WO2016204348A1 - Active-type cavitator system of supercavitating underwater vehicle - Google Patents

Active-type cavitator system of supercavitating underwater vehicle Download PDF

Info

Publication number
WO2016204348A1
WO2016204348A1 PCT/KR2015/010972 KR2015010972W WO2016204348A1 WO 2016204348 A1 WO2016204348 A1 WO 2016204348A1 KR 2015010972 W KR2015010972 W KR 2015010972W WO 2016204348 A1 WO2016204348 A1 WO 2016204348A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed air
cavitation
underwater vehicle
cavator
underwater
Prior art date
Application number
PCT/KR2015/010972
Other languages
French (fr)
Korean (ko)
Inventor
안병권
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Publication of WO2016204348A1 publication Critical patent/WO2016204348A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B19/00Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means
    • F42B19/005Nose caps for torpedoes; Coupling torpedo-case parts together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/32Range-reducing or range-increasing arrangements; Fall-retarding means
    • F42B10/38Range-increasing arrangements
    • F42B10/42Streamlined projectiles
    • F42B10/46Streamlined nose cones; Windshields; Radomes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B19/00Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a cavitation system of an underwater moving body moving at high speed in the water using the transcendental cavity phenomenon.
  • the shapes of the cavities developed so far are conical and disc types.
  • the conical shape is advantageous in terms of resistance and linear stability (vibration force), but is limited by the shape of the body of the aquatic body located behind the cavator because of the smaller transverse cavity shape that occurs compared to the disc type.
  • the disk shape is disadvantageous in terms of resistance and straightness stability, but is less limited by the body shape of the underwater vehicle because of the larger transverse cavity shape that occurs compared to the cone shape.
  • the present invention has been proposed to solve the above problems, transcendence number
  • the objective is to provide an active cavitation system that maintains the initial cone shape of the heavy vehicle in order to reduce its resistance and vibration and to gradually change to a disk shape as the speed increases.
  • a conversion type cavitation device installed in the front head of the underwater vehicle and changed from a cone shape to a disc shape when the underwater vehicle is launched;
  • a compressed air tank installed at the rear of the conversion type cavator and storing compressed air therein;
  • a pressure sensor which measures the air pressure inside the compressed air tank and opens the compressed air valve when the measured air pressure exceeds a set value
  • a compressed air outlet installed at the front end of the water vapor moving body and configured to discharge the compressed air inside the compressed air tank to the outside of the underwater water moving body to form an artificial transcendental cavity;
  • An active cavitation system of a transcendental joint underwater vehicle comprising: two or more cavitation elements, each cavitation element having a layer in the front and rear direction at the beginning of the launch of the underwater vehicle; While forming the luer cone shape, when the speed of the underwater moving object increases, the front cavitation element is sequentially inserted into the rear cavitation element to sink, finally forming a disc shape.
  • the compressed air tank is discharged according to the operation of the pressure sensor and the compressed air valve. Supply negative compressed air to the compressed air outlet,
  • the compressed air discharge point of the compressed air outlet is actively controlled by the set value of the pressure sensor.
  • the compressed air discharge point of the compressed air discharge outlet provides an active cavitation system of the transcendental joint water vapor movement body, characterized in that faster.
  • the converting cavitation device includes a first cavator element, a second cavator element and a third cavator element, wherein the system first cavator element, the second cavator element and The third cavator element is layered in order from the front to the rear to form a conical shape.
  • the first cavator element When the speed of the underwater moving object increases, the first cavator element is first inserted into the second cavator element to be recessed.
  • the system forms a disc shape eventually as the first and second cavitation elements are inserted and impregnated together into the third cavator element.
  • the first cavator element is conical in shape.
  • the second cavator element has a shape in which the top end of the cone is cut out, and the first cavitation element which is accommodated in the first cavitation element and the first cavitation element which is inserted into the first accommodation space are the second cavities. Do not pass through the cavitation element Have a first stopper to hold it.
  • the third cavitation element has a shape in which the top end of the cone is cut out, and a second accommodation space capable of accommodating the second cavitation element and the second cavitation element inserted into the second accommodation space are included in the system 3.
  • a second stopper is provided to hold it out of the cavity element.
  • the height of the first cavator element is less than or equal to the height of the second cavator element and the height of the second cavator element is less than or equal to the height of the third cavator element.
  • a piston shaft facing rearward is connected to the first cavator element, a piston is installed at the end of the piston shaft, and a cylinder facing rearward is connected to the third cavator element, and the piston shaft is connected to the second cavitation element.
  • the compressed air tank is connected to the rear end of the cylinder, and a second sliding element is installed at an inner front end of the compressed air tank, and the 12 sliding elements are pushed by the piston to move to the rear of the compressed air tank.
  • a compressed air moving tube is connected to an outlet of the compressed air tank, and a compressed air valve is installed at a connection point between the compressed air tank and the compressed air moving tube, and the outlet of the compressed air tank is the initial launch of the steam moving body. It is closed by the compressed air valve and is opened as the pressure sensor operates while the speed of the underwater moving object is gradually increased.
  • the position and the number of the compressed air outlets are designed to be symmetrical in the up and down and left and right sides of the underwater vehicle. When the compressed air outlets are two or more, each of the compressed air outlets is configured to be selectively opened and closed.
  • a sub-compressed air moving tube connected to the inner space of the cylinder and the compressed air moving tube in the form of a bypass tube with respect to the compressed air moving tube;
  • a sub-compressed air valve installed in the sub-compressed air moving pipe, the sub-compressed air moving pipe opening and closing the sub-compressed air moving pipe according to the operation of the sub-pressure sensor;
  • a sub pressure sensor configured to move to the compressed air moving tube
  • the cavity maintains the conical shape at the beginning of the launching of the transcendental underwater underwater vehicle, the resistance and vibration force can be reduced, and as the speed increases, the cavator sequentially changes into a disc shape and the transcendental cavity generated accordingly Since the shape is also large, the body shape of the underwater vehicle is less restricted.
  • 1 is an underwater vehicle covered with a transcendental cavity.
  • Figure 2 is a description of the main elements of the transcendental joint exercise body.
  • Figure 3 is a shape of the transcendental joint underwater moving body according to the present invention.
  • 4 is a configuration of a conversion type cavator according to the present invention.
  • Figure 5 is a step-by-step operation of the convertible cavator according to the present invention.
  • Sub compressed air valve 110 Sub pressure sensor
  • FIG. 3 shows the shape of the transcendental joint underwater vehicle 10 according to the present invention.
  • the frontal head of the transcendental joint underwater vehicle 10 according to the present invention is provided with a convertible cavitation 20 (FIG. 3).
  • Convertible cavitation 20 is in contrast to the conventional conical (Cone Type) or disk-type (Disk Type) cavator, the conical or disk-type cavator is fixed in shape but does not change the Transformation cavitation (20) It is characterized by maintaining the cone shape at the beginning of launching the transcendental joint water vapor vehicle 10 and gradually changing to a disc shape as the speed increases.
  • Convertible cavitation 20 is provided with two or more cavitation elements for changing the shape as described above, at first the respective cavitation element is layered in the front and rear direction between each other conversion cavitation ( 20) has a conical shape, but gradually the front cavitation element is inserted into the rear cavitation element in order to be recessed, and finally the converting cavitation 20 is changed into a disc shape.
  • 4 shows the configuration of the convertible cavitation 20 according to the present invention.
  • Figure 5 shows the step-by-step operation of the convertible cavitation 20 according to the present invention.
  • the conversion type cavitation 20 has two or more cavitation elements for changing the shape, and the number of such cavitation elements can be variously designed according to the size or shape of the underwater vehicle 10.
  • the conversion type cavitation 20 includes three cavitation elements as a whole in relation to the embodiment of the present invention.
  • the conversion type cavitation machine 20 includes a first cavitation element 21, a second cavitation element 22, a third cavitation element 23, and the like.
  • Three cavitation elements are layered with each other to form a conical shape as a whole (FIG. 5A).
  • the first cavitation element 21, the second cavitation element 22 and the third cavitation element 23 are arranged in order from the front of the underwater body 10 to the rear.
  • each cavitation element is sequentially inserted into the rear cavitation element to be recessed and finally the disc shape Is achieved. More specifically, firstly, the first cavitation element 21 is inserted into the rear second cavitation element 22 to be recessed (B of FIG. 5), and then the first cavitation element 21 And the second cavitation element 22 together are inserted into the third cavitation element 23 to be recessed (FIG. 5C).
  • the conversion type cavity 20 which was initially a cone shape (A of FIG. 5) eventually turns into a disc shape (C of FIG. 5).
  • the first cavitation element 21 is conical.
  • the second cavitation element 22 is a shape in which the upper end of the cone is cut out, and the center of the body has a first accommodation space 22a that can accommodate the first cavitation element 21 when it is inserted and recessed. . Since the front end of the first accommodation space 22a is open, the first cavitation element 21 can be inserted into the low U accommodation space 22a and be recessed. However, the rear end of the first accommodation space 22a is not opened and is blocked by the first stopper 22b.
  • the first stopper 22b corresponds to the bottom surface of the second cavitation element 22, in which the first cavator element 21 is inserted into the first accommodation space 22a. ) It serves to hold the product so that it does not exit. Thus, once the first cavitation element 21 is inserted into the second cavitation element 22 and recessed, the first cavitation element 21 and the second cavities are not the first cavitation element 21 alone.
  • the data element 22 is integrally inserted together and inserted into the system three-cavity element 23 to be recessed.
  • the three-cavity element 23 has a shape in which the upper end of the cone is cut out similarly to the two-cavity element 22, which can accommodate the second cavity element 22 when it is inserted and recessed.
  • the second accommodation space 23a is provided.
  • the second cavitation element 22 can be inserted into the second accommodation space (23a) to be recessed.
  • the rear end of the second accommodation space 23a is not opened and is blocked by the system 2 stopper 23b.
  • the system 2 stopper 23b is attached to the bottom surface of the third cavitation element 23. This serves to hold the second cavitation element 22 inserted into the second accommodation space 23a so as not to pass through the third cavitation element 23. Therefore, when the system 1 cavator element 21 and the second cavator element 22 are inserted into the third cavator element 23 and dent, the conversion cavitation 20 has a final disc shape. (Fig. 5C).
  • the height of the first cavitation element 21 is smaller than the height of the second cavitation element 22.
  • the relationship between the same and the height of the second cavitation element 22 is less than or equal to the height of the third cavitation element 23.
  • the heights of the first cavator element 21, the second cavator element 22, and the third cavator element 23 all have the same relationship.
  • the height of the first cavator element 21 is greater than the height of the total two-cavator element 22 or the three-cavity element 23 or the height of the second cavator element 22 is greater than the third cavator element If it is larger than the height of (23), it is not preferable because the conversion-type cavitation 20 will continue to maintain a certain cone shape.
  • Piston shaft 31 facing backward is connected to the system 1 cavitation element 21, the piston 32 is provided at the end of the piston shaft 31.
  • the third cavitation element 23 is connected a cylinder 33 facing backwards.
  • the piston shaft 31 extends into the cylinder 33 by passing through the total 2 cavitation element 22 and the third cavitation element 23 and the piston 32 is connected to the piston shaft.
  • the wall of the cylinder 33 is moved to the rear.
  • the piston shaft 31 is moved when the first cavitation element 21 or the second cavitation element 22 is recessed backwards (B, C in Fig. 5).
  • the first sliding element 40 is provided at the second cavitation element 22 and the rear end.
  • the first sliding element 40 has a through hole in the center of the body and the piston shaft 31 passes through the through hole.
  • the first sliding element 40 is pushed by the second cavitation element 22 into the cylinder 33 when the second cavitation element 22 is inserted into the third cavitation element 23 and recessed. (FIG. 5C).
  • the convertible cavitation 20 receives a resistance that prevents the movement of the underwater vehicle 10 from the front and the force of the underwater vehicle 10 is increased. It increases in proportion to the speed.
  • the low 11 cavitation element 21 and the second cavitation element 22 are sequentially inserted and recessed to the rear.
  • the depression time of the total 2 cavitation element 22, that is, the shape change time of the conversion type cavitation 20 can be adjusted.
  • the first slab if the friction between the low sliding element 40 and the wall of the cylinder 33 is large.
  • a large force is required for the guiding element 40 to be pushed into the cylinder 33, and a relatively small force is required if the frictional force is small. Therefore, when the frictional force between the system 1 sliding element 40 and the wall of the cylinder 33 is increased, the second cavitation element 22 is at the point where the speed of the underwater moving object 10 increases significantly, that is, the conversion cavitation 20.
  • the resistance to be applied can be recessed into the third cavitation element 23 only when the resistance is large, if the frictional force is made small, the second cavitation element (even when the speed of the underwater vehicle 10 is not relatively high) 22 it is possible to be recessed into the third cavitation element 23.
  • the first sliding element 40 may be made of metal, rubber, or other synthetic fiber material, and the frictional force between the first sliding element 40 and the wall of the cylinder 33 may depend on the size or material of the first sliding element 40. It is possible to adjust the Meanwhile, the compressed air tank 50 is connected to the rear end of the cylinder 33, and the compressed air is stored inside the compressed air tank 50. In addition, a second sliding element 60 is installed at the inner front end of the compressed air tank 50. That is, the second sliding element 60 is installed at a position where the rear end of the cylinder 33 and the front end of the compressed air tank 50 abut.
  • the second sliding element 60 is pushed back by the piston 32 when the system two-cavity element 22 is inserted into the third-cavity element 23 and recessed to ride the wall of the compressed air tank 50.
  • C of FIG. 5 The rear end of the compressed air tank 50 is connected to the compressed air moving pipe (70). Compressed air tank The rear end of (50) corresponds to an outlet through which compressed air comes out, and at the initial stage (at the time of launching the transversely hollow underwater vehicle 10), the outlet is closed by the compressed air valve (71).
  • the compressed air valve 71 is installed at the connection point between the compressed air tank 50 and the compressed air moving tube 70. After the launch of the transcendental underwater moving body 10, a predetermined time passes to the operation of the pressure sensor 90. Open accordingly.
  • the compressed air valve 71 is opened when the pressure sensor 90 operates according to the increase in pressure. Then, the outlet of the compressed air tank 50 is opened. At this time, the compressed air coming out of the outlet is moved along the compressed air moving tube 70 and finally discharged to the outside (underwater) through the compressed air discharge outlet 80.
  • the compressed air discharge timing of the compressed air discharge port 80 is actively controlled by the set value of the pressure sensor (90).
  • the pressure sensor 90 measures the air pressure in the compressed air tank 50 and is electrically connected to the compressed air valve 71 (FIG. 4).
  • the pressure sensor 90 opens the compressed air valve 71 when the measured air pressure exceeds a set value so that the compressed air inside the compressed air tank 50 is discharged to the outside. Accordingly, if the set value of the pressure sensor 90 is large, the compressed air discharge point will be slow, but if the set value of the pressure sensor 90 is small, the compressed air discharge point is also faster.
  • Pressure Sensors (90) The larger the set value of is, the slower the compressed air discharge point of the compressed air outlet 80 becomes, and the smaller the set value of the pressure sensor 90, the faster the compressed air discharge point of the compressed air outlet 80 becomes faster. . Meanwhile, the reason why the compressed air outlet 80 is provided in the present invention is to form an artificial supercavity.
  • the compressed air discharge port 80 is installed at the front end of the transcendental cavity underwater body 10.
  • a compressed air moving tube 70 which is a passage for moving the compressed air of the compressed air tank 50 to the compressed air outlet 80 is provided. 4 5, the compressed air moving tube 70 is designed to start at the outlet of the compressed air tank 50 so that its end is bent toward the compressed air outlet 80.
  • the position and number of the compressed air outlet 80 may be variously designed according to the size or shape of the underwater vehicle 10, but the pressure of the compressed air outlet 80 is considered when considering the resistance and the linear stability of the underwater vehicle 10. Position and number is preferably designed to be symmetrical in the vertical and horizontal and the left and right of the underwater vehicle (10).
  • a total of four compressed air outlets 80 are installed to be symmetrical in up, down, left and right directions, and each of the compressed air outlets 80 is divided into four divided air moving tubes 70. It was connected one to one.
  • each compressed air outlet 80 it is highly desirable to configure each compressed air outlet 80 to be selectively opened and closed in terms of positive influence on the stable operation of the underwater vehicle 10. Do.
  • the compressed air outlet 80 is installed one each in the upper and lower sides and the left and right sides of the water vapor movement body 10, as in the embodiment of the present invention, the lower one compression according to the operating speed of the water vehicle 10 Compressed air is discharged through the air outlet 80 first, and then compressed air is discharged in the order of the two left and right compressed air outlets 80 and the upper one compressed air outlet 80 (of course, finally, 4). Compressed air outlets through all four compressed air outlets 80).
  • the present invention is provided with a sub-compressed air moving tube 100 in front of the compressed air tank (50).
  • the sub-compressed air moving tube 100 is a tube connecting the internal space of the cylinder 33 and the compressed air moving tube 70.
  • the sub-compressed air moving tube 100 is bypassed with respect to the compressed air moving tube 70. pass) connected in the form of a tube.
  • the sub-compressed air moving pipe 100 is provided with a sub-compressed air valve 101 for opening and closing the sub-compressed air moving pipe 100, the sub-compressed air valve 101 is the operation of the sub-pressure sensor 110 It is opened and closed according to. That is, when the piston 32 moves backwards to increase the pressure inside the cylinder 33 as shown in FIG. 5B, the sub-compressed air valve (10) operates according to the operation of the sub-pressure sensor 110 according to the increase of the pressure. 101 is opened.
  • the compressed air inside the cylinder 33 is moved to the compressed air moving tube 70 along the sub-compressed air moving tube 100 and finally discharged to the outside (water) through the compressed air discharge outlet 80.
  • the opening and closing time of the sub-compressed air valve 101 is actively adjusted by the setting value of the sub-pressure sensor 110.
  • the sub pressure sensor 110 measures the air pressure inside the cylinder 33 and is electrically connected to the sub compressed air valve 101 (FIG. 4). When the measured air pressure exceeds the set value, the sub pressure sensor 110 opens the sub compressed air valve 101 to allow the compressed air inside the cylinder 33 to move to the compressed air moving tube 70.
  • the compressed air outlet (80) is installed one each on the upper and lower sides and left and right of the underwater moving body (10), the compressed air moving pipe 70 is divided into four branches, the end of the compressed air outlet (80) ), One to one.
  • each of the sub-compressed air moving pipe 100 is provided with a total of four, each of the sub-compressed air moving pipe 100 is connected in the form of a bypass pipe for the four branch pipe of the compressed air moving pipe (70).
  • Each of the four sub-compressed air moving pipes 100 is provided with a sub-compressed air valve 101, and each sub-compressed air valve 101 is individually connected to the sub-pressure sensor 110.
  • the set value of the sub pressure sensor 110 connected to the sub-compressed air valve 101 of the sub-compressed air moving pipe 100 directed to the lower one compressed air outlet 80 is made to be the smallest, then the left and right 2
  • the compressed air is first discharged through the lower one compressed air outlet 80, and then the two left and right compressed air outlets 80, the upper one Compressed air is discharged in the order of the compressed air discharge port 80, and finally, the rearmost compressed air valve 71 is opened and four pressure It is possible to implement a situation in which the compressed air inside the cylinder 33 and the compressed air tank 50 are all discharged to the outside through the axial air outlet 80.
  • the converting cavity 20 maintains a conical shape at the beginning of the launching of the transcendental underwater vehicle 10, resistance and vibration force can be reduced as compared with the conventional disc shaped cavator ( A).
  • the converting cavity 20 sequentially turns into a disk shape, and thus the transverse cavity shape that occurs accordingly becomes larger than that of the existing conical cavity (the underwater vehicle due to C of FIG. 5).
  • the present invention can easily implement the transcendental phenomena of the underwater vehicle As well as to simplify the system configuration for this and at the same time can reduce the resistance and vibration of the underwater vehicle, the present invention is a technology that can be widely used in the shipbuilding and marine industry to realize its practical and economic value.

Abstract

The present invention relates to an active-type cavitator system of a supercavitating underwater vehicle. A conversion-type cavitator is provided on the front end part of an underwater vehicle, wherein the conversion-type cavitator maintains a conical shape during the early part of a launch of the underwater vehicle, thereby reducing resistance and excitation force, and consecutively changes into a circular disk shape as speed increases. A pressure sensor measures air pressure inside a compressed air tank and is electrically connected with a compressed air valve. If the measured air pressure exceeds a predetermined value, the pressure sensor opens the compressed air valve so as to enable compressed air inside the compressed air tank to be discharged to the outside. Thus, the higher the predetermined value of the pressure sensor, the later the discharge time point of the compressed air becomes, and the lower the predetermined value of the pressure sensor, the sooner the discharge time point of the compressed air becomes.

Description

【발명의 설명】  [Explanation of invention]
【발명의 명칭】  [Name of invention]
초월공동수중운동체의 능동형 캐비테이터 시스템  Active Cavitation System of Transcendence Joint Underwater Vehicle
【기술분야】  Technical Field
본 발명은 초월공동 현상을 이용하여 수중에서 고속으로 이동하는 수중운동 체의 캐비테이터 시스템에 관한것이다.  The present invention relates to a cavitation system of an underwater moving body moving at high speed in the water using the transcendental cavity phenomenon.
【배경기술】  Background Art
수중운동체 (Underwater Vehicle)의 속도가높아져 물체 주위의 국부압력이 유 체의 증기압 (Vapor Pressure)보다 낮아지면 유체가 기화하게 되는 공동 (Cavitation) 현상이 발생한다. 이때 이동 속도가 더욱 증가하게 되면 공동은 수중운동체의 형상 을모두덮을만큼 성장하게 되는데 이를초월공동 (Supercavitation)이라한다 (도 1). 초월공동으로 덮인 수중운동체는 마치 공기 중에서 이동하는 것과같은 효과 를 받기 때문께 물체에 작용하는 항력 (Drag)은극적으로 감소하게 된다 (이하, 초월공 동 현상을 이용하는 수중운동체를 '초월공동 수중운동체' 라고 함). 이 같은 초월 공동 현상을 바탕으로 수중에서는 초고속이라 할 수 있는 200노트 (약 300Km/H) 이 상의 속도로 이동할수 있는 어뢰에 관한 연구가 시도되고 있다. 현재 러시아에서는 초월공동 어뢰를 개발완료하여 운용하고 있는 것으로 알려졌으며, 독일과 미국에서 도 유사한 초월공동 어뢰 개발을 위한 연구가 수행 증인 것으로 알려지고 있다. 하 지만 군사적 이용목적의 개발단계로 현재는 제한적인 정보들만이 공개되어 있는 실 정이다. 초월공동 수중운동체의 전두부에는 공동을 발생시키고 이를 초월공동으로 성 장시키는 역할을 하는 캐비테이터 (Cavitator)가 설치되어 있다 (도 1, 도 2). 캐비테이 터의 형상과 초월공동 성능은 전체 수중운동체 설계파라미터를 결정짓는 핵심요소 로, 초월공동 유동해석 기술과 실험을 통한 검증이 필요하다. 아올러 발사 초기 마 찰저항을 감소시키고 초월공동 성장을 촉진시키기 위한 인공초월공동 (Artificial Supercavity)장치에 대한연구또한그중요성이 부각되고 있다. 초월공동이 발생하기 전까지 항력은 수중운동체의 전두부 형상에 따라 크게 달라지며, 초월공동 발생 후수증운동체에 작용하는 항력은 대부분 캐비테이터에 집 중된다. 현재까지 개발되고 있는 캐비테이터의 형상은 원뿔형 (Cone Type)과 원판형 (Disk Type)이 있다. 원뿔형은 저항 및 직진안정성 (기진력) 측면에서 유리하나 원판 형에 비해 발생하는 초월공동 형상이 작기 때문에 캐비테이터 후방에 위치하는 수 중운동체의 몸체 형상에 제한을 받는다. 반면에, 원판형은 저항 및 직진안정성 측면 에서 불리하나 원뿔형에 비해 발생하는 초월공동 형상이 크기 때문에 수중운동체의 몸체 형상에 제한을 덜 받는다. When the speed of an underwater vehicle increases, the local pressure around the object becomes lower than the vapor pressure of the fluid, causing a cavitation that causes the fluid to vaporize. At this time, if the moving speed is further increased, the cavity grows to cover the shape of the underwater vehicle, which is called a supercavitation (Fig. 1). Since the underwater vehicle covered by the transcendental cavity has the same effect as moving in the air, the drag acting on the object decreases dramatically (hereinafter referred to as the 'underwater vehicle' using the transcendental cavity phenomenon. '). Based on these transcendental phenomena, research is being conducted on torpedoes capable of moving at speeds of over 200 knots (about 300 km / h), which can be called superfast underwater. At present, it is known that Russia has developed and operated a transcontinental torpedo, and similar research in Germany and the United States is known for its research. However, due to the development stage of military use, only limited information is currently available. Jung. The frontal head of the transcendental joint underwater vehicle is equipped with a cavity (Cavitator) that serves to generate a cavity and grow it as a transcendental cavity (Fig. 1, Fig. 2). The shape and transcendence performance of the cavitation are the key factors that determine the design parameters of the whole underwater vehicle, and the verification through transcendence joint flow analysis techniques and experiments is required. The importance of research on artificial supercavity devices to reduce frictional resistance and promote transcendental co-growth is also highlighted. Until transcendence of the cavity occurs, drag varies greatly depending on the shape of the frontal head of the underwater vehicle, and most of the drag acting on the transcendental epigenetic body is concentrated in the cavator. The shapes of the cavities developed so far are conical and disc types. The conical shape is advantageous in terms of resistance and linear stability (vibration force), but is limited by the shape of the body of the aquatic body located behind the cavator because of the smaller transverse cavity shape that occurs compared to the disc type. On the other hand, the disk shape is disadvantageous in terms of resistance and straightness stability, but is less limited by the body shape of the underwater vehicle because of the larger transverse cavity shape that occurs compared to the cone shape.
【발명의 상세한설명】  Detailed Description of the Invention
【기술적 과제】  [Technical problem]
본 발명은 상기와 같은 문제점을 해결하기 위해 제안된 것으로, 초월공동 수 중운동체의 발사 초기 원뿔형상을 유지하여 저항과 기진력을 줄이고 속도가 증가함 에 따라 순차적으로 원판형상으로 변하는 능동형 캐비테이터 시스템을 제공하는 것 을목적으로 한다. The present invention has been proposed to solve the above problems, transcendence number The objective is to provide an active cavitation system that maintains the initial cone shape of the heavy vehicle in order to reduce its resistance and vibration and to gradually change to a disk shape as the speed increases.
【기술적 해결방법】  Technical Solution
상기한목적을달성하기 위하여 본 발명은,  The present invention to achieve the above object,
수중운동체의 전두부에 설치되며 상기 수중운동체의 발사 시 원뿔형상에서 원판형상으로 변경되는 변환형 캐비테이터; 一  A conversion type cavitation device installed in the front head of the underwater vehicle and changed from a cone shape to a disc shape when the underwater vehicle is launched;一
상기 변환형 캐비테이터의 후방에 설치되며 내부에 압축공기를 저장하는 압 축공기탱크;  A compressed air tank installed at the rear of the conversion type cavator and storing compressed air therein;
상기 압축공기탱크내부의 공기압을계측하며 계측된 공기압이 설정 값을초 과하면 압축공기밸브를여는 압력센서; 및  A pressure sensor which measures the air pressure inside the compressed air tank and opens the compressed air valve when the measured air pressure exceeds a set value; And
상기 수증운동체의 전단부에 설치되며 상기 압축공기탱크내부의 압축공기를 상기 수중운동체 외부로배출하여 인공초월공동을 형성하는 압축공기배출구;  A compressed air outlet installed at the front end of the water vapor moving body and configured to discharge the compressed air inside the compressed air tank to the outside of the underwater water moving body to form an artificial transcendental cavity;
를포함하는초월공동수중운동체의 능동형 캐비테이터 시스템으로서, 상기 변환형 캐비테이터는 2개 이상의 캐비테이터요소를 구비하는바, 상기 각각의 캐비테이터요소는 상기 수중운동체의 발사 초기에는 전후 방향으로 층을 이 루어 원뿔형상을 이루다가상기 수중운동체의 속도가 증가하면 상기 전방의 캐비테 이터요소가 상기 후방의 캐비테이터요소 안으로 순차적으로 삽입되어 함몰되면서 최종적으로는 원판형상을 이루며,  An active cavitation system of a transcendental joint underwater vehicle, comprising: two or more cavitation elements, each cavitation element having a layer in the front and rear direction at the beginning of the launch of the underwater vehicle; While forming the luer cone shape, when the speed of the underwater moving object increases, the front cavitation element is sequentially inserted into the rear cavitation element to sink, finally forming a disc shape.
상기 압축공기탱크는상기 압력센서 및 상기 압축공기밸브의 작동에 따라내 부의 압축공기를상기 압축공기배출구로공급하되, The compressed air tank is discharged according to the operation of the pressure sensor and the compressed air valve. Supply negative compressed air to the compressed air outlet,
상기 압축공기배출구의 압축공기 배출 시점은상기 압력센서의 설정 값에 의 하여 능동적으로 조절되는바, 상기 설정 값이 크면 클수록 상기 압축공기배출구의 압축공기 배출 시점은 느려지고 상기 설정 값이 작으면 작을수록 상기 압축공기배 출구의 압축공기 배출 시점은 빨라지는 것을 특징으로 하는 초월공동 수증운동체의 능동형 캐비테이터 시스템을제공한다. 상기 변환형 캐비테이터는 제 1캐비테이터요소, 계 2캐비테이터요소 및 제 3캐 비테이터요소를 구비하는바, 상기 수중운동체의 발사 초기에는 상기 계 1캐비테이터 요소, 상기 제 2캐비테이터요소 및 상기 제 3캐비테이터요소가 전방에서부터 후방으로 순서대로 층올 이루어 원뿔형상을 이루며, 상기 수중운동체의 속도가 증가하면 제일 먼저 상기 제 1캐비테이터요소가 상기 제 2캐비테이터요소 안으로 삽입되어 함몰되고 그 다음 상기 계 1캐비테이터요소와 상기 제 2캐비테이터요소가 함께 상기 제 3캐비테 이터요소 안으로삽입되어 함볼됨에 따라종국에는원판형상을 이룬다. 상기 제 1캐비테이터요소는원뿔형상이다. 상기 제 2캐비테이터요소는 원뿔의 상단부가 잘려나간 형상이며 상기 계 1캐비 테이터요소를 수용할 수 있는 제 1수용공간과 상기 제 1수용공간 안으로 삽입되는 상 기 계 1캐비테이터요소가 상기 제 2캐비테이터요소를 통과하여 빠져 나가지 않도록 잡아주는제 1스토퍼를구비한다. 상기 제 3캐비테이터요소는 원뿔의 상단부가 잘려나간 형상이며 상기 제 2캐비 테이터요소를 수용할 수 있는 제 2수용공간과상기 제 2수용공간 안으로 삽입되는 상 기 제 2캐비테이터요소가 상기 계 3캐비테이터요소를 통과하여 빠져 나가지 않도록 잡아주는제 2스토퍼를구비한다. 상기 제 1캐비테이터요소의 높이는 상기 제 2캐비테이터요소의 높이보다 작거 나 같고 상기 제 2캐비테이터요소의 높이는 상기 제 3캐비테이터요소의 높이보다 작 거나같다. 상기 제 1캐비테이터요소에는 후방으로 향하는 피스톤축이 연결되고 상기 피 스톤축와끝단에는 피스톤이 설치되며, 상기 제 3캐비테이터요소에는 후방으로 향하 는 실린더가 연결되고 상기 피스톤축은 상기 제 2캐비테이터요소와 상기 제 3캐비테 이터요소를 관통하여 상기 실린더 안까지 연장되며, 상기 피스톤은 상기 겨 U캐비테 이터요소 또는 상기 제 2캐비테이터요소가 후방으로 함몰될 때 상기 피스톤축의 이 동에 따라상기 실린더의 벽을타고후방으로 이동한다. 상기 제 2캐비테이터요소의 후단에는 제 1슬라이딩요소가 설치되는바, 상기 제 1슬라이딩요소는 상기 계 2캐비테이터요소에 의해 후방으로 밀려 상기 실린더 안으 로들어간다. 상기 제 1슬라이딩요소와 상기 실린더 벽면 간의 마찰력에 따라 상기 변환형 캐비테이터의 형상변경 시점이 조절된다. 상기 실린더의 후단에는상기 압축공기탱크가 연결되며 상기 압축공기탱크의 내부 전단에는 제 2슬라이딩요소가 설치되는바, 상기 겨 12슬라이딩요소는 상기 피스톤 에 의해 밀려 상기 압축공기탱크의 후방으로 이동한다. 상기 압축공기탱크의 출구에는 압축공기이동관이 연결되며, 상기 압축공기탱 크와상기 압축공기이동관의 연결지점에는 압축공기벨브가 설치되는바, 상기 압축공 기탱크의 출구는 상기 수증운동체의 발사초기에는 상기 압축공기밸브에 의해 닫혀 있다가 상기 수중운동체의 속도가 점차 증가하면서 상기 압력센서가 작동함에 따라 열린다. 상기 압축공기배출구의 위치 및 개수는 상기 수중운동체의 상하 및 좌우로 대칭이 되도록설계된다. 상기 압축공기배출구가 2개 이상인 경우상기 각각의 압축공기배출구가선택 적으로개폐될 수 있도록구성된다. 상기 목적을달성하기 위하여 본 발명은, The compressed air discharge point of the compressed air outlet is actively controlled by the set value of the pressure sensor. The larger the set value is, the slower the compressed air discharge point of the compressed air outlet is and the smaller the set value is, the smaller the set value is. The compressed air discharge point of the compressed air discharge outlet provides an active cavitation system of the transcendental joint water vapor movement body, characterized in that faster. The converting cavitation device includes a first cavator element, a second cavator element and a third cavator element, wherein the system first cavator element, the second cavator element and The third cavator element is layered in order from the front to the rear to form a conical shape. When the speed of the underwater moving object increases, the first cavator element is first inserted into the second cavator element to be recessed. The system forms a disc shape eventually as the first and second cavitation elements are inserted and impregnated together into the third cavator element. The first cavator element is conical in shape. The second cavator element has a shape in which the top end of the cone is cut out, and the first cavitation element which is accommodated in the first cavitation element and the first cavitation element which is inserted into the first accommodation space are the second cavities. Do not pass through the cavitation element Have a first stopper to hold it. The third cavitation element has a shape in which the top end of the cone is cut out, and a second accommodation space capable of accommodating the second cavitation element and the second cavitation element inserted into the second accommodation space are included in the system 3. A second stopper is provided to hold it out of the cavity element. The height of the first cavator element is less than or equal to the height of the second cavator element and the height of the second cavator element is less than or equal to the height of the third cavator element. A piston shaft facing rearward is connected to the first cavator element, a piston is installed at the end of the piston shaft, and a cylinder facing rearward is connected to the third cavator element, and the piston shaft is connected to the second cavitation element. And extends into the cylinder through the third cavator element, wherein the piston of the cylinder is moved in accordance with the movement of the piston shaft when the bran U cavator element or the second cavator element is recessed to the rear. Ride the wall and move backwards. A first sliding element is installed at a rear end of the second cavator element, and the first sliding element is pushed backward by the system second cavator element to be inserted into the cylinder. Going in The shape change timing of the conversion type cavator is adjusted according to the frictional force between the first sliding element and the cylinder wall surface. The compressed air tank is connected to the rear end of the cylinder, and a second sliding element is installed at an inner front end of the compressed air tank, and the 12 sliding elements are pushed by the piston to move to the rear of the compressed air tank. A compressed air moving tube is connected to an outlet of the compressed air tank, and a compressed air valve is installed at a connection point between the compressed air tank and the compressed air moving tube, and the outlet of the compressed air tank is the initial launch of the steam moving body. It is closed by the compressed air valve and is opened as the pressure sensor operates while the speed of the underwater moving object is gradually increased. The position and the number of the compressed air outlets are designed to be symmetrical in the up and down and left and right sides of the underwater vehicle. When the compressed air outlets are two or more, each of the compressed air outlets is configured to be selectively opened and closed. The present invention to achieve the above object,
상기 실린더의 내부공간과상기 압축공기이동관을 연결하는 관으로 상기 압 축공기이동관에 대하여 바이패스 (By-pass) 관의 형태로 연결되는 서브압축공기이동 관;  A sub-compressed air moving tube connected to the inner space of the cylinder and the compressed air moving tube in the form of a bypass tube with respect to the compressed air moving tube;
상기 서브압축공기이동관에 설치되며, 서브압력센서의 작동에 따라 상기 서 브압축공기이동관을개폐하는서브압축공기벨브 및;  A sub-compressed air valve installed in the sub-compressed air moving pipe, the sub-compressed air moving pipe opening and closing the sub-compressed air moving pipe according to the operation of the sub-pressure sensor;
상기 서브압축공기밸브와 전기적으로 연결되며, 상기 실린더 내부의 공기압 을 계측하여 상기 계측된 공기압이 설정 값을 초과하면 상기 서브압축공기벨브를 열어 상기 실린더 내부의 압축공기가 상기 서브압축공기이동관을 통하여 상기 압축 공기이동관으로 이동하도록하는서브압력센서;  It is electrically connected to the sub-compressed air valve, and when the measured air pressure exceeds the set value, the sub-compressed air valve is opened to open the sub-compressed air valve through the sub-compressed air moving tube. A sub pressure sensor configured to move to the compressed air moving tube;
를구비한다.  Prepare.
【유리한효과】  Advantageous Effects
본 발명에 따르면, 초월공동 수중운동체의 발사 초기에는 캐비테이터가 원뿔 형상을 유지하므로 저항과 기진력을 줄일 수 있으며 속도가 증가함에 따라 캐비테 이터가순차적으로 원판형상으로 변하며 이에 따라 발생하는 초월공동 형상도 커지 기 때문에 수중운동체의 몸체 형상에 제한을 덜 받는다.  According to the present invention, since the cavity maintains the conical shape at the beginning of the launching of the transcendental underwater underwater vehicle, the resistance and vibration force can be reduced, and as the speed increases, the cavator sequentially changes into a disc shape and the transcendental cavity generated accordingly Since the shape is also large, the body shape of the underwater vehicle is less restricted.
【도면의 간단한설명】  【Brief Description of Drawings】
도 1은초월공동으로 덮인 수중운동체.  1 is an underwater vehicle covered with a transcendental cavity.
도 2는초월공동수증운동체의 주요요소기술.  Figure 2 is a description of the main elements of the transcendental joint exercise body.
도 3은본발명에 따른초월공동수중운동체의 형상. 도 4는본발명에 따른변환형 캐비테이터의 구성. Figure 3 is a shape of the transcendental joint underwater moving body according to the present invention. 4 is a configuration of a conversion type cavator according to the present invention.
도 5는본 발명에 따른변환형 캐비테이터의 단계별 작동방식.  Figure 5 is a step-by-step operation of the convertible cavator according to the present invention.
〈부호의 설명〉  <Explanation of sign>
10 : 수중운동체 20 : 변환형 캐비테이터  10 : Underwater Vehicle 20 : Convertible Cavitation
21 : 제 1캐비테이터요소 22 : 제 2캐비테이터요소  21: first cavator element 22: second cavator element
22a : 겨 u수용공간 22b : 계 1스토퍼  22a : Free space u22b : Total 1 stopper
23 : 계 3캐비테이터요소 23a : 제 2수용공간  23: 3 cavities element 23a: second receiving space
23b : 겨 12스토퍼 31 : 피스톤축  23b : 12 stopper 31 : piston shaft
32 : 피스톤 33 : 실린더  32: piston 33: cylinder
40 : 제 1슬라이딩요소 50 : 압축공기탱크  40: first sliding element 50: compressed air tank
60 : 제 2슬라이딩요소 70 : 압축공기이동관  60: second sliding element 70: compressed air moving tube
71 : 압축공기밸브 80 : 압축공기배출구  71: compressed air valve 80: compressed air outlet
90 : 압력센서 100 : 서브압축공기이동관  90 : Pressure sensor 100 : Sub-compressed air moving tube
101 : 서브압축공기밸브 110 : 서브압력센서  101 : Sub compressed air valve 110 : Sub pressure sensor
【발명의 실시를위한최선의 형태】  [Best Mode for Implementation of the Invention]
이하, 첨부된 도면들을 참조하여 본 발명에 대하여 상세히 설명한다. 우선 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서 는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음 에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상 세한설명은생략한다. 도 3은본발명에 따른초월공동수중운동체 (10)의 형상을보여준다. 본 발명에 따른 초월공동 수중운동체 (10)의 전두부에는 변환형 캐비테이터 (20)가 구비된다 (도 3). 변환형 캐비테이터 (20)는 기존의 원뿔형 (Cone Type) 또는 원 판형 (Disk Type) 캐비테이터에 대비되는 것으로, 원뿔형 또는 원판형 캐비테이터는 그 형상이 고정되어 변하지 않으나 변환형 캐비테이터 (20)는 초월공동 수증운동체 (10)의 발사 초기에는 원뿔형상을 유지하다가 속도가 증가함에 따라 순차적으로 원 판형상으로 변하는것에 특징이 있다. 변환형 캐비테이터 (20)는상기와같은 형상의 변경을 위한 2개 이상의 캐비테 이터요소를 구비하는바, 처음에는각각의 캐비테이터요소가상호간에 전후 방향으로 층을 이루므로 변환형 캐비테이터 (20)가 원뿔형상을 하고 있으나 점차 전방의 캐비 테이터요소가 후방의 캐비테이터요소 안으로 순차적으로 삽입되어 함몰되면서 최종 적으로는 변환형 캐비테이터 (20)가원판형상으로 변하게 된다. 도 4는본 발명에 따른 변환형 캐비테이터 (20)의 구성을 보여준다. 그리고 도 5는본 발명에 따른 변환형 캐비테이터 (20)의 단계별 작동방식을보여준다. 상술한 바와 같이 변환형 캐비테이터 (20)는 형상의 변경을 위한 2개 이상의 캐비테이터요소를구비하는바, 이러한캐비테이터요소의 개수는수중운동체 (10)의 크 기나 형상 등에 따라 다양하게 설계될 수 있는 것이다. 이하, 본 발명의 실시 예와 관련하여서는 변환형 캐비테이터 (20)가 3개의 캐비테이터요소를 구비하는 경우를 전 제로설명한다. 변환형 캐비테이터 (20)는, 처음 (수중운동체 (10)의 발사초기)에는, 계 1캐비테이 터요소 (21), 제 2캐비테이터요소 (22) 및 제 3캐비테이터요소 (23) 등 3개의 캐비테이터요 소가 상호간에 층을 이루어 전체적으로 원뿔형상을 이룬다 (도 5의 A). 이 경우 제 1 캐비테이터요소 (21), 제 2캐비테이터요소 (22) 및 제 3캐비테이터요소 (23)는 수중운동체 (10)의 전방에서부터 후방으로순서대로배열된다. 하지만 수중운동체 (10)의 속도가 점차 증가하면서 변환형 캐비테이터 (20)의 전방으로부터 힘이 가해지면 각각의 캐비테이터요소는 후방의 캐비테이터요소 안으 로순차적으로 삽입되어 함몰되며 최종적으로 원판형상을 이루게 된다. 보다 구체적 으로는, 제일 먼저 제 1캐비테이터요소 (21)가 후방의 제 2캐비테이터요소 (22) 안으로 삽입되어 함몰되며 (도 5의 B), 그 다음 단계로 제 1캐비테이터요소 (21)와 제 2캐비테이 터요소 (22)가 함께제 3캐비테이터요소 (23) 안으로 삽입되어 함몰된다 (도 5의 C). 그 결과 처음에는 원뿔형상 (도 5의 A)이던 변환형 캐비테이터 (20)가 종국에는 원판형상 (도 5의 C)으로 변한다. 이하, 본 발명에 따른 변환형 캐비테이터 (20)의 구성 및 단계 별 작동방식에 대하여 보다상세히 설명한다. 제 1캐비테이터요소 (21)는 원뿔형상이다. 제 2캐비테이터요소 (22)는 원뿔의 상단 부가 잘려나간 형상인데, 몸체 가운데는 계 1캐비테이터요소 (21)가 삽입되어 함몰될 때 이를 수용할 수 있는 제 1수용공간 (22a)을 구비한다. 제 1수용공간 (22a)의 전단은 개방되어 있으므로 제 1캐비테이터요소 (21)는상기 저 U수용공간 (22a) 안으로 삽입되어 함몰될 수 있다. 하지만, 제 1수용공간 (22a)의 후단은 개방되어 있지 않고 제 1스토퍼 (22b)에 의해 가로막혀 있다. 제 1스토퍼 (22b)는 제 2캐비테이터요소 (22)의 바닥면에 해 당하는 것인데, 이는 제 1수용공간 (22a) 안으로 삽입되는 제 1캐비테이터요소 (21)가 제 2캐비테이터요소 (22)를 통과하여 빠져 나가지 않도록 잡아주는 역할을 한다. 따라서 일단 계 1캐비테이터요소 (21)가 제 2캐비테이터요소 (22) 안으로 삽입되어 함몰된 이후 에는 제 1캐비테이터요소 (21) 단독이 아니라, 제 1캐비테이터요소 (21)와 제 2캐비테이터 요소 (22)가 일체가되어 함께 계 3캐비테이터요소 (23) 안으로 삽입되어 함몰된다. 계 3캐비테이터요소 (23)는 계 2캐비테이터요소 (22)와 마찬가지로 원뿔의 상단부 가 잘려나간 형상인데, 몸체 가운데는 제 2캐비테이터요소 (22)가 삽입되어 함몰될 때 이를 수용할 수 있는 제 2수용공간 (23a)을 구비한다. 제 2수용공간 (23a)의 전단은 개방 되어 있으므로 제 2캐비테이터요소 (22)는 상기 제 2수용공간 (23a) 안으로 삽입되어 함 몰될 수 있다. 하지만, 제 2수용공간 (23a)의 후단은 개방되어 있지 않고 계 2스토퍼 (23b)에 의해 가로막혀 있다. 계 2스토퍼 (23b)는 제 3캐비테이터요소 (23)의 바닥면에 해 당하는 것인데, 이는 제 2수용공간 (23a) 안으로 삽입되는 제 2캐비테이터요소 (22)가 제 3캐비테이터요소 (23)를 통과하여 빠져 나가지 않도록 잡아주는 역할을 한다. 따라서 계 1캐비테이터요소 (21)와 제 2캐비테이터요소 (22)가 제 3캐비테이터요소 (23) 안으로 삽 입되어 함몰되면, 이로 인하여 변환형 캐비테이터 (20)는최종적으로 원판형상을 갖게 된다 (도 5의 C). 이때 변환형 캐비테이터 (20)가종국적으로 원판형상이 되고 이에 따라 원판형 캐비테이터의 장점을갖기 위해서는, 제 1캐비테이터요소 (21)의 높이는 제 2캐비테이터 요소 (22)의 높이보다 작거나 같고 제 2캐비테이터요소 (22)의 높이는 제 3캐비테이터요 소 (23)의 높이보다 작거나 같은 관계가 되는 것이 바람직하다. 참고로, 도 5의 실시 예에서는 제 1캐비테이터요소 (21), 계 2캐비테이터요소 (22) 및 계 3캐비테이터요소 (23)의 높이가모두 같은관계가 나타나 있다. 만약, 제 1캐비테이터요소 (21)의 높이가계 2캐 비테이터요소 (22)나계 3캐비테이터요소 (23)의 높이보다 크거나제 2캐비테이터요소 (22) 의 높이가 제 3캐비테이터요소 (23)의 높이보다 크다면 변환형 캐비테이터 (20)는 어느 정도의 원뿔형상을계속유지하게 되므로 바람직하지 못하다. 계 1캐비테이터요소 (21)에는 후방으로 향하는 피스톤축 (31)이 연결되며 상기 피스톤축 (31)의 끝단에는 피스톤 (32)이 설치된다. 그리고 제 3캐비테이터요소 (23)에는 후방으로 향하는 실린더 (33)가 연결된다. 피스톤축 (31)은 계 2캐비테이터요소 (22)와 제 3캐비테이터요소 (23)를 관통하여 실린더 (33) 안까지 연장되며 피스톤 (32)은 피스톤축 (31)의 이동에 따라 실린더 (33)의 벽을 타고 후방으로 이동하게 된다. 이때 피스톤축 (31)이 이동하는경우는제 1캐비테이터요소 (21)또는 제 2캐비테이터요소 (22)가후방으 로함몰되는경우이다 (도 5의 B, C). 한편, 제 2캐비테이터요소 (22)와후단에는 제 1슬라이딩요소 (40)가 설치된다. 제 1슬라이딩요소 (40)는 몸체 가운데에 관통구를 구비하며 피스톤축 (31)은 상기 관통구 를 통과한다. 또한 제 1슬라이딩요소 (40)는 제 2캐비테이터요소 (22)가 제 3캐비테이터요 소 (23) 안으로 삽입되어 함몰되는 경우 제 2캐비테이터요소 (22)에 의해 밀려 실린더 (33) 안으로 들어간다 (도 5의 C). 이하, 본 발명에서 제 1슬라이딩요소 (40)를 둔 이유 에 대하여 설명한다. 초월공동수중운동체 (10)가 발사된 이후속도가증가함에 따라 변환형 캐비테 이터 (20)는 전방으로부터 수중운동체 (10)의 진행을 방해하는 저항을 받게 되며 그 힘 은 수중운동체 (10)의 속도에 비례하여 증가하게 된다. 그리고 상기 힘에 의하여 저 11 캐비테이터요소 (21)와 제 2캐비테이터요소 (22)는 후방으로 순차적으로 삽입되어 함몰 된다. 이때 제 1슬라이딩요소 (40)와 실린더 (33) 벽면 간의 마찰력에 따라 계 2캐비테이 터요소 (22)의 함몰 시점, 즉 변환형 캐비테이터 (20)의 형상변경 시점이 조절될 수 있 다. 저 11슬라이딩요소 (40)와 실린더 (33) 벽면 간의 마찰력이 큰 경우에는 제 1슬라 이딩요소 (40)가실린더 (33) 안으로 밀려들어가기 위해 큰 힘이 필요하며 마찰력이 작 은 경우에는 상대적으로 작은 힘이 필요하다. 따라서 계 1슬라이딩요소 (40)와 실린더 (33) 벽면 간의 마찰력이 크게 되도록 하면 제 2캐비테이터요소 (22)는 수중운동체 (10) 의 속도가상당히 증가한시점, 즉 변환형 캐비테이터 (20)에 가해지는 저항이 상당히 큰시점이 되어야비로소제 3캐비테이터요소 (23) 안으로함몰될 수 있지만, 마찰력이 작게 되도록 하면 수중운동체 (10)의 속도가상대적으로 높지 않은 시점에서도 제 2캐 비테이터요소 (22)가제 3캐비테이터요소 (23) 안으로 함몰되는것이 가능하다. 제 1슬라이딩요소 (40)는 금속이나 고무 기타 합성섬유 재질로 제작될 수 있으 며 제 1슬라이딩요소 (40)의 크기나 재질에 따라 계 1슬라이딩요소 (40)와 실린더 (33) 벽 면 간의 마찰력을조절하는것이 가능하다. 한편, 실린더 (33)의 후단에는 압축공기탱크 (50)가 연결되며 상기 압축공기탱크 (50)의 내부에는 압축공기가 저장된다. 그리고 압축공기탱크 (50)의 내부 전단에는 제 2슬라이딩요소 (60)가 설치된다. 즉, 제 2슬라이딩요소 (60)는 실린더 (33)의 후단과 압축 공기탱크 (50)의 전단이 맞닿는 위치에 설치된다. 제 2슬라이딩요소 (60)는 계 2캐비테이 터요소 (22)가제 3캐비테이터요소 (23) 안으로삽입되어 함몰되는경우 피스톤 (32)에 의 해 밀려 압축공기탱크 (50)의 벽을타고후방으로 이동하게 된다 (도 5의 C). 압축공기탱크 (50)의 후단에는 압축공기이동관 (70)이 연결된다. 압축공기탱크 (50)의 후단은 압축공기가 밖으로 빠져나오는 출구에 해당하는 것인데, 초기 (초월공 동 수중운동체 (10)의 발사 시점)에는 상기 출구가 압축공기밸브 (71)에 의해 닫혀 있 다. 압축공기밸브 (71)는 압축공기탱크 (50)와 압축공기이동관 (70)의 연결지점에 설치되 며, 초월공동 수중운동체 (10)의 발사 후 일정 시점이 지나 압력센서 (90)의 작동에 따 라열린다. 즉, 상기와 같이 피스톤 (32)이 후방으로 이동 (도 5의 B)하거나 제 2슬라이딩요 소 (60)가 후방으로 이동 (도 5의 C)하면, 실린더 (33) 또는 압축공기탱크 (50) 내부의 압 력이 증가하게 되며, 상기 압력의 증가에 따른 압력센서 (90)의 작동 시 압축공기밸브 (71)가 열리게 된다. 그러면 압축공기탱크 (50)의 출구가 열리게 되며 이때 상기 출구 로 나온 압축공기는 압축공기이동관 (70)을 따라 이동하여 최종적으로는 압축공기배 출구 (80)를통해 외부 (수중)로배출된다. 이와 관련하여, 상기 압축공기배출구 (80)의 압축공기 배출 시점은 압력센서 (90)의 설정 값에 의하여 능동적으로 조절된다. 압력센서 (90)는 압축공기탱크 (50) 내 부의 공기압을 계측하며 압축공기밸브 (71)와 전기적으로 연결된다 (도 4). 상기 압력 센서 (90)는 계측된 공기압이 설정 값을 초과하면 압축공기밸브 (71)를 열어 압축공기 탱크 (50) 내부의 압축공기가 외부로 배출되도록 한다. 따라서 만약 압력센서 (90)의 설정 값이 크다면 압축공기 배출 시점은 느려지겠지만, 반대로 압력센서 (90)의 설정 값이 작다면 그만큼 압축공기 배출 시점도 빨라지게 된다. 정리하자면, 압력센서 (90) 의 설정 값이 크면 클수록 압축공기배출구 (80)의 압축공기 배출 시점은느려지고, 압 력센서 (90)의 설정 값이 작으면 작을수록 압축공기배출구 (80)의 압축공기 배출 시점 은빨라지게 되는것이다. 한편, 본 발명에서 압축공기배출구 (80)를 둔 이유는 인공초월공동 (Artificial Supercavity)을 형성하기 위함이다. 인공초월공동은 자연초월공동 (Natural Supercavity)에 대비되는 것으로, 자연초월공동이 자연현상에 따라 초월공동이 발생 하는 것이라면 인공초월공동은 초월공동의 발생을 자연현상에만 맡기지 않고 이를 위해 인위적 조작을가하는것을 말한다. 자연초월공동의 경우공동은 수중운동체 (10)의 속도가높아져 물체 주위의 국 부압력이 유체의 증기압보다 낮아져야 발생하지만, 본 발명의 경우에는 수중운동체 (10)의 발사 시 물체 주위로 배출되는 공기에 의하여 곧바로 국부압력이 낮아지므로 자연초월공동 대비 속도가낮은구간에서도 공동이 쉽게 발생한다. 이는 곧 본 발명 의 경우 자연초월공동보다 이른 시점에 초월공동이 형성될 수 있음을 의미하는 것 이다. 상기와같은 인공초월공동을 형성하기 위하여 압축공기배출구 (80)는초월공동 수중운동체 (10)의 전단부에 설치된다. 그리고 압축공기탱크 (50)의 압축공기가 상기 압축공기배출구 (80)까지 이동하기 위한 통로인 압축공기이동관 (70)이 설치된다. 도 4 및 도 5의 실시 예에서 보면 압축공기이동관 (70)이 압축공기탱크 (50)의 출구에서 시 작하여 그 끝단이 상기 압축공기배출구 (80) 쪽으로 휘어지도록 설계되어 있다. 압축 공기배출구 (80)의 위치 및 개수는수중운동체 (10)의 크기나 형상등에 따라다양하게 설계될 수 있으나, 수중운동체 (10)의 저항 및 직진안정성 측면을고려할때 압축공기 배출구 (80)의 위치 및 개수는 수중운동체 (10)의 상하 및 좌우로 대칭이 되도록 설계 되는 것이 바람직하다. 참고로, 본 발명의 실시 예에서는 총 4개의 압축공기배출구 (80)가 상하 및 좌우로 대칭이 되도록 설치되었으며, 상기 각각의 압축공기배출구 (80)는네 갈래로갈라진 압축공기이동관 (70)의 끝단과 일대일로 연결되었다. 한편, 압축공기배출구 (80)가 2개 이상인 경우각각의 압축공기배출구 (80)가선 택적으로 개폐될 수 있도록 구성하는 것은 수중운동체 (10)의 안정적인 운항에 긍정 적 영향을 미친다는 측면에서 매우 바람직하다. 예를 들어, 본 발명의 실시 예와 같 이 압축공기배출구 (80)가 수증운동체 (10)의 상하 및 좌우에 각각 1개씩 설치된 경우 라면, 수중운동체 (10)의 운항 속도에 따라 하부 1개의 압축공기배출구 (80)를 통하여 먼저 압축공기가배출되고그다음좌우 2개의 압축공기배출구 (80), 상부 1개의 압축 공기배출구 (80)의 순서로압축공기가배출되도록구성하는것이다 (물론 최종적으로는 4개의 모든 압축공기배출구 (80)를 통하여 압축공기가 배출되는 상태가 될 것이다). 이를 통하여 수중운동체 (10)의 운항 상태에 따른 맞춤형 초월공동 형성이 가능해질 수 있다. 이를 위하여 본 발명에서는 압축공기탱크 (50)의 전방에 서브압축공기이동관 (100)을 구비한다. 서브압축공기이동관 (100)은 실린더 (33)의 내부 공간과 압축공기이 동관 (70)을 연결하는 관으로, 이러한 서브압축공기이동관 (100)은 압축공기이동관 (70) 에 대하여 바이패스 (By-pass) 관의 형태로 연결된다. 그리고 서브압축공기이동관 (100)에는서브압축공기이동관 (100)의 개폐를 위한 서브압축공기밸브 (101)를 설치하는 비 ·, 상기 서브압축공기밸브 (101)는서브압력센서 (110)의 작동에 따라개폐된다. 즉, 도 5의 B와같이 피스톤 (32)이 후방으로 이동하여 실린더 (33) 내부의 압력 이 증가하게 되면, 상기 압력의 증가에 따른 서브압력센서 (110)와작동에 따라 서브 압축공기밸브 (101)가 열리게 된다. 그러면 서브압축공기이동관 (100)을 따라 실린더 (33) 내부의 압축공기가 압축공기이동관 (70)으로 이동하여 최종적으로는 압축공기배 출구 (80)를통해 외부 (수중)로 배출된다. 이와 관련하여, 서브압축공기벨브 (101)의 개폐 시점은 서브압력센서 (110)의 설 정 값에 의하여 능동적으로 조절된다. 서브압력센서 (110)는 실린더 (33) 내부의 공기 압을 계측하며 서브압축공기벨브 (101)와 전기적으로 연결된다 (도 4). 상기 서브압력 센서 (110)는 계측된 공기압이 설정 값을 초과하면 서브압축공기밸브 (101)를 열어 실 린더 (33) 내부의 압축공기가 압축공기이동관 (70)으로 이동하도록 한다. 따라서 만약 서브압력센서 (110)의 설정 값이 크다면 압축공기의 이동 시점은 느려지겠지만, 반대 로 서브압력센서 (110)의 설정 값이 작다면 그만큼 압축공기의 이동 시점도 빨라지게 된다. 정리하자면, 서브압력센서 (110)의 설정 값이 크면 클수록 압축공기배출구 (80)의 압축공기 배출시점은느려지고, 서브압력센서 (110)의 설정 값이 작으면 작을수록 압 축공기배출구 (80)의 압축공기 배출 시점은빨라지게 되는것이다. 본 발명의 실시 예에서, 압축공기배출구 (80)는 수중운동체 (10)의 상하 및 좌우 에 각각 1개씩 설치되고, 압축공기이동관 (70)은 네 갈래로 갈라져 그 끝단이 압축공 기배출구 (80)에 일대일로 연결된다. 그리고 서브압축공기이동관 (100)은 총 4개가 구 비되며, 각각의 서브압축공기이동관 (100)은 압축공기이동관 (70)의 네 갈래 관에 대하 여 바이패스관의 형태로 연결된다. 그리고 4개의 서브압축공기이동관 (100)각각에는 서브압축공기밸브 (101)가 설치되며, 각각의 서브압축공기밸브 (101)는 서브압력센서 (110)와개별적으로 연결된다. 만약 하부 1개의 압축공기배출구 (80)로 향하는 서브압축공기이동관 (100)의 서 브압축공기밸브 (101)와 연결된 서브압력센서 (110)의 설정 값을 가장 작게 되도록 하 고, 그 다음 좌우 2개의 압축공기배출구 (80), 상부 1개의 압축공기배출구 (80)로 향하 는 서브압축공기이동관 (100)의 서브압축공기벨브 (101)와 연결된 서브압력센서 (110)의 설정 값을 순서대로 점차 크게 되도록 하면, 수중운동체 (10)의 발사 후 운항 속도가 증가함에 따라 하부 1개의 압축공기배출구 (80)를 통하여 먼저 압축공기가 배출되고 그 다음 좌우 2개의 압축공기배출구 (80), 상부 1개의 압축공기배출구 (80)의 순서로 압축공기가 배출되며, 최종적으로는 최후방의 압축공기벨브 (71)가 열리면서 4개의 압 축공기배출구 (80)를 통하여 실린더 (33) 및 압축공기탱크 (50) 내부의 압축공기가 모두 외부로배출되는상황을구현할수 있다. 이상의 설명과같이 본 발명에 의하면, 초월공동 수중운동체 (10)의 발사초기 에는 변환형 캐비테이터 (20)가 원뿔형상을 유지하므로 기존의 원판형 캐비테이터에 비해 저항과 기진력을 줄일 수 있다 (도 5의 A). 그리고 속도가 점차 증가함에 따라 변환형 캐비테이터 (20)가순차적으로 원판형상으로 변하므로 이에 따라 발생하는 초 월공동 형상도기존의 원뿔형 캐비테이터에 비해 커지게 된다 (도 5의 C 때문에 수 중운동체 (10)의 몸체 형상에 제한을 덜 받는다. 이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으 로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질 적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것 이다. 따라서 본 발명에 개시된 실시 예 및 첨부된 도면들은본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예 및 첨부된 도면 에 의하여 본 발명의 기술사상의 범위가한정되는것은 아니다. 본 발명의 보호 범 위는 아래의 청구범위에 의하여 해석되어야하며, 그와 동등한 범위 내에 있는 모든 기술사상은본발명의 권리범위에 포함되는것으로 해석되어야할것이다. Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the present invention. First of all, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals have the same reference numerals as much as possible even if displayed on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, Detailed explanations are omitted. Figure 3 shows the shape of the transcendental joint underwater vehicle 10 according to the present invention. The frontal head of the transcendental joint underwater vehicle 10 according to the present invention is provided with a convertible cavitation 20 (FIG. 3). Convertible cavitation 20 is in contrast to the conventional conical (Cone Type) or disk-type (Disk Type) cavator, the conical or disk-type cavator is fixed in shape but does not change the Transformation cavitation (20) It is characterized by maintaining the cone shape at the beginning of launching the transcendental joint water vapor vehicle 10 and gradually changing to a disc shape as the speed increases. Convertible cavitation 20 is provided with two or more cavitation elements for changing the shape as described above, at first the respective cavitation element is layered in the front and rear direction between each other conversion cavitation ( 20) has a conical shape, but gradually the front cavitation element is inserted into the rear cavitation element in order to be recessed, and finally the converting cavitation 20 is changed into a disc shape. 4 shows the configuration of the convertible cavitation 20 according to the present invention. And Figure 5 shows the step-by-step operation of the convertible cavitation 20 according to the present invention. As described above, the conversion type cavitation 20 has two or more cavitation elements for changing the shape, and the number of such cavitation elements can be variously designed according to the size or shape of the underwater vehicle 10. It can be. Hereinafter, the case where the conversion type cavitation 20 includes three cavitation elements will be described as a whole in relation to the embodiment of the present invention. At first (the initial stage of the launching of the underwater vehicle 10), the conversion type cavitation machine 20 includes a first cavitation element 21, a second cavitation element 22, a third cavitation element 23, and the like. Three cavitation elements are layered with each other to form a conical shape as a whole (FIG. 5A). In this case, the first cavitation element 21, the second cavitation element 22 and the third cavitation element 23 are arranged in order from the front of the underwater body 10 to the rear. However, when the speed of the underwater vehicle 10 is gradually increased and a force is applied from the front of the converting cavitation 20, each cavitation element is sequentially inserted into the rear cavitation element to be recessed and finally the disc shape Is achieved. More specifically, firstly, the first cavitation element 21 is inserted into the rear second cavitation element 22 to be recessed (B of FIG. 5), and then the first cavitation element 21 And the second cavitation element 22 together are inserted into the third cavitation element 23 to be recessed (FIG. 5C). As a result, the conversion type cavity 20 which was initially a cone shape (A of FIG. 5) eventually turns into a disc shape (C of FIG. 5). Hereinafter, the configuration and steps of the conversion type cavitation 20 according to the present invention It explains in more detail how the stars work. The first cavitation element 21 is conical. The second cavitation element 22 is a shape in which the upper end of the cone is cut out, and the center of the body has a first accommodation space 22a that can accommodate the first cavitation element 21 when it is inserted and recessed. . Since the front end of the first accommodation space 22a is open, the first cavitation element 21 can be inserted into the low U accommodation space 22a and be recessed. However, the rear end of the first accommodation space 22a is not opened and is blocked by the first stopper 22b. The first stopper 22b corresponds to the bottom surface of the second cavitation element 22, in which the first cavator element 21 is inserted into the first accommodation space 22a. ) It serves to hold the product so that it does not exit. Thus, once the first cavitation element 21 is inserted into the second cavitation element 22 and recessed, the first cavitation element 21 and the second cavities are not the first cavitation element 21 alone. The data element 22 is integrally inserted together and inserted into the system three-cavity element 23 to be recessed. The three-cavity element 23 has a shape in which the upper end of the cone is cut out similarly to the two-cavity element 22, which can accommodate the second cavity element 22 when it is inserted and recessed. The second accommodation space 23a is provided. Since the front end of the second accommodation space (23a) is open, the second cavitation element 22 can be inserted into the second accommodation space (23a) to be recessed. However, the rear end of the second accommodation space 23a is not opened and is blocked by the system 2 stopper 23b. The system 2 stopper 23b is attached to the bottom surface of the third cavitation element 23. This serves to hold the second cavitation element 22 inserted into the second accommodation space 23a so as not to pass through the third cavitation element 23. Therefore, when the system 1 cavator element 21 and the second cavator element 22 are inserted into the third cavator element 23 and dent, the conversion cavitation 20 has a final disc shape. (Fig. 5C). At this time, in order for the conversion type cavator 20 to be ultimately disc shaped and thus have the advantage of a disc shaped cavator, the height of the first cavitation element 21 is smaller than the height of the second cavitation element 22. Preferably, the relationship between the same and the height of the second cavitation element 22 is less than or equal to the height of the third cavitation element 23. For reference, in the embodiment of FIG. 5, the heights of the first cavator element 21, the second cavator element 22, and the third cavator element 23 all have the same relationship. If the height of the first cavator element 21 is greater than the height of the total two-cavator element 22 or the three-cavity element 23 or the height of the second cavator element 22 is greater than the third cavator element If it is larger than the height of (23), it is not preferable because the conversion-type cavitation 20 will continue to maintain a certain cone shape. Piston shaft 31 facing backward is connected to the system 1 cavitation element 21, the piston 32 is provided at the end of the piston shaft 31. And to the third cavitation element 23 is connected a cylinder 33 facing backwards. The piston shaft 31 extends into the cylinder 33 by passing through the total 2 cavitation element 22 and the third cavitation element 23 and the piston 32 is connected to the piston shaft. In accordance with the movement of the (31), the wall of the cylinder 33 is moved to the rear. In this case, the piston shaft 31 is moved when the first cavitation element 21 or the second cavitation element 22 is recessed backwards (B, C in Fig. 5). On the other hand, the first sliding element 40 is provided at the second cavitation element 22 and the rear end. The first sliding element 40 has a through hole in the center of the body and the piston shaft 31 passes through the through hole. In addition, the first sliding element 40 is pushed by the second cavitation element 22 into the cylinder 33 when the second cavitation element 22 is inserted into the third cavitation element 23 and recessed. (FIG. 5C). Hereinafter, the reason for having the first sliding element 40 in the present invention will be described. As the speed increases after the transcendental joint underwater vehicle 10 is launched, the convertible cavitation 20 receives a resistance that prevents the movement of the underwater vehicle 10 from the front and the force of the underwater vehicle 10 is increased. It increases in proportion to the speed. By the force, the low 11 cavitation element 21 and the second cavitation element 22 are sequentially inserted and recessed to the rear. At this time, depending on the frictional force between the first sliding element 40 and the wall of the cylinder 33, the depression time of the total 2 cavitation element 22, that is, the shape change time of the conversion type cavitation 20 can be adjusted. The first slab if the friction between the low sliding element 40 and the wall of the cylinder 33 is large. A large force is required for the guiding element 40 to be pushed into the cylinder 33, and a relatively small force is required if the frictional force is small. Therefore, when the frictional force between the system 1 sliding element 40 and the wall of the cylinder 33 is increased, the second cavitation element 22 is at the point where the speed of the underwater moving object 10 increases significantly, that is, the conversion cavitation 20. Although the resistance to be applied can be recessed into the third cavitation element 23 only when the resistance is large, if the frictional force is made small, the second cavitation element (even when the speed of the underwater vehicle 10 is not relatively high) 22 it is possible to be recessed into the third cavitation element 23. The first sliding element 40 may be made of metal, rubber, or other synthetic fiber material, and the frictional force between the first sliding element 40 and the wall of the cylinder 33 may depend on the size or material of the first sliding element 40. It is possible to adjust the Meanwhile, the compressed air tank 50 is connected to the rear end of the cylinder 33, and the compressed air is stored inside the compressed air tank 50. In addition, a second sliding element 60 is installed at the inner front end of the compressed air tank 50. That is, the second sliding element 60 is installed at a position where the rear end of the cylinder 33 and the front end of the compressed air tank 50 abut. The second sliding element 60 is pushed back by the piston 32 when the system two-cavity element 22 is inserted into the third-cavity element 23 and recessed to ride the wall of the compressed air tank 50. (C of FIG. 5). The rear end of the compressed air tank 50 is connected to the compressed air moving pipe (70). Compressed air tank The rear end of (50) corresponds to an outlet through which compressed air comes out, and at the initial stage (at the time of launching the transversely hollow underwater vehicle 10), the outlet is closed by the compressed air valve (71). The compressed air valve 71 is installed at the connection point between the compressed air tank 50 and the compressed air moving tube 70. After the launch of the transcendental underwater moving body 10, a predetermined time passes to the operation of the pressure sensor 90. Open accordingly. That is, when the piston 32 moves backward (B of FIG. 5) or the second sliding element 60 moves backward (C of FIG. 5) as described above, the cylinder 33 or the compressed air tank 50 Inner pressure increases, and the compressed air valve 71 is opened when the pressure sensor 90 operates according to the increase in pressure. Then, the outlet of the compressed air tank 50 is opened. At this time, the compressed air coming out of the outlet is moved along the compressed air moving tube 70 and finally discharged to the outside (underwater) through the compressed air discharge outlet 80. In this regard, the compressed air discharge timing of the compressed air discharge port 80 is actively controlled by the set value of the pressure sensor (90). The pressure sensor 90 measures the air pressure in the compressed air tank 50 and is electrically connected to the compressed air valve 71 (FIG. 4). The pressure sensor 90 opens the compressed air valve 71 when the measured air pressure exceeds a set value so that the compressed air inside the compressed air tank 50 is discharged to the outside. Accordingly, if the set value of the pressure sensor 90 is large, the compressed air discharge point will be slow, but if the set value of the pressure sensor 90 is small, the compressed air discharge point is also faster. In summary, Pressure Sensors (90) The larger the set value of is, the slower the compressed air discharge point of the compressed air outlet 80 becomes, and the smaller the set value of the pressure sensor 90, the faster the compressed air discharge point of the compressed air outlet 80 becomes faster. . Meanwhile, the reason why the compressed air outlet 80 is provided in the present invention is to form an artificial supercavity. Artificial transcendence cavities are in contrast to natural supercavity, and if transcendence cavities occur according to natural phenomena, artificial transcendence cavities do not leave the occurrence of transcendental cavities only to natural phenomena, but artificially manipulate them. Say that. In the case of the natural transcendental cavity, the cavity is generated when the speed of the underwater vehicle 10 is increased so that the local pressure around the object is lower than the vapor pressure of the fluid. However, in the case of the present invention, it is discharged around the object when the underwater vehicle 10 is launched. As the local pressure is immediately lowered by the air, the cavity easily occurs even in a section where the speed is lower than that of the natural transverse cavity. This means that in the case of the present invention, transcendence cavities can be formed earlier than natural transcendence cavities. In order to form the artificial transcendence cavity as described above, the compressed air discharge port 80 is installed at the front end of the transcendental cavity underwater body 10. And a compressed air moving tube 70 which is a passage for moving the compressed air of the compressed air tank 50 to the compressed air outlet 80 is provided. 4 5, the compressed air moving tube 70 is designed to start at the outlet of the compressed air tank 50 so that its end is bent toward the compressed air outlet 80. The position and number of the compressed air outlet 80 may be variously designed according to the size or shape of the underwater vehicle 10, but the pressure of the compressed air outlet 80 is considered when considering the resistance and the linear stability of the underwater vehicle 10. Position and number is preferably designed to be symmetrical in the vertical and horizontal and the left and right of the underwater vehicle (10). For reference, in the embodiment of the present invention, a total of four compressed air outlets 80 are installed to be symmetrical in up, down, left and right directions, and each of the compressed air outlets 80 is divided into four divided air moving tubes 70. It was connected one to one. On the other hand, when there are two or more compressed air outlets 80, it is highly desirable to configure each compressed air outlet 80 to be selectively opened and closed in terms of positive influence on the stable operation of the underwater vehicle 10. Do. For example, if the compressed air outlet 80 is installed one each in the upper and lower sides and the left and right sides of the water vapor movement body 10, as in the embodiment of the present invention, the lower one compression according to the operating speed of the water vehicle 10 Compressed air is discharged through the air outlet 80 first, and then compressed air is discharged in the order of the two left and right compressed air outlets 80 and the upper one compressed air outlet 80 (of course, finally, 4). Compressed air outlets through all four compressed air outlets 80). Through this, it is possible to form a customized transcendental cavity according to the operational state of the underwater vehicle 10. To this end, the present invention is provided with a sub-compressed air moving tube 100 in front of the compressed air tank (50). The sub-compressed air moving tube 100 is a tube connecting the internal space of the cylinder 33 and the compressed air moving tube 70. The sub-compressed air moving tube 100 is bypassed with respect to the compressed air moving tube 70. pass) connected in the form of a tube. And the sub-compressed air moving pipe 100 is provided with a sub-compressed air valve 101 for opening and closing the sub-compressed air moving pipe 100, the sub-compressed air valve 101 is the operation of the sub-pressure sensor 110 It is opened and closed according to. That is, when the piston 32 moves backwards to increase the pressure inside the cylinder 33 as shown in FIG. 5B, the sub-compressed air valve (10) operates according to the operation of the sub-pressure sensor 110 according to the increase of the pressure. 101 is opened. Then, the compressed air inside the cylinder 33 is moved to the compressed air moving tube 70 along the sub-compressed air moving tube 100 and finally discharged to the outside (water) through the compressed air discharge outlet 80. In this regard, the opening and closing time of the sub-compressed air valve 101 is actively adjusted by the setting value of the sub-pressure sensor 110. The sub pressure sensor 110 measures the air pressure inside the cylinder 33 and is electrically connected to the sub compressed air valve 101 (FIG. 4). When the measured air pressure exceeds the set value, the sub pressure sensor 110 opens the sub compressed air valve 101 to allow the compressed air inside the cylinder 33 to move to the compressed air moving tube 70. Therefore, if the setting value of the sub-pressure sensor 110 is large, the movement time of the compressed air will be slow, but if the setting value of the sub-pressure sensor 110 is small, the movement time of the compressed air will be faster. do. In summary, the larger the set value of the sub pressure sensor 110, the slower the compressed air discharge point of the compressed air outlet 80, and the smaller the set value of the sub pressure sensor 110, the smaller the compressed air outlet 80 The compressed air discharge time will be faster. In the embodiment of the present invention, the compressed air outlet (80) is installed one each on the upper and lower sides and left and right of the underwater moving body (10), the compressed air moving pipe 70 is divided into four branches, the end of the compressed air outlet (80) ), One to one. And the sub-compressed air moving pipe 100 is provided with a total of four, each of the sub-compressed air moving pipe 100 is connected in the form of a bypass pipe for the four branch pipe of the compressed air moving pipe (70). Each of the four sub-compressed air moving pipes 100 is provided with a sub-compressed air valve 101, and each sub-compressed air valve 101 is individually connected to the sub-pressure sensor 110. If the set value of the sub pressure sensor 110 connected to the sub-compressed air valve 101 of the sub-compressed air moving pipe 100 directed to the lower one compressed air outlet 80 is made to be the smallest, then the left and right 2 The set value of the sub-pressure sensor 110 connected with the sub-compressed air valve 101 of the sub-compressed air delivery pipe 100 directed to the two compressed air outlets 80 and the upper one compressed air outlet 80 in order; When it is made larger, as the operating speed increases after the launch of the underwater vehicle 10, the compressed air is first discharged through the lower one compressed air outlet 80, and then the two left and right compressed air outlets 80, the upper one Compressed air is discharged in the order of the compressed air discharge port 80, and finally, the rearmost compressed air valve 71 is opened and four pressure It is possible to implement a situation in which the compressed air inside the cylinder 33 and the compressed air tank 50 are all discharged to the outside through the axial air outlet 80. As described above, according to the present invention, since the converting cavity 20 maintains a conical shape at the beginning of the launching of the transcendental underwater vehicle 10, resistance and vibration force can be reduced as compared with the conventional disc shaped cavator ( A). In addition, as the speed gradually increases, the converting cavity 20 sequentially turns into a disk shape, and thus the transverse cavity shape that occurs accordingly becomes larger than that of the existing conical cavity (the underwater vehicle due to C of FIG. 5). Less limited to the body shape of (10) The above description is merely illustrative of the technical idea of the present invention, those skilled in the art belong to the essential characteristics of the present invention Various modifications, changes, and substitutions may be made without departing from the scope of the present invention, and the embodiments and the accompanying drawings disclosed herein are not intended to limit the technical spirit of the present invention, but to explain the embodiments and the accompanying drawings. The scope of the technical idea of the present invention is not limited by the accompanying drawings. To be interpreted by the appended claims, all spirits within a scope equivalent to that halgeotyida are intended to be included in the scope of the present invention.
【산업상이용가능성】  【Industrial Availability】
본 발명에 따르면 수중운동체의 초월공동 현상을 용이하게 구현해 낼 수 있 을 뿐만 아나라 이를 위한 시스템 구성을 간소화할 수 있으며 동시에 수중운동체의 저항과기진력을줄일 수 있는바, 본 발명은조선해양산업 분야에서 널리 이용하여 그실용적이고경제적인 가치를 실현할수 있는기술이다. According to the present invention can easily implement the transcendental phenomena of the underwater vehicle As well as to simplify the system configuration for this and at the same time can reduce the resistance and vibration of the underwater vehicle, the present invention is a technology that can be widely used in the shipbuilding and marine industry to realize its practical and economic value.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
수중운동체 (10)의 전두부에 설치되며 상기 수중운동체 (10)의 발사 시 원뿔형 상에서 원판형상으로변경되는변환형 캐비테이터 (20);  A conversion type cavitation 20 installed in the front head of the underwater vehicle 10 and changed from conical to disc-shaped when the underwater vehicle 10 is launched;
상기 변환형 캐비테이터 (20)의 후방에 설치되며 내부에 압축공기를 저장하는 압축공기탱크 (50);  A compressed air tank (50) installed at the rear of the converting cavitation (20) and storing compressed air therein;
상기 압축공기탱크 (50)내부의 공기압을계측하며 계측된 공기압이 설정 값을 초과하면 압축공기밸브 (71)를여는압력센서 (90); 및  A pressure sensor (90) which measures the air pressure inside the compressed air tank (50) and opens the compressed air valve (71) when the measured air pressure exceeds a set value; And
상기 수중운동체 (10)의 전단부에 설치되며 상기 압축공기탱크 (50) 내부의 압 축공기를 상기 수중운동체 (10) 외부로 배출하여 인공초월공동을 형성하는 압축공기 배출구 (80);  A compressed air outlet (80) installed at the front end of the underwater body (10) and discharging the compressed air inside the compressed air tank (50) to the outside of the underwater body (10) to form an artificial transcendental cavity;
를포함하는초월공동수중운동체의 능동형 캐비테이터 시스템으로서, 상기 변환형 캐비테이터 (20)는 2개 이상의 캐비테이터요소를 구비하는바, 상 기 각각의 캐비테이터요소는 상기 수중운동체 (10)의 발사 초기에는 전후 방향으로 층을 이루어 원뿔형상을 이루다가 상기 수중운동체 (10)의 속도가 증가하면 상기 전 방의 캐비테이터요소가 상기 후방의 캐비테이터요소 안으로 순차적으로 삽입되어 함몰되면서 최종적으로는원판형상을 이루며,  An active cavitation system of a transcendental joint underwater vehicle comprising: the converting cavitation 20 includes two or more cavitation elements, wherein each cavitation element is the launch of the underwater movement 10. Initially, in the form of a layer in the front-rear direction to form a conical shape, when the speed of the underwater moving object 10 increases, the front cavitation element is sequentially inserted into the rear cavitation element to sink, finally forming a disc shape. ,
상기 압축공기탱크 (50)는 상기 압력센서 (90) 및 상기 압축공기벨브 (71)의 작동 에 따라내부의압축공기를상기 압축공기배출구 (80)로 공급하되,  The compressed air tank 50 supplies the compressed air to the compressed air outlet 80 according to the operation of the pressure sensor 90 and the compressed air valve 71,
상기 압축공기배출구 (80)의 압축공기 배출 시점은 상기 압력센서 (90)의 설정 값에 의하여 능동적으로 조절되는바, 상기 설정 값이 크면 클수록 상기 압축공기배 출구 (80)의 압축공기 배출 시점은 느려지고 상기 설정 값이 작으면 작을수록 상기 압축공기배출구 (80)의 압축공기 배출 시점은 빨라지는 것을 특징으로 하는 초월공동 수중운동체의 능동형 캐비테이터 시스템. The compressed air discharge time of the compressed air discharge port 80 is set by the pressure sensor 90 It is actively controlled by a value. The larger the set value is, the slower the compressed air discharge point of the compressed air discharge outlet 80 is, and the smaller the set value is, the smaller the set value, the compressed air discharge point of the compressed air outlet 80 is. Active cavitation system of the transcendental joint underwater vehicle, characterized in that the faster.
【청구항 2】  [Claim 2]
청구항 1에 있어서,  The method according to claim 1,
상기 변환형 캐비테이터 (20)는 제 1캐비테이터요소 (21), 제 2캐비테이터요소 (22) 및 제 3캐비테이터요소 (23)를구비하는바,  The converting cavitation 20 is provided with a first cavator element 21, a second cavator element 22 and a third cavator element 23,
상기 수증운동체 (10)의 발사 초기에는 상기 제 1캐비테이터요소 (21), 상기 저 12 캐비테이터요소 (22) 및 상기 제 3캐비테이터요소 (23)가 전방에서부터 후방으로 순서대 로층을 이루어 원뿔형상을이루며,  In the initial stage of the firing of the steam locomotive 10, the first cavitation element 21, the low 12 cavator element 22 and the third cavator element 23 are formed in order from the front to the rear in order to conical In shape,
상기 수중운동체 (10)의 속도가 증가하면 제일 먼저 상기 제 1캐비테이터요소 (21)가상기 제 2캐비테이터요소 (22) 안으로 삽입되어 함몰되고 그 다음 상기 겨 U캐비 테이터요소 (21)와상기 제 2캐비테이터요소 (22)가함께 상기 제 3캐비테이터요소 (23) 안 으로 삽입되어 함몰됨에 따라 종국에는 원판형상을 이루는 것을 특징으로 하는 초 월공동수중운동체의 능동형 캐비테이터 시스템.  When the speed of the underwater vehicle 10 increases, the first cavitation element 21 is first inserted into the second cavitation element 22 to be recessed, and then the bran U cavitation element 21 and the 2. The active cavator system of the transcendental underwater moving object, characterized in that the second cavitation element (22) is inserted into the third cavitation element (23) and recessed to eventually form a disc shape.
【청구항 3】  [Claim 3]
청구항 2에 있어서,  The method according to claim 2,
상기 계 1캐비테이터요소 (21)는 원뿔형상인 것을특징으로하는초월공동수중 운동체의 능동형 캐비테이터 시스템. Active system of the transverse joint underwater vehicle, characterized in that the system 1 cavitation element (21) is conical.
【청구항 4】 [Claim 4]
청구항 2에 있어서,  The method according to claim 2,
상기 제 2캐비테이터요소 (22)는 원뿔의 상단부가 잘려나간 형상이며 상기 저 U 캐비테이터요소 (21)를 수용할 수 있는 계 1수용공간 (22a)과 상기 제 1수용공간 (22a) 안 으로 삽입되는 상기 제 1캐비테이터요소 (21)가 상기 제 2캐비테이터요소 (22)를 통과하 여 빠져 나가지 않도록 잡아주는 제 1스토퍼 (22b)를 구비하는 것을 특징으로 하는초 월공동수중운동체의 능동형 캐비테이터 시스템.  The second cavator element 22 is cut out of the upper end of the cone and into the first accommodation space 22a and the first accommodation space 22a that can accommodate the low U cavitation element 21. An active type of super moon joint underwater body, characterized in that it comprises a first stopper (22b) to hold the inserted first cavitation element 21 does not pass through the second cavitation element 22. Cavitation system.
【청구항 5】  [Claim 5]
청구항 2에 있어서,  The method according to claim 2,
상기 제 3캐비테이터요소 (23)는 원뿔의 상단부가 잘려나간 형상이며 상기 제 2 캐비테이터요소 (22)를 수용할 수 있는 계 2수용공간 (23a)과 상기 제 2수용공간 (23a) 안 으로 삽입되는 상기 제 2캐비테이터요소 (22)가 상기 계 3캐비테이터요소 (23)를 통과하 여 빠져 나가지 않도록 잡아주는 제 2스토퍼 (23W를 구비하는 것을 특징으로 하는 초 월공동수중운동체의 능동형 캐비테이터 시스템.  The third cavitation element 23 has a shape in which the upper end of the cone is cut out and into the second accommodation space 23a and the second accommodation space 23a which can accommodate the second cavitation element 22. Active caviar of the transcendence underwater moving body, characterized in that it has a second stopper (23W) to hold the inserted second cavitation element 22 does not pass through the system three cavitation element (23) Data system.
【청구항 6】  [Claim 6]
청구항 2에 있어서,  The method according to claim 2,
상기 제 1캐비테이터요소 (21)의 높이는 상기 제 2캐비테이터요소 (22)의 높이보 다작거나 같고 상기 제 2캐비테이터요소 (22)의 높이는 상기 제 3캐비테이터요소 (23)의 높이보다 작거나 같은 것을 특징으로 하는 초월공동 수중운동체의 능동형 캐비테이 터 시스템. The height of the first cavity element 21 is less than or equal to the height of the second cavity element 22 and the height of the second cavity element 22 is less than the height of the third cavity element 23. Active cavitation system of the transcendental joint underwater vehicle, characterized in that or the like.
【청구항 7】 [Claim 7]
청구항 2에 있어서,  The method according to claim 2,
상기 제 1캐비테이터요소 (21)에는 후방으로 향하는 피스톤축 (31)이 연결되고 상기 피스톤축 (31)의 끝단에는피스톤 (32)이 설치되며,  A piston shaft 31 facing rearward is connected to the first cavity element 21, and a piston 32 is installed at the end of the piston shaft 31.
상기 제 3캐비테이터요소 (23)에는 후방으로 향하는 실린더 (33)가 연결되고 상 기 피스톤축 (31)은상기 제 2캐비테이터요소 (22)와상기 제 3캐비테이터요소 (23)를 관통 하여 상기 실린더 (33) 안까지 연장되며,  A cylinder 33 facing backward is connected to the third cavator element 23, and the piston shaft 31 passes through the second cavator element 22 and the third cavator element 23. Extends into the cylinder (33),
상기 피스톤 (32)은 상기 제 1캐비테이터요소 (21) 또는 상기 계 2캐비테이터요소 (22)가후방으로 함몰될 때 상기 피스톤축 (31)의 이동에 따라상기 실린더 (33)의 벽을 타고 후방으로 이동하는 것을 특징으로 하는 초월공동 수증운동체의 능동형 캐비테 이터 시스템.  The piston 32 rides on the wall of the cylinder 33 as the piston shaft 31 moves when the first cavitation element 21 or the second cavitation element 22 is recessed backwards. Active cavitation system of transcendental water vapor movement body, characterized in that moving backward.
【청구항 8】  [Claim 8]
청구항 7에 있어서,  The method according to claim 7,
상기 계 2캐비테이터요소 (22)의 후단에는 계 1슬라이딩요소 (40)가 설치되는바, 상기 계 1슬라이딩요소 (40)는상기 계 2캐비테이터요소 (22)에 의해 후방으로 밀려 상기 실린더 (33) 안으로 들어가는 것을 특징으로 하는 초월공동 수중운동체의 능동형 캐 비테이터 시스템.  The system 1 sliding element 40 is installed at the rear end of the system 2 cavator element 22, and the system 1 sliding element 40 is pushed backward by the system 2 cavator element 22 to be moved to the cylinder ( 33) Active cavitation system of transcendental underwater vehicle characterized by entering in.
【청구항 9】  [Claim 9]
청구항 8에 있어서,  The method according to claim 8,
상기 계 1슬라이딩요소 (40)와 상기 실린더 (33) 벽면 간의 마찰력에 따라 상기 변환형 캐비테이터 (20)의 형상변경 시점이 조절되는 것을 특징으로 하는 초월공동 수중운동체의 능동형 캐비테이터 시스템. According to the frictional force between the system 1 sliding element 40 and the wall of the cylinder 33 Active cavitation system of the transcendental joint underwater vehicle, characterized in that the shape change time of the conversion type cavitation 20 is adjusted.
【청구항 10】  [Claim 10]
청구항 7에 있어서,  The method according to claim 7,
상기 실린더 (33)의 후단에는 상기 압축공기탱크 (50)가 연결되며 상기 압축공 기탱크 (50)의 내부 전단에는 제 2슬라이딩요소 (60)가 설치되는바, 상기 제 2슬라이딩요 소 (60)는 상기 피스톤 (32)에 의해 밀려 상기 압축공기탱크 (50)의 후방으로 이동하는 것을특징으로하는초월공동수중운동체의 능동형 캐비테이터 시스템.  The compressed air tank 50 is connected to the rear end of the cylinder 33, and the second sliding element 60 is installed at the inner front end of the compressed air tank 50, and the second sliding element 60 C) is pushed by the piston (32) to move rearward of the compressed air tank (50) active cavitation system of the transverse joint underwater vehicle.
【청구항 11】  [Claim 11]
청구항 10에 있어서,  The method according to claim 10,
상기 압축공기탱크 (50)의 출구에는 압축공기이동관 (70)이 연결되며, 상기 압축 공기탱크 (50)와 상기 압축공기이동관 (70)의 연결지점에는 압축공기벨브 (71)가 설치되 는바, 상기 압축공기탱크 (50)의 출구는 상기 수중운동체 (10)의 발사 초기에는 상기 압축공기벨브 (71)에 의해 닫혀 있다가 상기 수중운동체 (10)의 속도가 점차 증가하면 서 상기 압력센서 (90)가작동함에 따라 열리는 것을 특징으로 하는 초월공동 수중운 동체의 능동형 캐비테이터 시스템.  A compressed air moving tube 70 is connected to the outlet of the compressed air tank 50, and a compressed air valve 71 is installed at a connection point between the compressed air tank 50 and the compressed air moving tube 70. The outlet of the compressed air tank (50) is closed by the compressed air valve (71) at the beginning of the launch of the underwater vehicle (10), and the pressure sensor (90) while the speed of the underwater vehicle (10) is gradually increased. Active cavitation system of the transcendental underwater underwater fuselage, characterized in that the opening according to the operation).
【청구항 12】  [Claim 12]
청구항 11에 있어서,  The method according to claim 11,
상기 압축공기배출구 (80)의 위치 및 개수는 상기 수중운동체 (10)의 상하 및 좌우로 대칭이 되도록 설계되는 것을 특징으로 하는 초월공동 수중운동체의 능동형 캐비테이터 시스템. The position and number of the compressed air discharge port 80 is the active type of transcendental hollow underwater vehicle, characterized in that it is designed to be symmetrical in the up and down and left and right of the underwater vehicle (10). Cavitation system.
【청구항 13】  [Claim 13]
청구항 12에 있어서,  The method according to claim 12,
상기 압축공기배출구 (80)가 2개 이상인 경우 상기 각각의 압축공기배출구 (80) 가 선택적으로 개폐될 수 있도록 구성되는 것을 특징으로 하는 초월공동 수중운동 체의 능동형 캐비테이터 시스템.  When the compressed air outlet (80) is two or more, each of the compressed air outlet 80 is configured to be opened and closed selectively active cavitation system of the transcendental underwater exercise body.
【청구항 14】  [Claim 14]
청구항 13에 있어서,  The method according to claim 13,
상기 실린더 (33)의 내부 공간과 상기 압축공기이동관 (70)을 연결하는 관으로 상기 압축공기이동관 (70)에 대하여 바이패스 (By-pass) 관의 형태로 연결되는 서브압 축공기이동관 (100);  Sub-compressed air moving pipe (100) connected to the inner space of the cylinder (33) and the compressed air moving pipe (70) in the form of a bypass (by-pass) pipe with respect to the compressed air moving pipe (70). );
상기 서브압축공기이동관 (100)에 설치되며, 서브압력센서 (110)의 작동에 따라 상기 서브압축공기이동관 (100)을개폐하는 서브압축공기밸브 (101)및;  A sub-compressed air valve (101) installed in the sub-compressed air moving pipe (100) and opening and closing the sub-compressed air moving pipe (100) according to the operation of the sub-pressure sensor (110);
상기 서브압축공기밸브 (101)와 전기적으로 연결되며, 상기 실린더 (33) 내부의 공기압을 계측하여 상기 계측된 공기압이 설정 값을 초과하면 상기 서브압축공기밸 브 (101)를 열어 상기 실린더 (33) 내부의 압축공기가 상기 서브압축공기이동관 (100)을 통하여 상기 압축공기이동관 (70)으로 이동하도록하는서브압력센서 (110);  The sub-compressed air valve 101 is electrically connected to the sub-compressed air valve 101 and measures the air pressure inside the cylinder 33 to open the sub-compressed air valve 101 when the measured air pressure exceeds a set value. A sub-pressure sensor 110 for moving the compressed air inside the compressed air moving pipe 70 through the sub-compressed air moving pipe 100;
를 구비하는 것을 특징으로 하는 초월공동 수중운동체의 능동형 캐비테이터 시스템.  Active cavitation system of the transcendental underwater underwater vehicle, characterized in that it comprises a.
PCT/KR2015/010972 2015-06-19 2015-10-16 Active-type cavitator system of supercavitating underwater vehicle WO2016204348A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0087656 2015-06-19
KR1020150087656A KR101570322B1 (en) 2015-06-19 2015-06-19 Active Cavitator System of the Supercavitating Underwater Vehicle

Publications (1)

Publication Number Publication Date
WO2016204348A1 true WO2016204348A1 (en) 2016-12-22

Family

ID=54839231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010972 WO2016204348A1 (en) 2015-06-19 2015-10-16 Active-type cavitator system of supercavitating underwater vehicle

Country Status (2)

Country Link
KR (1) KR101570322B1 (en)
WO (1) WO2016204348A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160412A (en) * 2019-06-21 2019-08-23 北京机械设备研究所 Submarine navigation device attitude control method based on air layers reducing resistance technology
US10486773B2 (en) * 2018-04-20 2019-11-26 Agency For Defense Development Cavitator system for suppressing cavity buoyancy effect and method thereof
CN115071881A (en) * 2022-07-19 2022-09-20 哈尔滨工业大学 Cavitation device shape design method for underwater high-speed navigation
WO2023072201A1 (en) * 2021-10-29 2023-05-04 大连理工大学 Modulatable double-layer telescopic sheet cavitator structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109747770A (en) * 2018-12-29 2019-05-14 武汉理工大学 Underwater laser tunnel supersonic speed hypervelocity launcher and method
CN115158531A (en) * 2022-07-12 2022-10-11 西北工业大学 Supercavitation aircraft head structure with water-entering load shedding function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3041992A (en) * 1960-05-10 1962-07-03 United Aircraft Corp Low drag submarine
JPH0260682A (en) * 1988-08-26 1990-03-01 Top Kogyo Kk Tool using pneumatic cylinder
US7874251B1 (en) * 2007-04-12 2011-01-25 Lockheed Martin Corporation Cavity-running projectile having a telescoping nose
US7966936B1 (en) * 2009-03-13 2011-06-28 The United States Of America As Represented By The Secretary Of The Navy Telescoping cavitator
US8146501B1 (en) * 2008-03-03 2012-04-03 Lockheed Martin Corporation Supercavitating projectile having a morphable nose

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3041992A (en) * 1960-05-10 1962-07-03 United Aircraft Corp Low drag submarine
JPH0260682A (en) * 1988-08-26 1990-03-01 Top Kogyo Kk Tool using pneumatic cylinder
US7874251B1 (en) * 2007-04-12 2011-01-25 Lockheed Martin Corporation Cavity-running projectile having a telescoping nose
US8146501B1 (en) * 2008-03-03 2012-04-03 Lockheed Martin Corporation Supercavitating projectile having a morphable nose
US7966936B1 (en) * 2009-03-13 2011-06-28 The United States Of America As Represented By The Secretary Of The Navy Telescoping cavitator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10486773B2 (en) * 2018-04-20 2019-11-26 Agency For Defense Development Cavitator system for suppressing cavity buoyancy effect and method thereof
CN110160412A (en) * 2019-06-21 2019-08-23 北京机械设备研究所 Submarine navigation device attitude control method based on air layers reducing resistance technology
CN110160412B (en) * 2019-06-21 2021-06-29 北京机械设备研究所 Underwater vehicle attitude control method based on air film drag reduction technology
WO2023072201A1 (en) * 2021-10-29 2023-05-04 大连理工大学 Modulatable double-layer telescopic sheet cavitator structure
CN115071881A (en) * 2022-07-19 2022-09-20 哈尔滨工业大学 Cavitation device shape design method for underwater high-speed navigation
CN115071881B (en) * 2022-07-19 2023-03-10 哈尔滨工业大学 Cavitation device shape design method for underwater high-speed navigation

Also Published As

Publication number Publication date
KR101570322B1 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2016204348A1 (en) Active-type cavitator system of supercavitating underwater vehicle
WO2016204349A1 (en) Cavitator system of supercavitating underwater vehicle using compressed air tank
WO2016204347A1 (en) Passive-type cavitator system of supercavitating underwater vehicle
US7966936B1 (en) Telescoping cavitator
WO2015011437A3 (en) Air cannon and associated launch canister for a line-fouling system
CN112444165B (en) Underwater supercavitation navigation body with hollow appearance characteristics
CN107401956B (en) Amphibious cruise missile based on throat offset type pneumatic vectoring nozzle and attitude control method thereof
KR101597632B1 (en) Ultra high speed guided torpedo
CN107543462B (en) A kind of supercavitating vehicle
CN112985188A (en) Variable-structure cavitation device with water-entering load-reducing function
CN107416226B (en) Launching system and method for unpowered aircraft under deep water of great submergence
CN102285438A (en) Technology for arranging through-flow propeller on front of submarine or ship
CN103204186A (en) Motion device
CN104176245B (en) Movable half rocking arm take-off and landing device
CN107738725A (en) A kind of supercavity submarine navigation device
KR102012112B1 (en) Ejection tube for a submarine
KR102141294B1 (en) Artificial supercavitating high-speed underwater vehicle equipped multi-injection system
CN102954733B (en) For the sagging division ala type torch of projectile body hydrodynamic force control
US2837971A (en) Hydraulic ejection equipment for missiles
KR102151486B1 (en) Water pressure driven control system for super cavitating underwater projectile and super cavitating underwater projectile having the same
KR20150081757A (en) Testing device for torpedo launching
ES2444628T3 (en) Pressurized fluid feeding system of an ejector of a gun launching tube from an underwater vehicle
WO2023072200A1 (en) Combined disc-type cavitation structure for underwater navigation of navigation body
KR20180019840A (en) Tube of submarine having returning compress unit and it using underwater weapon launch method
KR20150127938A (en) Falling resistance apparatus for thrust hole

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895735

Country of ref document: EP

Kind code of ref document: A1