhibitors for cancer therapy: Have all roads been explored- Jak-Stat. 2013; 1; 2 (1): e22882). Phosphorylated STAT3 (p-STAT3) binds to the DNA of the nucleus and induces the expression of a broad range of target genes involved in tumorigenesis, such as proliferation and differentiation of cells. It is constantly active in about 70% (Role of STAT3 in cancer metastasis and translational advances. BioMed research international. 2013; 2013: 421821).

하지만 STAT3와 같은 전사인자들은 단백의 3차 구조상, 활성을 저해할 수 있는 표적을 찾기 힘들기 때문에 전통적인 합성신약 개발 분야에서 난개발(undruggable)로 여겨졌다 (Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention. Cancers. 2014; 16;6(2):926-57). 때문에 STAT3의 발현을 저해할 수 있는 siRNA 치료제 및 이의 전달기술에 대한 시장의 수요는 매우 높은 상황이다.However, transcription factors such as STAT3 were considered to be undruggable in the field of traditional synthetic drug development because of the tertiary structure of the protein, which makes it difficult to find a target that can inhibit activity (Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention. Cancers. 2014; 16; 6 (2): 926-57). Therefore, the market demand for siRNA therapeutics and their delivery technology that can inhibit the expression of STAT3 is very high.

이에, 본 발명자들은 상기와 같은 문제점을 해결하기 위하여 예의 노력한 결과, STAT3 유전자에 특이적인 siRNA가 STAT3 유전자의 활성을 특이적으로 저해할 수 있고, 이를 포함하는 이중나선 올리고 RNA 구조체 및 이를 포함하는 약제학적 조성물의 항암 효과, 피부질환 및 염증성 질환 치료 효과가 매우 뛰어난 것을 확인함으로써 본 발명을 완성하였다. Accordingly, the present inventors have made diligent efforts to solve the above problems, and as a result, siRNA specific to the STAT3 gene can specifically inhibit the activity of the STAT3 gene, and a double-stranded oligo RNA structure comprising the same and a drug containing the same The present invention was completed by confirming that the anticancer effect, the skin disease and the inflammatory disease of the pharmaceutical composition are very excellent.

발명의 요약Summary of the Invention

본 발명의 목적은 상기와 같은 기존의 문제점을 해결하고자, STAT3에 특이적이면서 매우 높은 효율로 그 발현을 저해할 수 있는 신규 siRNA 및 이를 포함하는 이중나선 올리고 RNA 구조체, 그리고 그러한 이중나선 올리고 RNA 구조체의 제조방법을 제공하는 데 있다. An object of the present invention is to solve the above problems, a novel siRNA that can inhibit its expression with a very high efficiency specific to STAT3 and a double-stranded oligo RNA structure comprising the same, and such a double-stranded oligo RNA structure It is to provide a method of manufacturing.

본 발명의 다른 목적은 상기 STAT3 특이적 siRNA 또는 그러한 siRNA를 포함하는 이중나선 올리고 RNA 구조체를 유효성분으로 포함하는 약제학적 조성물을 제공하는 것이다. Another object of the present invention is to provide a pharmaceutical composition comprising the STAT3-specific siRNA or a double-stranded oligo RNA structure comprising such siRNA as an active ingredient.

본 발명의 또 다른 목적은 상기 STAT3 특이적 siRNA 또는 그러한 siRNA를 포함하는 이중나선 올리고 RNA 구조체를 이용하여 암, 피부질환 또는 염증성 질환을 예방 또는 치료하는 방법을 제공하는 것이다. Still another object of the present invention is to provide a method for preventing or treating cancer, skin disease or inflammatory disease using the STAT3-specific siRNA or a double-stranded oligo RNA structure comprising such siRNA.

상기 목적을 달성하기 위하여, 본 발명은 서열번호 1 내지 서열번호 200에서 선택된 어느 하나의 서열을 포함하는 센스가닥(sense strand)과 이에 상보적인 서열을 포함하는 안티센스 가닥을 포함하는 STAT3 특이적 siRNA를 제공한다. In order to achieve the above object, the present invention provides a STAT3 specific siRNA comprising a sense strand comprising any sequence selected from SEQ ID NO: 1 to SEQ ID NO: 200 and an antisense strand comprising a sequence complementary thereto. to provide.

본 발명에서의 “STAT3 특이적 siRNA”는 STAT3 단백질을 인코딩하는 유전자에 특이적인 siRNA를 의미한다. “STAT3 specific siRNA” in the present invention means siRNA specific to a gene encoding a STAT3 protein.

또한, STAT3에 대한 특이성이 유지되는 한, 상기 서열번호 1 내지 서열번호 200에 따른 서열을 포함하는 센스가닥 또는 이에 상보적인 안티센스 가닥에서, 하나 이상의 염기가 치환, 결실, 또는 삽입된 서열을 포함하는 센스가닥 및 안티센스 가닥을 포함하는 STAT3 특이적 siRNA도 본 발명의 권리범위에 포함되는 것임은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다. In addition, in the sense strand comprising the sequence according to SEQ ID NO: 1 to SEQ ID NO: 200 or an antisense strand complementary thereto, as long as the specificity for STAT3 is maintained, one or more bases include a sequence substituted, deleted, or inserted. It is apparent to those skilled in the art that STAT3 specific siRNAs including sense strands and antisense strands are also included in the scope of the present invention.

상기 서열번호 1 내지 서열번호 200은 STAT3 특이적 siRNA의 센스가닥 서열이다.SEQ ID NO: 1 to SEQ ID NO: 200 is the sense strand sequence of STAT3 specific siRNA.

본 발명에 있어서, 상기 siRNA의 센스가닥 또는 안티센스 가닥은 siRNA의 기능을 수행할 수 있으면 뉴클레오타이드의 개수에는 제한이 없으나, 바람직하게는 19 내지 31개의 뉴클레오타이드로 이루어진 것을 특징으로 할 수 있다.In the present invention, the sense strand or the anti-sense strand of the siRNA is not limited to the number of nucleotides if it can perform the function of siRNA, preferably it may be characterized in that consisting of 19 to 31 nucleotides.

본 발명에 있어서, 상기 siRNA는 바람직하게는 서열번호 12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, 171번에 따른 STAT3 특이적 siRNA의 센스가닥을 포함하는 것을 특징으로 할 수 있고, 더욱 바람직하게는 서열번호 17, 42, 101, 119, 137번에 따른 STAT3 특이적 siRNA의 센스가닥을 포함하는 것을 특징으로 할 수 있으며, 가장 바람직하게는 서열번호 42, 101, 137번에 따른 STAT3 특이적 siRNA의 센스가닥을 포함하는 것을 특징으로 할 수 있다. In the present invention, the siRNA preferably comprises a sense strand of STAT3 specific siRNA according to SEQ ID NO: 12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, 171 It may be characterized by, more preferably comprising a sense strand of STAT3 specific siRNA according to SEQ ID NO: 17, 42, 101, 119, 137, most preferably SEQ ID NO: 42, 101 , 137 may be characterized in that it comprises a sense strand of the STAT3-specific siRNA.

본 발명에서 제공되는 STAT3 특이적 siRNA는 해당 유전자를 암호화하는 mRNA와 상보적으로 결합할 수 있도록 설계된 염기서열을 가지므로, 해당 유전자의 발현을 효과적으로 억제할 수 있는 것이 특징이다. 또한, 상기 siRNA 의 3’ 말단에 하나 또는 두 개 이상의 비결합(unpaired)된 뉴클레오티드를 포함하는 구조인 오버행(overhang)을 포함할 수 있다.STAT3 specific siRNA provided in the present invention has a base sequence designed to complementarily bind to the mRNA encoding the gene, it is characterized in that it can effectively suppress the expression of the gene. In addition, the siRNA may include an overhang, which is a structure including one or two or more unpaired nucleotides at the 3 ′ end of the siRNA.

본 발명에 있어서, 상기 siRNA는 생체 내 안정성 향상을 위해, 핵산 분해효소 저항성 부여 및 비 특이적 면역반응 감소를 위한 다양한 변형(modification)을 포함하는 것을 특징으로 할 수 있다. 상기 siRNA의 변형은 하나 이상의 뉴클레오티드 내 당 구조의 2´ 탄소 위치에서 -OH기가 -CH3(메틸), -OCH3(methoxy), -NH2, -F(불소), -O-2-메톡시에틸 -O-프로필(propyl), -O-2-메틸티오에틸(methylthioethyl), -O-3-아미노프로필, -O-3-디메틸아미노프로필, -O-N-메틸아세트아미도 또는 -O-디메틸아미도옥시에틸로의 치환에 의한 변형; 뉴클레오티드 내 당(sugar) 구조 내의 산소가 황으로 치환된 변형; 또는 뉴클레오티드결합의 포스포로티오에이트(phosphorothioate) 또는 보라노포스페이트(boranophosphate), 메틸포스포네이트(methyl phosphonate) 결합으로의 변형에서 선택된 하나 이상의 변형이 조합되어 사용될 수 있으며, PNA(peptide nucleic acid), LNA(locked nucleic acid) 또는 UNA(unlocked nucleic acid) 형태로의 변형도 사용이 가능하다(Ann. Rev. Med. 55, 61-65 2004; US 5,660,985; US 5,958,691; US 6,531,584; US 5,808,023; US 6,326,358; US 6,175,001; Bioorg. Med. Chem. Lett. 14:1139-1143, 2003; RNA, 9:1034-1048, 2003; Nucleic Acid Res. 31:589-595, 2003; Nucleic Acids Research, 38(17) 5761-5773, 2010; Nucleic Acids Research, 39(5) 1823-1832, 2011).In the present invention, the siRNA may be characterized in that it comprises a variety of modification (modification) for imparting nuclease resistance resistance and non-specific immune response to improve the stability in vivo. Modifications of the siRNAs have been described in which the —OH group at the 2 ′ carbon position of the sugar structure in one or more nucleotides is —CH 3 (methyl), —OCH 3 (methoxy), —NH 2 , —F (fluorine), —O-2-methicone. Methoxyethyl -O-propyl, -O-2-methylthioethyl, -O-3-aminopropyl, -O-3-dimethylaminopropyl, -ON-methylacetamido or -O- Modification by substitution with dimethylamidooxyethyl; Modification in which oxygen in a sugar structure in nucleotides is replaced with sulfur; Or a combination of one or more modifications selected from nucleotide-linked phosphorothioate or boranophosphate, methyl phosphonate bonds, peptide nucleic acid (PNA), Modifications in the form of locked nucleic acid (LNA) or unlocked nucleic acid (UNA) are also possible (Ann. Rev. Med. 55, 61-65 2004; US 5,660,985; US 5,958,691; US 6,531,584; US 5,808,023; US 6,326,358 ; US 6,175,001; Bioorg.Med. Chem. Lett. 14: 1139-1143, 2003; RNA, 9: 1034-1048, 2003; Nucleic Acid Res. 31: 589-595, 2003; Nucleic Acids Research, 38 (17) 5761-5773, 2010; Nucleic Acids Research, 39 (5) 1823-1832, 2011).

본 발명에서 제공하는 STAT3 특이적 siRNA는 해당 유전자의 발현을 저해시킬 뿐만 아니라, 해당 단백질의 발현을 현저하게 저해시킨다. 또한, 암의 치료에 있어서 사용되는 암 특이적 RNAi와 전형적인 조합(combination)되는 치료방법인 방사선이나 화학요법의 감수성을 향상시키는 것으로 알려져 있으므로(The Potential RNAi-based Combination Therapeutics. Arch Pharm Res 34(1): 1-2, 2011), 본 발명의 STAT3 특이적 siRNA를 기존의 방사선 또는 화학요법과 병행 사용할 수 있다는 것은 당업자에게 자명할 것이다.STAT3 specific siRNA provided by the present invention not only inhibits the expression of the gene of interest, but also significantly inhibits the expression of the protein of interest. In addition, since it is known to improve the sensitivity of radiation or chemotherapy, which is a typical combination with cancer-specific RNAi used in the treatment of cancer (The Potential RNAi-based Combination Therapeutics. Arch Pharm Res 34 (1). ): 1-2, 2011), it will be apparent to those skilled in the art that the STAT3 specific siRNA of the present invention can be used in combination with existing radiation or chemotherapy.

본 발명의 다른 양태로서, 유방암 연관 유전자, 특히 STAT3 특이적 siRNA의 생체 내로의 효율적인 전달 및 안정성 향상을 위하여 siRNA의 양 말단에 친수성 물질 및 소수성 물질이 접합된 형태의 접합체를 제공한다. In another aspect of the present invention, there is provided a conjugate in which a hydrophilic substance and a hydrophobic substance are conjugated to both ends of an siRNA for efficient delivery and stability of breast cancer associated genes, particularly STAT3 specific siRNA, in vivo.

siRNA에 친수성 물질 및 소수성 물질이 결합된 siRNA 접합체의 경우 소수성 물질의 소수성 상호작용에 의하여 자가조립 나노입자를 형성하게 되는데(대한민국 특허 등록번호 제 1224828 호 참조), 이 나노입자는 체내로의 전달효율 및 체내에서의 안정성이 극히 우수할 뿐 아니라, 구조의 개선을 통해 입자 크기가 매우 균일하여 QC(Quality control)이 용이하므로 약물로서의 제조 공정이 간단하다는 장점이 있다 (WO2015002511 참조).In the case of siRNA conjugates in which a hydrophilic material and a hydrophobic material are bound to siRNA, self-assembled nanoparticles are formed by hydrophobic interaction of the hydrophobic material (see Korean Patent Registration No. 1224828). And not only the stability in the body is extremely excellent, but also the particle size is very uniform through the improvement of the structure is easy to QC (Quality control), there is an advantage that the manufacturing process as a drug is simple (see WO2015002511).

하나의 바람직한 구체예로서, 본 발명에 따른 STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체는 하기 구조식 (1)과 같은 구조를 포함하는 것이 바람직하다.As one preferred embodiment, the double-stranded oligo RNA structure comprising the STAT3 specific siRNA according to the present invention preferably comprises a structure as shown in the following structural formula (1).

구조식 1Structural Formula 1

Figure PCTKR2016006363-appb-I000001
Figure PCTKR2016006363-appb-I000001

상기 구조식 (1)에서 A는 친수성 물질 단량체(monomer), B는 소수성 물질, J는 m개의 친수성 물질 단량체 간 또는 m개의 친수성 물질 단량체와 올리고뉴클레오타이드를 서로 연결하는 링커, n은 친수성 물질 단량체가 m개 반복된 친수성 물질 블록의 반복횟수, X와 Y는 각각 독립적으로 단순 공유결합 또는 링커(linker)가 매개된 공유결합, R은 STAT3 특이적 siRNA, 그리고 m은 1 내지 10의 정수이며 바람직하게는 6, n은 1 내지 10의 정수이며 바람직하게는 4이다.In structural formula (1), A is a hydrophilic monomer, B is a hydrophobic substance, J is a m-hydrophilic monomer, or a linker connecting m hydrophilic monomers and oligonucleotides to each other, and n is a hydrophilic monomer. The number of repetitions of the repeated hydrophilic material blocks, X and Y are each independently a simple covalent bond or a linker mediated covalent bond, R is a STAT3 specific siRNA, and m is an integer from 1 to 10, preferably 6, n is an integer of 1-10, Preferably it is 4.

상기 STAT3 특이적 siRNA는 STAT3 특이성이 유지되는 한, siRNA의 안티센스가닥이 STAT3 유전자의 결합 부위와 100% 염기서열이 상보적인 경우, 즉 완전 일치(perfect match)하는 것뿐 아니라, 일부 염기서열이 일치하지 않는 경우, 즉 불완전 일치(mismatch)가 있는 것도 포함된다. 이러한 siRNA는 STAT3 유전자의 mRNA 서열의 일부에 대하여 바람직하게는 70% 이상, 보다 바람직하게는 80% 이상, 보다 더욱 바람직하게는 90% 이상, 더욱 바람직하게는 95% 이상, 가장 바람직하게는 100%의 상동성을 가지는 서열로 구성될 수 있다.As long as STAT3 specificity is maintained, the STAT3-specific siRNA may not only not only match perfect sequences but also some sequences when the antisense strand of the siRNA is 100% nucleotide complementary to the binding site of the STAT3 gene. If not, that is, there is a mismatch. Such siRNA is preferably at least 70%, more preferably at least 80%, even more preferably at least 90%, even more preferably at least 95%, most preferably 100% relative to a portion of the mRNA sequence of the STAT3 gene It may consist of a sequence having a homology of.

이러한 siRNA는 듀플렉스일 수 있고 또한 단일분자 폴리뉴클레오티드를 포함할 수 있으나 안티센스 올리고뉴클레오티드 또는 microRNA(miRNAs)에 한정되지 않는 것은 아니다. Such siRNAs may be duplexed and may also include single molecule polynucleotides, but are not limited to antisense oligonucleotides or microRNAs (miRNAs).

보다 바람직하게는, 본 발명에 따른 STAT3 특이적 siRNA 를 포함하는 이중나선 올리고 RNA 구조체는 하기 구조식 (2)의 구조를 가진다.More preferably, the double-stranded oligo RNA structure comprising STAT3-specific siRNA according to the present invention has the structure of the following structural formula (2).

구조식 2Structural Formula 2

Figure PCTKR2016006363-appb-I000002
Figure PCTKR2016006363-appb-I000002

상기 구조식 (2)에서 A, B, J, m, n, X 및 Y는 상기 구조식 (1)에서의 정의와 동일하며, S는 STAT3 특이적 siRNA의 센스가닥, AS는 STAT3 특이적 siRNA의 안티센스 가닥을 의미한다.A, B, J, m, n, X and Y in the formula (2) is the same as the definition in the formula (1), S is the sense strand of STAT3-specific siRNA, AS is antisense of STAT3-specific siRNA Means strand.

보다 바람직하게는 STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체는 하기 구조식 (3)의 구조를 가진다.More preferably, the double-stranded oligo RNA construct comprising STAT3-specific siRNA has the structure of formula (3) below.

구조식 3Structural Formula 3

Figure PCTKR2016006363-appb-I000003
Figure PCTKR2016006363-appb-I000003

상기, 구조식 (1) 내지 구조식 (3)에서의 상기 STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체의 안티센스 가닥의 5´ 말단에 인산기(phosphate group)가 한 개 내지 세 개 결합될 수 있으며, siRNA 대신에 shRNA가 사용될 수도 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다. One to three phosphate groups may be bonded to the 5 ′ end of the antisense strand of the double-stranded oligo RNA structure comprising the STAT3-specific siRNAs in the formulas (1) to (3), It is apparent to those skilled in the art that shRNA may be used instead of siRNA.

상기 구조식 (1) 내지 구조식 (3)에서의 친수성 물질 단량체(A)는 비이온성 친수성 고분자의 단량체 중에서 본 발명의 목적에 부합하는 것이라면 어느 것이라도 제한없이 사용이 가능하며, 바람직하게는 표 1에 기재된 화합물 (1) 내지 화합물 (3)에서 선택된 단량체, 더욱 바람직하게는 화합물(1)의 단량체가 사용될 수 있으며, 화합물 (1)에서 G는 바람직하게는 CH2, O, S 및 NH에서 선택될 수 있고, 더욱 바람직하게는 O가 사용된다.The hydrophilic material monomers (A) in the structural formulas (1) to (3) can be used without limitation as long as they meet the object of the present invention among the monomers of the nonionic hydrophilic polymer, preferably in Table 1 The monomers selected from the compounds (1) to (3) described, more preferably the monomers of compound (1) can be used, and in compound (1) G is preferably selected from CH 2 , O, S and NH And more preferably O is used.

Figure PCTKR2016006363-appb-T000001
Figure PCTKR2016006363-appb-T000001

상기 각 친수성 물질 블록 내에 포함되는 친수성 물질 단량체인 A와 링커인 J는 독립적으로 각 친수성 물질 블록간에 동일할 수도 있고, 상이할 수도 있다. 즉, 친수성 물질 블록이 3개 사용될 경우(n=3), 첫 번째 블록에는 화합물 (1)에 따른 친수성 물질 단량체가, 두 번째 블록에는 화합물 (2)에 따른 친수성 물질 단량체가, 세 번째 블록에는 화합물 (3)에 따른 친수성 물질 단량체가 사용되는 등, 모든 친수성 물질 블록 별로 다른 친수성 물질 단량체가 사용될 수도 있고, 모든 친수성 물질 블록에 화합물 (1) 내지 화합물 (3)에 따른 친수성 물질 단량체에서 선택된 어느 하나의 친수성 물질 단량체가 동일하게 사용될 수도 있다. 마찬가지로, 친수성 물질 단량체의 결합을 매개하는 링커 역시 각 친수성 물질 블록 별로 모두 동일한 링커가 사용될 수도 있고, 각 친수성 물질 블록 별로 상이한 링커가 사용될 수도 있다.The hydrophilic material monomer A and the linker J included in each of the hydrophilic material blocks may be the same as or different from each of the hydrophilic material blocks independently. That is, if three hydrophilic material blocks are used (n = 3), the first block contains the hydrophilic monomer according to compound (1), the second block contains the hydrophilic monomer according to compound (2), and the third block contains Other hydrophilic material monomers may be used for every hydrophilic material block, such as a hydrophilic material monomer according to compound (3), and any hydrophilic material monomer selected from compounds (1) to (3) may be used for every hydrophilic material block. One hydrophilic monomer may equally be used. Similarly, the linker that mediates the binding of the hydrophilic material monomer may also use the same linker for each hydrophilic material block, or different linkers for each hydrophilic material block.

상기 구조식 (1) 내지 구조식 (3)에서의 소수성 물질(B)은 소수성 상호작용을 통해 구조식(1)에 따른 올리고뉴클레오티드 구조체로 구성된 나노입자를 형성하는 역할을 수행한다. The hydrophobic material (B) in the structural formulas (1) to (3) serves to form nanoparticles composed of the oligonucleotide structure according to the structural formula (1) through hydrophobic interaction.

본 발명에 있어서, 상기 소수성 물질은 분자량이 250 내지 1,000인 것이 바람직하며, 스테로이드(steroid) 유도체, 글리세라이드(glyceride) 유도체, 글리세롤 에테르(glycerol ether), 폴리프로필렌 글리콜(polypropylene glycol), C12 내지 C50의 불포화 또는 포화 탄화수소(hydrocarbon), 디아실포스파티딜콜린 (diacylphosphatidylcholine), 지방산(fatty acid), 인지질(phospholipid), 리포폴리아민(lipopolyamine) 등이 사용될 수 있지만, 이에 제한되는 것은 아니며, 본 발명의 목적에 부합하는 것이라면 어떠한 소수성 물질도 사용 가능하다는 점은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.In the present invention, the hydrophobic material preferably has a molecular weight of 250 to 1,000, steroid derivatives, glyceride derivatives, glycerol ether, polypropylene glycol, C 12 to C 50 unsaturated or saturated hydrocarbons, diacylphosphatidylcholine, fatty acids, phospholipids, lipopolyamines, and the like may be used, but are not limited thereto. Any hydrophobic material can be used as long as it can be understood by those skilled in the art to which the present invention pertains.

본 발명에 있어서, 상기 스테로이드(steroid) 유도체는 콜레스테롤, 콜레스탄올, 콜산, 콜리스테릴포르메이트, 코테스타닐 포르메이트 및 콜리스타닐아민으로 이루어진 군에서 선택될 수 있으며, 상기 글리세라이드 유도체는 모노-, 디- 및 트리-글리세라이드 등에서 선택될 수 있는데 이때, 글리세라이드의 지방산은 C12 내지 C50의 불포화 또는 포화 지방산이 바람직하다. In the present invention, the steroid derivative (steroid) may be selected from the group consisting of cholesterol, cholestanol, cholic acid, chosteryl formate, cotestanyl formate and colistanylamine, the glyceride derivative is Mono-, di- and tri-glycerides and the like, wherein the fatty acid of the glyceride is preferably C 12 to C 50 unsaturated or saturated fatty acid.

특히, 상기 소수성 물질 중에서도 포화 또는 불포화 탄화수소나 콜레스테롤이 본 발명에 따른 올리고뉴클레오타이드 구조체의 합성 단계에서 용이하게 결합시킬 수 있는 장점을 가지고 있다는 점에서 바람직하다.Particularly, among the hydrophobic substances, saturated or unsaturated hydrocarbons or cholesterols are preferable in that they have the advantage of being easily bonded in the synthesis step of the oligonucleotide structure according to the present invention.

상기 소수성 물질은 친수성 물질의 반대쪽 말단(distal end)에 결합되며, siRNA 의 센스가닥 또는 안티센스 가닥의 어느 위치에 결합되어도 무방하다. The hydrophobic material is bound to the distal end of the hydrophilic material, and may be bonded at any position of the sense strand or the antisense strand of the siRNA.

본 발명에 따른 구조식 (1) 내지 구조식 (3)에서의 친수성 물질 또는 소수성 물질과 STAT3 특이적 siRNA는 단순 공유 결합 또는 링커가 매개된 공유결합(X 또는 Y)에 의해 결합된다. 상기 공유결합을 매개하는 링커는 친수성 물질, 또는 소수성 물질과 STAT3 특이적 siRNA의 말단에서 공유결합하며, 필요에 따라 특정 환경에서 분해가 가능한 결합을 제공하는 한 특별히 한정되는 것은 아니다. 따라서, 상기 링커는 본 발명에 따른 이중나선 올리고 RNA 구조체의 제조과정 중 STAT3 특이적 siRNA 및/또는 친수성 물질(또는 소수성 물질)을 활성화하기 위해 결합시키는 어떠한 화합물도 사용될 수 있다. The hydrophilic or hydrophobic material and the STAT3-specific siRNA in the structural formulas (1) to (3) according to the present invention are bound by simple covalent bonds or linker-mediated covalent bonds (X or Y). The linker that mediates the covalent bond is not particularly limited as long as it provides covalent bond at the end of the STAT3-specific siRNA with a hydrophilic substance or a hydrophobic substance, and can be decomposed in a specific environment as necessary. Thus, the linker can be used any compound that binds to activate the STAT3-specific siRNA and / or hydrophilic material (or hydrophobic material) during the preparation of the double helix oligo RNA structure according to the present invention.

본 발명에 있어서, 상기 공유결합은 비분해성 결합 또는 분해성 결합 중 어느 것이어도 무방하다. 이때, 비분해성 결합으로는 아미드 결합 또는 인산화 결합이 있고, 분해성 결합으로는 이황화 결합, 산분해성 결합, 에스테르 결합, 안하이드라이드 결합, 생분해성 결합 또는 효소 분해성 결합 등이 있으나, 이에 한정되는 것은 아니다.In the present invention, the covalent bond may be any of non-degradable bonds or degradable bonds. In this case, the non-degradable bonds include amide bonds or phosphorylation bonds, and the degradable bonds include disulfide bonds, acid decomposable bonds, ester bonds, anhydride bonds, biodegradable bonds or enzymatic bonds, but are not limited thereto. .

또한, 상기 구조식 (1) 내지 구조식 (3)에서의 R(또는 S 및 AS)로 표시되는 STAT3 특이적 siRNA는 STAT3와 특이적으로 결합할 수 있는 특성을 지니는 siRNA라면 모두 제한 없이 사용가능하며, 바람직하게는 본 발명에서는 서열번호 1 내지 서열번호 200 에서 선택된 어느 하나의 서열을 포함하는 센스가닥(sense strand)과 그에 상보적 서열을 포함하는 안티센스 가닥으로 구성되는 것을 특징으로 할 수 있다. In addition, STAT3 specific siRNAs represented by R (or S and AS) in the above formulas (1) to (3) can be used without limitation as long as all siRNAs have properties that can specifically bind to STAT3, Preferably, the present invention may be characterized by consisting of a sense strand comprising any one sequence selected from SEQ ID NO: 1 to SEQ ID NO: 200 and an antisense strand comprising a complementary sequence thereto.

본 발명에 있어서, 상기 siRNA는 바람직하게는 서열번호 12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, 171번에 따른 STAT3 특이적 siRNA의 센스가닥을 포함하며, 더욱 바람직하게는 서열번호 17, 42, 101, 119, 137번에 따른 STAT3 특이적 siRNA의 센스가닥을 포함하고, 가장 바람직하게는 서열번호 42, 101, 137번에 따른 STAT3 특이적 siRNA의 센스가닥을 포함하는 것을 특징으로 할 수 있다.In the present invention, the siRNA preferably comprises a sense strand of STAT3 specific siRNA according to SEQ ID NO: 12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, 171, More preferably the sense strand of the STAT3 specific siRNA according to SEQ ID NO: 17, 42, 101, 119, 137, most preferably the sense strand of the STAT3 specific siRNA according to SEQ ID NO: 42, 101, 137 It may be characterized in that it comprises a.

한편, 종양(tumor)의 조직은 매우 견고하여 정상 조직에 비하여 확산 제한(diffusion-limitation)을 갖는데, 이러한 확산 제한은 종양 성장에 필요한 영양분, 산소 및 이산화탄소 같은 노폐물의 이동에 악영향을 주기 때문에, 혈관신생(angiogenesis)을 통해 주변에 혈관을 형성함으로써 확산 제한을 극복한다. 혈관신생을 통해 형성된 종양 조직 내 혈관은 종양의 종류에 따라 100 nm 내지 2 um 가량의 틈을 가진 헐거운 혈관 구조(leaky and defective blood vessel)를 가진다. 따라서 나노입자는 정상조직의 조직화된 모세 혈관에 비하여 헐거운 혈관 구조를 포함하는 암 조직의 모세혈관 내피(capillary endothelium)를 잘 통과하게 되어 혈액 내 순환 과정 중에 종양 간질(tumor interstitium)에 접근이 용이해지고, 또한 종양 조직 안에는 림프관(lymphatic drainage)이 없어 약물이 축적되는 결과를 나타내는데, 이를 EPR(enhanced permeation and retention) 효과라고 한다. 나노입자가 이러한 효과에 의해 종양 조직 특이적으로 잘 전달되는 것을 수동적 타겟팅(passive targeting)이라고 한다(Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. 2008 Jan-Feb; 26(1):57-64). 능동적 타겟팅(active targeting)은 표적물질(targeting moiety)이 나노입자에 결합된 경우로, 나노입자를 타겟 조직에서의 축적을 증진(preferential accumulation)시키거나, 타겟 세포 안으로 나노입자가 전달되는 내재화(internalization)를 개선하는 것이 보고되었다 (Does a targeting ligand influence nanoparticle tumor localization or uptake Trends Biotechnol. 2008 Oct; 26(10):552-8. Epub 2008 Aug 21). 능동적 타겟팅은 타겟 세포 표면 특이적 또는 과 발현되어있는 탄수화물(carbohydrate), 수용체(receptor), 항원 (antigen)와 결합할 수 있는 능력을 가진 물질(타겟팅 모이어티, targeting moiety)을 이용한다(Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006; 5(8): 1909-1917). Tumor tissue, on the other hand, is very robust and has diffusion-limitation compared to normal tissue, which can adversely affect the movement of waste products such as nutrients, oxygen and carbon dioxide, which are necessary for tumor growth. Angiogenesis overcomes diffusion limitations by forming blood vessels around. Blood vessels in tumor tissue formed through angiogenesis have a leaky and defective blood vessel having a gap of about 100 nm to 2 um depending on the type of tumor. As a result, nanoparticles pass through the capillary endothelium of cancerous tissues, which contain loose blood vessel structures, compared to the organized capillaries of normal tissues, thereby facilitating access to tumor interstitium during blood circulation. In addition, there is no lymphatic drainage in tumor tissues, which results in the accumulation of drugs. This is called the enhanced permeation and retention (EPR) effect. The delivery of nanoparticles to tumor tissue specificity by this effect is called passive targeting (Nanoparticles for drug delivery in cancer treatment.Urol. Oncol. 2008 Jan-Feb; 26 (1): 57-64 ). Active targeting is a case where a targeting moiety is bound to a nanoparticle, which promotes the accumulation of nanoparticles in the target tissue or internalization of the nanoparticles into the target cell. Does a targeting ligand influence nanoparticle tumor localization or uptake Trends Biotechnol. 2008 Oct; 26 (10): 552-8. Epub 2008 Aug 21). Active targeting uses target cell surface specific or overexpressed carbohydrates, receptors, and antigens (targeting moieties) that have the ability to bind to antigens (Nanotechnology in cancer). therapeutics: bioconjugated nanoparticles for drug delivery.Mol Cancer Ther 2006; 5 (8): 1909-1917).

따라서 본 발명에 따른 STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체 및 이로부터 형성된 나노입자에 타겟팅 모이어티가 구비된다면, 효율적으로 타겟 세포로의 전달을 촉진하여, 비교적 낮은 농도의 투여량으로도 타겟 세포로 전달되어 높은 타겟 유전자 발현 조절 기능을 나타낼 수 있으며, 타 장기 및 세포로의 비 특이적 STAT3 특이적 siRNA의 전달을 방지할 수 있다. Therefore, if the double-stranded oligo RNA structure comprising the STAT3-specific siRNA according to the present invention and the nanoparticles formed therefrom are provided with a targeting moiety, the target moiety can be efficiently promoted to a target cell, and at a relatively low concentration, It can be delivered to target cells and exhibit high target gene expression regulating function, and can prevent delivery of non-specific STAT3 specific siRNA to other organs and cells.

이에 따라 본 발명은 상기 구조식 (1) 내지 구조식 (3)에 따른 구조체에 리간드(L), 특히 수용체 매개 내포작용(receptor-mediated endocytosis, RME)을 통해 타겟 세포 내재화(internalization)를 증진시키는 수용체와 특이적으로 결합하는 특성을 가진 리간드(ligand)가 추가적으로 결합된 이중나선 올리고 RNA, 구조체를 제공하며, 구조식 (1)에 따른 이중나선 올리고 RNA 구조체에 리간드가 결합된 형태는 하기 구조식 (4)와 같은 구조를 가진다. Accordingly, the present invention provides a receptor (L), particularly a receptor for enhancing internalization of a target cell through receptor-mediated endocytosis (RME), in a construct according to Structural Formulas (1) to (3). Provides a double-stranded oligo RNA, structure is further coupled to a ligand (ligand) having a specific binding properties, the form of the ligand is bound to the double-stranded oligo RNA structure according to the formula (1) is represented by the following formula (4) Have the same structure.

구조식 4Structural Formula 4

(Li-Z)-(Am-J)n-X-R-Y-B (Li-Z)-(A m -J) n -XRYB

상기 구조식 (4)에서, A, B, J, m, n, X 및 Y는 상기 구조식 (1) 내지 구조식 (3)에서의 정의와 동일하며, L은 수용체 매개 내포작용(receptor-mediated endocytosis, RME)을 통해 타겟 세포 내재화(internalization)를 증진시키는 수용체와 특이적으로 결합하는 특성을 가진 리간드를 의미하며, i는 1 내지 5의 정수, 바람직하게는 1 내지 3의 정수를 의미하고, Z는 단순 공유결합 또는 친수성 물질 블록 내의 친수성 물질 단량체와 리간드의 결합을 매개하는 링커이다.In the above formula (4), A, B, J, m, n, X and Y are the same as the definition in the formula (1) to (3), L is receptor-mediated endocytosis, RME) refers to a ligand having a property of specifically binding to a receptor that promotes target cell internalization, i means an integer of 1 to 5, preferably an integer of 1 to 3, Z is It is a linker that mediates the binding of a ligand to a hydrophilic monomer in a simple covalent or hydrophilic block of materials.

상기 구조식 (4)에서의 리간드는 바람직하게는 타겟세포 특이적으로 세포내재화 (internalization)을 증진시키는 수용체매개 세포내섭취(receptor-mediated endocytosis, RME)의 특성을 가진 타겟 수용체 특이적 항체나 앱타머, 펩타이드; 또는 엽산(Folate, 일반적으로 folate와 folic acid는 서로 교차 사용되고 있으며, 본 발명에서의 엽산은 자연 상태 또는 인체에서 활성화 상태인 folate를 의미한다), N-아세틸 갈락토사민(N-acetyl Galactosamine, NAG) 등의 헥소아민(hexoamine), 포도당(glucose), 만노스(mannose)를 비롯한 당이나 탄수화물(carbohydrate) 등의 화학물질 등에서 선택될 수 있지만, 이에 한정되는 것은 아니며, 바람직하게는 포도당이다.The ligand in the above formula (4) is preferably a target receptor-specific antibody or aptamer having the characteristics of receptor-mediated endocytosis (RME) that promotes internalization specifically to the target cell. , Peptides; Or folic acid (Folate, in general, folate and folic acid are used interchangeably with each other, folic acid in the present invention means folate that is active in the natural state or human body), N-acetyl galactosamine (N-acetyl Galactosamine, NAG Hexamine (hexoamine), glucose (glucose), mannose, and other chemicals, such as sugar or carbohydrate (carbohydrate), such as, but is not limited to this, preferably glucose.

본 발명의 또 다른 양태로서, 본 발명은 상기 STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체를 제조하는 방법을 제공한다. In still another aspect of the present invention, the present invention provides a method for preparing a double-stranded oligo RNA construct comprising the STAT3 specific siRNA.

본 발명에 따른 STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체를 제조하는 과정은 예를 들어, The process for preparing a double helix oligo RNA construct comprising a STAT3 specific siRNA according to the invention is, for example,

(1) 고형지지체(solid support}를 기반으로 친수성 물질을 결합 시키는 단계; (1) bonding the hydrophilic material on a solid support basis;

(2) 상기 친수성 물질이 결합된 고형지지체를 기반으로 RNA 단일가닥을 합성하는 단계; (2) synthesizing a single RNA strand based on the solid support to which the hydrophilic material is bound;

(3) 상기 RNA 단일가닥 5´ 말단에 소수성 물질을 공유결합 시키는 단계; (3) covalently binding a hydrophobic substance to the 5 'end of the RNA single strand;

(4) 상기 RNA 단일가닥의 서열과 상보적인 서열의 RNA 단일가닥을 합성하는 단계; (4) synthesizing an RNA single strand of a sequence complementary to the sequence of the RNA single strand;

(5) 합성이 완료되면 고형지지체로부터 RNA-고분자 구조체 및 RNA 단일 가닥을 분리 정제하는 단계;(5) separating and purifying the RNA-polymer structure and the RNA single strand from the solid support when the synthesis is completed;

(6) 제조된 RNA-고분자 구조체와 상보적인 서열의 RNA 단일가닥의 어닐링을 통해 이중나선 올리고 RNA 구조체를 제조하는 단계;(6) preparing a double-stranded oligo RNA structure by annealing RNA single strands of sequences complementary to the prepared RNA-polymer construct;

를 포함하여 이루어질 수 있다.It may be made, including.

본 발명에서의 고형지지체(solid support)는 Controlled Pore Glass(CPG)가 바람직하지만 이에 한정되는 것은 아니며, CPG인 경우 직경은 40~180 ㎛인 것이 바람직하며, 500Å~3000Å의 공극 크기를 가지는 것이 바람직하다. 상기 단계 (5) 이후, 제조가 완료 되면 정제된 RNA-고분자 구조체 및 RNA 단일가닥은 MALDI-TOF 질량분석기로 분자량을 측정하여 목적하는 RNA-고분자 구조체 및 RNA 단일가닥이 제조되었는지를 확인할 수 있다. 상기 제조방법에 있어서 (2) 단계에서 합성된 RNA 단일가닥의 서열과 상보적인 서열의 RNA 단일가닥을 합성하는 단계 (4)는 (1) 단계 이전 또는 (1) 단계 내지 (5)단계 중 어느 한 과정 중에 수행되어도 무방하다. In the present invention, the solid support is preferably Controlled Pore Glass (CPG), but is not limited thereto. In the case of CPG, the diameter is preferably 40 to 180 μm, and preferably has a pore size of 500 μs to 3000 μm. Do. After the step (5), when the preparation is completed, the purified RNA-polymer construct and RNA single strand can be determined by measuring the molecular weight with a MALDI-TOF mass spectrometer to prepare the desired RNA-polymer construct and RNA single strand. In the preparation method, the step (4) of synthesizing the RNA single strand of the sequence complementary to the sequence of the RNA single strand synthesized in step (2) is performed before (1) or (1) to (5) It can be done during a process.

또한, (2)단계에서 합성된 RNA 단일가닥과 상보적 서열을 포함하는 RNA 단일가닥은 5´ 말단에 인산기가 결합된 형태로 이용된 것을 특징으로 하는 제조방법도 될 수 있다.In addition, the RNA single strand comprising the RNA single strand and the complementary sequence synthesized in step (2) may be a manufacturing method characterized in that used in the form of a phosphate group bonded to the 5 'end.

본 발명은 또한, STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체에 추가적으로 리간드가 결합된 이중나선 올리고 RNA 구조체의 제조방법을 제공한다. The present invention also provides a method for preparing a double-stranded oligo RNA structure in which ligand is additionally bound to a double-stranded oligo RNA structure comprising a STAT3-specific siRNA.

리간드가 결합된 STAT3 특이적 siRNA를 포함하는 올리고 RNA 구조체를 제조하는 방법은 예를 들어, Methods for preparing oligo RNA constructs comprising STAT3 specific siRNAs with bound ligands are, for example,

(1)s 기능기가 결합되어 있는 고형지지체에 친수성 물질을 결합시키는 단계; (1) binding a hydrophilic material to the solid support to which the functional group is bound;

(2) 기능기-친수성 물질이 결합되어있는 고형지지체를 기반으로 RNA 단일가닥을 합성하는 단계; (2) synthesizing a single RNA strand based on the solid support to which the functional group-hydrophilic material is bound;

(3) 상기 RNA 단일가닥의 5´ 말단에 소수성 물질을 공유결합 시키는 과정으로 합성하는 단계; (3) synthesizing by covalently attaching a hydrophobic material to the 5 'end of the RNA single strand;

(4) 상기 RNA 단일가닥의 서열과 상보적인 서열의 RNA 단일 가닥을 합성하는 단계; (4) synthesizing an RNA single strand of a sequence complementary to the sequence of the RNA single strand;

(5) 합성이 완료되면 고형지지체로부터 기능기-RNA-고분자 구조체 및 상보적인 서열의 RNA 단일가닥을 분리하는 단계; (5) separating the RNA single strand of the functional group-RNA-polymer structure and the complementary sequence from the solid support when synthesis is complete;

(6) 상기 기능기를 이용하여 친수성 물질 말단에 리간드를 결합하여 리간드-RNA-고분자 구조체 단일가닥을 제조하는 단계; (6) binding a ligand to a hydrophilic material terminal using the functional group to prepare a ligand-RNA-polymer structure single strand;

(7) 제조된 리간드-RNA-고분자 구조체와 상보적인 서열의 RNA 단일가닥의 어닐링을 통해 리간드-이중나선 올리고 RNA 구조체를 제조하는 단계;(7) preparing a ligand-double-stranded oligo RNA structure by annealing RNA single strands of sequences complementary to the prepared ligand-RNA-polymer construct;

를 포함하여 이루어질 수 있다. It may be made, including.

상기 (6)단계 이후, 제조가 완료되면 리간드-RNA-고분자 구조체 및 상보적인 서열의 RNA 단일가닥을 분리 정제한 뒤 MALDI-TOF 질량 분석기로 분자량을 측정하여 목적하는 리간드-RNA-고분자 구조체 및 상보적인 RNA가 제조되었는지를 확인 할 수 있다. 제조된 리간드-RNA-고분자 구조체와 상보적인 서열의 RNA 단일가닥의 어닐링을 통해 리간드-이중나선 올리고 RNA 구조체를 제조할 수 있다. 상기 제조방법에 있어서 (3) 단계에서 합성된 RNA 단일가닥의 서열과 상보적인 서열의 RNA 단일가닥을 합성하는 단계 (4)는 독립적인 합성과정으로서 (1) 단계 이전 또는 (1) 단계 내지 (6) 단계 중 어느 한 과정 중에 수행되어도 무방하다.After the step (6), when the preparation is completed, the ligand-RNA-polymer structure and the RNA single strand of the complementary sequence is separated and purified, and then the desired ligand-RNA-polymer structure and complement by measuring the molecular weight with a MALDI-TOF mass spectrometer. You can check whether the RNA is prepared. Ligand-double-stranded oligo RNA structures can be prepared by annealing RNA single strands of sequences complementary to the prepared ligand-RNA-polymer constructs. In the preparation method, the step (4) of synthesizing the RNA single strand of the sequence complementary to the sequence of the RNA single strand synthesized in step (3) is an independent synthesis process before (1) or (1) to ( 6) may be performed during any of the steps.

본 발명의 또 다른 양태로서, STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체를 포함하는 나노입자를 제공한다. In another aspect of the invention, there is provided a nanoparticle comprising a double helix oligo RNA construct comprising a STAT3 specific siRNA.

이미 앞서 설명한 바와 같이 STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체는 소수성 및 친수성 물질을 모두 포함하고 있는 양친매성이며, 친수성 부분은 체내에 존재하는 물 분자들과 수소결합 등의 상호작용을 통해 친화력을 가지고 있어 바깥쪽으로 향하게 되고, 소수성 물질들은 그들 간의 소수성 상호작용(hydrophobic interaction)을 통해 안쪽으로 향하게 되어 열역학적으로 안정한 나노입자를 형성하게 된다. 즉, 나노입자의 중심에 소수성 물질이 위치하게 되고, STAT3 특이적 siRNA 의 바깥쪽 방향에 친수성 물질이 위치하여 STAT3 특이적 siRNA를 보호하는 형태의 나노입자를 형성한다. 이렇게 형성된 나노입자는 STAT3 특이적 siRNA의 세포 내 전달 향상 및 siRNA 효능을 향상시킨다.As described above, the double-stranded oligo RNA structure containing STAT3-specific siRNA is amphiphilic containing both hydrophobic and hydrophilic substances, and the hydrophilic portion is formed by interacting with hydrogen molecules and water molecules in the body. They have an affinity and are directed outwards, and hydrophobic materials are directed inward through hydrophobic interactions between them, forming thermodynamically stable nanoparticles. That is, the hydrophobic material is located in the center of the nanoparticles, and the hydrophilic material is located in the outward direction of the STAT3 specific siRNA to form a nanoparticle that protects the STAT3 specific siRNA. The thus formed nanoparticles enhance the intracellular delivery of STAT3-specific siRNA and the siRNA efficacy.

본 발명에 따른 나노입자는 동일한 서열을 가지는 siRNA를 포함하는 이중나선 올리고 RNA 구조체만으로 형성될 수도 있고, 서로 다른 서열을 포함하는 siRNA를 포함하는 이중나선 올리고 RNA 구조체로 구성될 수도 있음을 특징으로 하는데, 본 발명에서의 서로 다른 서열을 포함하는 siRNA는 다른 타겟 유전자, 예를 들어 STAT3 특이적 siRNA일수도 있고, 동일한 타겟 유전자 특이성을 가지면서 그 서열이 다른 경우도 포함될 수 있다. Nanoparticles according to the invention may be formed of a double-stranded oligo RNA structure comprising siRNA having the same sequence, or may be composed of a double-stranded oligo RNA structure comprising siRNA comprising different sequences In addition, siRNAs comprising different sequences in the present invention may be different target genes, for example, STAT3 specific siRNAs, and may include cases in which the sequences are different while having the same target gene specificity.

또한, STAT3 특이적 siRNA 이외에 다른 암 특이적 타겟 유전자 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체가 본 발명에 따른 나노입자에 포함될 수도 있다. In addition, double-stranded oligo RNA constructs comprising other cancer specific target gene specific siRNAs in addition to STAT3-specific siRNAs may also be included in the nanoparticles according to the invention.

또한, 본 발명은 또 다른 양태로서, STAT3 특이적 siRNA, 이를 포함하는 이중나선 올리고 RNA 구조체 및/또는 상기 이중나선 올리고 RNA 구조체로 이루어진 나노입자를 포함하는 암, 피부질환 또는 염증성 질환의 예방 또는 치료용 조성물을 제공한다. In still another aspect, the present invention provides a method for preventing or treating cancer, skin disease or inflammatory disease comprising STAT3-specific siRNA, a double-stranded oligo RNA structure comprising the same, and / or nanoparticles comprising the double-stranded oligo RNA structure. It provides a composition for.

본 발명에 따른 STAT3 특이적 siRNA, 이를 포함하는 이중나선 올리고 RNA 구조체 및/또는 상기 이중나선 올리고 RNA 구조체로 이루어진 나노입자를 유효성분으로 포함하는 조성물은 암세포의 증식 및 암세포의 사멸을 유도하거나, 각질 형성 세포의 증식 및 사멸을 유도하고 이에 따른 비 정상적인 면역세포의 활성을 유도하여, 암, 피부질환 또는 염증성 질환의 예방 또는 치료효과를 나타낸다. 따라서 본 발명에 따른 STAT3 특이적 siRNA 및 이를 포함하는 조성물은 해당 유전자가 과 활성화 되어있는 것으로 보고된 유방암을 비롯하여 위암, 폐암, 췌장암, 대장암, 간암, 전립선암, 난소암 및 신장암을 비롯한 다양한 암 또는 건선을 비롯한 피부질환과 염증성 질환의 예방 또는 치료에 효과가 있다. STAT3-specific siRNA according to the present invention, a double-stranded oligo RNA structure comprising the same and / or a composition comprising nanoparticles consisting of the double-stranded oligo RNA structure as an active ingredient induces the proliferation of cancer cells and the death of cancer cells, or keratin It induces proliferation and death of forming cells and thus induces the activity of abnormal immune cells, thereby preventing or treating cancer, skin disease or inflammatory disease. Therefore, the STAT3-specific siRNA and the composition comprising the same according to the present invention can be used for various cancers, including gastric cancer, lung cancer, pancreatic cancer, colorectal cancer, liver cancer, prostate cancer, ovarian cancer and kidney cancer, including breast cancer in which the gene is reported to be overactivated. It is effective in preventing or treating skin diseases and inflammatory diseases including cancer or psoriasis.

특히, 본 발명에 있어서, 상기 이중나선 올리고 RNA 구조체를 포함하는 암 예방 또는 치료용 조성물에는 서열번호 1 내지 서열번호 200에서 선택된 어느 하나의 서열, 바람직하게는 서열번호 12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, 171번에 따른 서열에서 선택된 어느 하나의 서열, 더욱 바람직하게는 서열번호 17, 42, 101, 119, 137번에 따른 서열, 가장 바람직하게는 서열번호 42, 101, 137번에 따른 서열을 포함하는 센스가닥 및 이와 상보적인 서열을 포함하는 안티센스 가닥을 포함하는 STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체를 포함하는 것을 특징으로 할 수 있다.In particular, in the present invention, the composition for preventing or treating cancer comprising the double-stranded oligo RNA structure comprises any one sequence selected from SEQ ID NO: 1 to SEQ ID NO: 200, preferably SEQ ID NO: 12, 17, 42, 101, Any one selected from the sequences according to 108, 114, 119, 137, 141, 166, 170, 171, more preferably the sequences according to SEQ ID NOs: 17, 42, 101, 119, 137, most preferably And a double stranded oligo RNA construct comprising a STAT3 specific siRNA comprising a sense strand comprising a sequence according to SEQ ID NOs: 42, 101 and 137 and an antisense strand comprising a sequence complementary thereto. .

또한, STAT3 이외의 다른 암, 피부질환 또는 염증성 질환 특이적 타겟 유전자에 특이적인 siRNA 또는 이를 포함하는 이중나선 올리고 RNA 구조체가 본 발명에 따른 조성물에 추가적으로 포함될 수 있다. In addition, siRNA specific to cancer, skin disease or inflammatory disease specific target genes other than STAT3 or a double-stranded oligo RNA construct comprising the same may be additionally included in the composition according to the present invention.

상기와 같이 STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체와 함께, 추가적으로 STAT3 이외의 암, 피부질환 또는 염증성 질환 특이적 타겟 유전자에 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체를 모두 포함하는 암, 피부질환 또는 염증성 질환 예방 또는 치료용 조성물을 함께 이용할 경우, 흔히 암, 피부질환 또는 염증성 질환 치료에 이용되는 병용 요법(combination therapy)과 같이 상승적인 효과를 거둘 수 있다. Along with the double-stranded oligo RNA construct comprising STAT3-specific siRNA as described above, the cancer further includes all of the double-stranded oligo RNA construct comprising siRNA specific to cancer, skin disease or inflammatory disease specific target gene other than STAT3. When used together with a composition for the prevention or treatment of skin diseases or inflammatory diseases, synergistic effects can be achieved, such as combination therapy, which is often used to treat cancer, skin diseases or inflammatory diseases.

본 발명에 따른 조성물이 예방 또는 치료할 수 있는 암은 유방암, 위암, 대장암, 췌장암, 전립선암, 간암, 난소암, 신장암 및 폐암 등을 예시할 수 있지만, 이에 한정되는 것은 아니고, 피부질환은 건선, 아토피, 백선 및 알레르기성 피부질환 등을 예시할 수 있지만 이에 한정되는 것은 아니며, 염증성 질환은 류마티스 관절염, 퇴행성 관절염, 초면역글로불린 혈증, 만성 갑상선염, 크론병 및 췌장염 등을 예시할 수 있지만, 이에 한정되는 것은 아니다Cancers that can be prevented or treated by the composition according to the present invention may exemplify breast cancer, stomach cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, ovarian cancer, kidney cancer and lung cancer, but are not limited thereto. Psoriasis, atopic dermatitis, ringworm and allergic skin diseases can be exemplified, but not limited thereto. Inflammatory diseases may include rheumatoid arthritis, degenerative arthritis, hyperimmunoglobulinemia, chronic thyroiditis, Crohn's disease, and pancreatitis. It is not limited to this

본 발명의 조성물에는 상기의 유효성분 이외에 추가로 약제학적으로 허용 가능한 담체를 1종 이상 포함하여 제조할 수 있다. 약제학적으로 허용 가능한 담체는 본 발명의 유효성분과 양립 가능하여야 하며, 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로즈 용액, 말토덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 한 성분 또는 둘 이상의 성분을 혼합하여 사용할 수 있고, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형으로 제제화 할 수 있다. 특히, 동결건조(lyophilized)된 형태의 제형으로 제제화하여 제공하는 것이 바람직하다. 동결건조 제형 제조를 위해서 본 발명이 속하는 기술분야에서 통상적으로 알려져 있는 방법이 사용될 수 있으며, 동결건조를 위한 안정화제가 추가될 수도 있다. 더 나아가 당 분야의 적정한 방법으로 또는 레밍톤 약학 과학(Remington's pharmaceutical Science, Mack Publishing company, Easton PA)에 개시되어 있는 방법을 이용하여 각 질병에 따라 또는 성분에 따라 바람직하게 제제화 할 수 있다. The composition of the present invention may be prepared by including at least one pharmaceutically acceptable carrier in addition to the above-mentioned effective ingredient. Pharmaceutically acceptable carriers must be compatible with the active ingredients of the present invention and include saline solution, sterile water, Ringer's solution, buffered saline solution, dextrose solution, maltodextrin solution, glycerol, ethanol and one or more of these ingredients. It can mix and use, and if needed, other conventional additives, such as antioxidant, buffer, and bacteriostatic agent, can be added. In addition, diluents, dispersants, surfactants, binders and lubricants may be additionally added to formulate injectable formulations such as aqueous solutions, suspensions, emulsions and the like. In particular, it is desirable to formulate and provide a formulation in the form of a lyophilized form. Methods commonly known in the art may be used for the preparation of lyophilized formulations, and stabilizers for lyophilization may be added. Furthermore, it may be preferably formulated according to each disease or component by a suitable method in the art or using a method disclosed in Remington's pharmaceutical Science, Mack Publishing Company, Easton PA.

본 발명의 조성물에 포함되는 유효성분 등의 함량 및 투여방법은 통상의 환자의 증후와 질병의 심각도에 기초하여 본 기술분야의 통상의 전문가가 결정할 수 있다. 또한 산제, 정제, 캡슐제, 액제, 주사제, 연고제, 시럽제 등의 다양한 형태로 제제화 할 수 있으며 단위-투여량 또는 다-투여량 용기, 예를 들면 밀봉된 앰플 및 병 등으로 제공될 수도 있다.The content and method of administration of the active ingredient and the like contained in the composition of the present invention can be determined by a person of ordinary skill in the art based on the symptoms and severity of the disease of a typical patient. It may also be formulated in various forms, such as powders, tablets, capsules, solutions, injections, ointments, syrups, and the like, and may also be provided in unit-dose or multi-dose containers, such as sealed ampoules and bottles.

본 발명의 조성물은 경구 또는 비경구 투여가 가능하다. 본 발명에 따른 조성물의 투여경로는 이들로 한정되는 것은 아니지만, 예를 들면, 기관지, 구강, 정맥 내, 근육 내, 동맥 내, 골수 내, 경막 내, 심장 내, 경피, 피하, 복강 내, 장관, 설하 또는 국소 투여가 가능하다. 본 발명에 따른 조성물의 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 방법, 배설율 또는 질병의 중증도 등에 따라 그 범위가 다양하며, 본 기술분야의 통상의 전문가가 용이하게 결정할 수 있다. 또한, 임상 투여를 위해 공지의 기술을 이용하여 본 발명의 조성물을 적합한 제형으로 제제화할 수 있다.The composition of the present invention can be administered orally or parenterally. Routes of administration of the compositions according to the invention include, but are not limited to, for example, bronchial, oral, intravenous, intramuscular, intraarterial, intramedullary, intradural, intracardiac, transdermal, subcutaneous, intraperitoneal, intestinal Sublingual, or topical administration is possible. The dosage of the composition according to the present invention may vary in the range depending on the weight, age, sex, health condition, diet, time of administration, method, excretion rate or severity of the disease, etc. of the patient, and is easily available to those skilled in the art. Can decide. In addition, the compositions of the present invention can be formulated into suitable formulations using known techniques for clinical administration.

본 발명에서는 본 발명에 따른 STAT3 특이적 siRNA, 상기 siRNA를 포함하는 이중나선 올리고 RNA 구조체, 이를 포함하는 조성물 또는 나노입자를 암, 피부질환 또는 염증성 질환의 예방 또는 치료를 위한 약제의 제조에 이용하는 용도를 제공한다. In the present invention, STAT3-specific siRNA according to the present invention, a double-stranded oligo RNA structure comprising the siRNA, a composition or a nanoparticle comprising the same for use in the manufacture of a medicament for the prevention or treatment of cancer, skin diseases or inflammatory diseases To provide.

또한, 본 발명은 본 발명에 따른 이중나선 올리고 RNA 구조체, 이를 포함하는 조성물 또는 나노입자를 예방 또는 치료를 필요로 하는 환자에게 투여하는 것을 포함하는 암, 피부질환 또는 염증성 질환의 예방 및 치료방법을 제공한다. The present invention also provides a method for preventing and treating cancer, skin disease or inflammatory disease comprising administering a double-stranded oligo RNA structure, a composition or a nanoparticle comprising the same to a patient in need thereof. to provide.

도 1은 본 발명에 따른 이중나선 올리고 RNA 구조체로 구성된 나노입자의 모식도이다.1 is a schematic diagram of nanoparticles composed of a double helix oligo RNA structure according to the present invention.

도 2는 본 발명에 따른 서열번호 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 또는 171번의 서열을 센스가닥으로 포함하는 siRNA를 포함하는 이중나선 올리고 RNA 구조체로 이루어진 나노입자의 크기(size) 및 PDI(polydispersity index)의 측정 그래프이다.2 is a double-stranded oligo RNA structure comprising an siRNA comprising a sequence of SEQ ID NO: 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 or 171 according to the present invention as a sense strand It is a measurement graph of the size (size) and polydispersity index (PDI) of the nanoparticles made.

도 3는 본 발명의 서열번호 1 내지 200번의 서열을 센스가닥으로 가지는 siRNA를 5 nM의 농도로 MCF-7 세포주에 형질전환시킨 후, 확인된 타겟 유전자(target gene)의 발현 저해량 그래프이다.Figure 3 is a graph of the expression inhibition of the identified target gene after transforming the siRNA having the sense strand of SEQ ID NO: 1 to 200 of the present invention in the MCF-7 cell line at a concentration of 5 nM.

도 4는 본 발명의 서열번호 1 내지 200번의 서열을 센스가닥으로 가지는 siRNA를 1 nM의 농도로 MCF-7 세포주에 형질전환시킨 후, 확인된 타겟 유전자(target gene)의 발현 저해량 그래프이다.Figure 4 is a graph of the expression inhibition of the identified target genes after transforming the siRNA having the sense strand of SEQ ID NO: 1 to 200 of the present invention in the MCF-7 cell line at a concentration of 1 nM.

도 5는 본 발명의 서열번호 12, 17, 42, 55, 91, 95, 101, 108, 111, 114, 116, 119, 137, 139, 141, 152, 166, 168, 170 또는 171번의 서열을 센스가닥으로 가지는 siRNA를 0.2 nM, 1nM 또는 5 nM 농도로 MDA-MB-231 세포주에 형질전환시킨 후, 확인된 타겟 유전자 발현 저해량 그래프이다.5 shows the sequence of SEQ ID NOs: 12, 17, 42, 55, 91, 95, 101, 108, 111, 114, 116, 119, 137, 139, 141, 152, 166, 168, 170 or 171 of the present invention. The siRNA having the sense strand is transformed into the MDA-MB-231 cell line at a concentration of 0.2 nM, 1 nM or 5 nM, and then a graph of the target gene expression inhibition confirmed.

도 6은 본 발명의 서열번호 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 또는 171번 의 서열을 센스가닥으로 가지는 siRNA를 1.6 pM, 8 pM, 40 pM, 200 pM, 1 nM 또는 5 nM의 농도로 MCF-7 세포주에 형질전환시킨 후, 확인된 타겟 유전자 발현 저해량 그래프이다.FIG. 6 shows siRNA having a sense strand having a sequence of SEQ ID NOs. 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 or 171 of the present invention as 1.6 pM, 8 pM, 40 pM, It is a graph of the target gene expression inhibition confirmed after transforming the MCF-7 cell line at a concentration of 200 pM, 1 nM or 5 nM.

도 7은 본 발명의 서열번호 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 또는 171번 의 서열을 센스가닥으로 가지는 siRNA를 1.6 pM, 8 pM, 40 pM, 200 pM, 1 nM 또는 5 nM의 농도로 MDA-MB-231 세포주에 형질전환시킨 후, 확인된 타겟 유전자 발현 저해량 그래프이다.7 is 1.6 pM, 8 pM, 40 pM, siRNA having a sense strand of the sequence SEQ ID NO: 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 or 171 of the present invention, After transforming MDA-MB-231 cell line at a concentration of 200 pM, 1 nM or 5 nM, it is a graph of confirmed target gene expression inhibition.

도 8은 본 발명의 서열번호 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 또는 171번의 서열을 센스가닥으로 가지는 siRNA의 IC50(inhibition concentration 50%)를 분석한 그래프로서, A는 MCF-7 세포주이고 B는 MDA-MB-231 세포주이다.Figure 8 is an analysis of the IC50 (inhibition concentration 50%) of siRNA having a sense strand of the sequence of SEQ ID NO: 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 or 171 of the present invention As a graph, A is the MCF-7 cell line and B is the MDA-MB-231 cell line.

도 9는 본 발명의 서열번호 17, 42, 101, 119, 137번의 서열을 센스가닥으로 가지는 siRNA를 5 nM 또는 50 nM 농도로 MDA-MB-231 세포주에 형질전환시킨 후, 확인된 타겟 유전자 발현 저해량과 그에 따른 세포 생존률(cell viability) 감소량 그래프로서, A는 타겟 유전자 발현 저해량이고, B는 세포 생존률 감소량이다.Figure 9 shows the target gene expression after transforming the siRNA having the sense strand of SEQ ID NO: 17, 42, 101, 119, 137 of the present invention in a 5 nM or 50 nM MDA-MB-231 cell line Inhibition amount and thus cell viability reduction amount graph, A is the target gene expression inhibition amount, B is the cell viability reduction amount.

도 10은 본 발명의 서열번호 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 또는 171번의 서열을 센스가닥으로 가지는 siRNA를 포함하는 이중나선 RNA 구조체를 포함하는 나노입자를 100 nM 또는 200 nM의 농도로 MDA-MB-231 세포주에 처리했을 때, 타겟 유전자의 발현 저해량을 나타내는 그래프이다.10 is a nano-contained double-stranded RNA structure comprising an siRNA having a sense strand of SEQ ID NO: 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 or 171 of the present invention When the particles were treated with the MDA-MB-231 cell line at a concentration of 100 nM or 200 nM, it is a graph showing the amount of inhibition of expression of the target gene.

도 11은 본 발명에 따른 서열번호 42, 101, 137번의 서열을 센스가닥으로 포함하는 siRNA를 모두 포함하는 이중나선 올리고 RNA 구조체로 이루어진 나노입자의 100 nM, 200 nM 또는 500 nM의 농도에서 리간드(포도당) 유무에 따른 타겟 유전자의 발현 억제량을 MDA-MB-231 세포주에서 비교 분석한 그래프이다.Figure 11 is a ligand (at a concentration of 100 nM, 200 nM or 500 nM of nanoparticles consisting of a double-stranded oligo RNA structure comprising all of the siRNA comprising the sense strand of SEQ ID NO: 42, 101, 137 according to the present invention) Inhibition amount of the target gene according to the presence or absence of glucose) is a graph analyzed in the MDA-MB-231 cell line.

도 12는 본 발명에 따른 서열번호 42, 101, 137번의 서열을 센스가닥으로 포함하는 siRNA를 모두 포함하는 이중나선 올리고 RNA 구조체로 이루어진 나노입자(SAMiRNA-STAT3-Combo)와 동일 나노입자에 리간드로써 포도당을 포함하는 나노입자(Glucose-SAMiRNA-STAT3-Combo)의 크기(size) 및 PDI(polydispersity index)를 측정한 그래프이다.Figure 12 is a ligand to the same nanoparticles (SAMiRNA-STAT3-Combo) consisting of a double-stranded oligo RNA structure comprising all of the siRNA comprising the sequence of SEQ ID NO: 42, 101, 137 as the sense strand according to the present invention It is a graph measuring the size and polydispersity index (PDI) of glucose-containing nanoparticles (Glucose-SAMiRNA-STAT3-Combo).

도 13는 본 발명의 서열번호 42, 101, 137번의 서열을 센스가닥으로 가지는 siRNA를 포함하는 이중나선 RNA 구조체를 모두 포함하는 나노입자(SAMiRNA-STAT3-Combo)의 마우스 유방암 이종이식모델 미정맥 투여에 따른 종양성장억제 효과를 확인하기 위해, 나노입자 미정맥 투여 후, 종양의 크기를 확인한 그래프이다. PBS, PBS(부형제) 투여 대조군; SAMiRNA-CONT, 서열번호 201번의 서열을 센스가닥으로 가지는 siRNA를 포함하는 나노입자 5 mg/kg body weight 투여 대조군; SAMiRNA-STAT3, 서열번호 42, 101, 137번의 서열을 센스가닥으로 가지는 siRNA를 모두 포함하는 나노입자(SAMiRNA-CONT-Combo)를 1 mg/kg body weight 또는 5 mg/kg body weight 투여한 실험군을 의미한다. 통계학적 유의성을 확인하기 위해 GraphPad PRISM5 software(La Jolla, CA)를 이용하여 Two-way ANOVA with Bonferroni postests법을 사용하였으며, p<0.05를 실험군 간의 유의성 있는 차이로 판정하였다. #, p<0.05 versus PBS; ###, p<0.001 versus PBS; *, p<0.05 versus SAMiRNA-CONT(5 mpk); **, p<0.01 versus SAMiRNA-CONT(5 mpk); ***, p<0.001 versus SAMiRNA-CONT(5 mpk)Figure 13 is a microvenous administration of mouse breast cancer xenograft model of the nanoparticles (SAMiRNA-STAT3-Combo) containing all of the double-stranded RNA structure comprising a siRNA having the sense strand of SEQ ID NO: 42, 101, 137 of the present invention In order to confirm the tumor growth inhibitory effect, after administration of the nanoparticle microvenous, it is a graph confirming the size of the tumor. PBS, PBS (excipient) administration control group; SAMiRNA-CONT, nanoparticle 5 mg / kg body weight administration control comprising siRNA having the sense strand of SEQ ID NO: 201; Experimental group administered with 1 mg / kg body weight or 5 mg / kg body weight of nanoparticles (SAMiRNA-CONT-Combo) containing all of the siRNAs having the sense strand of SAMiRNA-STAT3, SEQ ID NOs: 42, 101, and 137 it means. To confirm statistical significance, Two-way ANOVA with Bonferroni postests was used with GraphPad PRISM5 software (La Jolla, Calif.), And p <0.05 was determined as a significant difference between experimental groups. #, p <0.05 versus PBS; ###, p <0.001 versus PBS; *, p <0.05 versus SAMiRNA-CONT (5 mpk); **, p <0.01 versus SAMiRNA-CONT (5 mpk); ***, p <0.001 versus SAMiRNA-CONT (5 mpk)

도 14는 본 발명의 서열번호 42, 101, 137번의 서열을 센스가닥으로 가지는 siRNA를 포함하는 이중나선 RNA 구조체를 모두 포함하며, 리간드로써 포도당을 포함하는 나노입자(Glucose-SAMiRNA-STAT3-Combo)의 마우스 유방암 이종이식모델 미정맥 투여에 따른 종양성장억제 효과를 확인하기 위해, 나노입자 미정맥 투여 후, 종양의 크기를 확인한 그래프이다. PBS, PBS(부형제) 투여 대조군; Glucose-SAMiRNA-CONT, 서열번호 201번의 서열을 센스가닥으로 가지는 siRNA를 포함하는 나노입자 5 mg/kg body weight 투여 대조군; Glucose-SAMiRNA-STAT3, 서열번호 42, 101, 137번의 서열을 센스가닥으로 가지는 siRNA를 모두 포함하는 나노입자(Glucose-SAMiRNA-CONT-Combo)를 1 mg/kg body weight 또는 5 mg/kg body weight 투여한 실험군을 의미한다. 통계학적 유의성을 확인하기 위해 GraphPad PRISM5 software(La Jolla, CA)를 이용하여 Two-way ANOVA with Bonferroni postests법을 사용하였으며, p<0.05를 실험군 간의 유의성 있는 차이로 판정하였다. ###, p<0.001 versus PBS; ‡‡, p<0.01 versus Glucose-SAMiRNA-CONT(5 mpk); ‡‡‡, p<0.001 versus Glucose-SAMiRNA-CONT(5 mpk)Figure 14 includes all of the double-stranded RNA structure comprising a siRNA having a sense strand of SEQ ID NO: 42, 101, 137 of the present invention, nanoparticles containing glucose as a ligand (Glucose-SAMiRNA-STAT3-Combo) In order to confirm the tumor growth inhibitory effect of the mouse breast cancer xenograft model of the intravenous administration, the graph of the tumor size after the nanoparticle microvenous administration. PBS, PBS (excipient) administration control group; Glucose-SAMiRNA-CONT, nanoparticle 5 mg / kg body weight administration control comprising siRNA having the sense strand of SEQ ID NO: 201; 1 mg / kg body weight or 5 mg / kg body weight of nanoparticles (Glucose-SAMiRNA-CONT-Combo) containing all of the siRNAs having the sense strand of Glucose-SAMiRNA-STAT3, SEQ ID NOs: 42, 101, and 137 Means the experimental group administered. To confirm statistical significance, Two-way ANOVA with Bonferroni postests was used with GraphPad PRISM5 software (La Jolla, Calif.), And p <0.05 was determined as a significant difference between experimental groups. ###, p <0.001 versus PBS; ‡‡, p <0.01 versus Glucose-SAMiRNA-CONT (5 mpk); ‡‡‡, p <0.001 versus Glucose-SAMiRNA-CONT (5 mpk)

도 15와 도 16은 본 발명의 서열번호 42, 101, 137번의 서열을 센스가닥으로 가지는 siRNA를 포함하는 이중나선 RNA 구조체를 모두 포함하는 나노입자(SAMiRNA-STAT3-Combo, 도 15)와 동일 나노입자에 리간드로써 포도당을 부착한 나노입자(Glucose-SAMiRNA-STAT3-Combo, 도 16)의 마우스 유방암 이종이식모델 미정맥 투여에 따른 종양성장억제 효과를 확인하기 위해, 나노입자 미정맥 투여 후, 종양의 무게(도 15과 도 16의 각 A)와 체중 대비 종양무게 비율 백분율(도 15과 도 16의 각 B)을 확인한 그래프이다. PBS, PBS(부형제) 투여 대조군; SAMiRNA-CONT, 서열번호 201번의 서열을 센스가닥으로 가지는 siRNA를 포함하는 나노입자 5 mg/kg body weight 투여 대조군; SAMiRNA-STAT3, 서열번호 42, 101, 137번의 서열을 센스가닥으로 가지는 siRNA를 모두 포함하는 나노입자(SAMiRNA-CONT-Combo) 1 mg/kg body weight 또는 5 mg/kg body weight 투여 실험군; Glucose-SAMiRNA-CONT, 서열번호 201번의 서열을 센스가닥으로 가지는 siRNA를 포함하는 나노입자 5 mg/kg body weight 투여 대조군; Glucose-SAMiRNA-STAT3, 서열번호 42, 101, 137번의 서열을 센스가닥으로 가지는 siRNA를 모두 포함하는 나노입자(Glucose-SAMiRNA-CONT-Combo)를 1 mg/kg body weight 또는 5 mg/kg body weight 투여한 실험군을 의미한다. 통계학적 유의성을 확인하기 위해 GraphPad PRISM5 software(La Jolla, CA)를 이용하여 One-way ANOVA and Dunnett’s Multiple comparison test법을 사용하였으며, p<0.05를 실험군 간의 유의성 있는 차이로 판정하였다. ##, p<0.01 versus PBS; *, p<0.05 versus SAMiRNA-CONT(5 mpk); **, p<0.01 versus SAMiRNA-CONT(5 mpk); ‡, p<0.05 versus Glucose-SAMiRNA-CONT(5 mpk).15 and 16 are the same as the nanoparticles (SAMiRNA-STAT3-Combo, FIG. 15) including all the double-stranded RNA structures including siRNAs having the sense strands of SEQ ID NOs: 42, 101, and 137 of the present invention. In order to confirm the tumor growth inhibitory effect of the mouse breast cancer xenograft model in which the glucose-attached nanoparticles (Glucose-SAMiRNA-STAT3-Combo, FIG. 16) are attached to the particles, the tumors after the administration of the microparticles of the nanoparticles, Is a graph confirming the weight (angle A of FIGS. 15 and 16) and the percentage of tumor weight to weight ratio (angle B of FIGS. 15 and 16). PBS, PBS (excipient) administration control group; SAMiRNA-CONT, nanoparticle 5 mg / kg body weight administration control comprising siRNA having the sense strand of SEQ ID NO: 201; Experimental group for administration of 1 mg / kg body weight or 5 mg / kg body weight of nanoparticles (SAMiRNA-CONT-Combo) including all siRNAs having a sense strand of the sequence of SAMiRNA-STAT3, SEQ ID NOs: 42, 101, and 137; Glucose-SAMiRNA-CONT, nanoparticle 5 mg / kg body weight administration control comprising siRNA having the sense strand of SEQ ID NO: 201; 1 mg / kg body weight or 5 mg / kg body weight of nanoparticles (Glucose-SAMiRNA-CONT-Combo) containing all of the siRNAs having the sense strand of Glucose-SAMiRNA-STAT3, SEQ ID NOs: 42, 101, and 137 Means the experimental group administered. In order to confirm statistical significance, One-way ANOVA and Dunnett's Multiple comparison test was performed using GraphPad PRISM5 software (La Jolla, CA), and p <0.05 was determined as a significant difference between the experimental groups. ##, p <0.01 versus PBS; *, p <0.05 versus SAMiRNA-CONT (5 mpk); **, p <0.01 versus SAMiRNA-CONT (5 mpk); ‡, p <0.05 versus Glucose-SAMiRNA-CONT (5 mpk).

도 17은 본 발명의 서열번호 42의 서열을 센스가닥으로 가지는 siRNA를 50, 100, 200, 500 nM 또는 1 μM 의 농도로 HaCaT 세포주에 형질전환시킨 후, 확인된 타겟 유전자(target gene)의 발현 저해량 그래프이다.Figure 17 shows the expression of the identified target gene after transforming the siRNA having a sense strand of the SEQ ID NO: 42 of the present invention into a HaCaT cell line at a concentration of 50, 100, 200, 500 nM or 1 μM Inhibition graph.

발명의 상세한 설명 및 바람직한 Detailed description of the invention and preferred 구현예Embodiment

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당해 기술분야에서 통상의 지식을 가진 자에게 있어 자명한 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it is obvious to those skilled in the art that the scope of the present invention is not limited by these examples.

실시예 1. STAT3의 목표 염기서열 디자인 및 siRNA의 제조Example 1. Target Sequence Design of STAT3 and Preparation of siRNA

STAT3 유전자의 mRNA 서열(NM_213662)에 결합할 수 있는 목표 염기서열(센스가닥)을 200종 디자인하고, 상기 목표 염기서열의 상보적 서열인 안티센스 가닥의 siRNA 를 제조하였다. 우선, 바이오니아(주)에서 개발된 유전자 디자인 프로그램(Turbo si-Designer)을 사용하여, 해당 유전자들의 mRNA 서열에서 siRNA 가 결합할 수 있는 목표 염기서열을 디자인하였다. 본 발명의 STAT3 유전자에 대한 siRNA 는 19개의 뉴클레오티드로 구성된 센스 가닥과 이에 상보적인 안티센스 가닥으로 구성된 이중가닥 구조이다. 또한 어떠한 유전자의 발현을 저해하지 않는 서열의 siRNA인 siCONT(서열번호 201)을 제조하였다. 상기 siRNA 는 β-시아노에틸 포스포라미다이트(β-cyanoethyl phosphoramidite)를 이용하여 RNA 골격 구조를 이루는 포스포디에스터 결합을 연결하여 제조하였다 (Nucleic Acids Research, 12:4539-4557, 1984). 구체적으로, RNA 합성기(384 Synthesizer, BIONEER, 한국)를 사용하여, 뉴클레오티드가 부착된 고형 지지체 상에서, 차단제거(deblocking), 결합(coupling), 산화(oxidation) 및 캐핑(capping)으로 이루어지는 일련의 과정을 반복하여 원하는 길이의 RNA를 포함하는 반응물을 수득하였다. 상기 반응물을 Daisogel C18(Daiso, Japan) 칼럼이 장착된 HPLC LC918(Japan Analytical Industry, Japan)로 RNA를 분리 및 정제하고 이를 MALDI-TOF 질량 분석기(Shimadzu, Japan)를 이용하여 목표 염기서열과 부합하는지 확인하였다. 이후, 센스와 안티센스 RNA가닥을 결합시켜 목적하는 이중가닥 siRNA(서열번호 1 내지 201)을 제조하였다(표 2 참조).200 kinds of target sequences (sense strands) capable of binding to the mRNA sequence (NM_213662) of the STAT3 gene were designed, and siRNAs of antisense strands, which were complementary sequences of the target sequences, were prepared. First, the target sequence sequence to which siRNA can bind in the mRNA sequence of the genes was designed using the gene design program (Turbo si-Designer) developed by Bioneer Corporation. The siRNA for the STAT3 gene of the present invention is a double stranded structure consisting of a sense strand consisting of 19 nucleotides and an antisense strand complementary thereto. In addition, siCONT (SEQ ID NO: 201), a siRNA having a sequence that does not inhibit expression of any gene, was prepared. The siRNA was prepared by linking phosphodiester bonds forming an RNA backbone structure using β-cyanoethyl phosphoramidite (Nucleic Acids Research, 12: 4539-4557, 1984). Specifically, using a RNA synthesizer (384 Synthesizer, BIONEER, Korea), a series of processes consisting of deblocking, coupling, oxidation, and capping on a solid support to which nucleotides are attached Was repeated to obtain a reaction containing RNA of the desired length. The reaction was isolated and purified by HPLC LC918 (Japan Analytical Industry, Japan) equipped with Daisogel C18 (Daiso, Japan) column and matched with target sequence using MALDI-TOF mass spectrometer (Shimadzu, Japan). Confirmed. Then, the desired double-stranded siRNA (SEQ ID NOS: 1-201) was prepared by combining the sense and antisense RNA strands (see Table 2).

Figure PCTKR2016006363-appb-T000002
Figure PCTKR2016006363-appb-T000002

Figure PCTKR2016006363-appb-I000004
Figure PCTKR2016006363-appb-I000004

Figure PCTKR2016006363-appb-I000005
Figure PCTKR2016006363-appb-I000005

Figure PCTKR2016006363-appb-I000006
Figure PCTKR2016006363-appb-I000006

Figure PCTKR2016006363-appb-I000007
Figure PCTKR2016006363-appb-I000007

Figure PCTKR2016006363-appb-I000008
Figure PCTKR2016006363-appb-I000008

Figure PCTKR2016006363-appb-I000009
Figure PCTKR2016006363-appb-I000009

실시예 2. 이중나선 올리고 RNA 구조체의 합성Example 2 Synthesis of Double Helix Oligo RNA Constructs

본 발명에서 제조한 이중나선 올리고 RNA 구조체는 하기 구조식 (5)와 같은 구조를 가진다. The double-stranded oligo RNA structure prepared in the present invention has a structure as shown in the following structural formula (5).

구조식 5Structural Formula 5

Figure PCTKR2016006363-appb-I000010
Figure PCTKR2016006363-appb-I000010

상기 구조식 (5)에서, S는 siRNA의 센스가닥, AS는 siRNA의 안티센스 가닥, PO4는 인산기, 에틸렌글리콜은 친수성 물질 단량체(monomer)로 구조식 (3)의 A, 친수성 물질 단량체의 반복횟수인 m은 6으로써 헥사에틸렌글리콜(hexa ethylene glycol)이 링커(J)인 인산기(PO3 -)를 통해 결합되고, 친수성 물질 블록의 반복횟수(n)로 4, C24는 소수성 물질(B)로 이황화 결합이 포함되어 있는 테트라도코산 (tetradocosane), 그리고 5’ 및 3’은 이중나선 올리고 RNA의 말단 방향을 의미하며, 포도당은 수용체매개 세포내제화(RME)를 증진시키는 리간드이다.In the above formula (5), S is the sense strand of the siRNA, AS is the antisense strand of the siRNA, PO 4 is a phosphate group, ethylene glycol is a hydrophilic monomer (monomer) is a repeating frequency of A of the formula (3), hydrophilic monomer m is as 6 hexaethylene glycol (hexa ethylene glycol) linker (J) a phosphoric acid group (PO 3 -) by being coupled through the repetition number (n) of hydrophilic material block 4, C 24 is a hydrophobic material (B) Tetradocosane, which contains disulfide bonds, and 5 'and 3' refer to the terminal orientation of the double helix oligo RNA, and glucose is a ligand that enhances receptor mediated intracellularization (RME).

상기 구조식 (5)에서의 siRNA의 센스가닥은 기존 특허(WO2015002511)의 실시예 1에 기재된 방법에 따라 제조된 DMT-헥사에틸린글리콜-CPG를 지지체로 하여 앞서 언급한 방식대로 β-시아노에틸포스포아미다이트를 이용하여 RNA 골격구조를 이루는 포스포디에스터 결합을 연결해가는 방법을 통해 3’ 말단 부위에 헥사에틸렌글리콜이 결합된 센스가닥을 포함하는 올리고 RNA-친수성 물질 구조체를 합성한 뒤, 이황화 결합이 포함되어있는 테트라도코산을 5’ 말단에 결합하여 원하는 RNA-고분자 구조체의 센스가닥을 제조하였다. 상기 가닥과 어닐링을 수행할 안티센스 가닥의 경우, 앞서 언급한 반응을 통해 센스가닥과 상보적인 서열의 안티센스 가닥을 제조하였다.The sense strand of siRNA in the above formula (5) is β-cyanoethyl in the manner mentioned above using DMT-hexaethylin glycol-CPG prepared according to the method described in Example 1 of the existing patent (WO2015002511) as a support. By using phosphamidite to connect phosphodiester bonds forming an RNA framework, oligo RNA-hydrophilic substance structures including a sense strand having hexaethylene glycol bonded to the 3 'terminal are synthesized. Tetradocoic acid containing disulfide bonds was bound to the 5 'end to prepare a sense strand of a desired RNA-polymer construct. In the case of the antisense strand to be annealed with the strand, the antisense strand of the sequence complementary to the sense strand was prepared through the reaction mentioned above.

합성이 완료되면 60℃의 온탕기(water bath)에서 28%(v/v) 암모니아(ammonia)를 처리하여 합성된 RNA 단일가닥과 RNA-고분자 구조체를 CPG로부터 떼어낸 뒤, 탈보호(deprotection) 반응을 통해 보호잔기를 제거하였다. 보호잔기가 제거된 RNA 단일가닥 및 RNA-고분자 구조체는 70℃의 오븐에서 엔-메틸피롤리돈(N-methylpyrrolidon), 트리에틸아민(triethylamine) 및 트리에틸아민트리하이드로플로라이드 (triethylaminetrihydrofluoride)를 부피비 10:3:4의 비율로 처리하여 2’TBDMS(tert-butyldimethylsilyl)를 제거하였다. After the synthesis was completed, deprotection was performed by separating the synthesized RNA single-strand and RNA-polymer constructs from CPG by treating 28% (v / v) ammonia in a 60 ° C water bath. The protective residue was removed through the reaction. RNA single-stranded and RNA-polymerized structures with no protective residues were added in a volume ratio of N-methylpyrrolidon, triethylamine and triethylaminetrihydrofluoride in an oven at 70 ° C. 2 'TBDMS (tert-butyldimethylsilyl) was removed by treatment at a ratio of 10: 3: 4.

상기 반응물을 Daisogel C18(Daiso, Japan) 칼럼이 장착된 HPLC LC918(Japan Analytical Industry, Japan)로 RNA를 분리 및 정제하고 이를 MALDI-TOF 질량 분석기(Shimadzu, Japan)를 이용하여 목표 염기서열과 부합하는지 확인하였다. 이후, 각각의 이중나선 올리고 RNA 구조체를 제조하기 위하여 센스가닥과 안티센스 가닥을 동량 혼합하여 1X 어닐링 버퍼(30 mM HEPES, 100 mM 칼륨 아세테이트(Potassium acetate), 2 mM 마그네슘 아세테이트(Magnesium acetate), pH 7.0∼7.5)에 넣고, 90 ℃ 항온수조에서 3분 반응시킨 후 다시 37 ℃에서 반응시켜, 서열번호 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170, 171번 및 201번을 siRNA의 센스가닥으로 가지는 siRNA를 포함하는 이중나선 올리고 RNA 구조체(이하 SAMiRNA-STAT3#12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170, 171 및 SAMiRNA-CONT라 함)를 각각 제조하였다. 제조된 이중나선 올리고 RNA 구조체는 전기영동을 통하여 어닐링 되었음을 확인하였다.The reaction was isolated and purified by HPLC LC918 (Japan Analytical Industry, Japan) equipped with Daisogel C18 (Daiso, Japan) column and matched with target sequence using MALDI-TOF mass spectrometer (Shimadzu, Japan). Confirmed. Subsequently, the same amount of the sense strand and the antisense strand were mixed in the same manner to prepare each double-stranded oligo RNA structure, 1 × annealing buffer (30 mM HEPES, 100 mM potassium acetate), 2 mM magnesium acetate, pH 7.0 -7.5), reacted for 3 minutes in a 90 ° C constant temperature water bath and then again at 37 ° C, SEQ ID NOs: 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170, 171 and Double-stranded oligo RNA constructs comprising siRNA having the sense strand of siRNA 201 (hereinafter SAMiRNA-STAT3 # 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170, 171 and SAMiRNA- Each called CONT). It was confirmed that the prepared double helix oligo RNA structure was annealed through electrophoresis.

실시예 3. 이중나선 올리고 RNA 구조체로 이루어진 나노입자(SAMiRNA)의 제조 및 크기와 다분산지수 측정Example 3 Preparation and Size and Polydispersity Index of Nanoparticles (SAMiRNA) Consisting of Double Helix Oligo RNA Structure

상기 실시예 2에서 합성된 이중나선 올리고 RNA 구조체는 이중나선 올리고 RNA의 말단에 결합된 소수성 물질 간의 소수성 상호작용에 의하여 나노입자인 미셀(micelle)을 형성하게 된다(도 1 참조).The double-stranded oligo RNA structure synthesized in Example 2 forms a micelle (micelle) as nanoparticles by hydrophobic interaction between hydrophobic materials bound to the ends of the double-stranded oligo RNA (see FIG. 1).

SAMiRNA-STAT3, SAMiRNA-CONT로 이루어진 나노입자의 크기(직경, d.nm)와 다분산지수(이하 PDI(polydispersity index)) 분석을 통해 해당 SAMiRNA로 구성된 나노입자의 형성을 확인하였다.The formation of nanoparticles composed of the corresponding SAMiRNA was confirmed by analyzing the size (diameter, d.nm) and polydispersity index (hereinafter, PDI (polydispersity index)) of the nanoparticles consisting of SAMiRNA-STAT3 and SAMiRNA-CONT.

실시예 3-1. 세포 실험 용 나노입자의 제조Example 3-1. Preparation of Cellular Nanoparticles

상기 실시예 2에서 합성된 SAMiRNA-STAT3#12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170, 171 및 SAMiRNA-CONT를 1.5 ㎖ PBS(Phosphate Buffered Saline)에 50 ㎍/㎖ 의 농도로 녹인 뒤, -75℃, 5mTorr 조건에서 48시간 동안 동결건조를 통해 나노입자 파우더를 제조한 뒤, 용매인 1.5 ㎖ PBS에 녹여 균질화된 나노입자를 제조하여 세포 실험에 사용하였다.50 μg of SAMiRNA-STAT3 # 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170, 171 and SAMiRNA-CONT synthesized in Example 2 were added to 1.5 ml Phosphate Buffered Saline (PBS). After dissolving at a concentration of / ㎖, to prepare a nanoparticle powder by lyophilization for 48 hours at -75 ℃, 5mTorr conditions, dissolved in 1.5 ㎖ PBS solvent to prepare homogenized nanoparticles were used for cell experiments.

실시예 3-2. 동물 실험 용 나노입자의 제조Example 3-2. Preparation of Nanoparticles for Animal Experiments

상기 실시예 2에서 합성된 SAMiRNA-CONT을 1 ㎖ PBS(Phosphate Buffered Saline)에 250 ㎍/㎖ 의 농도로 녹인 뒤, -75℃, 5mTorr 조건에서 6일간 동결건조를 통해 나노입자 파우더를 제조한 뒤, 용매인 0.2 ㎖ PBS에 녹여 균질화된 나노입자를 제조하여 동물 실험에 사용하였다.After dissolving the SAMiRNA-CONT synthesized in Example 2 at a concentration of 250 ㎍ / ㎖ in 1 ml PBS (Phosphate Buffered Saline) to prepare a nanoparticle powder by lyophilization for 6 days at -75 ℃, 5mTorr conditions , Dissolved in 0.2 mL PBS solvent to prepare homogenized nanoparticles were used in animal experiments.

상기 실시예 2에서 합성된 SAMiRNA-STAT3#42, #101, #137을 동량 혼합하여, 1 ㎖ PBS(Phosphate Buffered Saline)에 250 ㎍/㎖ 의 농도로 녹인 뒤, -75℃, 5mTorr 조건에서 6일간 동결건조를 통해 나노입자 파우더를 제조한 뒤, 용매인 0.2 ㎖ PBS에 녹여 균질화된 나노입자를 제조하여 동물 실험에 사용하였다.The same amount of SAMiRNA-STAT3 # 42, # 101, # 137 synthesized in Example 2 was mixed and dissolved in 1 ml PBS (Phosphate Buffered Saline) at a concentration of 250 μg / ml, and then, at -75 ° C. and 5 mTorr conditions. Nanoparticle powders were prepared by daily freeze-drying, and then dissolved in 0.2 ml PBS, a solvent, to prepare homogenized nanoparticles and used in animal experiments.

상기 제조된 SAMiRNA-CONT 균질화 액과 SAMiRNA-STAT3 균질화 액을 PBS에 1/25 희석하여 50 ㎍/㎖의 농도로 동물 실험 용 나노입자의 세포 형질전환 확인 실험에 사용하였다.The prepared SAMiRNA-CONT homogenizer and SAMiRNA-STAT3 homogenizer were diluted 1/25 in PBS and used for cell transformation confirmation experiments of animal nanoparticles at a concentration of 50 μg / ml.

실시예 3-3. 나노입자의 크기 및 PDI 측정Example 3-3. Nanoparticle Size and PDI Measurement

동적 광산란 측정법(dynamic light-scattering method)을 통하여 상기 나노입자의 크기와 분산도를 측정하였다. 실시예 3-1 및 3-2에서 제조된 균질화된 나노입자는 동적 광산란 측정기(Nano-ZS, MALVERN, 영국)로 크기와 분산도를 측정하였는데, 물질에 대한 굴절률(Refractive index)은 1.459, 흡수율(Absorption index)은 0.000으로 하고, 용매인 PBS의 온도 25 ℃ 및 그에 따른 점도(viscosity)는 1.0200 및 굴절률은 1.335의 값을 입력하여 측정하였다. 1회 측정은 15 번 반복으로 구성된 크기 측정으로 이루어졌고, 이를 6 회 반복하였다. The size and dispersion of the nanoparticles were measured by a dynamic light-scattering method. The homogenized nanoparticles prepared in Examples 3-1 and 3-2 were measured for size and dispersion with a dynamic light scattering meter (Nano-ZS, MALVERN, UK), the refractive index of the material (Refractive index) is 1.459, the absorption rate (Absorption index) was 0.000, the temperature of the solvent PBS 25 ℃ and the resulting viscosity (viscosity) was measured by entering the value of 1.0200 and the refractive index of 1.335. One measurement consisted of a size measurement consisting of 15 repetitions, which were repeated six times.

측정 결과 세포 실험 용 나노입자의 경우 평균 98.7±26.4(mean±SD, n=6) d.nm의 크기와 0.289±0.064(mean±SD, n=6)의 다분산지수 값을(도 2 참조), 동물 실험 용 나노입자의 경우 평균 79.4±6.3(mean±SD, n=6) d.nm의 크기와 0.265±0.007(mean±SD, n=6)의 다분산지수 값이(도 12 참조) 확인되었다.As a result, the average cell size of the nanoparticles was 98.7 ± 26.4 (mean ± SD, n = 6) and the polydispersity index value of 0.289 ± 0.064 (mean ± SD, n = 6). ), For animal experimental nanoparticles, the average 79.4 ± 6.3 (mean ± SD, n = 6) d.nm size and 0.265 ± 0.007 (mean ± SD, n = 6) polydispersity index values (see FIG. 12). ) Confirmed.

다분산지수 값이 낮을수록 해당 입자가 고르게 분포하고 있음을 나타내는 수치로, 본 발명의 나노입자는 매우 균일한 크기로 형성됨을 알 수 있었다.As the value of the polydispersity index was lower, the particles were evenly distributed, and the nanoparticles of the present invention were found to have a very uniform size.

실시예 4. 인간 유방암 세포주, MCF-7에서 siRNA를 이용한 타겟 유전자의 발현억제 확인Example 4 Confirmation of Inhibition of Target Gene Expression Using siRNA in Human Breast Cancer Cell Line, MCF-7

상기 실시예 1에서 제조된 서열번호 1번 내지 201번을 센스가닥으로 가지는 siRNA를 이용하여 인간 유방암 세포주, MCF-7을 형질전환시키고, 상기 형질전환된 세포주에서 타겟 유전자의 발현 양상을 분석하였다. Human breast cancer cell line, MCF-7, was transformed using siRNA having a sense strand of SEQ ID Nos. 1 to 201 prepared in Example 1, and the expression pattern of the target gene was analyzed in the transformed cell line.

실시예 4-1. 인간 유방암 세포주, MCF-7의 배양Example 4-1. Culture of Human Breast Cancer Cell Line, MCF-7

미합중국 종균협회(American Type Culture Collection, ATCC)로부터 입수한 인간 유방암 세포주, MCF-7은 RPMI 1640(Roswell Park Memorial Institute 1640) 배양배지(GIBCO/Invitrogen, USA, 10%(v/v) 우태아 혈청, 페니실린 100 units/㎖ 및 스트렙토마이신 100 ㎍/㎖)에서 37 ℃, 5%(v/v) CO2의 조건 하에 배양하였다. Human breast cancer cell line, MCF-7, obtained from the American Type Culture Collection (ATCC) was cultured using RPMI 1640 (Roswell Park Memorial Institute 1640) culture medium (GIBCO / Invitrogen, USA, 10% (v / v) fetal bovine serum. , 100 units / ml penicillin and 100 μg / ml streptomycin) were incubated at 37 ° C. under 5% (v / v) CO 2 .

실시예 4-2. 인간 유방암 세포주, MCF-7에서 STAT3 siRNA 의 형질주입(transfection)Example 4-2. Transfection of STAT3 siRNA in Human Breast Cancer Cell Line, MCF-7

상기 실시예 4-1에서 배양된 MCF-7 세포주를 12-웰 플레이트에 웰 당 1×105의 세포수로 18시간 동안 RPMI 1640 배양배지에서 37℃, 5 %(v/v) CO2의 조건으로 배양한 뒤, 배지를 제거한 후 각 웰 당 500 ㎕의 Opti-MEM 배지(GIBCO, 미국)를 분주하였다. MCF-7 cell line cultured in Example 4-1 in a 12-well plate at 37 ℃, 5% (v / v) CO 2 in RPMI 1640 culture medium for 18 hours at a cell number of 1 × 10 5 per well After culturing under conditions, 500 μl of Opti-MEM medium (GIBCO, USA) was dispensed per well after removing the medium.

리포펙타민 RNAi 맥스(Lipofectamine™ RNAi Max, Invitrogen, 미국) 2 ㎕와 Opti-MEM 배지 248 ㎕를 혼합하여 혼합액을 제조하였고, 실온에서 5분간 반응시킨 다음, 상기 실시예 1에서 제조한 각각의 서열번호 1 내지 201번을 센스가닥으로 가지는 siRNA (1 pmole/㎕ 농도) 1 ㎕ 또는 5 ㎕를 Opti-MEM 배지에 첨가하여 최종 250 ㎕의 양에 농도가 4 nM 또는 20 nM인 siRNA 용액을 제조하였다. 상기 리포펙타민 RNAi 맥스(Lipofectamine™ RNAi Max) 혼합액과 siRNA 용액을 혼합하여 실온에서 15분간 반응시켜 형질주입용 용액을 제조하였다.2 μl of Lipofectamine RNAi Max (Invitrogen, USA) and 248 μl of Opti-MEM medium were mixed to prepare a mixed solution, reacted for 5 minutes at room temperature, and then the respective sequences prepared in Example 1 above. 1 μl or 5 μl of siRNA (1 pmole / μl concentration) having the sense strand No. 1 to 201 was added to Opti-MEM medium to prepare a siRNA solution having a concentration of 4 nM or 20 nM in the final 250 μl amount. . The lipofectamine RNAi Max (Lipofectamine ™ RNAi Max) mixture and the siRNA solution were mixed and reacted for 15 minutes at room temperature to prepare a solution for transfection.

Opti-MEM이 분주된 12-웰 플레이트의 종양세포주 각 웰 당 형질주입용 용액 500 ㎕를 분주하고 6시간 동안 배양한 후, Opti-MEM 배지를 제거하고 웰 당 RPMI 1640 배양배지 1 ㎖을 분주한 다음 24 시간 동안 37℃, 5%(v/v) CO2 조건 하에서 배양하였다.After dispensing 500 μl of the transfection solution into each well of the tumor cell line of the 12-well plate in which Opti-MEM was dispensed, and incubating for 6 hours, the Opti-MEM medium was removed and 1 ml of RPMI 1640 culture medium was dispensed per well. Incubated for 24 hours at 37 ° C. and 5% (v / v) CO 2 conditions.

실시예 4-3. 타겟 유전자 mRNA의 정량분석Example 4-3. Quantitative Analysis of Target Gene mRNA

상기 실시예 4-2에서 형질주입된 세포주로부터 전체 RNA를 추출하여 cDNA를 제조한 뒤, 실시간 PCR(real-time PCR)을 이용하여 타겟 유전자의 mRNA 발현량을 상대정량 하였다.After cDNA was prepared by extracting total RNA from the cell line transfected in Example 4-2, mRNA expression of the target gene was quantified relative to each other using real-time PCR.

실시예 4-3-1. 형질주입된 세포로부터 RNA 분리 및 cDNA 제조Example 4-3-1. RNA Isolation and cDNA Preparation from Transfected Cells

RNA 추출 키트(AccuPrep Cell total RNA extraction kit, BIONEER, 한국)를 이용하여, 상기 실시예 4-2에서 형질주입된 세포주로부터 전체 RNA를 추출하고, 추출된 RNA는 RNA 역전사 효소(AccuPower RocketScript Cycle RT Premix/dT20, Bioneer, 한국)를 이용하여, 하기와 같은 방법으로 cDNA를 제조하였다. 구체적으로, 0.25 ㎖ 에펜도르프 튜브에 담겨있는 AccuPower RocketScript Cycle RT Premix/dT20(Bioneer, 한국)에 한 튜브 당 추출된 1 ㎍ 씩의 RNA를 넣고 총 부피가 20 ㎕가 되도록 DEPC(diethyl pyrocarbonate) 처리된 증류수를 첨가하였다. 이를 유전자 증폭기(MyGenie™ 96 Gradient Thermal Block, BIONEER, 한국)로 37℃에서 30초 동안 RNA와 프라이머를 혼성화(primer annealing)하고, 48℃에서 4분간 cDNA를 제조(cDNA synthesis)한 후 55℃에서 30초 동안 변성(denaturation)하는 과정을 12회 반복한 뒤, 95℃에서 5분 동안 효소를 불활성화(inactivation)시켜 증폭 반응을 종료하였다.Using RNA extraction kit (AccuPrep Cell total RNA extraction kit, BIONEER, Korea), the total RNA is extracted from the cell line transfected in Example 4-2, the extracted RNA is RNA reverse transcriptase (AccuPower RocketScript Cycle RT Premix) / dT20, Bioneer, Korea), to prepare a cDNA in the following manner. Specifically, 1 μg of RNA extracted per tube was added to AccuPower RocketScript Cycle RT Premix / dT20 (Bioneer, South Korea) contained in 0.25 ml Eppendorf tubes and treated with DEPC (diethyl pyrocarbonate) to achieve a total volume of 20 μl. Distilled water was added. This was a gene amplifier (MyGenie ™ 96 Gradient Thermal Block, BIONEER, Korea), hybridizing RNA and primer for 30 seconds at 37 ° C, preparing cDNA at 48 ° C for 4 minutes (cDNA synthesis), and then at 55 ° C. After repeating the denaturation process for 30 seconds 12 times, the amplification reaction was terminated by inactivating the enzyme at 95 ° C. for 5 minutes.

실시예 4-3-2. 타겟 유전자 mRNA의 상대정량 분석Example 4-3-2. Relative Quantitative Analysis of Target Gene mRNA

상기 실시예 4-3-1에서 제조된 cDNA를 주형으로 하여 실시간 PCR을 통해 STAT3 유전자 mRNA의 상대적인 양을 하기와 같은 방법으로 정량 하였다. 상기 실시예 4-3-1에서 제조된 cDNA를 증류수로 5배 희석하고, 희석된 cDNA 3 ㎕와 2× GreenStar™ PCR master mix(BIONEER, 한국) 25 ㎕, 증류수 16 ㎕, STAT3 qPCR 프라이머(F, R 각각 10 pmole/㎕의 혼합액, BIONEER, 한국, 표 3 참조) 6 ㎕의 혼합액을 96-웰 PCR 플레이트에 넣었다. 한편, 타겟유전자 mRNA의 발현량을 비교보정하기 위해 하우스키핑 유전자(housekeeping gene, 이하 HK 유전자)인 GAPDH(Glyceraldehyde 3-phosphate dehydrogenase)를 표준 유전자로 하였다. 상기 혼합액이 담긴 96-웰 플레이트를 Exicycler™96 Real-Time Quantitative Thermal Block(BIONEER, 한국)을 이용하여 하기와 같은 반응을 수행하였다. 95℃에서 15분간 반응하여 효소의 활성화 및 cDNA의 이차구조를 없앤 뒤, 94 ℃에서 30초 변성(denaturing), 58℃에서 30초 어닐링(annealing), 72℃에서 30초 연장(extension), SYBR 그린 스캔(SYBR green scan)의 4개의 과정을 42 회 반복 수행하고, 72℃에서 3분간 최종 연장을 수행한 뒤, 55℃에서 1분간 온도를 유지하고, 55℃에서 95℃까지 멜팅 커브(melting curve)를 분석하였다. PCR이 종료된 후, 각각 수득한 타겟유전자의 Ct(threshold cycle)값은 GAPDH 유전자를 통해 보정된 타겟유전자의 Ct 값을 구한 뒤, 유전자 발현저해를 일으키지 않는 컨트롤 서열의 siRNA(siCONT)가 처리된 실험군을 대조군으로 하여 ΔCt값의 차이를 구했다. 상기 ΔCt 값과 계산식 2(-ΔCt)× 100을 이용하여 STAT3 특이적 siRNA가 처리된 세포의 타겟 유전자의 발현량을 상대정량 하였다(도 3 참조, 5 nM 농도 siRNA 처리; 도 4 참조, 1 nM 농도 siRNA 처리). 고효율의 siRNA를 선별하기 위하여 1 nM 그리고 5 nM 처리농도에서 타겟 유전자에 대한 mRNA 발현량이 공통적으로 높게 감소된 siRNA 20종을 선택하였다(서열번호 12, 17, 42, 55, 91, 95, 101, 108, 111, 114, 116, 119, 137, 139, 141, 152, 166, 168, 170, 171번의 서열을 센스가닥으로 가짐). Using the cDNA prepared in Example 4-3-1 as a template, the relative amount of STAT3 gene mRNA was quantified by real-time PCR in the following manner. The cDNA prepared in Example 4-3-1 was diluted 5 times with distilled water, 3 μl of diluted cDNA and 25 μl of 2 × GreenStar ™ PCR master mix (BIONEER, Korea), 16 μl of distilled water, STAT3 qPCR primer (F , 10 pmole / μl of each of the mixture, BIONEER, Korea, see Table 3) 6 μl of the mixture was placed in a 96-well PCR plate. On the other hand, GAPDH (Glyceraldehyde 3-phosphate dehydrogenase), a housekeeping gene (hereinafter referred to as HK gene), was used as a standard gene to compare and correct the expression level of target gene mRNA. The 96-well plate containing the mixed solution was subjected to the following reaction using an Exicycler ™ 96 Real-Time Quantitative Thermal Block (BIONEER, Korea). After 15 minutes of reaction at 95 ° C to remove enzyme activation and secondary structure of cDNA, denaturing at 94 ° C for 30 seconds, annealing at 58 ° C for 30 seconds, extension at 72 ° C for 30 seconds, SYBR Four procedures of the SYBR green scan were repeated 42 times, followed by a final extension at 72 ° C. for 3 minutes, then maintaining the temperature at 55 ° C. for 1 minute, and melting from 55 ° C. to 95 ° C. curve). After the completion of PCR, the obtained Ct (threshold cycle) value of each target gene was obtained by calculating the Ct value of the target gene corrected through the GAPDH gene, and then treated with siRNA (siCONT) of the control sequence that does not cause gene expression inhibition. The difference of ΔCt value was calculated | required using the experimental group as a control. Using the ΔCt value and the formula 2 (−ΔCt) × 100, the expression level of the target gene of the cells treated with STAT3-specific siRNA was quantified (see FIG. 3, 5 nM concentration siRNA treatment; see FIG. 4, 1 nM). Concentration siRNA treatment). In order to select high efficiency siRNAs, 20 siRNAs having a high mRNA expression level for a target gene were reduced at 1 nM and 5 nM concentrations (SEQ ID NOs: 12, 17, 42, 55, 91, 95, 101, 108, 111, 114, 116, 119, 137, 139, 141, 152, 166, 168, 170, 171 with sense strands).

Figure PCTKR2016006363-appb-T000003
Figure PCTKR2016006363-appb-T000003

실시예 5. 인간 유방암 세포주, MDA-MB-231에서 siRNA를 이용한 타겟 유전자의 발현억제 확인.Example 5 Expression Inhibition of Target Genes Using siRNA in Human Breast Cancer Cell Line, MDA-MB-231.

상기 실시예 1에서 제조되었고, 실시예 4-3-2에서 선택된 서열번호 12, 17, 42, 55, 91, 95, 101, 108, 111, 114, 116, 119, 137, 139, 141, 152, 166, 168, 170, 171번을 센스가닥으로 가지는 siRNA를 이용하여 또 다른 인간 유방암 세포주, MDA-MB-231을 형질전환시키고, 형질전환된 세포주에서 타겟 유전자의 발현 양상을 분석하였다. Prepared in Example 1, and selected from SEQ ID NOs: 12, 17, 42, 55, 91, 95, 101, 108, 111, 114, 116, 119, 137, 139, 141, 152 Another human breast cancer cell line, MDA-MB-231, was transformed using siRNA having sense strands 166, 168, 170, and 171, and the expression pattern of the target gene was analyzed in the transformed cell line.

실시예 5-1. 인간 유방암 세포주, MDA-MB-231의 배양Example 5-1. Culture of Human Breast Cancer Cell Line, MDA-MB-231

미합중국 종균협회(American Type Culture Collection, ATCC)로부터 입수한 인간 유방암 세포주, MDA-MB-231은 실시예 4-1과 동일한 조건에서 배양하였다.Human breast cancer cell line, MDA-MB-231, obtained from the American Type Culture Collection (ATCC) was cultured under the same conditions as in Example 4-1.

실시예 5-2. 인간 유방암 세포주, MDA-MB-231에서 STAT3 siRNA 의 형질주입(transfection)Example 5-2. Transfection of STAT3 siRNA in Human Breast Cancer Cell Line, MDA-MB-231

상기 실시예 5-1에서 배양된 MDA-MB-231 세포주를 12-웰 플레이트에 웰 당 0.8× 105의 세포수로 18시간 동안 RPMI 1640 배양배지에서 37℃, 5 %(v/v) CO2의 조건으로 배양한 뒤, 배지를 제거한 후 각 웰 당 500 ㎕의 Opti-MEM 배지(GIBCO, 미국)를 분주하였다. The MDA-MB-231 cell line cultured in Example 5-1 was used in a 12-well plate at 37 ° C., 5% (v / v) CO 2, in an RPMI 1640 culture medium for 18 hours at a cell number of 0.8 × 10 5 per well. After culturing under conditions, 500 μl of Opti-MEM medium (GIBCO, USA) was dispensed per well after removing the medium.

리포펙타민 RNAi 맥스(Lipofectamine™ RNAi Max, Invitrogen, 미국) 2 ㎕와 Opti-MEM 배지 248 ㎕를 혼합하여 혼합액을 제조하였고, 실온에서 5분간 반응시킨 다음, 상기 실시예 1에서 제조되었고, 실시예 4-3-2에서 선택된 서열번호 12, 17, 42, 55, 91, 95, 101, 108, 111, 114, 116, 119, 137, 139, 141, 152, 166, 168, 170, 171번을 센스가닥으로 가지는 siRNA (1 pmole/㎕ 농도) 0.2 ㎕, 1 ㎕ 또는 5 ㎕를 Opti-MEM 배지에 첨가하여 최종 250 ㎕의 양에 농도가 0.8 nM, 4 nM 또는 20 nM인 siRNA 용액을 제조하였다. 상기 리포펙타민 RNAi 맥스(Lipofectamine™ RNAi Max) 혼합액과 siRNA 용액을 혼합하여 실온에서 15분간 반응시켜 형질주입용 용액을 제조하였다.2 μl of Lipofectamine RNAi Max (Invitrogen, USA) and 248 μl of Opti-MEM medium were mixed to prepare a mixed solution, reacted for 5 minutes at room temperature, and prepared in Example 1 above. SEQ ID NO: 12, 17, 42, 55, 91, 95, 101, 108, 111, 114, 116, 119, 137, 139, 141, 152, 166, 168, 170, 171 selected from 4-3-2. 0.2 μl, 1 μl or 5 μl of siRNA having a sense strand (1 pmole / μl concentration) was added to the Opti-MEM medium to prepare a siRNA solution having a concentration of 0.8 nM, 4 nM or 20 nM in the final 250 μl amount. . The lipofectamine RNAi Max (Lipofectamine ™ RNAi Max) mixture and the siRNA solution were mixed and reacted for 15 minutes at room temperature to prepare a solution for transfection.

Opti-MEM이 분주된 12-웰 플레이트 각 웰의 종양세포주 당 형질주입용 용액 500 ㎕를 분주하고 6시간 동안 배양한 후, Opti-MEM 배지를 제거하고 웰 당 RPMI 1640 배양배지 1 ㎖을 분주한 다음 24 시간 동안 37℃, 5%(v/v) CO2 조건 하에서 배양하였다.After dispensing 500 μl of the transfection solution per tumor cell line of each well of Opti-MEM-dispensed 12-well plate and incubating for 6 hours, the Opti-MEM medium was removed and 1 ml of RPMI 1640 culture medium was dispensed per well. Incubated for 24 hours at 37 ° C. and 5% (v / v) CO 2 conditions.

실시예 5-3. 타겟 유전자 mRNA의 정량분석Example 5-3. Quantitative Analysis of Target Gene mRNA

상기 실시예 4-3과 같은 방법으로 정량 분석을 수행하였다(도 5 참조). 결과를 바탕으로 0.2 nM, 1 nM 그리고 5 nM의 siRNA 농도 모두에서 높은 효율을 보이는 siRNA 12종을 선택하였다(서열번호 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170, 171번의 서열을 센스가닥으로 가짐). Quantitative analysis was performed in the same manner as in Example 4-3 (see FIG. 5). Based on the results, 12 siRNAs with high efficiency at all siRNA concentrations of 0.2 nM, 1 nM and 5 nM were selected (SEQ ID NOs: 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170, 171 sequence having sense strand).

실시예 6. 인간 유방암 세포주(MCF-7, MDA-MB-231)에서의 IC50(inhibition concentration 50%) 측정Example 6. Measurement of IC 50 (inhibition concentration 50%) in human breast cancer cell lines (MCF-7, MDA-MB-231)

상기 실시예 1에서 제조되었고, 실시예 5-3에서 선택된 서열번호 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 및 171번의 서열을 센스가닥으로 가지는 siRNA를 이용하여 인간 유방암 세포주(MCF-7, MDA-MB-231)를 형질전환시키고, 상기 형질전환된 세포주에서 타겟 유전자의 발현량을 분석하여 IC50값을 확인함으로써 siRNA의 정확한 효율을 분석하였다. The siRNA prepared in Example 1 and having the sense strand of the sequence of SEQ ID NOs 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 and 171 selected in Example 5-3 The human breast cancer cell line (MCF-7, MDA-MB-231) was transformed, and the exact efficiency of siRNA was analyzed by confirming the IC 50 value by analyzing the expression level of the target gene in the transformed cell line.

실시예 6-1. 인간 유방암 세포주(MCF-7, MDA-MB-231)의 배양Example 6-1. Culture of Human Breast Cancer Cell Lines (MCF-7, MDA-MB-231)

미합중국 종균협회(American Type Culture Collection, ATCC)로부터 입수한 인간 유방암 세포주(MCF-7, MDA-MB-231)는 실시예 4-1과 동일한 조건에서 배양하였다.Human breast cancer cell lines (MCF-7, MDA-MB-231) obtained from the American Type Culture Collection (ATCC) were cultured under the same conditions as in Example 4-1.

실시예 6-2. 인간 유방암 세포주(MCF-7, MDA-MB-231)에서 목표 siRNA 의 형질주입(transfection)Example 6-2. Transfection of Target siRNA in Human Breast Cancer Cell Lines (MCF-7, MDA-MB-231)

상기 실시예 4-1 및 5-1에서 배양된 MCF-7 세포주 및 MDA-MB-231 세포주는 37℃, 5 %(v/v) CO2의 조건하에 12-웰 플레이트에서 18시간 동안 RPMI 1640 배양배지에서 배양한 뒤, 배지를 제거한 후 각 웰 당 500 ㎕의 Opti-MEM 배지(GIBCO, 미국)를 분주하였다. The MCF-7 and MDA-MB-231 cell lines cultured in Examples 4-1 and 5-1 above were RPMI 1640 for 18 hours in a 12-well plate at 37 ° C. and 5% (v / v) CO 2 . After incubation in culture medium, 500 μl of Opti-MEM medium (GIBCO, USA) was dispensed per well after removing the medium.

리포펙타민 RNAi 맥스(Lipofectamine™ RNAi Max, Invitrogen, 미국) 2 ㎕와 Opti-MEM 배지 248 ㎕를 혼합하여 혼합액을 제조하였고, 실온에서 5분간 반응시킨 다음, 상기 실시예 1에서 제조되었고, 실시예 5-3에서 선택된 서열번호 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 또는 171번을 센스가닥으로 가지는 siRNA 0.0016 ㎕, 0.008 ㎕, 0.04 ㎕, 0.2 ㎕, 1 ㎕ 또는 5 ㎕를 Opti-MEM 배지에 첨가하여 최종 250 ㎕의 양에 농도가 6.4 pM, 32 pM, 0.16 nM, 0.8 nM, 4 nM 또는 20 nM인 siRNA 용액을 제조하였다. 상기 리포펙타민 RNAi 맥스 (Lipofectamine™ RNAi Max) 혼합액과 siRNA 용액을 혼합하여 실온에서 15분간 반응시켜 형질주입용 용액을 제조하였다2 μl of Lipofectamine RNAi Max (Invitrogen, USA) and 248 μl of Opti-MEM medium were mixed to prepare a mixed solution, reacted for 5 minutes at room temperature, and prepared in Example 1 above. 0.0016 μl, 0.008 μl, 0.04 μl, 0.2 μl, siRNA having the sense strand of SEQ ID NO: 12, 17, 42, 101, 108, 114, 116, 119, 137, 141, 170 or 171 selected from 5-3 Μl or 5 μl were added to Opti-MEM medium to prepare siRNA solutions with concentrations of 6.4 pM, 32 pM, 0.16 nM, 0.8 nM, 4 nM or 20 nM in amounts of the final 250 μl. The lipofectamine RNAi Max (Lipofectamine ™ RNAi Max) mixture and the siRNA solution were mixed and reacted for 15 minutes at room temperature to prepare a solution for transfection.

그 후, Opti-MEM이 분주된 종양세포주의 각 웰에 형질주입용 용액을 각각 500 ㎕ 분주하고 6시간 동안 배양한 후, Opti-MEM 배지를 제거하고 RPMI 1640 배양배지 1 ㎖을 분주한 다음 24 시간 동안 37℃, 5%(v/v) CO2의 조건 하에서 배양하였다.After dispensing 500 μl of the transfection solution into each well of Opti-MEM-dispersed tumor cell lines and incubating for 6 hours, the Opti-MEM medium was removed and 1 ml of RPMI 1640 culture medium was dispensed. Incubation was performed under conditions of 37 ° C. and 5% (v / v) CO 2 for a period of time.

실시예 6-3. 타겟 유전자 mRNA의 정량분석Example 6-3. Quantitative Analysis of Target Gene mRNA

상기 실시예 6-2에서 형질주입된 세포주로부터 전체 RNA를 추출하여 cDNA를 제조한 뒤, 실시간 PCR(real-time PCR)을 이용하여 실시예 4-3과 동일한 방법으로 타겟 유전자의 mRNA 발현량을 상대정량 하였다(도 6 참조, MCF-7 세포주; 도 7 참조, MDA-MB-231 세포주).After extracting the entire RNA from the cell line transfected in Example 6-2 to prepare a cDNA, using the real-time PCR (real-time PCR) the mRNA expression amount of the target gene in the same manner as in Example 4-3 Relative quantification (see Figure 6, MCF-7 cell line; see Figure 7, MDA-MB-231 cell line).

실시예 6-4. IC50 분석Example 6-4. IC 50 analysis

상기 실시예 6-3에서 확인된 결과를 바탕으로 IC50값을 확인하기 위해 SoftMax Pro 프로그램 (Molecular Devices, USA)을 사용하였다. 타겟 유전자의 발현량 %값을 siRNA에 의한 발현저해율 %값으로 변환하고 이를 siRNA의 처리농도의 로그값에 대해 그래프를 나타낸 후 4-모수로지스틱스모형(4-parameter logistics model)에 대입하여 비선형 회귀분석을 통해 IC50값을 확인하였다 (도 8 참조). 두 종의 유방암세포에서의 IC50값을 통해 각 siRNA의 효능을 명확하게 확인할 수 있었으며 (표 4 참조, 서열번호 17, 42, 101, 119, 137번의 5개 서열을 선택하였다.SoftMax Pro program (Molecular Devices, USA) was used to confirm the IC 50 value based on the results identified in Example 6-3. Nonlinear regression analysis was performed by converting the% expression level of the target gene into the% inhibition rate by siRNA, graphing the log of the concentration of the siRNA, and substituting it into the 4-parameter logistics model. The IC 50 value was confirmed through (see FIG. 8). IC 50 values in two breast cancer cells clearly identified the efficacy of each siRNA (see Table 4, SEQ ID NOs: 17, 42, 101, 119, 137, five sequences were selected).

Figure PCTKR2016006363-appb-T000004
Figure PCTKR2016006363-appb-T000004

실시예 7. STAT3 특이적 siRNA에 의한 타겟 유전자의 발현 저해 및 세포성장저해 확인Example 7. Expression inhibition and cell growth inhibition of target genes by STAT3-specific siRNA

상기 실시예 6-4에서 선택된 고효율의 siRNA인 서열번호 17, 42, 101, 119, 137번의 서열을 센스가닥으로 가지는 siRNA를 5, 50 nM의 농도로 유방암 세포주, MDA-MB-231을 형질전환시킨 후 타겟 유전자의 발현저해 정도와 세포 성장 저해 정도를 확인하였다. A breast cancer cell line, MDA-MB-231, was transformed at a concentration of 5, 50 nM of an siRNA having a sense strand of SEQ ID NOs: 17, 42, 101, 119, and 137, which are the highly efficient siRNA selected in Example 6-4. After the expression of the target gene expression inhibition and cell growth inhibition was confirmed.

실시예 7-1. 인간 간암 세포주에서 목표 siRNA 의 형질주입(transfection)Example 7-1. Transfection of Target siRNA in Human Liver Cancer Cell Lines

상기 실시예 5-1에서 배양된 MDA-MB-231 세포주를 37℃에서 5 %(v/v) CO2의 조건하에 12-웰 플레이트에서 웰 당 0.6×105의 세포수로 18시간 동안 RPMI-1640 배양 배지에서 배양한 뒤, 배지를 제거한 후 각 웰 당 500㎕의 Opti-MEM 배지(GIBCO, 미국)를 분주하였다. 한편, 리포펙타민 RNAi 맥스(Lipofectamine™ RNAi Max, Invitrogen, 미국) 2 ㎕와 Opti-MEM 배지 248 ㎕를 혼합하여 혼합액을 제조하였고, 실온에서 5분간 반응시킨 다음, 상기 실시예 1에서 제조되었고, 실시예 6-3에서 선택된 서열번호 17, 42, 101, 119, 137번을 센스가닥으로 가지는 siRNA (1 pmole/㎕) 5 ㎕ 또는 50 ㎕를 Opti-MEM 배지에 총량 250 ㎕가 되도록 첨가하여 최종 농도가 각각 20 nM 또는 200 nM인 siRNA 용액을 제조하였다. 상기 리포펙타민 RNAi 맥스(Lipofectamine™ RNAi Max) 혼합액과 siRNA 용액을 혼합하여 실온에서 15분간 반응시켜 형질주입용 용액을 제조하였다.The MDA-MB-231 cell line cultured in Example 5-1 was RPMI for 18 hours at a cell number of 0.6 × 10 5 per well in a 12-well plate under conditions of 5% (v / v) CO 2 at 37 ° C. After incubation in -1640 culture medium, 500 μl of Opti-MEM medium (GIBCO, USA) was dispensed per well after the medium was removed. Meanwhile, 2 μl of Lipofectamine RNAi Max (Invitrogen, USA) and 248 μl of Opti-MEM medium were mixed to prepare a mixed solution, reacted for 5 minutes at room temperature, and prepared in Example 1, 5 μl or 50 μl of siRNA (1 pmole / μl) having the sense strand of SEQ ID NO: 17, 42, 101, 119, 137 selected in Example 6-3 was added to the Opti-MEM medium so that the total amount was 250 μl. SiRNA solutions having concentrations of 20 nM or 200 nM, respectively, were prepared. The lipofectamine RNAi Max (Lipofectamine ™ RNAi Max) mixture and the siRNA solution were mixed and reacted for 15 minutes at room temperature to prepare a solution for transfection.

그 후, Opti-MEM이 분주된 종양세포주의 각 웰에 형질주입용 용액을 각각 500 ㎕ 씩 분주하고 6시간 동안 배양한 후, Opti-MEM 배지를 제거하였다. 여기에 RPMI 1640 배양배지 1 ㎖씩 분주한 다음 72시간 동안 37℃에서 5%(v/v) CO2의 조건 하에서 배양하였다.Thereafter, 500 μl of the solution for transfection was dispensed into each well of the tumor cell line to which Opti-MEM was dispensed, and cultured for 6 hours, and then the Opti-MEM medium was removed. Here, 1 ml of RPMI 1640 culture medium was dispensed and then incubated at 37 ° C. for 5 hours under 5% (v / v) CO 2 .

실시예 7-2. 타겟 유전자 mRNA의 정량분석Example 7-2. Quantitative Analysis of Target Gene mRNA

상기 실시예 4-3과 같은 방법으로 정량 분석을 수행하였다(도 9, A 참조).Quantitative analysis was performed in the same manner as in Example 4-3 (see FIGS. 9 and A).

실시예 7-3. 세포성장저해 확인Example 7-3. Confirmation of cell growth inhibition

상기 실시예 7-1에서 형질전환된 세포를 웰 당 500 ㎕의 DPBS로 두 번 세척한 후 웰 당 500 ㎕의 TrypLETM Express with Phenol Red(1X, Gibco, USA)를 37℃에서 5%(v/v) CO2의 조건 하에서 2분간 처리하여 세포를 부유시켰다. 웰 당 500 ㎕의 RPMI 1640 배양배지를 추가하여 반응을 멈춘 후, 그 중 100 ㎕를 동량의 2x 트립판블루 용액(Trypan Blue Solution)과 섞은 후 10 ㎕를 취해 LUNATM Automated Cell Counter(Logos Biosystems, USA)를 이용하여 세포의 수를 측정하였다. 측정은 3 반복 수행 하였다(도 9, B 참조).The cells transformed in Example 7-1 were washed twice with 500 μl of DPBS per well, and 500 μl of TrypLETM Express with Phenol Red (1 ×, Gibco, USA) per well was used at 37 ° C. for 5% (v / v) The cells were suspended by treatment for 2 minutes under conditions of CO 2 . Stop the reaction by adding 500 μl RPMI 1640 culture medium per well, mix 100 μl with the same amount of 2x Trypan Blue Solution, and take 10 μl of LUNATM Automated Cell Counter (Logos Biosystems, USA). ) Was used to measure the number of cells. The measurement was performed three times (see Fig. 9, B).

세포 수 확인을 통해 세포성장 저해력(cell proliferation inhibitory effect)를 확인한 결과 농도 의존적으로 세포생존력이 감소함을 확인할 수 있었으며, 특히 서열번호 42, 101, 137번을 센스가닥으로 가지는 siRNA가 50 nM 처리된 실험군의 경우 in vitro에서 약 40%의 저해력을 갖는 것으로 확인됐다.As a result of confirming the cell proliferation inhibitory effect through the cell number, it was confirmed that the cell viability decreased in a concentration-dependent manner, in particular, siRNA having the sense strand of SEQ ID NO: 42, 101, 137 was treated with 50 nM. The experimental group was found to have about 40% inhibition in vitro .

실시예 8. 인간 유방암 세포주, MDA-MB-231에서 STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체로 이루어진 나노입자(SAMiRNA-STAT3)를 이용한 타겟 유전자의 발현억제 확인Example 8 Confirmation of Inhibition of Target Gene Expression Using Nanoparticles (SAMiRNA-STAT3) Consisting of Double Helix Oligo RNA Structures Containing STAT3-Specific siRNA in Human Breast Cancer Cell Line, MDA-MB-231

상기 실시예 3-1에서 제조되었고, 실시예 5-3에서 선택된 서열번호 12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, 171번을 센스가닥으로 가지는 siRNA를 포함하는 나노입자(SAMiRNA-STAT3#12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, 171)를 이용하여 인간 유방암 세포주, MDA-MB-231에서의 타겟 유전자의 발현 양상을 분석하였다. SiRNA prepared in Example 3-1 and having the sense strand as SEQ ID NOs: 12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, and 171 selected in Example 5-3 Of the target gene in the human breast cancer cell line, MDA-MB-231 using a nanoparticle comprising (SAMiRNA-STAT3 # 12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, 171). Expression patterns were analyzed.

실시예 8-1. 인간 유방암 세포주, MDA-MB-231의 배양Example 8-1. Culture of Human Breast Cancer Cell Line, MDA-MB-231

미합중국 종균협회(American Type Culture Collection, ATCC)로부터 입수한 인간 유방암 세포주, MDA-MB-231은 실시예 5-1과 동일한 조건에서 배양하였다.Human breast cancer cell line, MDA-MB-231, obtained from the American Type Culture Collection (ATCC) was cultured under the same conditions as in Example 5-1.

실시예 8-2. 인간 유방암 세포주, MDA-MB-231에서 SAMiRNA-STAT3의 처리(treatment)Example 8-2. Treatment of SAMiRNA-STAT3 in Human Breast Cancer Cell Line, MDA-MB-231

상기 실시예 5-1에서 배양된 MDA-MB-231 세포주를 12-웰 플레이트에 웰 당 0.6× 105의 세포수로 18시간 동안 RPMI 1640 배양배지에서 37℃, 5 %(v/v) CO2의 조건으로 배양하였다. MDA-MB-231 cell line incubated in Example 5-1 in a 12-well plate at 37 ℃, 5% (v / v) CO in RPMI 1640 culture medium for 18 hours at a cell number of 0.6 × 10 5 per well The culture was carried out under the conditions of 2 .

SAMiRNA 처리액(SAMiRNA treatment solution)을 제조하기 위해 각 973.4 ㎕ 또는 946.8 ㎕의 OPTI-MEM 배지에 각 26.6 ㎕ 또는 53.2 ㎕의 상기 실시예 3-1에서 제조되었고, 실시예 5-3에서 선택된 50 ㎍/㎖(13.3 uM)농도의 SAMiRNA-STAT3#12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, 171 또는 SAMiRNA-CONT를 혼합하여 100 nM 또는 200 nM의 SAMiRNA 처리액을 제조했다.In order to prepare a SAMiRNA treatment solution, 26.6 μl or 53.2 μl of each was prepared in Example 3-1 and 50 μg selected in Example 5-3 in each 973.4 μl or 946.8 μl of OPTI-MEM medium. SAMiRNA treatment of 100 nM or 200 nM by mixing SAMiRNA-STAT3 # 12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, 171 or SAMiRNA-CONT at a concentration of /3.3 (13.3 uM) Liquid was prepared.

배지를 제거한 후 각 웰 당 1 ㎖의 100 nM 또는 200 nM의 SAMiRNA 처리액을 하루 두 번, 이틀 간 처리하여 37℃, 5%(v/v) CO2 조건 하에서 배양하였다.After removing the medium, 1 ml of 100 nM or 200 nM SAMiRNA treatment solution per well was treated twice a day for 2 days, and then cultured under 37 ° C. and 5% (v / v) CO 2 conditions.

실시예 8-3. 타겟 유전자 mRNA의 정량분석Example 8-3. Quantitative Analysis of Target Gene mRNA

상기 실시예 4-3과 같은 방법으로 정량 분석을 수행하였다(도 10 참조).Quantitative analysis was performed in the same manner as in Example 4-3 (see FIG. 10).

실시예 9. 인간 유방암 세포주, MDA-MB-231에서 동물 실험 용 STAT3 특이적 siRNA를 모두 포함하는 이중나선 올리고 RNA 구조체로 이루어진 나노입자(SAMiRNA-STAT3-Combo)의 포도당(Glucose) 리간드 유무에 따른 타겟 유전자의 발현억제 비교 확인Example 9 According to the presence or absence of Glucose Ligand of Nanoparticles (SAMiRNA-STAT3-Combo) consisting of a double-stranded oligo RNA construct containing all STAT3-specific siRNAs for animal experiments in human breast cancer cell line, MDA-MB-231 Comparison of expression inhibition of target genes

상기 실시예 3-2에서 제조되었고, 실시예 7-3에서 선택된 서열번호 42, 101, 137번을 센스가닥으로 가지는 siRNA를 모두 포함하는 동물 실험 용 나노입자(SAMiRNA-STAT3-Combo)와 동일 나노입자에 리간드로써 포도당을 갖는 나노입자(Glucose-SAMiRNA-STAT3-Combo)에 의한 타겟 유전자 발현 억제를 인간 유방암 세포주, MDA-MB-231에서 비교 분석하였다.Prepared in Example 3-2, the same as the animal experimental nanoparticles (SAMiRNA-STAT3-Combo) containing all of the siRNA having a sense strand of SEQ ID NO: 42, 101, 137 selected in Example 7-3 nano Inhibition of target gene expression by nanoparticles (Glucose-SAMiRNA-STAT3-Combo) with glucose as the ligand in the particles was compared and analyzed in human breast cancer cell line, MDA-MB-231.

실시예 9-1. 인간 유방암 세포주, MDA-MB-231의 배양Example 9-1. Culture of Human Breast Cancer Cell Line, MDA-MB-231

미합중국 종균협회(American Type Culture Collection, ATCC)로부터 입수한 인간 유방암 세포주, MDA-MB-231은 실시예 5-1과 동일한 조건에서 배양하였다.Human breast cancer cell line, MDA-MB-231, obtained from the American Type Culture Collection (ATCC) was cultured under the same conditions as in Example 5-1.

실시예 9-2. 인간 유방암 세포주, MDA-MB-231에서 나노입자의 처리(treatment)Example 9-2. Treatment of Nanoparticles in Human Breast Cancer Cell Line, MDA-MB-231

상기 실시예 5-1에서 배양된 MDA-MB-231 세포주를 12-웰 플레이트에 웰 당 0.6× 105의 세포수로 18시간 동안 RPMI 1640 배양배지에서 37℃, 5 %(v/v) CO2의 조건으로 배양하였다. MDA-MB-231 cell line incubated in Example 5-1 in a 12-well plate at 37 ℃, 5% (v / v) CO in RPMI 1640 culture medium for 18 hours at a cell number of 0.6 × 10 5 per well The culture was carried out under the conditions of 2 .

SAMiRNA 처리액(SAMiRNA treatment solution)을 제조하기 위해 각 973.4 ㎕, 946.8 ㎕ 또는 867.0 ㎕의 OPTI-MEM 배지에 각 26.6 ㎕, 53.2 ㎕ 또는 133.0 ㎕의 상기 실시예 3-2에서 제조 후 희석된 50 ㎍/㎖(13.3 uM)농도의 SAMiRNA-STAT3-Combo 또는 Glucose-SAMiRNA-STAT3-Combo를 혼합하여 100 nM, 200 nM 또는 500 nM의 SAMiRNA 처리액을 제조했다.50 μg diluted after preparation in Example 3-2 of 26.6 μl, 53.2 μl or 133.0 μl each in 973.4 μl, 946.8 μl or 867.0 μl of OPTI-MEM medium to prepare a SAMiRNA treatment solution. SAMiRNA-treated solutions of 100 nM, 200 nM or 500 nM were prepared by mixing SAMiRNA-STAT3-Combo or Glucose-SAMiRNA-STAT3-Combo at a concentration of / ml (13.3 uM).

배지를 제거한 후 각 웰 당 1 ㎖의 100 nM, 200 nM 또는 500 nM의 SAMiRNA 처리액을 하루 두 번, 이틀 간 처리하여 37℃, 5%(v/v) CO2 조건 하에서 배양하였다.After removing the medium, 1 ml of 100 nM, 200 nM, or 500 nM of SAMiRNA treatment solution per well was treated twice a day for 2 days and incubated under 37 ° C. and 5% (v / v) CO 2 conditions.

실시예 9-3. 타겟 유전자 mRNA의 정량분석Example 9-3. Quantitative Analysis of Target Gene mRNA

상기 실시예 4-3과 같은 방법으로 정량 분석을 수행하였다(도 11 참조). 타겟 유전자의 발현 억제량을 분산에 대한 두 집단의 F-검정을 통해 등분산 가정집단임을 확인한 후, 등분산 가정 두 집단에 대한 t-검정을 수행한 결과, 500 nM 처리 농도에서 p<0.05의 유의성으로 Glucose-SAMiRNA-STAT3-Combo 나노입자가 SAMiRNA-STAT3-Combo 보다 타겟 유전자의 발현을 보다 강하게 억제한다는 사실을 알 수 있었다.Quantitative analysis was performed in the same manner as in Example 4-3 (see FIG. 11). After confirming that the inhibitory expression of the target gene was equally distributed by the F-test of the two groups for variance, and performing t-test on the two equally distributed families, p <0.05 was obtained at the 500 nM treatment concentration. Significantly, Glucose-SAMiRNA-STAT3-Combo nanoparticles were found to inhibit the expression of target genes more strongly than SAMiRNA-STAT3-Combo.

실시예 10. 동물 종양모델에서 STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체로 이루어진 나노입자의 종양 성장 억제 효과 확인Example 10 Confirmation of Tumor Growth Inhibition Effect of Nanoparticles Consisting of Double Helix Oligo RNA Structure Containing STAT3-Specific siRNA in Animal Tumor Model

상기 실시예 3-2에서 제조되었고, 실시예 7-3에서 선택된, 서열번호 42, 101, 137번을 센스가닥으로 가지는 siRNA를 모두 포함하는 동물 실험 용 나노입자(SAMiRNA-STAT3-Combo)와 동일 나노입자에 리간드로써 포도당을 갖는 나노입자(Glucose-SAMiRNA-STAT3-Combo)에 의한 마우스 유방암 이종이식 모델에서의 종양성장 억제 효과를 확인하였다.Prepared in Example 3-2, the same as the animal experimental nanoparticles (SAMiRNA-STAT3-Combo) containing all siRNA having a sense strand of SEQ ID NO: 42, 101, 137 selected in Example 7-3 Tumor growth inhibitory effect in mouse breast cancer xenograft model by glucose nanoparticles (Glucose-SAMiRNA-STAT3-Combo) as a ligand to the nanoparticles was confirmed.

실시예 10-1. 마우스 유방암 이종이식 모델(mouse breast cancer xenograft model)의 제작Example 10-1. Construction of mouse breast cancer xenograft model

상기 실시예 5-1에서 배양된 인간 유방암 세포주, MDA-MB-231, 3×106cell 을 암컷 누드마우스(Balb/c nude mice)의 왼쪽 옆구리(left flank)에 피하주사(subcutaneous injection)하고, 2일 간격으로 종양크기를 측정하여, 종양세포의 생착 및 성장 유무를 확인하여 모델을 제작하였다.Subcutaneous injection of the human breast cancer cell line, MDA-MB-231, 3 × 10 6 cells cultured in Example 5-1 into the left flank of female nude mice (Balb / c nude mice) , The tumor size was measured at intervals of 2 days to confirm the engraftment and growth of tumor cells to prepare a model.

실시예 10-2. STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체로 이루어진 나노입자에 의한 체중 변화 확인Example 10-2. Confirmation of weight change by nanoparticles consisting of a double-stranded oligo RNA structure containing STAT3-specific siRNA

상기 실시예 3-2에서 제조된 서열번호 42, 101, 137번을 센스가닥으로 가지는 siRNA를 모두 포함하는 동물 실험 용 나노입자(SAMiRNA-STAT3-Combo)와 동일 나노입자에 리간드로서 포도당을 갖는 나노입자(Glucose-SAMiRNA-STAT3-Combo)의 동물모델 미정맥 투여에 의한 실험동물의 체중 변화를 확인하기 위해, 2일 간격으로 체중을 측정하였다(표 5 참조, SAMiRNA-STAT3-Combo 투여군; 표 6 참조, Glucose-SAMiRNA-STAT3-Combo 투여군). 그 결과 유의적인 체중 증가 또는 체중 감소 현상은 나타나지 않았으며, 이는 결과 해석에 영향을 줄 수 있는 외부 요인이 없었음을 의미한다.Nanoparticles having glucose as a ligand to the same nanoparticles as animal experimental nanoparticles (SAMiRNA-STAT3-Combo) containing all of the siRNA having a sense strand of SEQ ID NO: 42, 101, 137 prepared in Example 3-2 In order to confirm the weight change of the experimental animals by microvenous administration of the particle (Glucose-SAMiRNA-STAT3-Combo), the body weight was measured at two-day intervals (see Table 5, SAMiRNA-STAT3-Combo-administered group; Table 6). See Glucose-SAMiRNA-STAT3-Combo administration group). As a result, no significant weight gain or weight loss was observed, indicating that there were no external factors that could affect the interpretation of the results.

Figure PCTKR2016006363-appb-T000005
Figure PCTKR2016006363-appb-T000005

Figure PCTKR2016006363-appb-T000006
Figure PCTKR2016006363-appb-T000006

실시예 10-3. STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체로 이루어진 나노입자에 의한 종양 성장 억제 확인Example 10-3. Confirmation of tumor growth inhibition by nanoparticles consisting of double helix oligo RNA constructs containing STAT3-specific siRNA

상기 실시예 3-2에서 제조되었고, 실시예 7-3에서 선택된 서열번호 42, 101, 137번을 센스가닥으로 가지는 siRNA를 모두 포함하는 동물 실험 용 나노입자(SAMiRNA-STAT3-Combo)와 동일 나노입자에 리간드로서 포도당을 갖는 나노입자(Glucose-SAMiRNA-STAT3-Combo)에 의한 마우스 유방암 이종이식 모델에서의 종양 성장 억제 효과를 확인하였다.Prepared in Example 3-2, the same as the animal experimental nanoparticles (SAMiRNA-STAT3-Combo) containing all of the siRNA having a sense strand of SEQ ID NO: 42, 101, 137 selected in Example 7-3 nano Tumor growth inhibitory effect in mouse breast cancer xenograft model by nanoparticles (Glucose-SAMiRNA-STAT3-Combo) having glucose as ligand in the particles was confirmed.

실시예 10-3-1. 마우스 유방암 이종이식 모델의 실험군 구성Example 10-3-1. Experimental grouping of mouse breast cancer xenograft model

상기 실시예 8-1에서 제작된 마우스 유방암 모델의 종양크기가 평균 140㎣가 되었을 때, 종양크기에 따라 실험군을 군당 6마리씩 편성하였다. When the average tumor size of the mouse breast cancer model produced in Example 8-1 was 140 mm 3, the experimental groups were organized in groups of 6 per group according to the tumor size.

실시예 10-3-2. STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체로 이루어진 나노입자의 투여Example 10-3-2. Administration of nanoparticles consisting of a double helix oligo RNA construct comprising STAT3-specific siRNA

상기 실시예 3-2에서 제조되었고, 실시예 7-3에서 선택된 서열번호 42, 101, 137번을 센스가닥으로 가지는 siRNA를 모두 포함하는 동물 실험 용 나노입자(SAMiRNA-STAT3-Combo)와 동일 나노입자에 리간드로서 포도당을 갖는 나노입자(Glucose-SAMiRNA-STAT3-Combo)를 1mg/kg body weight 또는 5mg/kg body weight의 농도로, 투여량 100㎕를 1㎖ 주사기(0.25㎜×8㎜, 31Gauge, BD328820, USA)를 이용하여 2주간 1일 1회, 총 14회 연속으로 실시예 10-3-1에서 구성된 실험동물군에 미정맥 투여(intravenous injection)하였으며, 하기의 모든 투여군은 블라인드(Blind)로 진행되었다.Prepared in Example 3-2, the same as the animal experimental nanoparticles (SAMiRNA-STAT3-Combo) containing all of the siRNA having a sense strand of SEQ ID NO: 42, 101, 137 selected in Example 7-3 nano In a concentration of 1 mg / kg body weight or 5 mg / kg body weight, nanoparticles (Glucose-SAMiRNA-STAT3-Combo) containing glucose as a ligand in the particles were used, and 100 µl of the dose was injected into 1 ml syringe (0.25 mm x 8 mm, 31 Gauge). , BD328820, USA) was administered intravenously to the experimental animal group configured in Example 10-3-1 once a day for 2 weeks, for a total of 14 consecutive weeks, and all the following administration groups were blind. ).

투여군: PBS, PBS(부형제) 투여 대조군; SAMiRNA-CONT, 서열번호 201번의 서열을 센스가닥으로 가지는 siRNA를 포함하는 나노입자 5 mg/kg body weight 투여 대조군; SAMiRNA-STAT3, 서열번호 42, 101, 137번의 서열을 센스가닥으로 가지는 siRNA를 모두 포함하는 나노입자(SAMiRNA-CONT-Combo) 1 mg/kg body weight 또는 5 mg/kg body weight 투여 실험군; Glucose-SAMiRNA-CONT, 서열번호 201번의 서열을 센스가닥으로 가지는 siRNA를 포함하는 나노입자 5 mg/kg body weight 투여 대조군; Glucose-SAMiRNA-STAT3, 서열번호 42, 101, 137번의 서열을 센스가닥으로 가지는 siRNA를 모두 포함하는 나노입자(Glucose-SAMiRNA-CONT-Combo) 1 mg/kg body weight 또는 5 mg/kg body weight 투여 실험군Administration group: PBS, PBS (excipient) administration control group; SAMiRNA-CONT, nanoparticle 5 mg / kg body weight administration control comprising siRNA having the sense strand of SEQ ID NO: 201; Experimental group for administration of 1 mg / kg body weight or 5 mg / kg body weight of nanoparticles (SAMiRNA-CONT-Combo) including all siRNAs having a sense strand of the sequence of SAMiRNA-STAT3, SEQ ID NOs: 42, 101, and 137; Glucose-SAMiRNA-CONT, nanoparticle 5 mg / kg body weight administration control comprising siRNA having the sense strand of SEQ ID NO: 201; Administration of 1 mg / kg body weight or 5 mg / kg body weight of nanoparticles (Glucose-SAMiRNA-CONT-Combo) containing all siRNAs having the sense strand of Glucose-SAMiRNA-STAT3, SEQ ID NOs: 42, 101, and 137 Experimental group

실시예 10-3-3. 종양 크기 측정을 통한 효과 확인Example 10-3-3. Confirmation of effect by measuring tumor size

상기 실시예 10-3-2의 14일 연속 투여기간 중, 투여 후 2, 4, 6, 8, 10, 12, 14일째에 종양의 크기를 측정하였다(도 13, 도 14 참조). 마지막 투여일인 14일째를 기준으로 부형제 대조군인 PBS에 대비하여 SAMiRNA-STAT3(1mg/kg body weight)은 30%, SAMiRNA-STAT3(5mg/kg body weight)은 37% 종양 성장 억제효과가 나타났으며, 음성 대조군인 SAMiRNA-CONT에 대비하여 SAMiRNA-STAT3(1mg/kg body weight)은 24%, SAMiRNA-STAT3(5mg/kg body weight)은 31%로 유의적인 종양 성장 억제효과가 나타났다. 또한, 부형제 대조군인 PBS에 대비하여 Glucose-SAMiRNA-STAT3(1mg/kg body weight)은 9%, Glucose-SAMiRNA-STAT3(5mg/kg body weight)은 46%, 음성 대조군인 Glucose-SAMiRNA-CONT에 대비하여 Glucose-SAMiRNA-STAT3(1mg/kg body weight)은 -15%, Glucose-SAMiRNA-STAT3(5mg/kg body weight)은 32%로 확인되어 Glucose-SAMiRNA-STAT3(1mg/kg body weight)로 인한 종양 성장 억제효과는 나타나지 않았으나 Glucose-SAMiRNA-STAT3(5mg/kg body weight)에서 유의적으로 종양 성장 억제효과가 나타났다.Tumor size was measured at 2, 4, 6, 8, 10, 12, and 14 days after administration during the 14-day continuous administration period of Example 10-3-2 (see FIGS. 13 and 14). On the 14th day of the last administration day, 30% of SAMiRNA-STAT3 (1mg / kg body weight) and 37% of SAMiRNA-STAT3 (5mg / kg body weight) were compared with PBS, an excipient control group. In comparison with the negative control SAMiRNA-CONT, SAMiRNA-STAT3 (1 mg / kg body weight) was 24% and SAMiRNA-STAT3 (5mg / kg body weight) was 31%. In addition, compared to PBS, an excipient control group, Glucose-SAMiRNA-STAT3 (1 mg / kg body weight) was 9%, Glucose-SAMiRNA-STAT3 (5 mg / kg body weight) was 46%, and a negative control Glucose-SAMiRNA-CONT was used. In contrast, Glucose-SAMiRNA-STAT3 (1mg / kg body weight) was -15% and Glucose-SAMiRNA-STAT3 (5mg / kg body weight) was 32%. Tumor growth inhibitory effect was not shown, but Glucose-SAMiRNA-STAT3 (5mg / kg body weight) showed significant tumor growth inhibition effect.

실시예 10-3-4. 종양 무게 측정을 통한 효과 확인Example 10-3-4. Tumor Weighing to Determine Effectiveness

마지막 투여인 14일째 투여 후 24시간이 경과한 시점에서 실험동물을 희생시켜 종양의 무게 및 체중 대비 종양무게 비율(%)을 확인하였다(도 15, 도 16 참조). 부형제 대조군인 PBS에 대비하여 SAMiRNA-STAT3(1mg/kg body weight)은 30%, 27%, SAMiRNA-STAT3(5mg/kg body weight)은 43%, 43%로 유의적인 항암효과가 나타났으며, 음성 대조군인 SAMiRNA-CONT에 대비하여 SAMiRNA-STAT3(1mg/kg body weight)은 32%, 30%, SAMiRNA-STAT3(5mg/kg body weight)은 45%, 46%로 유의적인 항암효과가 나타났다. 또한, 부형제 대조군인 PBS에 대비하여 Glucose-SAMiRNA-STAT3(1mg/kg body weight)은 -10%, -18%, Glucose-SAMiRNA-STAT3(5mg/kg body weight)은 40%, 39%로 확인되어 Glucose-SAMiRNA-STAT3(1mg/kg body weight)로 인한 항암효과는 나타나지 않았으나 Glucose-SAMiRNA-STAT3(5mg/kg body weight)에서 유의적인 항암효과가 나타났으며, 음성 대조군인 Glucose-SAMiRNA-CONT에 대비하여 Glucose-SAMiRNA-STAT3(1mg/kg body weight)은 -30%, -40%, Glucose-SAMiRNA-STAT3(5mg/kg body weight)은 30%, 28%로 확인되어 Glucose-SAMiRNA-STAT3(1mg/kg body weight)로 인한 종양 성장 억제효과는 나타나지 않았으나 Glucose-SAMiRNA-STAT3(5mg/kg body weight)에서 항암효과가 나타났다.At 24 hours after the last dose on day 14, the animals were sacrificed to determine tumor weight and tumor weight to tumor ratio (%) (see FIGS. 15 and 16). SAMiRNA-STAT3 (1mg / kg body weight) was 30%, 27% and SAMiRNA-STAT3 (5mg / kg body weight) was 43% and 43% compared to PBS, an excipient control group. SAMiRNA-STAT3 (1 mg / kg body weight) was 32% and 30%, and SAMiRNA-STAT3 (5 mg / kg body weight) was 45% and 46%, compared to SAMiRNA-CONT, a negative control. In addition, Glucose-SAMiRNA-STAT3 (1mg / kg body weight) was -10%, -18%, and Glucose-SAMiRNA-STAT3 (5mg / kg body weight) was 40% and 39% compared to PBS, an excipient control group. The anticancer effect of Glucose-SAMiRNA-STAT3 (1mg / kg body weight) was not shown. However, Glucose-SAMiRNA-STAT3 (5mg / kg body weight) showed a significant anticancer effect. Glucose-SAMiRNA-STAT3 (1mg / kg body weight) was -30% and -40%, and Glucose-SAMiRNA-STAT3 (5mg / kg body weight) was 30% and 28%, respectively. Tumor growth inhibitory effect was not shown by (1mg / kg body weight), but anti-cancer effect was shown in Glucose-SAMiRNA-STAT3 (5mg / kg body weight).

실시예 10-4. 실험동물의 취급, 관리 및 처리 규정Example 10-4. Regulations on handling, care and disposal of laboratory animals

실험동물 취급, 관리, 및 처리에 관한 모든 방법은 ㈜바이오니아 동물실험윤리위원회(Committee on Animal Research at Bioneer Corporation, AEC-20081229-0004) 승인 및 규정에 따라 수행하였다. 실험동물은 매일 활동성, 분변상태 등 건강상태를 육안으로 관찰하였으며, 식이 섭취량, 체중 변화 등을 확인하였다. All methods for handling, managing, and treating laboratory animals were performed in accordance with the approval and regulations of the Committee on Animal Research at Bioneer Corporation (AEC-20081229-0004). The experimental animals were visually observed the health status, such as daily activity, fecal status, and confirmed the changes in dietary intake and weight.

실시예 11. 인간 표피 케라틴 형성 세포주(각질 형성 세포주), HaCaT에서 STAT3 특이적 siRNA를 포함하는 이중나선 올리고 RNA 구조체로 이루어진 나노입자(SAMiRNA-STAT3)를 이용한 타겟 유전자의 발현억제 확인Example 11 Confirmation of Inhibition of Target Gene Expression Using Nanoparticles (SAMiRNA-STAT3) Consisting of Double Helix Oligo RNA Constructs Containing STAT3-Specific siRNA in Human Epidermal Keratin-forming Cell Line (Keratinocyte Cell Line), HaCaT

실시예 3-1에서 제조되었고, 실시예 5-3에서 선택된 서열번호 42번을 센스가닥으로 가지는 siRNA를 포함하는 나노입자(SAMiRNA-STAT3#42)를 이용하여 인간 케라틴 형성 세포주, HaCaT에서의 타겟 유전자의 발현 양상을 분석하였다. Target in the human keratin-forming cell line, HaCaT, using nanoparticles (SAMiRNA-STAT3 # 42) prepared from Example 3-1 and containing siRNA having the sense strand of SEQ ID NO: 42 selected in Example 5-3 The expression patterns of the genes were analyzed.

실시예 11-1. 인간 표피 케라틴 형성 세포주(각질 형성 세포주), HaCaT의 배양Example 11-1. Human Epidermal Keratin-forming Cell Line (Keratinocyte Cell Line), Culture of HaCaT

미합중국 종균협회(American Type Culture Collection, ATCC)로부터 입수한 인간 케라틴 형성 세포주, HaCaT은 DMEM(Dulbecco’s modified Eagle’s medium) 배양배지(GIBCO/Invitrogen, USA, 10%(v/v) 우태아 혈청, 페니실린 100 units/㎖ 및 스트렙토마이신 100 ㎍/㎖)에서 37 ℃, 5%(v/v) CO2의 조건 하에 배양하였다. HaCaT, a human keratinocytes cell line obtained from the American Type Culture Collection (ATCC), is a DMEM (Dulbecco's modified Eagle's medium) culture medium (GIBCO / Invitrogen, USA, 10% (v / v) fetal bovine serum, penicillin 100 units / ml and streptomycin 100 μg / ml) at 37 ° C. under 5% (v / v) CO 2 .

실시예 11-2. 인간 표피 케라틴 형성 세포주(각질 형성 세포주), HaCaT에서 SAMiRNA-STAT3의 처리(treatment)Example 11-2. Treatment of SAMiRNA-STAT3 in the Human Epidermal Keratin-forming Cell Line (Keratinous Cell Line), HaCaT

실시예 11-1에서 배양된 HaCaT 세포주를 12-웰 플레이트에 웰 당 0.6× 105의 세포수로 18시간 동안 DMEM 배양배지에서 37℃, 5 %(v/v) CO2의 조건으로 배양하였다. HaCaT cell lines cultured in Example 11-1 were incubated in 12-well plates at 37 ° C., 5% (v / v) CO 2 in DMEM culture medium for 18 hours at a cell number of 0.6 × 10 5 per well.

SAMiRNA 처리액(SAMiRNA treatment solution)을 제조하기 위해 각 997, 994, 989, 972 ㎕ 또는 944 ㎕의 OPTI-MEM 배지에 각 2.8, 5.6, 11.2, 28.1 ㎕ 또는 56.1 ㎕의 실시예 3-1에서 제조되었고, 실시예 5-3에서 선택된 250 ㎍/㎖(17.8 μM)농도의 SAMiRNA-STAT3#42 또는 SAMiRNA-CONT를 혼합하여 50, 100, 200, 500 nM 또는 1 μM의 SAMiRNA 처리액을 제조했다.Prepared in Example 3-1 of 2.8, 5.6, 11.2, 28.1 μl or 56.1 μl each in 997, 994, 989, 972 μl or 944 μl of OPTI-MEM medium to prepare a SAMiRNA treatment solution. SAMiRNA treatments of 50, 100, 200, 500 nM or 1 μM were prepared by mixing SAMiRNA-STAT3 # 42 or SAMiRNA-CONT at 250 μg / ml (17.8 μM) concentrations selected in Example 5-3.

배지를 제거한 후 각 웰 당 1 ㎖의 50, 100, 200, 500 nM 또는 1 μM의 SAMiRNA 처리액을 하루 두 번, 이틀 간 처리하여 37℃, 5%(v/v) CO2 조건 하에서 배양하였다.After removing the medium, 1 ml of 50, 100, 200, 500 nM or 1 μM SAMiRNA treatment solution per well was treated twice a day for 2 days and incubated under 37 ° C. and 5% (v / v) CO 2 conditions. .

실시예 11-3. 타겟 유전자 mRNA의 정량분석Example 11-3. Quantitative Analysis of Target Gene mRNA

실시예 4-3과 같은 방법으로 정량 분석을 수행하였다.Quantitative analysis was performed in the same manner as in Example 4-3.

그 결과, 인간 표피 케라틴 형성 세포주에서 타겟 유전자의 발현량이 siRNA의 농도에 따라 감소하는 것을 확인하였다(도 17).As a result, it was confirmed that the expression level of the target gene in the human epidermal keratin-forming cell line decreases with the concentration of siRNA (FIG. 17).

본 발명에 따른 STAT3 특이적 siRNA, 이를 포함하는 이중나선 올리고 RNA 구조체를 포함하는 암, 피부질환 또는 염증성 질환 치료용 조성물은 부작용 없이 높은 효율로 STAT3의 발현을 억제하여 암, 특히 유방암, 건선을 비롯한 피부질환 또는 염증성 질환에 대한 치료효과를 거둘 수 있으므로, 현재 적절한 치료제가 없는 유방암, 피부질환 또는 염증성 질환의 치료에 매우 유용하게 사용될 수 있다. STAT3 specific siRNA according to the present invention, a composition for the treatment of cancer, skin disease or inflammatory disease comprising a double-stranded oligo RNA structure comprising the same by inhibiting the expression of STAT3 with high efficiency without side effects, including cancer, in particular breast cancer, psoriasis Since it can have a therapeutic effect on skin diseases or inflammatory diseases, it can be very useful for the treatment of breast cancer, skin diseases or inflammatory diseases which do not currently have an appropriate therapeutic agent.

전자파일 첨부하였음.Electronic file attached.

Claims (35)

서열번호 1 내지 서열번호 200에서 선택된 어느 하나의 서열을 포함하는 센스가닥(sense strand)과 이에 상보적 서열을 포함하는 안티센스 가닥을 포함하는 STAT3 특이적 siRNA. STAT3 specific siRNA comprising a sense strand comprising any one sequence selected from SEQ ID NO: 1 to SEQ ID NO: 200 and an antisense strand comprising a sequence complementary thereto. 제1항에 있어서, The method of claim 1, 상기 siRNA의 센스가닥 또는 안티센스 가닥은 19 내지 31개의 뉴클레오타이드로 이루어진 것을 특징으로 하는 STAT3 특이적 siRNA. STAT3 specific siRNA, characterized in that the sense strand or antisense strand of the siRNA consists of 19 to 31 nucleotides. 제1항에 있어서, The method of claim 1, 상기 siRNA는 서열번호 12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, 171번으로 구성된 군에서 선택된 어느 하나의 서열을 포함하는 센스가닥과 이에 상보적 서열을 포함하는 안티센스 가닥을 포함하는 STAT3 특이적 siRNA.The siRNA includes a sense strand and a complementary sequence thereof, including any one sequence selected from the group consisting of SEQ ID NOs: 12, 17, 42, 101, 108, 114, 119, 137, 141, 166, 170, and 171. STAT3-specific siRNA comprising an antisense strand. 제1항에 있어서,The method of claim 1, 상기 siRNA의 센스가닥 또는 안티센스 가닥은 하나 이상의 화학적 변형(chemical modification)을 포함하는 것을 특징으로 하는 STAT3 특이적 siRNA. STAT3 specific siRNA, characterized in that the sense strand or antisense strand of the siRNA comprises one or more chemical modifications. 제4항에 있어서, The method of claim 4, wherein 상기 화학적 변형은 The chemical modification is 뉴클레오티드 내 당 구조의 2´ 탄소 위치에서 -OH기가 -CH3(메틸), -OCH3(methoxy), -NH2, -F(불소), -O-2-메톡시에틸 -O-프로필(propyl), -O-2-메틸티오에틸(methylthioethyl), -O-3-아미노프로필, -O-3-디메틸아미노프로필, -O-N-메틸아세트아미도 또는 -O-디메틸아미도옥시에틸로의 치환에 의한 변형;The —OH group at the 2 ′ carbon position of the sugar structure in the nucleotides is —CH 3 (methyl), —OCH 3 (methoxy), —NH 2 , —F (fluorine), —O-2-methoxyethyl —O-propyl ( propyl), -O-2-methylthioethyl, -O-3-aminopropyl, -O-3-dimethylaminopropyl, -ON-methylacetamido or -O-dimethylamidooxyethyl Modification by substitution; 뉴클레오티드 내 당(sugar) 구조 내의 산소가 황으로 치환된 변형;Modification in which oxygen in a sugar structure in nucleotides is replaced with sulfur; 뉴클레오티드결합의 포스포로티오에이트(phosphorothioate) 또는 보라노포스페이트(boranophosphate), 메틸포스포네이트(methyl phosphonate) 결합으로의 변형;Modification of nucleotide bonds to phosphorothioate or boranophosphate, methyl phosphonate bonds; PNA(peptide nucleic acid), LNA(locked nucleic acid) 또는 UNA(unlocked nucleic acid) 형태로의 변형;Modification to peptide nucleic acid (PNA), locked nucleic acid (LNA) or unlocked nucleic acid (UNA) form; 으로 구성된 군에서 선택된 하나 이상의 변형임을 특징으로 하는 STAT3 특이적 siRNA.STAT3 specific siRNA, characterized in that at least one modification selected from the group consisting of. 제1항에 있어서, The method of claim 1, 상기 siRNA의 안티센스 가닥의 5’ 말단에 하나 이상의 인산기(phosphate group)가 결합되어 있는 것을 특징으로 하는 STAT3 특이적 siRNA. STAT3-specific siRNA, characterized in that one or more phosphate groups are bonded to the 5 'end of the antisense strand of the siRNA. 하기 구조식 (1)의 구조를 포함하는 이중나선 올리고 RNA 구조체.A double helix oligo RNA structure comprising the structure of formula (1) below. 구조식 1Structural Formula 1 (Am-J)n-X-R-Y-B (A m -J) n -XRYB 상기 구조식 (1)에서 A는 친수성 물질 단량체(monomer), B는 소수성 물질, J는 m개의 친수성 물질 단량체 간 또는 m개의 친수성 물질 단량체와 올리고뉴클레오타이드를 서로 연결하는 링커, n은 친수성 물질 단량체가 m개 반복된 친수성 물질 블록의 반복횟수, X와 Y는 각각 독립적으로 단순 공유결합 또는 링커(linker)가 매개된 공유결합, R은 STAT3 특이적 siRNA, m은 1 내지 10의 정수이며, n은 1 내지 10의 정수이다.In structural formula (1), A is a hydrophilic monomer, B is a hydrophobic substance, J is a m-hydrophilic monomer, or a linker connecting m hydrophilic monomers and oligonucleotides to each other, and n is a hydrophilic monomer. The number of repetitions of the repeated hydrophilic block, X and Y are each independently a simple covalent bond or a linker mediated covalent bond, R is a STAT3-specific siRNA, m is an integer from 1 to 10, n is 1 To an integer of 10. 제7항에 있어서, The method of claim 7, wherein 상기 R은 제7항에 따른 siRNA의 센스가닥 및 안티센스가닥으로 구성되는 것을 특징으로 하는 이중나선 올리고 RNA 구조체.Wherein R is a double-stranded oligo RNA structure, characterized in that consisting of the sense strand and antisense strand of siRNA according to claim 7. 제8항에 있어서, The method of claim 8, 상기 센스가닥 및 안티센스가닥의 5’ 말단은 X와 연결되고, 3’말단은 Y와 연결되는 것을 특징으로 하는 이중나선 올리고 RNA 구조체.The 5 'end of the sense strand and the antisense strand is connected to X, and the 3' end is connected to Y double helix oligo RNA structure. 제7항에 있어서, The method of claim 7, wherein 상기 STAT3 특이적 siRNA는 제1항 내지 제6항 중 어느 한 항에 따른 siRNA임을 특징으로 하는 이중나선 올리고 RNA 구조체. The STAT3-specific siRNA is a double helix oligo RNA structure, characterized in that siRNA according to any one of claims 1 to 6. 제7항에 있어서, The method of claim 7, wherein 상기 친수성 물질 단량체는 에틸렌 글리콜(EG), 폴리비닐피롤리돈 및 폴리옥사졸린으로 구성된 군에서 선택되는 것을 특징으로 하는 이중나선 올리고 RNA 구조체. The hydrophilic substance monomer is a double-stranded oligo RNA structure, characterized in that selected from the group consisting of ethylene glycol (EG), polyvinylpyrrolidone and polyoxazoline. 제7항에 있어서, The method of claim 7, wherein 상기 소수성 물질의 분자량은 250 내지 1,000인 것을 특징으로 하는 이중나선 올리고 RNA 구조체. The double-stranded oligo RNA structure, characterized in that the molecular weight of the hydrophobic material is 250 to 1,000. 제12항에 있어서, The method of claim 12, 상기 소수성 물질은 스테로이드(steroid) 유도체, 글리세라이드(glyceride) 유도체, 글리세롤 에테르(glycerol ether), 폴리프로필렌 글리콜(polypropylene glycol), C12 내지 C50의 불포화 또는 포화탄화수소(hydrocarbon), 디아실포스파티딜콜린(diacylphosphatidylcholine), 지방산(fatty acid), 인지질(phospholipid) 및 리포폴리아민(lipopolyamine)으로 구성된 군에서 선택되는 것을 특징으로 하는 이중나선 올리고 RNA 구조체. The hydrophobic material may be a steroid derivative, a glyceride derivative, a glycerol ether, a polypropylene glycol, a C 12 to C 50 unsaturated or saturated hydrocarbon, diacylphosphatidylcholine ( A double-stranded oligo RNA structure, characterized in that selected from the group consisting of diacylphosphatidylcholine, fatty acids, phospholipids and lipopolyamines. 제13항에 있어서, The method of claim 13, 상기 스테로이드(steroid) 유도체는 콜레스테롤, 콜리스탄올, 콜산, 콜리스테릴포르메이트, 코테스타닐포르메이트 및 콜리스타닐아민으로 구성된 군에서 선택되는 것을 특징으로 하는 이중나선 올리고 RNA 구조체. The steroid derivative is a double-stranded oligo RNA structure, characterized in that selected from the group consisting of cholesterol, colistanol, cholic acid, cholesteryl formate, cotestanyl formate and colistanylamine. 제13항에 있어서, The method of claim 13, 상기 글리세라이드 유도체는 모노-, 디- 및 트리-글리세라이드에서 선택되는 것을 특징으로 하는 이중나선 올리고 RNA 구조체The glyceride derivative is a double helix oligo RNA structure, characterized in that selected from mono-, di- and tri- glycerides 제7항에 있어서, The method of claim 7, wherein 상기 X 및 Y로 표시되는 공유결합은 비분해성 결합 또는 분해성 결합인 것을 특징으로 하는 이중나선 올리고 RNA 구조체.The covalent bond represented by X and Y is a double-stranded oligo RNA structure, characterized in that the non-degradable bond or degradable bond. 제16항에 있어서, The method of claim 16, 상기 비분해성 결합은 아미드 결합 또는 인산화 결합인 것을 특징으로 하는 이중나선 올리고 RNA 구조체.The non-degradable bond is a double-stranded oligo RNA structure, characterized in that the amide bond or phosphorylation bond. 제16항에 있어서, The method of claim 16, 상기 분해성 결합은 이황화 결합, 산분해성 결합, 에스테르 결합, 안하이드라이드 결합, 생분해성 결합 또는 효소 분해성 결합인 것을 특징으로 하는 이중나선 올리고 RNA 구조체.The degradable bond is a double-stranded oligo RNA structure, characterized in that disulfide bonds, acid-degradable bonds, ester bonds, anhydride bonds, biodegradable bonds or enzyme-degradable bonds. 제7항에 있어서, The method of claim 7, wherein 상기 RNA 구조체는, 친수성 물질에 수용체 매개 내포작용(receptor-mediated endocytosis, RME)을 통해 타겟 세포 내재화(internalization)를 증진시키는 수용체와 특이적으로 결합하는 특성을 가진 리간드(ligand)가 추가적으로 결합된 것을 특징으로 하는 이중나선 올리고 RNA 구조체.The RNA construct may further include a ligand having a specific binding property to a receptor that promotes target cell internalization through receptor-mediated endocytosis (RME). A double helix oligo RNA structure characterized by. 제19항에 있어서, The method of claim 19, 상기 리간드는 타겟 수용체 특이적 항체나 앱타머, 펩타이드, 엽산(folate), N-아세틸 갈락토사민(N-acetyl Galactosamine, NAG), 포도당(glucose) 및 만노스(mannose) 로 구성된 군에서 선택되는 것을 특징으로 하는 이중나선 올리고 RNA 구조체. The ligand is selected from the group consisting of target receptor specific antibodies or aptamers, peptides, folate, N-acetyl Galactosamine (NAG), glucose and mannose A double helix oligo RNA structure characterized by. 다음의 단계를 포함하는, 제7항 내지 제20항 중 어느 한 항에 따른 이중나선 올리고 RNA 구조체의 제조방법:21. A method for preparing a double helix oligo RNA structure according to any one of claims 7 to 20, comprising the following steps: (1) 고형지지체(solid support}를 기반으로 친수성 물질을 결합 시키는 단계; (1) bonding the hydrophilic material on a solid support basis; (2) 상기 친수성 물질이 결합된 고형지지체를 기반으로 RNA 단일가닥을 합성하는 단계; (2) synthesizing a single RNA strand based on the solid support to which the hydrophilic material is bound; (3) 상기 RNA 단일가닥 5´ 말단에 소수성 물질을 공유결합 시키는 단계; (3) covalently binding a hydrophobic substance to the 5 'end of the RNA single strand; (4) 상기 RNA 단일가닥의 서열과 상보적인 서열의 RNA 단일가닥을 합성하는 단계; (4) synthesizing an RNA single strand of a sequence complementary to the sequence of the RNA single strand; (5) 합성이 완료되면 고형지지체로부터 RNA-고분자 구조체 및 RNA 단일 가닥을 분리 정제하는 단계; 및(5) separating and purifying the RNA-polymer structure and the RNA single strand from the solid support when the synthesis is completed; And (6) 제조된 RNA-고분자 구조체와 상보적인 서열의 RNA 단일가닥의 어닐링을 통해 이중나선 올리고 RNA 구조체를 제조하는 단계.(6) preparing a double-stranded oligo RNA structure by annealing RNA single strand of the sequence complementary to the prepared RNA-polymer structure. 제21항에 있어서, 상기 고형지지체는 CPG(Controlled Pore Glass)인 것을 특징으로 하는 제조방법.22. The method of claim 21, wherein the solid support is Controlled Pore Glass (CPG). 제21항에 있어서, 상기 RNA 단일가닥 및 상보적인 서열을 포함하는 RNA 단일가닥은 5’ 말단에 인산기가 결합된 형태인 것을 특징으로 하는 제조방법.The method of claim 21, wherein the RNA single strand comprising the RNA single strand and the complementary sequence has a form in which a phosphate group is bound to a 5 ′ end. 제21항에 있어서, 상기 고형지지체는 기능기가 추가로 결합되어 잇는 것을 특징으로 하는 제조방법.22. The method of claim 21, wherein the solid support is further coupled to a functional group. 제7항 내지 제20항 중 어느 한 항에 따른 이중나선 올리고 RNA 구조체를 포함하는 나노입자(nanoparticle).A nanoparticle comprising a double helix oligo RNA structure according to any one of claims 7 to 20. 제25항에 있어서, The method of claim 25, 상기 나노입자는 서로 다른 서열을 포함하는 siRNA를 포함하는 이중나선 올리고 RNA 구조체가 혼합되어 구성되는 것을 특징으로 하는 나노입자.The nanoparticles are nanoparticles, characterized in that the double-stranded oligo RNA structure comprising a siRNA comprising a different sequence is mixed. 제1항의 siRNA, 제7항의 이중나선 올리고 RNA 구조체, 또는 제24항의 나노입자를 유효성분으로 포함하는 암, 피부질환 또는 염증성 질환의 예방 또는 치료를 위한 약학적 조성물. A pharmaceutical composition for preventing or treating cancer, skin disease or inflammatory disease comprising the siRNA of claim 1, the double-stranded oligo RNA structure of claim 7, or the nanoparticles of claim 24 as an active ingredient. 제27항에 있어서, The method of claim 27, 상기 암은 유방암, 간암, 위암, 대장암, 췌장암, 전립선암, 유방암, 난소암, 신장암 및 폐암으로 이루어진 군에서 선택되는 것을 특징으로 하는 약학적 조성물. The cancer is a pharmaceutical composition, characterized in that selected from the group consisting of breast cancer, liver cancer, stomach cancer, colon cancer, pancreatic cancer, prostate cancer, breast cancer, ovarian cancer, kidney cancer and lung cancer. 제27항에 있어서, The method of claim 27, 상기 피부질환은 건선, 아토피 백선 및 알레르기성 피부질환으로 이루어진 군에서 선택되는 것을 특징으로 하는 약학적 조성물. The skin disease is a pharmaceutical composition, characterized in that selected from the group consisting of psoriasis, atopic dermatitis and allergic skin diseases. 제27항에 있어서, The method of claim 27, 상기 피부질환은 건선, 아토피 백선 및 알레르기성 피부질환으로 이루어진 군에서 선택되는 것을 특징으로 하는 약학적 조성물. The skin disease is a pharmaceutical composition, characterized in that selected from the group consisting of psoriasis, atopic dermatitis and allergic skin diseases. 제27항의 약학적 조성물을 포함하는 동결 건조된 형태의 제형.A formulation in freeze dried form comprising the pharmaceutical composition of claim 27. 제1항 내지 제6항 중 어느 한 항에 따른 siRNA, 제7항 내지 제20항 중 어느 한 항에 따른 이중나선 올리고 RNA 구조체, 제24항 내지 제25항 중 어느 한 항에 따른 나노입자, 또는 제27항 내지 제31항에 따른 조성물 또는 제형을 예방 또는 치료를 요하는 개체에게 투여하는 것을 특징으로 하는 암, 피부질환 또는 염증성 질환의 예방 또는 치료 방법.The siRNA according to any one of claims 1 to 6, the double-stranded oligo RNA structure according to any one of claims 7 to 20, the nanoparticles according to any one of claims 24 to 25, Or a method for preventing or treating cancer, skin disease or inflammatory disease, which is administered to a subject in need thereof. 제32항에 있어서, 33. The method of claim 32, 상기 암은 유방암, 간암, 위암, 대장암, 췌장암, 전립선암, 난소암, 신장암 및 폐암으로 이루어진 군에서 선택되는 것을 특징으로 하는 암, 피부질환 또는 염증성 질환의 예방 또는 치료 방법.The cancer is selected from the group consisting of breast cancer, liver cancer, stomach cancer, colon cancer, pancreatic cancer, prostate cancer, ovarian cancer, kidney cancer and lung cancer, the method of preventing or treating cancer, skin disease or inflammatory disease. 제32항에 있어서, 33. The method of claim 32, 상기 피부질환은 건선, 아토피 백선 및 알레르기성 피부질환으로 이루어진 군에서 선택되는 것을 특징으로 하는 암, 피부질환 또는 염증성 질환의 예방 또는 치료 방법.The skin disease is selected from the group consisting of psoriasis, atopic dermatitis and allergic skin diseases, the method of preventing or treating cancer, skin diseases or inflammatory diseases. 제32항에 있어서, 33. The method of claim 32, 상기 염증성 질환은 류마티스 관절염, 퇴행성 관절염, 골다공증, 초면역글로불린 혈증, 신염, 만성 갑상선염, 크론병 및 췌장염으로 이루어진 군에서 선택되는 것을 특징으로 하는 암, 피부질환 또는 염증성 질환의 예방 또는 치료 방법.The inflammatory disease is selected from the group consisting of rheumatoid arthritis, degenerative arthritis, osteoporosis, hyperimmunoglobulinemia, nephritis, chronic thyroiditis, Crohn's disease and pancreatitis.
PCT/KR2016/006363 2015-06-15 2016-06-15 Stat3 gene specific sirna, double-helical oligo rna structure including sirna, composition containing same, and use thereof Ceased WO2016204515A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150084397 2015-06-15
KR10-2015-0084397 2015-06-15
KR10-2016-0074570 2016-06-15
KR1020160074570A KR20160147674A (en) 2015-06-15 2016-06-15 STAT3 gene-specific siRNA, double-stranded oligo RNA molecules comprising the siRNA, composition comprising the same and use thereof

Publications (1)

Publication Number Publication Date
WO2016204515A1 true WO2016204515A1 (en) 2016-12-22

Family

ID=57546648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006363 Ceased WO2016204515A1 (en) 2015-06-15 2016-06-15 Stat3 gene specific sirna, double-helical oligo rna structure including sirna, composition containing same, and use thereof

Country Status (1)

Country Link
WO (1) WO2016204515A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230332154A1 (en) * 2018-05-25 2023-10-19 Bioneer Corporation Amphiregulin gene-specific double-stranded oligonucleotide and composition for preventing and treating fibrosis-related diseases and respiratory diseases, comprising same
WO2023230099A1 (en) * 2022-05-23 2023-11-30 Sirnagen Therapeutics Incorporated Compositions comprising oligonucleotide and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727064B2 (en) * 1999-04-08 2004-04-27 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of STAT3 expression
CN1733916A (en) * 2005-07-01 2006-02-15 中国人民解放军第三军医大学 siRNA inhibiting Stat3 gene expression and preparation method thereof
KR100861278B1 (en) * 2008-02-19 2008-10-01 고려대학교 산학협력단 Ribonucleic acid-based pharmaceutical composition for treating cancer
KR20100123214A (en) * 2009-05-14 2010-11-24 (주)바이오니아 Sirna conjugate and preparing method thereof
KR20120042645A (en) * 2010-10-22 2012-05-03 성균관대학교산학협력단 Nucleic acid molecule inducing rna interference and the use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727064B2 (en) * 1999-04-08 2004-04-27 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of STAT3 expression
CN1733916A (en) * 2005-07-01 2006-02-15 中国人民解放军第三军医大学 siRNA inhibiting Stat3 gene expression and preparation method thereof
KR100861278B1 (en) * 2008-02-19 2008-10-01 고려대학교 산학협력단 Ribonucleic acid-based pharmaceutical composition for treating cancer
KR20100123214A (en) * 2009-05-14 2010-11-24 (주)바이오니아 Sirna conjugate and preparing method thereof
KR20120042645A (en) * 2010-10-22 2012-05-03 성균관대학교산학협력단 Nucleic acid molecule inducing rna interference and the use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230332154A1 (en) * 2018-05-25 2023-10-19 Bioneer Corporation Amphiregulin gene-specific double-stranded oligonucleotide and composition for preventing and treating fibrosis-related diseases and respiratory diseases, comprising same
US12037589B2 (en) * 2018-05-25 2024-07-16 Bioneer Corporation Amphiregulin gene-specific double-stranded oligonucleotide and composition for preventing and treating fibrosis-related diseases and respiratory diseases, comprising same
WO2023230099A1 (en) * 2022-05-23 2023-11-30 Sirnagen Therapeutics Incorporated Compositions comprising oligonucleotide and uses thereof

Similar Documents

Publication Publication Date Title
WO2019156365A1 (en) Peptide nucleic acid complex having endosomal escape capacity, and use thereof
WO2015002513A2 (en) Respiratory disease-related gene specific sirna, double-helical oligo rna structure containing sirna, compositon containing same for preventing or treating respiratory disease
WO2013089522A1 (en) Novel oligonucleotide conjugates and use thereof
WO2015005669A1 (en) LIVER CANCER RELATED GENES-SPECIFIC siRNA, DOUBLE-STRANDED OLIGO RNA MOLECULES COMPRISING THE siRNA, AND COMPOSITION FOR PREVENTING OR TREATING CANCER COMPRISING THE SAME
WO2018030789A1 (en) Peptide nucleic acid complex having improved cell permeability and pharmaceutical composition comprising same
WO2013109057A1 (en) Magnetic nanoparticle-samirna complex and method for preparing same
WO2019225968A1 (en) Amphiregulin gene-specific double-stranded oligonucleotide and composition, for preventing and treating fibrosis-related diseases and respiratory diseases, comprising same
WO2015152693A2 (en) Novel double-stranded oligo rna and pharmaceutical composition comprising same for preventing or treating fibrosis or respiratory diseases
WO2013103249A1 (en) High-efficiency nanoparticle-type double-helical oligo-rna structure and method for preparing same
WO2010131916A2 (en) Sirna conjugate and preparation method thereof
WO2015002511A1 (en) Improved nanoparticle type oligonucleotide structure having high efficiency and method for preparing same
WO2017022962A1 (en) Composition for preventing or treating immune disease, comprising ripk inhibitor as active ingredient
WO2015005670A1 (en) LIVER CANCER RELATED GENES-SPECIFIC siRNA, DOUBLE-STRANDED OLIGO RNA MOLECULES COMPRISING THE siRNA, AND COMPOSITION FOR PREVENTING OR TREATING CANCER COMPRISING THE SAME
EA034924B1 (en) Oligomers and oligomer conjugates
WO2019156366A1 (en) Skin-permeating carrier containing nucleic acid complex and use thereof
WO2020111614A1 (en) Double stranded oligonucleotide construct comprising androgen receptor specific sequence, and composition for preventing hair loss and promoting hair growth comprising same
WO2016204515A1 (en) Stat3 gene specific sirna, double-helical oligo rna structure including sirna, composition containing same, and use thereof
WO2014054927A1 (en) Amphiregulin-specific double-helical oligo-rna, double-helical oligo-rna structure comprising double-helical oligo-rna, and composition for preventing or treating respiratory diseases containing same
WO2023096126A1 (en) Method for screening mdsc inhibitor
WO2015002512A1 (en) Dengue virus-specific sirna, double helix oligo-rna structure comprising sirna, and composition for suppressing proliferation of dengue virus comprising rna structure
WO2020149644A1 (en) Double-stranded oligonucleotide targeting dkk1 gene, construct including same, and hair loss prevention or hair growth composition containing same
WO2018155890A1 (en) Asymmetric sirna for inhibiting expression of male pattern hair loss target gene
WO2019132547A1 (en) Pharmaceutical composition for preventing or treating cancer metastasis to lung, containing chi3l1 inhibitor as active ingredient
WO2020096234A1 (en) Composition for preventing or treating atopic dermatitis comprising skin-penetrating nucleic acid complex as effective component
WO2016068617A1 (en) Polyol-based osmotic polydixylitol polymer based gene transporter and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811928

Country of ref document: EP

Kind code of ref document: A1