WO2016204349A1 - Cavitator system of supercavitating underwater vehicle using compressed air tank - Google Patents

Cavitator system of supercavitating underwater vehicle using compressed air tank Download PDF

Info

Publication number
WO2016204349A1
WO2016204349A1 PCT/KR2015/010973 KR2015010973W WO2016204349A1 WO 2016204349 A1 WO2016204349 A1 WO 2016204349A1 KR 2015010973 W KR2015010973 W KR 2015010973W WO 2016204349 A1 WO2016204349 A1 WO 2016204349A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed air
cavitation
underwater vehicle
air tank
transcendental
Prior art date
Application number
PCT/KR2015/010973
Other languages
French (fr)
Korean (ko)
Inventor
안병권
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Publication of WO2016204349A1 publication Critical patent/WO2016204349A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B19/00Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means
    • F42B19/005Nose caps for torpedoes; Coupling torpedo-case parts together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/32Range-reducing or range-increasing arrangements; Fall-retarding means
    • F42B10/34Tubular projectiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/32Range-reducing or range-increasing arrangements; Fall-retarding means
    • F42B10/38Range-increasing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B19/00Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a cavitation system of an underwater moving body moving at high speed in the water using the transcendental cavity phenomenon.
  • the drag varies greatly depending on the frontal head shape of the underwater vehicle, and most of the drag acting on the underwater vehicle after the transcendental cavity is concentrated in the cavities.
  • the shapes of the cavities developed so far are conical and disc types.
  • the conical shape is advantageous in terms of resistance and linear stability (vibration force), but is limited by the shape of the body of the aquatic body located behind the cavator because of the smaller transverse cavity shape that occurs compared to the disc type.
  • the disk type is disadvantageous in terms of resistance and straightness stability, but is less limited in the shape of the body of the underwater vehicle because of its larger transverse cavity shape than the cone type.
  • the present invention has been proposed to solve the above problems, to provide a cavitation system of the transcendental joint underwater vehicle to form an artificial transcendental cavity by discharging the compressed air inside the compressed air tank to the front head during the launch of the underwater vehicle. To do that.
  • a conversion type cavitation device installed in the front head of the underwater vehicle and changed from a cone shape to a disk shape when the underwater vehicle is launched;
  • a compressed air tank is connected to the rear of the converting cavitation, a compressed air moving pipe is connected to an outlet of the compressed air tank, a compressed air discharge port is connected to an end of the compressed air moving pipe, and the compressed air discharge port is a front end of the underwater moving object.
  • the compressed air tank discharges the compressed air stored therein to the compressed air moving tube when the underwater moving object reaches a certain speed
  • the compressed air moving tube supplies compressed air to the compressed air discharge port
  • the compressed air discharge port discharges the compressed air to the outside of the underwater moving body to form an artificial transcendental cavity.
  • a 'cavator' system of motor vehicles Provides a 'cavator' system of motor vehicles.
  • the converting cavities are provided with two or more cavitation elements, each of the cavitation element is layered in the front and rear direction at the beginning of the launch of the underwater vehicle to form a conical shape, the speed of the underwater vehicle increases Then, the front cavitation element is sequentially inserted into the rear cavitation element to sink and finally form a disc shape.
  • the compressed air tank supplies internal compressed air to the compressed air outlet according to the change of the shape of the converting cavity, and the point of changing the shape of the converting cavity is adjusted according to the air pressure inside the compressed air tank.
  • the present invention may further include a pressure sensor for measuring the air pressure inside the compressed air tank, but opens the compressed air valve when the measured air pressure exceeds the set value.
  • the compressed air tank supplies the compressed air to the compressed air outlet according to the operation of the pressure sensor and the compressed air valve, and the compressed air discharge point of the compressed air outlet is set by the pressure sensor.
  • the convertible cavator includes a low U cavator element, a second cavator element and a third cavator element, wherein the first cavator element, the second cavator element and The third cavitation element is layered in order from the front to the rear to form a conical shape.
  • the first cavitation element is first inserted into the second cavitation element and recessed.
  • the first and second cavitation elements are then inserted together into the low 13 cavitation elements and recessed to form a disc shape.
  • the first cavitation element is conical in shape.
  • the second cavator element is a shape in which the upper end of the cone is cut off, and the first U-cavator element inserted into the first accommodation space and the first accommodation space capable of accommodating the low U-cavity element and the second accommodation cavity A first stopper is provided to hold the cavities out of the cavities.
  • the third cavator element is a shape in which the top end of the cone is cut out and a second accommodation space capable of accommodating the second cavitation element and the second cavitation element inserted into the second accommodation space are inserted into the third accommodation space.
  • a second stopper is provided to hold it out of the cavity element.
  • the height of the first cavator element is less than or equal to the height of the second cavator element and the height of the second cavator element is less than or equal to the height of the third cavator element.
  • a piston shaft facing rearward is connected to the first cavator element, and a piston is installed at an end of the piston shaft, and a cylinder facing rearward is connected to the three-cavity element, and the piston shaft is connected to the second cavitation element. And extends into the cylinder through the third cavator element, wherein the piston is moved in accordance with the movement of the piston shaft when the first cavator element or the second cavator element is recessed rearward. Ride the wall and move backwards.
  • a first sliding element is installed at a rear end of the system 2 cavator element, and the first sliding element is pushed backward by the second cavitation element to enter the cylinder.
  • the shape change timing of the conversion type cavator is adjusted according to the frictional force between the first sliding element and the cylinder wall surface.
  • the compressed air tank is connected to a rear end of the cylinder, and a second sliding element is installed at an inner front end of the compressed air tank, and the second sliding element is pushed by the piston to move to the rear of the compressed air tank.
  • a compressed air moving tube is connected to the outlet of the compressed air tank, and a compressed air valve is installed at the connection point between the compressed air tank and the compressed air moving tube, and the outlet of the compressed air tank is the initial launch of the underwater vehicle.
  • the compressed air valve It is blocked by the compressed air valve and is opened by being pushed to the valve moving tube behind the compressed air valve rearward when the piston or the second sliding element is moved backward.
  • a spring is installed at an end of the compressed air valve in the valve moving tube, and the spring operates to maintain the compressed air valve blocking the outlet of the compressed air tank at the beginning of the launch of the underwater vehicle.
  • the outlet of the compressed air tank is the compressed air at the beginning of the launch of the underwater vehicle It is closed by an air valve and opens as the pressure sensor operates while the speed of the underwater body gradually increases.
  • the position and the number of the compressed air outlets are designed to be symmetrical in the up and down and left and right sides of the underwater vehicle. When the compressed air outlets are two or more, each of the compressed air outlets is configured to be selectively opened and closed.
  • a sub-compressed air moving tube connected to the inner space of the cylinder and the compressed air moving tube in the form of a bypass tube with respect to the compressed air moving tube;
  • a sub-compressed air valve installed in the sub-compressed air moving pipe, the sub-compressed air moving pipe opening and closing the sub-compressed air moving pipe according to the operation of the sub-pressure sensor;
  • a sub pressure sensor configured to move to the compressed air moving tube
  • the configuration of the ventilation system for this becomes very simple, and the characteristics of the temperature, pressure, and component of the compressed air This uniformity makes it possible to form stable transcendental cavities over time.
  • the cavator maintains a conical shape at the beginning of the launch of the underwater vehicle, reducing resistance and vibration force, and as the speed increases, the cavator sequentially changes into a disk shape, and the transcendental cavity that occurs accordingly increases. Are less restricted by the shape of the body.
  • 1 is a water vapor vehicle covered with a transcendental cavity.
  • Figure 3 is a shape of the transcendental joint underwater moving body according to the present invention.
  • FIG. 4 is a configuration of a conversion type cavator according to a first embodiment of the present invention.
  • FIG. 5 is a configuration of a conversion type cavator according to a second embodiment of the present invention.
  • Figure 6 is a step-by-step operation of the conversion type cavator according to the first embodiment of the present invention.
  • FIG. 7 is a step-by-step operation method of the convertible cavator according to the second embodiment of the present invention.
  • 22a Total space for accommodating one 22b: First stopper
  • Sub compressed air moving tube 101 Sub compressed air valve
  • FIG. 3 shows the shape of the transcendental joint underwater vehicle 10 according to the present invention.
  • the frontal head of the transcendental joint underwater vehicle 10 according to the present invention is provided with a convertible cavitation 20 (FIG. 3).
  • Convertible cavitation 20 is in contrast to the conventional conical (Cone Type) or disk-type (Disk Type) cavator, the conical or disk-type cavator is fixed in shape but does not change the Transformation cavitation (20) It is characterized by maintaining the cone shape at the beginning of the launching of the transcendental joint underwater vehicle 10 and gradually changing to a disc shape as the speed increases.
  • the convertible cavitation 20 is provided with two or more cavitation elements for changing the shape as described above. At first, each cavitation element is layered in the front and rear directions between each other. ) Is in the shape of a cone, but gradually the front cavitation element is inserted into the rear cavitation element in sequence, and eventually the conversion type cavitation 20 is changed into a disc shape.
  • the convertible cavitation 20 includes two or more cavitation elements for changing the shape, and the number of such cavitation elements may be designed in various ways according to the size or shape of the underwater vehicle 10. It can be.
  • the embodiments of the present invention related to the configuration and operation of the convertible cavitation 20 will be described by dividing the first embodiment and the second embodiment, and in this case, the converting cavities 20 It is assumed that the cavitation element is provided.
  • First Embodiment (Passive) The first embodiment of the present invention is a case where the discharge of the compressed air through the compressed air outlet 80 is passive (natural) by the pressure rise of the compressed air tank 50. 4 shows the configuration of the conversion type cavitation 20 according to the first embodiment of the present invention.
  • the conversion-type cavator 20 includes a first cavitation element 21, a second cavitation element 22, a third cavitation element 23, and the like.
  • Three cavitation elements are layered with each other to form an overall conical shape (FIG. 6A).
  • the low U cavitation element 21, the second cavitation element 22 and the system three cavitation element 23 are arranged in order from the front of the underwater body 10 to the rear.
  • each cavitation element is sequentially inserted into the rear cavitation element to be recessed and finally the disc shape Is achieved. More specifically, firstly, the first cavitation element 21 is inserted into the rear second cavitation element 22 to be recessed (B of FIG. 6), and then the first cavitation element 21 is taken. And second cabinet The rotor element 22 is inserted and recessed together into the third cavitation element 23 (FIG. 6C). As a result, the conversion type cavity 20 which was initially a cone shape (A of FIG. 6) eventually turns into a disc shape (C of FIG. 6).
  • the first cavitation element 21 is conical.
  • the second cavitation element 22 is a shape in which the upper end of the cone is cut out, and the center of the body has a first accommodation space 22a that can accommodate the first cavitation element 21 when it is inserted and recessed. . Since the front end of the first accommodating space 22a is open, the system one cavitation element 21 can be inserted into the system one accommodating space 22a to be recessed. However, the rear end of the first accommodation space 22a is not opened and is blocked by the first stopper 22b.
  • the first stopper 22b corresponds to the bottom surface of the second cavitation element 22, in which the first cavitation element 21 is inserted into the low U accommodation space 22a. ) It serves to hold the product so that it does not exit. Thus, once the first cavitation element 21 is inserted into the second cavitation element 22 and recessed, the first cavitation element 21 and the second cavity are not the first cavitation element 21 alone.
  • the data element 22 is integrally inserted together and inserted into the third cavitation element 23 to be recessed.
  • the third cavity element 23 is shaped like the second cavity element 22 with the upper end of the cone cut out, which can accommodate the second cavity element 22 when the second cavity element 22 is inserted and recessed.
  • the second accommodation space 23a is provided.
  • the front end of the second accommodation space 23a is open As such, the second cavitation element 22 can be inserted into the system receiving space 23a to be recessed. However, the rear end of the system receiving space 23a is not opened and is blocked by the second stopper 23b.
  • the system second stopper 23W corresponds to the bottom surface of the third cavitation element 23, in which the second cavitation element 22 inserted into the second accommodation space 23a is connected to the third cavitation element 23.
  • the first cavitation element 21 and the second cavitation element 22 are inserted into the total three cavitation element 23 and are recessed.
  • the shaped cavity 20 finally has a disc shape (Fig. 6C), in which the converting cavity 20 is ultimately disc shaped and thus has the advantages of a disc shaped cavity.
  • the height of the cavitation element 21 is less than or equal to the height of the second cavitation element 22 and the height of the second cavitation element 22 is less than or equal to the height of the third cavitation element 23.
  • the relationship between the heights of the first cavator element 21, the second cavator element 22, and the third cavator element 23 is the same. If the height of the second cavitation element 23 is greater than the height of the cavitation element 22 or the third cavitation element 23 or the height of the third cavitation element 23, 20) is not desirable since it will continue to maintain some conical shape.
  • the lower U-cavator element 21 is connected to the rearward piston shaft 31 and is The piston 32 is installed at the end of the piston shaft 31.
  • the piston shaft 31 extends into the cylinder 33 through the second and third cavator elements 22 and the piston 32 moves in response to the movement of the piston shaft 31. Will move backwards on the wall. In this case, the piston shaft 31 moves when the first cavitation element 21 or the second cavitation element 22 is recessed backwards (B, C of FIG. 6).
  • the first sliding element 40 is installed at the rear end of the second cavitation element 22. The first sliding element 40 has a through hole in the center of the body and the piston shaft 31 passes through the through hole.
  • the first sliding element 40 is pushed by the second cavitation element 22 into the cylinder 33 when the second cavitation element 22 is inserted into the third cavitation element 23 and recessed. (FIG. 6C).
  • the reason for having the first sliding element 40 in the present invention will be described.
  • the converting cavitation 20 receives a resistance that prevents the movement of the underwater vehicle 10 from the front, and the force of the underwater vehicle 10 is increased. It increases in proportion to the speed.
  • the first cavitation element 21 and the second cavitation element 22 are sequentially inserted and recessed backward by the force.
  • the point of depression of the second cavitation element 22, that is, the point of change of the shape of the conversion type cab 20 may be adjusted. All. If the frictional force between the sliding element 40 and the wall of the cylinder 33 is large, a large force is required to push the sliding element 40 into the cylinder 33, and if the frictional force is small, a relatively small force is required. I need strength. Accordingly, when the frictional force between the first sliding element 40 and the wall of the cylinder 33 is increased, the second cavitation element 22 is at the point where the speed of the underwater moving object 10 increases significantly, that is, the conversion cavitation 20.
  • the frictional force can be reduced so that even when the speed of the underwater vehicle 10 is not relatively high, It is possible for 22 to be recessed into the third cavitation element 23.
  • the depression of the second cavitation element 22 is closely related to the formation of artificial supercavity as the compressed air in the compressed air tank 50 is discharged to the outside as described below. According to the frictional force between the sliding element 40 and the wall of the cylinder 33, ultimately, the timing of formation of the transcendental cavity can be controlled.
  • the first sliding element 40 may be made of metal, rubber or other synthetic fiber material, and adjusts the friction force between the first sliding element 40 and the wall of the cylinder 33 according to the size or material of the first sliding element 40. It is possible to do In the case of the present invention, the shape change point of the conversion type cavitation 20 is basically a compression hole.
  • the air pressure inside the tank 50 is adjusted. That is, as shown in FIG. 6, the piston 32 can move backwards only by overcoming the air pressure in the compressed air tank 50 (this is also the case for the second sliding element 60 described later). , If the air pressure inside the compressed air tank 50 is large, the back movement time and speed of the piston 32 will be slow.
  • the shape change of the convertible cavitation 20 is also controlled by adjusting the frictional force between the first sliding element 40 and the wall of the cylinder 33 as well as the air pressure inside the compressed air tank 50 as described above. You can adjust the view point.
  • the compressed air tank 50 is connected to the rear end of the cylinder 33, and the compressed air is stored inside the compressed air tank 50.
  • a second sliding element 60 is installed at the inner front end of the compressed air tank 50. That is, the second sliding element 60 is installed at a position where the rear end of the cylinder 33 and the front end of the compressed air tank 50 abut.
  • the system 2 sliding element 60 is pushed back by the piston 32 when the system 2 cavitation element 22 is inserted into the third cavitation element 23 and is recessed to ride the wall of the compressed air tank 50.
  • the rear end of the compressed air tank 50 is connected to the compressed air moving pipe (70).
  • the rear end of the compressed air tank 50 corresponds to the outlet through which the compressed air comes out, and at the initial stage (the launching point of the transversely moving underwater vehicle 10), the outlet is blocked by the compressed air valve 71. .
  • the compressed air valve 71 is installed at the connection point between the compressed air tank 50 and the compressed air moving pipe 70, and moves along the valve moving pipe 72 connected to the rear.
  • the piston 32 moves backwards (B of FIG. 6) or the second sliding element 60 moves backwards (C of FIG. 6)
  • the inside of the compressed air tank 50 (more specifically, The pressure of the two-sliding element (60) rear space is increased and the compressed air valve 71 is pushed to the rear valve moving tube (72) by the pressure.
  • the outlet of the compressed air tank 50 is opened. At this time, the compressed air exiting the outlet is moved along the compressed air moving tube 70 and finally discharged to the outside (underwater) through the compressed air outlet 80 .
  • the valve 73, the spring 73 is installed at the end of the compressed air valve (71). Therefore, at the initial stage (starting time of the transcendental joint underwater vehicle 10), the compressed air valve 71 is blocked by the action of the spring 73 to block the outlet of the compressed air tank 50. In addition, if the speed of the underwater vehicle 10 is gradually increased, the degree of push-out (distance and timing) of the compressed air valve 71 can be adjusted according to the magnitude of the elastic force of the spring 73.
  • the reason for having the compressed air outlet 80 in the present invention is artificial transcendence (Artificial To form a supercavity.
  • the compressed air discharge port 80 is installed at the front end of the transcendental cavity underwater body 10.
  • a compressed air moving tube 70 which is a passage for moving the compressed air of the compressed air tank 50 to the compressed air outlet 80 is provided. 4 and 6, the compressed air moving tube 70 is designed to start at the outlet of the compressed air tank 50 and bend its end toward the compressed air discharge port 80.
  • the position and number of the compressed air outlet 80 may be variously designed according to the size or shape of the underwater vehicle 10, but the compressed air outlet 80 when considering the resistance and the linear stability of the underwater vehicle 10
  • the position and number of the bar is to be designed to be symmetrical up and down and left and right of the underwater vehicle (10) It is good.
  • a total of four compressed air outlets 80 are installed to be symmetrical in the up, down, left, and right directions.
  • the converting cavity 20 maintains a conical shape at the beginning of the launching of the transcendental underwater vehicle 10
  • resistance and vibration force can be reduced as compared with the conventional disc shaped cavator ( 6A).
  • the conversion type cavity 20 sequentially turns into a disc shape, and thus the transverse cavity shape generated accordingly becomes larger than the conventional cone type cavity (FIG. 6C). Because of this, the body shape of the underwater body 10 is less restricted.
  • the second embodiment of the present invention is a case where the discharge of the compressed air through the compressed air discharge port 80 is made active (artificial) by the operation of the pressure sensor 90.
  • the pressure sensor 90 is further configured compared to the example (FIG. 5).
  • the function and operation of the pressure sensor 90 will be mainly described, and the same content as in the first embodiment will be omitted.
  • 5 shows a configuration of a convertible cavitation 20 according to a second embodiment of the present invention.
  • 7 is a step of the conversion type cavitation 20 according to the second embodiment of the present invention It shows how it works.
  • a compressed air tank 50 is connected to the rear end of the cylinder 33, and the compressed air is stored inside the compressed air tank 50 (Fig. 5).
  • a second sliding element 60 is installed at the inner front end of the compressed air tank 50. That is, the system 2 sliding element 60 is installed in the position where the rear end of the cylinder 33 and the front end of the compressed air tank 50 abut. The second sliding element 60 is pushed by the piston 32 to move backwards on the wall of the compressed air tank 50 when the second cavity element 22 is inserted into the third cavity element 23 and is recessed. Done (C in FIG. 7). The rear end of the compressed air tank 50 is connected to the compressed air moving pipe (70).
  • the rear end of the compressed air tank 50 corresponds to the outlet through which the compressed air comes out, and at the initial stage (the launching point of the transversely moving underwater body 10), the outlet is closed by the compressed air valve 71. .
  • the compressed air valve 71 is installed at the connection point between the compressed air tank 50 and the compressed air moving tube 70. After the launch of the transcendental underwater moving body 10, a predetermined time passes to the operation of the pressure sensor 90. Open accordingly. That is, when the piston 32 moves backward (B of FIG. 7) or the second sliding element 60 moves backward (C of FIG. 7) as described above, the cylinder 33 or the compressed air tank 50 The internal pressure is increased, and the compressed air valve 71 is opened during the operation of the pressure sensor 90 according to the increase of the pressure.
  • the outlet of the compressed air tank 50 is opened and the outlet Compressed air moves along the compressed air transfer pipe (70) and is finally discharged to the outside (underwater) through the compressed air outlet (80).
  • the compressed air discharge timing of the compressed air discharge port 80 is actively controlled by the set value of the pressure sensor (90).
  • the pressure sensor 90 measures the air pressure in the compressed air tank 50 and is electrically connected to the compressed air valve 71 (FIG. 5).
  • the pressure sensor 90 opens the compressed air valve 71 when the measured air pressure exceeds a set value so that the compressed air inside the compressed air tank 50 is discharged to the outside.
  • the compressed air discharge point will be slow, but if the set value of the pressure sensor 90 is small, the compressed air discharge point is also faster.
  • the larger the set value of the pressure sensor 90 the slower the compressed air discharge point of the compressed air outlet 80 is, and the smaller the set value of the pressure sensor 90 is, the more the compressed air outlet 80 is compressed. The time to release the air is faster.
  • the compressed air outlet 80 is installed at the front end of the transcendental cavity underwater body 10. And a compressed air moving tube 70 which is a passage for moving to the compressed air virtual air compressed air outlet 80 of the compressed air tank 50 is installed.
  • the compressed air moving tube 70 is designed to start at the outlet of the compressed air tank 50 and bend toward the compressed air discharge port 80.
  • the position and number of the compressed air outlet 80 may vary depending on the size or shape of the underwater vehicle 10. Although it may be designed, the position and number of the compressed air outlet 80 is preferably designed to be symmetrical up and down and left and right of the underwater vehicle 10 when considering the resistance and the linear stability side of the underwater vehicle 10.
  • a total of four compressed air outlets 80 are installed to be symmetrical up and down and left and right, and each of the compressed air discharge ports 80 is divided into four divided compressed air moving tubes ( One-to-one connection with the end of 70).
  • each compressed air outlet 80 when there are two or more compressed air outlets 80, it is highly desirable to configure each compressed air outlet 80 to be selectively opened and closed in terms of positively affecting the stable operation of the underwater vehicle 10. Do.
  • the compressed air outlet 80 when the compressed air outlet 80 is installed one each on the upper and lower sides and the left and right sides of the underwater vehicle 10 as in the second embodiment of the present invention, the lower one according to the operating speed of the underwater vehicle 10 Compressed air is discharged through the compressed air outlet (80) first, and then compressed air is discharged in the order of two compressed air outlets (80) at the left and right, and one compressed air outlet (80) at the top (of course, finally Compressed air will be discharged through all four compressed air outlets 80).
  • the second embodiment of the present invention is provided with a sub-compressed air moving tube 100 in front of the compressed air tank 50 (Fig. 5).
  • the sub-compressed air moving tube 100 is a tube connecting the internal space of the cylinder 33 and the compressed air moving tube 70.
  • the sub-compressed air moving tube 100 is It is connected to the compressed air pipe (70) in the form of a bypass (by-pass) pipe.
  • the sub-compressed air moving tube 100 is provided with a sub-compressed air valve 101 for opening and closing the sub-compressed air moving tube 100, the sub-compressed air valve 101 is to the operation of the sub-pressure sensor (110). It is opened and closed accordingly.
  • the sub-compressed air valve (10) operates according to the operation of the sub-pressure sensor 110 according to the increase of the pressure. 101 is opened. Then, the compressed air in the cylinder 33 is moved to the compressed air moving tube 70 along the sub-compressed air moving tube 100 and finally discharged to the outside (water) through the compressed air discharge outlet 80.
  • the opening and closing time of the sub-compressed air valve 101 is actively controlled by the setting value of the sub-pressure sensor 110.
  • the sub pressure sensor 110 measures the air pressure inside the cylinder 33 and is electrically connected to the sub compressed air valve 101 (FIG. 5).
  • the sub pressure sensor 110 opens the sub compressed air valve 101 to allow the compressed air inside the cylinder 33 to move to the compressed air moving tube 70. Therefore, if the setting value of the sub-pressure sensor 110 is large, the movement time of the compressed air will be slow, but if the setting value of the sub-pressure sensor 110 is small, the movement time of the compressed air is also faster. In summary, the larger the set value of the sub pressure sensor 110, the slower the compressed air discharge point of the compressed air outlet 80, and the smaller the set value of the sub pressure sensor 110, the smaller the pressure. The compressed air discharge point of the axial air outlet 80 is faster.
  • the compressed air discharge port 80 is installed one each on the upper and lower sides and the left and right sides of the underwater moving object 10, the compressed air moving pipe 70 is divided into four branches, the end of the compressed air discharge port One-to-one connection to 80.
  • the sub-compressed air moving pipe 100 is provided with a total of four, each of the sub-compressed air moving pipe 100 is connected in the form of a bypass pipe for the four branches of the compressed air moving pipe (70).
  • Each of the four sub-compressed air moving pipes 100 is provided with a sub-compressed air valve 101, and each sub-compressed air valve 101 is connected to the sub-pressure sensor 110 separately.
  • the present invention can not only easily implement the transcendental phenomena of the water vapor movement body, but also simplify the system configuration for this, and at the same time can reduce the resistance and vibration force of the water movement body, the present invention in the field of shipbuilding and marine industry It is a technology that can be widely used to realize its practical and economic value.

Abstract

The present invention relates to a cavitator system of a supercavitating underwater vehicle using a compressed air tank. According to the present invention, cavitation is formed not by using exhaust gas of an underwater vehicle but by using compressed air inside a compressed air tank, and thus the configuration of a ventilation system therefor becomes very simple, and further, properties of the compressed air such as temperature, pressure, substance, etc. are even, thereby enabling the stable formation of a supercavitation according to the passing of time. Further, in the early part of a launch of the underwater vehicle, a conversion-type cavitator maintains a conical shape, thereby enabling the reduction of resistance and excitation force, and the conversion-type cavitator consecutively changes into a circular disk shape as speed increases, and the shape of a supercavitation that occurs therefrom also enlarges, and thus fewer restrictions apply to the body shape of the underwater vehicle.

Description

【발명의 설명】  [Explanation of invention]
【발명의 명칭】  [Name of invention]
압축공기탱크를 이용한초월공동수중운동체의 캐비테이터 시스템  Cavitation System of Transmitted Joint Underwater Vehicle Using Compressed Air Tank
【기술분야】  Technical Field
본 발명은 초월공동 현상을 이용하여 수중에서 고속으로 이동하는 수중운동 체의 캐비테이터 시스템에 관한것이다.  The present invention relates to a cavitation system of an underwater moving body moving at high speed in the water using the transcendental cavity phenomenon.
【배경기술】  Background Art
수중운동체 (Underwater Vehicle)의 속도가높아져 물체 주위의 국부압력이 유 체의 증기압 (Vapor Pressure)보다 낮아지면 유체가 기화하게 되는 공동 (Cavitation) 현상이 발생한다. 이때 이동 속도가 더욱 증가하게 되면 공동은 수중운동체의 형상 을모두 덮을 만큼성장하게 되는데 이를초월공동 (Supercavitation)이라한다 (도 1). 초월공동으로 덮인 수중운동체는 마치 공기 중에서 이동하는것과 같은 효과 를 받기 때문에 물체에 작용하는항력 (Drag)은 극적으로 감소하게 된다 (이하, 초월공 동 현상을 이용하는 수중운동체를 '초월공동 수중운동체' 라고 함). 이 같은 초월 공동 현상을 바탕으로 수중에서는 초고속이라 할 수 있는 200노트 (약 300Km/H) 이 상의 속도로 이동할수 있는 어뢰에 관한 연구가시도되고 있다. 현재 러시아에서는 초월공동 어뢰를 개발완료하여 운용하고 있는 것으로 알려졌으며, 독일과 미국에서 도 유사한 초월공동 어뢰 개발을 위한 연구가 수행 중인 것으로 알려지고 있다. 하 지만 군사적 이용목적의 개발단계로 현재는 제한적인 정보들만이 공개되어 있는 실 정이다. 초월공동 수중운동체의 전두부에는 공동을 발생시키고 이를 초월공동으로 성 장시키는 역할을 하는 캐비테이터 (Cavitator)가 설치되어 있다 (도 1, 도 2). 캐비테이 터의 형상과 초월공동 성능은 전체 수중운동체 설계파라미터를 결정짓는 핵심요소 로, 초월공동 유동해석 기술과 실험을 통한 검증이 필요하다. 아을러 발사 초기 마 찰저항을 감소시키고 초월공동 성장을 촉진시키기 위한 인공초월공동 (Artificial Supercavity)장치에 대한 연구또한그중요성이 부각되고 있다. 초월공동이 발생하기 전까지 항력은 수중운동체의 전두부 형상에 따라 크게 달라지며, 초월공동 발생 후수중운동체에 작용하는 항력은 대부분 캐비테이터에 집 중된다. 현재까지 개발되고 있는 캐비테이터의 형상은 원뿔형 (Cone Type)과 원판형 (Disk Type)이 있다. 원뿔형은 저항 및 직진안정성 (기진력) 측면에서 유리하나 원판 형에 비해 발생하는 초월공동 형상이 작기 때문에 캐비테이터 후방에 위치하는 수 중운동체의 몸체 형상에 제한을 받는다. 반면에, 원판형은 저항 및 직진안정성 측면 에서 불리하나 원뿔형에 비해 발생하는 초월공동 형상이 크기 때문에 수중운동체의 몸체 형상에 제한을덜 받는다. 한편, 인공초월공동 장치와 관련하여, 기존에는 수중운동체의 엔진 연소 시 발생하는 배기가스를 이용하여 공동을 형성하였으나 (도 2), 이 경우 배기가스를 수중 운동체의 전두부로 배출하기 위한 환기시스템의 구성이 매우 복잡해지며 나아가 배 기가스의 온도, 압력, 성분 등의 특성이 균일하지 못하여 시간의 경과에 따른 안정 적인 초월공동의 형성이 힘들어지는단점이 있다. When the speed of an underwater vehicle increases, the local pressure around the object becomes lower than the vapor pressure of the fluid, causing a cavitation that causes the fluid to vaporize. At this time, if the moving speed is further increased, the cavity grows to cover the shape of the underwater vehicle, which is called a supercavitation (Fig. 1). Since the underwater vehicle covered by the transcendental cavity has the same effect as moving in the air, the drag acting on the object is dramatically reduced (hereinafter referred to as the 'transcendental underwater vehicle' Is called). Based on these transcendental phenomena, research is being conducted on torpedoes capable of moving at speeds of over 200 knots (about 300 km / h), which can be called underwater at high speed. It is known that Russia is developing and operating transcendental torpedoes, and similar research is being carried out in Germany and the United States. However, due to the development stage of military use, only limited information is currently available. Jung. The frontal head of the transcendental joint underwater vehicle is equipped with a cavity (Cavitator) that serves to generate a cavity and grow it as a transcendental cavity (Fig. 1, Fig. 2). The shape and transcendence performance of the cavitation are the key factors that determine the design parameters of the entire underwater vehicle, and the transcendental flow analysis technology and the experiments need to be verified. Research on artificial supercavity devices to reduce frictional resistance and promote transcendental co-growth is also important. Until transcendence of the cavity occurs, the drag varies greatly depending on the frontal head shape of the underwater vehicle, and most of the drag acting on the underwater vehicle after the transcendental cavity is concentrated in the cavities. The shapes of the cavities developed so far are conical and disc types. The conical shape is advantageous in terms of resistance and linear stability (vibration force), but is limited by the shape of the body of the aquatic body located behind the cavator because of the smaller transverse cavity shape that occurs compared to the disc type. On the other hand, the disk type is disadvantageous in terms of resistance and straightness stability, but is less limited in the shape of the body of the underwater vehicle because of its larger transverse cavity shape than the cone type. On the other hand, in relation to the artificial transcendental joint device, conventionally formed a cavity by using the exhaust gas generated when the engine combustion of the underwater vehicle (Fig. 2), in this case the exhaust gas underwater The composition of the ventilation system for discharging to the frontal part of the moving body becomes very complicated, and furthermore, the characteristics of exhaust gas temperature, pressure, and components are not uniform, which makes it difficult to form a stable transcendental cavity over time.
【발명의 상세한설명】  Detailed Description of the Invention
【기술적 과제】  [Technical problem]
본 발명은 상기와 같은 문제점을 해결하기 위해 제안된 것으로, 수중운동체 의 발사 시 압축공기탱크 내부의 압축공기를 전두부로 배출하여 인공초월공동을 형 성하는초월공동수중운동체의 캐비테이터 시스템을제공하는것을목적으로 한다. 【기술적 해결방법】  The present invention has been proposed to solve the above problems, to provide a cavitation system of the transcendental joint underwater vehicle to form an artificial transcendental cavity by discharging the compressed air inside the compressed air tank to the front head during the launch of the underwater vehicle. To do that. Technical Solution
상기한목적을달성하기 위하여 본발명은,  In order to achieve the above object, the present invention,
수중운동체의 전두부에 설치되며 상기 수중운동체의 발사 시 원뿔형상에서 원판형상으로변경되는 변환형 캐비테이터;  A conversion type cavitation device installed in the front head of the underwater vehicle and changed from a cone shape to a disk shape when the underwater vehicle is launched;
를포함하는 압축공기탱크를 이용한초월공동 수중운동체의 캐비테이터 시스 템으로서,  As a cavitation system of the transverse joint underwater vehicle using a compressed air tank comprising a,
상기 변환형 캐비테이터의 후방에는 압축공기탱크가 연결되고 상기 압축공기 탱크의 출구에는 압축공기이동관이 연결되고 상기 압축공기이동관의 끝단에는 압축 공기배출구가 연결되고 상기 압축공기배출구는 상기 수중운동체의 전단부에 설치되 는바,  A compressed air tank is connected to the rear of the converting cavitation, a compressed air moving pipe is connected to an outlet of the compressed air tank, a compressed air discharge port is connected to an end of the compressed air moving pipe, and the compressed air discharge port is a front end of the underwater moving object. Installed in the department ,
상기 압축공기탱크는상기 수중운동체가 일정 속도에 도달했을 때 내부에 저 장된 압축공기를상기 압축공기이동관으로 방출하고, 상기 압축공기이동관은압축공기를상기 압축공기배출구로 공급하고, 상기 압축공기배출구는 압축공기를 상기 수중운동체 외부로 배출하여 인공초 월공동을 형성하는 것을 특징으로 하는 압축공기탱크를 이용한 초월공동 수중운동 체의 캐비테이터 '시스템을제공한다. 상기 변환형 캐비테이터는 2개 이상의 캐비테이터요소를 구비하는바, 상기 각각의 캐비테이터요소는 상기 수중운동체의 발사 초기에는 전후 방향으로 층을 이 루어 원뿔형상을 이루다가상기 수중운동체의 속도가 증가하면 상기 전방의 캐비테 이터요소가 상기 후방의 캐비테이터요소 안으로 순차적으로 삽입되어 함몰되면서 최종적으로는 원판형상을 이룬다. 상기 압축공기탱크는 상기 변환형 캐비테이터의 형상변경에 따라 내부의 압 축공기를 상기 압축공기배출구로 공급하되, 상기 변환형 캐비테이터의 형상변경 시 점은상기 압축공기탱크내부의 공기압에 따라조절되는바, 상기 압축공기탱크내부 의 공기압이 크면 클수록 상기 변환형 캐비테이터의 형상변경 시점은 느려지고 상 기 압축공기탱크 내부의 공기압이 작으면 작을수록 상기 변환형 캐비테이터의 형상 변경 시점은빨라진다. 본 발명은상기 압축공기탱크내부의 공기압을계측하되 계측된 공기압이 설 정 값을 초과하면 압축공기벨브를 여는 압력센서를 추가로 구비할 수 있다. 이 경 우, 상기 압축공기탱크는 상기 압력센서 및 상기 압축공기밸브의 작동에 따라 내부 의 압축공기를 상기 압축공기배출구로 공급하되, 상기 압축공기배출구의 압축공기 배출 시점은 상기 압력센서의 설정 값에 의하여 능동적으로 조절되는바, 상기 설정 값이 크면 클수록 상기 압축공기배출구의 압축공기 배출 시점은 느려지고 상기 설 정 값이 작으면 작을수록상기 압축공기배출구의 압축공기 배출 시점은빨라진다. 상기 변환형 캐비테이터는 저 U캐비테이터요소, 제 2캐비테이터요소 및 제 3캐 비테이터요소를 구비하는바, 상기 수중운동체의 발사 초기에는 상기 제 1캐비테이터 요소, 상기 제 2캐비테이터요소 및 상기 제 3캐비테이터요소가 전방에서부터 후방으로 순서대로 층을 이루어 원뿔형상을 이루며, 상기 수중운동체의 속도가증가하면 제일 먼저 상기 제 1캐비테이터요소가 상기 제 2캐비테이터요소 안으로 삽입되어 함몰되고 그 다음 상기 제 1캐비테이터요소와 상기 저ᅵ 2캐비테이터요소가 함께 상기 저 13캐비테 이터요소 안으로삽입되어 함몰됨에 따라종국에는원판형상을 이룬다. 상기 제 1캐비테이터요소는 원뿔형상이다. 상기 제 2캐비테이터요소는 원뿔의 상단부가잘려나간 형상이며 상기 저 U캐비 테이터요소를 수용할 수 있는 제 1수용공간과 상기 계 1수용공간 안으로 삽입되는 상 기 저 U캐비테이터요소가 상기 제 2캐비테이터요소를 통과하여 빠져 나가지 않도록 잡아주는 제 1스토퍼를구비한다. 상기 제 3캐비테이터요소는 원뿔의 상단부가 잘려나간 형상이며 상기 제 2캐비 테이터요소를 수용할 수 있는 제 2수용공간과 상기 제 2수용공간 안으로 삽입되는 상 기 제 2캐비테이터요소가 상기 제 3캐비테이터요소를 통과하여 빠져 나가지 않도록 잡아주는제 2스토퍼를구비한다. 상기 제 1캐비테이터요소의 높이는 상기 제 2캐비테이터요소의 높이보다 작거 나 같고 상기 제 2캐비테이터요소의 높이는 상기 제 3캐비테이터요소의 높이보다 작 거나같다. 상기 제 1캐비테이터요소에는 후방으로 향하는 피스톤축이 연결되고 상기 피 스톤축의 끝단에는 피스톤이 설치되며, 상기 계 3캐비테이터요소에는 후방으로 향하 는 실린더가 연결되고 상기 피스톤축은 상기 제 2캐비테이터요소와 상기 제 3캐비테 이터요소를 관통하여 상기 실린더 안까지 연장되며, 상기 피스톤은 상기 제 1캐비테 이터요소 또는 상기 제 2캐비테이터요소가 후방으로 함몰될 때 상기 피스톤축의 이 동에 따라상기 실린더의 벽을타고후방으로 이동한다. 상기 계 2캐비테이터요소의 후단에는 제 1슬라이딩요소가 설치되는바, 상기 제 1슬라이딩요소는 상기 제 2캐비테이터요소에 의해 후방으로 밀려 상기 실린더 안으 로들어간다. 상기 제 1슬라이딩요소와 상기 실린더 벽면 간의 마찰력에 따라 상기 변환형 캐비테이터의 형상변경 시점이 조절된다. 상기 실린더의 후단에는 상기 압축공기탱크가 연결되며 상기 압축공기탱크의 내부 전단에는 제 2슬라이딩요소가 설치되는바, 상기 제 2슬라이딩요소는 상기 피스톤 에 의해 밀려 상기 압축공기탱크의 후방으로 이동한다. 상기 압축공기탱크의 출구에는 압축공기이동관이 연결되며, 상기 압축공기탱 크와상기 압축공기이동관의 연결지점에는 압축공기밸브가 설치되는바, 상기 압축공 기탱크의 출구는 상기 수중운동체의 발사초기에는 상기 압축공기밸브에 의해 막혀 있다가상기 피스톤 또는 상기 제 2슬라이딩요소의 후방 이동 시 상기 압축공기밸브 가후방의 밸브이동관으로 밀려나게 되면서 열린다. 상기 벨브이동관내부에는 상기 압축공기밸브의 끝단부에 스프링이 설치되는 바, 상기 스프링은 상기 수중운동체의 발사 초기에는 상기 압축공기밸브가 상기 압 축공기탱크의 출구를 막고 있는상태를 유지하도록작동하는 한편, 상기 수중운동체 의 속도가 점차 증가하면 자체 탄성력의 크기에 따라 상기 압축공기벨브의 밀려나 는거리 및 시점을조절한다. 상기 압축공기탱크의 출구는 상기 수중운동체의 발사 초기에는 상기 압축공 기밸브에 의해 닫혀 있다가 상기 수중운동체의 속도가 점차 증가하면서 상기 압력 센서가작동함에 따라열린다. 상기 압축공기배출구의 위치 및 개수는 상기 수중운동체의 상하 및 좌우로 대칭이 되도록설계된다. 상기 압축공기배출구가 2개 이상인 경우상기 각각의 압축공기배출구는 선택 적으로개폐될 수 있도록구성된다. The compressed air tank discharges the compressed air stored therein to the compressed air moving tube when the underwater moving object reaches a certain speed, The compressed air moving tube supplies compressed air to the compressed air discharge port, and the compressed air discharge port discharges the compressed air to the outside of the underwater moving body to form an artificial transcendental cavity. Provides a 'cavator' system of motor vehicles. The converting cavities are provided with two or more cavitation elements, each of the cavitation element is layered in the front and rear direction at the beginning of the launch of the underwater vehicle to form a conical shape, the speed of the underwater vehicle increases Then, the front cavitation element is sequentially inserted into the rear cavitation element to sink and finally form a disc shape. The compressed air tank supplies internal compressed air to the compressed air outlet according to the change of the shape of the converting cavity, and the point of changing the shape of the converting cavity is adjusted according to the air pressure inside the compressed air tank. The larger the air pressure in the compressed air tank is, the slower the shape change point of the conversion type cavities becomes slower, and the smaller the air pressure in the compressed air tank is smaller, the faster the shape change point of the conversion type cavities is obtained. The present invention may further include a pressure sensor for measuring the air pressure inside the compressed air tank, but opens the compressed air valve when the measured air pressure exceeds the set value. Sir The compressed air tank supplies the compressed air to the compressed air outlet according to the operation of the pressure sensor and the compressed air valve, and the compressed air discharge point of the compressed air outlet is set by the pressure sensor. Actively controlled, the larger the set value, the slower the compressed air discharge point of the compressed air outlet is, and the smaller the set value, the faster the compressed air discharge point of the compressed air outlet is. The convertible cavator includes a low U cavator element, a second cavator element and a third cavator element, wherein the first cavator element, the second cavator element and The third cavitation element is layered in order from the front to the rear to form a conical shape. When the speed of the underwater moving object increases, the first cavitation element is first inserted into the second cavitation element and recessed. The first and second cavitation elements are then inserted together into the low 13 cavitation elements and recessed to form a disc shape. The first cavitation element is conical in shape. The second cavator element is a shape in which the upper end of the cone is cut off, and the first U-cavator element inserted into the first accommodation space and the first accommodation space capable of accommodating the low U-cavity element and the second accommodation cavity A first stopper is provided to hold the cavities out of the cavities. The third cavator element is a shape in which the top end of the cone is cut out and a second accommodation space capable of accommodating the second cavitation element and the second cavitation element inserted into the second accommodation space are inserted into the third accommodation space. A second stopper is provided to hold it out of the cavity element. The height of the first cavator element is less than or equal to the height of the second cavator element and the height of the second cavator element is less than or equal to the height of the third cavator element. A piston shaft facing rearward is connected to the first cavator element, and a piston is installed at an end of the piston shaft, and a cylinder facing rearward is connected to the three-cavity element, and the piston shaft is connected to the second cavitation element. And extends into the cylinder through the third cavator element, wherein the piston is moved in accordance with the movement of the piston shaft when the first cavator element or the second cavator element is recessed rearward. Ride the wall and move backwards. A first sliding element is installed at a rear end of the system 2 cavator element, and the first sliding element is pushed backward by the second cavitation element to enter the cylinder. The shape change timing of the conversion type cavator is adjusted according to the frictional force between the first sliding element and the cylinder wall surface. The compressed air tank is connected to a rear end of the cylinder, and a second sliding element is installed at an inner front end of the compressed air tank, and the second sliding element is pushed by the piston to move to the rear of the compressed air tank. A compressed air moving tube is connected to the outlet of the compressed air tank, and a compressed air valve is installed at the connection point between the compressed air tank and the compressed air moving tube, and the outlet of the compressed air tank is the initial launch of the underwater vehicle. It is blocked by the compressed air valve and is opened by being pushed to the valve moving tube behind the compressed air valve rearward when the piston or the second sliding element is moved backward. A spring is installed at an end of the compressed air valve in the valve moving tube, and the spring operates to maintain the compressed air valve blocking the outlet of the compressed air tank at the beginning of the launch of the underwater vehicle. On the other hand, if the speed of the underwater vehicle gradually increases, the distance and the point of view of the compressed air valve are adjusted according to the magnitude of its elastic force. The outlet of the compressed air tank is the compressed air at the beginning of the launch of the underwater vehicle It is closed by an air valve and opens as the pressure sensor operates while the speed of the underwater body gradually increases. The position and the number of the compressed air outlets are designed to be symmetrical in the up and down and left and right sides of the underwater vehicle. When the compressed air outlets are two or more, each of the compressed air outlets is configured to be selectively opened and closed.
이를위하여 본발명은, To this end, the present invention,
상기 실린더의 내부공간과상기 압축공기이동관을 연결하는 관으로 상기 압 축공기이동관에 대하여 바이패스 (By-pass) 관의 형태로 연결되는 서브압축공기이동 관;  A sub-compressed air moving tube connected to the inner space of the cylinder and the compressed air moving tube in the form of a bypass tube with respect to the compressed air moving tube;
상기 서브압축공기이동관에 설치되며, 서브압력센서의 작동에 따라 상기 서 브압축공기이동관을개폐하는서브압축공기벨브 및;  A sub-compressed air valve installed in the sub-compressed air moving pipe, the sub-compressed air moving pipe opening and closing the sub-compressed air moving pipe according to the operation of the sub-pressure sensor;
상기 서브압축공기밸브와 전기적으로 연결되며, 상기 실린더 내부의 공기압 을 계측하여 상기 계측된 공기압이 설정 값을 초과하면 상기 서브압축공기벨브를 열어 상기 실린더 내부의 압축공기가 상기 서브압축공기이동관을 통하여 상기 압축 공기이동관으로 이동하도록하는서브압력센서;  It is electrically connected to the sub-compressed air valve, and when the measured air pressure exceeds the set value, the sub-compressed air valve is opened to open the sub-compressed air valve through the sub-compressed air moving tube. A sub pressure sensor configured to move to the compressed air moving tube;
를구비한다. 【유리한효과】 Prepare. Advantageous Effects
본 발명에 따르면, 수중운동체의 배기가스가 아닌 압축공기탱크 내부의 압축 공기를 이용하여 공동을 형성하므로 이를 위한 환기사스템의 구성이 매우 간단해지 며 나아가 압축공기의 온도, 압력, 성분 등의 특성이 균일하여 시간의 경과에 따른 안정적인 초월공동의 형성이 가능해진다. 또한 수중운동체의 발사 초기에는 캐비테 이터가 원뿔형상을 유지하므로 저항과 기진력을 줄일 수 있으며 속도가 증가함에 따라 캐비테이터가 순차적으로 원판형상으로 변하며 이에 따라 발생하는 초월공동 형상도커지기 때문에 수중운동체의 몸체 형상에 제한을 덜 받는다.  According to the present invention, since the cavity is formed using the compressed air inside the compressed air tank instead of the exhaust gas of the underwater moving body, the configuration of the ventilation system for this becomes very simple, and the characteristics of the temperature, pressure, and component of the compressed air This uniformity makes it possible to form stable transcendental cavities over time. In addition, the cavator maintains a conical shape at the beginning of the launch of the underwater vehicle, reducing resistance and vibration force, and as the speed increases, the cavator sequentially changes into a disk shape, and the transcendental cavity that occurs accordingly increases. Are less restricted by the shape of the body.
【도면의 간단한설명】  【Brief Description of Drawings】
도 1은초월공동으로덮인 수증운동체.  1 is a water vapor vehicle covered with a transcendental cavity.
도 2는초월공동수중운동체의 주요요소기술.  2 is a main element technology of the transcendental joint underwater vehicle.
도 3은본 발명에 따른초월공동수중운동체의 형상.  Figure 3 is a shape of the transcendental joint underwater moving body according to the present invention.
도 4는본발명의 제 1실시 예에 따른 변환형 캐비테이터의 구성.  4 is a configuration of a conversion type cavator according to a first embodiment of the present invention.
도 5는본발명의 제 2실시 예에 따른 변환형 캐비테이터의 구성.  5 is a configuration of a conversion type cavator according to a second embodiment of the present invention.
도 6은본 발명의 제 1 실시 예에 따른 변환형 캐비테이터의 단계별 작동 방 식.  Figure 6 is a step-by-step operation of the conversion type cavator according to the first embodiment of the present invention.
도 7은본 발명의 제 2 실시 예에 따른 변환형 캐비테이터의 단계별 작동 방 식.  7 is a step-by-step operation method of the convertible cavator according to the second embodiment of the present invention.
<부호의 설명 >  <Description of the sign>
10: 수중운동체 20 : 변환형 캐비테이터 21 : 제 1캐비테이터요소 22 : 제 2캐비테이터요소 10: Underwater Vehicle 20: Convertible Cavitation 21: first cavator element 22: second cavator element
22a : 계 1수용공간 22b : 제 1스토퍼  22a: Total space for accommodating one 22b: First stopper
23 : 저 13캐비테이터요소 23a : 제 2수용공간  23: low 13 cavitation element 23a: second receiving space
23b : 계 2스토퍼 31 : 피스톤축  23b : System 2 stopper 31 : Piston shaft
32 : 피스톤 33 : 실린더  32: piston 33: cylinder
40 : 제 1슬라이딩요소 50: 압축공기탱크  40: first sliding element 50: compressed air tank
60 : 제 2슬라이딩요소 70: 압축공기이동관  60: second sliding element 70: compressed air moving tube
71 : 압축공기벨브 72 : 벨브이동관  71 : Compressed air valve 72 : Valve moving tube
80 : 압축공기배출구 90: 압력센서  80 : compressed air outlet 90 : pressure sensor
100 : 서브압축공기이동관 101 : 서브압축공기벨브  100 : Sub compressed air moving tube 101 : Sub compressed air valve
110: : 서브압력센서  110 : : Sub pressure sensor
【발명의 실시를위한최선의 형태】  [Best Mode for Implementation of the Invention]
이하, 첨부된 도면들을 참조하여 본 발명에 대하여 상세히 설명한다. 우선 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서 는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음 에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상 세한설명은생략한다. 도 3은본발명에 따른초월공동수중운동체 (10)의 형상을보여준다. 본 발명에 따른 초월공동 수중운동체 (10)의 전두부에는 변환형 캐비테이터 (20)가 구비된다 (도 3). 변환형 캐비테이터 (20)는 기존의 원뿔형 (Cone Type) 또는 원 판형 (Disk Type) 캐비테이터에 대비되는 것으로, 원뿔형 또는 원판형 캐비테이터는 그 형상이 고정되어 변하지 않으나 변환형 캐비테이터 (20)는 초월공동 수중운동체 (10)의 발사 초기에는 원뿔형상을 유지하다가 속도가 증가함에 따라 순차적으로 원 판형상으로 변하는것에 특징이 있다. 변환형 캐비테이터 (20)는상기와같은 형상의 변경을 위한 2개 이상의 캐비테 이터요소를 구비하는바, 처음에는 각각의 캐비테이터요소가상호간에 전후 방향으로 층올 이루므로 변환형 캐비테이터 (20)가 원뿔형상을 하고 있으나 점차 전방의 캐비 테이터요소가 후방의 캐비테이터요소 안으로 순차적으로 삽입되어 함몰되면서 최종 적으로는 변환형 캐비테이터 (20)가원판형상으로 변하게 된다. 상술한 바와 같이 변환형 캐비테이터 (20)는 형상의 변경을 위한 2개 이상의 캐비테이터요소를구비하는바, 이러한캐비테이터요소의 개수는수중운동체 (10)의 크 기나 형상등에 따라다양하게 설계될 수 있는것이다. 이하, 변환형 캐비테이터 (20)의 구성 및 작동 방식과 관련한 본 발명의 실시 예를 계 1 실시 예와제 2 실시 예로구분하여 설명하고자하며, 이 경우 변환형 캐 비테이터 (20)는 3개의 캐비테이터요소를구비하는경우를 전제로설명한다. 제 1실시 예 (수동형) 본 발명의 제 1 실시 예는 압축공기배출구 (80)를 통한 압축공기의 배출이 압 축공기탱크 (50)의 압력 상승에 의해 수동적 (자연적)으로 이루어지는경우이다. 도 4는본 발명의 제 1실시 예에 따른 변환형 캐비테이터 (20)의 구성을 보여 준다. 그리고 도 6은 본 발명의 제 1 실시 예에 따 변환형 캐비테이터 (20)의 단계 별 작동방식을보여준다. 변환형 캐비테이터 (20)는, 처음 (수중운동체 (10)의 발사 초기)에는, 제 1캐비테이 터요소 (21), 제 2캐비테이터요소 (22) 및 제 3캐비테이터요소 (23) 등 3개의 캐비테이터요 소가 상호간에 층을 이루어 전체적으로 원뿔형상을 이룬다 (도 6의 A). 이 경우 저 U 캐비테이터요소 (21), 제 2캐비테이터요소 (22) 및 계 3캐비테이터요소 (23)는 수중운동체 (10)의 전방에서부터 후방으로순서대로배열된다. 하지만 수중운동체 (10)의 속도가 점차 증가하면서 변환형 캐비테이터 (20)의 전방으로부터 힘이 가해지면 각각의 캐비테이터요소는 후방의 캐비테이터요소 안으 로순차적으로 삽입되어 함몰되며 최종적으로 원판형상을 이루게 된다. 보다구체적 으로는, 제일 먼저 제 1캐비테이터요소 (21)가 후방의 제 2캐비테이터요소 (22) 안으로 삽입되어 함몰되며 (도 6의 B), 그 다음 단계로 제 1캐비테이터요소 (21)와 제 2캐비테이 터요소 (22)가 함께 제 3캐비테이터요소 (23) 안으로 삽입되어 함몰된다 (도 6의 C). 그 결과 처음에는 원뿔형상 (도 6의 A)이던 변환형 캐비테이터 (20)가 종국에는 원판형상 (도 6의 C)으로 변한다. 이하, 본 발명에 따른 변환형 캐비테이터 (20)의 구성 및 단계 별 작동방식에 대하여 보다상세히 설명한다. 제 1캐비테이터요소 (21)는 원뿔형상이다. 제 2캐비테이터요소 (22)는 원뿔의 상단 부가 잘려나간 형상인데, 몸체 가운데는 제 1캐비테이터요소 (21)가 삽입되어 함몰될 때 이를 수용할 수 있는 제 1수용공간 (22a)을 구비한다. 제 1수용공간 (22a)의 전단은 개방되어 있으므로 계 1캐비테이터요소 (21)는 상기 계 1수용공간 (22a) 안으로 삽입되어 함몰될 수 있다. 하지만, 제 1수용공간 (22a)의 후단은 개방되어 있지 않고 제 1스토퍼 (22b)에 의해 가로막혀 있다. 제 1스토퍼 (22b)는 제 2캐비테이터요소 (22)의 바닥면에 해 당하는 것인데, 이는 저 U수용공간 (22a) 안으로 삽입되는 계 1캐비테이터요소 (21)가 제 2캐비테이터요소 (22)를 통과하여 빠져 나가지 않도록 잡아주는 역할을 한다. 따라서 일단 제 1캐비테이터요소 (21)가 제 2캐비테이터요소 (22) 안으로 삽입되어 함몰된 이후 에는 제 1캐비테이터요소 (21) 단독이 아니라, 제 1캐비테이터요소 (21)와 제 2캐비테이터 요소 (22)가 일체가되어 함께 제 3캐비테이터요소 (23) 안으로삽입되어 함몰된다. 제 3캐비테이터요소 (23)는 제 2캐비테이터요소 (22)와 마찬가지로 원뿔의 상단부 가 잘려나간 형상인데, 몸체 가운데는 제 2캐비테이터요소 (22)가 삽입되어 함몰될 때 이를 수용할 수 있는 제 2수용공간 (23a)을 구비한다. 제 2수용공간 (23a)의 전단은 개방 되어 있으므로 제 2캐비테이터요소 (22)는 상기 계 2수용공간 (23a) 안으로 삽입되어 함 몰될 수 있다. 하지만, 계 2수용공간 (23a)의 후단은 개방되어 있지 않고 제 2스토퍼 (23b)에 의해 가로막혀 있다. 계 2스토퍼 (23W는 제 3캐비테이터요소 (23)의 바닥면에 해 당하는 것인데, 이는 제 2수용공간 (23a) 안으로 삽입되는 제 2캐비테이터요소 (22)가 제 3캐비테이터요소 (23)를 통과학여 빠져 나가지 않도록 잡아주는 역할을 한다. 따라서 제 1캐비테이터요소 (21)와 계 2캐비테이터요소 (22)가 계 3캐비테이터요소 (23) 안으로 삽 입되어 함몰되면, 이로 인하여 변환형 캐비테이터 (20)는최종적으로 원판형상을갖게 된다 (도 6의 C). 이때 변환형 캐비테이터 (20)가종국적으로 원판형상이 되고 이에 따라원판형 캐비테이터의 장점을갖기 위해서는, 제 1캐비테이터요소 (21)의 높이는 제 2캐비테이터 요소 (22)의 높이보다 작거나 같고 제 2캐비테이터요소 (22)의 높이는 제 3캐비테이터요 소 (23)의 높이보다 작거나 같은 관계가 되는 것이 바람직하다. 참고로, 도 6에서는 제 1캐비테이터요소 (21), 제 2캐비테이터요소 (22) 및 계 3캐비테이터요소 (23)의 높이가 모두 같은 관계가 나타나 있다. 만약, 제 1캐비테이터요소 (21)의 높이가 계 2캐비테이 터요소 (22)나 제 3캐비테이터요소 (23)의 높이보다 크거나 제 2캐비테이터요소 (22)의 높 이가 제 3캐비테이터요소 (23)의 높이보다 크다면 변환형 캐비테이터 (20)는 어느 정도 의 원뿔형상을계속유지하게 되므로바람직하지 못하다. 저 U캐비테이터요소 (21)에는 후방으로 향하는 피스톤축 (31)이 연결되며 상기 피스톤축 (31)의 끝단에는 피스톤 (32)이 설치된다. 그리고 제 3캐비테이터요소 (23)에는 후방으로 향하는 실린더 (33)가 연결된다. 피스톤축 (31)은 제 2캐비테이터요소 (22)와 제 3캐비테이터요소 (23)를 관통하여 실린더 (33) 안까지 연장되며 피스톤 (32)은 피스톤축 (31)의 이동에 따라실린더 (33)의 벽을 타고 후방으로 이동하게 된다. 이때 피스톤축 (31)이 이동하는경우는계 1캐비테이터요소 (21) 또는제 2캐비테이터요소 (22)가후방으 로함몰되는경우이다 (도 6의 B, C). 한편, 제 2캐비테이터요소 (22)의 후단에는 제 1슬라이딩요소 (40)가 설치된다. 제 1슬라이딩요소 (40)는 몸체 가운데에 관통구를 구비하며 피스톤축 (31)은 상기 관통구 를 통과한다. 또한 계 1슬라이딩요소 (40)는 제 2캐비테이터요소 (22)가 제 3캐비테이터요 소 (23) 안으로 삽입되어 함몰되는 경우 제 2캐비테이터요소 (22)에 의해 밀려 실린더 (33) 안으로 들어간다 (도 6의 C). 이하, 본 발명에서 제 1슬라이딩요소 (40)를 둔 이유 에 대하여 설명한다. 초월공동수중운동체 (10)가발사된 이후속도가증가함에 따라 변환형 캐비테 이터 (20)는 전방으로부터 수중운동체 (10)의 진행을 방해하는 저항을 받게 되며 그 힘 은 수중운동체 (10)의 속도에 비례하여 증가하게 된다. 그리고 상기 힘에 의하여 제 1 캐비테이터요소 (21)와 제 2캐비테이터요소 (22)는 후방으로 순차적으로 삽입되어 함몰 된다. 이때 계 1슬라이딩요소 (40)와 실린더 (33) 벽면 간의 마찰력에 따라 제 2캐비테이 터요소 (22)의 함몰 시점, 즉 변환형 캐비테이터 (20)의 형상변경 시점이 조절될 수 있 다. 계 1슬라이딩요소 (40)와 실린더 (33) 벽면 간의 마찰력이 큰 경우에는 제 1슬라 이딩요소 (40)가질린더 (33) 안으로 밀려들어가기 위해 큰 힘이 필요하며 마찰력이 작 은 경우에는 상대적으로 작은 힘이 필요하다. 따라서 제 1슬라이딩요소 (40)와 실린더 (33) 벽면 간의 마찰력이 크게 되도록 하면 제 2캐비테이터요소 (22)는 수중운동체 (10) 의 속도가상당히 증가한시점, 즉 변환형 캐비테이터 (20)에 가해지는 저항이 상당히 큰시점이 되어야비로소제 3캐비테이터요소 (23) 안으로 함몰될 수 있지만, 마찰력이 작게 되도록 하면 수중운동체 (10)의 속도가상대적으로 높지 않은 시점에서도 제 2캐 비테이터요소 (22)가제 3캐비테이터요소 (23) 안으로함몰되는것이 가능하다. 이처럼 제 2캐비테이터요소 (22)가함몰되는것은후술하는 바와같이 압축공기 탱크 (50) 내의 압축공기가 외부로 배출되어 인공초월공동 (Artificial Supercavity)을 형 성하는 것과 깊은 관련이 있는바, 제 1슬라이딩요소 (40)와 실린더 (33) 벽면 간의 마찰 력에 따라 궁극적으로는 초월공동의 형성 시점이 조절될 수 있다. 제 1슬라이딩요소 (40)는 금속이나 고무 기타 합성섬유 재질로 제작될 수 있으며 제 1슬라이딩요소 (40) 의 크기나 재질에 따라 제 1슬라이딩요소 (40)와 실린더 (33) 벽면 간의 마찰력을 조절 하는것이 가능하다. 。 본 발명의 경우 변환형 캐비테이터 (20)의 형상변경 시점은기본적으로 압축공 기탱크 (50)내부의 공기압에 따라조절된다. 즉, 도 6에서 보는 바와 같이 상기 피스 톤 (32)은 압축공기탱크 (50) 내부의 공기압을 이겨내야만 후방으로 이동할 수 있으므 로 (이는 후술하는 제 2슬라이딩요소 (60)의 경우도 마찬가지임), 만약 압축공기탱크 (50) 내부의 공기압이 크다면 피스톤 (32)의 후방이동 시점 및 속도는느려지겠지만, 반대 로 압축공기탱크 (50) 내부의 공기압이 작다면 그만큼 피스톤 (32)의 후방 이동 시점 및 속도도 빨라지게 된다. 정리하자면, 압축공기탱크 (50) 내부의 공기압이 크면 클수 록 변환형 캐비테이터 (20)의 형상변경 시점은 느려지고, 압축공기탱크 (50) 내부의 공 기압이 작으면 작을수록 변환형 캐비테이터 (20)의 형상변경 시점은 빨라지게 되는 것이다. 하지만본 발명에서는상술한바와같은 압축공기탱크 (50)내부의 공기압뿐만 아니라 제 1슬라이딩요소 (40)와 실린더 (33) 벽면 간의 마찰력을 조절함을 통하여서도 변환형 캐비테이터 (20)의 형상변경 시점을조절할수 있도록하였다. 한편, 실린더 (33)의 후단에는 압축공기탱크 (50)가 연결되며 상기 압축공기탱크 (50)의 내부에는 압축공기가 저장된다. 그리고 압축공기탱크 (50)의 내부 전단에는 제 2슬라이딩요소 (60)가 설치된다. 즉, 제 2슬라이딩요소 (60)는 실린더 (33)의 후단과 압축 공기탱크 (50)의 전단이 맞닿는 위치에 설치된다. 계 2슬라이딩요소 (60)는 계 2캐비테이 터요소 (22)가제 3캐비테이터요소 (23) 안으로삽입되어 함몰되는경우피스톤 (32)에 의 해 밀려 압축공기탱크 (50)의 벽을타고후방으로 이동하게 된다 (도 6의 C 압축공기탱크 (50)의 후단에는 압축공기이동관 (70)이 연결된다. 압축공기탱크 (50)의 후단은 압축공기가 밖으로 빠져나오는 출구에 해당하는 것인데, 초기 (초월공 동 수중운동체 (10)의 발사 시점)에는 상기 출구가 압축공기밸브 (71)에 의해 막혀 있 다. 압축공기밸브 (71)는 압축공기탱크 (50)와 압축공기이동관 (70)의 연결지점에 설치되 며, 후방으로 연결된 벨브이동관 (72)을따라 이동한다. 상기와 같이 피스톤 (32)이 후방으로 이동 (도 6의 B)하거나 제 2슬라이딩요소 (60)가 후방으로 이동 (도 6의 C)하면 압축공기탱크 (50) 내부 (보다 명확하게는, 제 2슬 라이딩요소 (60) 후방 공간)의 압력이 증가하게 되며 상기 압력에 의하여 압축공기밸 브 (71)가후방의 벨브이동관 (72)으로 밀려나게 된다. 그러면 압축공기탱크 (50)의 출구 가 열리게 되며 이때 상기 출구로 나온 압축공기는 압축공기이동관 (70)을 따라 이동 하여 최종적으로는 압축공기배출구 (80)를통해 외부 (수중)로 배출된다. Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the present invention. First of all, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals have the same reference numerals as much as possible even if displayed on different drawings. In addition, in describing the present invention, if it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted. Figure 3 shows the shape of the transcendental joint underwater vehicle 10 according to the present invention. The frontal head of the transcendental joint underwater vehicle 10 according to the present invention is provided with a convertible cavitation 20 (FIG. 3). Convertible cavitation 20 is in contrast to the conventional conical (Cone Type) or disk-type (Disk Type) cavator, the conical or disk-type cavator is fixed in shape but does not change the Transformation cavitation (20) It is characterized by maintaining the cone shape at the beginning of the launching of the transcendental joint underwater vehicle 10 and gradually changing to a disc shape as the speed increases. The convertible cavitation 20 is provided with two or more cavitation elements for changing the shape as described above. At first, each cavitation element is layered in the front and rear directions between each other. ) Is in the shape of a cone, but gradually the front cavitation element is inserted into the rear cavitation element in sequence, and eventually the conversion type cavitation 20 is changed into a disc shape. As described above, the convertible cavitation 20 includes two or more cavitation elements for changing the shape, and the number of such cavitation elements may be designed in various ways according to the size or shape of the underwater vehicle 10. It can be. Hereinafter, the embodiments of the present invention related to the configuration and operation of the convertible cavitation 20 will be described by dividing the first embodiment and the second embodiment, and in this case, the converting cavities 20 It is assumed that the cavitation element is provided. First Embodiment (Passive) The first embodiment of the present invention is a case where the discharge of the compressed air through the compressed air outlet 80 is passive (natural) by the pressure rise of the compressed air tank 50. 4 shows the configuration of the conversion type cavitation 20 according to the first embodiment of the present invention. 6 shows a step-by-step operation of the conversion type cavitation 20 according to the first embodiment of the present invention. At first (the initial stage of the launching of the underwater vehicle 10), the conversion-type cavator 20 includes a first cavitation element 21, a second cavitation element 22, a third cavitation element 23, and the like. Three cavitation elements are layered with each other to form an overall conical shape (FIG. 6A). In this case, the low U cavitation element 21, the second cavitation element 22 and the system three cavitation element 23 are arranged in order from the front of the underwater body 10 to the rear. However, when the speed of the underwater vehicle 10 is gradually increased and a force is applied from the front of the converting cavitation 20, each cavitation element is sequentially inserted into the rear cavitation element to be recessed and finally the disc shape Is achieved. More specifically, firstly, the first cavitation element 21 is inserted into the rear second cavitation element 22 to be recessed (B of FIG. 6), and then the first cavitation element 21 is taken. And second cabinet The rotor element 22 is inserted and recessed together into the third cavitation element 23 (FIG. 6C). As a result, the conversion type cavity 20 which was initially a cone shape (A of FIG. 6) eventually turns into a disc shape (C of FIG. 6). Hereinafter, the configuration and operation method of the conversion type cavitation 20 according to the present invention will be described in detail. The first cavitation element 21 is conical. The second cavitation element 22 is a shape in which the upper end of the cone is cut out, and the center of the body has a first accommodation space 22a that can accommodate the first cavitation element 21 when it is inserted and recessed. . Since the front end of the first accommodating space 22a is open, the system one cavitation element 21 can be inserted into the system one accommodating space 22a to be recessed. However, the rear end of the first accommodation space 22a is not opened and is blocked by the first stopper 22b. The first stopper 22b corresponds to the bottom surface of the second cavitation element 22, in which the first cavitation element 21 is inserted into the low U accommodation space 22a. ) It serves to hold the product so that it does not exit. Thus, once the first cavitation element 21 is inserted into the second cavitation element 22 and recessed, the first cavitation element 21 and the second cavity are not the first cavitation element 21 alone. The data element 22 is integrally inserted together and inserted into the third cavitation element 23 to be recessed. The third cavity element 23 is shaped like the second cavity element 22 with the upper end of the cone cut out, which can accommodate the second cavity element 22 when the second cavity element 22 is inserted and recessed. The second accommodation space 23a is provided. The front end of the second accommodation space 23a is open As such, the second cavitation element 22 can be inserted into the system receiving space 23a to be recessed. However, the rear end of the system receiving space 23a is not opened and is blocked by the second stopper 23b. The system second stopper 23W corresponds to the bottom surface of the third cavitation element 23, in which the second cavitation element 22 inserted into the second accommodation space 23a is connected to the third cavitation element 23. The first cavitation element 21 and the second cavitation element 22 are inserted into the total three cavitation element 23 and are recessed. The shaped cavity 20 finally has a disc shape (Fig. 6C), in which the converting cavity 20 is ultimately disc shaped and thus has the advantages of a disc shaped cavity. The height of the cavitation element 21 is less than or equal to the height of the second cavitation element 22 and the height of the second cavitation element 22 is less than or equal to the height of the third cavitation element 23. In addition, in FIG. The relationship between the heights of the first cavator element 21, the second cavator element 22, and the third cavator element 23 is the same. If the height of the second cavitation element 23 is greater than the height of the cavitation element 22 or the third cavitation element 23 or the height of the third cavitation element 23, 20) is not desirable since it will continue to maintain some conical shape.The lower U-cavator element 21 is connected to the rearward piston shaft 31 and is The piston 32 is installed at the end of the piston shaft 31. And to the third cavitation element 23 is connected a cylinder 33 facing backwards. The piston shaft 31 extends into the cylinder 33 through the second and third cavator elements 22 and the piston 32 moves in response to the movement of the piston shaft 31. Will move backwards on the wall. In this case, the piston shaft 31 moves when the first cavitation element 21 or the second cavitation element 22 is recessed backwards (B, C of FIG. 6). On the other hand, the first sliding element 40 is installed at the rear end of the second cavitation element 22. The first sliding element 40 has a through hole in the center of the body and the piston shaft 31 passes through the through hole. In addition, the first sliding element 40 is pushed by the second cavitation element 22 into the cylinder 33 when the second cavitation element 22 is inserted into the third cavitation element 23 and recessed. (FIG. 6C). Hereinafter, the reason for having the first sliding element 40 in the present invention will be described. As the speed increases after the transcendental joint underwater vehicle 10 is launched, the converting cavitation 20 receives a resistance that prevents the movement of the underwater vehicle 10 from the front, and the force of the underwater vehicle 10 is increased. It increases in proportion to the speed. The first cavitation element 21 and the second cavitation element 22 are sequentially inserted and recessed backward by the force. At this time, depending on the frictional force between the first sliding element 40 and the wall of the cylinder 33, the point of depression of the second cavitation element 22, that is, the point of change of the shape of the conversion type cab 20 may be adjusted. All. If the frictional force between the sliding element 40 and the wall of the cylinder 33 is large, a large force is required to push the sliding element 40 into the cylinder 33, and if the frictional force is small, a relatively small force is required. I need strength. Accordingly, when the frictional force between the first sliding element 40 and the wall of the cylinder 33 is increased, the second cavitation element 22 is at the point where the speed of the underwater moving object 10 increases significantly, that is, the conversion cavitation 20. When the resistance to be applied can be recessed into the third cavator element 23 only when the resistance is large, the frictional force can be reduced so that even when the speed of the underwater vehicle 10 is not relatively high, It is possible for 22 to be recessed into the third cavitation element 23. As described above, the depression of the second cavitation element 22 is closely related to the formation of artificial supercavity as the compressed air in the compressed air tank 50 is discharged to the outside as described below. According to the frictional force between the sliding element 40 and the wall of the cylinder 33, ultimately, the timing of formation of the transcendental cavity can be controlled. The first sliding element 40 may be made of metal, rubber or other synthetic fiber material, and adjusts the friction force between the first sliding element 40 and the wall of the cylinder 33 according to the size or material of the first sliding element 40. It is possible to do In the case of the present invention, the shape change point of the conversion type cavitation 20 is basically a compression hole. The air pressure inside the tank 50 is adjusted. That is, as shown in FIG. 6, the piston 32 can move backwards only by overcoming the air pressure in the compressed air tank 50 (this is also the case for the second sliding element 60 described later). , If the air pressure inside the compressed air tank 50 is large, the back movement time and speed of the piston 32 will be slow. On the contrary, if the air pressure inside the compressed air tank 50 is small, the rear movement of the piston 32 is as much. The view point and speed also become faster. In summary, the larger the air pressure in the compressed air tank 50, the slower the shape change point of the convertible cavities 20, and the smaller the air pressure in the compressed air tank 50, the smaller the convertible cavities ( The timing of the change of the shape of 20) is faster. However, in the present invention, the shape change of the convertible cavitation 20 is also controlled by adjusting the frictional force between the first sliding element 40 and the wall of the cylinder 33 as well as the air pressure inside the compressed air tank 50 as described above. You can adjust the view point. Meanwhile, the compressed air tank 50 is connected to the rear end of the cylinder 33, and the compressed air is stored inside the compressed air tank 50. In addition, a second sliding element 60 is installed at the inner front end of the compressed air tank 50. That is, the second sliding element 60 is installed at a position where the rear end of the cylinder 33 and the front end of the compressed air tank 50 abut. The system 2 sliding element 60 is pushed back by the piston 32 when the system 2 cavitation element 22 is inserted into the third cavitation element 23 and is recessed to ride the wall of the compressed air tank 50. (C in Fig. 6 The rear end of the compressed air tank 50 is connected to the compressed air moving pipe (70). The rear end of the compressed air tank 50 corresponds to the outlet through which the compressed air comes out, and at the initial stage (the launching point of the transversely moving underwater vehicle 10), the outlet is blocked by the compressed air valve 71. . The compressed air valve 71 is installed at the connection point between the compressed air tank 50 and the compressed air moving pipe 70, and moves along the valve moving pipe 72 connected to the rear. As described above, when the piston 32 moves backwards (B of FIG. 6) or the second sliding element 60 moves backwards (C of FIG. 6), the inside of the compressed air tank 50 (more specifically, The pressure of the two-sliding element (60) rear space is increased and the compressed air valve 71 is pushed to the rear valve moving tube (72) by the pressure. Then, the outlet of the compressed air tank 50 is opened. At this time, the compressed air exiting the outlet is moved along the compressed air moving tube 70 and finally discharged to the outside (underwater) through the compressed air outlet 80 .
한편, 벨브이동관 (72) 내부에는 압축공기밸브 (71)의 끝단부에 스프링 (73)이 설 치된다. 따라서 초기 (초월공동 수중운동체 (10)의 발사 시점)에는 상기 스프링 (73)의 작용으로 압축공기벨브 (71)가 압축공기탱크 (50)의 출구를 막고 있는 상태가 유지된 다. 또한 수중운동체 (10)의 속도가 점차 증가하면 스프링 (73)의 자체 탄성력의 크기 에 따라압축공기밸브 (71)의 밀려나는정도 (거리 및 시점)가조절될 수 있다. 본 발명에서 압축공기배출구 (80)를 둔 이유는 인공초월공동 (Artificial Supercavity)을 형성하기 위함이다. 인공초월공동은 자연초월공동 (Natural Supercavity)에 대비되는 것으로, 자연초월공동이 자연현상에 따라 초월공동이 발생 하는 것이라면 인공초월공동은 초월공동의 발생을 자연현상에만 맡기지 않고 이를 위해 인위적 조작을가하는것을 말한다. 자연초월공동의 경우공동은수중운동체 (10)의 속도가높아져 물체 주위의 국 부압력이 유체의 증기압보다 낮아져야 발생하지만, 본 발명의 경우에는 수중운동체 (10)의 발사 시 물체 주위로 배출되는 공기에 의하여 곧바로국부압력이 낮아지므로 자연초월공동 대비 속도가낮은구간에서도 공동이 쉽게 발생한다. 이는 곧 본 발명 의 경우 자연초월공동보다 이른 시점에 초월공동이 형성될 수 있음을 의미하는 것 이다. 상기와같은 인공초월공동을 형성하기 위하여 압축공기배출구 (80)는초월공동 수중운동체 (10)의 전단부에 설치된다. 그리고 압축공기탱크 (50)의 압축공기가 상기 압축공기배출구 (80)까지 이동하기 위한 통로인 압축공기이동관 (70)이 설치된다. 도 4 및 도 6에서는 압축공기이동관 (70)이 압축공기탱크 (50)의 출구에서 시작하여 그 끝단 이 상기 압축공기배출구 (80) 쪽으로 휘어지도록 설계되어 있다. 압축공기배출구 (80) 의 위치 및 개수는수중운동체 (10)의 크기나 형상 등에 따라 다양하게 설계될 수 있 으나, 수중운동체 (10)의 저항 및 직진안정성 측면을 고려할 때 압축공기배출구 (80)의 위치 및 개수는 수중운동체 (10)의 상하 및 좌우로 대칭이 되도록 설계되는 것이 바 람직하다. 참고로, 본 발명의 제 1 실시 예에서는 총 4개의 압축공기배출구 (80)가상 하및 좌우로 대칭이 되도록설치되었다. 이상의 설명과같이 본 발명에 의하면, 초월공동 수중운동체 (10)의 발사초기 에는 변환형 캐비테이터 (20)가 원뿔형상을 유지하므로 기존의 원판형 캐비테이터에 비해 저항과 기진력을 줄일 수 있다 (도 6의 A). 그리고 속도가 점차 증가함에 따라 변환형 캐비테이터 (20)가순차적으로 원판형상으로 변하므로 이에 따라 발생하는 초 월공동 형상도 기존의 원뿔형 캐비테이터에 비해 커지게 된다 (도 6의 C). 때문에 수 중운동체 (10)의 몸체 형상에 제한을 덜 받는다. 제 2실시 예 (능동형) 본 발명의 제 2 실시 예는 압축공기배출구 (80)를 통한 압축공기의 배출이 압 력센서 (90)의 작동에 의해 능동적 (인위적)으로 이루어지는 경우로서, 제 1 실시 예에 비해 압력센서 (90)가 추가로 구성된 점에 기본적인 차이가 있다 (도 5). 이하, 압력센 서 (90)의 기능 및 작용을위주로설명하며, 제 1실시 예와동일한내용은그설명을 생략하기로 한다. 도 5는본발명의 제 2 실시 예에 따른 변환형 캐비테이터 (20)의 구성을 보여 준다. 그리고 도 7은 본 발명의 제 2 실시 예에 따른 변환형 캐비테이터 (20)의 단계 별 작동방식을보여준다. 실린더 (33)의 후단에는 압축공기탱크 (50)가 연결되며 상기 압축공기탱크 (50)의 내부에는 압축공기가 저장된다 (도 5). 그리고 압축공기탱크 (50)의 내부 전단에는 제 2 슬라이딩요소 (60)가설치된다. 즉, 계 2슬라이딩요소 (60)는실린더 (33)의 후단과압축공 기탱크 (50)의 전단이 맞닿는 위치에 설치된다. 제 2슬라이딩요소 (60)는 제 2캐비테이터 요소 (22)가제 3캐비테이터요소 (23) 안으로삽입되어 함몰되는경우피스톤 (32)에 의해 밀려 압축공기탱크 (50)의 벽을타고후방으로 이동하게 된다 (도 7의 C). 압축공기탱크 (50)의 후단에는 압축공기이동관 (70)이 연결된다. 압축공기탱크 (50)의 후단은 압축공기가 밖으로 빠져나오는 출구에 해당하는 것인데, 초기 (초월공 동 수중운동체 (10)의 발사 시점)에는 상기 출구가 압축공기밸브 (71)에 의해 닫혀 있 다. 압축공기밸브 (71)는 압축공기탱크 (50)와 압축공기이동관 (70)의 연결지점에 설치되 며, 초월공동 수중운동체 (10)의 발사 후 일정 시점이 지나 압력센서 (90)의 작동에 따 라 열린다. 즉, 상기와 같이 피스톤 (32)이 후방으로 이동 (도 7의 B)하거나 제 2슬라이딩요 소 (60)가 후방으로 이동 (도 7의 C)하면, 실린더 (33) 또는 압축공기탱크 (50) 내부의 압 력이 증가하게 되며, 상기 압력의 증가에 따른 압력센서 (90)의 작동 시 압축공기벨브 (71)가 열리게 된다. 그러면 압축공기탱크 (50)의 출구가 열리게 되며 이때 상기 출구 로 나온 압축공기는 압축공기이동관 (70)을 따라 이동하여 최종적으로는 압축공기배 출구 (80)를통해 외부 (수중)로배출된다. 이와 관련하여, 상기 압축공기배출구 (80)의 압축공기 배출 시점은 압력센서 (90)의 설정 값에 의하여 능동적으로 조절된다. 압력센서 (90)는 압축공기탱크 (50) 내 부의 공기압을 계측하며 압축공기벨브 (71)와 전기적으로 연결된다 (도 5). 상기 압력 센서 (90)는 계측된 공기압이 설정 값을 초과하면 압축공기밸브 (71)를 열어 압축공기 탱크 (50) 내부의 압축공기가 외부로 배출되도록 한다. 따라서 만약 압력센서 (90)의 설정 값이 크다면 압축공기 배출 시점은 느려지겠지만, 반대로 압력센서 (90)의 설정 값이 작다면 그만큼 압축공기 배출 시점도 빨라지게 된다. 정리하자면, 압력센서 (90) 의 설정 값이 크면 클수록 압축공기배출구 (80)의 압축공기 배출 시점은 느려지고, 압 력센서 (90)의 설정 값이 작으면 작을수록 압축공기배출구 (80)의 압축공기 배출 시점 은빨라지게 되는것이다. 인공초월공동 (Artificial Supercavity)을 형성하기 위하여 압축공기배출구 (80)는 초월공동 수중운동체 (10)의 전단부에 설치된다. 그리고 압축공기탱크 (50)의 압축공기 가상기 압축공기배출구 (80)까지 이동하기 위한통로인 압축공기이동관 (70)이 설치된 다. 도 5 및 도 7에서 보면 압축공기이동관 (70)이 압축공기탱크 (50)의 출구에서 시작 하여 그 끝단이 상기 압축공기배출구 (80) 쪽으로 휘어지도록 설계되어 있다. 압축공 기배출구 (80)의 위치 및 개수는 수중운동체 (10)의 크기나 형상 등에 따라 다양하게 설계될 수 있으나, 수중운동체 (10)의 저항 및 직진안정성 측면을고려할때 압축공기 배출구 (80)의 위치 및 개수는 수중운동체 (10)의 상하 및 좌우로 대칭이 되도록 설계 되는 것이 바람직하다. 참고로, 본 발명의 제 2 실시 예에서는 총 4개의 압축공기배 출구 (80)가 상하 및 좌우로 대칭이 되도록 설치되었으며, 상기 각각의 압축공기배출 구 (80)는네 갈래로갈라진 압축공기이동관 (70)의 끝단과 일대일로 연결되었다. 한편, 압축공기배출구 (80)가 2개 이상인 경우 각각의 압축공기배출구 (80)가선 택적으로 개폐될 수 있도록 구성하는 것은 수중운동체 (10)의 안정적인 운항에 긍정 적 영향을 미친다는 측면에서 매우 바람직하다. 예를 들어, 본 발명의 제 2 실시 예 와 같이 압축공기배출구 (80)가 수중운동체 (10)의 상하 및 좌우에 각각 1개씩 설치된 경우라면, 수중운동체 (10)의 운항 속도에 따라 하부 1개의 압축공기배출구 (80)를 통 하여 먼저 압축공기가배출되고그 다음좌우 2개의 압축공기배출구 (80), 상부 1개의 압축공기배출구 (80)의 순서로 압축공기가배출되도록구성하는것이다 (물론 최종적으 로는 4개의 모든 압축공기배출구 (80)를 통하여 압축공기가 배출되는 상태가 될 것이 다). 이를 통하여 수중운동체 (10)의 운항 상태에 따른 맞춤형 초월공동 형성이 가능 해질 수 있다. 이를 위하여 본 발명의 제 2 실시 예에서는 압축공기탱크 (50)의 전방에 서브 압축공기이동관 (100)을 구비한다 (도 5). 서브압축공기이동관 (100)은 실린더 (33)의 내부 공간과 압축공기이동관 (70)을 연결하는 관으로, 이러한 서브압축공기이동관 (100)은 압축공기이동관 (70)에 대하여 바이패스 (By-pass) 관의 형태로 연결된다. 그리고 서브 압축공기이동관 (100)에는 서브압축공기이동관 (100)의 개폐를 위한 서브압축공기밸브 (101)를 설치하는바, 상기 서브압축공기밸브 (101)는 서브압력센서 (110)의 작동에 따라 개폐된다. 즉, 도 7의 B와같이 피스톤 (32)이 후방으로 이동하여 실린더 (33)내부의 압력 이 증가하게 되면, 상기 압력의 증가에 따른 서브압력센서 (110)의 작동에 따라 서브 압축공기밸브 (101)가 열리게 된다. 그러면 서브압축공기이동관 (100)을 따라 실린더 (33) 내부의 압축공기가 압축공기이동관 (70)으로 이동하여 최종적으로는 압축공기배 출구 (80)를통해 외부 (수중)로배출된다. 이와 관련하여, 서브압축공기밸브 (101)의 개폐 시점은 서브압력센서 (110)의 설 정 값에 의하여 능동적으로 조절된다. 서브압력센서 (110)는 실린더 (33) 내부의 공기 압을 계측하며 서브압축공기밸브 (101)와 전기적으로 연결된다 (도 5). 상기 서브압력 센서 (110)는 계측된 공기압이 설정 값을 초과하면 서브압축공기밸브 (101)를 열어 실 린더 (33) 내부의 압축공기가 압축공기이동관 (70)으로 이동하도록 한다. 따라서 만약 서브압력센서 (110)의 설정 값이 크다면 압축공기의 이동 시점은 느려지겠지만, 반대 로 서브압력센서 (110)의 설정 값이 작다면 그만큼 압축공기의 이동 시점도 빨라지게 된다. 정리하자면, 서브압력센서 (110)의 설정 값이 크면 클수록 압축공기배출구 (80)의 압축공기 배출시점은느려지고, 서브압력센서 (110)의 설정 값이 작으면 작을수록 압 축공기배출구 (80)의 압축공기 배출시점은빨라지게 되는것이다. 본 발명의 제 2 실시 예에서, 압축공기배출구 (80)는 수중운동체 (10)의 상하 및 좌우에 각각 1개씩 설치되고, 압축공기이동관 (70)은 네 갈래로 갈라져 그 끝단이 압 축공기배출구 (80)에 일대일로 연결된다. 그리고 서브압축공기이동관 (100)은 총 4개가 구비되며, 각각의 서브압축공기이동관 (100)은 압축공기이동관 (70)의 네 갈래 관에 대 하여 바이패스관의 형태로 연결된다. 그리고 4개의 서브압축공기이동관 (100)각각에 는 서브압축공기밸브 (101)가 설치되며, 각각의 서브압축공기벨브 (101)는 서브압력센 서 (110)와개별적으로 연결된다. 만약 하부 1개의 압축공기배출구 (80)로 향하는 서브압축공기이동관 (100)의 서 브압축공기벨브 (101)와 연결된 서브압력센서 (110)의 설정 값을 가장 작게 되도록 하 고, 그 다음 좌우 2개의 압축공기배출구 (80), 상부 1개의 압축공기배출구 (80)로 향하 는 서브압축공기이동관 (100)의 서브압축공기밸브 (101)와 연결된 서브압력센서 (110)의 설정 값을 순서대로 점차 크게 되도록 하면, 수증운동체 (10)의 발사 후 운항 속도가 증가함에 따라 하부 1개의 압축공기배출구 (80)를 통하여 먼저 압축공기가 배출되고 그 다음 좌우 2개의 압축공기배출구 (80), 상부 1개의 압축공기배출구 (80)의 순서로 압축공기가배출되며, 최종적으로는 최후방의 압축공기밸브 (71)가 열리면서 4개의 압 축공기배출구 (80)를 통하여 실린더 (33) 및 압축공기탱크 (50) 내부의 압축공기가 모두 외부로 배출되는상황을구현할수 있다. 이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으 로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질 적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것 이다. 따라서 본 발명에 개시된 실시 예 및 첨부된 도면들은본발명의 기술사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예 및 첨부된 도면 에 의하여 본 발명의 기술사상의 범위가한정되는 것은 아니다. 본 발명의 보호 범 위는 아래의 청구범위에 의하여 해석되어야하며, 그와동둥한 범위 내에 있는 모든 기술사상은본발명의 권리범위에 포함되는것으로해석되어야할것이다. On the other hand, the valve 73, the spring 73 is installed at the end of the compressed air valve (71). Therefore, at the initial stage (starting time of the transcendental joint underwater vehicle 10), the compressed air valve 71 is blocked by the action of the spring 73 to block the outlet of the compressed air tank 50. In addition, if the speed of the underwater vehicle 10 is gradually increased, the degree of push-out (distance and timing) of the compressed air valve 71 can be adjusted according to the magnitude of the elastic force of the spring 73. The reason for having the compressed air outlet 80 in the present invention is artificial transcendence (Artificial To form a supercavity. Artificial transcendence cavities are in contrast to natural supercavity, and if transcendence cavities occur according to natural phenomena, artificial transcendence cavities do not leave the occurrence of transcendental cavities only to natural phenomena, but artificially manipulate them. Say that. In the case of a natural transcendental cavity, the cavity is generated when the speed of the underwater vehicle 10 is increased so that the local pressure around the object is lower than the vapor pressure of the fluid. However, in the present invention, the cavity is discharged around the object when the underwater vehicle 10 is launched. As the local pressure is immediately lowered by the air, the cavity easily occurs even in a section where the speed is lower than that of the natural transverse cavity. This means that in the case of the present invention, transcendence cavities can be formed earlier than natural transcendence cavities. In order to form the artificial transcendence cavity as described above, the compressed air discharge port 80 is installed at the front end of the transcendental cavity underwater body 10. And a compressed air moving tube 70 which is a passage for moving the compressed air of the compressed air tank 50 to the compressed air outlet 80 is provided. 4 and 6, the compressed air moving tube 70 is designed to start at the outlet of the compressed air tank 50 and bend its end toward the compressed air discharge port 80. As shown in FIG. The position and number of the compressed air outlet 80 may be variously designed according to the size or shape of the underwater vehicle 10, but the compressed air outlet 80 when considering the resistance and the linear stability of the underwater vehicle 10 The position and number of the bar is to be designed to be symmetrical up and down and left and right of the underwater vehicle (10) It is good. For reference, in the first embodiment of the present invention, a total of four compressed air outlets 80 are installed to be symmetrical in the up, down, left, and right directions. As described above, according to the present invention, since the converting cavity 20 maintains a conical shape at the beginning of the launching of the transcendental underwater vehicle 10, resistance and vibration force can be reduced as compared with the conventional disc shaped cavator ( 6A). In addition, as the speed gradually increases, the conversion type cavity 20 sequentially turns into a disc shape, and thus the transverse cavity shape generated accordingly becomes larger than the conventional cone type cavity (FIG. 6C). Because of this, the body shape of the underwater body 10 is less restricted. Second Embodiment (Active Type) The second embodiment of the present invention is a case where the discharge of the compressed air through the compressed air discharge port 80 is made active (artificial) by the operation of the pressure sensor 90. There is a fundamental difference in that the pressure sensor 90 is further configured compared to the example (FIG. 5). Hereinafter, the function and operation of the pressure sensor 90 will be mainly described, and the same content as in the first embodiment will be omitted. 5 shows a configuration of a convertible cavitation 20 according to a second embodiment of the present invention. 7 is a step of the conversion type cavitation 20 according to the second embodiment of the present invention It shows how it works. A compressed air tank 50 is connected to the rear end of the cylinder 33, and the compressed air is stored inside the compressed air tank 50 (Fig. 5). In addition, a second sliding element 60 is installed at the inner front end of the compressed air tank 50. That is, the system 2 sliding element 60 is installed in the position where the rear end of the cylinder 33 and the front end of the compressed air tank 50 abut. The second sliding element 60 is pushed by the piston 32 to move backwards on the wall of the compressed air tank 50 when the second cavity element 22 is inserted into the third cavity element 23 and is recessed. Done (C in FIG. 7). The rear end of the compressed air tank 50 is connected to the compressed air moving pipe (70). The rear end of the compressed air tank 50 corresponds to the outlet through which the compressed air comes out, and at the initial stage (the launching point of the transversely moving underwater body 10), the outlet is closed by the compressed air valve 71. . The compressed air valve 71 is installed at the connection point between the compressed air tank 50 and the compressed air moving tube 70. After the launch of the transcendental underwater moving body 10, a predetermined time passes to the operation of the pressure sensor 90. Open accordingly. That is, when the piston 32 moves backward (B of FIG. 7) or the second sliding element 60 moves backward (C of FIG. 7) as described above, the cylinder 33 or the compressed air tank 50 The internal pressure is increased, and the compressed air valve 71 is opened during the operation of the pressure sensor 90 according to the increase of the pressure. Then the outlet of the compressed air tank 50 is opened and the outlet Compressed air moves along the compressed air transfer pipe (70) and is finally discharged to the outside (underwater) through the compressed air outlet (80). In this regard, the compressed air discharge timing of the compressed air discharge port 80 is actively controlled by the set value of the pressure sensor (90). The pressure sensor 90 measures the air pressure in the compressed air tank 50 and is electrically connected to the compressed air valve 71 (FIG. 5). The pressure sensor 90 opens the compressed air valve 71 when the measured air pressure exceeds a set value so that the compressed air inside the compressed air tank 50 is discharged to the outside. Accordingly, if the set value of the pressure sensor 90 is large, the compressed air discharge point will be slow, but if the set value of the pressure sensor 90 is small, the compressed air discharge point is also faster. In summary, the larger the set value of the pressure sensor 90, the slower the compressed air discharge point of the compressed air outlet 80 is, and the smaller the set value of the pressure sensor 90 is, the more the compressed air outlet 80 is compressed. The time to release the air is faster. In order to form an artificial supercavity, the compressed air outlet 80 is installed at the front end of the transcendental cavity underwater body 10. And a compressed air moving tube 70 which is a passage for moving to the compressed air virtual air compressed air outlet 80 of the compressed air tank 50 is installed. 5 and 7, the compressed air moving tube 70 is designed to start at the outlet of the compressed air tank 50 and bend toward the compressed air discharge port 80. The position and number of the compressed air outlet 80 may vary depending on the size or shape of the underwater vehicle 10. Although it may be designed, the position and number of the compressed air outlet 80 is preferably designed to be symmetrical up and down and left and right of the underwater vehicle 10 when considering the resistance and the linear stability side of the underwater vehicle 10. For reference, in the second embodiment of the present invention, a total of four compressed air outlets 80 are installed to be symmetrical up and down and left and right, and each of the compressed air discharge ports 80 is divided into four divided compressed air moving tubes ( One-to-one connection with the end of 70). On the other hand, when there are two or more compressed air outlets 80, it is highly desirable to configure each compressed air outlet 80 to be selectively opened and closed in terms of positively affecting the stable operation of the underwater vehicle 10. Do. For example, when the compressed air outlet 80 is installed one each on the upper and lower sides and the left and right sides of the underwater vehicle 10 as in the second embodiment of the present invention, the lower one according to the operating speed of the underwater vehicle 10 Compressed air is discharged through the compressed air outlet (80) first, and then compressed air is discharged in the order of two compressed air outlets (80) at the left and right, and one compressed air outlet (80) at the top (of course, finally Compressed air will be discharged through all four compressed air outlets 80). Through this, it is possible to form a customized transcendental cavity according to the operational state of the underwater vehicle 10. To this end, the second embodiment of the present invention is provided with a sub-compressed air moving tube 100 in front of the compressed air tank 50 (Fig. 5). The sub-compressed air moving tube 100 is a tube connecting the internal space of the cylinder 33 and the compressed air moving tube 70. The sub-compressed air moving tube 100 is It is connected to the compressed air pipe (70) in the form of a bypass (by-pass) pipe. And the sub-compressed air moving tube 100 is provided with a sub-compressed air valve 101 for opening and closing the sub-compressed air moving tube 100, the sub-compressed air valve 101 is to the operation of the sub-pressure sensor (110). It is opened and closed accordingly. That is, when the piston 32 moves backwards to increase the pressure inside the cylinder 33 as shown in FIG. 7B, the sub-compressed air valve (10) operates according to the operation of the sub-pressure sensor 110 according to the increase of the pressure. 101 is opened. Then, the compressed air in the cylinder 33 is moved to the compressed air moving tube 70 along the sub-compressed air moving tube 100 and finally discharged to the outside (water) through the compressed air discharge outlet 80. In this regard, the opening and closing time of the sub-compressed air valve 101 is actively controlled by the setting value of the sub-pressure sensor 110. The sub pressure sensor 110 measures the air pressure inside the cylinder 33 and is electrically connected to the sub compressed air valve 101 (FIG. 5). When the measured air pressure exceeds the set value, the sub pressure sensor 110 opens the sub compressed air valve 101 to allow the compressed air inside the cylinder 33 to move to the compressed air moving tube 70. Therefore, if the setting value of the sub-pressure sensor 110 is large, the movement time of the compressed air will be slow, but if the setting value of the sub-pressure sensor 110 is small, the movement time of the compressed air is also faster. In summary, the larger the set value of the sub pressure sensor 110, the slower the compressed air discharge point of the compressed air outlet 80, and the smaller the set value of the sub pressure sensor 110, the smaller the pressure. The compressed air discharge point of the axial air outlet 80 is faster. In the second embodiment of the present invention, the compressed air discharge port 80 is installed one each on the upper and lower sides and the left and right sides of the underwater moving object 10, the compressed air moving pipe 70 is divided into four branches, the end of the compressed air discharge port One-to-one connection to 80. And the sub-compressed air moving pipe 100 is provided with a total of four, each of the sub-compressed air moving pipe 100 is connected in the form of a bypass pipe for the four branches of the compressed air moving pipe (70). Each of the four sub-compressed air moving pipes 100 is provided with a sub-compressed air valve 101, and each sub-compressed air valve 101 is connected to the sub-pressure sensor 110 separately. If the set value of the sub-pressure sensor 110 connected to the sub-compressed air valve 101 of the sub-compressed air moving pipe 100 directed to the lower one compressed air outlet (80) to the smallest, then the left and right 2 The set value of the sub-pressure sensor 110 connected to the sub-compressed air valve 101 of the sub-compressed air delivery pipe 100 directed to the two compressed air outlets 80 and the upper one compressed air outlet 80 in order. When it is made larger, as the operating speed increases after the launch of the water vapor vehicle 10, the compressed air is first discharged through the lower one compressed air outlet 80, and then the two left and right compressed air outlets 80, the upper one Compressed air is discharged in the order of the compressed air outlet (80), and finally the rear compressed air valve (71) is opened to open the cylinder (33) and the compressed air tank (50) through the four compressed air outlets (80). Compressed air inside Can implement a situation in which discharge to the outside. The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains various modifications, changes, and substitutions without departing from the essential characteristics of the present invention. This would be possible. Therefore, the embodiments disclosed in the present invention and the accompanying drawings are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by the embodiments and the accompanying drawings. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas falling within the scope of the present invention should be interpreted as being included in the scope of the present invention.
【산업상 이용가능성】  Industrial Applicability
본 발명에 따르면 수증운동체의 초월공동 현상을 용이하게 구현해 낼 수 있 을뿐만 아니라 이를 위한 시스템 구성을 간소화할 수 있으며 동시에 수중운동체의 저항과기진력을줄일 수 있는바, 본 발명은 조선해양산업 분야에서 널리 이용하여 그실용적이고경제적인 가치를실현할수 있는기술이다.  According to the present invention can not only easily implement the transcendental phenomena of the water vapor movement body, but also simplify the system configuration for this, and at the same time can reduce the resistance and vibration force of the water movement body, the present invention in the field of shipbuilding and marine industry It is a technology that can be widely used to realize its practical and economic value.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
수중운동체 (10)의 전두부에 설치되며 상기 수중운동체 (10)의 발사 시 원뿔형 상에서 원판형상으로변경되는 변환형 캐비테이터 (20);  A conversion type cavitation device 20 installed on the frontal head of the underwater vehicle 10 and changing from a conical to a disk shape when the underwater vehicle 10 is launched;
를 포함하는 압축공기탱크를 이용한초월공동 수중운동체의 캐비테이터 시스 템으로서,  As a cavitation system of the transcendental joint underwater vehicle using a compressed air tank comprising a,
상기 변환형 캐비테이터 (20)의 후방에는 압축공기탱크 (50)가 연결되고 상기 압축공기탱크 (50)의 출구에는 압축공기이동관 (70)이 연결되고 상기 압축공기이동관 (70)의 끝단에는 압축공기배출구 (80)가 연결되고 상기 압축공기배출구 (80)는 상기 수 중운동체 (10)의 전단부에 설치되는바,  The compressed air tank 50 is connected to the rear of the conversion type cavitation 20, the compressed air moving tube 70 is connected to the outlet of the compressed air tank 50, the compressed air moving tube 70 is compressed An air outlet 80 is connected and the compressed air outlet 80 is installed at the front end of the underwater body 10,
상기 압축공기탱크 (50)는 상기 수증운동체 (10)가 일정 속도에 도달했을 때 내 부에 저장된 압축공기를상기 압축공기이동관 (70)으로 방출하고,  The compressed air tank (50) discharges the compressed air stored therein to the compressed air moving tube (70) when the water vapor moving body (10) reaches a certain speed,
상기 압축공기이동관 (70)은압축공기를상기 압축공기배출구 (80)로 공급하고, 상기 압축공기배출구 (80)는 압축공기를 상기 수중운동체 (10) 외부로 배출하여 인공초월공동을 형성하는 것을 특징으로 하는 압축공기탱크를 이용한 초월공동 수 중운동체의 캐비테이터 시스템.  The compressed air moving tube 70 supplies compressed air to the compressed air outlet 80, and the compressed air outlet 80 discharges compressed air to the outside of the underwater vehicle 10 to form an artificial transcendental cavity. Cavitation system of transcendental underwater underwater body using the compressed air tank.
【청구항 2】  [Claim 2]
청구항 1에 있어서,  The method according to claim 1,
상기 변환형 캐비테이터 (20)는 2개 이상의 캐비테이터요소를 구비하는바, 상 기 각각의 캐비테이터요소는 상기 수중운동체 (10)의 발사 초기에는 전후 방향으로 층을 이루어 원뿔형상을 이루다가 상기 수중운동체 (10)의 속도가 증가하면 상기 전 방의 캐비테이터요소가 상기 후방의 캐비테이터요소 안으로 순차적으로 삽입되어 함몰되면서 최종적으로는원판형상을 이루며, The convertible cavitation 20 is provided with two or more cavitation elements, each of the cavitation element in the front and rear direction at the beginning of the launch of the underwater vehicle 10 Forming a conical shape in a layer, when the speed of the underwater moving object 10 increases, the front cavitation element is sequentially inserted into the rear cavitation element to sink, finally forming a disc shape.
상기 압축공기탱크 (50)는 상기 변환형 캐비테이터 (20)의 형상변경에 따라 내 부의 압축공기를상기 압축공기배출구 (80)로공급하되,  The compressed air tank 50 supplies internal compressed air to the compressed air outlet 80 in accordance with the change of the shape of the conversion cavity 20,
상기 변환형 캐비테이터 (20)의 형상변경 시점은 상기 압축공기탱크 (50) 내부 의 공기압에 따라 조절되는바, 상기 압축공기탱크 (50) 내부의 공기압이 크면 클수록 상기 변환형 캐비테이터 (20)의 형상변경 시점은 느려지고 상기 압축공기탱크 (50) 내 부의 공기압이 작으면 작을수록 상기 변환형 캐비테이터 (20)의 형상변경 시점은 빨 라지는 것을 특징으로 하는 압축공기탱크를 이용한 초월공동 수중운동체의 캐비테 이터 시스템.  Shape change time of the conversion type cavitation 20 is adjusted according to the air pressure in the compressed air tank 50, the larger the air pressure inside the compressed air tank 50, the conversion type cavitation 20 When the shape change time of the slower, the smaller the air pressure in the compressed air tank 50, the smaller the time of the shape change of the conversion type cavities 20, the transcendental hollow underwater vehicle using the compressed air tank Cavitation system.
【청구항 3】  [Claim 3]
청구항 1에 있어서,  The method according to claim 1,
상기 압축공기탱크 (50)내부의 공기압을계측하되 계측된 공기압이 설정 값을 초과하면 압축공기밸브 (71)를여는 압력센서 (90);가구비되며,  A pressure sensor 90 for measuring the air pressure inside the compressed air tank 50 but opening the compressed air valve 71 when the measured air pressure exceeds a set value;
상기 변환형 캐비테이터 (20)는 2개 이상의 캐비테이터요소를 구비하는바, 상 기 각각의 캐비테이터요소는 상기 수중운동체 (10)의 발사 초기에는 전후 방향으로 층을 이루어 원뿔형상을 이루다가 상기 수중운동체 (10)의 속도가 증가하면 상기 전 방의 캐비테이터요소가 상기 후방의 캐비테이터요소 안으로 순차적으로 삽입되어 함몰되면서 최종적으로는원판형상을 이루며, 상기 압축공기탱크 (50)는 상기 압력센서 (90) 및 상기 압축공기밸브 (71)의 작동 에 따라내부의 압축공기를상기 압축공기배출구 (80)로공급하되, The conversion type cavitation 20 is provided with two or more cavitation elements, each of the cavitation element is formed in a conical shape in the front and rear direction at the beginning of the launching of the underwater vehicle (10) As the speed of the underwater moving object 10 increases, the front cavitation element is sequentially inserted into the rear cavitation element, which is recessed, and finally forms a disc shape. The compressed air tank 50 supplies the compressed air to the compressed air outlet 80 according to the operation of the pressure sensor 90 and the compressed air valve 71,
상기 압축공기배출구 (80)의 압축공기 배출 시점은 상기 압력센서 (90)의 설정 값에 의하여 능동적으로 조절되는바, 상기 설정 값이 크면 클수록 상기 압축공기배 출구 (80)의 압축공기 배출 시점은 느려지고 상기 설정 값이 작으면 작을수록 상기 압축공기배출구 (80)의 압축공기 배출 시점은 빨라지는 것을 특징으로 하는 압축공기 탱크를 이용한초월공동수중운동체의 캐비테이터 시스템.  The compressed air discharge time of the compressed air outlet 80 is actively controlled by the set value of the pressure sensor 90. The larger the set value, the compressed air discharge point of the compressed air outlet 80 is The slower and smaller the set value, the faster the compressed air discharge point of the compressed air outlet 80 becomes faster.
【청구항 4】  [Claim 4]
청구항 2또는 청구항 3에 있어서,  The method according to claim 2 or 3,
상기 변환형 캐비테이터 (20)는 제 1캐비테이터요소 (21), 제 2캐비테이터요소 (22) 및 계 3캐비테이터요소 (23)를구비하는바,  The converting cavitation 20 is provided with a first cavator element 21, a second cavator element 22 and a total three cavitation element 23,
상기 수중운동체 (10)의 발사 초기에는 상기 제 1캐비테이터요소 (21), 상기 제 2 캐비테이터요소 (22) 및 상기 제 3캐비테이터요소 (23)가 전방에서부터 후방으로 순서대 로층을 이루어 원뿔형상을 이루며,  In the initial stage of launching the underwater vehicle 10, the first cavator element 21, the second cavator element 22 and the third cavator element 23 form a conical layer in order from the front to the rear. In shape,
상기 수증운동체 (10)의 속도가 증가하면 제일 먼저 상기 제 1캐비테이터요소 (21)가상기 계 2캐비테이터요소 (22) 안으로 삽입되어 함몰되고 그다음 상기 계 1캐비 테이터요소 (21)와상기 제 2캐비테이터요소 (22)가함께 상기 제 3캐비테이터요소 (23) 안 으로 삽입되어 함몰됨에 따라 종국에는 원판형상을 이루는 것을 특징으로 하는 압 축공기탱크를 이용한초월공동수중운동체의 캐비테이터 시스템. When the speed of the water vapor moving body 10 increases, the first cavitation element 21 is first inserted into the second cavitation element 22 to be recessed, and then the first one cavitation element 21 and the first Cavity system of transcendental underwater moving body using a compressed air tank, characterized in that the disc shape in the end as the two cavitation element (22) is inserted into the third cavator element (23) and eventually recessed.
【청구항 5】 [Claim 5]
청구항 4에 있어서,  The method according to claim 4,
상기 계 1캐비테이터요소 (21)는 원뿔형상인 것을 특징으로 하는 압축공기탱크 를 이용한초월공동수증운동체의 캐비테이터 시스템.  The system of the first cavitation element 21 is a conical shape of the cavitation system of the transcendental cavity using the compressed air tank, characterized in that the conical shape.
【청구항 6】  [Claim 6]
청구항 4에 있어서,  The method according to claim 4,
상기 제 2캐비테이터요소 (22)는 원뿔의 상단부가 잘려나간 형상이며 상기 제 1 캐비테이터요소 (21)를 수용할 수 있는 계 1수용공간 (22a)과 상기 제 1수용공간 (22a) 안 으로 삽입되는 상기 제 1캐비테이터요소 (21)가 상기 제 2캐비테이터요소 (22)를 통과하 여 빠져 나가지 않도록잡아주는 제 1스토퍼 (22b)를 구비하는 것을 특징으로 하는 압 축공기탱크를 이용한초월공동수중운동체의 캐비테이터 시스템.  The second cavitation element 22 has a shape in which the upper end of the cone is cut out into the first accommodation space 22a and the first accommodation space 22a that can accommodate the first cavitation element 21. Transcendence using a compressed air tank, characterized in that it comprises a first stopper (22b) for holding the first cavitation element 21 to be inserted so as not to pass through the second cavitation element 22. Cavitation system of joint underwater vehicle.
【청구항 7】  [Claim 7]
청구항 4에 있어서,  The method according to claim 4,
상기 제 3캐비테이터요소 (23)는 원뿔의 상단부가 잘려나간 형상이며 상기 제 2 캐비테이터요소 (22)를 수용할 수 있는 제 2수용공간 (23a)과 상기 제 2수용공간 (23a) 안 으로 삽입되는 상기 제 2캐비테이터요소 (22)가 상기 제 3캐비테이터요소 (23)를 통과하 여 빠져 나가지 않도록 잡아주는계 2스토퍼 (23b)를 구비하는 것을 특징으로 하는 압 축공기탱크를 이용한초월공동수중운동체의 캐비테이터 시스템.  The third cavitation element 23 has a shape in which the upper end of the cone is cut out and into the second accommodation space 23a and the second accommodation space 23a which can accommodate the second cavitation element 22. Transcendence using a compressed air tank, characterized in that the second stopper 23b is inserted to hold the second cavitation element 22 inserted through the third cavitation element 23 so as not to escape. Cavitation system of joint underwater vehicle.
【청구항 8】  [Claim 8]
청구항 4에 있어서, 상기 제 1캐비테이터요소 (21)의 높이는 상기 계 2캐비테이터요소 (22)의 높이보 다작거나같고 상기 제 2캐비테이터요소 (22)의 높이는 상기 제 3캐비테이터요소 (23)의 높이보다 작거나 같은 것을 특징으로 하는 압축공기탱크를 이용한 초월공동 수중운 동체의 캐비테이터 시스템. The method according to claim 4, The height of the first cavitation element 21 is less than or equal to the height of the second cavitation element 22 and the height of the second cavitation element 22 is less than the height of the third cavator element 23. Cavity system of the transcendental hollow underwater vehicle body using a compressed air tank, characterized in that the same.
【청구항 9】  [Claim 9]
청구항 4에 있어서,  The method according to claim 4,
상기 제 1캐비테이터요소 (21)에는 후방으로 향하는 피스톤축 (31)이 연결되고 상기 피스톤축 (31)의 끝단에는피스톤 (32)이 설치되며,  A piston shaft 31 facing rearward is connected to the first cavitation element 21, and a piston 32 is installed at the end of the piston shaft 31.
상기 제 3캐비테이터요소 (23)에는 후방으로 향하는 실린더 (33)가 연결되고 상 기 피스톤축 (31)은상기 제 2캐비테이터요소 (22)와상기 계 3캐비테이터요소 (23)를 관통 하여 상기 실린더 (33) 안까지 연장되며,  A cylinder 33 facing backward is connected to the third cavator element 23, and the piston shaft 31 penetrates through the second cavator element 22 and the third cavitation element 23. Extends into the cylinder (33),
상기 피스톤 (32)은 상기 제 1캐비테이터요소 (21) 또는 상기 제 2캐비테이터요소 (22)가후방으로 함몰될 때 상기 피스톤축 (31)의 이동에 따라상기 실린더 (33)의 벽을 타고 후방으로 이동하는 것을 특징으로 하는 압축공기탱크를 이용한 초월공동 수중 운동체의 캐비테이터 시스템.  The piston 32 rides on the wall of the cylinder 33 in response to the movement of the piston shaft 31 when the first cavitation element 21 or the second cavitation element 22 is recessed backwards. Cavitation system of transcendental joint underwater vehicle using a compressed air tank, characterized in that moving to the rear.
【청구항 10】  [Claim 10]
청구항 9에 있어서,  The method according to claim 9,
상기 제 2캐비테이터요소 (22)의 후단에는 계 1슬라이딩요소 (40)가 설치되는바, 상기 계 1슬라이딩요소 (40)는상기 계 2캐비테이터요소 (22)에 의해 후방으로 밀려 상기 실린더 (33) 안으로 들어가는 것을 특징으로 하는 압축공기행크를 이용한 초월공동 수중운동체의 캐비테이터 시스템. The system 1 sliding element 40 is installed at the rear end of the second cavator element 22, and the system 1 sliding element 40 is pushed backward by the system 2 cavator element 22 to allow the cylinder ( 33) Transcendental cavity using compressed air hank characterized by entering in Cavitation system of underwater vehicle.
【청구항 11】  [Claim 11]
청구항 10에 있어서,  The method according to claim 10,
상기 제 1슬라이딩요소 (40)와 상기 실린더 (33) 벽면 간의 마찰력에 따라 상기 변환형 캐비테이터 (20)의 형상변경 시점이 조절되는 것을 특징으로 하는 압축공기탱 크를 이용한초월공동수증운동체의 캐비테이터 시스템.  The cavity of the transcendental cavity moving object using the compressed air tank, characterized in that the shape change timing of the conversion type cavitation 20 is adjusted according to the frictional force between the first sliding element 40 and the wall of the cylinder 33. Data system.
【청구항 12】  [Claim 12]
청구항 9에 있어서,  The method according to claim 9,
상기 실린더 (33)의 후단에는 상기 압축공기탱크 (50)가 연결되며 상기 압축공 기탱크 (50)의 내부 전단에는 제 2슬라이딩요소 (60)가 설치되는바, 상기 제 2슬라이딩요 소 (60)는 상기 피스톤 (32)에 의해 밀려 상기 압축공기탱크 (50)의 후방으로 이동하는 것을 특징으로 하는 압축공기탱크를 이용한 초월공동 수중운동체의 캐비테이터 시 스템.  The compressed air tank 50 is connected to the rear end of the cylinder 33, and the second sliding element 60 is installed at the inner front end of the compressed air tank 50, and the second sliding element 60 ) Is the cavitation system of the transcendental cavity underwater vehicle using the compressed air tank, characterized in that the piston 32 is pushed by the rear of the compressed air tank (50).
【청구항 13】  [Claim 13]
청구항 12에 있어서,  The method according to claim 12,
상기 압축공기탱크 (50)의 출구에는 압축공기이동관 (70)이 연결되며, 상기 압축 공기탱크 (50)와 상기 압축공기이동관 (70)의 연결지점에는 압축공기밸브 (71)가 설치되 는바, 상기 압축공기탱크 (50)의 출구는 상기 수중운동체 (10)의 발사 초기에는 상기 압축공기벨브 (71)에 의해 막혀 있다가 상기 피스톤 (32) 또는 상기 제 2슬라이딩요소 (60)의 후방 이동 시 상기 압축공기밸브 (71)가 후방의 벨브이동관 (72)으로 밀려나게 되면서 열리는 것을 특징으로 하는 압축공기탱크를 이용한 초월공동 수중운동체의 캐비테이터 시스템. A compressed air moving tube 70 is connected to the outlet of the compressed air tank 50, and a compressed air valve 71 is installed at a connection point between the compressed air tank 50 and the compressed air moving tube 70. The outlet of the compressed air tank (50) is blocked by the compressed air valve (71) at the beginning of the launching of the underwater vehicle (10), and then moves backward of the piston (32) or the second sliding element (60). The compressed air valve 71 is pushed to the valve valve tube 72 of the rear Cavitation system of the transcendental joint underwater vehicle using a compressed air tank, characterized in that while opening.
【청구항 14】  [Claim 14]
청구항 13에 있어서,  The method according to claim 13,
상기 벨브이동관 (72) 내부에는 상기 압축공기벨브 (71)의 끝단부에 스프링 (73) 이 설치되는바, 상기 스프링 (73)은 상기 수중운동체 (10)의 발사 초기에는 상기 압축 공기벨브 (71)가 상기 압축공기탱크 (50)의 출구를 막고 있는 상태를 유지하도록 작동 하는 한편, 상기 수중운동체 (10)의 속도가점차증가하면 자체 탄성력의 크기에 따라 상기 압축공기밸브 (71)의 밀려나는 거리 및 시점을 조절하는 것을 특징으로 하는 압 축공기탱크를 이용한초월공동수중운동체의 캐비테이터 시스템.  A spring 73 is installed at the end of the compressed air valve 71 in the valve moving tube 72, and the spring 73 is the compressed air valve 71 at the beginning of the launching of the underwater body 10. ) Is maintained to block the outlet of the compressed air tank (50), while the speed of the underwater moving object (10) is gradually increased if the compressed air valve 71 is pushed out according to the magnitude of its own elastic force Cavitation system of the transcendental joint underwater vehicle using the compressed air tank, characterized in that for adjusting the distance and the viewpoint.
【청구항 15】  [Claim 15]
청구항 13에 있어서,  The method according to claim 13,
상기 압축공기탱크 (50)의 출구는 상기 수중운동체 (10)의 발사 초기에는 상기 압축공기벨브 (71)에 의해 닫혀 있다가 상기 수중운동체 (10)의 속도가 점차 증가하면 서 압력센서 (90)가 작동함에 따라 열리는 것을 특징으로 하는 압축공기탱크를 이용 한초월공동수증운동체의 캐비테이터 시스템.  The outlet of the compressed air tank (50) is closed by the compressed air valve (71) at the beginning of the launch of the underwater vehicle (10), but the pressure sensor (90) while the speed of the underwater vehicle (10) gradually increases. Cavitation system of the transcendental joint steam vehicle using a compressed air tank, characterized in that the opening as the operation.
【청구항 16】  [Claim 16]
청구항 15에 있어서,  The method according to claim 15,
상기 압축공기배출구 (80)의 위치 및 개수는 상기 수중운동체 (10)의 상하 및 좌우로 대칭이 되도록 설계되는 것을 특징으로 하는 압축공기탱크를 이용한 초월공 동수중운동체의 캐비테이터 시스템. The position and number of the compressed air outlet 80 is transcended air using the compressed air tank, characterized in that designed to be symmetrical in the up and down and left and right sides of the underwater body (10) Cavitation system of the dynamic underwater body.
【청구항 17】  [Claim 17]
청구항 16에 있어서, . The method of claim 16, wherein .
상기 압축공기배출구 (80)가 2개 이상인 경우 상기 각각의 압축공기배출구 (80) 가 선택적으로 개폐될 수 있도록 구성되는 것을 특징으로 하는 압축공기탱크를 이 용한초월공동수중운동체의 캐비테이터 시스템.  Cavitation system of the transcendental joint underwater vehicle using the compressed air tank, characterized in that the compressed air outlet (80) is configured to be selectively opened and closed each respective compressed air outlet (80).
【청구항 18】  [Claim 18]
청구항 17에 있어서,  The method according to claim 17,
상기 실린더 (33)의 내부 공간과 상기 압축공기이동관 (70)을 연결하는 관으로 상기 압축공기이동관 (70)에 대하여 바이패스 (By-pass) 관의 형태로 연결되는서브압 축공기이동관 (100);  Sub-compressed air moving tube 100 connected to the internal space of the cylinder 33 and the compressed air moving tube 70 in the form of a bypass tube with respect to the compressed air moving tube 70. );
상기 서브압축공기이동관 (100)에 설치되며, 서브압력센서 (110)의 작동에 따라 상기 서브압축공기이동관 (100)을 개폐하는 서브압축공기벨브 (101)및;  A sub-compressed air valve (101) installed in the sub-compressed air moving pipe (100), for opening and closing the sub-compressed air moving pipe (100) according to the operation of the sub-pressure sensor (110);
상기 서브압축공기밸브 (101)와 전기적으로 연결되며, 상기 실린더 (33) 내부의 공기압을 계측하여 상기 계측된 공기압이 설정 값을 초과하면 상기 서브압축공기벨 브 (101)를 열어 상기 실린더 (33) 내부의 압축공기가 상기 서브압축공기이동관 (100)을 통하여 상기 압축공기이동관 (70)으로 이동하도록하는 서브압력센서 (110);  The sub-compressed air valve 101 is electrically connected to the sub-compressed air valve 101 and measures the air pressure inside the cylinder 33 to open the sub-compressed air valve 101 when the measured air pressure exceeds a set value. A sub-pressure sensor 110 for moving the compressed air therein to the compressed air moving tube 70 through the sub-compressed air moving tube 100;
를 구비하는 것을 특징으로 하는 압축공기행크를 이용한 초월공동 수중운동 체의 캐비테이터 시스템.  Cavitation system of transcendental hollow underwater body using compressed air hank, characterized in that it comprises a.
PCT/KR2015/010973 2015-06-19 2015-10-16 Cavitator system of supercavitating underwater vehicle using compressed air tank WO2016204349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150087657A KR101570323B1 (en) 2015-06-19 2015-06-19 Cavitator System of the Supercavitating Underwater Vehicle using Compressed Air Tank
KR10-2015-0087657 2015-06-19

Publications (1)

Publication Number Publication Date
WO2016204349A1 true WO2016204349A1 (en) 2016-12-22

Family

ID=54839232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010973 WO2016204349A1 (en) 2015-06-19 2015-10-16 Cavitator system of supercavitating underwater vehicle using compressed air tank

Country Status (2)

Country Link
KR (1) KR101570323B1 (en)
WO (1) WO2016204349A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110274750A (en) * 2019-07-25 2019-09-24 哈尔滨工业大学 A kind of supercavitating vehicle test model with elastic trailing edge
US10486773B2 (en) * 2018-04-20 2019-11-26 Agency For Defense Development Cavitator system for suppressing cavity buoyancy effect and method thereof
CN112550553A (en) * 2020-12-07 2021-03-26 河北汉光重工有限责任公司 Appearance-adjustable cavitator

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352704B (en) * 2015-11-19 2017-12-22 中国运载火箭技术研究院 A kind of circular cone cavitation device of variable cone angle
KR101903269B1 (en) 2017-01-12 2018-10-01 국방과학연구소 Cavitator Drive System of Super Cavitating Underwater Vehicle
CN107310687B (en) * 2017-06-21 2018-12-18 北京机械设备研究所 A kind of resistance self-adapting changeable structure cavitation device
KR101901617B1 (en) 2017-07-20 2018-09-27 국방과학연구소 Cavitator for generating supercavitation and control method of thereof
KR101937208B1 (en) * 2018-03-09 2019-04-09 국방과학연구소 Depth control device
KR102059151B1 (en) 2019-06-28 2019-12-24 국방과학연구소 Forebody configuration of the ventilated supercavitation underwater vehicle
KR102269149B1 (en) * 2020-02-27 2021-06-23 충남대학교산학협력단 An underwater vehicle that is making super-cavitating flows by shooting out of hot air for fast movement of underwater
CN113091531B (en) * 2021-03-03 2023-03-17 上海机电工程研究所 Supercavitation navigation carrier
KR102576464B1 (en) * 2023-03-06 2023-09-11 국방과학연구소 Directional control system for underwater vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3041992A (en) * 1960-05-10 1962-07-03 United Aircraft Corp Low drag submarine
JPH0260682A (en) * 1988-08-26 1990-03-01 Top Kogyo Kk Tool using pneumatic cylinder
US7874251B1 (en) * 2007-04-12 2011-01-25 Lockheed Martin Corporation Cavity-running projectile having a telescoping nose
US7966936B1 (en) * 2009-03-13 2011-06-28 The United States Of America As Represented By The Secretary Of The Navy Telescoping cavitator
US8146501B1 (en) * 2008-03-03 2012-04-03 Lockheed Martin Corporation Supercavitating projectile having a morphable nose

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3041992A (en) * 1960-05-10 1962-07-03 United Aircraft Corp Low drag submarine
JPH0260682A (en) * 1988-08-26 1990-03-01 Top Kogyo Kk Tool using pneumatic cylinder
US7874251B1 (en) * 2007-04-12 2011-01-25 Lockheed Martin Corporation Cavity-running projectile having a telescoping nose
US8146501B1 (en) * 2008-03-03 2012-04-03 Lockheed Martin Corporation Supercavitating projectile having a morphable nose
US7966936B1 (en) * 2009-03-13 2011-06-28 The United States Of America As Represented By The Secretary Of The Navy Telescoping cavitator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10486773B2 (en) * 2018-04-20 2019-11-26 Agency For Defense Development Cavitator system for suppressing cavity buoyancy effect and method thereof
CN110274750A (en) * 2019-07-25 2019-09-24 哈尔滨工业大学 A kind of supercavitating vehicle test model with elastic trailing edge
CN112550553A (en) * 2020-12-07 2021-03-26 河北汉光重工有限责任公司 Appearance-adjustable cavitator

Also Published As

Publication number Publication date
KR101570323B1 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2016204349A1 (en) Cavitator system of supercavitating underwater vehicle using compressed air tank
WO2016204348A1 (en) Active-type cavitator system of supercavitating underwater vehicle
WO2016204347A1 (en) Passive-type cavitator system of supercavitating underwater vehicle
US7966936B1 (en) Telescoping cavitator
CN103204186B (en) Running gear
US9206729B2 (en) Throttleable exhaust venturi
CN112444165B (en) Underwater supercavitation navigation body with hollow appearance characteristics
CN107738725A (en) A kind of supercavity submarine navigation device
KR102141294B1 (en) Artificial supercavitating high-speed underwater vehicle equipped multi-injection system
CN108180792A (en) Supercavitating Projectile about granule surface contral drag reduction
US6206326B1 (en) Method and apparatus for actively enhancing aircraft weapon separation
CN107237675A (en) Include the muffler device of the shared active control valve in center
CN107458536A (en) A kind of the submarine navigation device air layers reducing resistance device and drag reduction method of multi-level throttle control
Akhtar et al. Control of CD nozzle flow using microjets at mach 2.1
KR102012112B1 (en) Ejection tube for a submarine
CN102954733B (en) For the sagging division ala type torch of projectile body hydrodynamic force control
CN104326079A (en) Adaptive active thermal protection device and aircraft
WO2015151621A1 (en) Jet engine, flying vehicle, and method for operating jet engine
CN208671817U (en) A kind of high speed water entry launcher
US10690090B2 (en) Device for modulating a gas ejection section
ZHANG et al. Numerical Analysis of Separation of Supersonic Submunition Based on Nested Grid
US9341082B2 (en) Pipe having an upstream core having a sharp curvature
DeSpirito Transient lateral jet interaction effects on a generic fin-stabilized projectile
US7598451B2 (en) Porous plate rocket torpedo
JP6285967B2 (en) Device for adjusting the gas injection section

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895736

Country of ref document: EP

Kind code of ref document: A1