WO2016204273A1 - テラヘルツ帯域電磁波発振素子およびテラヘルツ帯域電磁波発振装置 - Google Patents

テラヘルツ帯域電磁波発振素子およびテラヘルツ帯域電磁波発振装置 Download PDF

Info

Publication number
WO2016204273A1
WO2016204273A1 PCT/JP2016/068107 JP2016068107W WO2016204273A1 WO 2016204273 A1 WO2016204273 A1 WO 2016204273A1 JP 2016068107 W JP2016068107 W JP 2016068107W WO 2016204273 A1 WO2016204273 A1 WO 2016204273A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconductor
terahertz
electromagnetic wave
band electromagnetic
wave oscillation
Prior art date
Application number
PCT/JP2016/068107
Other languages
English (en)
French (fr)
Inventor
隆成 柏木
和男 門脇
英俊 南
リチャード アンドリュー クレム
Original Assignee
国立大学法人筑波大学
ユニバーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人筑波大学, ユニバーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレイテッド filed Critical 国立大学法人筑波大学
Priority to US15/737,086 priority Critical patent/US20180175273A1/en
Publication of WO2016204273A1 publication Critical patent/WO2016204273A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B15/00Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects
    • H03B15/003Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects using superconductivity effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/805Constructional details for Josephson-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/81Containers; Mountings
    • H10N60/815Containers; Mountings for Josephson-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/006Functional aspects of oscillators
    • H03B2200/0084Functional aspects of oscillators dedicated to Terahertz frequencies

Definitions

  • the present invention relates to a terahertz band electromagnetic wave oscillator and a terahertz band electromagnetic wave oscillator.
  • a terahertz (THz) wave is an electromagnetic wave having a wavelength in the middle region between radio waves and light (far infrared).
  • the frequency of the terahertz wave is not clearly defined, but is said to be 300 GHz to 10 THz (wavelength 30 ⁇ m to 1 mm).
  • This frequency band is substantially equal to the frequency of molecular orientation and rotation, polymer vibration, vibration between molecules bonded by hydrogen bonds, crystal lattice vibration, and the like. Therefore, it can be used for identification of organic substances, polymer compounds, enzymes, proteins, and biological substances. In addition to identification of these substances, non-destructive inspection, security, medical diagnosis, meteorological observation, environmental monitoring, astronomy, high-speed and large-capacity communication, etc. can be applied in a very wide range, attracting attention.
  • terahertz wave oscillation means for example, a quantum cascade laser (QCL), a resonant tunnel diode (RTD), an oscillator using a Josephson coupling between a superconducting layer and an insulating layer in a superconductor, and the like are known. .
  • QCL quantum cascade laser
  • RTD resonant tunnel diode
  • an oscillator using a Josephson coupling between a superconducting layer and an insulating layer in a superconductor, and the like are known.
  • Quantum cascade lasers oscillate using optical transitions between energy levels formed in semiconductor quantum wells.
  • the energy difference formed in the semiconductor quantum well is small, transition due to thermal energy occurs, and appropriate driving is difficult in a temperature region above the nitrogen boiling point.
  • a resonant tunneling diode uses the motion of conduction electrons in a semiconductor. Therefore, it is necessary to appropriately control the driving of conduction electrons. When oscillating in a specific frequency range, it is difficult to appropriately drive the electrons.
  • JP 2009-43787 A Japanese Patent Laid-Open No. 2005-251863
  • the terahertz band electromagnetic wave oscillation element using the intrinsic Josephson junction of the high temperature superconductor can realize oscillation of about 15 THz.
  • a terahertz wave oscillation in a high frequency region has been realized.
  • an observation example of a terahertz wave of 1.6 THz is the largest.
  • the terahertz wave oscillated is proportional to the voltage applied to the superconductor. Therefore, in principle, if the voltage applied to the superconductor is increased, a high-frequency terahertz wave should be oscillated.
  • the superconductor when the voltage applied to the superconductor is increased, the superconductor generates heat.
  • the insulating property of the superconductor having the laminated structure of the superconductive layer and the insulating layer is lowered. In some cases, a high temperature portion called a partial hot spot is formed in the superconductor. This part behaves as a short-circuit resistance and reduces the insulating properties of the insulating layer.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a terahertz band electromagnetic wave oscillation element and a terahertz band electromagnetic wave oscillation device that can efficiently exhaust generated heat.
  • this invention provides the following means in order to solve the said subject.
  • a terahertz band electromagnetic wave oscillating device includes an independent terahertz wave oscillating unit that oscillates a terahertz band electromagnetic wave, and the terahertz wave oscillating unit uses a plurality of Josephson waves using an AC Josephson effect.
  • the terahertz band electromagnetic wave oscillation device may further include electrodes connected to both end faces of the superconductor.
  • the terahertz band electromagnetic wave oscillation device further including a substrate that supports any of the electrodes, wherein the thermal conductivity of the substrate is higher than the thermal conductivity of the superconductor. May be.
  • the base material may be sapphire, diamond, or copper.
  • a plurality of the superconductors may be disposed between the electrodes.
  • a terahertz band electromagnetic wave oscillation device includes a terahertz band electromagnetic wave oscillation element according to any one of the above (1) to (5), and a voltage application unit that applies a voltage to the electrode.
  • the terahertz band electromagnetic wave oscillation element and the terahertz band electromagnetic wave oscillation device can oscillate a terahertz wave having a frequency of 2 THz or more.
  • FIG. 1 is a schematic perspective view of a terahertz band electromagnetic wave oscillation element according to an aspect of the present invention. It is the figure which showed typically the crystal structure of the single crystal of a superconductor.
  • FIG. 2 is an example of a conventional terahertz band electromagnetic wave oscillation element, and is a schematic perspective view of a terahertz band electromagnetic wave oscillation element described in Non-Patent Document 1.
  • FIG. 5 is a schematic perspective view of a terahertz wave oscillating device according to another aspect of the present invention, and is a schematic perspective view schematically illustrating a structure in which a plurality of superconductors are arranged.
  • the terahertz band electromagnetic wave oscillation element and the terahertz band electromagnetic wave oscillation device will be described in detail with reference to the drawings as appropriate.
  • the portions that become the features may be shown in an enlarged manner for the sake of convenience, and the dimensional ratios of the respective components may differ from the actual ones.
  • the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately modified and implemented without departing from the scope of the invention.
  • FIG. 1 is a schematic perspective view of a terahertz band electromagnetic wave oscillation element according to this embodiment.
  • the terahertz band electromagnetic wave oscillation device 10 includes a superconductor 1 having a disk-shaped terahertz wave oscillating portion that oscillates terahertz band electromagnetic waves.
  • the electrodes 2 are connected to both ends of the superconductor 1.
  • the electrode 2 is shown larger than the superconductor 1, but this is not a limitation. For example, a point contact may be used.
  • one electrode is shown apart, but in reality, it is connected to the end face of the superconductor 1.
  • the periphery of the superconductor 1 may be covered with thermal grease having high thermal conductivity.
  • Superconductor 1 has a laminated structure of a superconducting layer and an insulating layer. That is, the superconductor 1 has a structure in which Josephson junctions are stacked.
  • FIG. 2 is a crystal structure of Bi 2 Sr 2 CaCu 2 O 8 + ⁇ (Bi2212) which is an example of the superconductor 1.
  • the triangular pyramid is formed of Cu and O
  • the white circle indicates Sr
  • the black circle indicates oxygen
  • the hatched circle indicates Ca
  • the circle with a dotted pattern indicates Bi.
  • the CuO 2 layer is the superconductive layer 1a
  • the Bi 2 O 2 layer is the insulating layer 1b. That is, the superconductor 1 has a structure in which a superconducting layer 1a / insulating layer 1b / superconducting layer 1a are laminated at an atomic level.
  • the superconducting current flows between the superconducting layers 1a through the insulating layer 1b due to the Josephson effect.
  • approximately 670 Josephson junctions are formed in a single crystal of 1 ⁇ m.
  • Bi2212 is presented as an example of the single crystal 1, but the superconductor 1 is not limited to the crystal structure as long as it can generate the AC Josephson effect.
  • Bi 2 Sr 2 Ca 2 Cu 3 O 10 + ⁇ (Bi2223) having a different crystal structure can be used.
  • the superconductor 1 oscillates a terahertz wave when a voltage is applied in a direction perpendicular to the laminated surface of the Josephson junction.
  • the principle of terahertz wave oscillation will be briefly described below.
  • the AC Josephson effect refers to a phenomenon in which an AC current flows when a constant voltage V J is applied between two superconductors through an extremely thin insulating layer.
  • Frequency f J alternating current at this time can be displayed by the following formula (1).
  • e is the elementary charge
  • h is the Planck constant.
  • f J (2e / h) V J (1)
  • the frequency f J of the alternating current is proportional to the voltage V J applied per layer of the Josephson junction, as shown in the equation (1).
  • an electromagnetic wave hereinafter, also referred to as “non-resonant terahertz wave”
  • This electromagnetic wave is a terahertz wave, and is radiated to the outside from the terahertz wave oscillating portion made of the superconductor 1.
  • the terahertz wave oscillated here is not so strong. Strong terahertz wave strength can be obtained by the resonance with the natural frequency f c generated by the geometry of the superconductor 1.
  • the natural frequency f c the frequency affected by the shape and size of the material.
  • a standing wave based on the boundary condition is formed in the substance.
  • the frequency of the standing wave is the natural frequency f c.
  • ⁇ 11 is 1.841
  • c 0 is the speed of light in vacuum
  • n is the refractive index
  • a is the radius of the disk.
  • a terahertz wave having a strong intensity peak (hereinafter sometimes referred to as “resonant terahertz wave”) is radiated to the outside from the terahertz wave oscillating unit made of the superconductor 1.
  • the terahertz wave oscillating portion is composed of a disk-shaped superconductor 1.
  • the superconductor on the substrate is generally provided below, and this is different.
  • FIG. 3 is an example of a conventional terahertz band electromagnetic wave oscillation element, and is a schematic perspective view of the terahertz band electromagnetic wave oscillation element described in Non-Patent Document 1.
  • the conventional terahertz band electromagnetic wave oscillating element 50 is formed by processing a large superconducting single crystal so as to be sharpened with a focused ion beam (FIB). That is, a portion formed below the mesa 51 by processing functions as the substrate 52.
  • FIB focused ion beam
  • terahertz band electromagnetic wave oscillation element 50 When a voltage is applied to the conventional terahertz band electromagnetic wave oscillation element 50, an alternating current is generated in both the mesa unit 51 and the substrate 52 made of the same superconductor single crystal. That is, terahertz waves are generated in the mesa unit 51 and the substrate 52.
  • the main factor that determines the natural frequency f c is a mesa portion 51
  • the terahertz wave resonator is oscillated from the mesa portion 51, the mesa section 51 is not independent integrated with the substrate 52 The boundary is not clear.
  • the terahertz wave oscillating unit is composed of a disk-shaped superconductor 1.
  • the superconductor 1 has electrodes 2 connected to both ends thereof, but the superconductor 1 and the electrode 2 are different materials.
  • the fact that the terahertz wave oscillating portion is formed only of the superconductor 1 on the disk may be expressed as “single” in the present specification.
  • the second advantage is that the temperature of the superconductor 1 is suppressed from increasing.
  • Formula (1) in order to oscillate a terahertz wave in a high frequency region, it is necessary to increase the voltage applied to the superconductor 1.
  • the insulating property of the superconductor having the laminated structure of the superconductive layer and the insulating layer is lowered.
  • the AC Josephson effect is a phenomenon in which an AC current flows when a constant voltage is applied between two superconductors via an extremely thin insulating layer. For this reason, when the insulating property of the insulating layer is lowered, a desired AC Josephson effect cannot be obtained and a terahertz wave cannot be oscillated.
  • the substrate 52 inhibits exhaust heat. Since the substrate 52 is made of a superconductor, the thermal conductivity is extremely poor. On the other hand, when it exists independently like the superconductor 1 in this embodiment, it can exhaust in all the circumference
  • the superconductor 1 has a disk shape.
  • the disc shape means that the cut surface parallel to the laminated surface of the multi-layered Josephson junction is circular and includes a cylinder.
  • the superconductor 1 can oscillate a terahertz wave of 2 THz or more.
  • Terahertz waves of 2 THz or higher are confirmed only when the shape of the superconductor 1 is a disk. The reason for this is not clear, but at present, it has not been confirmed when the shape of the superconductor 1 is a rectangular parallelepiped shape having a rectangular cut surface parallel to the laminated surface of the multi-layered Josephson junction.
  • the wavelength of the oscillating terahertz wave can be increased by changing the shape of the mesa from a rectangular parallelepiped to a disk. It doesn't mean that That is, as a result of various studies, the present inventors have found for the first time that a terahertz wave of 2 THz or more can be oscillated by making the superconductor 1 disc-like and single.
  • the height of the superconductor 1 is preferably 1 ⁇ m to 10 ⁇ m. By setting the height of the superconductor 1 within this range, it is possible to oscillate high-intensity terahertz waves while avoiding the superconductor 1 from becoming high temperature.
  • the height of the superconductor 1 means the thickness of the superconductor 1 in the direction perpendicular to the laminated surface of the multi-layered Josephson junction.
  • the intensity of the terahertz wave that oscillates becomes higher. If the height of the superconductor 1 is sufficient, a higher-intensity terahertz wave can be oscillated. On the other hand, if it is 1 ⁇ m or less, it is too thin to handle.
  • the height of the superconductor 1 is preferably 10 ⁇ m or less from the viewpoint of avoiding the deterioration of the insulating properties of the insulating layer 1b after long-term use.
  • the diameter of the disc-shaped superconductor 1 can be designed as appropriate.
  • the diameter of the disk-shaped superconductor 1 means a diameter at a cut surface parallel to the laminated surface of the multi-layered Josephson junction. When the diameter of a cut surface changes, it means the average value thereof.
  • the natural frequency f c when the superconductor 1 is a disc-shaped is influenced by the diameter of the disc. It is not clear whether a terahertz wave having a frequency of 2 THz or more due to the disc-shaped and single superconductor 1 is a non-resonant terahertz wave or a resonant terahertz wave. Therefore, it is not always necessary that the diameter of the disc-shaped superconductor 1 is a value obtained from the equation (2). However, the diameter of the disc-shaped superconductor 1 in this range, tends to resonate with frequency f J alternating current in the superconductor 1, the more easily obtained terahertz wave high strength.
  • the widths of the upper base and the lower base are the same. That the widths of the upper and lower bases of the superconductor 1 coincide with each other means that the end surfaces (side surfaces) thereof are perpendicular to the substrate. Therefore, the standing wave formed in the superconductor 1 has only a specific frequency.
  • the frequency f J of the oscillating current caused by the constant natural resonant frequency f c and the AC Josephson effect is consistent, it is possible to obtain more monochromatic terahertz wave. Since the laminated Josephson junctions resonate and a terahertz wave oscillates, if the end face is perpendicular to the substrate, a more monochromatic terahertz wave showing high intensity at a specific wavelength can be obtained.
  • FIG. 4 is a schematic perspective view of a terahertz wave oscillating device according to another aspect of the present invention.
  • a plurality of superconductors 21 are disposed between two electrodes 22.
  • each superconductor 21 is arranged in the same direction in which a voltage is applied.
  • a plurality of terahertz wave oscillation sources are provided, and therefore the terahertz wave oscillation intensity can be increased.
  • the superconductors 21 are regularly juxtaposed at a predetermined interval.
  • the plurality of superconductors 21 can operate in a coordinated manner, and the oscillation intensity of the terahertz wave can be dramatically increased.
  • the oscillation intensity obtained at this time is affected by the cooperative operation of the plurality of superconductors 21. Therefore, it is proportional to the square of the number of superconductors 21. Further, since the Josephson junctions stacked in one superconductor 21 also operate in a similar manner, the oscillation intensity is proportional to the square of the number of stacked layers. That is, when N single crystals formed by stacking M layers are juxtaposed at a predetermined interval, an oscillation intensity of M 2 ⁇ N 2 can be realized, and an extremely strong terahertz wave oscillation can be realized. be able to.
  • the predetermined interval is an interval at which each superconductor 21 resonates, and is calculated from the oscillating frequency.
  • Such a plurality of arrangements can be realized in principle even with the conventional terahertz band electromagnetic wave oscillation element 50.
  • the temperature rise due to heat generation in each superconductor is very large, and thermal mutual interference occurs between the superconductors, or is applied to each superconductor. Problems such as voltage decrease occur. Therefore, it is difficult to realize in reality.
  • the integration density of the superconductor 21 can be increased by using the superconductor 21 alone. That is, the oscillation of the terahertz wave due to the cooperative operation can be made stronger.
  • FIG. 4 a plurality of superconductors 21 are disposed between the two electrodes 22, but this is not a limitation.
  • An electrode may be connected to each of the superconductors 21.
  • the configuration of FIG. 4 is preferable.
  • the electrode 2 is connected to both end faces of the superconductor 1. Since the superconductor 1 has a disk shape, the both end surfaces mean two end surfaces having a circular shape in plan view. That is, the electrode 2 exists in a direction perpendicular to the laminated surface of the superconductor 1 having a multiple Josephson junction.
  • the electrode 2 preferably has a thermal conductivity higher than that of the superconductor 1.
  • the electrode 2 greatly contributes to the exhaust heat of the superconductor 1. Therefore, it is possible to suppress the superconductor 1 from becoming high temperature by making the thermal conductivity of the electrode 2 higher than that of the superconductor 1.
  • the electrode 2 does not greatly contribute to the exhaust heat of the superconductor 1, but has a thermal conductivity higher than that of the superconductor 1 from the viewpoint of exhaust heat. It is appropriate.
  • the electrode 2 preferably has high conductivity.
  • a material having high thermal conductivity and high conductivity copper (Cu), gold (Au), silver (Ag), aluminum (Al), or the like can be used.
  • the electrode 2 only needs to be connected to the superconductor 1, and the shape thereof is not limited and can be appropriately changed according to the mode of use. Since the superconductor 1 itself can carry a charge by the Josephson current, a voltage can be applied to the superconductor 1 as long as it has a contact at either.
  • the electrode 2 is preferably formed on the entire end face of the superconductor 1.
  • the electrode 2 when the electrode 2 is made of metal, the electrode 2 completely reflects the terahertz wave. Therefore, the electrode 2 may be formed on a part of the superconductor 1 so that the electrode does not inhibit the radiation of the terahertz wave.
  • the electrode 32 may be processed into a horn antenna shape.
  • FIG. 5 is a schematic cross-sectional view of the terahertz band electromagnetic wave oscillation element 30 in which the electrode 32 is processed into a horn antenna shape.
  • the horn antenna shape means a structure in which the distance between the electrodes 32 increases as the distance from the superconductor 31 increases in a non-joined portion where the electrode 32 and the superconductor 31 are not joined. In other words, the structure is formed so that the wave gradually spreads from the terahertz wave oscillation source.
  • the upper electrode 32 is processed with respect to the superconductor 31, but the lower electrode 32 may be processed similarly.
  • the impedance matching between the space created between the electrodes 32 and the free space is increased. Therefore, reflection of electromagnetic waves at the opening end is suppressed and high directivity is imparted. That is, the terahertz wave generated efficiently can be extracted.
  • the electrode structure is not limited to the shape of a horn antenna.
  • a hemispherical lens shape in which the curved surface side is bonded to a superconductor may be used.
  • a hemispherical lens shape is not necessarily limited to a “hemisphere”, and a curved surface is formed in a non-joined portion where the electrode and the superconductor are not joined, so that the distance between the electrodes increases as the distance from the superconductor increases. Just do it.
  • the electrode 2 can be joined to the superconductor 1 by a conventionally known method such as solder or silver paste.
  • the superconductor 1 may be covered with a metal film, and this metal film may be used as the electrode.
  • FIG. 6 is a schematic perspective view of a terahertz band electromagnetic wave oscillation element 40 according to another aspect of the present invention.
  • the superconductor 1 is extremely thin.
  • the thickness of the electrode 2 varies depending on the mode, but when the electrode 2 is formed by sputtering or the like, the thickness becomes extremely thin. Therefore, when the electrode 2 is thin, the handling property of the terahertz band electromagnetic wave oscillation element 40 can be improved by providing the substrate 3 that supports the electrode 2 and the superconductor 1.
  • the substrate 3 may be processed into a horn antenna shape or a hemispherical lens shape as described above. By processing the substrate 3 in this manner, the exhaust heat of generated heat, the concentration of radio waves, and the impedance matching are enhanced.
  • the substrate 3 Since the substrate 3 is connected to the superconductor 1 via the electrode 2, it is preferable that the substrate 3 has a higher thermal conductivity than the superconductor 1.
  • the substrate 3 it is preferable to use sapphire, diamond, copper, or other materials having a heat exhausting effect equivalent to or higher than those. These substances exhibit high thermal conductivity at temperatures near the boiling point of nitrogen driven by the terahertz band electromagnetic wave oscillation element. Therefore, the exhaust heat of the superconductor 1 can be efficiently supported from the substrate 3 side.
  • the terahertz band electromagnetic wave oscillating device of the present invention can oscillate a terahertz wave having a frequency of 2 THz or more by using a single and disk-shaped superconductor.
  • FIG. 7 is a schematic perspective view schematically illustrating a terahertz band electromagnetic wave oscillation device according to an aspect of the present invention.
  • a terahertz band electromagnetic wave oscillation device 100 according to an aspect of the present invention includes a terahertz band electromagnetic wave oscillation element 10, 20, 30, 40 and a direction perpendicular to a stacked surface in a superconductor 1 having a multi-layered Josephson junction. And a voltage applying means 110 for applying a voltage.
  • the terahertz band electromagnetic wave oscillation element any of FIGS. 1, 4, 5, and 6 may be used, but the following description is based on the terahertz band electromagnetic wave oscillation element 10 of FIG.
  • the voltage supplied from the voltage applying means 110 is applied to the electrode 2.
  • the voltage applying means 110 only needs to be electrically connected to the electrode 2.
  • the voltage applying means 110 and the electrode 2 are electrically connected via the base material 3. May be.
  • a voltage can be applied in a direction perpendicular to the laminated surface of the superconductor 1 by electrically connecting the voltage applying means 110 and the electrode 2. Since a laminated structure of the superconducting layer 1a and the insulating layer 1b is formed in a direction perpendicular to the laminated surface of the superconductor 1, an AC Josephson effect is generated when a voltage is applied. When the frequency of the oscillating current proportional to the applied voltage and the natural frequency of the superconductor 1 coincide, resonance occurs between the Josephson junctions that are stacked, and the oscillating current flows in phase (coherently). Terahertz waves are oscillated outside.
  • the terahertz band electromagnetic wave oscillation device 100 further includes a cooling device that is not shown.
  • the cooling device is not particularly limited as long as it can cool the terahertz band electromagnetic wave oscillation element 10.
  • liquid nitrogen can be used without using liquid helium as a cooling medium. Liquid nitrogen is easier to handle than liquid helium. Therefore, an inexpensive and small cooling device can be used.
  • the terahertz band electromagnetic wave oscillation device 100 includes the above-described terahertz band electromagnetic wave oscillation element 10, it can realize efficient heat removal and can oscillate terahertz waves of 2 THz or more.
  • the voltage applying means 110 is not particularly limited as long as it can flow direct current through the superconductor 1.
  • Example 2 A disc-shaped superconductor made of Bi2212 having a diameter of 80 ⁇ m and a thickness of about 3.5 ⁇ m was prepared. Three different voltages were applied to the superconductor. The three voltages were set to about 5 V, which is sufficient to oscillate a terahertz wave having a high frequency in principle. The three voltages are bias points A, B, and C, and A ⁇ B ⁇ C. Various contributions such as contact resistance are added to this voltage. Also, not all Josephson junctions stacked in the thickness direction are operated by this bias point. The oscillation spectrum obtained at a temperature of 15K was measured. The spectrum when no voltage was applied was defined as the background (BG).
  • BG background
  • FIG. 8 shows the oscillation spectrum of Example 1.
  • the vertical axis indicates the measured intensity, and the horizontal axis indicates the wave number.
  • the generated terahertz wave was measured using FARIS-1 manufactured by JASCO Corporation. As shown in FIG. 8, a signal is confirmed around 80 cm ⁇ 1 . If the wave number is multiplied by about 30, it can be converted to an oscillating frequency. That is, this signal points near 2.4 THz. Thus, it was confirmed that when a voltage was applied to a disk-like and single superconductor, a terahertz wave oscillated at 2.0 THz or higher. The peak position increases as the applied voltage is increased. This shows the relationship of equation (1).
  • Comparative example In the comparative example, the peak of the oscillation spectrum was confirmed using the terahertz band electromagnetic wave oscillation device having the configuration shown in FIG. The difference in structure between the comparative example and the example is only the difference in whether or not the superconductor is formed alone. As a result, a terahertz wave having a frequency of about 0.54 THz was confirmed. At this time, the oscillation output was weak below the microwatt level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

テラヘルツ帯域電磁波発振素子は、テラヘルツ帯域電磁波を発振する独立したテラヘルツ波発振部を備え、前記テラヘルツ波発振部は、交流ジョセフソン効果を利用して複数のジョセフソン接合が協調して振動することによりテラヘルツ帯域電磁波を発振できる多重積層型ジョセフソン接合を有し、かつ、前記多重積層型ジョセフソン接合の積層面と平行な切断面が円形である円板状の超伝導体からなる。

Description

テラヘルツ帯域電磁波発振素子およびテラヘルツ帯域電磁波発振装置
 本発明は、テラヘルツ帯域電磁波発振素子およびテラヘルツ帯域電磁波発振装置に関する。本願は、2015年6月17日に、日本に出願された特願2015-122057号に基づき優先権を主張し、その内容をここに援用する。
 テラヘルツ(THz)波は、電波と光(遠赤外)の中間領域の波長をもつ電磁波である。テラヘルツ波の周波数は明確な定義はないが、300GHz~10THz(波長30μm~1mm)と言われている。この周波数帯域は、分子の配向や回転、高分子の振動、水素結合などで結合した分子間の振動、結晶格子振動などの周波数とほぼ等しい。そのため、有機物、高分子化合物、酵素、タンパク質、生体物質の同定に用いることができる。これらの物質の同定だけでなく、非破壊検査、セキュリティ、医療診断、気象観測、環境モニター、天文学、高速大容量通信等の極めて幅広い範囲での応用が可能であり、注目を集めている。
 テラヘルツ波の発振手段としては、例えば量子カスケード・レーザー(QCL)、共鳴トンネルダイオード(RTD)、超伝導体における超伝導層と絶縁層とのジョセフソン結合を利用した発振器、等が知られている。
 量子カスケード・レーザーは、半導体量子井戸中に形成されるエネルギー準位間の光学遷移を利用して発振する。半導体量子井戸中に形成されるエネルギー差が小さい場合は、熱エネルギーによる遷移が生じ、窒素沸点以上の温度領域では、適切な駆動が難しい。共鳴トンネルダイオードは、半導体中の伝導電子の運動を利用している。そのため、伝導電子の駆動を適切に制御する必要がある。特定の周波数域を発振する際には、この電子の駆動を適切に行うことが難しい。
 そこで、近年、高温超伝導体がもつ固有ジョセフソン接合を利用した発振器に注目が集まっている(例えば、特許文献1、2及び非特許文献1)。この発振器は、超伝導体の交流ジョセフソン効果に伴うジョセフソンプラズマを用いて、テラヘルツ波を放射する。幾何学的な構造体が有する固有周波数と、このジョセフソンプラズマと、を共振させることで、この発振器は強いピーク強度を有するテラヘルツ波を放射する。
特開2009-43787号公報 特開2005-251863号公報
Tsujimoto et al.Phys.Rev.Lett.105,037005(2010).
 高温超伝導体が持つ固有ジョセフソン接合を利用したテラヘルツ帯域電磁波発振素子は、原理的には、15THz程度の発振は実現可能と言われている。しかしながら、高周波領域のテラヘルツ波の発振が実現できたという報告はなされていないというのが現状である。現在、高温超電導体が持つ固有ジョセフソン接合を利用したテラヘルツ帯域電磁波発振素子として報告されている例としては、1.6THzのテラヘルツ波の観測例が最大のものである。
 一般に発振されるテラヘルツ波は、超伝導体に印加される電圧に比例する。そのため、原理的には超伝導体に印加する電圧を高くすれば、高周波数のテラヘルツ波を発振できるはずである。しかしながら、現実の素子においては、超伝導体に印加する電圧を高くすると、超伝導体が発熱してしまう。超伝導体が発熱すると、超伝導層と絶縁層の積層構造を有する超伝導体の絶縁層の絶縁性が低下する。場合によっては、超伝導体に部分的なホットスポットと呼ばれる高温部が形成される。この部分は、短絡抵抗として振る舞い、絶縁層の絶縁性が低下させる。そのため、超伝導体の単結晶に印加する電圧を単純に高めることができず、1.6THz以上の周波数のテラヘルツ波を発振できる超伝導体を利用したテラヘルツ帯域電磁波発振素子の報告はされていない。
 超伝導体を利用したテラヘルツ帯域電磁波発振素子及びテラヘルツ帯域電磁波発振装置の利用範囲を高めるために、高周波数のテラヘルツ波を発振できる超伝導体を利用したテラヘルツ帯域電磁波発振素子及びテラヘルツ帯域電磁波発振装置が切に求められている。
 本発明は上記問題に鑑みてなされたものであり、発生する熱を効率的に排熱することができるテラヘルツ帯域電磁波発振素子およびテラヘルツ帯域電磁波発振装置を提供することを目的とする。
 本発明者らは、鋭意検討の結果、所定の形状を有し、その構造下部に超伝導体からなる基板を有さない単独の超伝導体に、電圧を印加することで、高周波数のテラヘルツ波が発振することを見出した。
 すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。
(1)本発明の一態様に係るテラヘルツ帯域電磁波発振素子は、テラヘルツ帯域電磁波を発振する独立したテラヘルツ波発振部を備え、前記テラヘルツ波発振部は、交流ジョセフソン効果を利用して複数のジョセフソン接合が協調して振動することによりテラヘルツ帯域電磁波を発振できる多重積層型ジョセフソン接合を有し、かつ、前記多重積層型ジョセフソン接合の積層面と平行な切断面が円形である円板状の超伝導体からなる。
(2)上記(1)に記載のテラヘルツ帯域電磁波発振素子において、前記超伝導体の両端面に接続された電極をさらに備えてもよい。
(3)上記(2)に記載のテラヘルツ帯域電磁波発振素子において、前記電極のいずれかを支持する基板をさらに有し、前記基板の熱伝導率が、前記超伝導体の熱伝導率よりも高くてもよい。
(4)上記(1)に記載のテラヘルツ帯域電磁波発振素子において、前記基材はサファイア、ダイヤモンドまたは銅のいずれかであってもよい。
(5)上記(1)~(4)のいずれか一つに記載のテラヘルツ帯域電磁波発振素子において、前記超伝導体が前記電極の間に複数配置されていてもよい。
(6)本発明の一態様に係るテラヘルツ帯域電磁波発振装置は、上記(1)~(5)のいずれか一つに記載のテラヘルツ帯域電磁波発振素子と、前記電極に電圧を印加する電圧印加手段とを備える。
 本発明の一態様にかかるテラヘルツ帯域電磁波発振素子およびテラヘルツ帯域電磁波発振装置は、2THz以上の周波数のテラヘルツ波を発振できる。
本発明の一態様に係るテラヘルツ帯域電磁波発振素子の斜視模式図である。 超伝導体の単結晶の結晶構造を模式的に示した図である。 従来のテラヘルツ帯域電磁波発振素子の一例であり、非特許文献1に記載されたテラヘルツ帯域電磁波発振素子の斜視模式図である。 本発明の他の態様に係るテラヘルツ波発振素子の斜視模式図であり、超伝導体が複数配列した構造を模式的に図示した斜視模式図である。 本発明の一態様に係るテラヘルツ波発振素子の斜視模式図であり、電極をホーンアンテナ状に加工した場合の断面模式図である。 本発明の他の態様に係るテラヘルツ帯域電磁波発振素子の斜視模式図である。 本発明の一態様に係るテラヘルツ帯域電磁波発振装置を模式的に示した斜視模式図である。 実施例1の発振スペクトルを示す。
 以下、テラヘルツ帯域電磁波発振素子およびテラヘルツ帯域電磁波発振装置について、図を適宜参照しながら詳細に説明する。
 以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
(テラヘルツ帯域電磁波発振素子)
 図1は、本実施形態にかかるテラヘルツ帯域電磁波発振素子の斜視模式図である。図1に示すように、本実施形態にかかるテラヘルツ帯域電磁波発振装置10は、テラヘルツ帯域電磁波を発振するテラヘルツ波発振部が円板状の超伝導体1からなる。
 超伝導体1の両端には、電極2が接続されている。図1では、超伝導体1に対して電極2を大きく図示しているが、この場合に限られない。例えば、点接点でもよい。また図1では、発明の構成を理解しやすくするために、一方の電極を離して図示しているが、実際には超伝導体1の端面に接続されている。超伝導体1の周囲は、熱伝導性の高いサーマルグリース等で覆ってもよい。
 超伝導体1は、超伝導層と絶縁層の積層構造を有する。すなわち、超伝導体1は、ジョセフソン接合を積層した構造をしている。図2は、超伝導体1の一例であるBiSrCaCu8+δ(Bi2212)の結晶構造である。図2において、三角錐はCuとOで形成されており、白丸はSr、黒丸は酸素、斜線が付された丸はCa、点状の模様が付された丸はBiを示す。図2の場合、CuO層が超伝導層1aであり、Bi層が絶縁層1bとなる。すなわち、超伝導体1は、超伝導層1a/絶縁層1b/超伝導層1aが原子レベルで積層した構造である。
 各超伝導層1a同士は、ジョセフソン効果により絶縁層1bを介しても超伝導電流が流れる。Bi2212の場合、1μmの単結晶中に約670接合のジョセフソン接合が形成されている。
 図2では、単結晶1の一例としてBi2212を提示したが、超伝導体1は交流ジョセフソン効果を生じることができれば、当該結晶構造に限られない。例えば、結晶構造の異なるBiSrCaCu10+δ(Bi2223)等を用いることもできる。
 超伝導体1は、ジョセフソン接合の積層面と垂直な方向に電圧が印加されると、テラヘルツ波を発振する。テラヘルツ波の発振の原理を以下に簡単に説明する。
 超伝導体1のジョセフソン接合の積層面と垂直な方向に電圧が印加すると、交流ジョセフソン効果が生じる。交流ジョセフソン効果は、極めて薄い絶縁層を介した二つの超伝導体の間に一定の電圧Vを印加すると、交流電流が流れる現象のことを言う。
 このときの交流電流の振動数fは以下の式(1)で表示することができる。eは電気素量、hはプランク定数である。
 f=(2e/h)V ・・・(1)
 電気素量およびプランク定数は一定であるため、式(1)で示すように、交流電流の振動数fは、ジョセフソン接合一層当りに印加した電圧Vに比例する。このように、単結晶1内に電流が流れることで、電磁波(以下、「非共振のテラヘルツ波」ということがある)が発生する。この電磁波がテラヘルツ波であり、超伝導体1からなるテラヘルツ波発振部から外部に放射される。
 ここで発振されるテラヘルツ波は、それほど強度が強くない。強度の強いテラヘルツ波は、超伝導体1の幾何学的構造により生じる固有周波数fと共振することで得られる。
 固有周波数fとは、物質の形状およびサイズによって影響を受ける周波数である。ある物質が閉じられた領域を有すると、その物質内では、境界条件に基づいた定在波が形成される。この定在波の周波数が固有周波数fである。
 例えば、図1に示すように、超伝導体1が円板状である場合、超伝導体1内に定在波が形成される。形状が円板の場合、固有周波数fは、以下で表される。
 f=χ11/2πna・・・(2)
 ここで、基本波の場合χ11は1.841であり、cは真空中の光速、nは屈折率、aは円板の半径である。
 この固有周波数fと交流ジョセフソン効果に伴う振動電流の周波数fが一致すると、積層するジョセフソン接合間で振動電流が位相を揃えて(コヒーレントに)流れ、共振が生じる。その結果、強い強度ピークを有するテラヘルツ波(以下、「共振のテラヘルツ波」ということがある)が超伝導体1からなるテラヘルツ波発振部から外部に放射される。
 テラヘルツ波発振部は、円板状の超伝導体1からなる。従来のテラヘルツ帯域電磁波発振素子では、円板状の超伝導体に加えて、その下方に基板上の超伝導体が設けられていることが一般的であり、この点が異なる。
 図3は、従来のテラヘルツ帯域電磁波発振素子の一例であり、非特許文献1に記載されたテラヘルツ帯域電磁波発振素子の斜視模式図である。図3に示すように、従来のテラヘルツ帯域電磁波発振素子50は、大きな超伝導の単結晶を集束イオンビーム(FIB,Focused Ion Beam)で削るように加工することで形成されている。すなわち、加工によってメサ部51の下方に形成された部分が基板52として機能する。換言すると、メサ部51と、メサ部51の下方に設けられた基板52は、同一の超伝導体からなり一体化している。
 従来のテラヘルツ帯域電磁波発振素子50に電圧が印加されると、同一の超伝導体の単結晶からなるメサ部51と基板52のいずれにも交流電流が生じる。すなわち、テラヘルツ波はメサ部51及び基板52で生じる。実際には、固有振動数fを決める主要因はメサ部51であるため、共振のテラヘルツ波はメサ部51から発振されるが、メサ部51は基板52と一体化され独立しておらず、その境界は明確ではない。
 これに対し、本実施形態に係るテラヘルツ波発振部は、円板状の超伝導体1からなる。
超伝導体1は、その両端に電極2が接続されているが、超伝導体1と電極2は異なる物質である。このように、テラヘルツ波発振部が円板上の超伝導体1のみからなることを、本明細書においては「単独」と表現することがある。
 超伝導体1が単独で存在すると、2つの利点がある。
 まず一つ目の利点は、固有振動数fの値が明確になるということである。テラヘルツ帯域電磁波発振素子50のように、メサ部51と基板52が一体化していると、メサ部51と基板52の間の境界が不明確になる。そのため、閉じられた空間内に形成される定在波の波形も不明確になる。その結果、固有振動数fの波長のピークがブロードになる。これに対し、超伝導体1が単独で存在すると、超伝導体1は明確な閉空間を形成するため、固有振動数fの値が明確になる。したがって、より高強度のテラヘルツ波を発振しやすくなる。
 二つ目の利点は、超伝導体1の温度が高くなることが抑制されることである。式(1)に示すように、高い周波数領域のテラヘルツ波を発振するためには、超伝導体1に印加する電圧を高める必要がある。しかしながら、超伝導体1に印加する電圧を高めればそれだけ、超伝導体1が発熱する。超伝導体が発熱すると、超伝導層と絶縁層の積層構造を有する超伝導体の絶縁層の絶縁性が低下する。交流ジョセフソン効果は、極めて薄い絶縁層を介した二つの超伝導体の間に一定の電圧を印加すると、交流電流が流れる現象である。そのため、絶縁層の絶縁性が低下すると、所望の交流ジョセフソン効果を得ることができず、テラヘルツ波を発振することができない。
 テラヘルツ帯域電磁波発振素子50のように、メサ部51と基板52が一体化していると、基板52が排熱を阻害する。基板52は超伝導体からなるため、熱伝導性が極めて悪い。これに対し、本実施形態における超伝導体1のように単独で存在すると、超伝導体1の周囲全方向に排熱することができ、超伝導体1の温度が高くなることを抑制できる。その結果、高電圧を印加することができ、式(1)に示すように高い周波数領域のテラヘルツ波を発振することができる。
 次いで、超伝導体1の形状について説明する。
 超伝導体1は、円板状である。ここで円板状とは、その多重積層型ジョセフソン接合の積層面と平行な切断面が円形であるものを意味し、円柱も含む。超伝導体1が円板状かつ単独で存在することで、2THz以上のテラヘルツ波を発振することができる。
 2THz以上のテラヘルツ波は、超伝導体1の形状を円板状にした際のみに確認される。この理由は明確ではないが、現時点では超伝導体1の形状を多重積層型ジョセフソン接合の積層面と平行な切断面が矩形である直方体状とした際には確認できていない。
 また図3で示すような下方に基板を有するテラヘルツ帯域電磁波発振素子を用いた場合に、そのメサ部の形状を直方体状から円板状に変更することで、発振するテラヘルツ波の波長が高周波数になるという訳でもない。
 すなわち、超伝導体1を円板状かつ単独とすることで、2THz以上のテラヘルツ波を発振することができることは、本発明者らが種々の検討の結果、初めて見出したものである。
 超伝導体1の高さは、1μm~10μmであることが好ましい。超伝導体1の高さをこの範囲にすることで、超伝導体1が高温になることを避けつつ、高強度のテラヘルツ波を発振できる。超伝導体1の高さとは、多重積層型ジョセフソン接合の積層面に対して垂直な方向の超伝導体1の厚みを意味する。
 超伝導体1の高さは、超伝導体1内に形成されるジョセフソン接合の数Nとして換算される。
 例えば、超伝導体1の高さをh、超伝導体の結晶のc軸長をhとすると以下の関係が成り立つ。
 N=h/(h/2)・・・(3)
 ジョセフソン接合の数Nが増えれば、それだけ発振するテラヘルツ波を高強度になる。
超伝導体1の高さが十分であれば、より高強度のテラヘルツ波を発振することができる。また1μm以下であると、薄すぎて取り扱いが困難になる。
 式(1)に示す電圧Vは、あくまでジョセフソン接合一層当りに印加する電圧である。そのため、実際に超伝導体1全体に印加する電圧Vは、ジョセフソン接合の数がNであれば、V=N×V・・・(4)となる。すなわち、超伝導体1の高さが高くなると、それだけジョセフソン接合の数Nが増加し、超伝導体1全体に印加する電圧Vが非常に大きくなる。その結果、超伝導体1が発熱しやすくなる。例えば、長期間の使用における絶縁層1bの絶縁性の劣化を避ける観点から、超伝導体1の高さは10μm以下であることが好ましい。
 円板状の超伝導体1の直径は、適宜設計できる。ここで、円板状の超伝導体1の直径とは、多重積層型ジョセフソン接合の積層面と平行な切断面における直径を意味する。切断面の直径が変化する場合は、それらの平均値を意味する。
 式(2)に示すように、超伝導体1が円板状である場合の固有振動数fは、その円板の直径に影響を受ける。円板状かつ単独の超伝導体1による2THz以上の周波数のテラヘルツ波は、非共振のテラヘルツ波であるか、共振のテラヘルツ波であるかは明確になっていない。そのため、円板状の超伝導体1の直径が、式(2)から求められる値であることは必ずしも必要ではない。しかしながら、円板状の超伝導体1の直径をこの範囲とすることで、超伝導体1における交流電流の振動数fと共振しやすくなり、より高強度のテラヘルツ波を得やすくなる。
 円板状の超伝導体1において、その上底部と下底部の幅は一致していることが好ましい。超伝導体1の上底部と下底部の幅は一致していることは、すなわちその端面(側面)が基板に垂直となっていることを意味する。そのため、超伝導体1内で形成される定在波が特定の周波数のみとなる。この一定の固有振周波数fと交流ジョセフソン効果に伴う振動電流の周波数fが一致すると、より単色のテラヘルツ波を得ることができる。積層したジョセフソン接合同士が共振してテラヘルツ波が発振するため、その端面が基板に垂直となっていれば、特定の波長で高い強度を示す、より単色のテラヘルツ波を得ることができる。
 超伝導体は、1つである必要はない。例えば、図4は、本発明の他の態様に係るテラヘルツ波発振素子の斜視模式図である。図4に示すテラヘルツ波発振素子20は、2つの電極22の間に、複数の超伝導体21が配置されている。ここで、それぞれの超伝導体21は、電圧が印加される方向を同一にして配置されている。
 超電導体21が複数あると、テラヘルツ波の発振源が複数となるため、テラヘルツ波の発振強度を高めることができる。
 また超伝導体21が、所定の間隔で規則的に並置されていることがより好ましい。超伝導体21を所定の間隔で規則的に並置すると、複数の超伝導体21が協調して動作することができ、テラヘルツ波の発振強度を飛躍的に高めることができる。
 このとき得られる発振強度は、複数の超伝導体21の協調動作に影響を受ける。そのため、超伝導体21の個数の2乗に比例する。また一つの超伝導体21内に積層されたジョセフソン接合同士も同様に協調動作するため、発振強度は積層数の2乗にも比例する。すなわち、M層積層されて形成された単結晶が、N個所定の間隔で並置されていると、M×Nの発振強度を実現することができ、極めて強いテラヘルツ波の発振を実現することができる。所定の間隔は、それぞれの超伝導体21が共振する間隔であり、発振する周波数から算出される。
 このような複数配列は、従来のテラヘルツ帯域電磁波発振素子50でも原理的には実現可能である。しかしながら、従来のテラヘルツ帯域電磁波発振素子50では、それぞれの超伝導体での発熱による温度上昇が非常に大きく、超伝導体同士により熱的な相互干渉が生じたり、各超伝導体に印加される電圧が減少する等の問題が発現する。そのため、現実に実現することは難しい。これに対し、超伝導体21を単独で用いることで、超伝導体21の集積密度を高めることができる。すなわち、協調動作によるテラヘルツ波の発振をより高強度とすることができる。
 図4では、2つの電極22の間に、複数の超伝導体21を配置したが、この場合に限られない。超伝導体21のそれぞれに電極を接続してもよい。ただし、素子構造を簡素化する点からは、図4の構成であることが好ましい。
 図1に戻り、電極2は、超伝導体1の両端面に接続される。超伝導体1は円板状であるため、両端面とは平面視円形の2つの端面を意味する。すなわち、電極2は、多重ジョセフソン接合を有する超伝導体1の積層面と垂直な方向に存在する。
 電極2は、超伝導体1の熱伝導率よりも高い熱伝導率を有することが好ましい。電極2がある程度の厚さを有する場合、電極2は超伝導体1の排熱に大きく寄与する。そのため、電極2の熱伝導率を、超伝導体1よりも高くすることで、超伝導体1が高温になることを抑制できる。電極2が非常に薄い場合、電極2は超伝導体1の排熱に大きく寄与することはないが、排熱の観点から超伝導体1の熱伝導率よりも高い熱伝導率を有していることが適切である。
 電極2は、高い導電性を有することが好ましい。高い熱伝導率及び高い導電性を有する材料としては、銅(Cu),金(Au)、銀(Ag)、アルミニウム(Al)等を用いることができる。
 電極2は超伝導体1に接続されていればよく、その形状は問わず、使用の態様に合せて適宜変更することができる。超伝導体1自体は、ジョセフソン電流によって電荷を運ぶことができるため、いずれかで接点を有していれば、超伝導体1に電圧を印加することができる。
 ジョセフソン接合の積層面に均一に電圧を印加させる観点からは、電極2は超伝導体1の端面全面に形成されていることが好ましい。一方、電極2が金属からなる場合は、電極2はテラヘルツ波を完全反射する。そのため、電極がテラヘルツ波の放射を阻害しない様に、電極2は超伝導体1の一部に形成されていてもよい。
 また図5に示すように、電極32をホーンアンテナ状に加工してもよい。図5は、電極32をホーンアンテナ状に加工したテラヘルツ帯域電磁波発振素子30の断面模式図である。ここで、ホーンアンテナ状とは、電極32と超伝導体31が接合していない非接合部分において、電極32間の距離が超伝導体31から離れるに従い広くなる構造を意味する。換言すると、テラヘルツ波の発振源から波が徐々に広がるように形成された構造である。図5では、超伝導体31に対して上方の電極32を加工したが、下方の電極32にも同様な加工を施してもよい。
 電極32をこのような形状に加工することで、電極32間につくられる空間と自由空間とのインピーダンスの整合性が高まる。そのため、開口端における電磁波の反射が抑制され、かつ高い指向性が付与される。つまり、効率的に発生したテラヘルツ波を取り出すことができる。
 電極の構造はホーンアンテナ状には限らない。例えば、曲面側が超伝導体と接合された半球レンズ状でもよい。半球レンズ状とは、必ずしも「半球」には限られず、電極と超伝導体が接合していない非接合部分において、電極間の距離が超伝導体から離れるに従い広くなるような曲面が形成されていればよい。電極を半球レンズ状に加工することで、発生する熱を効率的に排熱すると共に、電波を効率的に集光することができる。またホーンアンテナ状に加工した場合と同様に、インピーダンスの整合性が高まる。
 電極2は、超伝導体1に対して、半田、銀ペースト等、従来公知の方法で接合できる。また電極2が薄い場合は、超伝導体1に金属膜を被覆し、この金属膜を電極として用いてもよい。
 図6に示すように、電極2のいずれかを支持する基板3を設けてもよい。図6は、本発明の他の態様に係るテラヘルツ帯域電磁波発振素子40の斜視模式図である。超伝導体1は、極めて薄い。電極2はその態様により厚みが異なるが、電極2をスパッタ等で形成した場合は、その厚みは極めて薄くなる。そのため、電極2が薄い場合、電極2及び超伝導体1を支持する基板3を設けることで、テラヘルツ帯域電磁波発振素子40のハンドリング性を高めることができる。
 基板3は、上述のようなホーンアンテナ状、半球レンズ状に加工してもよい。基板3をこのように加工することで、発生する熱の排熱性、電波の集光性、インピーダンスの整合性が高まる。
 基板3は、電極2を介して超伝導体1に接続されているため、超伝導体1より熱伝導率が高いことが好ましい。基板3にはサファイア、ダイヤモンドまたは銅、あるいはそれらと同等以上に排熱効果の高い他のもの等を用いることが好ましい。これらの物質は、テラヘルツ帯域電磁波発振素子が駆動する窒素の沸点付近の温度において、高い熱伝導性を示す。そのため、超伝導体1の排熱を基板3側から効率的にサポートできる。
 上述のように、本発明のテラヘルツ帯域電磁波発振素子は、単独かつ円板状の超伝導体を用いることで、2THz以上の周波数のテラヘルツ波を発振できる。
(テラヘルツ帯域電磁波発振装置)
 図7は、本発明の一態様にかかるテラヘルツ帯域電磁波発振装置を模式的に示した斜視模式図である。本発明の一態様にかかるテラヘルツ帯域電磁波発振装置100は、上記のテラヘルツ帯域電磁波発振素子10,20,30,40と、多重積層型ジョセフソン接合を有する超伝導体1における積層面と垂直な方向に電圧を印加する電圧印加手段110とを備える。テラヘルツ帯域電磁波発振素子は、図1、図4、図5、図6のいずれを用いてもよいが、以下、図1のテラヘルツ帯域電磁波発振素子10を基に説明する。
 電圧印加手段110から供給された電圧は、電極2に印加される。電圧印加手段110は、電極2と電気的に接続されていればよく、基材3が導通を有する場合は電圧印加手段110と電極2との電気的な接続を、基材3を介して行ってもよい。
 電圧印加手段110と電極2を電気的に接続することにより超伝導体1の積層面に垂直な方向に電圧を印加することができる。超伝導体1の積層面に垂直な方向には、超伝導層1aと絶縁層1bの積層構造が形成されているため、電圧が印加されることで交流ジョセフソン効果が生じる。この印加された電圧に比例する振動電流の周波数と、超伝導体1の固有振動数が一致すると積層するジョセフソン接合間で共振が生じ、振動電流が位相を揃えて(コヒーレントに)流れることで、テラヘルツ波が外部に発振される。
 またテラヘルツ帯域電磁波発振装置100は、図視略する冷却装置をさらに備えることが好ましい。冷却装置は、テラヘルツ帯域電磁波発振素子10を冷却できるものであれば、特に限定されない。本実施形態では、超伝導体1を効率的に冷却できるため、冷却媒体として液体ヘリウムを用いずに液体窒素とすることもできる。液体へリウムに対し、液体窒素は扱いが簡便である。そのため、冷却装置も安価で小型のものを用いることができる。
 このテラヘルツ帯域電磁波発振装置100は、上述のテラヘルツ帯域電磁波発振素子10を備えるため、効率的な排熱を実現することができ、2THz以上のテラヘルツ波を発振することができる。
 電圧印加手段110は特に限定されるものでなく、超伝導体1に直流を流すことができるものであればよい。
 以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 以下、実施例により上述の実施形態の効果をより明らかなものとする。実施形態は以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
 (実施例)
 直径80μm、厚み約3.5μmのBi2212からなる円板状の超伝導体を準備した。この超伝導体に異なる3つの電圧をそれぞれ印加した。3つの電圧は、原理的に高周波数のテラヘルツ波を発振するのに十分な5V程度とした。3つの電圧は、バイアスポイントA,B,Cであり、A<B<Cの関係である。この電圧には、接触抵抗等の種々の寄与が加わっている。また厚さ方向に積層されたジョセフソン接合の全てがこのバイアスポイントによって動作しているとは限らない。そして温度15Kで得られた発振スペクトルを測定した。電圧無印加時のスペクトルをバックグラウンド(B.G.)とした。
 図8は、実施例1の発振スペクトルを示す。縦軸は測定強度を示し、横軸は波数を示す。発生したテラヘルツ波は、日本分光社製のFARIS-1を用いて計測した。図8に示すように、約80cm-1付近にシグナルが確認される。波数を約30倍すれば、発振する周波数に換算することができる。すなわち、このシグナルは、2.4THz付近を指す。このように、円板状かつ単独の超伝導体に電圧を印加すると、2.0THz以上でテラヘルツ波が発振することが確認できた。また印加する電圧を大きくするにつれて、ピーク位置が大きくなっている。これは式(1)の関係を示している。
 (比較例)
 比較例は、図3の構成のテラヘルツ帯域電磁波発振素子を用いて、発振スペクトルのピークを確認した。比較例と実施例の構造上の違いは、超伝導体が単独で形成されているかどうかの違いのみである。
 その結果、0.54THz程度の周波数のテラヘルツ波が確認された。この際の発振出力は、マイクロワットレベル以下の弱いものであった。
1,21…超伝導体、1a…超伝導層、1b…絶縁層、2,22…電極、10,20,30,40,50…テラヘルツ帯域電磁波発振素子、51…メサ部、52…基板、100…テラヘルツ帯域電磁波発振装置、110…電圧印加手段

Claims (6)

  1.  テラヘルツ帯域電磁波を発振する独立したテラヘルツ波発振部を備え、
     前記テラヘルツ波発振部は、交流ジョセフソン効果を利用して複数のジョセフソン接合が協調して振動することによりテラヘルツ帯域電磁波を発振できる多重積層型ジョセフソン接合を有し、かつ、前記多重積層型ジョセフソン接合の積層面と平行な切断面が円形である円板状の超伝導体からなる、テラヘルツ帯域電磁波発振素子。
  2.  前記超伝導体の両端面に接続された電極をさらに備える請求項1に記載のテラヘルツ帯域電磁波発振素子。
  3.  前記電極のいずれかを支持する基板をさらに有し、
     前記基板の熱伝導率が、前記超伝導体の熱伝導率よりも高い請求項2に記載のテラヘルツ帯域電磁波発振素子。
  4.  前記基板がサファイア、ダイヤモンドまたは銅のいずれかである請求項3に記載のテラヘルツ帯域電磁波発振素子。
  5.  前記超伝導体が、前記電極の間に複数配置されている請求項2に記載のテラヘルツ帯域電磁波発振素子。
  6.  請求項2に記載のテラヘルツ帯域電磁波発振素子と、
     前記電極に電圧を印加する電圧印加手段と、を備えるテラヘルツ帯域電磁波発振装置。
PCT/JP2016/068107 2015-06-17 2016-06-17 テラヘルツ帯域電磁波発振素子およびテラヘルツ帯域電磁波発振装置 WO2016204273A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/737,086 US20180175273A1 (en) 2015-06-17 2016-06-17 Terahertz-band electromagnetic wave oscillation element and terahertzband electromagnetic wave oscillation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015122057A JP2017010983A (ja) 2015-06-17 2015-06-17 テラヘルツ帯域電磁波発振素子およびテラヘルツ帯域電磁波発振装置
JP2015-122057 2015-06-17

Publications (1)

Publication Number Publication Date
WO2016204273A1 true WO2016204273A1 (ja) 2016-12-22

Family

ID=57546138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068107 WO2016204273A1 (ja) 2015-06-17 2016-06-17 テラヘルツ帯域電磁波発振素子およびテラヘルツ帯域電磁波発振装置

Country Status (3)

Country Link
US (1) US20180175273A1 (ja)
JP (1) JP2017010983A (ja)
WO (1) WO2016204273A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6971729B2 (ja) * 2017-09-08 2021-11-24 東芝テック株式会社 検出装置及び検出方法
US10804671B1 (en) * 2019-01-10 2020-10-13 Magtera, Inc. Terahertz magnon generator comprising plurality of single terahertz magnon lasers
CN113794086B (zh) * 2021-09-14 2022-12-06 中国科学院物理研究所 基于金刚石薄膜的太赫兹产生装置及其产生方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514957A (ja) * 1996-07-23 2000-11-07 オクセル・オクサイド・エレクトロニクス・テクノロジー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ジョセフソン接合アレーデバイスとその製造方法
JP2005251863A (ja) * 2004-03-02 2005-09-15 Research Organization For Information Science & Technology 連続テラヘルツ電磁波発生装置及び方法
JP2010027812A (ja) * 2008-07-17 2010-02-04 Tokyo Instruments Inc ジョセフソンスターエミッタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514957A (ja) * 1996-07-23 2000-11-07 オクセル・オクサイド・エレクトロニクス・テクノロジー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ジョセフソン接合アレーデバイスとその製造方法
JP2005251863A (ja) * 2004-03-02 2005-09-15 Research Organization For Information Science & Technology 連続テラヘルツ電磁波発生装置及び方法
JP2010027812A (ja) * 2008-07-17 2010-02-04 Tokyo Instruments Inc ジョセフソンスターエミッタ

Also Published As

Publication number Publication date
JP2017010983A (ja) 2017-01-12
US20180175273A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
Liu et al. Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers
Kashiwagi et al. Efficient fabrication of intrinsic-Josephson-junction terahertz oscillators with greatly reduced self-heating effects
Kleiner et al. Terahertz emission from Bi2Sr2CaCu2O8+ x intrinsic Josephson junction stacks
Delfanazari et al. Tunable terahertz emission from the intrinsic Josephson junctions in acute isosceles triangular Bi 2 Sr 2 CaCu 2 O 8+ δ mesas
US7610071B2 (en) Tunable, superconducting, surface-emitting teraherz source
WO2016204273A1 (ja) テラヘルツ帯域電磁波発振素子およびテラヘルツ帯域電磁波発振装置
US20110062423A1 (en) Tunable terahertz radiation source
JP6366430B2 (ja) テラヘルツ帯域電磁波発振素子およびテラヘルツ帯域電磁波発振装置
Ozyuzer et al. Terahertz wave emission from intrinsic Josephson junctions in high-Tc superconductors
JP2013236326A (ja) 発振素子、受信素子、及び測定装置
Delfanazari et al. Terahertz oscillating devices based upon the intrinsic Josephson junctions in a high temperature superconductor
US8026487B2 (en) Superconducting source for tunable coherent terahertz radiation
JP5229859B2 (ja) テラヘルツ帯電磁波発振装置及びその製造方法
Tang et al. Continuous-wave operation of electrically driven single mode microlaser
JP6050318B2 (ja) テラヘルツ領域における波を放射するためのレーザー装置
Klemm et al. Terahertz emission from thermally managed square intrinsic Josephson junction microstrip antennas
JP2006210585A (ja) 積層ジョセフソン接合を用いた新型テラヘルツ発振器
JP2017112274A (ja) テラヘルツ帯電磁波発振装置
Kihlstrom et al. Powerful Terahertz Emission from a Bi 2 Sr 2 Ca Cu 2 O 8+ δ Mesa Operating Above 77 K
Asai et al. Emission of circularly polarized terahertz wave from inhomogeneous intrinsic Josephson junctions
Tsujimoto et al. Engineering and characterization of a packaged high-Tc superconducting terahertz source module
JP2021177531A (ja) 高温超伝導テラヘルツ光源
JP7290865B2 (ja) 構造体、テラヘルツ帯域電磁波発振素子及びテラヘルツ帯域電磁波発振装置
JP7290864B2 (ja) 構造体、テラヘルツ帯域電磁波発振素子及びテラヘルツ帯域電磁波発振素子の動作方法
JP5445894B2 (ja) 指向性を有するテラヘルツ帯域電磁波発振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811747

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15737086

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811747

Country of ref document: EP

Kind code of ref document: A1