KR100861278B1 - Ribonucleic acid-based pharmaceutical composition for treating cancer - Google Patents

Ribonucleic acid-based pharmaceutical composition for treating cancer

Info

Publication number
KR100861278B1
KR100861278B1 KR1020080014723A KR20080014723A KR100861278B1 KR 100861278 B1 KR100861278 B1 KR 100861278B1 KR 1020080014723 A KR1020080014723 A KR 1020080014723A KR 20080014723 A KR20080014723 A KR 20080014723A KR 100861278 B1 KR100861278 B1 KR 100861278B1
Authority
KR
South Korea
Prior art keywords
sirna
gasc1
seq
glycero
sequence
Prior art date
Application number
KR1020080014723A
Other languages
Korean (ko)
Inventor
오유경
심가용
김상희
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020080014723A priority Critical patent/KR100861278B1/en
Application granted granted Critical
Publication of KR100861278B1 publication Critical patent/KR100861278B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

An siRNA complementary to a sequence of GASC1 mRNA is provided to apoptosize cancer cells by inhibiting expression of GASC1, which is commonly expressed in the cancer cells through RNA-mediated interference(RNAi), thereby being usefully used as an excellent anti-cancer agent. A ribonucleic acid-based pharmaceutical composition for treating cancer comprises at least one siRNA which is complementarily bound to a GASC1 mRNA transcript sequence of SEQ ID : NO. 6, 9, 12 or 14 to inhibit expression of the GASC1 in cells. Further, the siRNA is a form transformed chemically by Phosphorothioate formula or boranophosphate formula. The composition additionally comprises at least one siRNA capable of inhibiting expression of Wnt-1, Hec1, Survivin, Livin, Bcl-2, XIAP, Mdm2, EGF, EGFR, VEGF, VEGFR, Mcl-1, IGF1R, Akt1, Grp78, STAT3, STAT5a, beta-catenin, WISP1, or c-myc.

Description

암 치료용 리보핵산 의약 조성물{Ribonucleic acid-based pharmaceutical composition for treating cancer}Ribonucleic acid-based pharmaceutical composition for treating cancer

본 발명은 GASC1 전사체(mRNA) 염기서열에 상보적으로 결합하여 세포 내에서 GASC1의 발현을 억제하는 siRNA(small interfering RNA, siRNA) 및 이를 포함하는 암 치료용 리보핵산 의약 조성물에 관한 것이다.The present invention relates to a siRNA (small interfering RNA, siRNA) that binds to the GASC1 transcript (mRNA) nucleotide sequence complementarily to inhibit the expression of GASC1 in a cell, and a ribonucleic acid pharmaceutical composition for cancer treatment.

진핵세포에서는 세포내에서 단백질이 리보조옴(ribosome)에서 합성된 후 다양한 수식 과정을 거친다. 이 중 히스톤 수식(post-translational histone modification)에는 포스페이트기 수식(phosphorylation), 아세틸기 수식(acetylation), 메틸기 수식(methylation) 등이 있으며 메틸기를 제외한 수식들은 가역적인 것으로 알려져 왔으나 2004년, Shi 등이 라이신에 특이적인 효소인 LSD1(lysine-specific demethylase 1)을 발견하면서 메틸기 수식도 가역적이라는 사실을 알게 되었다(Shi Y. et al., Cell, 119: 941, 2004). 또한 최근에 발견된 JHDM1(jumonji C (JmjC)-domain-containing histone demethylase 1)이라는 효소는 Fe(II)와 α-ketoglutatate를 사용한 산화작용을 통해 H3K36me2를 우선적으로 탈메틸화(demethylation)시킨다는 사실이 밝혀졌다(Tsukada Y et al., Nature, 439: 811, 2006). In eukaryotic cells, proteins are synthesized in ribosomes and undergo various modifications. Post-translational histone modifications include phosphorylation, acetylation, and methylation. Formulas except methyl have been known to be reversible. The discovery of lysine-specific demethylase 1 (LSD1), an enzyme specific for lysine, revealed that the methyl group modification was also reversible (Shi Y. et al., Cell, 119: 941, 2004). The recently discovered enzyme, JHDM1 (jumonji C (JmjC) -domain-containing histone demethylase 1), preferentially demethylates H3K36me2 through oxidation using Fe (II) and α-ketoglutatate. (Tsukada Y et al., Nature, 439: 811, 2006).

이러한 LSD1과 JHDM1의 경우, 단일 또는 이중메틸기 수식(mono or dimethylation)은 라이신 잔여기(residue)에만 작용하는 것으로 알려져 있었고 2006년, Y.Shi와 P.Cloos에 의해 삼중 메틸기 수식(trimethylation)이 가역적으로 일어나는 JMJD2군이 발견되었다(Cloos P.A. et al., Nature, 442:307, 2006, Whetstine J.R. et al., Cell, 125:467, 2006). JMJD2C의 경우 뉴클레오솜 상에서 H3K9me3과 H3K9me3을 단일 메틸기 형태로 탈메틸화시키는데(Adam G.West et al., EMBO reports, 7:1206, 2006) GASC1(gene amplified in squamous cell carcinorma)이라고도 불리며 식도암, 정소암, 유방암 등에서 높게 조절되는 추정적 암 유발성 유전자(putative oncogene)이다. GASC1의 과발현은 HP1(heterochromatin protein-1)을 제거하여 헤테로크로마틴의 형성을 감소시킨다. GASC1를 감소시키면 세포 증식이 억제되는데 GASC1의 탈메틸화 기능이 왜 세포 증식에 요구되는지 또한 암 형성에 어떤 기작으로 공헌을 하는지는 아직까지 정확하게 밝혀지지 않았다. (Arianne H., Nat. Rev. Mol. Bio., 7:1, 2006)In the case of LSD1 and JHDM1, mono or dimethylation was known to act only on lysine residues, and in 2006, Y. Shi and P.Cloos reversible trimethylation. JMJD2 group was found (Cloos PA et al., Nature, 442: 307, 2006, Whetstine JR et al., Cell, 125: 467, 2006). JMJD2C demethylates H3K9me3 and H3K9me3 in the form of a single methyl group on nucleosomes (Adam G. West et al., EMBO reports, 7: 1206, 2006). Also called gene amplified in squamous cell carcinorma (GASC1) and esophageal cancer, It is a putative oncogene that is highly regulated in small and breast cancers. Overexpression of GASC1 reduces heterochromatin formation by eliminating heterochromatin protein-1 (HP1). Reducing GASC1 inhibits cell proliferation. It is not yet known exactly why the demethylation function of GASC1 is required for cell proliferation and how it contributes to cancer formation. (Arianne H., Nat. Rev. Mol. Bio., 7: 1, 2006)

리보핵산 매개 간섭현상(RNAi)은 21-25개의 뉴클레오타이드 크기의 이중나선 구조를 가진 siRNA가 상보적인 서열을 가지는 전사체(mRNA transcript)에 특이적으로 결합하여 해당 전사체를 분해하여 특정 단백질의 발현을 억제하는 현상이다. 최근 이 리보핵산 매개 간섭현상이 기존의 화학 합성 의약 개발에서 발생되는 문제의 해결책을 제시하면서 전사체 수준에서 특정 단백질의 발현을 선택적으로 억제하여 각종 질병 치료제, 특히 종양 치료제 개발에 이용하려는 연구가 진행되고 있다. 분자량이 작은 화학 약물(small molecule chemical drugs)의 경우 특정한 단백질 표적에 최적화되기까지 오랜 동안의 개발 기간 및 개발 비용이 소요되는 반면, 리보핵산 매개 간섭현상을 이용한 siRNA 의약의 가장 큰 장점은 의약화가 불가능(non-druggable)한 표적 물질을 포함한 모든 단백질 표적에 대하여 최적화된 선도 물질(lead compound)의 개발이 신속히 진행될 수 있다는 것이다. 단백질이나 항체 약물이 복잡한 제조공정으로 생산의 어려움을 겪는데 반해 siRNA는 합성 및 분리정제의 용이성으로 대량생산이 비교적 쉽고, 핵산 소재의 특징상 단백질 의약보다 보관상 안정성(stability)이 높은 장점이 있다. 또한 기존의 약물과는 달리 특정 분자 표적에 오직 길항작용만 할 수 있다는 점 등 여러 장점에 기반하여 새로운 의약 후보군으로서 부상하고 있다 (David et al., Nature Chemical Biology, 2:711-719, 2006).Ribonucleic acid-mediated interference (RNAi) is a siRNA with 21-25 nucleotide-sized double-helix structures that specifically binds to a transcript that has a complementary sequence (mRNA transcript) to break down the transcript to express specific proteins. This phenomenon is suppressed. In recent years, studies on the use of ribonucleic acid-mediated interference phenomena in the development of chemical synthetic medicines have been conducted to selectively inhibit the expression of specific proteins at the transcript level and to use them in the development of various therapeutic drugs, especially tumor therapies. It is becoming. Small molecule chemical drugs require long development time and development costs to be optimized for specific protein targets, while the biggest advantage of siRNA medicine using ribonucleic acid mediated interference is incapable of medicinal The development of lead compounds optimized for all protein targets, including non-druggable target materials, can be accelerated. While protein and antibody drugs have difficulty in production due to complex manufacturing process, siRNA has the advantage of being relatively easy to mass-produce due to the ease of synthesis and separation purification, and has higher storage stability than protein medicine due to the characteristics of nucleic acid material. . It is also emerging as a new drug candidate based on several advantages, such as being able to antagonize specific molecular targets unlike conventional drugs (David et al., Nature Chemical Biology, 2: 711-719, 2006). .

siRNA를 이용한 치료에서 가장 먼저 고려되어야 할 점은 목표로 하는 염기서열에서 가장 큰 활성을 가지는 최적의 siRNA 서열을 선정하는 것이다. 리보핵산 매개 간섭현상의 효율은 표적이 되는 전사체에의 특정 결합부위가 큰 영향을 주는 것으로 알려져 있다. 지난 수 년 간의 데이터베이스를 바탕으로 단지 전사체에 결합만 하는 것이 아니라 실제로 표적 리보핵산의 발현을 억제하는 siRNA의 서열위치를 디자인할 수 있는 알고리즘이 개발되어 이용자들에게 제공되고 있다. 그러나 컴퓨터 알고리즘을 이용하여 in silico 방법으로 결정된 모든 siRNA가 실제 세포 및 생체중에서 표적 리보핵산을 효과적으로 억제할 수 있다고는 말할 수 없다. siRNA가 표적 전사체와 상보적으로 결합할 수 있는 요구 사항이 충족된다 하더라도 리보핵산과 단백질의 안정성 및 세포내 위치, 리보핵산 매개 간섭현상에 관여하는 단백질들의 상태 등 이 밖에도 아직 규명되지 않은 여러 요소들이 리보핵산 매개 간섭현상의 효율을 결정하는데 관여한다는 것이 알려져 있다. 따라서 한 유전자의 전사체당 여러 개의 표적 서열위치를 선정하여 siRNA를 제조하고 이들 후보군중 발현 억제 효능이 우수한 최적위치의 서열을 발굴하는 기술이 표적 단백질에 대해 수행되는 것이 필요하다 (Derek et al., Annu. Rev. Biomed. Eng., 2006.8:377-402).The first consideration in treatment with siRNA is to select the optimal siRNA sequence with the highest activity in the target sequence. The efficiency of ribonucleic acid mediated interference is known to have a significant effect on the specific binding site to the target transcript. Based on the database of the past few years, algorithms have been developed and provided to the users to design the sequence position of siRNA that does not only bind to the transcript but actually inhibits the expression of the target ribonucleic acid. However, it cannot be said that all siRNAs determined by in silico method using computer algorithm can effectively inhibit target ribonucleic acid in real cells and in vivo. Although siRNAs may meet the requirements of complementary binding to target transcripts, several factors have yet to be identified, including the stability and intracellular location of ribonucleic acids and proteins, and the status of proteins involved in ribonucleic acid-mediated interference. Are known to be involved in determining the efficiency of ribonucleic acid mediated interference phenomena. Therefore, it is necessary to carry out a technique for selecting siRNA by selecting several target sequence positions per transcript of a gene and finding an optimal sequence having excellent expression suppression effect among these candidate groups (Derek et al., Annu. Rev. Biomed. Eng., 2006.8: 377-402).

본 발명의 목적은 GASC1 전사체(mRNA) 염기서열에 상보적으로 결합하여 세포 내에서 GASC1의 발현을 억제하는 하나 이상의 siRNA 및 이를 포함하는 암 치료용 리보핵산 의약 조성물을 제공하고자 하는 것이다. An object of the present invention is to provide a ribonucleic acid pharmaceutical composition for cancer treatment comprising at least one siRNA that binds to the GASC1 transcript (mRNA) sequence and inhibits the expression of GASC1 in cells.

본 발명은 서열번호 6, 서열번호 9, 서열번호 12 또는 서열번호 14의 GASC1 전사체(mRNA) 염기서열에 상보적으로 결합하여 세포 내에서 GASC1의 발현을 억제하는 하나 이상의 siRNA를 포함하는 암 치료용 리보핵산 의약 조성물을 제공한다.The present invention provides a cancer treatment comprising one or more siRNAs that complementarily bind to the GASC1 transcript (mRNA) sequences of SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 12, or SEQ ID NO: 14 to inhibit the expression of GASC1 in cells. Provided is a ribonucleic acid pharmaceutical composition.

본 발명의 GASC1의 발현을 억제하는 siRNA를 포함하는 암 치료용 리보핵산 의약 조성물은 GASC1의 전사체(mRNA)의 하나의 서열위치에만 선택적으로 결합이 가능하도록 siRNA 한가지만 포함할 수도 있으며 한군데 이상의 서열위치에 표적이 가능하도록 2 이상의 siRNA를 포함할 수도 있다.The ribonucleic acid pharmaceutical composition for cancer treatment containing siRNA that inhibits the expression of GASC1 of the present invention may include only one siRNA so as to selectively bind to only one sequence position of the transcript (mRNA) of GASC1, or more than one sequence It may also include two or more siRNAs to enable targeting at the location.

본 발명에 있어서, 용어 “siRNA”은 생체내 핵산 분해효소에 의한 빠른 분해를 막기 위해 화학적 변형된 siRNA를 포함한다. 당업자는 당해 기술 분야에 공지된 방법을 이용하여 원하는 방식대로 상기 siRNA를 합성하고 변형시킬 수 있다. (Andreas Henschel, Frank Buchholz1 and Bianca Habermann (2004) DEQOR: a web-based tool for the design and quality control of siRNAs. Nucleic Acids Research 32(Web Server Issue):W113-W120). siRNA는 이중나선 구조를 가지므로, 단일나선 구조의 리보핵산이나 안티센스 올리고핵산(antisense oligonucleotide)보다는 상대적으로 안정한 구조이지만 생체내 핵산 분해효소에 의해 빠르게 분해되기 때문에 화학적 변형을 통해 분해 속도를 감소시킬 수 있다. siRNA가 쉽게 분해되지 않도록 안정하고 저항적이도록 하기 위한 siRNA의 화학적 변형 방법은 당업자에게 잘 알려져 있다. siRNA의 화학적 변형에 가장 많이 사용되는 방식은 포스포로티오에이트(phosphorothioate) 또는 보라노포스페이트(boranophosphate) 수식(modification)이다. 이들 물질은 siRNA의 뉴클레오사이드(nucleoside) 간의 연결을 안정하게 형성하여, 결과적으로 핵산 분해에 대한 저항성을 부여한다. 보라노포스페이트로 수식된 리보핵산은 핵산 분해가 잘 되지 않는 특징이 있지만, 화학 반응에 의하여 만들어 지지 않고 in vitro 전사 반응에 의해 보라노포스페이트가 리보핵산에 들어가는 방식으로만 합성이 된다. 보라노포스페이트 수식은 비교적 손쉬운 방법에 속하지만, 특정 위치에 수식하기 어려운 단점이 있다. 반면 포스포로티오에이트 수식 방법은 원하는 부분에 황(sulfur) 원소를 도입할 수 있는 장점이 있으나, 정도가 심한 포스포티오에이션(phosphothioation)은 효능 감소, 독성, 비특이적 RISC(RNA-induced silencing complex) 형성 등의 문제가 나타날 수 있다. 따라서 최근에는 위의 두 가지 방법 외에 리보핵산의 종결 위치(3'말단 초과부위)에만 화학적 변형을 하여 핵산 분해효소에 저항성을 부여하는 방법이 보다 선호되고 있다. 또한 리보스 환(ribose ring)을 화학적으로 수식하여도 핵산 분해효소에 대한 저항성이 강해지는 것으로 알려져 있는데 특히 본래 세포내 존재하는 리보오스 2'-위치의 변이는 이중나선 리보핵산을 안정화시킨다. 그러나 이 위치에 정확히 메틸기가 들어가야 안정성이 증가되며 너무 많은 메틸기는 반대로 리보핵산 매개 간섭현상이 상실되는 등의 문제도 있다. 이러한 화학적 변형의 이유는 생체 내에서의 약물동력학적(pharmacokinetic)인 체류시간의 증대 및 유효성을 높이기 위한 목적도 있다 (Mark et. al., Molecular Therapy, 13:644-670, 2006). In the present invention, the term “siRNA” includes siRNAs that have been chemically modified to prevent rapid degradation by nucleases in vivo. One skilled in the art can synthesize and modify the siRNA in a desired manner using methods known in the art. Andreas Henschel, Frank Buchholz 1 and Bianca Habermann (2004) DEQOR: a web-based tool for the design and quality control of siRNAs.Nucleic Acids Research 32 (Web Server Issue): W113-W120. Since siRNA has a double helix structure, it is relatively more stable than single-stranded ribonucleic acid or antisense oligonucleotide, but since it is rapidly decomposed by nucleic acid degrading enzymes in vivo, it can be reduced by chemical modification. have. Methods of chemically modifying siRNAs to make them stable and resistant so that they are not readily degraded are well known to those skilled in the art. The most commonly used method of chemical modification of siRNA is phosphorothioate or boranophosphate modification. These substances stably form the linkage between the nucleosides of the siRNA, consequently conferring resistance to nucleic acid degradation. Ribonucleic acid modified with boranophosphate is characterized by poor nucleic acid degradation, but is not synthesized by chemical reactions, and is synthesized only by boranophosphate entering ribonucleic acid by in vitro transcription. Boranophosphate formula belongs to a relatively easy method, but has a disadvantage that it is difficult to modify in a specific position. On the other hand, phosphorothioate modification method has the advantage of introducing elemental sulfur to the desired part, but severe phosphothioation reduces the efficacy, toxicity, nonspecific RNA-induced silencing complex (RISC) Problems such as formation may appear. Therefore, in recent years, in addition to the above two methods, a method of chemically modifying only the end position of ribonucleic acid (above the 3 'end) to give resistance to nuclease is more preferred. In addition, chemical modification of the ribose ring is known to increase resistance to nucleases. Particularly, the variation in the ribose 2'-position originally present in the cell stabilizes the double helix ribonucleic acid. However, when the methyl group is precisely entered at this position, the stability is increased, and too many methyl groups have the problem that the ribonucleic acid mediated interference phenomenon is lost. The reason for such chemical modification is also to increase the efficacy and increase the pharmacokinetic residence time in vivo (Mark et. Al., Molecular Therapy, 13: 644-670, 2006).

화학적 수식방법 외에, siRNA의 세포 내 전달 효율을 높이기 위해서는 안전하고 효율적인 전달 시스템이 요구되어진다. 이를 위해, 본 발명의 siRNA는 핵산 전달체(nucleic acid delivery system)와의 복합체 형태로 암 치료용 약학적 조성물 내에 포함될 수 있다. In addition to chemical modification methods, a safe and efficient delivery system is required to increase the intracellular delivery efficiency of siRNA. To this end, the siRNA of the present invention may be included in a pharmaceutical composition for treating cancer in the form of a complex with a nucleic acid delivery system.

세포 내로 핵산 물질을 전달하기 위한 핵산 전달체는 크게 바이러스성 벡터와 비바이러스성 벡터로 구분할 수 있다. 가장 널리 이용되는 것은 바이러스 벡터 (viral vector)로 전달 효율이 높고 지속 시간이 길기 때문이다. 여러 가지의 바이러스벡터 중 레트로바이러스 벡터(retroviral vector), 아데노바이러스 벡터(adenoviral vector), 아데노 부속 바이러스 벡터(adeno-associated viral vector) 등이 주요하게 사용되고 있다. 이러한 바이러스 벡터는 리보핵산의 세포내 전달 면에서는 효율적이지만, 생체 내에서의 활성을 가진 바이러스로의 재조합, 면역 반응 유발, 숙주 염색체로의 무작위 삽입 등 안전성(safety) 측면에서 여러 문제점을 가지고 있다. 이에 비해 비바이러스 벡터(nonviral vector)는 바이러스 벡터에 비해 장점을 가지고 있는데, 독성과 면역 반응이 작고, 반복적으로 투여가 가능하며, 리보핵산과의 복합체 형성이 간편하고, 대량 생산이 용이하다. 또한, 질환 세포나 조직부위에 특이적 리간드를 비바이러스성 벡터에 접합하여, 장기·세포 선택적 핵산 전달을 가능하게 한다. 비바이러스성 벡터로서는 리포좀, 양이온성 고분자를 비롯하여, 미셀, 에멀젼, 나노입자 등의 다양한 제형이 사용될 수 있다. 핵산 전달체는 동물 세포 내에 목적하는 핵산의 수송 효율을 현저히 증강시킬 수 있으며 전달하고자 하는 핵산의 사용 목적에 따라 어떤 동물 세포로도 핵산 전달이 가능하다.Nucleic acid carriers for delivering nucleic acid materials into cells can be largely divided into viral and non-viral vectors. The most widely used is a viral vector because of its high delivery efficiency and long duration. Among various viral vectors, retroviral vectors, adenovirus vectors, and adeno-associated viral vectors are mainly used. Such a viral vector is efficient in intracellular delivery of ribonucleic acid, but has various problems in terms of safety, such as recombination into a virus having in vivo activity, inducing an immune response, and random insertion into a host chromosome. In contrast, nonviral vectors have advantages over viral vectors, which have a low toxicity and immune response, can be repeatedly administered, easily form complexes with ribonucleic acids, and facilitate mass production. Further, ligands specific to diseased cells or tissues are conjugated to non-viral vectors to enable long-term cell-selective nucleic acid delivery. As the non-viral vector, various formulations such as liposomes, cationic polymers, micelles, emulsions, nanoparticles and the like can be used. Nucleic acid carriers can significantly enhance the transport efficiency of a desired nucleic acid in an animal cell and can be delivered to any animal cell depending on the purpose of use of the nucleic acid to be delivered.

본 발명의 한 구체예에서, 상기 핵산 전달체는 양이온성 리포좀일 수 있다. In one embodiment of the invention, the nucleic acid carrier may be a cationic liposome.

상기 양이온성 리포좀은, 이에 제한되는 것은 아니나, 1,2-디올레일-sn-글리세로-3-에틸포스포콜린(1,2-dioleoyl-sn-glycero-3- ethylphosphocholine, EDOPC), 1-팔미토일-2-올레오일-sn-글리세로-3-에틸포스포콜린(1-palmitoyl-2-oleoyl-sn-glycero-3- ethylphosphocholine, EPOPC), 1,2-디미리스토일-sn-글리세로-3-에틸포스포콜린(1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine, EDMPC), 1,2-디스테아로일-sn-글리세로-3-에틸포스포콜린(1,2-distearoyl-sn- glycero-3-ethylphosphocholine, SPC), 1,2-디팔미토일-sn-글리세로-3-에틸포스포콜린(1,2-dipalmitoyl-sn-glycero-3-ethylphosphocholine, EDPPC), 1,2-디올레오일-3-트리메틸암모늄-프로판 (1,2-dioleoyl-3- trimethylammonium-propane, DOTAP), N-[1-(2,3-디올레일옥시)프로필] -N,N,N-트리메틸암모늄클로라이드 (N-[1-(2,3-dioleyloxy)propyl]-N,N,N -trimethylammonium chloride , DOTMA) 및 3ß-[N-(N',N'-디메틸아미노에탄)-카마모일]콜레스테롤 (3ß-[N-(N',N'-dimethylaminoethane) -carbamoyl]cholesterol, DC-Cholesterol)로 구성되는 군으로부터 선택되는 하나 이상의 양이온성 지질을 포함할 수 있다. The cationic liposomes include, but are not limited to, 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (1,2-dioleoyl-sn-glycero-3-ethylphosphocholine, EDOPC), 1- Palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine, EPOPC), 1,2-dimyristoyl-sn- Glycero-3-ethylphosphocholine (1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine, EDMPC), 1,2-distearoyl-sn-glycero-3-ethylphosphocholine (1, 2-distearoyl-sn- glycero-3-ethylphosphocholine (SPC), 1,2-dipalmitoyl-sn-glycero-3-ethylphosphocholine (1,2-dipalmitoyl-sn-glycero-3-ethylphosphocholine, EDPPC ), 1,2-dioleoyl-3-trimethylammonium-propane (1,2-dioleoyl-3- trimethylammonium-propane, DOTAP), N- [1- (2,3-dioleoyloxy) propyl] -N , N, N-trimethylammonium chloride (N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride, DOTMA) and 3ß- [N- (N '(N', N'-dimethylamino) Ethane) -camamoyl] call And one or more cationic lipids selected from the group consisting of resterol (3ß- [N- (N ', N'-dimethylaminoethane) -carbamoyl] cholesterol, DC-Cholesterol).

또한 상기 양이온성 리포좀은, 이에 제한되는 것은 아니나, 1,2-디아실-sn-글리세로-3-포스포에탄올아민 (1,2-diacyl-sn-glycero-3- phosphoethanolamine, DOPE), 1,2-디피타노일-sn-글리세로-3-포스포에탄올아민(1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine, DPhPE), 1,2-디올레오일 -sn-글리세로-3-포스포콜린 (1,2-dioleoyl-sn-glycero-3 -phosphocholine, DOPC), 1,2-디올레오일-sn-글리세로-3-[포스포-L-세린] (1,2-dioleoyl-sn-glycero-3-[phospho-L-serine], DOPS), 1,2-디올레오일-sn-글리세로-3-에틸포스포콜린 (1,2-dioleoyl-sn-glycero -3-ethylphosphocholine, DO-Ethyl-PC), 콜레스테롤 등으로부터 선택되는 하나 이상의 보조 지질을 추가로 포함할 수 있다. In addition, the cationic liposomes include, but are not limited to, 1,2-diacyl-sn-glycero-3-phosphoethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine, DOPE), 1 , 2-diphytanoyl-sn-glycero-3-phosphoethanolamine (1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine, DPhPE), 1,2-dioleoyl-sn-glycero-3 -Phosphocholine (1,2-dioleoyl-sn-glycero-3 -phosphocholine, DOPC), 1,2-dioleoyl-sn-glycero-3- [phospho-L-serine] (1,2- dioleoyl-sn-glycero-3- [phospho-L-serine], DOPS), 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (1,2-dioleoyl-sn-glycero-3 -ethylphosphocholine, DO-Ethyl-PC), cholesterol and the like may further comprise one or more auxiliary lipids.

본 발명의 다른 구체예에서, 상기 핵산 전달체는 양이온성 고분자일 수 있다. In another embodiment of the invention, the nucleic acid carrier may be a cationic polymer.

상기 양이온성 고분자는, 이에 제한되는 것은 아니나, 폴리-L-라이신 (poly-L-lysine, PLL), 폴리-L-오르니틴(poly-L-ornithine), 폴리-L-히스티딘(poly-L-histidine), 폴리테트라하이드로퓨란, 비스(3-아미노프로필)터미네이티드(polytetrahydrofuran,bis(3-aminopropyl)terminated, PTHF), 폴리아크릴아미이드 (polyacrylamide, PA), 폴리(α-[4-아미노부틸]-L-글리콜산 (poly(α-[4-aminobutyl]-L-glycolic acid , PAGA), 폴리(2-아미노에틸 프로필렌 포스페이트) (poly(2-aminoethyl propylene phosphate), PPE-EA), 사이클로덱스트린의 양이온성유도체(cationic derivatives of cyclodextrin), 폴리(2-(디메틸아미노)에틸메타아크릴레이트) (poly(2-(dimethylamino)ethyl methacrylate), pDMAEMA), 폴리(4-비닐피리딘) (poly(4-vinylpyridine), P4VP), O,O'-비스(2-아미노프로필) 폴리프로필렌 글리콜-블록-폴리에틸렌 글리콜-블록-폴리프로필렌글리콜(O,O'-Bis(2-aminopropyl) polypropylene glycol-block-polyethylene glycol-block-polypropylene glycol), 폴리-N-에틸-4-비닐피리디늄트리브로마이드 (poly-N-ethyl-4-vinylpyridinium tribromide, PVP), 키토산, 폴리아미도아민(polyamidoamine, PAMAM), 파쇄된(fractured) PAMAM 및 폴리에틸렌이민(polyethyleneimine, PEI)으로 구성되는 군으로부터 선택되는 하나 이상의 고분자일 수 있다. The cationic polymer is, but is not limited to, poly-L-lysine (PLL), poly-L-ornithine, poly-L-histidine (poly-L -histidine), polytetrahydrofuran, bis (3-aminopropyl) terminated (polytetrahydrofuran, bis (3-aminopropyl) terminated, PTHF), polyacrylamide (PA), poly (α- [4- Aminobutyl] -L-glycolic acid (poly (α- [4-aminobutyl] -L-glycolic acid, PAGA), poly (2-aminoethyl propylene phosphate) (poly (2-aminoethyl propylene phosphate), PPE-EA) Cationic derivatives of cyclodextrin, poly (2- (dimethylamino) ethyl methacrylate, pDMAEMA), poly (4-vinylpyridine) ( poly (4-vinylpyridine), P4VP), O, O'-bis (2-aminopropyl) polypropylene glycol-block-polyethylene glycol-block-polypropylene glycol (O, O'-Bis (2-aminopropyl) p olypropylene glycol-block-polyethylene glycol-block-polypropylene glycol), poly-N-ethyl-4-vinylpyridinium tribromide (PVP), chitosan, polyamidoamine, PAMAM), fractured PAMAM, and polyethyleneimine (PEI).

양이온성 리포좀, 양이온성 고분자 등의 제형을 갖는 본 발명의 핵산 전달체는 양하전을 띠므로, 핵산 전달체의 양하전과 핵산의 음이온성 하전에 의해 단순한 혼합(mix)에 의해 정전기 결합을 함으로써 핵산 전달체와 핵산 간의 복합체를 형성할 수 있다.Since the nucleic acid carrier of the present invention having a formulation of a cationic liposome, a cationic polymer, or the like has a positive charge, the nucleic acid carrier and the nucleic acid are electrostatically bonded by a simple mix by the positive charge of the nucleic acid carrier and the anionic charge of the nucleic acid. Can form complexes of the liver.

또한, 본 발명의 암 치료용 조성물은 GASC1의 발현을 억제하는 siRNA 외에 종래에 공지된 항암 화학요법제를 추가적으로 포함함으로써, 병용 효과를 기대할 수 있다. 본 발명의 GASC1의 발현을 억제하는 siRNA와 병용투여가 가능한 항암 화학요법제는 예를 들어, 시스플라틴(cisplatin), 카르보플라틴(carboplatin), 옥살리플라틴(oxaliplatin), 독소루비신(doxorubicin), 다우노루비신(daunorubicin), 에피루비신(epirubicin), 이다루비신(idarubicin), 미토산트론(mitoxantrone), 발루비신(valubicin), 커큐민(curcumin), 제피티닙(gefitinib), 에를로티닙(erlotinib), 이리노테칸(irinotecan), 토포테칸(topotecan), 빈블라스틴(vinblastine), 빈크리스틴(vincristine), 도세탁셀(docetaxel), 파클리탁셀(paclitaxel) 등을 사용할 수 있다. In addition, the composition for treating cancer of the present invention can be expected to have a combined effect by additionally including a conventionally known anticancer chemotherapeutic agent in addition to siRNA that inhibits the expression of GASC1. Anticancer chemotherapeutic agents that can be coadministered with siRNAs that inhibit the expression of GASC1 of the present invention include, for example, cisplatin, carboplatin, oxaliplatin, doxorubicin, and daunorubicin ( daunorubicin, epirubicin, epirubicin, idarubicin, mitoxantrone, valubicin, curcumin, gefitinib, erlotinib, erlotinib, irinotecan (irinotecan), topotecan (topotecan), vinblastine (vinblastine), vincristine (vincristine), docetaxel (docetaxel), paclitaxel (paclitaxel) and the like can be used.

본 발명은 siRNA 또는 siRNA와 핵산 전달체와의 복합체 외에 약제학적으로 허용되는 담체를 추가적으로 포함할 수 있다. 적당한 약제학적으로 허용되는 담체는 예를 들어 하나 이상의 물, 식염수, 인산 완충 식염수, 덱스트린, 글리세롤, 에탄올뿐만 아니라 이들의 조합을 포함한다. 이러한 조성물은 투여 후 활성 성분의 빠른 방출, 또는 지속적이거나 지연된 방출을 제공하도록 제제화될 수 있다. The present invention may further comprise a pharmaceutically acceptable carrier in addition to siRNA or a complex of siRNA with a nucleic acid carrier. Suitable pharmaceutically acceptable carriers include, for example, one or more water, saline, phosphate buffered saline, dextrin, glycerol, ethanol as well as combinations thereof. Such compositions may be formulated to provide fast release, or sustained or delayed release of the active ingredient after administration.

본 발명의 siRNA 또는 siRNA와 핵산 전달체와의 복합체는 암의 치료를 위해 세포 내로 도입될 수 있다. 하기 실시예에서 확인할 수 있는 바와 같이, 본 발명의 siRNA 또는 siRNA와 핵산 전달체와의 복합체를 세포 내에 도입하게 되면 암의 생성에 관여하는 GASC1의 발현이 억제되어 암세포가 사멸하게 된다. The siRNA of the present invention or a complex of siRNA with a nucleic acid carrier can be introduced into cells for the treatment of cancer. As can be seen in the following examples, the introduction of the siRNA or the complex of the siRNA and nucleic acid carriers of the present invention into the cell is suppressed the expression of GASC1 involved in the generation of cancer to kill the cancer cells.

본 발명의 암 치료용 리보핵산 의약 조성물을 통해 in vivo 또는 ex vivo 상에서 세포 내부로 목적하는 핵산을 도입하게 되면 표적 단백질인 GASC1의 발현을 선택적으로 감소시키거나 표적 유전자에 생긴 변이를 수정하는 역할을 하여 GASC1의 과다 발현으로 발생되는 암을 치료할 수 있게 된다. Introduction of the desired nucleic acid into cells in vivo or ex vivo through the ribonucleic acid pharmaceutical composition for cancer treatment of the present invention selectively reduces the expression of GASC1, a target protein, or modifies mutations in the target gene. Thus, cancer caused by overexpression of GASC1 can be treated.

본 발명에서, 상기 siRNA 또는 siRNA와 핵산 전달체의 복합체의 치료상 유효량은 암 치료 효과를 기대하기 위하여 투여에 요구되는 양을 의미한다. 따라서, 질환의 종류, 질환의 중증도, 투여되는 핵산의 종류, 제형의 종류, 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 치료 기간, 동시 사용되는 화학 항암제 등의 약물을 비롯한 다양한 인자에 따라 조절될 수 있다. 성인에게 상기 암 치료용 조성물을 예컨대 1일 1회 투여시 0.001 mg/kg ~ 100 ㎎/kg의 용량으로 투여하는 것이 바람직하다.In the present invention, the therapeutically effective amount of the siRNA or the complex of siRNA and nucleic acid carrier means the amount required for administration in order to anticipate a cancer therapeutic effect. Therefore, the type of disease, the severity of the disease, the type of nucleic acid to be administered, the type of formulation, the age, weight, general health, sex and diet of the patient, the time of administration, the route of administration and the duration of treatment, the chemotherapy drug used simultaneously, etc. It can be adjusted according to various factors including a drug. It is preferable to administer the cancer treatment composition to an adult at a dose of 0.001 mg / kg to 100 mg / kg once daily.

하기 실시예에서는 GASC1의 전사체 전체 서열에서 발현 억제에 효과적인 siRNA 구성에 적합한 후보 서열군을 선택하여 siRNA들을 합성한 후, 리포좀, 양이온성 고분자 등의 전달체를 이용하여 종양 세포주에 처리하여 리보핵산 매개에 의한 발현 간섭현상을 전사체 단계에서 역전사효소반응으로 확인하였다. 또한 GASC1 발현 억제가 종양 세포의 생장에 미치는 영향을 평가하기 위하여 GASC1에 대한 작은간섭 리보핵산 처리군들을 대상으로 MTT(tetrazolium 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide)을 이용한 염색 방법, 젖산 탈수소효소(LDH) 측정 실험, Annexin V-FITC/PI 염색법 및 세포염색법을 사용하였다.In the following example, siRNAs were synthesized by selecting candidate sequence groups suitable for siRNA composition effective for suppressing expression in the entire transcript sequence of GASC1, and then treated with tumor cell lines using carriers such as liposomes and cationic polymers to mediate ribonucleic acid. Expression interference by was confirmed by reverse transcriptase reaction at the transcript stage. In addition, to evaluate the effect of GASC1 inhibition on tumor cell growth, tetrazolium 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl was treated in small-interfering ribonucleic acid treated groups against GASC1. Staining method using tetrazolium bromide, lactate dehydrogenase (LDH) measurement, Annexin V-FITC / PI staining and cell staining were used.

하기 실시예를 통해 밝혀진 바에 따르면 서열번호 6, 서열번호 9, 서열번호 12 또는 서열번호 14의 GASC1 전사체(mRNA) 염기서열에 상보적으로 결합하여 세포 내에서 GASC1의 발현을 억제하는 본 발명의 siRNA 중에서도 서열번호 26의 센스 서열 및 서열번호 27의 안티센스 서열을 갖는 siRNA, 서열번호 32의 센스 서열 및 서열번호 33의 안티센스 서열을 갖는 siRNA, 서열번호 38의 센스 서열 및 서열번호 39의 안티센스 서열을 갖는 siRNA, 서열번호 42의 센스 서열 및 서열번호 43의 안티센스 서열을 갖는 siRNA가 특히 GASC1의 발현을 효과적으로 억제하는 것으로 확인되었다. According to the following examples, the present invention inhibits the expression of GASC1 in cells by complementarily binding to GASC1 transcript (mRNA) sequences of SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 12, or SEQ ID NO: 14 Among siRNAs, siRNA having a sense sequence of SEQ ID NO: 26 and an antisense sequence of SEQ ID NO: 27, a siRNA having a sense sequence of SEQ ID NO: 32, and an antisense sequence of SEQ ID NO: 33, a sense sequence of SEQ ID NO: 38, and an antisense sequence of SEQ ID NO: 39 SiRNA having a siRNA having a sense sequence of SEQ ID NO: 42 and an antisense sequence of SEQ ID NO: 43 was found to effectively inhibit the expression of GASC1 in particular.

따라서 본 발명의 리보핵산 의약 조성물에 포함되는 siRNA는 서열번호 26의 센스 서열 및 서열번호 27의 안티센스 서열인 것이 바람직하다.Therefore, the siRNA included in the ribonucleic acid pharmaceutical composition of the present invention is preferably the sense sequence of SEQ ID NO: 26 and the antisense sequence of SEQ ID NO: 27.

따라서 본 발명의 리보핵산 의약 조성물에 포함되는 siRNA는 서열번호 32의 센스 서열 및 서열번호 33의 안티센스 서열인 것이 바람직하다.Therefore, the siRNA included in the ribonucleic acid pharmaceutical composition of the present invention is preferably the sense sequence of SEQ ID NO: 32 and the antisense sequence of SEQ ID NO: 33.

따라서 본 발명의 리보핵산 의약 조성물에 포함되는 siRNA는 서열번호 38의 센스 서열 및 서열번호 39의 안티센스 서열인 것이 바람직하다.Therefore, the siRNA included in the ribonucleic acid pharmaceutical composition of the present invention is preferably the sense sequence of SEQ ID NO: 38 and the antisense sequence of SEQ ID NO: 39.

따라서 본 발명의 리보핵산 의약 조성물에 포함되는 siRNA는 서열번호 42의 센스 서열 및 서열번호 43의 안티센스 서열인 것이 바람직하다.Therefore, the siRNA included in the ribonucleic acid pharmaceutical composition of the present invention is preferably the sense sequence of SEQ ID NO: 42 and the antisense sequence of SEQ ID NO: 43.

따라서 본 발명은 또한 GASC1의 발현을 억제하고 서열번호 26의 센스 서열 및 서열번호 27의 안티센스 서열을 갖는 siRNA를 제공한다.The present invention therefore also provides an siRNA that inhibits the expression of GASC1 and has a sense sequence of SEQ ID NO: 26 and an antisense sequence of SEQ ID NO: 27.

따라서 본 발명은 또한 GASC1의 발현을 억제하고 서열번호 32의 센스 서열 및 서열번호 33의 안티센스 서열을 갖는 siRNA를 제공한다.The present invention therefore also provides an siRNA that inhibits the expression of GASC1 and has a sense sequence of SEQ ID NO: 32 and an antisense sequence of SEQ ID NO: 33.

따라서 본 발명은 또한 GASC1의 발현을 억제하고 서열번호 38의 센스 서열 및 서열번호 39의 안티센스 서열을 갖는 siRNA를 제공한다.The present invention therefore also provides an siRNA that inhibits the expression of GASC1 and has a sense sequence of SEQ ID NO: 38 and an antisense sequence of SEQ ID NO: 39.

따라서 본 발명은 또한 GASC1의 발현을 억제하고 서열번호 42의 센스 서열 및 서열번호 43의 안티센스 서열을 갖는 siRNA를 제공한다. The present invention therefore also provides an siRNA that inhibits expression of GASC1 and has a sense sequence of SEQ ID NO: 42 and an antisense sequence of SEQ ID NO: 43.

본 발명의 리보핵산 의약 조성물은, GASC1이외의 암 관련 유전자의 발현을 억제하는 siRNA를 추가적으로 포함할 수 있다.The ribonucleic acid pharmaceutical composition of the present invention may further include an siRNA that inhibits the expression of cancer-related genes other than GASC1.

본 발명의 리보핵산 의약 조성물에 추가로 포함되는 siRNA는 과발현에 의해 암을 발생시키는 유전자에 대한 siRNA라면 어떠한 것이든 가능하다. 예를 들어, GASC1 이외의 유전자의 발현을 억제하는 siRNA는 Wnt-1, Hec1, Survivin, Livin, Bcl-2, XIAP, Mdm2, EGF, EGFR, VEGF, VEGFR, Mcl-1, IGF1R, Akt1, Grp78, STAT3, STAT5a, β-catenin, WISP1, c-myc의 발현을 억제하는 siRNA로 구성되는 군으로부터 선택될 수 있다. The siRNA further included in the ribonucleic acid pharmaceutical composition of the present invention may be any siRNA for a gene causing cancer by overexpression. For example, siRNAs that inhibit the expression of genes other than GASC1 include Wnt-1, Hec1, Survivin, Livin, Bcl-2, XIAP, Mdm2, EGF, EGFR, VEGF, VEGFR, Mcl-1, IGF1R, Akt1, Grp78 , STAT3, STAT5a, β-catenin, WISP1, c-myc may be selected from the group consisting of siRNA that inhibits the expression.

GASC1 이외의 암 관련 유전자의 발현을 억제하는 siRNA를 추가적으로 포함하는 본 발명의 조성물은, 단일 유전자에 대한 siRNA를 처리하는 경우에 비해 유전자의 과발현에 의해 암이 발생되는 암 관련 유전자들에 대한 siRNA들을 각각 제작하여 병용 처리하는 경우 보다 효과적으로 암을 치료할 수 있다. The composition of the present invention further comprises an siRNA that inhibits the expression of cancer-related genes other than GASC1, compared to the case of processing siRNA against a single gene, siRNAs for cancer-related genes whose cancer is caused by overexpression of the gene. In the case of combined production and treatment of each can more effectively cure cancer.

본 발명은 또한 상기 기재한 본 발명의 조성물에 포함되는 siRNA를 포함하는 항암제의 제조를 위한 siRNA의 용도를 제공한다. The invention also provides the use of siRNA for the manufacture of an anticancer agent comprising siRNA included in the composition of the invention described above.

본 발명은 또한 상기 기재한 본 발명의 조성물을 대상체의 세포 내로 도입하는 것을 포함하는 암 치료방법을 제공한다. The invention also provides a method of treating cancer comprising introducing the composition of the invention described above into cells of a subject.

본 발명에 있어서 암 치료는 암의 예방 및 억제를 포함한다. Cancer treatment in the present invention includes the prevention and suppression of cancer.

본 발명의 GASC1 전사체(mRNA)의 염기서열에 상보적인 siRNA는 리보핵산 매개 간섭현상(RNA-mediated interference, RNAi)에 의해 암세포에 공통적으로 발현되는 GASC1의 발현을 억제하여 암세포를 사멸시키므로 본 발명의 조성물은 우수한 항암제로 이용될 수 있다.The siRNA complementary to the nucleotide sequence of the GASC1 transcript of the present invention kills cancer cells by inhibiting the expression of GASC1 commonly expressed in cancer cells by ribonucleic acid mediated interference (RNAi). The composition of can be used as an excellent anticancer agent.

도 1은 GASC1 발현 억제 siRNA에 의해 매개된 GASC1 전사체 발현 억제 효능을 역전사 중합효소 연쇄반응을 이용하여 사람의 간암 세포주인 Hep3B에서 확인한 결과를 보여준다.Figure 1 shows the results of the GASC1 transcript expression inhibitory effect mediated by GASC1 expression inhibition siRNA in human liver cancer cell line Hep3B using reverse transcriptase polymerase chain reaction.

도 2는 GASC1 발현 억제 siRNA에 의해 매개된 종양 세포사멸효과를 MTT (tetrazolium 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide) 염색법을 사용하여 사람의 간암 세포주인 Hep3B에서 확인한 결과를 보여준다.Figure 2 shows the effect of tumor cell death mediated by GASC1 inhibitory siRNA in human liver cancer cell line using MTT (tetrazolium 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide) staining. The results confirmed by Hep3B are shown.

도 3은 GASC1 발현 억제 siRNA의 세포사멸효과를 젖산 탈수소효소(lactate dehydrogenase, LDH) 측정법을 사용하여 사람의 간암 세포주인 Hep3B에서 확인한 결과를 보여준다. Figure 3 shows the results of confirming the apoptosis effect of GASC1 expression inhibitory siRNA in human liver cancer cell line Hep3B using lactate dehydrogenase (LDH) assay.

도 4는 GASC1 발현 억제 siRNA의 세포사멸효과를 annexin V-FITC/PI 염색법을 사용하여 사람의 간암세포주인 Hep3B에서 확인한 결과를 보여준다. 4 shows the results of confirming the apoptosis effect of GASC1 expression inhibitory siRNA in Hep3B, a human liver cancer cell line, using annexin V-FITC / PI staining.

도 5는 GASC1 발현 억제 siRNA의 세포사멸효과를 크리스탈 바이올렛 (crystal violet) 염료를 이용한 세포 염색법을 사용하여 사람의 간암세포주인 Hep3B에서 확인한 결과를 보여준다.Figure 5 shows the results of confirming the apoptosis effect of GASC1 expression inhibitory siRNA in human liver cancer cell line Hep3B using a cell staining method using a crystal violet (crystal violet) dye.

도 6은 GASC1 발현 억제 siRNA와 Mcl-1 및 Wnt-1 발현 억제용 siRNA의 병용처리에 의해 매개된 종양 세포사멸효과를 MTT (tetrazolium 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide) 염색법을 사용하여 사람의 간암 세포주인 Hep3B에서 확인한 결과를 보여준다.FIG. 6 shows MTT (tetrazolium 3- (4,5-dimethylthiazol-2-yl) -2, mediated by apoptosis of GASC1 expression inhibitory siRNA and sicl for suppressing Mcl-1 and Wnt-1 expression; Using the 5-diphenyl tetrazolium bromide staining method, Hep3B is a human liver cancer cell line.

도 7은 화학적으로 변형시킨 GASC1 발현 억제 siRNA의 세포사멸효과를 젖산 탈수소효소(lactate dehydrogenase, LDH) 측정법을 사용하여 사람의 간암 세포주인 Hep3B에서 확인한 결과를 보여준다.Figure 7 shows the results of confirming the apoptosis effect of chemically modified GASC1 expression inhibitory siRNA in human liver cancer cell line Hep3B using lactate dehydrogenase (LDH) assay.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the technical field to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims.

[[ 실시예Example ]]

실시예Example 1.  One. GASC1GASC1 발현 억제용  For suppressing expression siRNAsiRNA 가 결합할 수 있는 Can combine 타겟target 염기서열 후보군의 디자인 Design of Sequence Candidates

GASC1의 전사체에서 siRNA가 결합할 수 있는 타겟 염기서열 후보군을 디자인하였다.A target sequence candidate group to which siRNA can bind in the transcript of GASC1 was designed.

먼저 원하는 염기서열에 대한 siRNA 디자인 프로그램을 사용하여, GASC1 mRNA서열(NM_015061)에서 siRNA가 결합할 수 있는 타겟 염기서열을 디자인하였다.First, a siRNA design program for a desired nucleotide sequence was used to design a target nucleotide sequence to which siRNA can bind in the GASC1 mRNA sequence (NM_015061).

표 1은 인터넷 상에서 제공되는 siRNA 디자인 프로그램 및 URL을 표기한 것이고, 표 2는 표 1의 프로그램들을 사용하여 본 발명에서 최종적으로 선택한 in silico method에 의한 siRNA의 타겟 염기서열의 후보군이다. 표 2의 open reading frame (ORF) 서열 내 번호는 start codon인 ATG의 “A”를 “1번”으로 하여 서열 순서를 기재한 것이다. Table 1 shows the siRNA design program and URL provided on the Internet, Table 2 is a candidate group of the target sequence of siRNA by the in silico method finally selected in the present invention using the programs of Table 1. The number in the open reading frame (ORF) sequence of Table 2 describes the sequence sequence using “A” of ATG as the start codon.

표 1. siRNA 디자인 프로그램 Table 1 . siRNA design program

디자인 프로그램 명칭Design program name URLURL siRNA Sequence Designer (Clontech)siRNA Sequence Designer (Clontech) http://bioinfo.clontech.com/rnaidesigner/sirnaSequenceDesign.dohttp://bioinfo.clontech.com/rnaidesigner/sirnaSequenceDesign.do GenScript siRNA Target FinderGenScript siRNA Target Finder http://www.genscript.com/ssl-bin/app/rnaihttp://www.genscript.com/ssl-bin/app/rnai siRNA Design Tool (Qiagen)siRNA Design Tool (Qiagen) http://www1.qiagen.com/Products/GeneSilencing/CustomSiRna/SiRnaDesigner.aspxhttp://www1.qiagen.com/Products/GeneSilencing/CustomSiRna/SiRnaDesigner.aspx Find siRNA sequences (Invivogen)Find siRNA sequences (Invivogen) http://www.sirnawizard.com/design.phphttp://www.sirnawizard.com/design.php siRNA Selection Program (WI)siRNA Selection Program (WI) http://jura.wi.mit.edu/bioc/siRNAext/http://jura.wi.mit.edu/bioc/siRNAext/ siRNA Target Finder (Ambion)siRNA Target Finder (Ambion) http://ambion.com/techlib/misc/siRNA_finder.htmlhttp://ambion.com/techlib/misc/siRNA_finder.html

표 2. GASC1 mRNA (NM_015061)에서 siRNA가 결합할 수 있는 목표 염기서열 후보군 Table 2 . Target sequence candidate group to which siRNA can bind in GASC1 mRNA (NM_015061)

서열번호SEQ ID NO: ORF 서열번호ORF sequence number 염기서열Sequence 1One 3333 CCCCAGCUGUAAGAUAAUG CCCCAGCUGUAAGAUAAUG 22 117117 AGGAGCCCAUCGUGCGGGU AGGAGCCCAUCGUGCGGGU 33 218218 UUCAGCAGAUGGUCACAGG UUCAGCAGAUGGUCACAGG 44 352352 GAUUUGGAGCGCAAGUACUGAUUUGGAGCGCAAGUACU 55 521521 AUACCCCAUAUCUCUAUUU AUACCCCAUAUCUCUAUUU 66 729729 GAUGACAUUGAUUUCUCCA GAUGACAUUGAUUUCUCCA 77 846846 UCAUGGUUUCAACUGUGCA UCAUGGUUUCAACUGUGCA 88 10051005 ACAAGGAAAGGAUAUAUAC ACAAGGAAAGGAUAUAUAC 99 12061206 CCCCGACUCAGUCACAGAU CCCCGACUCAGUCACAGAU 1010 14271427 GUGUACCUUCUAUAUCCAG GUGUACCUUCUAUAUCCAG 1111 17781778 GUGAUGAAGAAUUGCCUGA GUGAUGAAGAAUUGCCUGA 1212 19261926 GCCACACUGUGCCAUCUGC GCCACACUGUGCCAUCUGC 1313 21122112 UGCCUUCCUUGAAGAGGAU UGCCUUCCUUGAAGAGGAU 1414 26072607 CGUGAAGUCCAAGGCUUGC CGUGAAGUCCAAGGCUUGC 1515 30623062 AGAGACAAAGAGUGCUGAG AGAGACAAAGAGUGCUGAG

실시예Example 2.  2. GASC1GASC1 발현 억제용  For suppressing expression siRNAsiRNA 후보군의 제조 Production of candidates

실시예 1에서 디자인한 타겟 염기서열에 결합할 수 있는 작은 간섭리보핵산 15종을 Ambion사(Ambion Inc., Texas, USA)의 Silencer siRNA Construction kit를 구입하여 설명서에 기재된 방법대로 합성 제조하였다. 15종의 siRNA 후보군의 서열은 표3에 나타내었다.Fifteen small interfering ribonucleic acids that can bind to the target nucleotide sequence designed in Example 1 were prepared by Ambion (Ambion Inc., Texas, USA), a Silencer siRNA Construction kit was synthesized according to the method described in the instructions. The sequences of 15 siRNA candidate groups are shown in Table 3.

표 3. GASC1 발현 억제용 siRNA의 염기서열 후보군 Table 3 . Base sequence candidate group of siRNA for GASC1 expression inhibition

실시예Example 서열번호SEQ ID NO: 센스 염기서열(5'-3')Sense base sequence (5'-3 ') ORF표적 서열 번호ORF target sequence number 안티센스 염기서열 (5'-3')Antisense Sequence (5'-3 ') 2-12-1 1616 CCCCAGCUGUAAGAUAAUGTTCCCCAGCUGUAAGAUAAUGTT 3333 1717 CAUUAUCUUACAGCUGGGGTTCAUUAUCUUACAGCUGGGGTT 2-22-2 1818 AGGAGCCCAUCGUGCGGGUTT AGGAGCCCAUCGUGCGGGUTT 117117 1919 ACCCGCACGAUGGGCUCCUTTACCCGCACGAUGGGCUCCUTT 2-32-3 2020 UUCAGCAGAUGGUCACAGGTT UUCAGCAGAUGGUCACAGGTT 218218 2121 CCUGUGACCAUCUGCUGAATTCCUGUGACCAUCUGCUGAATT 2-42-4 2222 GAUUUGGAGCGCAAGUACUTTGAUUUGGAGCGCAAGUACUTT 352352 2323 AGUACUUGCGCUCCAAAUCTTAGUACUUGCGCUCCAAAUCTT 2-52-5 2424 AUACCCCAUAUCUCUAUUUTT AUACCCCAUAUCUCUAUUUTT 521521 2525 AAAUAGAGAUAUGGGGUAUTTAAAUAGAGAUAUGGGGUAUTT 2-62-6 2626 GAUGACAUUGAUUUCUCCATT GAUGACAUUGAUUUCUCCATT 729729 2727 UGGAGAAAUCAAUGUCAUCTTUGGAGAAAUCAAUGUCAUCTT 2-72-7 2828 UCAUGGUUUCAACUGUGCATT UCAUGGUUUCAACUGUGCATT 846846 2929 UGCACAGUUGAAACCAUGATTUGCACAGUUGAAACCAUGATT 2-82-8 3030 ACAAGGAAAGGAUAUAUACTT ACAAGGAAAGGAUAUAUACTT 10051005 3131 GUAUAUAUCCUUUCCUUGUTTGUAUAUAUCCUUUCCUUGUTT 2-92-9 3232 CCCCGACUCAGUCACAGAUTT CCCCGACUCAGUCACAGAUTT 12061206 3333 AUCUGUGACUGAGUCGGGGTTAUCUGUGACUGAGUCGGGGTT 2-102-10 3434 GUGUACCUUCUAUAUCCAGTT GUGUACCUUCUAUAUCCAGTT 14271427 3535 CUGGAUAUAGAAGGUACACTTCUGGAUAUAGAAGGUACACTT 2-112-11 3636 GUGAUGAAGAAUUGCCUGATT GUGAUGAAGAAUUGCCUGATT 17781778 3737 UCAGGCAAUUCUUCAUCACTTUCAGGCAAUUCUUCAUCACTT 2-122-12 3838 GCCACACUGUGCCAUCUGCTT GCCACACUGUGCCAUCUGCTT 19261926 3939 GCAGAUGGCACAGUGUGGCTTGCAGAUGGCACAGUGUGGCTT 2-132-13 4040 UGCCUUCCUUGAAGAGGAUTT UGCCUUCCUUGAAGAGGAUTT 21122112 4141 AUCCUCUUCAAGGAAGGCATTAUCCUCUUCAAGGAAGGCATT 2-142-14 4242 CGUGAAGUCCAAGGCUUGCTT CGUGAAGUCCAAGGCUUGCTT 26072607 4343 GCAAGCCUUGGACUUCACGTTGCAAGCCUUGGACUUCACGTT 2-152-15 4444 AGAGACAAAGAGUGCUGAGTT AGAGACAAAGAGUGCUGAGTT 30623062 4545 CUCAGCACUCUUUGUCUCUTTCUCAGCACUCUUUGUCUCUTT

실시예Example 3.  3. GASC1GASC1 발현 억제용  For suppressing expression siRNAsiRNA Wow 양이온성Cationic 리포좀과의With liposomes 복합체의 제조 Preparation of the complex

실시예 2에서 합성 제조한 15종의 GASC1 발현 억제용 siRNA와 이를 전달해 주는 양이온성 리포좀과의 복합체를 제조하였다. Fifteen kinds of siRNA for inhibiting expression of GASC1 prepared synthetically in Example 2 and a complex with a cationic liposome delivering the same were prepared.

먼저, 세포 융합성 인지질인 1,2-디아실-sn-글리세로-3-포스포에탄올아민(1,2-diacyl-sn-glycero-3-phosphoethanolamine, DOPE)과 콜레스테롤, 양이온성 인지질인 1,2-디올레일-sn-글리세로-3-에틸포스포콜린 (1,2-dioleoyl-sn-glycero-3-ethylphosphocholine, EDOPC) (Avanti Polar Lipid Inc., USA)을 몰비 1:1:1로 취해 유리 바이얼에 넣어 혼합한 후 질소 환경에서 모든 클로로포름이 증발될 때까지 낮은 속도로 회전 증발시켜 지질 박막 필름으로 제조하였다. 지질 다층형 소구체 (multilamella vesicle)를 제조하기 위하여 이 박막필름에 인산완충용액 1ml을 첨가하고 바이얼을 37℃로 하여 밀봉 후 3분간 교반(vortexing)하였다. 균일한 크기를 만들기 위해 이를 입자 균질화 제조기 (extruder, Northern Lipid Inc., Canada)를 사용하여 0.2㎛ 폴리카보네이트 막을 3번 통과시켜 양이온성 리포좀을 제조하였다. 얻어진 양이온성 리포좀을 실시예 2의 15종의 GASC1 발현 억제용 siRNA와 각각 혼합하여 상온에서 20분간 유지시켜 siRNA 및 양이온성 리포좀과의 복합체를 제조하였다. 실시예 3을 통해 제조된 siRNA와 양이온성 리포좀과의 복합체의 구성을 정리하면 표 4와 같다. First, 1,2-diacyl-sn-glycero-3-phosphoethanolamine (DOPE), a cell fusion phospholipid, cholesterol, and cationic phospholipid 1 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EDOPC) (Avanti Polar Lipid Inc., USA) molar ratio 1: 1: 1 The mixture was taken in a glass vial and mixed, and then rotary evaporated at low speed until all chloroform was evaporated in a nitrogen environment to prepare a lipid thin film. To prepare a lipid multilamellar vesicle, 1 ml of a phosphate buffer solution was added to the thin film, and the vial was sealed at 37 ° C., and then stirred (vortexing) for 3 minutes. Cationic liposomes were prepared by passing a 0.2 μm polycarbonate membrane three times using a particle homogenization maker (extruder, Northern Lipid Inc., Canada) to make a uniform size. The obtained cationic liposomes were mixed with each of 15 kinds of siSCs for inhibiting GASC1 expression of Example 2 and maintained at room temperature for 20 minutes to prepare a complex with siRNA and cationic liposomes. Table 4 summarizes the composition of the siRNA and the cationic liposomes prepared in Example 3.

표 4. 실시예 3을 통해 제조된 siRNA와 양이온성 리포좀과의 복합체의 구성 Table 4 . Composition of the complex of siRNA prepared with Example 3 with a cationic liposome

실시예Example GASC1 siRNAGASC1 siRNA 양이온성 리포좀Cationic liposomes 3-13-1 실시예 2-1Example 2-1 DOPE + 콜레스테롤 + EDOPCDOPE + Cholesterol + EDOPC 3-23-2 실시예 2-2Example 2-2 3-33-3 실시예 2-3Example 2-3 3-43-4 실시예 2-4Example 2-4 3-53-5 실시예 2-5Example 2-5 3-63-6 실시예 2-6Example 2-6 3-73-7 실시예 2-7Example 2-7 3-83-8 실시예 2-8Example 2-8 3-93-9 실시예 2-9Example 2-9 3-103-10 실시예 2-10Example 2-10 3-113-11 실시예 2-11Example 2-11 3-123-12 실시예 2-12Example 2-12 3-133-13 실시예 2-13Example 2-13 3-143-14 실시예 2-14Example 2-14 3-153-15 실시예 2-15Example 2-15

실시예Example 4.  4. GASC1GASC1 발현 억제용  For suppressing expression siRNAsiRNA Wow 양이온성Cationic 고분자와의 복합체의 제조 Preparation of Complexes with Polymers

실시예 2에서 합성 제조한 GASC1 발현 억제용 siRNA를 2종씩 양이온성 고분자인 폴리에틸렌이민(polyethylenimine, PEI)과 혼합하여 3가지의 복합체를 제조하였다. 분자량 25kD 폴리에틸렌이민(PEI) (Sigma-Aldrich, USA)을 물에 녹인 후 몰농도 1 mM의 비율로 조정하고 취해 파이렉스 100ml 유리 둥근바닥 플라스크에 넣어 녹인 후 1N 염산으로 pH 5가 될 때까지 조정하였다. 불순물을 제거하기 위하여 syringe filter 0.2㎛ 막을 통과시켜 양이온성 고분자를 제조하였다. 실시예 2에서 합성 제조한 GASC1 발현 억제용 siRNA 중 2종을 표 4와 같이 선택하여, 상기 제조한 양이온성 고분자와 혼합하고 20분간 실온에 방치하여 복합체를 제조하였다. Three complexes were prepared by mixing GASC1 expression inhibitory siRNA synthesized in Example 2 with polyethyleneimine (PEI), a cationic polymer. Molecular weight 25kD polyethyleneimine (PEI) (Sigma-Aldrich, USA) was dissolved in water, adjusted to a molar concentration of 1 mM, taken in a Pyrex 100 ml glass round bottom flask and dissolved until adjusted to pH 5 with 1N hydrochloric acid. . In order to remove impurities, a cationic polymer was prepared by passing a 0.2 μm membrane through a syringe filter. Two kinds of siRNA for inhibiting GASC1 expression prepared in Example 2 were selected as shown in Table 4, mixed with the cationic polymer prepared above, and left at room temperature for 20 minutes to prepare a complex.

표 5. 실시예 4를 통해 제조된 siRNA와 양이온성 고분자와의 복합체의 구성 Table 5 . Composition of the complex of siRNA prepared by Example 4 with a cationic polymer

실시예Example GASC1 siRNAGASC1 siRNA 양이온성 고분자Cationic polymer 4-14-1 실시예 2-6 + 실시예 2-9Example 2-6 + Example 2-9 폴리에틸렌이민Polyethyleneimine 4-24-2 실시예 2-12 + 실시예 2-14Examples 2-12 + Examples 2-14

비교예Comparative example 1.  One. 루시퍼라제Luciferase GL2GL2 (( luciferaseluciferase GL2GL2 ) 발현 억제용 ) Expression suppression siRNAsiRNA Wow 양이온성Cationic 리포좀과의 복합체의 제조 Preparation of Complexes with Liposomes

siRNA 자체의 세포독성을 비교하기 위한 음성대조군으로써 기존 시판품인 루시퍼라제 GL2의 발현을 억제하는 siRNA를 삼천리제약(Samchully Pharmaceuticals, Seoul, Korea)에서 구입하여 사용하였다. 루시퍼라제 GL2 발현 억제용 siRNA의 염기서열은 정방향이 5’-CGUACGCGGAAUACUUCGATT-3’ 이고 역방향이 5’-UCGAAGUAUUCCGCGUACGTT-3’ 이다. 루시퍼라제 GL2 발현 억제용 siRNA를 실시예 3에서 제조한 양이온성 리포좀과 혼합하여 상온에서 20분간 유지시켜 siRNA 및 양이온성 리포좀과의 복합체를 제조하였다.As a negative control for comparing the cytotoxicity of siRNA itself, the siRNA that inhibits the expression of the commercially available luciferase GL2 was used as Samchully Pharmaceuticals, Seoul, Korea). The base sequence of the siRNA for inhibiting luciferase GL2 expression is 5'-CGUACGCGGAAUACUUCGATT-3 'in the forward direction and 5'-UCGAAGUAUUCCGCGUACGTT-3' in the reverse direction. A siRNA for inhibiting luciferase GL2 expression was mixed with the cationic liposomes prepared in Example 3 and maintained at room temperature for 20 minutes to prepare a complex with siRNA and cationic liposomes.

<< 간암세포주Liver cancer cell line Hep3BHep3B 의 배양> Cultivation of>

간암세포인 Hep3B 세포주는 ATCC (American Type Culture Collection, USA)로부터 구입하여 사용하였다. Hep3B 세포주는 10% 우태아 혈청 w/v (HyClone laboratories Inc, USA)과 100 unit/ml 페니실린 또는 100 ㎍/ml 스트렙토마이신을 포함하는 DMEM (Dulbecco's modified eagles medium, Gibco, USA)에 배양하였다.Hep3B cell line, a liver cancer cell, was purchased from ATCC (American Type Culture Collection, USA). Hep3B cell lines were cultured in DMEM (Dulbecco's modified eagles medium, Gibco, USA) containing 10% fetal calf serum w / v (HyClone laboratories Inc, USA) and 100 unit / ml penicillin or 100 μg / ml streptomycin.

실시예Example 5.  5. 역전사Reverse transcription 중합효소 연쇄반응을 이용한  Using polymerase chain reaction GASC1GASC1 발현 억제  Suppress expression siRNAsiRNA 의 GASC1 GASC1 on 전사체Transcript 발현 억제 효능평가 Expression inhibition efficacy evaluation

GASC1에 대한 siRNA 함유 조성물이 암세포사멸에 미치는 효과에 대해 평가하기 위하여 역전사 중합효소 연쇄반응을 이용하여 하기와 같은 과정으로 실험을 수행하였다. In order to evaluate the effect of the siRNA-containing composition on cancer cell death on GASC1 experiments were performed using the reverse transcriptase polymerase chain reaction in the following process.

Hep3B 세포주를 실험 전날 24-웰 플레이트에 웰 당 세포를 8× 10⁴씩 분주(seeding)하였다. 각 플레이트의 세포가 50-70%정도 균일하게 성장했을 때 배지를 제거하고 새 배지를 웰(well) 당 250㎕씩 첨가하였다. Hep3B cell lines were seeded 8 × 10 μs of cells per well in 24-well plates the day before the experiment. When the cells of each plate grew uniformly by 50-70%, the medium was removed and fresh medium was added at 250 μL per well.

에펜도르프 튜브에 혈청이 포함되지 않은 배지 50㎕씩을 넣고 비교예 1의 루시퍼라제 GL2 발현 억제 siRNA와 양이온성 리포좀과의 복합체 조성물, 실시예 3-1 내지 3-15까지의 15종의 GASC1 발현억제용 siRNA와 양이온성 리포좀과의 복합체 조성물을 각각 첨가하였다. 배양배지에 포함된 siRNA의 최종 농도는 50nM이 되게 조절하였다. 이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하고 이렇게 제조된 복합체를 웰 플레이트에 첨가하여 37℃의 CO₂세포배양기에서 24시간 동안 배양하였다. 50 μl of serum-free medium was added to the Eppendorf tube, and the composite composition of the luciferase GL2 expression inhibitory siRNA of Comparative Example 1 and the cationic liposome, and 15 kinds of GASC1 expression inhibitory to Examples 3-1 to 3-15 The composite composition of the siRNA and the cationic liposome was added, respectively. The final concentration of siRNA contained in the culture medium was adjusted to 50 nM. After slowly pipetting and mixing, the mixture was allowed to stand at room temperature for 20 minutes, and the complex thus prepared was added to a well plate and incubated in a CO 2 cell incubator at 37 ° C. for 24 hours.

24시간 후 Trizol 시약 (Invitrogen, Carlsbad, CA, USA)을 사용하여 세포내에 존재하는 전체 리보핵산(RNA)을 분리하고 이 리보핵산은 AccuPower RT PreMix (Bioneer, Daejeon, Korea)를 사용하여 상보성 디옥시리보핵산(cDNA)으로 역전사 하였다. 중합효소연쇄반응을 위해 사용한 GASC1에 특이적인 프라이머의 서열은 5’-CACCTGCTGAGGGAGAAGTC-3’ (왼쪽), 5’-TCCCCTTGG ATAATGTCTGC-3’ (오른쪽)이며, 중합효소연쇄반응 생성물의 크기는 250염기쌍이었다. GASC1 전사체 (transcript)의 발현 정도는 GASC1 특이적인 연쇄반응 생성물의 밴드 밀도를 GAPDH (glyceraldehyde-3-phosphate dehydrogenase) 전사체를 증폭하여 나타나는 밴드 밀도로 보정하여 정량적으로 측정하였다. After 24 hours, the whole ribonucleic acid (RNA) is isolated from cells using Trizol reagent (Invitrogen, Carlsbad, CA, USA), and this ribonucleic acid is complementary deoxyribonucleic acid using AccuPower RT PreMix (Bioneer, Daejeon, Korea). reverse transcription with (cDNA). The primer sequences specific for GASC1 used for polymerase chain reaction were 5'-CACCTGCTGAGGGAGAAGTC-3 '(left) and 5'-TCCCCTTGG ATAATGTCTGC-3' (right), and the size of the polymerase chain reaction product was 250 base pairs. . The expression level of the GASC1 transcript was measured quantitatively by correcting the band density of the GASC1-specific chain reaction product by amplifying the GAPDH (glyceraldehyde-3-phosphate dehydrogenase) transcript.

도 1은 GASC1 발현 억제 siRNA에 의해 매개된 GASC1 전사체 발현 억제 효능을 역전사 중합효소 연쇄반응을 이용하여 사람의 간암 세포주인 Hep3B에서 확인한 결과를 보여준다. 도 1A는 GASC1의 전사체의 상대적인 발현량을 수치화 한 것이고, 도면 1B는 GASC1의 전사체의 발현 정도를 보여주는 대표적인 전기영동 사진이다. 도 1에서, “C”는 대조군, “NC”는 비교예 1 처리군, 3-1내지 3-15는 실시예 3-1부터 3-15까지의 복합체 처리군을 나타낸다. 대조군(C)은 미처리군으로 GASC1 전사체의 발현이 관찰되었고, 비교예 1 처리군(NC)은 루시퍼라제 GL2 리보핵산 처리군으로서 GASC1 전사체의 발현에 대조군에 비하여 변화가 없었고, 실시예 3-1내지 3-15의 복합체 처리군은 대조군과 비교했을 때 다양한 발현 억제 효능을 나타내었다. 이중 실시예 3-6, 3-9, 3-12, 3-14의 복합체 처리군에서 GASC1 전사체의 발현이 유의성 있게 감소하였다. 따라서 도 1로부터 실시예 2-6, 2-9, 2-12, 2-14에서 제조된 siRNA가 Hep3B 세포 내로 전달되어 GASC1의 발현을 선택적으로 억제시키는 것을 알 수 있다. Figure 1 shows the results of the GASC1 transcript expression inhibitory effect mediated by GASC1 expression inhibition siRNA in human liver cancer cell line Hep3B using reverse transcriptase polymerase chain reaction. Figure 1A is a quantification of the relative expression of the transcript of GASC1, Figure 1B is a representative electrophoresis picture showing the expression level of the transcript of GASC1. In Figure 1, "C" is a control group, "NC" is a comparative example 1 treatment group, 3-1 to 3-15 shows a complex treatment group from Examples 3-1 to 3-15. In the control group (C), the expression of GASC1 transcript was observed in the untreated group, and Comparative Example 1 treatment group (NC) was the luciferase GL2 ribonucleic acid treated group, and there was no change in the expression of the GASC1 transcript as compared to the control group, Example 3 The complex treated groups of -1 to 3-15 showed various expression inhibitory effects compared to the control group. The expression of GASC1 transcripts was significantly reduced in the complex treatment groups of Examples 3-6, 3-9, 3-12, and 3-14. Therefore, it can be seen from FIG. 1 that siRNAs prepared in Examples 2-6, 2-9, 2-12, and 2-14 are delivered into Hep3B cells to selectively inhibit the expression of GASC1.

실시예Example 6.  6. MTTMTT 방법을 이용한  Method GASC1GASC1 발현 억제  Suppress expression siRNAsiRNA 의 항종양 효능 평가 Of antitumor efficacy

GASC1에 대한 siRNA 함유 조성물이 암세포 사멸에 미치는 효과에 대해 평가하기 위하여 MTT (3-(4,5-dimethylthiazole-2-yl) -2,5-di-phenyl tetrazolium bromide) 방법을 이용하여 하기와 같은 과정으로 실험을 수행하였다. In order to evaluate the effects of siRNA-containing compositions on GASC1 on cancer cell death, MTT (3- (4,5-dimethylthiazole-2-yl) -2,5-di-phenyl tetrazolium bromide) method was used as follows. The experiment was carried out by the process.

Hep3B 세포주를 실험 전날 24-웰 플레이트에 웰 당 세포를 8×10⁴씩 분주(seeding)하였다. 각 플레이트의 세포가 50-70%정도 균일하게 성장했을 때 플레이트안의 배지를 제거하고 혈청이 포함되지 않은 새 배지를 웰(well) 당 250㎕씩 첨가하였다. Hep3B cell lines were seeded 8 × 10 μs of cells per well in 24-well plates the day before the experiment. When the cells of each plate grew uniformly by 50-70%, the medium in the plate was removed, and fresh medium without serum was added at 250 μL per well.

에펜도르프 튜브에 혈청이 포함되지 않은 배지 50㎕씩을 넣고 비교예 1의 루시퍼라제 GL2 발현억제 siRNA와 양이온성 리포좀의 복합체 조성물, 실시예 3-1 내지 3-15의 15종의 GASC1 발현억제용 siRNA와 양이온성 리포좀과의 복합체 조성물을 각각 첨가하였다. 배양배지에 포함된 siRNA의 최종 농도는 50nM이었다. 이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하고 이렇게 제조된 복합체를 웰 플레이트에 첨가하여 37℃의 CO₂세포배양기에서 24시간 동안 배양하였다. 50 μl of serum-free medium was added to the Eppendorf tube, and the composite composition of the luciferase GL2 expression inhibitory siRNA and the cationic liposome of Comparative Example 1, and 15 GASC1 expression inhibitory siRNAs of Examples 3-1 to 3-15 And a composite composition with cationic liposomes were added, respectively. The final concentration of siRNA contained in the culture medium was 50 nM. After slowly pipetting and mixing, the mixture was allowed to stand at room temperature for 20 minutes, and the complex thus prepared was added to a well plate and incubated in a CO 2 cell incubator at 37 ° C. for 24 hours.

복합체를 처리하고 48시간 경과 후 각각 MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-di-phenyl tetrazolium bromide) 용액을 배지의 10 %가 되도록 가하고, 4시간 더 배양 한 다음 상층액을 제거하고 0.06 N 염산 이소프로판올 용액을 첨가한 후에 엘라이져 리더 (ELISA reader)를 이용하여 570 nm에서 그 흡광도를 측정하였다. 대조군으로는 아무 처리도 하지 않은 세포가 사용되었다. After 48 hours of treatment with the complex, MTT (3- (4,5-dimethylthiazole-2-yl) -2,5-di-phenyl tetrazolium bromide) solution was added to 10% of the medium and incubated for another 4 hours. The supernatant was then removed and 0.06 N hydrochloric acid isopropanol solution was added and its absorbance was measured at 570 nm using an ELISA reader. As a control, untreated cells were used.

도 2는 GASC1 발현 억제 siRNA에 의해 매개된 종양 세포사멸효과를 MTT (tetrazolium 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide) 염색법을 사용하여 사람의 간암 세포주인 Hep3B에서 확인한 결과를 보여준다. 도 2에서, “C”는 대조군, “NC1”은 핵산 전달체인 양이온성 리포좀 단독처리군, “NC2”는 비교예 1 처리군, 3-1내지 3-15는 실시예 3-1부터 3-15까지의 siRNA와 양이온성 리포좀과의 복합체 처리군을 나타낸다. 대조군 “C”는 미처리군으로 종양세포 생존율을 100%로 산정하였으며, 전달체 리포좀 단독처리군인 “NC1"은 siRNA를 함유하지 않아 대조군에 비하여 세포 생존율에 큰 변화가 없었고, 비교예 1 처리군인 “NC2"는 루시퍼라제 GL2 억제 siRNA으로서 종양세포 생존율에 아무 영향을 주지 않았고, 실시예 3-1 내지 3-15의 siRNA와 양이온성 리포좀과의 복합체 처리군은 대조군과 비교했을 때, 실시예 3-6, 3-9, 3-12, 3-14의 복합체 처리군에서 종양세포 생존율이 감소하였다. 따라서 도 2로부터 실시예 2-6, 2-9, 2-12, 2-14에서 제조된 siRNA가 Hep3B 세포 내로 전달되어 GASC1의 발현을 선택적으로 억제시키고 그 결과로 항종양 효능을 나타내는 것을 알 수 있다. Figure 2 shows the effect of tumor cell death mediated by GASC1 inhibitory siRNA in human liver cancer cell line using MTT (tetrazolium 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide) staining. The results confirmed by Hep3B are shown. In Figure 2, "C" is a control group, "NC1" is a nucleic acid carrier cationic liposome single treatment group, "NC2" is Comparative Example 1 treatment group, 3-1 to 3-15 are Examples 3-1 to 3- The complex treatment group of the siRNA up to 15 and cationic liposomes is shown. The control group “C” was untreated group, and the tumor cell survival rate was estimated to 100%. The carrier liposome-treated group “NC1” did not contain siRNA, so there was no significant change in cell viability compared to the control group. "Luciferase GL2 inhibitory siRNA had no effect on tumor cell viability, and the complex treatment group of the siRNAs of Examples 3-1 to 3-15 with cationic liposomes was compared with the control group, Example 3-6 , 3-9, 3-12, 3-14 group treated with reduced tumor cell viability. Therefore, it can be seen from FIG. 2 that siRNAs prepared in Examples 2-6, 2-9, 2-12, and 2-14 are delivered into Hep3B cells to selectively inhibit the expression of GASC1 and thereby exhibit antitumor efficacy. have.

실시예Example 7.  7. 젖산탈수소효소Lactic Acid Dehydrogenase ( ( LDHLDH ) 방법을 이용한 ) Method GASC1GASC1 발현 억제  Suppress expression siRNAsiRNA 의 항종양 효능 평가 Of antitumor efficacy

GASC1의 발현을 억제하는 siRNA 함유 조성물이 종양세포를 손상시키는 정도를 평가하기 위하여 종양세포의 손상으로 인하여 세포 외부로 배출된 젖산 탈수소효소(LDH)를 고감도로 측정하는 LDH Cytotoxicity Detection kit(TAKARA Bio Inc., Otsu Shiga, Japan)를 이용하여 하기와 같은 과정으로 실험을 수행하였다.LDH Cytotoxicity Detection Kit (TAKARA Bio Inc.), which highly sensitively detects lactate dehydrogenase (LDH) released from cells due to tumor cell damage, to evaluate the extent of siRNA-containing compositions that inhibit the expression of GASC1. , Otsu Shiga, Japan) was used to perform the experiment as follows.

Hep3B 세포주를 실험 전날 24-웰 플레이트에 웰 당 세포를 8×10⁴씩 분주(seeding)하였다. 각 플레이트의 세포가 50-70%정도 균일하게 성장했을 때 배지를 제거하고 혈청이 포함되지 않은 새 배지를 웰(well) 당 250㎕씩 첨가하였다. Hep3B cell lines were seeded 8 × 10 μs of cells per well in 24-well plates the day before the experiment. When the cells of each plate grew uniformly by 50-70%, the medium was removed, and 250 μl of wells were added per well.

에펜도르프 튜브에 혈청이 포함되지 않은 배지 50㎕씩을 넣고 비교예 1의 루시퍼라제 GL2 발현 억제 siRNA와 양이온성 리포좀과의 복합체 조성물, 실시예 3-1 내지 3-15의 GASC1 발현억제용 siRNA와 양이온성 리포좀과의 복합체 조성물을 각각 첨가하였다. 미디어에 포함된 siRNA의 최종 농도는 50nM이 되게 맞추었다. 이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하고 이렇게 제조된 복합체를 웰 플레이트에 첨가하여 37℃의 CO₂세포배양기에서 배양하였다. 이 때 Triton X-100을 3%가 되도록 처리하여 최대 LDH 활성을 측정할 수 있도록 준비하여 역시 37℃의 CO₂세포배양기에서 배양하였다. 복합체를 처리하고 48시간 경과 후, 조직배양 플레이트를 250×g 에서 10분간 원심분리 후 상청액을 웰당 100㎕씩 취하여 별도의 투명한 96-웰 플레이트에 옮기고 제조사의 프로토콜 대로 반응혼합액을 조제하여 100㎕씩 첨가하였다. 플레이트를 차광하여 실온에서 30분간 정치한 후 엘라이져 리더 (ELISA reader)를 이용하여 492 nm에서 그 흡광도를 측정하였다. 음성대조군으로는 아무 것도 포함되어 있지 않은 배양배지가 사용되었고 양성대조군으로는 Triton X-100을 3%가 되도록 처리한 세포가 사용되었다. 종양세포 손상율은 [(실험군의 흡광도-음성대조군의 흡광도)/(양성대조군의 흡광도-음성대조군의 흡광도)×100]의 식을 사용하여 계산하였다. 50 μl each of serum-free medium was added to the Eppendorf tube, and the composite composition of the luciferase GL2 expression inhibitory siRNA and the cationic liposome of Comparative Example 1, the siRNA and cation for inhibiting GASC1 expression of Examples 3-1 to 3-15 Each of the complex compositions with sex liposomes was added. The final concentration of siRNA included in the media was set to 50 nM. After slowly pipetting and mixing, the mixture was allowed to stand at room temperature for 20 minutes, and the complex thus prepared was added to a well plate and incubated in a 37 ° C. CO 2 cell incubator. At this time, Triton X-100 was treated to 3% to prepare for measurement of the maximum LDH activity was also incubated in 37 ℃ CO₂ cell culture. 48 hours after the complex was treated, the tissue culture plate was centrifuged at 250 × g for 10 minutes, and then 100 μl of the supernatant was transferred to a separate transparent 96-well plate, and the reaction mixture was prepared according to the manufacturer's protocol. Added. After the plate was shielded and allowed to stand at room temperature for 30 minutes, its absorbance was measured at 492 nm using an ELISA reader. A culture medium containing nothing was used as a negative control and cells treated with 3% Triton X-100 were used as a positive control. Tumor cell damage rate was calculated using the formula [(absorbance of experimental group-absorbance of negative control group) / (absorbance of positive control group-absorbance of negative control group) x 100].

도 3은 GASC1 발현 억제 siRNA의 세포사멸효과를 젖산 탈수소효소(lactate dehydrogenase, LDH) 측정법을 사용하여 사람의 간암 세포주인 Hep3B에서 확인한 결과를 보여준다. 도 3에서, “C”는 대조군, “NC1”은 핵산 전달체인 양이온성 리포좀 단독처리군, “NC2”는 비교예 1 처리군, 3-1내지 3-15는 실시예 3-1 내지 3-15의 복합체 처리군을 나타낸다. 대조군 “C”는 미처리군으로 종양세포 손상율에 변화가 없었고, 양이온성 리포좀 단독처리군인 “NC1"은 siRNA를 함유하지 않아 대조군에 비하여 종양세포 손상율에 큰 변화가 없었으며, 비교예 1 처리군인 “NC2"는 루시퍼라제 GL2 억제 siRNA가 리보핵산매개간섭을 일으키지 않아 종양세포 손상율에 큰 변화가 없었고, 실시예 3-1내지 3-15의 처리군은 대조군과 비교했을 때, 실시예 3-6, 3-9, 3-12, 3-14의 siRNA와 양이온성 리포좀의 복합체 처리군에서 종양세포 손상율이 증가하였다. 따라서 도 3으로부터 실시예 2-6, 2-9, 2-12, 2-14에서 제조된 siRNA가 Hep3B 세포 내로 전달되어 GASC1의 발현을 선택적으로 억제시키고 그 결과로 항종양 효능을 가지는 것을 알 수 있다.Figure 3 shows the results of confirming the apoptosis effect of GASC1 expression inhibitory siRNA in human liver cancer cell line Hep3B using lactate dehydrogenase (LDH) assay. In Figure 3, "C" is a control group, "NC1" is a nucleic acid carrier cationic liposome single treatment group, "NC2" is Comparative Example 1 treatment group, 3-1 to 3-15 are Examples 3-1 to 3- The complex treatment group of 15 is shown. The control group “C” was untreated group, and there was no change in tumor cell damage rate. The cationic liposome-treated group “NC1” did not contain siRNA, so there was no significant change in tumor cell damage rate compared to the control group. The soldier "NC2" did not cause significant changes in tumor cell damage rate because luciferase GL2 inhibitory siRNA did not cause ribonucleic acid mediated interference, and the treatment groups of Examples 3-1 to 3-15 were compared to the control group, Example 3 Tumor cell damage rate was increased in the complex treatment group of -6, 3-9, 3-12, 3-14 siRNA and cationic liposomes. Accordingly, it can be seen from FIG. 3 that siRNAs prepared in Examples 2-6, 2-9, 2-12, and 2-14 are delivered into Hep3B cells to selectively inhibit expression of GASC1 and have antitumor efficacy as a result. have.

실시예Example 8. 형광  8. Fluorescence 유세포Flow cell 분석을 통한  Through analysis GASC1GASC1 발현 억제  Suppress expression siRNAsiRNA 의 암세포 사멸 효과 확인 Of cancer cell death

GASC1의 발현을 억제하는 siRNA 함유 조성물이 암세포 사멸에 미치는 효과를 평가하기 위하여, 형광 유세포 분석법을 이용하여 하기와 같은 과정으로 실험을 수행하였다.In order to evaluate the effect of the siRNA-containing composition that inhibits the expression of GASC1 on cancer cell death, experiments were performed by the following procedure using fluorescence flow cytometry.

간암 세포주(Hep3B)에 비교예 1의 루시퍼라제 GL2 발현 억제 siRNA와 양이온성 리포좀과의 복합체 조성물, 실시예 3-3, 3-6, 3-12의 GASC1 발현억제용 siRNA와 양이온성 리포좀과의 복합체 조성물, 실시예 4-1, 4-2의 GASC1 발현억제용 siRNA 2종과 폴리에틸렌이민 양이온성 고분자와의 복합체 조성물을 각각 처리하고 세포사멸을 평가하였다. 평가 방법으로는 BD사(BD Biosciences, USA)에서 구입한 Annexin V-FITC Apoptosis Detection kit을 사용하였다. Complex composition of luciferase GL2 expression inhibitory siRNA of Comparative Example 1 and cationic liposomes in liver cancer cell line (Hep3B), GASC1 expression inhibitory siRNA of Example 3-3, 3-6, and 3-12 with cationic liposomes The composite composition, the composite composition of two siRNA for inhibiting GASC1 expression of Example 4-1, 4-2 and a polyethyleneimine cationic polymer were treated and evaluated for cell death. As an evaluation method, an Annexin V-FITC Apoptosis Detection kit purchased from BD Biosciences, USA was used.

Hep3B 세포주를 실험 전날 6-웰 플레이트에 웰 당 세포를 2×105씩 분주(seeding)하였다. 각 플레이트의 세포가 40-50%정도 균일하게 성장했을 때 플레이트안의 배지를 제거하고 혈청이 포함되지 않은 새 배지를 웰(well) 당 1400㎕ 씩 첨가하였다.Hep3B cell lines were seeded 2 × 10 5 cells per well in 6-well plates the day before the experiment. When the cells of each plate grew uniformly by 40-50%, the medium in the plate was removed, and fresh medium containing no serum was added at 1400 μl per well.

에펜도르프 튜브에 혈청이 포함되지 않은 배지 50㎕씩을 넣고 비교예 1의 루시퍼라제 GL2 발현억제 siRNA와 리포좀과의 복합체, 실시예 3-3, 3-6, 3-12의 GASC1 발현억제용 siRNA와 양이온성 리포좀과의 복합체 조성물, 실시예 4-1, 4-2의 GASC1 발현억제용 siRNA 2종과 폴리에틸렌이민 양이온성 고분자와의 복합체 조성물을 각각 첨가하였다. 배양배지에 포함된 siRNA의 최종 농도는 50nM이 되게 맞추었다. 이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하고 이렇게 제조된 복합체를 웰 플레이트에 첨가하여 37℃의 CO₂세포배양기에서 배양하였다. 복합체를 처리하고 92시간 경과 후, 배양된 세포를 수집한 후 인산완충용액으로 2번 세척하고 킷트에서 제공하는 annexin V-FITC와 propium iodide (PI)를 사용하여 빛을 차광한 채 30분 염색하였다. 그 후 형광 유세포 분석기인 BD FACS CALIBUR(BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포사멸 효율을 분석하였다. 리보핵산 미처리 세포군, annexin V-FITC와 PI를 단독처리하여 염색한 세포군들을 각각 사용하여 형광 강도 피크의 이동을 보정하였다. 50 μl each of serum-free medium was added to the eppendorf tube, and the luciferase GL2 expression inhibitory siRNA of Comparative Example 1 and a complex of liposomes, and the GASC1 expression inhibitory siRNAs of Examples 3-3, 3-6, and 3-12 A composite composition with a cationic liposome, and a composite composition with two siRNAs for inhibiting GASC1 expression in Examples 4-1 and 4-2 and a polyethyleneimine cationic polymer were added, respectively. The final concentration of siRNA contained in the culture medium was adjusted to 50 nM. After slowly pipetting and mixing, the mixture was allowed to stand at room temperature for 20 minutes, and the complex thus prepared was added to a well plate and incubated in a 37 ° C. CO 2 cell incubator. 92 hours after the complex was treated, the cultured cells were collected, washed twice with phosphate buffer solution, and stained for 30 minutes with light shielding using annexin V-FITC and propium iodide (PI) provided by the kit. . Subsequently, apoptosis efficiency by shifting the fluorescence intensity peak was analyzed using a fluorescence flow cytometer, BD FACS CALIBUR (BD Bioscience, USA). Ribonucleic acid untreated cell group, annexin V-FITC and PI alone treated cells were used to correct the shift of fluorescence intensity peak, respectively.

도 4는 GASC1 발현 억제 siRNA의 세포사멸효과를 annexin V-FITC/PI 염색법을 사용하여 사람의 간암세포주인 Hep3B에서 확인한 결과를 보여준다. 도 4에서, (A)는 비교예 1의 복합체, (B)는 GASC1 전사체 억제효능이 없었던 실시예 3-3의 복합체 조성물, (C)는 실시예 3-6의 복합체 조성물, (D)는 실시예 3-12의 복합체 조성물, (E)는 실시예 4-1의 복합체 조성물, (F)는 실시예 4-2의 복합체 조성물 처리군을 나타낸다. 비교예 1의 복합체 조성물 처리군에서는 아넥신(annexin V) 양성 세포, 즉 세포사멸이 일어난 세포의 비율이 10% 였으며(도면 4A 참고), 실시예 5에서 GASC1 전사체 억제효능이 없었으며 실시예 6과 7에서도 항종양 효능이 없는 것으로 나타났던 실시예 3-3의 복합체 조성물을 처리한 군에서는 아넥신 양성 세포가 15%로 비교예 1 처리군과 유사한 수준이었다(도 4B). 반면 실시예 3-6, 3-12의 siRNA 조성물은 아넥신 양성세포의 비율이 각각 80%, 84%로 세포사멸(apoptosis)이 진행된 세포들이 현저히 증가하였음을 알 수 있다(도 4C, 4D). 2종의 GASC1 발현 억제 siRNA를 포함하고 있는 실시예 4-1의 복합체 조성물 (실시예 2-6의 siRNA + 실시예 2-9의 siRNA) 및 실시예 4-2의 복합체 조성물(실시예 2-12의 siRNA + 실시예 2-14의 siRNA)를 처리한 군에서는 세포사멸이 진행된 아넥신 양성세포의 비율이 각각 91% 및 90%로 증가되었다(도 4E, 4F). 따라서 도 4로부터 실시예 3-6, 3-12에서 제조된 siRNA 조성물이 GASC1의 발현을 선택적으로 억제시키고 그 결과로 항종양 효능을 가지는 것을 알 수 있고 또한 실시예 4-1 및 실시예 4-2의 복합체 조성물 처리군에서 관찰되는 것과 같이 효과적인 siRNA 2종을 함께 사용하는 것 또한 현저한 항종양 효능을 가짐을 알 수 있다. 4 shows the results of confirming the apoptosis effect of GASC1 expression inhibitory siRNA in Hep3B, a human liver cancer cell line, using annexin V-FITC / PI staining. In Figure 4, (A) is a complex of Comparative Example 1, (B) is a complex composition of Example 3-3, which had no GASC1 transcript inhibitory effect, (C) is a complex composition of Example 3-6, (D) Is the composite composition of Example 3-12, (E) is the composite composition of Example 4-1, (F) represents the composite composition treatment group of Example 4-2. In the composite composition treatment group of Comparative Example 1, the ratio of annexin V positive cells, that is, cells in which apoptosis occurred was 10% (see FIG. 4A). In Example 5, there was no GASC1 transcript inhibitory effect. In the group treated with the composite composition of Example 3-3, which showed no antitumor efficacy in 6 and 7, the annexin-positive cells were 15%, similar to those of the comparative example 1 treatment group (FIG. 4B). On the other hand, the siRNA compositions of Examples 3-6 and 3-12 showed a significant increase in apoptosis-prone cells as the percentage of annexin positive cells was 80% and 84%, respectively (FIGS. 4C and 4D). . Complex composition of Example 4-1 (siRNA of Example 2-6 + siRNA of Example 2-9) and complex composition of Example 4-2 comprising two GASC1 expression inhibiting siRNAs (Example 2- In the group treated with siRNA of 12 + siRNA of Examples 2-14, the percentage of annexin-positive cells undergoing apoptosis was increased to 91% and 90%, respectively (FIGS. 4E and 4F). Therefore, it can be seen from FIG. 4 that the siRNA compositions prepared in Examples 3-6 and 3-12 selectively inhibit the expression of GASC1 and have antitumor efficacy as a result, and also Example 4-1 and Example 4- It can be seen that the use of two effective siRNAs together as observed in the complex composition treatment group 2 also has significant anti-tumor efficacy.

실시예Example 9. 잔존 세포염색 방법을 통한  9. Through remaining cell staining method GASC1GASC1 siRNAsiRNA 의 암세포 사멸 효과 확인 Of cancer cell death

GASC1 siRNA 함유 조성물이 암세포사멸에 미치는 효과를 평가하기 위하여, 잔존 세포염색 방법을 이용하여 하기와 같은 과정으로 실험을 수행하였다. In order to evaluate the effect of the GASC1 siRNA-containing composition on cancer cell death, experiments were performed using the remaining cell staining method as follows.

간암 세포주(Hep3B)에 비교예 1의 루시퍼라제 GL2 발현 억제 siRNA와 양이온성 리포좀과의 복합체, 실시예 3-1, 3-9, 3-14의 GASC1 발현억제용 siRNA와 양이온성 리포좀과의 복합체 조성물, 실시예 4-1, 4-2의 GASC1 발현억제용 siRNA 2종과 폴리에틸렌이민 양이온성 고분자와의 복합체 조성물을 각각 처리하고 세포사멸을 평가하였다. 평가 방법으로는 크리스탈 바이올렛(crystal violet) 염료(dye)를 이용한 세포 염색법을 사용하였다. A complex of luciferase GL2 expression inhibitory siRNA of Comparative Example 1 and a cationic liposome in a liver cancer cell line (Hep3B), and a complex of a cationic liposome with a siRNA for inhibiting GASC1 expression of Examples 3-1, 3-9, and 3-14 Compositions, composite compositions of two siRNAs for inhibiting GASC1 expression of Example 4-1 and 4-2 and a polyethyleneimine cationic polymer were treated and evaluated for cell death. As an evaluation method, a cell staining method using a crystal violet dye (dye) was used.

Hep3B 세포주를 실험 전날 6-웰 플레이트에 웰 당 세포를 2× 105씩 분주(seeding)하였다. 각 플레이트의 세포가 40-50%정도 균일하게 성장했을 때 플레이트안의 배지를 제거하고 혈청이 포함되지 않은 새 배지를 웰(well) 당 1400㎕ 씩 첨가하였다.Hep3B cell lines were seeded by 2 × 10 5 cells per well in 6-well plates the day before the experiment. When the cells of each plate grew uniformly by 40-50%, the medium in the plate was removed, and fresh medium containing no serum was added at 1400 μl per well.

에펜도르프 튜브에 혈청이 포함되지 않은 배지 50㎕씩을 넣고 비교예 1의 루시퍼라제 GL2 발현억제 siRNA와 리포좀과의 복합체 조성물, 실시예 3-1, 3-9, 3-14의 GASC1 발현억제용 siRNA와 리포좀의 복합체 조성물, 실시예 4-1, 4-2의 GASC1 발현억제용 siRNA 2종과 폴리에틸렌이민 양이온성 고분자와의 복합체 조성물을 각각 첨가하였다. 배양배지에 포함된 siRNA의 최종 농도는 50nM이 되게 맞추었다. 이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하고 이렇게 제조된 복합체 조성물을 웰 플레이트에 첨가하여 37℃의 CO₂세포배양기에서 배양하였다. 복합체 조성물을 처리하고 92시간 경과 후, 인산완충용액으로 세척하고 0.5% 크리스탈 바이올렛, 20% 메탄올이 포함된 용액을 500㎕ 처리하여 1분간 염색한 후 용액을 제거하여 플레이트에 남아있는 잔존세포의 정도를 관찰하였다. 도 5는 GASC1 발현 억제 siRNA의 세포사멸효과를 크리스탈 바이올렛 (crystal violet) 염료를 이용한 세포 염색법을 사용하여 사람의 간암세포주인 Hep3B에서 확인한 결과를 보여준다. 도 5에서, (A)는 비교예 1의 복합체, (B)는 GASC1 전사체 억제 효능이 없었던 실시예 3-1의 복합체 조성물, (C)는 실시예 3-9의 복합체 조성물, (D)는 실시예 3-14의 복합체 조성물, (E)는 실시예 4-1의 복합체 조성물, (F)는 실시예 4-2의 복합체 조성물 처리군을 나타낸다. 비교예 1의 복합체 처리군 (도 5A)에 비교할 때 GASC1 발현 억제능이 없는 실시예 3-1의 리보핵산과 리포좀 조성물 처리군 (도 5B)은 웰플레이트에 부착된 잔존 세포들이 다량 염색되어 세포사멸에 있어 큰 차이를 보이지 않았고, 반면 실시예 5에서 GASC1 발현이 억제되었던 실시예 3-9의 조성물, 실시예 3-14의 조성물, 그리고 실시예 4-1, 4-2의 조성물 처리군(도 5C, 5D, 5E, 5F)은 손상된 종양세포들이 웰플레이트에서 떨어져 나가서 염색된 잔존세포의 비율이 감소된 것이 관찰되었다. 따라서 도 5로부터 실시예 3-9, 3-14에서 제조된 siRNA와 리포좀 조성물이 GASC1의 발현을 선택적으로 억제시키고 그 결과로 항종양 효능을 가지는 것을 알 수 있고 또한 실시예 4-1, 4-2의 조성물 처리군에서 관찰되는 것과 같이 효과적인 siRNA 2종을 함께 사용하는 것 또한 유의성 있는 항종양 효능을 가짐을 알 수 있다. 50 μl each of serum-free medium was added to the Eppendorf tube, and the complex composition of luciferase GL2 expression inhibitory siRNA and liposome of Comparative Example 1, siRNA for inhibitory GASC1 expression of Examples 3-1, 3-9, and 3-14 And a composite composition of liposomes, and a composite composition of two siRNAs for inhibiting GASC1 expression in Examples 4-1 and 4-2 and a polyethyleneimine cationic polymer. The final concentration of siRNA contained in the culture medium was adjusted to 50 nM. After slowly pipetting and mixing, the mixture was allowed to stand at room temperature for 20 minutes, and the composite composition thus prepared was added to a well plate and cultured in a CO 2 cell incubator at 37 ° C. After 92 hours of treatment with the composite composition, the solution was washed with phosphate buffer solution, treated with 500 µl of a solution containing 0.5% crystal violet and 20% methanol, stained for 1 minute, and then the solution was removed. Was observed. Figure 5 shows the results of confirming the apoptosis effect of GASC1 expression inhibitory siRNA in human liver cancer cell line Hep3B using a cell staining method using a crystal violet (crystal violet) dye. In Figure 5, (A) is a complex of Comparative Example 1, (B) is a complex composition of Example 3-1, which did not have GASC1 transcript inhibitory efficacy, (C) is a complex composition of Example 3-9, (D) The composite composition of Example 3-14, (E) shows the composite composition of Example 4-1, (F) shows the composite composition treatment group of Example 4-2. The ribonucleic acid and liposome composition treatment group (Example 5-1) of Example 3-1, which does not have GASC1 expression inhibitory ability, as compared to the complex treatment group of Comparative Example 1 (FIG. 5A), was apoptosis due to the large amount of residual cells attached to the well plates. Did not show a significant difference, whereas in Example 5, the composition of Examples 3-9, the compositions of Examples 3-14, and the compositions of Examples 4-1 and 4-2, in which GASC1 expression was suppressed (FIG. 5C, 5D, 5E, and 5F) showed that the damaged tumor cells fell off the well plate and the percentage of stained remaining cells was reduced. Therefore, it can be seen from FIG. 5 that the siRNA and liposome compositions prepared in Examples 3-9 and 3-14 selectively inhibit the expression of GASC1 and as a result have antitumor efficacy, and also Examples 4-1 and 4- It can be seen that the use of two effective siRNAs together as observed in the composition treatment group of 2 also has significant antitumor efficacy.

실시예Example 10.  10. GASC1GASC1 발현 억제  Suppress expression siRNAsiRNA 와 다른 유전자 발현 억제 And other gene expression inhibition siRNAsiRNA 의 병용 처리 후 항종양 효능 평가 Of antitumor efficacy after combination treatment

GASC1에 대한 siRNA 외에 암세포사멸을 유도하는 또 다른 siRNA를 추가적 처리함으로써 2가지 이상의 유전자 발현을 억제하는 siRNA를 병용 처리하였을 때 암세포 사멸에 미치는 효과에 대해 평가하고자 하였다. 이를 위해 MTT (3-(4,5-dimethylthiazole-2-yl) -2,5-di-phenyl tetrazolium bromide) 방법을 이용하여 하기와 같은 과정으로 실험을 수행하였다. In addition to the siRNA against GASC1, we tried to evaluate the effect of the siRNA that inhibits the expression of two or more genes in combination with another siRNA that induces cancer cell death. To this end, the experiment was performed using the MTT (3- (4,5-dimethylthiazole-2-yl) -2,5-di-phenyl tetrazolium bromide) method as described below.

Hep3B 세포주를 실험 전날 24-웰 플레이트에 웰 당 세포를 8×10⁴씩 분주(seeding)하였다. 각 플레이트의 세포가 50-70%정도 균일하게 성장했을 때 플레이트안의 배지를 제거하고 혈청이 포함되지 않은 새 배지를 웰(well) 당 250㎕씩 첨가하였다. Hep3B cell lines were seeded 8 × 10 μs of cells per well in 24-well plates the day before the experiment. When the cells of each plate grew uniformly by 50-70%, the medium in the plate was removed, and fresh medium without serum was added at 250 μL per well.

에펜도르프 튜브에 혈청이 포함되지 않은 배지 50㎕씩을 넣고 비교예 1의 루시퍼라제 GL2 발현억제 siRNA와 양이온성 리포좀의 복합체 조성물, 실시예 6에서 가장 항종양능이 좋았던 실시예 3-12의 GASC1 발현억제용 siRNA와 양이온성 리포좀과의 복합체 조성물, 실시예 2-12의 GASC1 발현억제용 siRNA와 Mcl-1발현억제용 siRNA의 양이온성 리포좀과의 복합체 조성물, 실시예 2-12의 GASC1 발현억제용 siRNA와 Wnt-1발현억제용 siRNA의 양이온성 리포좀과의 복합체 조성물을 각각 첨가하였다. Mcl-1(카달로그번호:M-004501-04)과 Wnt-1(카달로그번호: M-003937-00) 발현억제용 siRNA는 DHARMACON(Lafayette, CO, USA)에서 구입하여 사용하였다. 50 μl of serum-free medium was added to the eppendorf tube, and the composition of the luciferase GL2 expression inhibitory siRNA of Comparative Example 1 and the cationic liposome complex composition, and the GASC1 expression inhibitory of Example 3-12, which had the best antitumor activity in Example 6 Complex composition of a siRNA with a cationic liposome, a siRNA for inhibiting GASC1 expression of Example 2-12 and a cationic liposome of a siRNA for suppressing Mcl-1 expression, a siRNA for inhibiting GASC1 expression of Example 2-12 And a complex composition with cationic liposomes of siRNA for Wnt-1 expression inhibition were added, respectively. Mcl-1 (Catalog No .: M-004501-04) and Wnt-1 (Catalog No .: M-003937-00) siRNAs for suppressing expression were purchased from DHARMACON (Lafayette, CO, USA).

배양배지에 포함된 각 siRNA의 최종 농도는 50nM이었다. 이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하고 이렇게 제조된 복합체를 웰 플레이트에 첨가하여 37℃의 CO₂세포배양기에서 24시간 동안 배양하였다. The final concentration of each siRNA in the culture medium was 50 nM. After slowly pipetting and mixing, the mixture was allowed to stand at room temperature for 20 minutes, and the complex thus prepared was added to a well plate and incubated in a CO 2 cell incubator at 37 ° C. for 24 hours.

복합체를 처리하고 48시간 경과 후 각각 MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-di-phenyl tetrazolium bromide) 용액을 배지의 10 %가 되도록 가하고, 4시간 더 배양 한 다음 상층액을 제거하고 0.06 N 염산 이소프로판올 용액을 첨가한 후에 엘라이져 리더 (ELISA reader)를 이용하여 570 nm에서 그 흡광도를 측정하였다. 대조군으로는 아무 처리도 하지 않은 세포가 사용되었다. After 48 hours of treatment with the complex, MTT (3- (4,5-dimethylthiazole-2-yl) -2,5-di-phenyl tetrazolium bromide) solution was added to 10% of the medium and incubated for another 4 hours. The supernatant was then removed and 0.06 N hydrochloric acid isopropanol solution was added and its absorbance was measured at 570 nm using an ELISA reader. As a control, untreated cells were used.

도 6은 GASC1 발현 억제 siRNA와 Mcl-1 및 Wnt-1 siRNA의 병용처리에 의해 매개된 종양 세포사멸효과를 MTT (tetrazolium 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide) 염색법을 사용하여 사람의 간암 세포주인 Hep3B에서 확인한 결과를 보여준다. 도 6에서, “C”는 대조군, “NC1”은 핵산 전달체인 양이온성 리포좀 단독처리군, “NC2”는 비교예 1 처리군, “siGASC1”은 실시예 3-12의 siRNA와 양이온성 리포좀과의 복합체 처리군, “siGASC1+siMcl-1”, “siGASC1+siWnt-1”은 실시예 2-12의 GASC1 발현억제용 siRNA와 Mcl-1 또는 Wnt-1 발현억제용 siRNA와 양이온성 리포좀과의 복합체 처리군을 나타낸다. 대조군 “C”는 미처리군으로 종양세포 생존율을 100%로 산정하였으며, 전달체 리포좀 단독처리군인 “NC1"은 siRNA를 함유하지 않아 대조군에 비하여 세포 생존율에 큰 변화가 없었고, 비교예 1 처리군인 “NC2"는 루시퍼라제 GL2 억제 siRNA으로서 종양세포 생존율에 아무 영향을 주지 않았고, "siGASC1+siMcl-1"과 "siGASC1+siWnt-1"의 실시예 2-12의 GASC1 발현억제용 siRNA에 Mcl-1 또는 Wnt-1 발현억제용 siRNA를 추가로 함유하는 조성물을 처리하였을 때 "siGASC1"로서 표현한 실시예 3-12의 siRNA와 양이온성 리포좀과의 복합체 처리군만 처리하였을 때보다 종양세포 생존율이 감소하였다. 따라서 도 6로부터 GASC1 발현 억제용 siRNA와 함께 Mcl-1 및 Wnt-1 발현 억제용 siRNA와 같이 암세포사멸을 유도하는 siRNA를 추가로 함유하는 조성물이 Hep3B 세포 내로 전달되어 각 siRNA가 표적하고 있는 유전자의 발현을 선택적으로 억제시키고 그 결과 GASC1 발현 억제용 siRNA를 단독처리하였을 때보다 높은 항종양 효능을 나타내는 것을 알 수 있다. Figure 6 shows the effect of tumor cell death mediated by a combination of GASC1 inhibitory siRNA and Mcl-1 and Wnt-1 siRNA, MTT (tetrazolium 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl Using tetrazolium bromide staining method, Hep3B is a human liver cancer cell line. In Figure 6, "C" is a control group, "NC1" is a nucleic acid carrier cationic liposomes only group, "NC2" is Comparative Example 1 treatment group, "siGASC1" is the siRNA and cationic liposomes of Examples 3-12 Complex treatment group, “siGASC1 + siMcl-1”, “siGASC1 + siWnt-1”, is a combination of a siRNA for inhibiting GASC1 expression with a siRNA for suppressing expression of Mcl-1 or Wnt-1 and a cationic liposome of Examples 2-12. The composite treatment group is shown. The control group “C” was untreated group, and the tumor cell survival rate was estimated to 100%. The carrier liposome-treated group “NC1” did not contain siRNA, so there was no significant change in cell viability compared to the control group. "Luciferase GL2 inhibitory siRNA had no effect on tumor cell viability, and Mcl-1 or" siGASC1 + siMcl-1 "and" siGASC1 + siWnt-1 "in the GASC1 expression inhibitory siRNAs of Examples 2-12 Treatment of the composition further comprising a siRNA for Wnt-1 expression suppression resulted in a reduction in tumor cell viability compared to treatment with the siRNA of Example 3-12 expressed as "siGASC1" and only the complex treatment group with the cationic liposome. Therefore, from FIG. 6, a composition additionally containing siRNAs that induce cancer cell death, such as Mcl-1 and Wnt-1 expression inhibitory siRNAs, along with GASC1 expression inhibitory siRNAs, is delivered into Hep3B cells to determine the genes targeted by each siRNA. It can be seen that the selective inhibition of expression and as a result shows a higher anti-tumor efficacy than when the siRNA for inhibiting GASC1 expression alone.

실시예Example 11. 화학적으로 변형한  11. Chemically modified GASC1GASC1 발현 억제용  For suppressing expression siRNAsiRNA Wow 양이온성Cationic 리포좀과의With liposomes 복합체의 제조 Preparation of the complex

실시예 2의 15종의 GASC1 발현 억제용 siRNA의 3'말단 초과부위에 포스포로티오에이트를 수식하여 이를 전달해 주는 양이온성 리포좀과의 복합체를 제조하였다. A complex with a cationic liposome that modified and delivered phosphorothioate at the 3 ′ end of the siRNA for inhibiting the expression of 15 GASC1 siRNAs of Example 2 was prepared.

GASC1 발현 억제용 siRNA의 화학적 변형은 삼천리제약(Samchully Pharmaceuticals, Seoul, Korea)에 주문제조하여 사용하였다.Chemical modification of siRNA for inhibiting GASC1 expression was performed by Samchully Pharmaceuticals, Seoul, Korea) to order and use.

양이온성 리포좀의 제조를 위해, 세포 융합성 인지질인 1,2-디아실-sn-글리세로-3-포스포에탄올아민(1,2-diacyl-sn-glycero-3-phosphoethanolamine, DOPE)과 콜레스테롤, 양이온성 인지질인 1,2-디올레일-sn-글리세로-3-에틸포스포콜린 (1,2-dioleoyl-sn-glycero-3-ethylphosphocholine, EDOPC) (Avanti Polar Lipid Inc., USA)을 몰비 1:1:1로 취해 유리 바이얼에 넣어 혼합한 후 질소 환경에서 모든 클로로포름이 증발될 때까지 낮은 속도로 회전 증발시켜 지질 박막 필름으로 제조하였다. 지질 다층형 소구체 (multilamella vesicle)를 제조하기 위하여 이 박막필름에 인산완충용액 1ml을 첨가하고 바이얼을 37℃로 하여 밀봉 후 3분간 교반(vortexing)하였다. 균일한 크기를 만들기 위해 이를 입자 균질화 제조기 (extruder, Northern Lipid Inc., Canada)를 사용하여 0.2㎛ 폴리카보네이트 막을 3번 통과시켜 양이온성 리포좀을 제조하였다. For the preparation of cationic liposomes, 1,2-diacyl-sn-glycero-3-phosphoethanolamine (DOPE) and cholesterol, cell fusion phospholipids 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EDOPC) (Avanti Polar Lipid Inc., USA) The mixture was taken in a molar ratio of 1: 1: 1, mixed in a glass vial, and then evaporated at low speed until all chloroform was evaporated in a nitrogen environment to prepare a lipid thin film. To prepare a lipid multilamellar vesicle, 1 ml of a phosphate buffer solution was added to the thin film, and the vial was sealed at 37 ° C., and then stirred (vortexing) for 3 minutes. Cationic liposomes were prepared by passing a 0.2 μm polycarbonate membrane three times using a particle homogenization maker (extruder, Northern Lipid Inc., Canada) to make a uniform size.

얻어진 양이온성 리포좀을 siRNA의 3'말단 초과부위에 포스포로티오에이트를 수식한 15종의 GASC1 발현 억제용 siRNA와 각각 혼합하여 상온에서 20분간 유지시켜 siRNA 및 양이온성 리포좀과의 복합체를 제조하였다. The resulting cationic liposomes were mixed with 15 kinds of GASC1 expression inhibitory siRNAs modified with phosphorothioate at the 3 ′ end of the siRNA, respectively, and maintained at room temperature for 20 minutes to prepare a complex with siRNA and cationic liposomes.

실시예 11을 통해 제조된 포스포로티오에이트로 수식된 siRNA와 양이온성 리포좀과의 복합체의 구성을 정리하면 표 6과 같다.Table 6 summarizes the composition of the conjugated siRNA modified with the phosphorothioate prepared through Example 11 and the cationic liposome.

표 6. 실시예 11을 통해 제조된 포스포로티오에이트로 수식된 siRNA와 양이온성 리포좀과의 복합체의 구성 Table 6 . Composition of the complex of the phosphorothioate-modified siRNA prepared with Example 11 with a cationic liposome

실시예Example GASC1GASC1 siRNAsiRNA 양이온성Cationic 리포좀Liposomes 11-111-1 포스포로티오에이트로 수식된 실시예 2-1의 siRNASiRNA of Example 2-1 modified with phosphorothioate DOPE + 콜레스테롤 + EDOPCDOPE + Cholesterol + EDOPC 11-211-2 포스포로티오에이트로 수식된 실시예 2-2의 siRNASiRNA of Example 2-2 modified with phosphorothioate 11-311-3 포스포로티오에이트로 수식된 실시예 2-3의 siRNASiRNA of Example 2-3 modified with phosphorothioate 11-411-4 포스포로티오에이트로 수식된 실시예 2-4의 siRNASiRNA of Examples 2-4 modified with phosphorothioate 11-511-5 포스포로티오에이트로 수식된 실시예 2-5의 siRNASiRNA of Example 2-5 modified with phosphorothioate 11-611-6 포스포로티오에이트로 수식된 실시예 2-6의 siRNASiRNA of Examples 2-6 modified with phosphorothioate 11-711-7 포스포로티오에이트로 수식된 실시예 2-7의 siRNASiRNA of Examples 2-7 modified with phosphorothioate 11-811-8 포스포로티오에이트로 수식된 실시예 2-8의 siRNASiRNA of Example 2-8 modified with phosphorothioate 11-911-9 포스포로티오에이트로 수식된 실시예 2-9의 siRNASiRNA of Examples 2-9 modified with phosphorothioate 11-1011-10 포스포로티오에이트로 수식된 실시예 2-10의 siRNASiRNA of Examples 2-10 modified with phosphorothioate 11-1111-11 포스포로티오에이트로 수식된 실시예 2-11의 siRNASiRNA of Examples 2-11 modified with phosphorothioate 11-1211-12 포스포로티오에이트로 수식된 실시예 2-12의 siRNASiRNA of Examples 2-12 modified with phosphorothioate 11-1311-13 포스포로티오에이트로 수식된 실시예 2-13의 siRNASiRNA of Example 2-13 modified with phosphorothioate 11-1411-14 포스포로티오에이트로 수식된 실시예 2-14의 siRNASiRNA of Examples 2-14 modified with phosphorothioate 11-1511-15 포스포로티오에이트로 수식된 실시예 2-15의 siRNASiRNA of Examples 2-15 modified with phosphorothioate

실시예 12. 젖산탈수소효소 (LDH) 방법을 이용한 화학적으로 변형시킨 GASC1 발현 억제 siRNA의 항종양 효능 평가 Example 12 Evaluation of Antitumor Efficacy of Chemically Modified GASC1 Inhibitory siRNA Using Lactic Acid Dehydrogenase (LDH) Method

화학적으로 변형된 GASC1의 발현을 억제하는 siRNA 함유 조성물이 종양세포를 손상시키는 정도를 평가하기 위하여 종양세포의 손상으로 인하여 세포 외부로 배출된 젖산 탈수소효소(LDH)를 고감도로 측정하는 LDH Cytotoxicity Detection kit(TAKARA Bio Inc., Otsu Shiga, Japan)를 이용하여 하기와 같은 과정으로 실험을 수행하였다.LDH Cytotoxicity Detection Kit for high sensitivity detection of lactate dehydrogenase (LDH) released from cells due to tumor cell damage in order to assess the extent of siRNA-containing compositions that inhibit the expression of chemically modified GASC1. (TAKARA Bio Inc., Otsu Shiga, Japan) was used to perform the experiment in the following process.

Hep3B 세포주를 실험 전날 24-웰 플레이트에 웰 당 세포를 8×10⁴씩 분주(seeding)하였다. 각 플레이트의 세포가 50-70%정도 균일하게 성장했을 때 배지를 제거하고 혈청이 포함되지 않은 새 배지를 웰(well) 당 250㎕씩 첨가하였다. Hep3B cell lines were seeded 8 × 10 μs of cells per well in 24-well plates the day before the experiment. When the cells of each plate grew uniformly by 50-70%, the medium was removed, and 250 μl of wells were added per well.

에펜도르프 튜브에 혈청이 포함되지 않은 배지 50㎕씩을 넣고 비교예 1의 루시퍼라제 GL2 발현 억제 siRNA와 양이온성 리포좀과의 복합체 조성물, 실시예 11-1 내지 11-15의 siRNA의 3'말단 초과부위에 포스포로티오에이트를 화학적으로 수식한 15종의 GASC1 발현 억제용 siRNA와 양이온성 리포좀과의 복합체 조성물을 각각 첨가하였다. 미디어에 포함된 siRNA의 최종 농도는 50nM이 되게 맞추었다. 이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하고 이렇게 제조된 복합체를 웰 플레이트에 첨가하여 37℃의 CO₂세포배양기에서 배양하였다. 이 때 Triton X-100을 3%가 되도록 처리하여 최대 LDH 활성을 측정할 수 있도록 준비하여 역시 37℃의 CO₂세포배양기에서 배양하였다. 복합체를 처리하고 48시간 경과 후, 조직배양 플레이트를 250×g 에서 10분간 원심분리 후 상청액을 웰당 100㎕씩 취하여 별도의 투명한 96-웰 플레이트에 옮기고 제조사의 프로토콜 대로 반응혼합액을 조제하여 100㎕씩 첨가하였다. 플레이트를 차광하여 실온에서 30분간 정치한 후 엘라이져 리더 (ELISA reader)를 이용하여 492 nm에서 그 흡광도를 측정하였다. 음성대조군으로는 아무 것도 포함되어 있지 않은 배양배지가 사용되었고 양성대조군으로는 Triton X-100을 3%가 되도록 처리한 세포가 사용되었다. 종양세포 손상율은 [(실험군의 흡광도-음성대조군의 흡광도)/(양성대조군의 흡광도-음성대조군의 흡광도)×100]의 식을 사용하여 계산하였다. 50 μl each of serum-free medium was added to the Eppendorf tube, and the composite composition of the luciferase GL2 expression inhibitory siRNA and the cationic liposome of Comparative Example 1, and the 3 ′ terminal excess portion of the siRNA of Examples 11-1 to 11-15 To the above, 15 complexes of GASC1 expression inhibitory siRNA and cationic liposomes chemically modified with phosphorothioate were added. The final concentration of siRNA included in the media was set to 50 nM. After slowly pipetting and mixing, the mixture was allowed to stand at room temperature for 20 minutes, and the complex thus prepared was added to a well plate and incubated in a 37 ° C. CO 2 cell incubator. At this time, Triton X-100 was treated to 3% to prepare for measurement of the maximum LDH activity was also incubated in 37 ℃ CO₂ cell culture. 48 hours after the complex was treated, the tissue culture plate was centrifuged at 250 × g for 10 minutes, and then 100 μl of the supernatant was transferred to a separate transparent 96-well plate, and the reaction mixture was prepared according to the manufacturer's protocol. Added. After the plate was shielded and allowed to stand at room temperature for 30 minutes, its absorbance was measured at 492 nm using an ELISA reader. A culture medium containing nothing was used as a negative control and cells treated with 3% Triton X-100 were used as a positive control. Tumor cell damage rate was calculated using the formula [(absorbance of experimental group-absorbance of negative control group) / (absorbance of positive control group-absorbance of negative control group) x 100].

도 7은 GASC1 발현 억제 siRNA의 세포사멸효과를 젖산 탈수소효소(lactate dehydrogenase, LDH) 측정법을 사용하여 사람의 간암 세포주인 Hep3B에서 확인한 결과를 보여준다. 도 7에서, “C”는 대조군, “NC1”은 핵산 전달체인 양이온성 리포좀 단독처리군, “NC2”는 비교예 1 처리군, 11-1내지 11-15는 실시예 11-1 내지 11-15의 복합체 처리군을 나타낸다. 대조군 “C”는 미처리군으로 종양세포 손상율에 변화가 없었고, 양이온성 리포좀 단독처리군인 “NC1"은 siRNA를 함유하지 않아 대조군에 비하여 종양세포 손상율에 큰 변화가 없었으며, 비교예 1 처리군인 “NC2"는 루시퍼라제 GL2 억제 siRNA가 리보핵산매개간섭을 일으키지 않아 종양세포 손상율에 큰 변화가 없었고, 실시예 11-1 내지 11-15의 처리군은 대조군과 비교했을 때, 실시예 11-6, 11-9, 11-12, 11-14의 siRNA와 양이온성 리포좀의 복합체 처리군에서 종양세포 손상율이 증가하였다. 따라서 도 7으로부터 실시예 11-6, 11-9, 11-12, 11-14의 화학적으로 변형된 GASC1 발현 억제용 siRNA가 Hep3B 세포 내로 전달되어 GASC1의 발현을 선택적으로 억제시키고 그 결과로 항종양 효능을 가지는 것을 알 수 있다.Figure 7 shows the results of confirming the apoptosis effect of GASC1 expression inhibitory siRNA in human liver cancer cell line Hep3B using lactate dehydrogenase (LDH) assay. In Figure 7, "C" is a control group, "NC1" is a nucleic acid carrier cationic liposome only treatment group, "NC2" is Comparative Example 1 treatment group, 11-1 to 11-15 are Examples 11-1 to 11- The complex treatment group of 15 is shown. The control group “C” was untreated group, and there was no change in tumor cell damage rate. The cationic liposome-treated group “NC1” did not contain siRNA, so there was no significant change in tumor cell damage rate compared to the control group. The soldier "NC2" did not cause significant change in tumor cell damage rate because luciferase GL2 inhibitory siRNA did not cause ribonucleic acid mediated interference, and the treatment groups of Examples 11-1 to 11-15 were compared with the control group, Example 11 Tumor cell damage rate was increased in the complex treatment group of -6, 11-9, 11-12, 11-14 with siRNA and cationic liposomes. Thus, siRNA for inhibiting GASC1 expression of chemically modified GASC1 of Examples 11-6, 11-9, 11-12, and 11-14 from FIG. 7 was transferred into Hep3B cells to selectively inhibit the expression of GASC1 and consequently antitumor. It can be seen that it has efficacy.

<110> Korea University Industrial & Academic Collaboration Foundation <120> Ribonucleic acid-based pharmaceutical composition for treating cancer <130> P08-008-KRU <160> 45 <170> KopatentIn 1.71 <210> 1 <211> 19 <212> RNA <213> Homo sapiens <400> 1 ccccagcugu aagauaaug 19 <210> 2 <211> 19 <212> RNA <213> Homo sapiens <400> 2 aggagcccau cgugcgggu 19 <210> 3 <211> 19 <212> RNA <213> Homo sapiens <400> 3 uucagcagau ggucacagg 19 <210> 4 <211> 19 <212> RNA <213> Homo sapiens <400> 4 gauuuggagc gcaaguacu 19 <210> 5 <211> 19 <212> RNA <213> Homo sapiens <400> 5 auaccccaua ucucuauuu 19 <210> 6 <211> 19 <212> RNA <213> Homo sapiens <400> 6 gaugacauug auuucucca 19 <210> 7 <211> 19 <212> RNA <213> Homo sapiens <400> 7 ucaugguuuc aacugugca 19 <210> 8 <211> 19 <212> RNA <213> Homo sapiens <400> 8 acaaggaaag gauauauac 19 <210> 9 <211> 19 <212> RNA <213> Homo sapiens <400> 9 ccccgacuca gucacagau 19 <210> 10 <211> 19 <212> RNA <213> Homo sapiens <400> 10 guguaccuuc uauauccag 19 <210> 11 <211> 19 <212> RNA <213> Homo sapiens <400> 11 gugaugaaga auugccuga 19 <210> 12 <211> 19 <212> RNA <213> Homo sapiens <400> 12 gccacacugu gccaucugc 19 <210> 13 <211> 19 <212> RNA <213> Homo sapiens <400> 13 ugccuuccuu gaagaggau 19 <210> 14 <211> 19 <212> RNA <213> Homo sapiens <400> 14 cgugaagucc aaggcuugc 19 <210> 15 <211> 19 <212> RNA <213> Homo sapiens <400> 15 agagacaaag agugcugag 19 <210> 16 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 16 ccccagcugu aagauaaugt t 21 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 17 cauuaucuua cagcuggggt t 21 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 18 aggagcccau cgugcgggut t 21 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 19 acccgcacga ugggcuccut t 21 <210> 20 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 20 uucagcagau ggucacaggt t 21 <210> 21 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 21 ccugugacca ucugcugaat t 21 <210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 22 gauuuggagc gcaaguacut t 21 <210> 23 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 23 aguacuugcg cuccaaauct t 21 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 24 auaccccaua ucucuauuut t 21 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 25 aaauagagau augggguaut t 21 <210> 26 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 26 gaugacauug auuucuccat t 21 <210> 27 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 27 uggagaaauc aaugucauct t 21 <210> 28 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 28 ucaugguuuc aacugugcat t 21 <210> 29 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 29 ugcacaguug aaaccaugat t 21 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 30 acaaggaaag gauauauact t 21 <210> 31 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 31 guauauaucc uuuccuugut t 21 <210> 32 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 32 ccccgacuca gucacagaut t 21 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 33 aucugugacu gagucggggt t 21 <210> 34 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 34 guguaccuuc uauauccagt t 21 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 35 cuggauauag aagguacact t 21 <210> 36 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 36 gugaugaaga auugccugat t 21 <210> 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 37 ucaggcaauu cuucaucact t 21 <210> 38 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 38 gccacacugu gccaucugct t 21 <210> 39 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 39 gcagauggca caguguggct t 21 <210> 40 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 40 ugccuuccuu gaagaggaut t 21 <210> 41 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 41 auccucuuca aggaaggcat t 21 <210> 42 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 42 cgugaagucc aaggcuugct t 21 <210> 43 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 43 gcaagccuug gacuucacgt t 21 <210> 44 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 44 agagacaaag agugcugagt t 21 <210> 45 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 45 cucagcacuc uuugucucut t 21<110> Korea University Industrial & Academic Collaboration Foundation <120> Ribonucleic acid-based pharmaceutical composition for treating cancer <130> P08-008-KRU <160> 45 <170> KopatentIn 1.71 <210> 1 <211> 19 <212> RNA <213> Homo sapiens <400> 1 ccccagcugu aagauaaug 19 <210> 2 <211> 19 <212> RNA <213> Homo sapiens <400> 2 aggagcccau cgugcgggu 19 <210> 3 <211> 19 <212> RNA <213> Homo sapiens <400> 3 uucagcagau ggucacagg 19 <210> 4 <211> 19 <212> RNA <213> Homo sapiens <400> 4 gauuuggagc gcaaguacu 19 <210> 5 <211> 19 <212> RNA <213> Homo sapiens <400> 5 auaccccaua ucucuauuu 19 <210> 6 <211> 19 <212> RNA <213> Homo sapiens <400> 6 gaugacauug auuucucca 19 <210> 7 <211> 19 <212> RNA <213> Homo sapiens <400> 7 ucaugguuuc aacugugca 19 <210> 8 <211> 19 <212> RNA <213> Homo sapiens <400> 8 acaaggaaag gauauauac 19 <210> 9 <211> 19 <212> RNA <213> Homo sapiens <400> 9 ccccgacuca gucacagau 19 <210> 10 <211> 19 <212> RNA <213> Homo sapiens <400> 10 guguaccuuc uauauccag 19 <210> 11 <211> 19 <212> RNA <213> Homo sapiens <400> 11 gugaugaaga auugccuga 19 <210> 12 <211> 19 <212> RNA <213> Homo sapiens <400> 12 gccacacugu gccaucugc 19 <210> 13 <211> 19 <212> RNA <213> Homo sapiens <400> 13 ugccuuccuu gaagaggau 19 <210> 14 <211> 19 <212> RNA <213> Homo sapiens <400> 14 cgugaagucc aaggcuugc 19 <210> 15 <211> 19 <212> RNA <213> Homo sapiens <400> 15 agagacaaag agugcugag 19 <210> 16 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 16 ccccagcugu aagauaaugt t 21 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 17 cauuaucuua cagcuggggt t 21 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 18 aggagcccau cgugcgggut t 21 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 19 acccgcacga ugggcuccut t 21 <210> 20 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 20 uucagcagau ggucacaggt t 21 <210> 21 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 21 ccugugacca ucugcugaat t 21 <210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 22 gauuuggagc gcaaguacut t 21 <210> 23 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 23 aguacuugcg cuccaaauct t 21 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 24 auaccccaua ucucuauuut t 21 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 25 aaauagagau augggguaut t 21 <210> 26 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 26 gaugacauug auuucuccat t 21 <210> 27 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 27 uggagaaauc aaugucauct t 21 <210> 28 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 28 ucaugguuuc aacugugcat t 21 <210> 29 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 29 ugcacaguug aaaccaugat t 21 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 30 acaaggaaag gauauauact t 21 <210> 31 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 31 guauauaucc uuuccuugut t 21 <210> 32 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 32 ccccgacuca gucacagaut t 21 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 33 aucugugacu gagucggggt t 21 <210> 34 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 34 guguaccuuc uauauccagt t 21 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 35 cuggauauag aagguacact t 21 <210> 36 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 36 gugaugaaga auugccugat t 21 <210> 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 37 ucaggcaauu cuucaucact t 21 <210> 38 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 38 gccacacugu gccaucugct t 21 <210> 39 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 39 gcagauggca caguguggct t 21 <210> 40 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 40 ugccuuccuu gaagaggaut t 21 <210> 41 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 41 auccucuuca aggaaggcat t 21 <210> 42 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 42 cgugaagucc aaggcuugct t 21 <210> 43 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 43 gcaagccuug gacuucacgt t 21 <210> 44 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, sense sequence <220> <223> siRNA against GASC1, sense sequence <400> 44 agagacaaag agugcugagt t 21 <210> 45 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> siRNA against GASC1, antisense sequence <220> <223> siRNA against GASC1, antisense sequence <400> 45 cucagcacuc uuugucucut t 21

Claims (19)

서열번호 6, 서열번호 9, 서열번호 12 또는 서열번호 14의 GASC1 전사체(mRNA transcript) 염기서열에 상보적으로 결합하여 세포 내에서 GASC1의 발현을 억제하는 하나 이상의 siRNA를 포함하는 암 치료용 리보핵산 의약 조성물.Ribo for cancer treatment comprising one or more siRNAs that complementarily bind to the GASC1 transcript nucleotide sequence of SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 12, or SEQ ID NO: 14 to inhibit expression of GASC1 in cells Nucleic acid pharmaceutical composition. 제1항에 있어서, 상기 siRNA가 포스포로티오에이트 수식 또는 보라노포스페이트 수식에 의해 화학적으로 변형된 형태인 암 치료용 리보핵산 의약 조성물.The ribonucleic acid pharmaceutical composition for treating cancer according to claim 1, wherein the siRNA is chemically modified by phosphorothioate modification or boranophosphate modification. 제1항에 있어서, 상기 siRNA를 핵산 전달체와의 복합체 형태로 포함하는 암 치료용 리보핵산 의약 조성물.The ribonucleic acid pharmaceutical composition for treating cancer according to claim 1, wherein the siRNA is contained in a complex form with a nucleic acid carrier. 제3항에 있어서, 상기 핵산 전달체는 양이온성 리포좀인 암 치료용 리보핵산 의약 조성물.4. The ribonucleic acid pharmaceutical composition for treating cancer according to claim 3, wherein the nucleic acid carrier is a cationic liposome. 제4항에 있어서, 상기 양이온성 리포좀은 1,2-디올레오일-sn-글리세로-3-에틸포스포콜린(1,2-dioleoyl-sn-glycero-3-ethylphosphocholine, EDOPC), 1-팔미토일-2-올레오일-sn-글리세로-3-에틸포스포콜린(1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine, EPOPC), 1,2-디미리스토일-sn-글리세로-3-에틸포스포콜린(1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine, EDMPC), 1,2-디스테아로일-sn-글리세로-3-에틸포스포콜린(1,2-distearoyl-sn-glycero-3-ethylphosphocholine, SPC), 1,2-디팔미토일-sn-글리세로-3-에틸포스포콜린 (1,2-dipalmitoyl-sn-glycero-3-ethylphosphocholine, EDPPC), 1,2-디올레오일-3-트리메틸암모늄-프로판 (1,2-dioleoyl-3-trimethylammonium-propane, DOTAP), N-[1-(2,3-디올레일옥시)프로필]-N,N,N-트리메틸암모늄 클로라이드 (N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride , DOTMA) 및 3ß-[N-(N',N'-디메틸아미노에탄)-카바모일]콜레스테롤 (3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol, DC-Cholesterol)로 구성되는 군으로부터 선택되는 하나 이상의 양이온성 지질을 포함하는 것인 암 치료용 리보핵산 의약 조성물. The method of claim 4, wherein the cationic liposome is 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (1,2-dioleoyl-sn-glycero-3-ethylphosphocholine, EDOPC), 1- Palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine, EPOPC), 1,2-dimyristoyl-sn- Glycero-3-ethylphosphocholine (1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine, EDMPC), 1,2-distearoyl-sn-glycero-3-ethylphosphocholine (1, 2-distearoyl-sn-glycero-3-ethylphosphocholine (SPC), 1,2-dipalmitoyl-sn-glycero-3-ethylphosphocholine (1,2-dipalmitoyl-sn-glycero-3-ethylphosphocholine, EDPPC ), 1,2-dioleoyl-3-trimethylammonium-propane (1,2-dioleoyl-3-trimethylammonium-propane, DOTAP), N- [1- (2,3-dioleoyloxy) propyl] -N , N, N-trimethylammonium chloride (N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride, DOTMA) and 3ß- [N- (N '(N', N'-dimethylamino) Ethane) -carbamoyl] cholesterol (3ß- A ribonucleic acid pharmaceutical composition for cancer treatment comprising at least one cationic lipid selected from the group consisting of [N- (N ', N'-dimethylaminoethane) -carbamoyl] cholesterol, DC-Cholesterol). 제5항에 있어서, 상기 양이온성 리포좀은 1,2-디아실-sn-글리세로-3-포스포에탄올아민 (1,2-diacyl-sn-glycero-3-phosphoethanolamine, DOPE), 1,2-디피타노일-sn-글리세로-3-포스포에탄올아민 (1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine, DPhPE), 1,2-디올레오일-sn-글리세로-3-포스포콜린 (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC), 1,2-디올레오일-sn-글리세로-3-[포스포-L-세린] (1,2-dioleoyl-sn-glycero-3-phospho-L-serine], DOPS), 1,2-디올레오일-sn-글리세로-3-에틸포스포콜린 (1,2-dioleoyl-sn-glycero-3-ethylphosphocholine, DO-Ethyl-PC) 및 콜레스테롤로 구성된 군으로부터 선택되는 하나 이상의 보조 지질을 추가로 포함하는 것인 암치료용 리보핵산 의약 조성물.The method of claim 5, wherein the cationic liposome is 1,2-diacyl-sn-glycero-3-phosphoethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine, DOPE), 1,2 -Diphytanoyl-sn-glycero-3-phosphoethanolamine (1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine, DPhPE), 1,2-dioleoyl-sn-glycero-3-force Focoline (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC), 1,2-dioleoyl-sn-glycero-3- [phospho-L-serine] (1,2-dioleoyl- sn-glycero-3-phospho-L-serine], DOPS), 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (1,2-dioleoyl-sn-glycero-3-ethylphosphocholine, DO-Ethyl-PC) and cholesterol, ribonucleic acid pharmaceutical composition for cancer treatment further comprising one or more auxiliary lipids selected from the group consisting of. 제3항에 있어서, 상기 핵산 전달체는 양이온성 고분자인 암 치료용 리보핵산 의약 조성물. 4. The ribonucleic acid pharmaceutical composition for treating cancer according to claim 3, wherein the nucleic acid carrier is a cationic polymer. 제7항에 있어서, 상기 양이온성 고분자는 폴리-L-라이신 (poly-L-lysine),폴리-L-오르니틴(poly-L-ornithine), 폴리-L-히스티딘(poly-L-histidine), 폴리-L-아르기닌 (poly-L-arginine), 비스(3-아미노프로필)터미네이티드 폴리테트라하이드로퓨란 (bis(3-aminopropyl)terminated polytetrahydrofuran), 폴리아크릴아미이드(polyacrylamide, PA), 폴리(α-[4-아미노부틸]-L-글리콜산 (poly(α-[4-aminobutyl]-L-glycolic acid , PAGA), 폴리(2-아미노에틸 프로필렌 포스페이트)(poly(2-aminoethyl propylene phosphate), PPE-EA), 사이클로덱스트린의 양이온성유도체 (cationic derivatives of cyclodextrin), 폴리(2-(디메틸아미노)에틸 메타아크릴레이트) (poly(2-(dimethylamino)ethyl methacrylate),pDMAEMA), 폴리(4-비닐피리딘) (poly(4-vinylpyridine), P4VP), O,O'-비스(2-아미노프로필) 폴리프로필렌 글리콜-블록-폴리에틸렌 글리콜-블록-폴리프로필렌 글리콜 (O,O'-bis(2-aminopropyl) polypropylene glycol-block-polyethylene glycol-blockpolypropyleneglycol), 키토산, 키토산 유도체, 폴리에틸렌이민(polyethylenimine, PEI), 폴리에틸렌이민 유도체, 폴리아미도아민(polyamidoamine, PAMAM), 파쇄형(fractured) PAMAM 및 폴리-N-에틸-4-비닐피리디늄 트리브로마이드 (poly-N-ethyl-4-vinylpyridinium tribromide)로 구성되는 군으로부터 선택되는 암 치료용 리보핵산 의약 조성물. The method according to claim 7, wherein the cationic polymer is poly-L-lysine, poly-L-ornithine, poly-L-histidine , Poly-L-arginine, bis (3-aminopropyl) terminated polytetrahydrofuran (bis (3-aminopropyl) terminated polytetrahydrofuran), polyacrylamide (PA), poly (α- [4-aminobutyl] -L-glycolic acid (poly (α- [4-aminobutyl] -L-glycolic acid, PAGA), poly (2-aminoethyl propylene phosphate) (poly (2-aminoethyl propylene phosphate) ), PPE-EA), cationic derivatives of cyclodextrin, poly (2- (dimethylamino) ethyl methacrylate), pDMAEMA), poly ( 4-vinylpyridine) (poly (4-vinylpyridine), P4VP), O, O'-bis (2-aminopropyl) polypropylene glycol-block-polyethylene glycol-block-polypropylene glycol (O, O'-bis ( 2-a minopropyl) polypropylene glycol-block-polyethylene glycol-blockpolypropyleneglycol), chitosan, chitosan derivatives, polyethylenimine (PEI), polyethyleneimine derivatives, polyamidoamine (polyamidoamine, PAMAM), fractured PAMAM and poly-N- A ribonucleic acid pharmaceutical composition for cancer treatment selected from the group consisting of ethyl-4-vinylpyridinium tribromide (poly-N-ethyl-4-vinylpyridinium tribromide). 제1항에 있어서, 항암 화학요법제를 추가적으로 포함하는 암 치료용 리보핵산 의약 조성물.The ribonucleic acid pharmaceutical composition according to claim 1, further comprising an anticancer chemotherapeutic agent. 제1항에 있어서, 상기 siRNA가 서열번호 26의 센스 서열 및 서열번호 27의 안티센스 서열을 갖는 것인 암 치료용 리보핵산 의약 조성물.The ribonucleic acid pharmaceutical composition for treating cancer according to claim 1, wherein the siRNA has a sense sequence of SEQ ID NO: 26 and an antisense sequence of SEQ ID NO: 27. 제1항에 있어서, 상기 siRNA가 서열번호 32의 센스 서열 및 서열번호 33의 안티센스 서열을 갖는 것인 암 치료용 리보핵산 의약 조성물.The ribonucleic acid pharmaceutical composition for treating cancer according to claim 1, wherein the siRNA has a sense sequence of SEQ ID NO: 32 and an antisense sequence of SEQ ID NO: 33. 제1항에 있어서, 상기 siRNA가 서열번호 38의 센스 서열 및 서열번호 39의 안티센스 서열을 갖는 것인 암 치료용 리보핵산 의약 조성물.The ribonucleic acid pharmaceutical composition for treating cancer according to claim 1, wherein the siRNA has a sense sequence of SEQ ID NO: 38 and an antisense sequence of SEQ ID NO: 39. 제1항에 있어서, 상기 siRNA가 서열번호 42의 센스 서열 및 서열번호 43의 안티센스 서열을 갖는 것인 암 치료용 리보핵산 의약 조성물.The ribonucleic acid pharmaceutical composition for treating cancer according to claim 1, wherein the siRNA has a sense sequence of SEQ ID NO: 42 and an antisense sequence of SEQ ID NO: 43. GASC1의 발현을 억제하고 서열번호 26의 센스 서열 및 서열번호 27의 안티센스 서열을 갖는 siRNA.An siRNA that inhibits expression of GASC1 and has a sense sequence of SEQ ID NO: 26 and an antisense sequence of SEQ ID NO: 27; GASC1의 발현을 억제하고 서열번호 32의 센스 서열 및 서열번호 33의 안티센스 서열을 갖는 siRNA.An siRNA that inhibits expression of GASC1 and has a sense sequence of SEQ ID NO: 32 and an antisense sequence of SEQ ID NO: 33; GASC1의 발현을 억제하고 서열번호 38의 센스 서열 및 서열번호 39의 안티센스 서열을 갖는 siRNA.An siRNA that inhibits expression of GASC1 and has a sense sequence of SEQ ID NO: 38 and an antisense sequence of SEQ ID NO: 39; GASC1의 발현을 억제하고 서열번호 42의 센스 서열 및 서열번호 43의 안티센스 서열을 갖는 siRNA.An siRNA that inhibits expression of GASC1 and has a sense sequence of SEQ ID NO: 42 and an antisense sequence of SEQ ID NO: 43; 제1항에 있어서, Wnt-1, Hec1, Survivin, Livin, Bcl-2, XIAP, Mdm2, EGF, EGFR, VEGF, VEGFR, Mcl-1, IGF1R, Akt1, Grp78, STAT3, STAT5a, β-catenin, WISP1, 또는 c-myc의 발현을 억제하는 siRNA로 구성되는 군으로부터 선택되는 하나 이상의 siRNA를 추가적으로 포함하는 암 치료용 리보핵산 의약 조성물.The method of claim 1, wherein Wnt-1, Hec1, Survivin, Livin, Bcl-2, XIAP, Mdm2, EGF, EGFR, VEGF, VEGFR, Mcl-1, IGF1R, Akt1, Grp78, STAT3, STAT5a, β-catenin, A ribonucleic acid pharmaceutical composition for treating cancer further comprising at least one siRNA selected from the group consisting of WISP1 or siRNA that inhibits the expression of c-myc. 삭제delete
KR1020080014723A 2008-02-19 2008-02-19 Ribonucleic acid-based pharmaceutical composition for treating cancer KR100861278B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080014723A KR100861278B1 (en) 2008-02-19 2008-02-19 Ribonucleic acid-based pharmaceutical composition for treating cancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080014723A KR100861278B1 (en) 2008-02-19 2008-02-19 Ribonucleic acid-based pharmaceutical composition for treating cancer

Publications (1)

Publication Number Publication Date
KR100861278B1 true KR100861278B1 (en) 2008-10-01

Family

ID=40152591

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080014723A KR100861278B1 (en) 2008-02-19 2008-02-19 Ribonucleic acid-based pharmaceutical composition for treating cancer

Country Status (1)

Country Link
KR (1) KR100861278B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104395752A (en) * 2011-11-21 2015-03-04 泰纬生命科技股份有限公司 Biomarkers for cancers responsive to modulators of HEC1 activity
WO2016204515A1 (en) * 2015-06-15 2016-12-22 (주)바이오니아 Stat3 gene specific sirna, double-helical oligo rna structure including sirna, composition containing same, and use thereof
CN109125741A (en) * 2018-08-13 2019-01-04 四川大学 Hyaluronic acid/DOTAP/ survivin encoding gene self assembly ternary complex preparation and preparation method thereof
CN112933045A (en) * 2021-04-09 2021-06-11 贵州医科大学 Co-loaded dihydroartemisinin/chloroquine phosphate double-sensitive nano preparation and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Cancer Research (2000) Vol. 60, No. 17, pp. 4735-4739

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104395752A (en) * 2011-11-21 2015-03-04 泰纬生命科技股份有限公司 Biomarkers for cancers responsive to modulators of HEC1 activity
WO2016204515A1 (en) * 2015-06-15 2016-12-22 (주)바이오니아 Stat3 gene specific sirna, double-helical oligo rna structure including sirna, composition containing same, and use thereof
CN109125741A (en) * 2018-08-13 2019-01-04 四川大学 Hyaluronic acid/DOTAP/ survivin encoding gene self assembly ternary complex preparation and preparation method thereof
CN109125741B (en) * 2018-08-13 2022-02-11 四川大学 Self-assembled ternary complex preparation of hyaluronic acid/DOTAP/survivin coding gene and preparation method thereof
CN112933045A (en) * 2021-04-09 2021-06-11 贵州医科大学 Co-loaded dihydroartemisinin/chloroquine phosphate double-sensitive nano preparation and preparation method thereof
CN112933045B (en) * 2021-04-09 2022-04-12 贵州医科大学 Co-loaded dihydroartemisinin/chloroquine phosphate double-sensitive nano preparation and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100807069B1 (en) Pharmaceutical composition for treating cancer
Cheng et al. Lipid nanoparticles loaded with an antisense oligonucleotide gapmer against Bcl-2 for treatment of lung cancer
Abbasi et al. Recent attempts at RNAi‐mediated P‐glycoprotein downregulation for reversal of multidrug resistance in cancer
Scognamiglio et al. Transferrin‐conjugated SNALPs encapsulating 2′‐O‐methylated miR‐34a for the treatment of multiple myeloma
JP7003044B2 (en) Treatment of angiogenesis-related diseases with RNA complexes targeting ANGPT2 and PDGFB
Curreri et al. RNA therapeutics in the clinic
US20070287677A1 (en) Rad51 Expression Inhibitors, Pharmaceutical Agents Containing The Inhibitors As Active Ingredients, And Uses Thereof
Ramasamy et al. Nano drug delivery systems for antisense oligonucleotides (ASO) therapeutics
TWI752927B (en) Sirna structures for high activity and reduced off target
US20210244826A1 (en) Short interfering rna templated lipoprotein particles (sirna-tlp)
Ma et al. Structural optimization and additional targets identification of antisense oligonucleotide G3139 encapsulated in a neutral cytidinyl-lipid combined with a cationic lipid in vitro and in vivo
EP3377630A1 (en) Treatment of age-related macular degeneration using rna complexes that target myd88 or tlr3
Wang et al. Double-stranded Let-7 mimics, potential candidates for cancer gene therapy
KR100870314B1 (en) Pharmaceutical composition containing nucleic acid for treating cancer
JP2021513508A (en) Anti-cancer microRNA and its lipid preparation
US20170211073A1 (en) Antisense antineoplastic agent
KR100861278B1 (en) Ribonucleic acid-based pharmaceutical composition for treating cancer
Yang et al. Development of a carrier system containing hyaluronic acid and protamine for siRNA delivery in the treatment of melanoma
WO2013056670A1 (en) Small interference rnas, uses thereof and method for inhibiting the expression of plk1 gene
US20130281513A1 (en) siRNA FOR INHIBITION OF Hif1alpha EXPRESSION AND ANTICANCER COMPOSITION CONTAINING THE SAME
KR101836877B1 (en) New production method of lipoplex for local administration and antitumor drug using lipoplex
KR101168726B1 (en) Pharmaceutical composition for treating cancer
EP3119887B1 (en) Improved small interfering ribonucleic acid molecules
KR20150140598A (en) Pharmaceutical composition for preventing and treating cancer comprising double-stranded microRNAs as active ingredient
Ulanova et al. The future of antisense oligonucleotides in the treatment of respiratory diseases

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110615

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20120615

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee