WO2016204267A1 - Pattern drawing device and pattern drawing method - Google Patents

Pattern drawing device and pattern drawing method Download PDF

Info

Publication number
WO2016204267A1
WO2016204267A1 PCT/JP2016/068075 JP2016068075W WO2016204267A1 WO 2016204267 A1 WO2016204267 A1 WO 2016204267A1 JP 2016068075 W JP2016068075 W JP 2016068075W WO 2016204267 A1 WO2016204267 A1 WO 2016204267A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
polygon mirror
optical system
line
pattern
Prior art date
Application number
PCT/JP2016/068075
Other languages
French (fr)
Japanese (ja)
Inventor
小宮山弘樹
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN202010601959.6A priority Critical patent/CN111665687B/en
Priority to CN201680035608.5A priority patent/CN107735715B/en
Priority to JP2017524853A priority patent/JP6627875B2/en
Priority to CN202010601953.9A priority patent/CN111665686B/en
Priority to KR1020237042530A priority patent/KR20230173214A/en
Priority to KR1020177036155A priority patent/KR102680203B1/en
Publication of WO2016204267A1 publication Critical patent/WO2016204267A1/en
Priority to HK18103077.0A priority patent/HK1243772A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/113Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors

Definitions

  • the present invention relates to a pattern drawing apparatus and a pattern drawing method for drawing a pattern by scanning spot light of a beam irradiated on an irradiated object.
  • a laser scanning device color laser printer
  • draws an image on a photosensitive member by scanning a laser beam a plurality of laser beams can be obtained using a single polygon mirror.
  • a technique for scanning each image and drawing an image along a plurality of scan lines is known.
  • the size (diameter) of the spot light is a fraction of the minimum line width.
  • a beam from a light source device is condensed on a spot on an irradiated body, the condensed spot light is main-scanned along a predetermined scanning line, and the irradiated body is A pattern drawing device that draws a predetermined pattern on the irradiated object by performing sub-scanning, the rotating polygon mirror rotating around a rotation axis for the main scanning, and a first from the light source device And a second light beam from the light source device to the rotary polygon mirror from a second direction different from the first direction.
  • the first projection optical system and the second projection optical system are arranged so as to be in the same position with respect to the direction of, and to be shifted in the main scanning direction.
  • spot light that is intensity-modulated based on drawing data is emitted along the longitudinal direction of the irradiated object while sub-scanning the irradiated object that is a flexible long sheet substrate in the longitudinal direction.
  • a pattern drawing apparatus that draws a pattern according to the drawing data on the irradiated object by performing main scanning along a scanning line extending in a width direction orthogonal to the direction, and a rotation axis for the main scanning
  • a rotary polygon mirror that rotates around the first polygon, a first light guide optical system that projects the first beam from the first direction toward the rotary polygon mirror, and a second beam that is different from the first direction.
  • a second light guide optical system that projects toward the rotary polygon mirror from the direction, and the first beam reflected by the rotary polygon mirror is collected and projected onto the first scanning line as a first spot light
  • the first projection optical system that is reflected by the rotary polygon mirror A second projection optical system that condenses the second beam and projects it as a second spot light onto the second scan line, and each scan of the first scan line and the second scan line
  • the first projection optical is set such that the length is set to be the same, and the first scanning line and the second scanning line are set separately in the main scanning direction at an interval equal to or shorter than the scanning length.
  • a system and the second projection optical system were arranged.
  • the beam from the light source device is condensed into a spot on the irradiated object, the condensed spot light is main-scanned along a predetermined scanning line, and the irradiated object is A pattern drawing method for drawing a predetermined pattern on the irradiated object by performing sub-scanning, and projecting a first beam from the light source device from a first direction toward a rotary polygon mirror;
  • the second beam from the light source device is projected from the second direction different from the first direction toward the rotary polygon mirror, and the first beam is incident on and reflected from a different reflection surface of the rotary polygon mirror.
  • the second beam are deflected and scanned by the rotation of the rotary polygon mirror, and the first beam reflected by the rotary polygon mirror is condensed to form the first spot light as the first spot light.
  • the line is at the same position on the irradiated body with respect to the sub-scanning direction and is shifted in the main-scanning direction.
  • spot light that is intensity-modulated based on drawing data is emitted along the longitudinal direction of the irradiated object while sub-scanning the irradiated object that is a flexible long sheet substrate in the longitudinal direction.
  • a pattern drawing method for drawing a pattern corresponding to the drawing data on the irradiated object by performing main scanning along a scanning line extending in a width direction orthogonal to the direction, wherein the first beam is directed in a first direction.
  • the rotating polygon mirror Projecting toward the rotating polygon mirror, projecting the second beam from the second direction different from the first direction toward the rotating polygon mirror, and incident on different reflecting surfaces of the rotating polygon mirror And deflecting and scanning the first beam and the second beam reflected by the rotation of the rotary polygon mirror and condensing the first beam reflected by the rotary polygon mirror First scan as spot light Projecting upward, and condensing the second beam reflected by the rotary polygon mirror and projecting it as a second spot light onto a second scanning line, the first scanning
  • the scanning lengths of the first scanning line and the second scanning line are set to be the same, and the first scanning line and the second scanning line are separated in the main scanning direction at an interval equal to or shorter than the scanning length. Is set.
  • a beam from a light source device is condensed onto a spot on the irradiated body while the irradiated body is conveyed in the sub-scanning direction, and the condensed spot light is converted into the sub-scanning.
  • a pattern drawing apparatus that draws a predetermined pattern on the irradiated object by performing main scanning along a scanning line orthogonal to the direction of the rotating polygon mirror that rotates around a predetermined rotation axis;
  • a first light guide optical system that projects a first beam from the light source device toward the rotary polygon mirror from a first direction, and a second direction from which the second beam from the light source device is different from the first direction
  • the second light guiding optical system that projects toward the rotating polygon mirror and the first beam reflected by the rotating polygon mirror are collected and projected onto the first scanning line as first spot light
  • the first projection optical system and the second reflected by the rotary polygon mirror A second projection optical system for condensing the beam and projecting it on the second scanning line as a second spot light, and the first scanning line and the second scanning line are the object to be irradiated.
  • the drawing unit includes a drawing unit capable of rotating by integrally holding the first projection optical system and the second projection optical system, and a rotation center axis of the drawing unit is a midpoint of the first scanning line And a midpoint of the second scanning line so as to pass perpendicularly to the irradiated object.
  • a beam from a light source device is condensed on a spot on the irradiated body while the irradiated body is conveyed in the sub-scanning direction, and the condensed spot light is converted into the sub-scanning.
  • a pattern drawing method for drawing a predetermined pattern on the irradiated object by performing main scanning along a scanning line extending in a direction orthogonal to the direction of the first beam, the first beam from the light source device being the first Projecting from the direction toward the rotating polygon mirror, projecting the second beam from the light source device from the second direction different from the first direction toward the rotating polygon mirror, and the rotating polygon mirror
  • the first beam and the second beam incident on and reflected from different reflecting surfaces are deflected and scanned by rotation of the rotating polygon mirror, and the first beam reflected by the rotating polygon mirror is Condensed first spot light Projecting onto the first scanning line, condensing the second beam reflected by the rotary polygon mirror and projecting it onto the second scanning line as a second spot light
  • the first scan line is perpendicular to the illuminating body and is centered on a rotation center axis set between the midpoint of the first scan line and the midpoint of the second scan line. Rotating the second scanning line.
  • the beam from the light source device is subjected to main scanning on the irradiated object, and the irradiated object and the beam are relatively sub-scanned in a direction crossing the main scanning.
  • a pattern drawing apparatus for drawing a pattern on the irradiated object, wherein the light deflecting member changes an angle of a reflecting surface for the main scanning, and the light deflection is projected onto the light deflecting member from a first direction.
  • a first projection optical system for projecting the first beam reflected by the reflecting surface of the member as a beam scanned in the main scanning direction on the irradiated body, and the light deflection from a second direction different from the first direction.
  • a second projection optical system that projects the second beam projected on the member and reflected by the reflecting surface of the light deflection member as a beam scanned in the main scanning direction on the irradiated body, and Formed by the main scan of the first beam
  • the first projection optical system and the second projection optical system so that the first scanning line and the second scanning line formed by the main scanning of the second beam are shifted in the main scanning direction. Arranged.
  • FIG. 2 is a configuration diagram of the drawing unit shown in FIG.
  • FIG. 6 is a configuration diagram of the drawing unit shown in FIG. 5 viewed from the + Zt direction side. It is the figure which looked at the optical path of the beam which permeate
  • FIG. 11A shows how the reflection direction of a beam incident in parallel to a reflection mirror as a reflection member changes when the entire drawing unit shown in FIG. 5 is rotated about a rotation center axis by a predetermined angle.
  • FIG. 11B is a diagram seen from the + Zt direction side, and FIG. 11B shows the change in the position of the beam on the reflecting mirror as the reflecting member when the entire drawing unit shown in FIG. 5 is rotated by a predetermined angle from the traveling direction side of the beam.
  • FIG. 11A shows how the reflection direction of a beam incident in parallel to a reflection mirror as a reflection member changes when the entire drawing unit shown in FIG. 5 is rotated about a rotation center axis by a predetermined angle.
  • FIG. 11B is a diagram seen from the + Zt direction side, and FIG. 11B shows the change in the position of the beam on the reflecting mirror as the reflecting member when the entire drawing unit shown in FIG. 5 is rotated by a predetermined angle from the traveling direction side of the beam.
  • FIG. 16A is a diagram when the beam scanning system using the polygon mirror in the fourth modification of the first embodiment is viewed from the + Zt direction side
  • FIG. 16B is the beam scanning system in FIG.
  • FIG. 16A viewed from the ⁇ Xt direction side. It is a figure of time. It is a figure which shows the structure of a part of drawing unit in 2nd Embodiment.
  • FIG. 10 is a configuration diagram of a drawing unit Ub according to a third embodiment viewed from the ⁇ Yt ( ⁇ Y) direction side.
  • FIG. 19 is a diagram of the + Zt side configuration viewed from the + Xt direction side from the polygon mirror in the drawing unit illustrated in FIG. 18.
  • FIG. 19 is a diagram illustrating the configuration on the ⁇ Zt direction side from the polygon mirror as viewed from the + Zt direction side in the drawing unit illustrated in FIG. 18.
  • FIG. 27 is a time chart showing an example of waveforms and timings of signals at various parts in the control system of FIG. 26.
  • a pattern drawing apparatus and a pattern drawing method according to an aspect of the present invention will be described in detail below with reference to the accompanying drawings by listing preferred embodiments.
  • the aspect of this invention is not limited to these embodiment, What added the various change or improvement is included. That is, the constituent elements described below include those that can be easily assumed by those skilled in the art and substantially the same elements, and the constituent elements described below can be appropriately combined. In addition, various omissions, substitutions, or changes of the components can be made without departing from the scope of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of a device manufacturing system 10 including an exposure apparatus EX that performs an exposure process on a substrate (irradiated body) P according to the first embodiment.
  • EX an exposure apparatus
  • FIG. 1 an XYZ orthogonal coordinate system in which the gravity direction is the Z direction is set, and the X direction, the Y direction, and the Z direction will be described according to the arrows shown in the drawings unless otherwise specified.
  • the device manufacturing system 10 includes, for example, a manufacturing line for manufacturing a flexible display as an electronic device, a film-like touch panel, a film-like color filter for a liquid crystal display panel, or a flexible wiring sheet on which electronic components are soldered. It is a built manufacturing system. The following description is based on the assumption that a flexible display is used as the electronic device. Examples of the flexible display include an organic EL display and a liquid crystal display.
  • the device manufacturing system 10 sends out a substrate P from a supply roll (not shown) in which a flexible sheet-like (film-like) substrate (sheet substrate) P is wound in a roll shape, and performs various processes on the delivered substrate P.
  • the substrate P has a belt-like shape in which the moving direction of the substrate P is a long direction (long) and the width direction is a short direction (short).
  • the substrate P sent from the supply roll is sequentially subjected to various processes by the process apparatus PR1, the exposure apparatus (pattern drawing apparatus, beam scanning apparatus) EX, the process apparatus PR2, and the like, and is taken up by the collection roll. .
  • the X direction is a direction (conveyance direction) from the process apparatus PR1 to the process apparatus PR2 through the exposure apparatus EX in the horizontal plane.
  • the Y direction is a direction orthogonal to the X direction in the horizontal plane, and is the width direction of the substrate P.
  • the Z direction is a direction (upward direction) orthogonal to the X direction and the Y direction, and is parallel to the direction in which gravity acts.
  • a resin film or a foil (foil) made of a metal or alloy such as stainless steel is used.
  • the material of the resin film include polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, and vinyl acetate resin. Among them, one containing at least one or more may be used. Further, the thickness and rigidity (Young's modulus) of the substrate P may be in a range that does not cause folds or irreversible wrinkles due to buckling in the substrate P when passing through the transport path of the exposure apparatus EX.
  • a film such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) having a thickness of about 25 ⁇ m to 200 ⁇ m is typical of a suitable sheet substrate.
  • the substrate P may receive heat in each process performed by the process apparatus PR1, the exposure apparatus EX, and the process apparatus PR2, it is preferable to select the substrate P made of a material that does not have a significantly large thermal expansion coefficient.
  • the thermal expansion coefficient can be suppressed by mixing an inorganic filler with a resin film.
  • the inorganic filler may be, for example, titanium oxide, zinc oxide, alumina, or silicon oxide.
  • the substrate P may be a single layer of ultrathin glass having a thickness of about 100 ⁇ m manufactured by a float process or the like, or a laminate in which the above resin film, foil, or the like is bonded to the ultrathin glass. It may be.
  • the flexibility of the substrate P means the property that the substrate P can be bent without being sheared or broken even when a force of its own weight is applied to the substrate P. .
  • flexibility includes a property of bending by a force of about its own weight.
  • the degree of flexibility varies depending on the material, size, and thickness of the substrate P, the layer structure formed on the substrate P, the environment such as temperature and humidity, and the like. In any case, when the substrate P is correctly wound around the conveyance direction changing members such as various conveyance rollers and rotating drums provided in the conveyance path in the device manufacturing system 10 according to the first embodiment, If the substrate P can be smoothly transported without being bent and creased or damaged (breaking or cracking), it can be said to be a flexible range.
  • the process apparatus PR1 performs a pre-process on the substrate P to be exposed by the exposure apparatus EX.
  • the process apparatus PR1 sends the substrate P that has been subjected to the previous process to the exposure apparatus EX.
  • the substrate P sent to the exposure apparatus EX by this pre-process is a substrate (photosensitive substrate) P having a photosensitive functional layer (photosensitive layer, photosensitive layer) formed on the surface thereof.
  • This photosensitive functional layer is applied as a solution on the substrate P and dried to form a layer (film).
  • a typical photosensitive functional layer is a photoresist, but a photosensitive silane coupling agent (SAM) that is modified in the lyophilicity of a portion irradiated with ultraviolet rays as a material that does not require development processing.
  • SAM photosensitive silane coupling agent
  • the pattern portion exposed to ultraviolet rays on the substrate P is modified from lyophobic to lyophilic.
  • conductive ink ink containing conductive nanoparticles such as silver or copper
  • a liquid containing a semiconductor material on the lyophilic portion, a thin film transistor (TFT) or the like
  • a pattern layer to be an electrode, a semiconductor, insulation, or a wiring for connection can be formed.
  • a photosensitive reducing agent used as the photosensitive functional layer
  • the plating reducing group is exposed to the pattern portion exposed to ultraviolet rays on the substrate P. Therefore, after exposure, the substrate P is immediately immersed in a plating solution containing palladium ions or the like for a certain period of time, so that a pattern layer of palladium is formed (deposited).
  • Such a plating process is an additive process.
  • the substrate P sent to the exposure apparatus EX has a base material of PET or the like.
  • PEN may be formed by depositing a metallic thin film such as aluminum (Al) or copper (Cu) on the entire surface or selectively, and further laminating a photoresist layer thereon.
  • the exposure apparatus EX is a direct drawing type exposure apparatus that does not use a mask, that is, a so-called raster scan type exposure apparatus.
  • the exposure apparatus EX irradiates the irradiated surface (photosensitive surface) of the substrate P supplied from the process apparatus PR1 with a light pattern corresponding to a predetermined pattern such as a display circuit or wiring.
  • the exposure apparatus EX converts the spot light SP of the exposure beam LB onto the substrate P (the irradiated surface of the substrate P while transporting the substrate P in the + X direction (sub-scanning direction).
  • the intensity of the spot light SP is modulated (ON / OFF) at a high speed according to the pattern data (drawing data) while one-dimensionally scanning (main scanning) in the predetermined scanning direction (Y direction).
  • a light pattern corresponding to a predetermined pattern such as a display circuit or wiring is drawn and exposed on the irradiated surface of the substrate P. That is, the spot light SP is relatively two-dimensionally scanned on the irradiated surface of the substrate P by the sub-scanning of the substrate P and the main scanning of the spot light SP, and a predetermined pattern is drawn and exposed on the substrate P.
  • the exposure apparatus EX repeatedly performs pattern exposure for electronic devices on the substrate P.
  • the pattern is exposed by the exposure apparatus EX.
  • a plurality of exposure regions W are provided at predetermined intervals along the longitudinal direction of the substrate P (see FIG. 2). Since an electronic device is formed in the exposure area W, the exposure area W is also an electronic device formation area. In addition, since an electronic device is comprised by the several pattern layer (layer in which the pattern was formed) being piled up, the pattern corresponding to each layer is exposed by the exposure apparatus EX.
  • the process apparatus PR2 performs a post-process process (for example, a plating process or a development / etching process) on the substrate P exposed by the exposure apparatus EX.
  • the pattern layer of the device is formed on the substrate P by the subsequent process.
  • the electronic device is configured by superimposing a plurality of pattern layers, one pattern layer is generated through at least each process of the device manufacturing system 10. Therefore, in order to generate an electronic device, each process of the device manufacturing system 10 as shown in FIG. 1 must be performed at least twice. Therefore, a pattern layer can be laminated
  • the collection roll that collects the substrate P formed in a state where the electronic devices are connected may be mounted on a dicing apparatus (not shown).
  • the dicing apparatus equipped with the collection roll divides the processed substrate P for each electronic device (dicing) to form a plurality of electronic devices.
  • the dimension in the width direction (short direction) is about 10 cm to 2 m
  • the dimension in the length direction (long direction) is 10 m or more.
  • substrate P is not limited to an above-described dimension.
  • the exposure apparatus EX is stored in the temperature control chamber ECV.
  • This temperature control chamber ECV keeps the inside at a predetermined temperature and a predetermined humidity, thereby suppressing a change in shape due to the temperature of the substrate P transported inside, and occurring along with the hygroscopicity and transport of the substrate P.
  • the humidity is set in consideration of static charge.
  • the temperature control chamber ECV is arranged on the installation surface E of the manufacturing factory via passive or active vibration isolation units SU1, SU2.
  • the anti-vibration units SU1 and SU2 reduce vibration from the installation surface E.
  • the installation surface E may be a surface on an installation base (pedestal) dedicated to the floor of the factory, or may be a floor.
  • the exposure apparatus EX includes at least a substrate transport mechanism 12, a light source device 14, an exposure head 16, a control device 18, and alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4).
  • the substrate transport mechanism 12 transports the substrate P transported from the process apparatus PR1 to the process apparatus PR2 at a predetermined speed.
  • the substrate transport mechanism 12 defines a transport path for the substrate P transported in the exposure apparatus EX.
  • the substrate transport mechanism 12 includes an edge position controller EPC, a driving roller R1, a tension adjusting roller RT1, a rotating drum (cylindrical drum stage) DR1, and a tension adjusting roller RT2 in order from the upstream side ( ⁇ X direction side) in the transport direction of the substrate P.
  • the edge position controller EPC adjusts the position in the width direction (the Y direction and the short direction of the substrate P) of the substrate P transported from the process apparatus PR1.
  • the edge position controller EPC has a position at the end (edge) in the width direction of the substrate P that is transported in a state where a predetermined tension is applied.
  • the position of the substrate P in the width direction is adjusted by moving the substrate P in the width direction so that it falls within this range (allowable range).
  • the edge position controller EPC includes a roller on which the substrate P is stretched in a state where a predetermined tension is applied, and an edge sensor (end detection unit) (not shown) that detects the position of the end (edge) in the width direction of the substrate P. And have.
  • the edge position controller EPC adjusts the position of the substrate P in the width direction by moving the roller of the edge position controller EPC in the Y direction based on the detection signal detected by the edge sensor.
  • the driving roller (nip roller) R1 rotates while holding both front and back surfaces of the substrate P conveyed from the edge position controller EPC, and conveys the substrate P toward the rotating drum DR1.
  • the edge position controller EPC adjusts the position of the substrate P in the width direction so that the longitudinal direction of the substrate P conveyed to the rotating drum DR1 is orthogonal to the central axis AXo1 of the rotating drum DR1.
  • the substrate P conveyed from the driving roller R1 is passed over the tension adjusting roller RT1, and then guided to the rotary drum DR1.
  • the rotating drum (first rotating drum) DR1 has a center axis (first center axis) AXo1 extending in the Y direction and extending in a direction intersecting with the direction in which gravity works, and a cylindrical outer peripheral surface having a constant radius from the center axis AXo1. And have.
  • the rotating drum DR1 follows the outer peripheral surface (circumferential surface) and supports a part of the substrate P by curving it into a cylindrical surface in the longitudinal direction while rotating about the central axis AXo1 to + X Transport in the direction.
  • the rotary drum DR1 supports the substrate P from the surface (back surface) opposite to the surface on which the photosensitive surface is formed, on the side opposite to the direction in which gravity acts (+ Z direction side).
  • the rotary drum DR1 supports an area (portion) on the substrate P on which the spot light of the beam from each of drawing units U1, U2, U5, and U6 of the exposure head 16 described later is projected on its circumferential surface.
  • shafts Sft1 supported by annular bearings are provided so that the rotary drum DR1 rotates around the central axis AXo1.
  • the shaft Sft1 rotates around the central axis AXo1 when a rotational torque from a rotation driving source (not shown) (for example, a motor or a speed reduction mechanism) controlled by the control device 18 is applied.
  • a rotation driving source for example, a motor or a speed reduction mechanism
  • a plane including the central axis AXo1 and parallel to the YZ plane is referred to as a central plane Poc1.
  • the substrate P unloaded from the rotary drum DR1 is passed over the tension adjustment roller RT2, and then guided to the rotary drum DR2 provided on the downstream side (+ X direction side) from the rotary drum DR1.
  • the rotating drum (second rotating drum) DR2 has the same configuration as the rotating drum DR1. That is, the rotating drum DR2 has a central axis (second central axis) AXo2 extending in the Y direction and extending in a direction intersecting with the direction in which gravity works, and a cylindrical outer peripheral surface having a constant radius from the central axis AXo2.
  • the rotating drum DR2 follows the outer peripheral surface (circumferential surface) and supports a part of the substrate P by curving it into a cylindrical surface in the longitudinal direction while rotating about the central axis AXo2 to + X the substrate P. Transport in the direction.
  • the rotating drum DR2 supports the substrate P from the back side on the side opposite to the direction in which gravity acts (+ Z direction side).
  • the rotary drum DR2 supports an area (portion) on the substrate P on which the spot light of the drawing beam from each of the drawing units U3 and U4 of the exposure head 16 to be described later is projected on its circumferential surface.
  • the rotary drum DR2 is also provided with a shaft Sft2.
  • the shaft Sft2 rotates around the central axis AXo2 when a rotational torque from a rotation driving source (not shown) (for example, a motor or a speed reduction mechanism) controlled by the control device 18 is applied.
  • a rotation driving source for example, a motor or a speed reduction mechanism
  • the central axis AXo1 of the rotating drum DR1 and the central axis AXo2 of the rotating drum DR2 are in a parallel state.
  • a plane including the central axis AXo2 and parallel to the YZ plane is referred to as a central plane Poc2.
  • the substrate P carried out from the rotary drum DR2 is passed over the tension adjustment roller RT2, and then guided to the drive roller R2.
  • the driving roller (nip roller) R2 rotates while holding both front and back surfaces of the substrate P, and conveys the substrate P toward the process apparatus PR2.
  • the tension adjusting rollers RT1 to RT3 are urged in the ⁇ Z direction, and apply a predetermined tension in the longitudinal direction to the substrate P that is wound around and supported by the rotary drums DR1 and DR2.
  • the longitudinal tension applied to the substrate P applied to the rotary drums DR1 and DR2 is stabilized within a predetermined range.
  • the control apparatus 18 rotates drive roller R1, R2 by controlling the rotation drive source (For example, a motor, a reduction gear, etc.) which is not shown in figure.
  • the light source device 14 has a light source (pulse light source) and emits a pulsed beam (pulse light, laser) LB to each of the drawing units U1 to U6.
  • This beam LB is ultraviolet light having a peak wavelength in a wavelength band of 370 nm or less, and the emission frequency of the beam LB is Fs.
  • the light source device 14 emits and emits the beam LB at the emission frequency Fs under the control of the control device 18.
  • the exposure head 16 includes a plurality of drawing units U (U1 to U6) into which the beams LB from the light source device 14 are respectively incident.
  • the exposure head 16 draws a pattern on a part of the substrate P supported by the circumferential surfaces of the rotary drums DR1 and DR2 by a plurality of drawing units U (U1 to U6).
  • the exposure head 16 is a so-called multi-beam type exposure head by including a plurality of drawing units U (U1 to U6) having the same configuration.
  • the drawing units U1, U5, U2, and U6 are provided above the rotating drum DR1, and the drawing units U3 and U4 are provided above the rotating drum DR2.
  • the drawing units U1 and U5 are arranged on the upstream side ( ⁇ X direction side) in the transport direction of the substrate P with respect to the center plane Poc1, and are arranged at a predetermined interval along the Y direction.
  • the drawing units U2 and U6 are arranged on the downstream side (+ X direction side) in the transport direction of the substrate P with respect to the center plane Poc1, and are arranged at a predetermined interval along the Y direction.
  • the drawing unit U3 is arranged on the upstream side ( ⁇ X direction side) in the transport direction of the substrate P with respect to the center plane Poc2.
  • the drawing unit U4 is arranged on the downstream side (+ X direction side) in the transport direction of the substrate P with respect to the center plane Poc2.
  • the drawing units U1 and U5 and the drawing units U2 and U6 are provided symmetrically with respect to the center plane Poc1, and the drawing unit U3 and the drawing unit U4 are provided symmetrically with respect to the center plane Poc2.
  • Each drawing unit U (U1 to U6) converges each of the two beams LB sent from the light source device 14 on the irradiated surface of the substrate P and projects it onto the irradiated surface (photosensitive surface) of the substrate P.
  • the two spot lights SP converged on the irradiated surface of the substrate P are scanned one-dimensionally along two predetermined drawing lines (scanning lines) SLa and SLb.
  • one drawing unit U includes one rotating polygon mirror (beam deflector, light deflecting member) and two An f ⁇ lens system (scanning optical system) is provided, and one drawing unit U (U1 to U6) forms a scanning line by the spot light SP at each of two different locations on the substrate P. Therefore, two beams LB are sent from the light source device 14 to each drawing unit U.
  • the beam LB from the light source device 14 is branched into a plurality of beams LB via a beam distribution system constituted by a reflection mirror and a beam splitter (not shown), and each drawing unit U (U1 to U6) Assume that two beams LB are incident.
  • Each drawing unit U (U1 to U6) has two beams LB on the substrate so that the two beams LB travel toward the central axis AXo1 of the rotary drum DR1 or the central axis AXo2 of the rotary drum DR2 in the XZ plane. Irradiate toward P. Thereby, the optical paths (beam central axes) of the two beams LB traveling from the respective drawing units U (U1 to U6) toward the two drawing lines SLa and SLb on the substrate P are irradiated on the substrate P in the XZ plane. Parallel to the surface normal.
  • the optical path (beam center axis) of the beam LB traveling from the drawing units U1 and U5 toward the rotary drum DR1 is set so that the angle is ⁇ 1 with respect to the center plane Poc1.
  • the optical path (beam center axis) of the beam LB traveling from the drawing units U2 and U6 toward the rotary drum DR2 is set so that the angle is + ⁇ 1 with respect to the center plane Poc1.
  • the optical path (beam center axis) of the beam LB traveling from the drawing unit U3 toward the rotary drum DR2 is set so that the angle is ⁇ 1 with respect to the center plane Poc2.
  • the optical path (beam center axis) of the beam LB traveling from the drawing unit U4 toward the rotary drum DR2 is set so that the angle is + ⁇ 1 with respect to the center plane Poc2.
  • each drawing unit U (U1 to U6) is configured so that the beam LB irradiated to the two drawing lines SLa and SLb is perpendicular to the irradiated surface of the substrate P in a plane parallel to the YZ plane.
  • the beam LB is irradiated toward the substrate P. That is, the beam LB projected onto the substrate P is scanned in a telecentric state with respect to the main scanning direction of the spot light SP on the irradiated surface.
  • the plurality of drawing units U are arranged in a predetermined arrangement relationship as shown in FIG.
  • the two drawing lines SLa and SLb of each drawing unit U (U1 to U6) extend in the main scanning direction, that is, the Y direction, and are the same position on the irradiated surface of the substrate P in the sub-scanning direction (X direction). In addition, they are arranged shifted in the main scanning direction (Y direction). That is, the drawing lines SLa and SLb of the respective drawing units U (U1 to U6) are arranged in parallel and separated only in the main scanning direction (Y direction).
  • the scanning lengths (lengths) of the drawing lines SLa and SLb are set to be the same, and the drawing line SLa and the drawing line SLb are set to be separated from each other in the main scanning direction by an interval equal to or less than the scanning length.
  • the drawing lines SLa and SLb of the plurality of drawing units U (U1 to U6) are arranged in the Y direction (width direction of the substrate P, main scanning direction) as shown in FIG. With respect to each other without being separated from each other.
  • Each drawing unit U (U1 to U6) adjusts the inclination of the drawing lines (scanning lines) SLa and SLb in the XY plane within a range of, for example, ⁇ 1.5 degrees around the rotation center axis AXr. Micro-rotation is possible with a resolution of ⁇ rad.
  • the rotation center axis AXr is the center point (midpoint) of the line segment connecting the midpoint of the drawing line (first scanning line) SLa and the midpoint of the drawing line (second scanning line) SLb. Axis passing perpendicular to The extension of the axis intersects the central axis AXo1 of the rotary drum DR1 in FIG. 1 or the central axis AXo2 of the rotary drum DR2.
  • the drawing line SLa and the drawing line SLb of each drawing unit U are at the same position in the sub-scanning direction and are separated from each other in the main scanning direction. Therefore, the rotation center axis AXr is arranged on a straight line passing through the drawing lines SLa and SLb, and is arranged at the center point of the gap between the drawing line SLa and the drawing line SLb.
  • the drawing unit U (U1 to U6) When the drawing unit U (U1 to U6) is rotated (rotated) even by a small amount around the rotation center axis AXr, the drawing lines SLa and SLb scanned with the spot light SP of the beam LB are also rotated accordingly. It rotates (rotates) around AXr. As a result, when the drawing unit U (U1 to U6) rotates by a certain angle, the drawing lines SLa and SLb correspondingly rotate at a certain angle with respect to the Y direction (Y axis) about the rotation center axis AXr. Will just lean.
  • Each of the drawing units U (U1 to U6) is rotated around the rotation center axis AXr by a highly responsive drive mechanism (not shown) including an actuator under the control of the control device 18.
  • the two drawing lines SLa, SLb of the drawing unit U1 may be represented by SL1a, SL1b, and similarly, the two drawing lines SLa, SLb of the drawing units U2-U6 may be represented by SL2a, SL2b-SL6a, SL6b. . Further, the drawing lines SLa and SLb may be collectively referred to simply as a drawing line SL.
  • each drawing unit U (U1 to U6) can draw a pattern for each of a plurality of regions divided in the width direction of the substrate P. For example, if the scanning length (length) of the drawing line SL is about 20 to 40 mm, a total of six drawing units U are arranged in the Y direction so that the width in the Y direction that can be drawn is about 240 to 480 mm. It is spreading.
  • each drawing line SL (SL1a, SL1b to SL6a, SL6b) is the same. That is, the scanning distance of the spot light SP of the beam LB scanned along each of the plurality of drawing lines SL (SL1a, SL1b to SL6a, SL6b) is basically the same. Note that the width of the exposure region W can be increased by increasing the length of the drawing line SL (SLa, SLb) itself or increasing the number of drawing units U arranged in the Y direction.
  • the drawing lines SL1a, SL1b, SL2a, SL2b, SL5a, SL5b, SL6a, and SL6b are positioned on the irradiated surface of the substrate P supported by the rotary drum DR1.
  • the drawing lines SL1a, SL1b, SL2a, SL2b, SL5a, SL5b, SL6a, and SL6b are arranged in two rows in the circumferential direction of the rotary drum DR1 with the center surface Poc1 interposed therebetween.
  • the drawing lines SL1a, SL1b, SL5a, and SL5b are positioned on the irradiated surface of the substrate P on the upstream side ( ⁇ X direction side) in the transport direction of the substrate P with respect to the center plane Poc1.
  • the drawing lines SL2a, SL2b, SL6a, and SL6b are positioned on the irradiated surface of the substrate P on the downstream side (+ X direction side) in the transport direction of the substrate P with respect to the center plane Poc1.
  • the drawing lines SL3a, SL3b, SL4a, and SL4b are located on the irradiated surface of the substrate P supported by the rotary drum DR2.
  • the drawing lines SL3a, SL3b, SL4a, and SL4b are arranged in two rows in the circumferential direction of the rotary drum DR2 with the center surface Poc2 interposed therebetween.
  • the drawing lines SL3a and SL3b are located on the irradiated surface of the substrate P on the upstream side ( ⁇ X direction side) in the transport direction of the substrate P with respect to the center plane Poc2.
  • the drawing lines SL4a and SL4b are located on the irradiated surface of the substrate P on the downstream side (+ X direction side) in the transport direction of the substrate P with respect to the center plane Poc2.
  • the drawing lines SLa1, SL1b to SL6a, SL6b are substantially parallel to the width direction of the substrate P, that is, the central axes AXo1, AXo2 of the rotary drums DR1, DR2.
  • the odd-numbered drawing lines SL1a, SL1b, SL3a, SL3b, SL5a, and SL5b are linearly spaced at a predetermined interval along the width direction (scanning direction) of the substrate P with respect to the Y direction (width direction of the substrate P).
  • even-numbered drawing lines SL2a, SL2b, SL4a, SL4b, SL6a, and SL6b are arranged on a straight line with a predetermined interval in the width direction of the substrate P in the Y direction.
  • the drawing line SL1b is arranged between the drawing line SL2a and the drawing line SL2b in the Y direction.
  • the drawing line SL3a is arranged between the drawing line SL2b and the drawing line SL4a in the Y direction.
  • the drawing line SL3b is arranged between the drawing line SL4a and the drawing line SL4b in the Y direction.
  • the drawing line SL5a is arranged between the drawing line SL4b and the drawing line SL6a in the Y direction.
  • the drawing line SL5b is arranged between the drawing line SL6a and the drawing line SL6b in the Y direction.
  • the scanning direction of the spot light SP of the beam LB scanned along each of the odd-numbered drawing lines SL1a, SL1b, SL3a, SL3b, SL5a, and SL5b is a one-dimensional direction and is the same direction (+ Y direction). It has become.
  • the scanning direction of the spot light SP of the beam LB scanned along each of the even-numbered drawing lines SL2a, SL2b, SL4a, SL4b, SL6a, and SL6b is a one-dimensional direction, and is the same direction ( ⁇ Y direction) ).
  • the scanning direction ( ⁇ Y direction) of the spot light SP of the beam LB scanned along SL6a and SL6b is opposite to each other.
  • the pattern drawn at the drawing start position (the drawing start point position) of the drawing lines SL1b, SL3a, SL3b, SL5a, and SL5b and the drawing start positions of the drawing lines SL2a, SL2b, SL4a, SL4b, and SL6a are joined.
  • drawing is performed at the drawing end positions (drawing end positions) of the drawing lines SL1a, SL1b, SL3a, SL3b, SL5a, and SL5b and the drawing end positions of the drawing lines SL2a, SL2b, SL4a, SL4b, SL6a, and SL6b. Patterns are stitched together.
  • the odd-numbered drawing lines SL1a, SL1b, SL5a, and SL5b located on the straight line and the even-numbered drawing lines SL2a, SL2b, SL6a, and SL6b located on the straight line are in the transport direction of the substrate P. They are arranged along the (circumferential direction of the rotating drum DR1) by a certain length (interval length).
  • the odd-numbered drawing lines SL3a and SL3b positioned on the straight line and the even-numbered drawing lines SL4a and SL4b positioned on the straight line are in the transport direction of the substrate P (the circumferential direction of the rotary drum DR2). ) Are spaced apart by a certain length (interval length).
  • the width (dimension in the X direction) of the drawing line SL is a thickness corresponding to the size (diameter) ⁇ of the spot light SP.
  • the width of the drawing line SL is also 3 ⁇ m.
  • the spot light SP may be projected along the drawing line SL so as to overlap by a predetermined length (for example, half the effective size ⁇ of the spot light SP).
  • the ends of the drawing lines SL adjacent to each other in the scanning direction for example, the drawing end point of the drawing line SL1a and the drawing end point of the drawing line SL2a
  • have a predetermined length for example, the size ⁇ of the spot light SP).
  • (Half) may overlap in the Y direction.
  • FIG. 3 is a diagram showing an arrangement relationship between the drawing lines SLa and SLb of each drawing unit U when the ends of the drawing lines SL adjacent in the main scanning direction are matched (adjacent).
  • the scanning length of the drawing lines SLa and SLb of the drawing unit U and the distance (gap) in the Y direction between the drawing lines SLa and SLb of the drawing unit U are both set to Lo. Therefore, the drawing lines SLa, SLb of the drawing units U1, U3, U5 facing each other and the drawing lines SLa, SLb of the drawing units U2, U4, U6 are adjacent to each other in the main scanning direction.
  • the rotation center axis AXr of the drawing unit U is set so as to pass through the center point of the separation distance Lo between the drawing lines SLa and SLb.
  • FIG. 4 is a diagram showing an arrangement relationship between the drawing lines SLa and SLb of each drawing unit U when the ends of the drawing lines SL adjacent in the scanning direction are overlapped by ⁇ / 2 (a certain length).
  • the scanning length of the drawing lines SLa and SLb is Lo
  • the distance (gap) in the Y direction between the drawing line SLa and the drawing line SLb of the drawing unit U is Lo- ⁇ . Therefore, the drawing lines SLa, SLb of the drawing units U1, U3, U5 facing each other and the drawing lines SLa, SLb of the drawing units U2, U4, U6 are adjacent to each other in the main scanning direction.
  • the rotation center axis AXr of the drawing unit U is set so as to pass through the center point of the separation distance Lo- ⁇ between the drawing lines SLa and SLb.
  • the control device 18 shown in FIG. 1 controls each part of the exposure apparatus EX.
  • the control device 18 includes a computer and a recording medium on which the program is recorded, and functions as the control device 18 of the first embodiment when the computer executes the program.
  • the alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4) shown in FIG. 1 are for detecting the alignment marks MK (MK1 to MK4) formed on the substrate P shown in FIG. .
  • the plurality of alignment microscopes AMa (AMa1 to AMa4) are provided along the Y direction.
  • a plurality of alignment microscopes AMb (AMb1 to AMb4) are also provided along the Y direction.
  • the alignment marks MK are reference marks for relatively aligning (aligning) the pattern drawn on the exposure area W on the irradiated surface of the substrate P and the substrate P.
  • the alignment microscope AMa (AMa1 to AMa4) detects the alignment mark MK (MK1 to MK4) on the substrate P supported by the circumferential surface of the rotary drum DR1.
  • the alignment microscope AMa (AMa1 to AMa4) is configured so that the substrate P is positioned more than the position of the spot light SP of the beam LB irradiated on the irradiated surface of the substrate P from the drawing units U1 and 5 (drawing lines SL1a, SL1b, SL5a, SL5b).
  • the alignment microscope AMb (AMb1 to AMb4) detects the alignment mark MK (MK1 to MK4) on the substrate P supported by the circumferential surface of the rotary drum DR2.
  • the alignment microscope AMb (AMb1 to AMb4) is upstream of the position of the spot light SP of the beam LB irradiated on the irradiated surface of the substrate P from the drawing unit U3 (drawing lines SL3a and SL3b) in the transport direction of the substrate P. ( ⁇ X direction side).
  • the alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4) have a light source that projects alignment illumination light onto the substrate P and an image sensor (CCD, CMOS, etc.) that captures the reflected light. .
  • the imaging signals captured by the alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4) are sent to the control device 18.
  • the alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4) image the alignment marks MK (MK1 to MK4) present in the observation region (not shown).
  • the observation areas of the alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4) are provided along the Y direction, and are arranged according to the positions of the alignment marks MK (MK1 to MK4) in the Y direction. Yes. Therefore, the alignment microscopes AMa1 and AMb1 can image the alignment mark MK1, and similarly, the alignment microscopes AMa2 to AMa4 and AMb2 to AMb4 can image the alignment marks MK2 to MK4.
  • the size of the observation region on the surface to be irradiated of the substrate P is set according to the size of the alignment mark MK (MK1 to MK4) and the alignment accuracy (position measurement accuracy), but is about 100 to 500 ⁇ m square. It is.
  • the control device 18 detects the position of the alignment mark MK based on the imaging signals from the alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4).
  • the illumination light for alignment is light in a wavelength region that has little sensitivity to the photosensitive functional layer of the substrate P, for example, light having a wavelength of about 500 nm to 800 nm.
  • a high-speed shutter time charge accumulation time, etc.
  • an orthogonal coordinate system XtYtZt is set in order to specify the arrangement of each member and beam in the drawing unit U.
  • the Yt axis of the Cartesian coordinate system XtYtZt is set parallel to the Y axis of the Cartesian coordinate system XYZ, and the Cartesian coordinate system XtYtZt is set to be inclined by a certain angle around the Y axis with respect to the Cartesian coordinate system XYZ.
  • FIG. 5 is a configuration diagram of the drawing unit U2 viewed from the ⁇ Yt ( ⁇ Y) direction side
  • FIG. 6 is a configuration diagram of the drawing unit U2 viewed from the + Zt direction side.
  • one beam LB is represented by LBa and the other beam LB is represented by LBb.
  • the spot light SP of the beam (first beam) LBa may be represented by SPa
  • the spot light SP of the beam (second beam) LBb may be represented by SPb.
  • the spot light (first spot light) SPa scans the drawing line SL2a (SLa)
  • the spot light (second spot light) SPb scans the drawing line SL2b (SLb).
  • the spot lights SPa and SPb are represented by thicker points than the drawing lines SL2a and SL2b.
  • the direction parallel to the rotation center axis AXr is the Zt direction
  • the substrate P is on a plane orthogonal to the Zt direction
  • the substrate P passes through the exposure apparatus EX from the process apparatus PR1 to the process apparatus PR2.
  • the direction toward the Xt direction is the Xt direction
  • the direction perpendicular to the Zt direction and the direction perpendicular to the Xt direction is the Yt direction. That is, the three-dimensional coordinates Xt, Yt, and Zt in FIGS. 5 and 6 are the same as the three-dimensional coordinates X, Y, and Z in FIG. 1, and the Z-axis direction is parallel to the rotation center axis AXr.
  • the drawing unit U2 includes a reflection mirror M1, a condenser lens CD, a triangular reflection mirror M2, reflection mirrors M3a and M3b, shift optical members (shift optical plates) SRa and SRb, beam shaping optical systems BFa and BFb, a reflection mirror M4, and a cylindrical mirror.
  • the optical system includes a lens CY1, a reflection mirror M5, a polygon mirror PM, reflection mirrors M6a and M6b, f ⁇ lenses FTa and FTb, reflection mirrors M7a and M7b, and cylindrical lenses CY2a and CY2b.
  • These optical systems (reflection mirror M1, condensing lens CD, etc.) are integrally formed in a highly rigid housing as one drawing unit U2.
  • the drawing unit U2 integrally holds these optical systems.
  • the optical system on which the two beams LBa and LBb are incident is simply given a reference numeral, each of the two beams LBa and LBb is incident separately, and a pair of the two beams LBa and LBb is provided.
  • a and b are attached
  • an optical system in which only the beam LBa is incident is denoted by a after the reference symbol
  • an optical system in which only the beam LBb is incident is denoted by b after the reference symbol.
  • the two beams LBa and LBb from the light source device 14 pass through the two optical elements AOMa and AOMb and the two collimating lenses CLa and CLb, and then are reflected by the reflection mirror M8.
  • the light enters the drawing unit U2 in a state parallel to the Zt axis.
  • the two beams LBa and LBb that have entered the drawing unit U2 enter the reflecting mirror M1 along the rotation center axis AXr of the drawing unit U2 on the XtZt plane.
  • FIG. 7 is a view of the optical paths of the beams LBa and LBb that are transmitted through the optical elements AOMa and AOMb and the collimating lenses CLa and CLb and are incident on the reflection mirror M8, as viewed from the + Zt direction, and FIG. It is a figure which looked at the optical path of the beams LBa and LBb which inject into the reflective mirror M1 of the unit U2 from the + Xt direction side. 7 and 8 also represent the three-dimensional coordinate system of Xt, Yt, and Zt.
  • the optical elements AOMa and AOMb are transparent to the beams LBa and LBb, and are acousto-optic modulators (AOMs).
  • the optical elements AOMa and AOMb use ultrasonic waves (high-frequency signals) to diffract the incident beams LBa and LBb at a diffraction angle corresponding to the high-frequency frequency, and change the optical paths of the beams LBa and LBb, that is, the traveling directions. Change.
  • the optical elements AOMa and AOMb turn on / off generation of diffracted light (first-order diffracted beam) obtained by diffracting the incident beams LBa and LBb in accordance with on / off of a drive signal (high frequency signal) from the control device 18. .
  • the optical element AOMa transmits the incident beam LBa without diffracting it when the drive signal (high frequency signal) from the control device 18 is off. Therefore, when the drive signal is off, the beam LBa transmitted through the optical element AOMa is incident on an absorber (not shown) without entering the collimator lens CLa and the reflection mirror M8. This means that the intensity of the spot light SPa projected onto the irradiated surface of the substrate P is modulated to a low level (zero).
  • the optical element AOMa is turned on by a drive signal (high frequency signal) from the control device 18, a first-order diffracted beam is generated by diffracting the incident beam LBa.
  • the first-order diffracted beam deflected by the optical element AOMa (for the sake of simplicity, the beam LBa from the optical element AOMa) is transmitted through the collimator lens CLa.
  • the light enters the reflection mirror M8. This means that the intensity of the spot light SPa projected on the irradiated surface of the substrate P is modulated to a high level.
  • the optical element AOMb transmits the incident beam LBb without being diffracted when the drive signal (high-frequency signal) from the control device 18 is off, so that the beam LBb transmitted through the optical element AOMb is Without entering the collimator lens CLb and the reflection mirror M8, the light enters the absorber (not shown). This means that the intensity of the spot light SPb projected onto the irradiated surface of the substrate P is modulated to a low level (zero).
  • the control device 18 when the optical element AOMb is turned on by the drive signal (high frequency signal) from the control device 18, the incident beam LBb is diffracted, so that the beam LBb deflected by the optical element AOMb (first-order diffracted beam) Enters the reflecting mirror M8 after passing through the collimating lens CLb.
  • the intensity of the spot light SPb projected on the irradiated surface of the substrate P is modulated to a high level.
  • the control device 18 Based on the pattern data (bitmap) of the pattern drawn by the drawing line SL2a, the control device 18 turns on and off the drive signal applied to the optical element AOMa at a high speed and also displays the pattern drawn by the drawing line SL2b.
  • the drive signal applied to the optical element AOMb is turned on / off at high speed. That is, the intensity of the spot lights SPa and SPb is modulated to a high level and a low level according to the pattern data.
  • the beams LBa and LBb incident on the optical elements AOMa and AOMb are condensed so as to form a beam waist in the optical elements AOMa and AOMb.
  • LBb first-order diffracted beam
  • CLa and CLb convert the divergent light into a parallel light beam having a predetermined beam diameter.
  • the reflection mirror M8 reflects the incident beams LBa and LBb in the ⁇ Zt direction and guides them to the reflection mirror (reflection member) M1 of the drawing unit U2.
  • the beams LBa and LBb reflected by the reflection mirror M8 enter the reflection mirror M1 of the drawing unit U2 so as to be symmetric with respect to the rotation center axis AXr.
  • the beams LBa and LBb may or may not intersect on the reflection mirror M1.
  • 6 and 8 show an example in which the beams LBa and LBb intersect at the position of the rotation center axis AXr on the reflection mirror M1.
  • the beams LBa and LBb are incident on the reflection mirror M1 at a certain angle with respect to the rotation center axis AXr.
  • the beams LBa and LBb are incident on the reflection mirror M1 so as to be symmetric with respect to the rotation center axis AXr along the Yt (Y) direction.
  • the beams LBa and LBb may be designed to enter the reflection mirror M1 in parallel so as to be symmetric with respect to the rotation center axis AXr.
  • the reflection mirror M1 reflects the incident beams LBa and LBb in the + Xt direction.
  • the beams LBa and LBb (each of the parallel light beams) reflected by the reflection mirror M1 are separated from each other at a constant opening angle in the XtYt plane as shown in FIG.
  • the condensing lens CD is a lens that makes the central axes of the beams LBa and LBb from the reflecting mirror M1 parallel to each other in the XtYt plane and condenses each of the beams LBa and LBb at a predetermined focal position.
  • the function of the condensing lens CD will be described later, but the front focal position of the condensing lens CD is set to be on or near the reflecting surface of the reflecting mirror M1.
  • the triangular reflection mirror M2 reflects the beam LBa transmitted through the condensing lens CD at 90 degrees in the ⁇ Yt ( ⁇ Y) direction side and guides it to the reflecting mirror M3a. The light is reflected by 90 degrees toward the + Y) direction and guided to the reflection mirror M3b.
  • the reflection mirror M3a reflects the incident beam LBa to the + Xt direction side at 90 degrees.
  • the beam LBa reflected by the reflection mirror M3a passes through the shift optical member (first shift optical member using a parallel plate) SRa and the beam shaping optical system BFa and enters the reflection mirror M4.
  • the reflection mirror M3b reflects the incident beam LBb at 90 degrees toward the + Xt direction.
  • the beam LBb reflected by the reflection mirror M3b passes through the shift optical member (second shift optical member using a parallel plate) SRb and the beam shaping optical system BFb and enters the reflection mirror M4.
  • the triangular reflection mirror M2 and the reflection mirrors M3a and M3b increase the distance in the Yt direction between the central axes of the beams LBa and LBb transmitted through the condenser lens CD.
  • the shift optical members SRa and SRb adjust the center positions of the beams LBa and LBb in a plane (YtZt plane) orthogonal to the traveling direction of the beams LBa and LBb.
  • the shift optical members SRa and SRb have two parallel quartz plates parallel to the YtZt plane. One parallel plate can tilt around the Yt axis, and the other parallel plate tilts around the Zt axis. Is possible.
  • the two parallel plates are inclined about the Yt axis and the Zt axis, respectively, so that the positions of the centers of the beams LBa and LBb are minutely shifted two-dimensionally on the YtZt plane orthogonal to the traveling direction of the beams LBa and LBb. To do.
  • the two parallel plates are driven by an actuator (drive unit) (not shown) under the control of the control device 18.
  • the beam shaping optical systems BFa and BFb are optical systems for shaping the beams LBa and LBb. For example, the diameters of the beams LBa and LBb collected by the condenser lens CD are shaped to a predetermined size. .
  • the reflection mirror M4 reflects the beams LBa and LBb from the beam shaping optical systems BFa and BFb in the ⁇ Zt direction as shown in FIG.
  • the beams LBa and LBb reflected by the reflection mirror M4 pass through the first cylindrical lens CY1 and enter the reflection mirror M5.
  • the reflection mirror M5 reflects the beams LBa and LBb from the reflection mirror M4 in the ⁇ Xt direction and makes them enter different reflection surfaces RP of the polygon mirror PM.
  • the beam LBa is incident on the first reflecting surface RP of the polygon mirror PM from the first direction
  • the beam LBb is incident on another second reflecting surface RP of the polygon mirror PM from a second direction different from the first direction.
  • the polygon mirror PM reflects the incident beams LBa and LBb toward the f ⁇ lenses FTa and FTb.
  • the polygon mirror PM deflects and reflects the incident beams LBa and LBb in order to scan the spot lights SPa and SPb of the beams LBa and LBb on the irradiated surface of the substrate P.
  • the beams LBa and LBb are deflected and scanned in a one-dimensional manner in a plane parallel to the XtYt plane by the rotation of the polygon mirror PM.
  • the polygon mirror PM is a rotary polygon mirror having a rotation axis AXp extending in the Zt-axis direction and a plurality of reflecting surfaces RP arranged around the rotation axis AXp so as to surround the rotation axis AXp.
  • the polygon mirror PM is a rotating polygonal mirror having eight reflective surfaces RP parallel to the Zt axis and having a regular octagonal shape.
  • the reflection directions of the beams LBa and LBb are deflected by the first reflecting surface RP and the second reflecting surface RP, respectively, and the spot light SPa of the beams LBa and LBb irradiated onto the irradiated surface on the substrate P, SPb can be scanned along the main scanning direction.
  • the spot lights SPa and SPb can be scanned along the drawing lines SL2a and SL2b. For this reason, the number of scans of the spot lights SPa and SPb along the drawing lines SL2a and SL2b on the irradiated surface of the substrate P is 8 times at the maximum with one rotation of the polygon mirror PM.
  • the polygon mirror PM is rotated at a constant speed by a polygon driving unit including a motor and the like. The rotation of the polygon mirror PM is controlled by the control device 18 by the polygon driving unit.
  • the lengths of the drawing lines SL2a and SL2b are, for example, 30 mm, and the spot lights SPa and SPb are applied to the drawing lines SL2a and SL2b while pulsed light is emitted so that the 3 ⁇ m spot lights SPa and SPb overlap each other by 1.5 ⁇ m.
  • the number of spot lights SP (number of pulse emission) irradiated in one scan is 20000 (30 mm / 1.5 ⁇ m).
  • the first cylindrical lens CY1 converges the incident beams LBa and LBb on the reflection surface RP of the polygon mirror PM in the non-scanning direction (Zt direction) orthogonal to the scanning direction (rotation direction) of the polygon mirror PM.
  • the reflection surface RP is inclined with respect to the Zt direction by the first cylindrical lens CY1 and the second cylindrical lenses CY2a and CY2b described later (the XtYt plane method) Even if there is an inclination of the reflecting surface RP with respect to the Zt axis, which is a line, the influence can be suppressed.
  • the irradiation position of the spot lights SPa and SPb (drawing lines SL2a and SL2b) of the beams LBa and LBb irradiated on the irradiated surface of the substrate P is caused by a slight tilt error for each reflecting surface RP of the polygon mirror PM. Deviation in the Xt direction can be suppressed.
  • the polygon mirror PM reflects the incident beam LBa toward the -Yt (-Y) direction side and guides it to the reflection mirror M6a.
  • the polygon mirror PM reflects the incident beam LBb toward the + Yt (+ Y) direction and guides it to the reflection mirror M6b.
  • the reflection mirror M6a reflects the incident beam LBa to the ⁇ Xt direction side and guides it to an f ⁇ lens FTa having an optical axis AXfa extending in the Xt axis direction.
  • the reflection mirror M6b reflects the incident beam LBb to the ⁇ Xt direction side and guides it to an f ⁇ lens FTb having an optical axis AXfb (parallel to the optical axis AXfa) extending in the Xt axis direction.
  • the f ⁇ (f ⁇ ) lenses FTa and FTb are the reflecting mirrors M7a so that the beams LBa and LBb from the polygon mirror PM reflected by the reflecting mirrors M6a and M6b are parallel to the optical axes AXfa and AXfb on the XtYt plane.
  • M7b a telecentric scan lens.
  • the reflecting mirror M7a reflects the incident beam LBa toward the irradiated surface of the substrate P in the -Zt direction
  • the reflecting mirror M7b reflects the incident beam LBb toward the irradiated surface of the substrate P in the -Zt direction.
  • the beam LBa reflected by the reflection mirror M7a is transmitted through the second cylindrical lens CY2a and projected onto the irradiated surface on the substrate P, and the beam LBb reflected by the reflection mirror M7b is transmitted through the second cylindrical lens CY2b. It is projected onto the surface to be irradiated onto the substrate P.
  • the beam LBa projected onto the substrate P has an effective diameter on the irradiated surface of the substrate P of about several ⁇ m (for example, 3 ⁇ m) is converged on a minute spot light SPa.
  • the effective diameter of the beam LBb projected on the substrate P on the irradiated surface of the substrate P is several ⁇ m by the f ⁇ lens FTb and the second cylindrical lens CY2b whose generating line is parallel to the Yt direction.
  • the light is converged to a minute spot light SPb having a degree (for example, 3 ⁇ m).
  • the spot lights SPa and SPb projected onto the irradiated surface of the substrate P are simultaneously 1 along the drawing lines SL2a and SL2b extending in the main scanning direction (Yt direction, Y direction) by the rotation of one polygon mirror PM. Dimensionally scanned.
  • the incident angle ⁇ (angle with respect to the optical axis) of the beam to the f ⁇ lenses FTa and FTb varies depending on the rotation angle ( ⁇ / 2) of the polygon mirror PM.
  • the f ⁇ lens FTa projects the spot light SPa of the beam LBa on the image height position on the irradiated surface of the substrate P proportional to the incident angle of the beam LBa.
  • the f ⁇ lens FTb projects the spot light SPb of the beam LBb onto the image height position on the irradiated surface of the substrate P that is proportional to the incident angle of the beam LBb.
  • the incident angle ⁇ of the beams LBa and LBb to the f ⁇ lenses FTa and FTb is 0 degree
  • the beams LBa and LBb incident on the f ⁇ lenses FTa and FTb travel along the optical axes AXfa and AXfb.
  • the condensing lens CD, the triangular reflection mirror M2, the reflection mirror M3a, the shift optical member SRa, the beam shaping optical system BFa, the reflection mirror M4, the first cylindrical lens CY1, and the reflection mirror M5 are used to convert the beam LBa into the first. It functions as the first light guide optical system 20 that leads from the direction toward the polygon mirror PM.
  • the condensing lens CD, the triangular reflection mirror M2, the reflection mirror M3b, the shift optical member SRb, the beam shaping optical system BFb, the reflection mirror M4, the first cylindrical lens CY1, and the reflection mirror M5 are used for the first beam LBb.
  • the condensing lens CD, the triangular reflection mirror M2, the reflection mirror M4, the first cylindrical lens CY1, and the reflection mirror M5 are members common to the first light guide optical system 20 and the second light guide optical system 22. However, at least a part of these members may be provided separately for the first light guide optical system 20 and the second light guide optical system 22.
  • the reflection mirror M6a, the f ⁇ lens FTa, the reflection mirror M7a, and the second cylindrical lens CY2a condense the beam LBa reflected by the polygon mirror PM and on the drawing line SL2a (SLa) as the spot light SPa.
  • the first projection optical system 24 It functions as the first projection optical system 24 that projects.
  • the reflection mirror M6b, the f ⁇ lens FTb, the reflection mirror M7b, and the second cylindrical lens CY2b condense the beam LBb reflected by the polygon mirror PM and on the drawing line SL2b (SLb) as the spot light SPb.
  • the first projection optical system 24 and the second projection optical system 26 are arranged such that the drawing lines SLa and SLb are at the same position in the sub-scanning direction and are separated from each other in the main scanning direction.
  • the first projection optical system 24 and the second projection optical system 26 are arranged so that the drawing lines SLa and SLb are separated from each other in the main scanning direction at an interval equal to or shorter than the scanning length.
  • the beams LBa and LBb are incident on the reflection mirror M1 at a position where the rotation center axis AXr passes, the beams LBa and LBb are in contact with the rotation center axis AXr. Instead of being incident on the reflecting mirror M1 in parallel, it is incident on the reflecting mirror M1 (or in the vicinity thereof) with a certain inclination with respect to the rotation center axis AXr as shown in FIG. Therefore, when the entire drawing unit U2 rotates about the rotation center axis AXr, the incident angles of the beams LBa and LBb with respect to the reflection mirror M1 change relatively. As a result, the reflection directions of the beams LBa and LBb reflected by the reflection mirror M1 in the drawing unit U2 change two-dimensionally according to the rotation of the drawing unit U2 around the rotation center axis AXr.
  • 9 and 10 show the drawing unit U2 of the beam LBa in the initial position state where the drawing unit U2 is not rotated around the rotation center axis AXr and in the state where the drawing unit U2 is rotated by ⁇ z from the initial position. It is a figure which exaggerates and shows the change of the reflection direction (change of a beam course).
  • 9 shows the positional relationship between the reflecting mirror (reflecting member) M1 and the condenser lens CD in the XtZt plane
  • FIG. 10 shows the positional relationship between the reflecting mirror M1 and the condenser lens CD in the XtYt plane. It is what I saw.
  • the optical axis AXc of the condensing lens CD is set so as to intersect the rotation center axis AXr on the reflecting surface of the reflecting mirror M1 (set to 45 ° with respect to the XtYt surface), and the front side of the condensing lens CD.
  • the reflecting surface of the reflecting mirror M1 is set at the position of the focal distance fa.
  • the beams LBa and LBb diverge after being converged so as to have a beam waist (minimum diameter) on the surface Pcd (rear focal plane) at the rear focal length fb of the condenser lens CD.
  • the beam LBa-1 indicated by a solid line is an initial position state where the entire drawing unit U2 is not rotated, that is, the beam when the drawing line SL2a is parallel to the Yt (Y) direction.
  • LBa is shown.
  • a beam LBa-2 indicated by a two-dot chain line indicates the beam LBa when the entire drawing unit U2 is rotated by ⁇ z around the rotation center axis AXr.
  • the relative incident angle of the beam LBa (LBb) with respect to the reflection surface of the reflection mirror M1 changes.
  • the beam LBa projected onto the reflecting surface of the reflecting mirror M8 immediately before the reflecting mirror M1 is LBa (M8), as apparent from the beam orientation state of FIG.
  • the positions of the beam LBa and the beam LBa (M8) projected on the XtYt plane are separated in a direction parallel to the Yt axis in the initial position state.
  • the optical path (center line) of the beam LBa-1 reflected by the reflecting mirror M1 in the initial position state becomes the beam LBa-2 after the entire drawing unit U2 is rotated by the angle ⁇ z and is in the XtYt plane. Tilt.
  • the crossing angle in the XtYt plane between the center line of the beam LBa-1 in the initial position state and the optical axis AXc of the condenser lens CD is the center line of the beam LBa shown in FIG. This coincides with the intersection angle with the rotation center axis AXr in the YtZt plane.
  • the convergence position BW1 in the rear focal plane Pcd of the beam LBa-1 in the initial position state is the convergence position of the beam LBa-2 in the rear focal plane Pcd after the rotation of the angle ⁇ z of the entire drawing unit U2.
  • BW2 is displaced (parallel shift) by ⁇ Yh in the Yt direction.
  • the convergence position BW1 in the rear focal plane Pcd of the beam LBa-1 in the initial position state is the convergence position of the beam LBa-2 in the rear focal plane Pcd after the rotation of the entire drawing unit U2 by the angle ⁇ z.
  • BW2 is displaced (parallel shift) by ⁇ Zh in the Zt direction.
  • the positional deviation amount ⁇ Zh in the Zt-axis direction is larger than the positional deviation amount ⁇ Yh in the Yt-axis direction. The above operation is the same for the beam LBb.
  • the position of the beam LBb-2 in the rear focal plane Pcd converged by the condenser lens CD after the entire drawing unit U2 is rotated by the angle ⁇ z is the initial position.
  • the position is shifted in the Yt direction and the Zt direction with respect to the position in the rear focal plane Pcd of the beam LBb-1 in the position state.
  • the beam LBa ⁇ emitted from the condensing lens CD is provided by providing the condensing lens CD such that the reflecting surface of the reflecting mirror M1 comes to the position of the front focal length fa. 2 (LBb-2) and the center line of the beam LBa-1 (LBb-1) can always be parallel. Therefore, by adjusting the inclination of the shift optical members SRa and SRb arranged after the condenser lens CD, the positional deviation amounts ⁇ Yh and ⁇ Zh of the beams LBa and LBb generated after the entire drawing unit U2 is rotated by the angle ⁇ z become zero. To correct.
  • the two beams LBa and LBb can be correctly passed through the subsequent optical system along the optical path in the initial position state.
  • the beams LBa and LBb from the reflection mirror M8 can be incident on the reflection mirror M1 coaxially with the rotation center axis AXr, the beams LBa and LBb are rotated by rotation around the rotation center axis AXr of the drawing unit U.
  • the incident angle with respect to the reflecting mirror M1 does not change. Therefore, in the drawing unit U, the reflection directions of the beams LBa and LBb reflected by the reflecting mirror M1 are not changed by the rotation of the drawing unit U.
  • One method of spatially separating the two beams LBa and LBb in the drawing unit U2 after the reflection mirror M1 while making the two beams LBa and LBb incident on the reflection mirror M1 coaxial is polarization after the reflection mirror M1.
  • a beam splitter or the like is arranged, and beams LBa and LBb whose polarization states are orthogonal to each other are coaxially combined and incident on the reflection mirror M1, and a system for polarization separation by the polarization beam splitter or the like is assembled.
  • beams LBa and LBb parallel light beams having a fixed inclination with respect to the rotation center axis AXr and symmetric with respect to the rotation center axis AXr are applied to the reflection mirror M1.
  • the case where the light beams are incident on the same position has been described as an example.
  • two beams LBa and LBb parallel light beams that are symmetrical in the Yt direction with respect to the rotation center axis AXr and are oriented parallel to the rotation center axis AXr. ) Is incident on the reflection mirror M1.
  • FIG. 11A shows the reflection directions of the beams LBa and LBb incident on the reflection mirror (reflection member) M1 when the entire drawing unit U2 is rotated about the rotation center axis AXr by an angle (predetermined angle) ⁇ z.
  • FIG. 11B is a diagram showing the state of the change exaggerated from the + Zt direction side, and FIG. 11B shows changes in the positions of the beams LBa and LBb at the reflection mirror M1 when the entire drawing unit U2 is rotated by the angle ⁇ z. It is the figure seen from the advancing direction side (+ Xt direction side) of LBb.
  • the drawing unit U2 when the drawing unit U2 is in the initial position state where the drawing unit U2 is not rotated, the main scanning direction (Yt direction) of the spot light SP along the drawing line SL2 is parallel to the Y direction, but the entire drawing unit U2 is When rotated by the angle ⁇ z, the main scanning direction (Yt direction) of the spot light SP along the drawing line SL2 of the drawn drawing unit U2 is inclined with respect to the Y direction. Further, as shown in FIGS. 11A and 11B, a line that extends in the Xt direction at an intermediate position in the Yt direction of the two beams LBa and LBb and is orthogonal to the rotation center axis AXr is defined as a center axis AXt.
  • This central axis AXt corresponds to the optical axis AXc of the condenser lens CD in FIGS. Furthermore, when the two beams LBa and LBb reflected by the reflecting mirror M1 travel in parallel with the central axis AXt as shown in FIGS. 11A and 11B, the condenser lens CD described with reference to FIGS. Instead of a small diameter, they are provided individually in the optical paths of the two beams LBa and LBb.
  • the reflecting mirror M1 indicated by a solid line indicates the reflecting mirror M1 when the drawing unit U2 is not rotated, that is, when the drawing lines SL2a and SL2b are parallel to the Y direction.
  • Beams LBa-1 and LBb-1 shown by solid lines indicate the incident position on the reflection mirror M1 in the initial position state, and the beams LBa and LBb reflected by the reflection mirror M1 in the Xt-axis direction.
  • a reflection mirror M1 'indicated by a two-dot chain line exaggerates the arrangement of the reflection mirror M1 when the drawing unit U2 is rotated by an angle ⁇ z.
  • beams LBa-2 and LBb-2 indicated by two-dot chain lines indicate the beams LBa and LBb reflected by the reflection mirror M1 'when the drawing unit U2 is rotated by an angle ⁇ z.
  • the rotation of the drawing unit U2 changes the relative position (particularly the position in the Zt direction) where the beams LBa and LBb are incident on the reflection mirror M1, so that the plane Pv perpendicular to the central axis AXt (parallel to the YtZt plane). ),
  • the center lines of the beams LBa-2 and LBb-2 reflected by the reflecting mirror M1 ′ are parallel to the center axis AXt as shown in FIG. 11B, but are positioned so as to turn around the center axis AXt. Change.
  • the beams LBa-1 and LBb-1 reflected by the reflecting mirror M1 are separated from the central axis AXt by a certain distance in the ⁇ Yt (Y) direction. Located in parallel.
  • the beam LBa-2 reflected by the reflecting mirror M1 moves in the ⁇ Zt direction and the + Yt direction so as to draw an arc around the central axis AXt.
  • the beam LBb-2 reflected by the reflection mirror M1 moves in the + Zt direction and the -Yt direction. Therefore, the optical paths of the two beams LBa and LBb passing through the optical members after the reflecting mirror M1 are different from the optical paths in the initial position state, and the beams LBa, LBb cannot enter.
  • the center lines of the beams LBa and LBb are set in the Yt direction and Zt in the plane Pv. It can be adjusted two-dimensionally in the direction. Therefore, even when the drawing unit U2 as a whole rotates, the drawing unit U does not rotate along the optical paths of the beams LBa and LBb after the shift optical members SRa and SRb in the drawing unit U2. Correction (adjustment) can be made to the correct optical path in the initial position state. As a result, the beams LBa and LBb can be made incident at appropriate positions on the reflection surface RP of the polygon mirror PM.
  • the triangular reflection mirror M2 and the reflection mirrors M3a and M3b increase the interval in the Yt direction in the XtYt plane of the center line of the beams LBa and LBb reflected by the reflection mirror M1, so that the reflection mirror M1 of the drawing unit U2
  • the distance between the center lines of the two beams LBa and LBb incident on the beam can be shortened, and the beams LBa and LBb incident on the drawing unit U2 (reflection mirror M1) can be brought closer to the rotation center axis AXr.
  • the drawing unit Ub is rotated, the amount of change in position within the plane Pv of each center line of the beams LBa and LBb accompanying the rotation can be suppressed.
  • the control device 18 determines the inclination (inclination) of the exposure region W based on the position of the alignment mark MK (MK1 to MK4) detected using the alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4). Distortion (deformation) can be detected.
  • the inclination (inclination) and distortion of the exposure area W for example, the longitudinal direction of the substrate P wound around the rotary drums DR1 and DR2 is inclined or distorted with respect to the central axes AXo1 and AXo2. As a result, the exposure region W may be inclined or distorted.
  • the substrate P wound around the rotary drums DR1 and DR2 and transported is not tilted or distorted, the substrate P is tilted (tilted) when the lower pattern layer is formed.
  • the exposure area W itself may be distorted due to being distorted and conveyed.
  • the substrate P itself may be deformed linearly or nonlinearly due to the thermal effect applied to the substrate P in the previous process.
  • the control device 18 rotates the drawing units U1, U2, U5, and U6 at the center of rotation according to the inclination (inclination) or distortion of the whole or a part of the exposure area W detected by using the alignment microscope AMa (AMa1 to AMb4). Rotate around axis AXr. Further, the control device 18 moves the drawing units U3 and U4 about the rotation center axis AXr according to the inclination (inclination) or distortion of the whole or a part of the exposure area W detected using the alignment microscope AMb (AMb1 to AMb4). Rotate. At this time, the control device 18 also drives the shift optical members SRa and SRb in accordance with the rotation angle of the drawing unit U (U1 to U6).
  • the predetermined pattern also needs to be inclined or distorted.
  • the predetermined pattern to be drawn is also inclined according to the inclination or distortion of the whole or a part of the lower layer pattern. Need to be distorted or distorted. Therefore, in order to incline or distort a predetermined pattern to be drawn, the control device 18 individually rotates the drawing units U (U1 to U6) to incline the drawing lines SLa and SLb with respect to the Y direction.
  • the drawing unit U scans the spot lights SPa and SPb of the beams LBa and LBb along the drawing lines SLa and SLb using one polygon mirror PM.
  • the first projection optical system 24 and the second projection optical system 26 are such that the drawing lines SLa and SLb are located on the substrate P in the same position in the sub-scanning direction and spaced apart in the main scanning direction. And arranged. Further, the drawing unit U is rotated to a position between the two drawing lines SLa and SLb in the main scanning direction, preferably a position that bisects the midpoint position of each of the drawing lines SLa and SLb in the main scanning direction. Set the center axis.
  • the drawing lines SLa and SLb are set so as to be at the same position in the sub-scanning direction and separated in the main scanning direction, the drawing lines SLa and SLb by the rotation of the drawing unit U are set. It is possible to prevent the displacement on the substrate P from becoming unnecessarily large.
  • the scanning length of the drawing line SL can be shortened, it is possible to stably maintain the scanning line arrangement accuracy and optical performance necessary for high-detail pattern drawing.
  • the first projection optical system 24 and the first projection optical system 24 are set so that the scanning lengths of the drawing lines SLa and SLb are set to be the same, and the drawing lines SLa and SLb are set separately in the main scanning direction at intervals equal to or shorter than the scanning length.
  • a second projection optical system 26 is arranged.
  • the rotation center axis AXr of the drawing unit U passes through the center point of the line segment connecting the midpoints of the drawing lines SLa and SLb of the drawing unit U perpendicularly to the substrate P. Thereby, the inclination of the drawing lines SLa and SLb can be easily adjusted while minimizing the positional deviation of the drawing lines SLa and SLb accompanying the rotation of the drawing unit U.
  • the drawing unit U Since the beams LBa and LBb from the light source device 14 are incident on the drawing unit U so as to be symmetric with respect to the rotation center axis AXr, the drawing unit U rotates about the rotation center axis AXr. In addition, it is possible to suppress the displacement of the positions of the center lines of the beams LBa and LBb passing through the drawing unit U from increasing.
  • the drawing unit U includes a reflection mirror M1 that reflects the incident beams LBa and LBb and guides them to the first light guide optical system 20 and the second light guide optical system 22 at a position where the rotation center axis AXr passes. Thereby, even when the drawing unit U is rotated, the beams LBa and LBb from the light source device 14 are first incident on the reflection mirror M1 in the drawing unit U. Therefore, the beams LBa on the drawing lines SLa and SLb. , LBb spot lights SPa and SPb can be projected.
  • the first light guide optical system 20 includes a shift optical member SRa that shifts the position of the beam LBa reflected from the reflection mirror M1 on a plane that intersects the traveling direction of the beam LBa
  • the second light guide optical system 22 includes A shift optical member SRb that shifts the position of the beam LBb reflected from the reflection mirror M1 on a plane that intersects the traveling direction of the beam LBb is provided.
  • the spot light SPa, SPb is projected to the position where the spot light SPa, SPb is not irradiated on the irradiated surface of the substrate P or is shifted from the drawing lines SLa, SLb after the tilt adjustment by the rotation of the drawing unit U. It is possible to suppress the occurrence of problems such as
  • the plurality of drawing units U are arranged such that the drawing lines SLa and SLb are joined (joined) along the main scanning direction (width direction of the substrate P). Thereby, the range which can be drawn in the width direction of the board
  • substrate P can be expanded.
  • the drawing lines SLa and SLb of a predetermined number of drawing units U are positioned on the substrate P supported on the outer peripheral surface of the rotary drum DR1, and the drawing lines SLa and SLb of the remaining drawing units rotate.
  • a plurality of drawing units U are arranged so as to be positioned on the substrate P supported by the outer peripheral surface of the drum DR2. Thereby, it is not necessary to arrange all the drawing units U with respect to one rotating drum DR, and the degree of freedom of arrangement of the drawing units U is improved.
  • Three or more rotating drums DR may be provided, and one or more drawing units U may be arranged for each of the three or more rotating drums DR.
  • the drawing lines SLa and SLb are rotated (tilted) to tilt a predetermined pattern to be drawn on the irradiated surface of the substrate P.
  • substrate P can be changed.
  • the drawing lines SLa and SLb can be rotated (tilted). Thereby, the overlay accuracy with respect to the pattern formed in the lower layer is improved.
  • the drawing lines SLa and SLb of each drawing unit U are arranged at the same position in the sub-scanning direction, but may be arranged at different positions in the sub-scanning direction. In short, the drawing lines SLa and SLb may be separated from each other in the main scanning direction. Even in this case, the rotation center axis AXr is a point set between the midpoint of the drawing line SLa and the midpoint of the drawing line SLb, or connects the midpoints of the drawing line SLa and the drawing line SLb. Since the center point set on the line segment passes perpendicularly to the surface to be irradiated of the substrate P, the positional deviation of the drawing lines SLa and SLb accompanying the rotation of the drawing unit U can be reduced.
  • the main scanning of the spot lights SPa and SPb along each of the two drawing lines SLa and SLb is performed by one polygon mirror PM, as shown in FIG.
  • the number of polygon mirrors PM is only half, ie six. For this reason, vibration and noise (wind noise) generated with high-speed rotation (for example, 20,000 rpm or more) of the polygon mirror PM can be suppressed.
  • the first embodiment can be modified as follows.
  • FIG. 12 is a view of a beam scanning system by the polygon mirror PM in Modification 1 of the first embodiment as viewed from the + Zt direction side
  • FIG. 13 is a diagram of the beam scanning system of FIG. It is a figure when seeing from the + Xt direction side. Note that the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only portions different from those in the first embodiment are described.
  • the polygon mirror PM of the first modification is also a regular octagon having eight reflecting surfaces RPa to RPh as shown in FIG. And the reflecting surface RPe, the reflecting surface RPc, and the reflecting surface RPg are parallel to each other.
  • the reflection mirror M4a reflects the beam LBa transmitted through the beam shaping optical system BFa and traveling in the + Xt direction in the ⁇ Zt direction.
  • the beam LBa reflected in the ⁇ Zt direction by the reflection mirror M4a passes through the first cylindrical lens CY1a in which the generating line is set parallel to the Xt axis, and then enters the reflection mirror M5a.
  • the reflection mirror M5a reflects the incident beam LBa in the + Yt direction and guides it to the first reflection surface RPc of the polygon mirror PM.
  • the polygon mirror PM reflects the incident beam LBa to the reflection mirror M5a side ( ⁇ Yt direction side) and guides it to the reflection mirror M6a.
  • the reflection mirror M6a reflects the incident beam LBa in the ⁇ Xt direction and guides it to the f ⁇ lens FTa.
  • the reflection mirror M4b reflects the beam LBb that passes through the beam shaping optical system BFb and travels in the + X direction in the ⁇ Zt direction.
  • the beam LBb reflected in the ⁇ Zt direction by the reflection mirror M4b passes through the first cylindrical lens CY1b in which the generating line is set parallel to the Xt axis, and then enters the reflection mirror M5b.
  • the reflection mirror M5b reflects the incident beam LBb in the -Yt direction and guides it to the second reflection surface RPg of the polygon mirror PM.
  • the polygon mirror PM reflects the incident beam LBb to the reflection mirror M5b side (+ Yt direction side) and guides it to the reflection mirror M6b.
  • the reflection mirror M6b reflects the incident beam LBb in the ⁇ Xt direction and guides it to the f ⁇ lens FTb.
  • the reflection mirrors M6a and M6b are arranged at the same position in the Zt direction.
  • the reflection mirror M5a is disposed on the ⁇ Zt direction side from the reflection mirror M6a
  • the reflection mirror M5b is disposed on the + Zt direction side from the reflection mirror M6b.
  • the reflection mirrors M5a and 5b and the reflection mirrors M6a and 6b are provided at substantially the same position in the Xt direction. That is, the reflection mirrors M5a and 5b and the reflection mirrors M6a and 6b are provided along the Yt direction.
  • the reflection mirrors M4a and M4b are provided in place of the reflection mirror M4 of the first embodiment, and have the same function as the reflection mirror M4.
  • the first cylindrical lenses CY1a and CY1b are provided in place of the first cylindrical lens CY1 in the first embodiment, and have functions equivalent to those of the first cylindrical lens CY1. That is, the cylindrical lenses CY1a and CY1b converge the incident beams LBa and LBb on the reflection surface RP of the polygon mirror PM in the non-scanning direction (Zt direction) orthogonal to the scanning direction (rotation direction) of the polygon mirror PM.
  • the reflection mirrors M5a and M5b are provided in place of the reflection mirror M5 of the first embodiment, and have the same function as the reflection mirror M5.
  • the reflection mirror M4, the first cylindrical lens CY1, and the reflection mirror M5 of the first embodiment are separately provided in each of the first light guide optical system 20 and the second light guide optical system 22.
  • the provided mirrors are the reflection mirrors M4a and M4b, the first cylindrical lenses CY1a and CY1b, and the reflection mirrors M5a and M5b.
  • the distance in the Yt direction of the beams LBa and LBb incident on the reflection mirrors M4a and M4b in the XtYt plane is determined by the triangular reflection mirror M2 and the reflection mirrors M3a and M3b shown in FIG. It is enlarged so that it may become larger than the dimension (diameter).
  • the entire polygon mirror PM is arranged such that the rotation axis AXp of the polygon mirror PM is inclined by a certain angle ⁇ y (less than 45 °) in the Yt direction from a state parallel to the Zt axis. Tilt and place. Therefore, among the reflecting surfaces RP of the polygon mirror PM, the reflecting surfaces RPc and RPg positioned so as to face each of the reflecting mirrors M6a and M6b during rotation are inclined by a certain angle ⁇ y in the Yt direction with respect to the Zt axis. Will do.
  • each center line (traveling direction) of the beams LBa and LBb reflected by the polygon mirror PM and directed to the reflecting mirrors M6a and M6b can be set parallel to the XtYt plane.
  • the position in the Zt direction of the 1st projection optical system 24 and the 2nd projection optical system 26 can be made into the same position, and it is easy to arrange
  • the polygon mirror PM is tilted by an angle ⁇ y, and each of the beams LBa and LBb is projected from the Yt direction to each of two parallel reflecting surfaces RPc and RPg of the polygon mirror PM.
  • the inclination angle ⁇ y is increased, the rotation axis AXp direction of the reflection surfaces RPa to RPh is increased. It is also necessary to increase the height dimension.
  • the arrangement of the reflection mirrors M5a, M5b, M6a, M6b, etc. is facilitated, while the rotation directions AXp of the reflection surfaces RPa to RPh of the polygon mirror PM , And the mass of the polygon mirror PM increases. Therefore, when priority is given to reducing the mass of the polygon mirror PM for speeding up the rotation, the projection position of the beam LBa on the reflection surface RPc and the projection position of the beam LBb on the reflection surface RPg in the Zt direction. May be different.
  • the beams LBa and LBb incident on the reflecting surfaces RPc and RPg that contribute to the drawing of the polygon mirror PM are reflected on the YtZt surface with respect to the reflecting surfaces RPc and RPg.
  • the incident direction and the reflection direction of the beams LBa and LBb can be made different from each other in the rotation axis AXp direction or the Zt direction.
  • each of the center lines AXs of the beams LBa and LBb that are reflected by the reflection mirrors M5a and M5b and go to the reflection surfaces RPc and RPg of the polygon mirror PM is an axis of rotation of the polygon mirror PM. It can be set to pass through AXp.
  • the beams LBa and LBb reflected by the reflecting surfaces RPc and RPg that contribute to the drawing of the polygon mirror PM have a certain angular range ⁇ s centered on the center line AXs.
  • the light is guided to the first projection optical system 24 (specifically, the f ⁇ lens FTa) and the second projection optical system 26 (specifically, the f ⁇ lens FTb). Therefore, when viewed from the rotation axis AXp direction or the Zt direction, it is continuously applied to one reflecting surface RP (RPc, RPg) for one scanning of the spot lights SPa, SPb along the drawing lines SLa, SLb.
  • the effective reflection angle range ( ⁇ s) of the incident pulsed beams LBa and LBb can be distributed to an equal angle range ( ⁇ ⁇ s / 2) around the center line AXs.
  • the optical performance (aberration characteristics, focus characteristics, spot quality, etc.) and constant velocity of the beams LBa, LBb and spot lights SPa, SPb scanned by the polygon mirror PM are improved, and the scanning accuracy is improved.
  • FIG. 14 is a view of the beam scanning system by the polygon mirror PMa in Modification 2 of the first embodiment as viewed from the + Zt direction side
  • FIG. 15 is a beam scanning system of FIG. It is a figure when seeing from the + Xt direction side.
  • the reflection mirrors M5a and M5b are at the same position with respect to the Zt direction, and are arranged on the + Zt direction side of the reflection mirrors M6a and 6b.
  • the reflection mirrors M5a and 5b and the reflection mirrors M6a and 6b are provided at substantially the same position in the Xt direction.
  • the rotation axis AXp of the polygon mirror PMa having eight reflection surfaces RPa to RPh is made parallel to the Zt axis, and each reflection surface RPa to RPh of the polygon mirror PMa is inclined by the angle ⁇ y with respect to the rotation axis AXp.
  • the first reflecting surface RPc of the polygon mirror PMa and the second reflecting surface RPg facing the reflecting surface RPc across the rotation axis AXp are both parallel to the Xt axis. The state at the moment. As shown in FIG.
  • the beam LBa toward the reflection surface RPc of the polygon mirror PM and the beam LBb toward the reflection surface RPg are inclined with respect to the reflection surfaces RPc and RPg.
  • the reflection positions of the beams LBa and LBb on the reflection surfaces RPc and RPg can be set in the plane parallel to the XtYt plane, that is, at the same height position with respect to the Zt direction. That is, the positions of the center lines of the beams LBa and LBb reflected by the polygon mirror PM in the Zt direction can be made the same.
  • the position in the Zt direction of the 1st projection optical system 24 and the 2nd projection optical system 26 can be made into the same position, and to-be-irradiated of the board
  • the beams LBa and LBb incident on each of the two reflecting surfaces RP (for example, RPc and RPg) facing each other across the rotation axis AXp among the reflecting surfaces RPa to RPh of the polygon mirror PMa are reflected. Since the light is incident obliquely with respect to the plane RP in the Z direction, when viewed in the YtZt plane, the incident angle direction and the reflection angle direction of the beams LBa and LBb are set in the rotation axis AXp direction (Zt direction) as shown in FIG. ) Can be separated by an angle 2 ⁇ y.
  • the incident direction and the reflection direction of each of the beams LBa and LBb can be made the same direction as shown in FIG.
  • the beams LBa and LBb from the reflection mirrors M5a and M5b reflected by the polygon mirror PMa enter the reflection mirrors M6a and M6b without returning to the reflection mirrors M5a and M5b.
  • the beams LBa and LBb reflected by the reflecting surfaces RPc and RPg contributing to the drawing of the polygon mirror PMa are constant around the center line AXs.
  • the first projection optical system 24 specifically, the f ⁇ lens FTa
  • the second projection optical system 26 specifically, the f ⁇ lens FTb. Therefore, the effective reflection angle of the pulsed beams LBa and LBb continuously incident on one reflecting surface RP (RPc, RPg) for one scanning of the spot light along the drawing lines SLa, SLb.
  • the range ( ⁇ s) can be distributed to an equal angular range ( ⁇ ⁇ s / 2) around the center line AXs.
  • the optical performance (aberration characteristics, focus characteristics, spot quality, etc.) and constant velocity of the beams LBa, LBb and spot lights SPa, SPb scanned by the polygon mirror PMa are improved, and the scanning accuracy is improved.
  • the rotation axis AXp of the polygon mirror PM is inclined by the angle ⁇ y in the Yz direction with respect to the Zt axis.
  • the polygon mirror PMa The rotation axis AXp is made parallel to the Zt axis, and the reflecting surfaces RPa to RPh of the polygon mirror PMa are inclined with respect to the Zt axis by an angle ⁇ y.
  • the arrangement of the polygon mirror PM and the configuration of the reflecting surfaces RP are not limited to the first and second modifications.
  • the polygon mirror PM having the configuration as in the first embodiment, a diagonally upward direction with respect to a plane (parallel to the XtYt plane) perpendicular to each reflection plane RP (parallel to the Zt axis and the rotation axis AXp)
  • the beam LB may be incident from (or below).
  • the incident directions and the reflection directions of the beams LBa and LBb are in a state where the respective reflecting surfaces RP are positioned so that the beams LBa and LBb are perpendicularly incident.
  • the polygon mirror PM distributes the beams LBa and LBb reflected by each of the two reflecting surfaces RP to a constant angle range ⁇ s centered on the center line AXs (distribution of angles ⁇ ⁇ s / 2 centered on the center line AXs). And can be guided to the first projection optical system 24 (specifically, the f ⁇ lens FTa) and the second projection optical system 26 (specifically, the f ⁇ lens FTb).
  • the optical beams LBa and LBb and the spot lights SPa and SPb scanned by the polygon mirror PM are used. Performance (aberration characteristics, focus characteristics, spot quality, etc.) and constant speed are improved, and scanning accuracy is improved.
  • each reflection surface RPa to RPh is also a regular octagonal polygon mirror PM parallel to the rotation axis AXp.
  • the incident directions of the beams LBa and LBb that are incident on the reflecting surface RP of the polygon mirror PM that contributes to drawing and the reflecting directions thereof are the same when viewed in the XtYt plane.
  • a polarization beam splitter PBS PBSa, PBSb
  • FIGS. 16A and 16B may be used as shown in FIGS. 16A and 16B.
  • FIG. 16A is a view of the beam scanning system by the polygon mirror PM in the fourth modification of the first embodiment as viewed from the + Zt direction side
  • FIG. 16B is a view of the beam scanning system in FIG. 16A on the ⁇ Xt direction side. It is a figure when it sees.
  • the same members as those described in the first embodiment and each of the first and second modifications are denoted by the same reference numerals, and only different portions will be described.
  • a rectangular parallelepiped polarization beam splitter PBSa having a beam incident / exit plane parallel to the XtYt plane and the XtZt plane is provided between the polygon mirror PM and the reflection mirror M6a.
  • a polarizing beam splitter PBSb having a rectangular parallelepiped shape in which the beam incident / exit surface is parallel to each of the XtYt plane and the XtZt plane is disposed.
  • the polarization separation planes of the polarization beam splitters PBSa and PBSb are set so as to be inclined at 45 ° with respect to both the XtYt plane and the XtZt plane. Further, a quarter wavelength plate QPa is provided between the polarization beam splitter PBSa and the polygon mirror PM, and a quarter wavelength plate QPb is provided between the polarization beam splitter PBSb and the polygon mirror PM.
  • the beam LBa modulated by the optical element (acousto-optic modulation element) AOMa is a first cylindrical lens whose bus is parallel to the Xt axis, as shown in FIG. 16B.
  • the light enters the polarization beam splitter PBSa from the + Zt direction side in parallel with the Zt axis.
  • the beam LBa is linear S-polarized light
  • most of the beam LBa is reflected by the polarization separation surface of the polarization beam splitter PBSa, passes through the quarter-wave plate QPa, becomes circularly polarized light, and travels toward the polygon mirror PM.
  • the rotational angle position of the polygon mirror PM is within a range of an angle ⁇ ⁇ s / 2 from a state in which one reflecting surface PRc contributing to drawing by the beam LBa is parallel to the XtZt plane as shown in FIG. 16A, for example,
  • the beam LBa that has passed through the / 4 wavelength plate QPa is reflected by the reflection surface PRc, passes through the 1 ⁇ 4 wavelength plate QPa again, becomes linear P-polarized light, and returns to the polarization beam splitter PBSa. Therefore, most of the beam LBa reflected by the reflection surface PRc passes through the polarization separation surface of the polarization beam splitter PBSa and travels toward the reflection mirror M6a.
  • the beam LBb modulated by the optical element (acousto-optic modulation element) AOMb is, as shown in FIG. 16B, generated by the first cylindrical lens CY1b whose generating line is parallel to the Xt axis.
  • the light enters the polarization beam splitter PBSb in parallel with the Zt axis from the + Zt direction side.
  • the beam LBb is linear S-polarized light
  • most of the beam LBb is reflected by the polarization separation surface of the polarization beam splitter PBSb, passes through the quarter-wave plate QPb, becomes circularly polarized light, and travels toward the polygon mirror PM.
  • each of the beam LBa reflected by the reflection mirror M6a and the beam LBb reflected by the reflection mirror M6b is scanned within an angle range ⁇ s in a plane parallel to the XtYt plane.
  • the extension line of the optical axis AXfa of the first projection optical system 24 (specifically, the f ⁇ lens FTa) disposed after the reflection mirror M6a is bent by 90 ° by the reflection mirror M6a
  • the polygon mirror PM The extension line of the optical axis AXfb of the second projection optical system 26 (specifically, the f ⁇ lens FTb) that intersects the rotation axis AXp and is arranged behind the reflection mirror M6b is bent by 90 ° by the reflection mirror M6b.
  • the polygon mirror PM uses the beams LBa and LBb reflected by the two reflecting surfaces (for example, RPc and RPg) to a certain angular range ⁇ s (light) with the optical axes AXfa and AXfb as the center. It can be deflected by an angle ⁇ ⁇ s / 2 with the axes AXfa and AXfb as the center, and guided to the first projection optical system 24 (f ⁇ lens FTa) and the second projection optical system 26 (f ⁇ lens FTb).
  • the two reflecting surfaces for example, RPc and RPg
  • the optical performance (aberration characteristics, focus characteristics, spot quality, etc.) and constant velocity of the beams LBa, LBb and spot lights SPa, SPb scanned by the polygon mirror PM are obtained. And the scanning accuracy is improved.
  • the fourth modification is also generated by the polarization scanning of each of the two beams LBa and LBb by one polygon mirror PM.
  • the drawing lines SLa and SLb have a length that can maintain linearity with accuracy according to the fineness (minimum line width) of the pattern to be drawn and the effective dimensions (diameters) of the spot lights SPa and SPb, for example, 30 It can be set to about 80 mm.
  • the beams LBa and LBb deflected and scanned by the polygon mirror PM are polarized within an effective angle range ⁇ s corresponding to the lengths of the drawing lines SLa and SLb, as shown in FIG. 16A.
  • the light enters the beam splitters PBSa and PBSb. Therefore, the extinction ratio, which is the degree of separation between the P-polarized light and the S-polarized light of the polarizing beam splitters PBSa and PBSb, is set to be the maximum over the angular range ⁇ s or more.
  • polarizing beam splitters PBSa and PBSb As an example of such polarizing beam splitters PBSa and PBSb, a film in which a hafnium oxide (HfO 2) film and a silicon dioxide (SiO 2) film are repeatedly laminated on a polarization separation surface is disclosed in International Publication No. 2014/073535. Has been.
  • HfO 2 hafnium oxide
  • SiO 2 silicon dioxide
  • FIG. 17 is a diagram illustrating a partial configuration of the drawing unit Ua according to the second embodiment. Since each drawing unit Ua has the same configuration, the second embodiment will be described by taking the drawing unit Ua2 that scans the spot lights SPa and SPb along the drawing lines SL2a and SL2b as an example. In addition, the same code
  • the polygon mirror PM is provided so that the rotation axis AXp extends in the Xt axis direction, and the f ⁇ lenses FTa and FTb are provided so that the optical axes AXfa and AXfb extend in the Zt axis direction. It has been.
  • the eight reflecting surfaces RP of the polygon mirror PM two reflecting surfaces RP (reflecting surfaces RPb and RPh in FIG. 17) that form an angle of 90 ° with each other in the YtZt plane are beams traveling in the ⁇ Zt axis direction.
  • LBa and LBb are incident.
  • the first reflecting surface RP (here, RPh) of the polygon mirror PM reflects the beam LBa incident from the first direction toward the ⁇ Yt direction and guides it to the reflecting mirror M6a.
  • the beam LBa reflected by the reflection mirror M6a travels in the ⁇ Zt direction, passes through the f ⁇ lens FTa and the cylindrical lens CY2a, and then enters the substrate P.
  • the f ⁇ lens FTa and the cylindrical lens CY2a the beam LBa incident on the substrate P becomes the spot light SPa on the irradiated surface of the substrate P.
  • the second reflecting surface RP (here, RPb) of the polygon mirror PM reflects the beam LBb incident from the second direction different from the first direction to the + Yt direction side and guides it to the reflecting mirror M6b.
  • the beam LBb reflected by the reflection mirror M6a travels in the ⁇ Zt direction, passes through the f ⁇ lens FTb and the cylindrical lens CY2b, and then enters the substrate P.
  • the beam LBb incident on the substrate P becomes spot light SPb on the irradiated surface of the substrate P.
  • the spot lights SPa and SPb projected on the irradiated surface of the substrate P scan the drawing lines SL2a and SL2b at a constant speed by the rotation of the polygon mirror PM.
  • the polygon mirror PM is provided so that the rotation axis AXp extends in the Xt axis direction
  • the f ⁇ lenses FTa and FTb are provided so that the optical axes AXfa and AXfb extend in the Zt axis direction.
  • the reflection mirror M6a, the f ⁇ lens FTa, and the cylindrical lens CY2a function as the first projection optical system 24a
  • the reflection mirror M6a, the f ⁇ lens FTb, and the cylindrical lens CY2b It functions as the second projection optical system 26a.
  • the drawing unit Ua of the second embodiment is also rotatable around the rotation center axis AXr, and the rotation center axis AXr is a line connecting the midpoint of the drawing line SL2a and the midpoint of the drawing line SL2b. It passes through the center point of the minute and passes perpendicularly to the irradiated surface of the substrate P.
  • the light source device 14 A first light guide optical system and a second light guide optical system that guide the beams LBa and LBb to the polygon mirror PM are arranged so that the beams LBa and LBb travel in the ⁇ Z direction and enter the polygon mirror PM.
  • the beam LB is obliquely reflected on the reflection surface RP with respect to the direction intersecting the rotation direction of the reflection surface RP (the direction in which the rotation axis AXp of the polygon mirror PM extends).
  • the incident direction and the reflection direction of the beams LBa and LBb can be shifted in the direction of the rotation axis AXp. Accordingly, the same effect as that of the third modification of the first embodiment can be obtained.
  • the polygon mirror PM tilts the rotation axis AXp of the polygon mirror PM with respect to the Xt direction when viewed from the direction orthogonal to the rotation axis AXp. You may let them.
  • the polygon mirror PMa described in the second modification of the first embodiment may be used. That is, the rotation axis AXp of the polygon mirror PM in FIG. 17 is made parallel to the Xt axis, and each reflection surface RP (RPa to RPh) of the polygon mirror PM is parallel to the rotation axis AXp by an angle ⁇ y as shown in FIG. You may form so that it may incline.
  • the beams LBa and LBb incident on the reflection surfaces RP (RPa to RPh) of the polygon mirror PM as viewed from the direction orthogonal to the rotation axis AXp are incident on the reflection surfaces RP obliquely, thereby causing the first.
  • the same effects as those of the first and second modifications of the embodiment can be obtained.
  • FIG. 18 is a configuration diagram of the drawing unit Ub of the third embodiment viewed from the ⁇ Yt ( ⁇ Y) direction side
  • FIG. 19 is a diagram of the configuration of the drawing unit Ub on the + Zt side from the polygon mirror PMb viewed from the + Xt direction side
  • FIG. 20 is a diagram of the configuration of the drawing unit Ub on the ⁇ Zt direction side from the polygon mirror PMb as viewed from the + Zt direction side.
  • symbol is attached
  • the drawing unit Ub includes a triangular reflecting mirror (right angle mirror) M10 whose ridgeline is parallel to the Xt axis, reflecting mirrors M11a and M11b, shift optical members SRa and SRb, and a cylindrical lens whose generating line is parallel to the Xt axis.
  • An optical system of parallel cylindrical lenses CY2a and CY2b is provided.
  • the optical members provided in pairs with respect to the two beams LBa and LBb are denoted by a and b after the reference numerals.
  • the two beams LBa and LBb (both parallel beams) from the light source device 14 are aligned in parallel with the rotation center axis AXr in between and proceed in the ⁇ Zt direction, and the triangular reflection mirror of the drawing unit Ub.
  • the light is incident on separate reflecting surfaces M10a and M10b across the ridge line of M10.
  • the beams LBa and LBb are incident on the reflecting surfaces M10a and M10b of the triangular reflecting mirror M10 of the drawing unit Ub so as to be symmetric in the Yt direction with respect to the rotation center axis AXr parallel to the Zt axis.
  • the reflecting surface M10a of the triangular reflecting mirror M10 reflects the beam LBa in the -Yt direction and guides it to the reflecting mirror M11a
  • the reflecting surface M10b of the triangular reflecting mirror M10 reflects the beam LBb in the + Yt direction and guides it to the reflecting mirror M11b.
  • the beam LBa reflected by the reflection mirror M11a travels in the ⁇ Zt direction, passes through the shift optical member SRa and the cylindrical lens CY1a, and then enters the reflection surface RP (for example, the reflection surface RPa) of the polygon mirror PMb.
  • the beam LBb reflected by the reflection mirror M11b travels in the ⁇ Zt direction, passes through the shift optical member SRb and the cylindrical lens CY1b, and then enters the reflection surface RP (for example, the reflection surface RPe) of the polygon mirror PMb.
  • the reflective surface RPa and the reflective surface RPe of the polygon mirror PMb are positioned symmetrically across the rotation axis AXp of the polygon mirror PMb.
  • the rotation axis AXp of the polygon mirror PMb is set to be coaxial with the rotation center axis AXr.
  • the triangular reflection mirror M10 and the reflection mirrors M11a and M11b (see FIG. 19) enlarge the distance in the Yt direction between the center lines of the beams LBa and LBb incident on the polygon mirror PMb. Accordingly, the distance between the optical axes of the beams LBa and LBb incident on the drawing unit Ub can be shortened, and the beams LBa and LBb incident on the drawing unit Ub (triangular reflection mirror M10) are brought closer to the rotation center axis AXr. be able to.
  • the reflecting surface M10a, the reflecting mirror M11a, the shift optical member SRa, and the cylindrical lens CY1a of the triangular reflecting mirror M10 are the first guides that guide the beam LBa toward the first reflecting surface RP (RPa) of the polygon mirror PMb. It functions as the optical optical system 20b. Further, the reflecting surface M10b, the reflecting mirror M11b, the shift optical member SRb, and the cylindrical lens CY1b of the triangular reflecting mirror M10 have a second reflecting surface RP (RPe) that is different from the first reflecting surface of the polygon mirror PMb. It functions as the second light guide optical system 22b that guides toward.
  • RPe second reflecting surface RP
  • the reflecting surfaces M10a and M10b of the triangular reflecting mirror M10 may be flat mirrors provided separately for the first light guiding optical system 20b and the second light guiding optical system 22b. Since the cylindrical lens CY1a (same for CY1b) has a refractive power that converges the beam LBa (LBb) incident as a parallel light beam only in the Yt direction, the cylindrical lens CY1a has a refractive power on the reflection surface RPa (reflection surface RPe) of the polygon mirror PMb. , A spot light extending in a slit shape in the Xt direction is projected.
  • the polygon mirror PMb of the third embodiment When viewed in the XtYt plane, the polygon mirror PMb of the third embodiment has a regular octagonal shape as shown in FIG. 20, and has eight reflecting surfaces RPa to RPh formed around it (FIG. 19). Each of RPa to RPe is formed so as to be inclined by 45 degrees with respect to the rotation axis AXp (rotation center axis AXr). That is, the polygon mirror PMb has a shape in which a regular octagonal pyramid with a bottom surface of a regular octagon and each of the eight side surfaces inclined by 45 degrees with respect to the centerline is cut out with an appropriate thickness in the direction of the centerline.
  • each reflecting surface (RPa to RPh) of the polygon mirror PMb reflects the beam LBa traveling in the ⁇ Zt direction at right angles to the ⁇ Yt direction side to guide it to the reflecting mirror M12a, and the beam LBb traveling in the ⁇ Zt direction to the + Y direction.
  • the light is reflected perpendicularly to the side and guided to the reflection mirror M12b. Therefore, as in the second modification of the first embodiment, the polygon mirror PMb uses, for example, the beams LBa and LBb reflected by the reflecting surfaces RPa and RPe, among the eight reflecting surfaces RPa to RPh, as center lines.
  • the light can be reflected in a certain angle range ⁇ s around AXs (coaxial with the optical axes AXfa and AXfb of the two f ⁇ lenses FTa and FTb).
  • ⁇ s around AXs (coaxial with the optical axes AXfa and AXfb of the two f ⁇ lenses FTa and FTb).
  • the beam LBa from the polygon mirror PMb (for example, the reflecting surface RPa) reflected in the ⁇ Xt direction by the reflecting mirror M12a is guided to the f ⁇ lens FTa via the reflecting mirrors M13a and M14a. It is burned.
  • the beam LBb from the polygon mirror PMb (for example, the reflection surface RPe) reflected in the + Xt direction by the reflection mirror M12b is guided to the f ⁇ lens FTb via the reflection mirrors M13b and M14b.
  • the reflecting mirror M13a reflects the beam LBa traveling in the ⁇ Xt direction from the reflecting mirror M12a in the ⁇ Zt direction at the folding position p13a, and the reflecting mirror M14a reflects the beam LBa from the reflecting mirror M13a in the + Xt direction at the folding position p14a.
  • the reflecting mirror M13b reflects the beam LBb traveling in the + Xt direction from the reflecting mirror M12b in the ⁇ Zt direction at the folding position p13b, and the reflecting mirror M14b reflects the beam LBb from the reflecting mirror M13a in the ⁇ Xt direction at the folding position p14b.
  • the beam LBa incident on the f ⁇ lens FTa through the reflection mirrors M12a, M13a, and M14a is a substantially parallel light beam when viewed in the XtYt plane due to the action of the cylindrical lens CY1a. When viewed in the XtZt plane, it becomes a divergent light beam as shown in FIG.
  • the beam LBa that passes through the f ⁇ lens FTa (the optical axis AXfa is parallel to the Xt axis) and travels in the + Xt direction is reflected in the ⁇ Zt direction by the reflection mirror M15a in a telecentric state, passes through the cylindrical lens CY2a, and then passes through the substrate P Are projected as circular spot light SPa on the irradiated surface.
  • the beam LBb that passes through the f ⁇ lens FTb (the optical axis AXfb is parallel to the Xt axis) and travels in the ⁇ Xt direction is reflected in the ⁇ Zt direction by the reflection mirror M15b in a telecentric state, and is transmitted through the cylindrical lens CY2b. After that, it is projected as a circular spot light SPb on the irradiated surface of the substrate P.
  • the beam LBa projected onto the substrate P is converged as a minute spot light SPa on the irradiated surface of the substrate P by the f ⁇ lens FTa and the cylindrical lens CY2a.
  • the beam LBb projected onto the substrate P is converged as a minute spot light SPb on the irradiated surface of the substrate P by the f ⁇ lens FTb and the cylindrical lens CY2b.
  • the two spot lights SPa and SPb projected on the irradiated surface of the substrate P are simultaneously one-dimensionally scanned on the drawing lines SLa and SLb.
  • the two spot lights SPa and SPb scan and move in opposite directions along the drawing lines SLa and SLb. Then, when the polygon mirror PMb is rotated clockwise in the XtYt plane as shown in FIG.
  • the + Yt direction end of the drawing line SLa and the drawing line SLb in the ⁇ Yt direction become the Yt direction joints of the drawing pattern.
  • the end portions are set to be the scanning end positions of the spot lights SPa and SPb, respectively.
  • the polygon mirror PMb is rotated counterclockwise within the XtYt plane, the + Yt direction end of the drawing line SLa and the end of the drawing line SLb in the ⁇ Yt direction become the Yt direction joints of the drawing pattern.
  • the reflection mirrors M12a, M13a, M14a, M15a, the f ⁇ lens FTa, and the cylindrical lens CY2a condense the beam LBa reflected and deflected by the polygon mirror PMb to draw the spot light SPa. It functions as a first projection optical system 24b that projects onto SLa. Further, the reflection mirrors M12b, M13b, M14b, M15b, the f ⁇ lens FTb, and the cylindrical lens CY2b condense the beam LBb reflected and deflected and scanned by the polygon mirror PMb to form the spot light SPb on the drawing line SLb. It functions as the 2nd projection optical system 26b which projects.
  • the optical path length from the reflection surface RP of the polygon mirror PMb to the f ⁇ lenses FTa and FTb is the reflection mirrors M12a to M14a and M12b to M14b between them. Therefore, f ⁇ lenses FTa and FTb having a long focal length on the beam incident side can be used.
  • the reflecting surface of the polygon mirror PM (same for PMa and PMb) is disposed at or near the position (pupil position) of the focal length fs on the beam incident side of the telecentric f ⁇ lens FTa (FTb).
  • the deflection angle range ⁇ s can be reduced accordingly by using an f ⁇ lens having a long focal length fs.
  • the rotation angle range ⁇ s / 2 of the polygon mirror PM (PMa, PMb) that contributes to one scan of the spot light SPa (SPb) along the drawing line SLa (SLb) is reduced.
  • the drawing line SLa and the drawing line SLb scanned with each of the spot light SPa and the spot light SPb are separated from each other in the sub-scanning direction.
  • the drawing line SLa and the drawing line SLb are set to be shifted in the Yt direction so that the end portions are adjacent to each other or partially overlap with each other in the main scanning direction. That is, the drawing lines SLa and SLb are arranged in parallel so as to be separated from each other in the sub-scanning direction (the transport direction of the substrate P) and to be continuous without a gap in the main scanning direction. Therefore, when arranging a plurality of such drawing units Ub, they are arranged as shown in FIG.
  • FIG. 21 corresponds to FIG. 2 described above, and an exposure region W as an electronic device formation region formed on the substrate P is divided into six in the Y (Yt) direction, and a plurality of stripe-shaped divided regions WS1 to WS6 are formed.
  • An example in which a pattern is drawn by each of the six drawing lines SL1a, SL1b, SL2a, SL2b, SL3a, and SL3b is shown.
  • the two drawing lines SL1a and SL1b by the first drawing unit Ub1 having the same configuration as the drawing unit Ub as shown in FIGS. 18 to 20 have patterns in the divided areas WS1 and WS2 adjacent in the Y direction, respectively. Set to draw.
  • the two drawing lines SL2a and SL2b by the second drawing unit Ub2 having the same configuration as the drawing unit Ub are set so as to draw patterns in the divided areas WS3 and WS4 adjacent in the Y direction, respectively, and the drawing unit Ub
  • the two drawing lines SL3a and SL3b by the third drawing unit Ub3 having the same configuration as those in FIG. 6 are set so as to draw a pattern in the divided areas WS5 and WS6 adjacent in the Y direction.
  • the two drawing lines SLa and SLb scanned by the spot light SPa and SPb in the drawing unit Ub are separated from each other in the sub-scanning direction, and The end portions are set so as to be adjacent or partially overlapped with respect to the main scanning direction.
  • the rotation center axis AXr for slightly rotating the entire drawing unit Ub passes through the center point of the line segment connecting the midpoints of the two drawing lines SLa and SLb perpendicularly to the substrate P.
  • the drawing lines SL of the plurality of drawing units U, Ua, Ub are all set to the same scanning length, but the scanning lengths may be different.
  • the scanning length of the drawing line SL may be made different between the drawing units U, Ua, Ub, and the scanning length of the drawing lines SLa, SLb may be set within the same drawing unit U, Ua, Ub. You may make it differ.
  • the rotation center axis AXr passes through the center point of the line segment connecting the midpoints of the drawing lines SLa and SLb of the drawing units U, Ua and Ub perpendicularly to the substrate P. May be set on a line segment connecting the midpoints of the drawing lines SLa and SLb.
  • the extended line of the optical axis AXfa (AXfb) bent by the reflection mirror M15a (M15b) after the f ⁇ lens FTa (FTb) of the drawing unit Ub is a rotating drum DR1 or DR2.
  • the tilt in the XZ plane of the reflection mirror M15a is set to an angle other than 45 degrees so that the central lens (rotation center axis) AXo1 or AXo2 is directed, and the cylindrical lens CY2a (CY2b) is also tilted. What is necessary is just to incline and arrange
  • the conveying apparatus disclosed by the international publication 2013/150677 pamphlet can be used, for example.
  • a large number of fine gas ejection holes are formed on the surface curved in a cylindrical surface.
  • a pad member that supports the back side in a non-contact or low friction state with a gas bearing may be used in place of the rotary drums DR1 and DR2.
  • the substrate P disclosed in International Publication No. 2013/150677 pamphlet is parallel to the XY plane instead of the rotary drums DR1 and DR2.
  • a transport device that supports the substrate P flatly may be used, or the above-described pad member (substrate support holder) that supports the back side of the substrate P in a non-contact or low-friction state with a gas bearing may be used.
  • the first to third embodiments can be modified as follows.
  • FIG. 23 shows a beam LB (two beams LBa, LBb) provided from the light source device 14 shown in FIG. 1, for example, each of the four drawing units U1, U2, It is a figure which shows the structure of an example of the beam distribution system for distributing to each of U5 and U6. Note that this beam distribution system is applicable not only to the first embodiment but also to any of the second and third embodiments and drawing apparatuses according to modifications thereof.
  • the light source device 14 converts a laser light source LS that outputs a high-luminance laser beam (continuous light or pulsed light) in the ultraviolet region into a parallel light beam having a predetermined diameter (for example, several millimeters in diameter).
  • a beam expander BX, a first beam splitter (half mirror) BS1 that divides a beam that has become a parallel light beam into two, and a mirror MR1 are provided.
  • the beam reflected by the beam splitter BS1 enters the second beam splitter BS2a as a beam LBa, and the beam that has passed through the beam splitter BS1 is reflected by the mirror MR1 and enters the second beam splitter BS2b as a beam LBb. To do.
  • the split ratio of the beam splitter BS1 is 1: 1, and the light intensities (illuminance) of the beams LBa and LBb are substantially equal.
  • the beam LBa incident on the beam splitter BS2a and the beam LBb incident on the beam splitter BS2b are further divided into two at an equal intensity ratio.
  • the beam LBa transmitted through the beam splitter BS2a is incident on the third beam splitter BS3a (division ratio is 1: 1).
  • the beam LBb transmitted through the beam splitter BS2b is incident on the third beam splitter BS3b (division ratio is 1: 1).
  • the two beams LBa and LBb reflected by the beam splitters BS3a and BS3b are parallel to each other across the rotation center axis AXr of the drawing unit U1, and corresponding optical elements AOMa and AOMb (see FIG. 5 and the like). To the drawing unit U1.
  • the two beams LBa and LBb transmitted through the beam splitters BS3a and BS3b are reflected by the mirrors MR2a and MR2b, respectively, and then parallel to each other with the rotation center axis AXr of the drawing unit U2 interposed therebetween.
  • the beam LBa reflected by the previous beam splitter BS2a is incident on the fourth beam splitter BS4a (division ratio is 1: 1), and the beam LBb reflected by the previous beam splitter BS2b is the fourth beam splitter BS2b.
  • the light enters the splitter BS4b (division ratio is 1: 1).
  • the two beams LBa and LBb reflected by each of the beam splitters BS4a and BS4b are parallel to each other with the rotation center axis AXr of the drawing unit U5 interposed therebetween, and the drawing unit U5 passes through the corresponding optical elements AOMa and AOMb. Head for.
  • the two beams LBa and LBb transmitted through the beam splitters BS4a and BS4b are reflected by the mirrors MR3a and MR3b, respectively, and then parallel to each other with the rotation center axis AXr of the drawing unit U6 interposed therebetween.
  • the beams LBa and LBb distributed to each of the four drawing units U1, U2, and U5 are set to substantially the same light intensity.
  • the laser light source in the light source device 14 may be either a solid-state laser or a gas laser as long as it emits a high-luminance beam having an ultraviolet wavelength.
  • a solid-state laser a fiber laser light source that amplifies an infrared wavelength beam (several hundred MHz pulsed light) from a semiconductor laser diode with a fiber amplifier and then emits it as an ultraviolet wavelength beam (pulsed light) by a wavelength conversion element.
  • a high-power ultraviolet beam can be obtained in spite of a relatively compact housing, and the exposure apparatus (drawing apparatus) EX can be easily incorporated into the main body.
  • each drawing unit U (Ua, Ub) may be provided with LDs or LEDs for supplying the beams LBa, LBb.
  • a temperature adjustment mechanism such as heat insulation and cooling of the light source unit in the drawing unit U (Ua, Ub) is provided. It is necessary to keep the temperature change of the entire drawing unit U (Ua, Ub) small.
  • optical elements AOMa and AOMb as shown in FIG. 5 are also provided in each drawing unit U (Ua, Ub).
  • the polygon mirror PM (PMa, PMb) has eight reflecting surfaces arranged at intervals of 45 degrees around the rotation axis AXp.
  • the octahedron (or the shape of an octagonal pyramid) is used, but the number of reflecting surfaces may be any number, 3 to 6, 9, 10, 12, 15, 16, 18, Polygon mirrors such as 20 surfaces can be used similarly.
  • Polygon mirrors such as 20 surfaces can be used similarly.
  • the two beams LBa reflected by the different reflecting surfaces of the polygon mirror PM (PMa, PMb) are provided.
  • An origin sensor that outputs an origin signal at a timing at which LBb has a reflection direction corresponding to the scanning start points of the spot lights SPa and SPb on the drawing lines (scanning lines) SLa and SLb is a polygon mirror PM (PMa , PMb). Timing of spot light SPa, SPb scanning position management (offset setting, etc.) along the drawing lines SLa, SLb, and intensity modulation of the spot light SPa, SPb (On / Off of optical elements AOMa, AOMb) based on pattern data Are controlled based on the origin signal and a clock signal corresponding to the scanning speed of the spot lights SPa and SPb.
  • the polygon mirror PM (PMa, PMb) is used in the optical path from the polygon mirror PM (PMa, PMb) to the f ⁇ lenses FTa, FTb.
  • Surfaces to which the reflected beams LBa and LBb are deflected (the embodiments shown in FIGS. 5 and 6, the embodiments shown in FIGS. 12 to 16, the surfaces parallel to the XtYt plane in the embodiments shown in FIGS. 18 to 20,
  • reflection mirrors M6a and M6b or M12a and M12b for bending the beams LBa and LBb are provided in a plane parallel to the YtZt plane.
  • the polygon mirror PM (PMa, PMb) and the reflecting surface of each reflecting mirror are made of a glass or ceramic base material. It is made by depositing an aluminum layer having a high reflectance on the surface, and further depositing a dielectric thin film (single layer or multiple layers) for preventing oxidation.
  • the base material itself is formed and processed with aluminum, and the portion that becomes the reflection surface is optically polished, and then a dielectric thin film (single layer or multiple layers) is deposited on the surface.
  • the incident angles of the beams LBa and LBb incident on the reflection surface are the beams for main scanning.
  • the intensity of the reflected beam tends to change according to the change in the incident angle, that is, on the reflection surface. In some cases, the influence of the dependency of the reflectance on the incident angle cannot be ignored.
  • FIG. 24 is a diagram for explaining the incident angle and reflection angle state of the beam LBa projected on each of the polygon mirror PM and the reflection mirror M6a described in FIG. 17 in the YtZt plane.
  • the situation described with reference to FIG. 24 can also occur in other embodiments (FIGS. 5, 6, 12 to 16, and 18 to 20).
  • FIG. 24 when the angle ⁇ o in the YtZt plane of one reflecting surface RPh of the polygon mirror PM is 45 °, the beam LBa incident parallel to the Zt axis is reflected by the reflecting surface RPh so as to be parallel to the Yt axis.
  • the reflection mirror M6a After that, it is bent at 90 ° by the reflection mirror M6a and proceeds coaxially with the optical axis AXfa of the subsequent f ⁇ lens FTa.
  • the effective scanning start point of the spot light SPa along the drawing line SL2a (SLa) is that the reflection surface RPh is an angle within the YtZt plane.
  • the time point when ⁇ o ⁇ a is reached, and the end point of the effective scanning of the spot light SPa is the time point when the reflecting surface RPh becomes the angle ⁇ o + ⁇ a in the YtZt plane.
  • the deflection angle range with respect to the optical axis AXfa of the beam LBa that is reflected by the reflection surface RPh of the polygon mirror PM and travels toward the reflection mirror M6a is ⁇ 2 ⁇ a.
  • the deflection angle of the beam LBa with respect to the optical axis AXfa is + 2 ⁇ a
  • the deflection angle of the beam LBa with respect to the optical axis AXfa is
  • FIG. 25 is a graph for explaining the incident angle dependence characteristic CV1 of the reflectivity observed when a beam having a polarization characteristic in the ultraviolet wavelength region is incident on a reflecting surface composed of an aluminum layer and a dielectric thin film.
  • the vertical axis represents the reflectance (%) of the reflecting surface
  • the horizontal axis represents the incident angle (degree) of the beam to the reflecting surface.
  • the maximum reflectance is about 90%.
  • the incident angle When the incident angle is around 45 °, the reflectivity is about 87%. However, as the incident angle further increases, the reflectivity greatly decreases.
  • the reflectance of each reflecting surface (RPh) of the polygon mirror PM is the same as the characteristic CV1
  • the incident angle of the beam LBa incident on the reflecting surface RPh of the polygon mirror PM is centered at 45 ° as shown in FIG.
  • the maximum deflection angle range ⁇ 2 ⁇ a of the beam LBa incident on the f ⁇ lens system FTa for scanning the drawing line SLa is ⁇ 15 ° about the optical axis AXfa
  • ⁇ a is 7.5 °.
  • the incident angle of the beam LBa on the reflecting surface RPh of the polygon mirror PM varies in the range of 37.5 ° to 52.5 ° centering on 45 °.
  • the reflectance at an incident angle of 37.5 ° is about 88%
  • the reflectance at an incident angle of 52.5 ° is about 85.5%.
  • the intensity of the spot light SPa at the scanning start point on the drawing line SLa and the spot light SPa at the scanning end point are measured.
  • the allowable range of intensity unevenness of the spot light SP during main scanning is about ⁇ 2%, which is ⁇ 1.25%. Any intensity error (unevenness) is acceptable.
  • the intensity of the spot light SPa projected on the substrate P is increased. causes a larger intensity error in the main scanning direction.
  • the incident angle of the beam LBa incident on the reflection mirror M6a changes between ⁇ m1 and ⁇ m2.
  • ⁇ a 7.5 °
  • the product of the reflectance of 85.5% on the reflective surface RPh of the polygon mirror PM results in a total reflectance of 69.3% (85.5% ⁇ 81%) at the scanning end point of the spot light SPa. .
  • the incident angle dependence of the total reflectance on the reflecting surface of the polygon mirror PM and the reflecting surface of the reflecting mirror M6a is as shown by the characteristic CV2 in FIG.
  • the total reflectivity is about 75.7% (87% ⁇ 87%).
  • the reflection mirror M6a (same for M6b, M12a, and M12b) is a surface on which the beam LBa (LBb) reflected by the polygon mirror PM is deflected (in the embodiment of FIG. 17, parallel to the YtZt surface, other
  • the incident angle of the beam LBa (LBb) changes greatly.
  • the intensity of the spot light SPa (SPb) is An error of about 8.6% occurs between the scanning start point and the scanning end point. This value is not necessarily within the allowable range, and it is desirable to provide some correction (adjustment) mechanism if necessary.
  • the characteristic CV1 shown in FIG. 25 is an example, and when the reflection surface of the reflection mirror is formed of a dielectric multilayer film, the change rate (slope) of the reflectivity with respect to the incident angle may be further increased. . Therefore, the reflectance characteristics CV1 of the polygon mirror PM and the reflection mirror M6a (M6b) that are actually used are obtained in advance through experiments and simulations, and the scanning position of the spot light SPa (SPb) on the drawing line SLa (SLb). The tendency (change in intensity, inclination, etc.) of the change of the beam intensity with respect to is obtained in advance.
  • a filter (ND filter) plate can be provided, and the tendency (intensity unevenness, inclination, etc.) of the intensity change with respect to the scanning position of the spot light SPa (SPb) on the substrate P can be optically suppressed or corrected.
  • the neutral density filter plate can be disposed in the optical path between the reflection mirrors M6a and M6b (M12a and M12b) and the f ⁇ lens systems FTa and FTb, or in the optical path between the f ⁇ lens systems FTa and FTb and the substrate P.
  • the optical path after the f ⁇ lens systems FTa and FTb there are provided CY2a and CY2b of plano-convex second cylindrical lenses with dimensions that cover the drawing lines SLa and SLb. Therefore, CY2a of this cylindrical lens is provided.
  • a neutral density filter plate may be provided in the vicinity of CY2b. Further, as shown in FIGS.
  • reflection mirrors M7a, M7b, M15a, and M15b that bend the scanning beams LBa and LBb emitted from the f ⁇ lens systems FTa and FTb so that they are perpendicularly incident on the substrate P.
  • a thin film that continuously or stepwise changes the reflectance of the reflecting mirrors M7a, M7b, M15a, and M15b in the main scanning direction is deposited on the reflecting surface, or a thin glass having a thickness of 0.1 mm or less.
  • the non-uniformity of the intensity of the spot light SPa (SPb) with respect to the main scanning position may be optically adjusted (corrected) by laminating a neutral density filter plate on the reflecting surface.
  • Correction of the intensity change tendency (intensity unevenness, inclination, etc.) with respect to the scanning position of the spot light SPa (SPb) can also be performed by an electrical correction mechanism.
  • 26 shows an optical element provided as shown in FIGS. 5 and 7 in order to turn on / off the beam before entering the polygon mirror PM (PMa, PMb) of the drawing unit based on the drawing data. (Acousto-optic modulation element, intensity adjusting member) It is a block diagram showing an example of a control system of AOMa and AOMb.
  • the drive circuit 100 outputs a high-frequency drive signal Sdv for on / off to the optical element AOMa (AOMb).
  • the OFF state of the optical element AOMa means that the high-frequency drive signal Sdv is not applied to the optical element AOMa (AOMb), and the beam LB from the light source device 14 is transmitted as it is as the zero-order beam LBu.
  • the ON state is a state in which a high-frequency drive signal Sdv is applied to the optical element AOMa (AOMb), and the first-order diffracted light of the beam LB from the light source device 14 is deflected as a beam LBa (LBb) at a predetermined diffraction angle.
  • the diffraction angle is determined by the frequency (for example, 80 MHz) of the drive signal Sdv (high frequency signal). Further, when the amplitude of the drive signal Sdv is changed, the diffraction efficiency changes, and the intensity of the beam LBa (LBb) that is the first-order diffracted light can be adjusted.
  • the drive circuit 100 includes a high-frequency signal from a high-frequency oscillator SF with a constant frequency and a stable amplitude, and a memory that stores drawing data (pattern data) in bitmap format in which one pixel is associated with one bit.
  • a drawing bit signal CLT that is read in bit-serial units and a control signal DE are input.
  • the drive circuit 100 outputs the high-frequency signal from the high-frequency oscillator SF as the drive signal Sdv while the drawing bit signal CLT is the logical value “1”, and the drive signal Sdv when the drawing bit signal CLT is the logical value “0”. Prohibit sending.
  • a power amplifier that makes the amplitude of the high-frequency signal from the high-frequency oscillator SF variable according to the control signal DE is provided.
  • the control signal DE is an analog or digital signal, for example, a value indicating an amplification factor (gain) of the power amplifier.
  • the control signal DE is an analog signal.
  • the origin signal generates a pulse waveform just before the scanning of the spot light SPa (SPb) on the substrate P starts when the reflecting surface of the polygon mirror PM rotates to a predetermined angular position. Accordingly, when the polygon mirror PM has eight reflecting surfaces, the pulse waveform of the origin signal is generated eight times during one rotation of the polygon mirror PM.
  • a drawing ON signal (logical value “1”) is generated after a certain delay time Tsq from the generation of the pulse waveform of the origin signal, and the drawing bit signal CLT is applied to the drive circuit 100 to generate the beam LBa (LBb). Pattern drawing starts.
  • the value (analog voltage) of the control signal DE increases from the value Ra when the drawing ON signal becomes the logical value “1”, and the drawing ON signal changes from the logical value “1” to “0”. It changes with the characteristic CCv that reaches the value Rb at the time.
  • the gain of the power amplifier in the drive circuit 100 is set to an initial value (for example, 10 times). In the case of FIG.
  • Such a waveform of the control signal DE can be generated by a simple time constant circuit (such as an integration circuit) that inputs a drawing ON signal or an origin signal. Further, although the characteristic CCv of the control signal DE is assumed to change linearly in FIG. 27, it may be changed nonlinearly by an appropriate filter circuit. When the control signal DE is given as digital information instead of an analog waveform, the gain of the power amplifier may be modified so that it can be varied by the digital value of the control signal DE.
  • the typical adjustment mechanism is also effective when adjusting the relative intensity difference between the beams projected from each of the plurality of drawing units onto the substrate P.
  • the mechanism that electrically adjusts the intensity of the beam LBa (LBb) adjusts the light emission luminance itself of the light source device 14 when the light source device 14 is a semiconductor laser light source that generates a laser beam in the ultraviolet wavelength region or a high-intensity LED light source. This is also possible.
  • the two beams LBa and LBb directed to the polygon mirror PM having the eight reflecting surfaces are parallel to each other, and the reflection of the polygon mirror PM is performed.
  • the spot light SPa generated by the beam LBa and the spot light SPb generated by the beam LBb are scanned on the substrate P at the same timing.
  • the beam LB from one light source device 14 is divided into the beams LBa and LBb in a time division manner, the main scanning and the spot light by the spot light SPa are performed.
  • a simple embodiment for that purpose is to use a polygon mirror PM having nine reflecting surfaces in the configuration shown in FIGS.
  • the nine-surface polygon mirror for example, at the timing when the beam LBa is incident on the center of one reflection surface in the rotation direction, the other beam LBb is between the reflection surface and the reflection surface of the nine-surface polygon mirror.
  • the timing is such that the light enters the (ridge line portion). That is, by changing the number of reflection surfaces, it is possible to shift the timing of the main scanning with the spot light SPa and the main scanning with the spot light SPb.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

Through the present invention, optical performance or arrangement precision of a scanning line necessary for highly detailed pattern drawing is stably maintained. A pattern drawing device (EX) for drawing a predetermined pattern on a substrate (P) by performing main scanning of a spot light (SP) condensed on the substrate (P) along a drawing line (SL) and performing secondary scanning of the substrate (P) condenses a first beam (LBa) reflected by a polygon mirror (PM) to form a spot light (SPa) and projects the spot light (SPa) on a first drawing line (SLa), and condenses a second beam (LBb) reflected by the polygon mirror (PM) to form a spot light (SPb) and projects the spot light (SPb) on a second drawing line (SLb). The two drawing lines (SLa, SLb) are in the same position on the substrate (P) relative to the direction of secondary scanning and are in offset positions in the direction of main scanning.

Description

パターン描画装置およびパターン描画方法Pattern drawing apparatus and pattern drawing method
 本発明は、被照射体上に照射されるビームのスポット光を走査してパターンを描画するパターン描画装置およびパターン描画方法に関する。 The present invention relates to a pattern drawing apparatus and a pattern drawing method for drawing a pattern by scanning spot light of a beam irradiated on an irradiated object.
 特開2004-117865号公報に開示されているように、レーザ光束の走査により画像を感光体上に描画するレーザ走査装置(カラーレーザプリンタ)において、1つのポリゴンミラーを用いて複数のレーザ光束の各々を走査し、複数の走査線に沿って画像を描画する技術が知られている。 As disclosed in Japanese Patent Application Laid-Open No. 2004-117865, in a laser scanning device (color laser printer) that draws an image on a photosensitive member by scanning a laser beam, a plurality of laser beams can be obtained using a single polygon mirror. A technique for scanning each image and drawing an image along a plurality of scan lines is known.
 特開2004-117865号公報には、1つのポリゴンミラーの異なる反射面の各々で偏向走査される複数のレーザビームによって生成される走査線を、被照射体の移動方向である副走査方向に離して平行に配置するようなタンデム型レーザ走査装置が開示されている。特開2004-117865号公報に開示のレーザ走査装置の場合、被照射体(感光ドラム等)上に描画可能な画像の走査線方向(主走査方向)の最大寸法は、1つの走査線の長さで決まってくる。そのため、描画可能な画像の主走査方向の寸法を大きくするためには、走査線がより長くなるようにポリゴンミラーの後の走査光学系(レンズやミラー等)を大きくする必要がある。一方、最小線幅が数μm~20μm程度の電子回路用の高精細なパターンをスポット光の走査で描画露光する露光装置においては、スポット光の寸法(直径)を最小線幅の数分の一(1/2~1/4)程度にするとともに、描画パターンのデータに応じたスポット光の強度変調を走査線上のスポット光の投射位置に同期して高精度および高速に制御する必要がある。しかしながら、ポリゴンミラーによるビームの偏向走査により生成される1つの走査線を長くすると、ポリゴンミラーの後の走査光学系等の大型化に伴って、高精細なパターン描画に必要な走査線の配置精度や光学性能を安定に維持することが難しくなる。 In Japanese Patent Application Laid-Open No. 2004-117865, scanning lines generated by a plurality of laser beams deflected and scanned on different reflecting surfaces of one polygon mirror are separated in the sub-scanning direction, which is the moving direction of the irradiated object. A tandem laser scanning device that is arranged in parallel with each other is disclosed. In the case of the laser scanning device disclosed in Japanese Patent Application Laid-Open No. 2004-117865, the maximum dimension in the scanning line direction (main scanning direction) of an image that can be drawn on an irradiated object (photosensitive drum or the like) is the length of one scanning line. It will be decided. Therefore, in order to increase the size of the drawable image in the main scanning direction, it is necessary to increase the scanning optical system (lens, mirror, etc.) after the polygon mirror so that the scanning line becomes longer. On the other hand, in an exposure apparatus that draws and exposes a high-definition pattern for an electronic circuit having a minimum line width of about several μm to 20 μm by spot light scanning, the size (diameter) of the spot light is a fraction of the minimum line width. In addition, it is necessary to control the intensity modulation of the spot light according to the drawing pattern data with high accuracy and high speed in synchronization with the projection position of the spot light on the scanning line. However, if one scanning line generated by the deflection scanning of the beam by the polygon mirror is lengthened, the scanning line arrangement accuracy required for high-definition pattern drawing as the scanning optical system and the like after the polygon mirror increase in size. It becomes difficult to maintain stable optical performance.
 本発明の第1の態様は、光源装置からのビームを被照射体上でスポットに集光し、集光されたスポット光を所定の走査線に沿って主走査するとともに、前記被照射体を副走査することによって、前記被照射体上に所定のパターンを描画するパターン描画装置であって、前記主走査のために回転軸の回りに回転する回転多面鏡と、前記光源装置からの第1のビームを第1方向から前記回転多面鏡に向けて投射する第1導光光学系と、前記光源装置からの第2のビームを前記第1方向とは異なる第2方向から前記回転多面鏡に向けて投射する第2導光光学系と、前記回転多面鏡で反射された前記第1のビームを集光して第1のスポット光として第1の走査線上に投射する第1投射光学系と、前記回転多面鏡で反射された前記第2のビームを集光して第2のスポット光として第2の走査線上に投射する第2投射光学系と、を備え、前記第1の走査線と前記第2の走査線とが、前記被照射体上で前記副走査の方向に関して同じ位置であって、且つ、前記主走査の方向にずれて位置するように、前記第1投射光学系と前記第2投射光学系とを配置した。 According to a first aspect of the present invention, a beam from a light source device is condensed on a spot on an irradiated body, the condensed spot light is main-scanned along a predetermined scanning line, and the irradiated body is A pattern drawing device that draws a predetermined pattern on the irradiated object by performing sub-scanning, the rotating polygon mirror rotating around a rotation axis for the main scanning, and a first from the light source device And a second light beam from the light source device to the rotary polygon mirror from a second direction different from the first direction. A first light guiding optical system that projects toward the first scanning optical system, and a first projection optical system that condenses the first beam reflected by the rotary polygon mirror and projects the first beam onto the first scanning line as a first spot light. , Condensing the second beam reflected by the rotary polygon mirror And a second projection optical system that projects onto the second scanning line as the second spot light, and the first scanning line and the second scanning line are scanned on the irradiated body by the sub-scanning. The first projection optical system and the second projection optical system are arranged so as to be in the same position with respect to the direction of, and to be shifted in the main scanning direction.
 本発明の第2の態様は、可撓性の長尺のシート基板である被照射体を長手方向に副走査しつつ、描画データに基づいて強度変調されるスポット光を前記被照射体の長手方向と直交した幅方向に延びる走査線に沿って主走査することによって、前記被照射体上に前記描画データに応じたパターンを描画するパターン描画装置であって、前記主走査のために回転軸の回りに回転する回転多面鏡と、第1のビームを第1方向から前記回転多面鏡に向けて投射する第1導光光学系と、第2のビームを前記第1方向とは異なる第2方向から前記回転多面鏡に向けて投射する第2導光光学系と、前記回転多面鏡で反射された前記第1のビームを集光して第1のスポット光として第1の走査線上に投射する第1投射光学系と、前記回転多面鏡で反射された前記第2のビームを集光して第2のスポット光として第2の走査線上に投射する第2投射光学系と、を備え、前記第1の走査線と前記第2の走査線の各走査長が同じに設定されるとともに、前記第1の走査線と前記第2の走査線が前記主走査の方向に前記走査長以下の間隔で分離して設定されるように、前記第1投射光学系と前記第2投射光学系とを配置した。 According to a second aspect of the present invention, spot light that is intensity-modulated based on drawing data is emitted along the longitudinal direction of the irradiated object while sub-scanning the irradiated object that is a flexible long sheet substrate in the longitudinal direction. A pattern drawing apparatus that draws a pattern according to the drawing data on the irradiated object by performing main scanning along a scanning line extending in a width direction orthogonal to the direction, and a rotation axis for the main scanning A rotary polygon mirror that rotates around the first polygon, a first light guide optical system that projects the first beam from the first direction toward the rotary polygon mirror, and a second beam that is different from the first direction. A second light guide optical system that projects toward the rotary polygon mirror from the direction, and the first beam reflected by the rotary polygon mirror is collected and projected onto the first scanning line as a first spot light The first projection optical system that is reflected by the rotary polygon mirror A second projection optical system that condenses the second beam and projects it as a second spot light onto the second scan line, and each scan of the first scan line and the second scan line The first projection optical is set such that the length is set to be the same, and the first scanning line and the second scanning line are set separately in the main scanning direction at an interval equal to or shorter than the scanning length. A system and the second projection optical system were arranged.
 本発明の第3の態様は、光源装置からのビームを被照射体上でスポットに集光し、集光されたスポット光を所定の走査線に沿って主走査するとともに、前記被照射体を副走査することによって、前記被照射体上に所定のパターンを描画するパターン描画方法であって、前記光源装置からの第1のビームを第1方向から回転多面鏡に向けて投射することと、前記光源装置からの第2のビームを前記第1方向とは異なる第2方向から前記回転多面鏡に向けて投射することと、前記回転多面鏡の異なる反射面に入射して反射する前記第1のビームおよび前記第2のビームを、前記回転多面鏡の回転によって偏向走査することと、前記回転多面鏡で反射された前記第1のビームを集光して第1のスポット光として第1の走査線上に投射することと、前記回転多面鏡で反射された前記第2のビームを集光して第2のスポット光として第2の走査線上に投射することと、を含み、前記第1の走査線と前記第2の走査線とが、前記被照射体上で前記副走査の方向に関して同じ位置であって、且つ、前記主走査の方向にずれている。 According to a third aspect of the present invention, the beam from the light source device is condensed into a spot on the irradiated object, the condensed spot light is main-scanned along a predetermined scanning line, and the irradiated object is A pattern drawing method for drawing a predetermined pattern on the irradiated object by performing sub-scanning, and projecting a first beam from the light source device from a first direction toward a rotary polygon mirror; The second beam from the light source device is projected from the second direction different from the first direction toward the rotary polygon mirror, and the first beam is incident on and reflected from a different reflection surface of the rotary polygon mirror. And the second beam are deflected and scanned by the rotation of the rotary polygon mirror, and the first beam reflected by the rotary polygon mirror is condensed to form the first spot light as the first spot light. Projecting onto the scan line; Condensing the second beam reflected by the rotary polygon mirror and projecting the second beam as a second spot light onto the second scanning line, and including the first scanning line and the second scanning The line is at the same position on the irradiated body with respect to the sub-scanning direction and is shifted in the main-scanning direction.
 本発明の第4の態様は、可撓性の長尺のシート基板である被照射体を長手方向に副走査しつつ、描画データに基づいて強度変調されるスポット光を前記被照射体の長手方向と直交した幅方向に延びる走査線に沿って主走査することによって、前記被照射体上に前記描画データに応じたパターンを描画するパターン描画方法であって、第1のビームを第1方向から回転多面鏡に向けて投射することと、第2のビームを前記第1方向とは異なる第2方向から前記回転多面鏡に向けて投射することと、前記回転多面鏡の異なる反射面に入射して反射する前記第1のビームおよび前記第2のビームを、前記回転多面鏡の回転によって偏向走査することと、前記回転多面鏡で反射された前記第1のビームを集光して第1のスポット光として第1の走査線上に投射することと、前記回転多面鏡で反射された前記第2のビームを集光して第2のスポット光として第2の走査線上に投射することと、を含み、前記第1の走査線と前記第2の走査線の各走査長が同じに設定されるとともに、前記第1の走査線と前記第2の走査線が前記主走査の方向に前記走査長以下の間隔で分離して設定されている。 According to a fourth aspect of the present invention, spot light that is intensity-modulated based on drawing data is emitted along the longitudinal direction of the irradiated object while sub-scanning the irradiated object that is a flexible long sheet substrate in the longitudinal direction. A pattern drawing method for drawing a pattern corresponding to the drawing data on the irradiated object by performing main scanning along a scanning line extending in a width direction orthogonal to the direction, wherein the first beam is directed in a first direction. Projecting toward the rotating polygon mirror, projecting the second beam from the second direction different from the first direction toward the rotating polygon mirror, and incident on different reflecting surfaces of the rotating polygon mirror And deflecting and scanning the first beam and the second beam reflected by the rotation of the rotary polygon mirror and condensing the first beam reflected by the rotary polygon mirror First scan as spot light Projecting upward, and condensing the second beam reflected by the rotary polygon mirror and projecting it as a second spot light onto a second scanning line, the first scanning The scanning lengths of the first scanning line and the second scanning line are set to be the same, and the first scanning line and the second scanning line are separated in the main scanning direction at an interval equal to or shorter than the scanning length. Is set.
 本発明の第5の態様は、被照射体を副走査の方向に搬送しつつ、光源装置からのビームを前記被照射体上でスポットに集光し、集光されたスポット光を前記副走査の方向と直交した走査線に沿って主走査することによって、前記被照射体上に所定のパターンを描画するパターン描画装置であって、所定の回転軸の回りに回転する回転多面鏡と、前記光源装置からの第1のビームを第1方向から前記回転多面鏡に向けて投射する第1導光光学系と、前記光源装置からの第2のビームを前記第1方向とは異なる第2方向から前記回転多面鏡に向けて投射する第2導光光学系と、前記回転多面鏡で反射された前記第1のビームを集光して第1のスポット光として第1の走査線上に投射する第1投射光学系と、前記回転多面鏡で反射された前記第2のビームを集光して第2のスポット光として第2の走査線上に投射する第2投射光学系と、を備え、前記第1の走査線と前記第2の走査線とが、前記被照射体上で前記主走査の方向および前記副走査の方向の少なくとも一方の方向に平行にずれて配置されるように、前記回転多面鏡、前記第1導光光学系、前記第2導光光学系、前記第1投射光学系、および、前記第2投射光学系を一体的に保持して回動可能な描画ユニットを備え、前記描画ユニットの回動中心軸が、前記第1の走査線の中点と前記第2の走査線の中点との間を前記被照射体に対して垂直に通るように設定されている。 According to a fifth aspect of the present invention, a beam from a light source device is condensed onto a spot on the irradiated body while the irradiated body is conveyed in the sub-scanning direction, and the condensed spot light is converted into the sub-scanning. A pattern drawing apparatus that draws a predetermined pattern on the irradiated object by performing main scanning along a scanning line orthogonal to the direction of the rotating polygon mirror that rotates around a predetermined rotation axis; A first light guide optical system that projects a first beam from the light source device toward the rotary polygon mirror from a first direction, and a second direction from which the second beam from the light source device is different from the first direction The second light guiding optical system that projects toward the rotating polygon mirror and the first beam reflected by the rotating polygon mirror are collected and projected onto the first scanning line as first spot light The first projection optical system and the second reflected by the rotary polygon mirror A second projection optical system for condensing the beam and projecting it on the second scanning line as a second spot light, and the first scanning line and the second scanning line are the object to be irradiated. The rotating polygon mirror, the first light guide optical system, the second light guide optical system, and so as to be arranged in parallel with at least one of the main scanning direction and the sub-scanning direction above, The drawing unit includes a drawing unit capable of rotating by integrally holding the first projection optical system and the second projection optical system, and a rotation center axis of the drawing unit is a midpoint of the first scanning line And a midpoint of the second scanning line so as to pass perpendicularly to the irradiated object.
 本発明の第6の態様は、被照射体を副走査の方向に搬送しつつ、光源装置からのビームを前記被照射体上でスポットに集光し、集光されたスポット光を前記副走査の方向と直交した方向に延びる走査線に沿って主走査することによって、前記被照射体上に所定のパターンを描画するパターン描画方法であって、前記光源装置からの第1のビームを第1方向から回転多面鏡に向けて投射することと、前記光源装置からの第2のビームを前記第1方向とは異なる第2方向から前記回転多面鏡に向けて投射することと、前記回転多面鏡の異なる反射面に入射して反射する前記第1のビームおよび前記第2のビームを、前記回転多面鏡の回転によって偏向走査することと、前記回転多面鏡で反射された前記第1のビームを集光して第1のスポット光として第1の走査線上に投射することと、前記回転多面鏡で反射された前記第2のビームを集光して第2のスポット光として第2の走査線上に投射することと、前記被照射体に対して垂直であり、前記第1の走査線の中点と前記第2の走査線の中点との間に設定された回動中心軸を中心に、前記第1の走査線と前記第2の走査線とを回動させることと、を含む。 In a sixth aspect of the present invention, a beam from a light source device is condensed on a spot on the irradiated body while the irradiated body is conveyed in the sub-scanning direction, and the condensed spot light is converted into the sub-scanning. A pattern drawing method for drawing a predetermined pattern on the irradiated object by performing main scanning along a scanning line extending in a direction orthogonal to the direction of the first beam, the first beam from the light source device being the first Projecting from the direction toward the rotating polygon mirror, projecting the second beam from the light source device from the second direction different from the first direction toward the rotating polygon mirror, and the rotating polygon mirror The first beam and the second beam incident on and reflected from different reflecting surfaces are deflected and scanned by rotation of the rotating polygon mirror, and the first beam reflected by the rotating polygon mirror is Condensed first spot light Projecting onto the first scanning line, condensing the second beam reflected by the rotary polygon mirror and projecting it onto the second scanning line as a second spot light, and The first scan line is perpendicular to the illuminating body and is centered on a rotation center axis set between the midpoint of the first scan line and the midpoint of the second scan line. Rotating the second scanning line.
 本発明の第7の態様は、光源装置からのビームを被照射体上で主走査するとともに、前記主走査と交差する方向に前記被照射体と前記ビームとを相対的に副走査することによって、前記被照射体上にパターンを描画するパターン描画装置であって、前記主走査のために反射面の角度を変える光偏向部材と、第1方向から前記光偏向部材に投射されて前記光偏向部材の反射面で反射した第1のビームを、前記被照射体上で主走査の方向に走査されるビームとして投射する第1投射光学系と、第1方向と異なる第2方向から前記光偏向部材に投射されて前記光偏向部材の反射面で反射した第2のビームを、前記被照射体上で主走査の方向に走査されるビームとして投射する第2投射光学系と、を備え、前記第1のビームの主走査により形成される第1の走査線と、前記第2のビームの主走査により形成される第2の走査線とが、前記主走査の方向にずれるように前記第1投射光学系と前記第2投射光学系とを配置した。 According to a seventh aspect of the present invention, the beam from the light source device is subjected to main scanning on the irradiated object, and the irradiated object and the beam are relatively sub-scanned in a direction crossing the main scanning. A pattern drawing apparatus for drawing a pattern on the irradiated object, wherein the light deflecting member changes an angle of a reflecting surface for the main scanning, and the light deflection is projected onto the light deflecting member from a first direction. A first projection optical system for projecting the first beam reflected by the reflecting surface of the member as a beam scanned in the main scanning direction on the irradiated body, and the light deflection from a second direction different from the first direction. A second projection optical system that projects the second beam projected on the member and reflected by the reflecting surface of the light deflection member as a beam scanned in the main scanning direction on the irradiated body, and Formed by the main scan of the first beam The first projection optical system and the second projection optical system so that the first scanning line and the second scanning line formed by the main scanning of the second beam are shifted in the main scanning direction. Arranged.
第1の実施の形態の基板に露光処理を施す露光装置を含むデバイス製造システムの概略構成を示す図である。It is a figure which shows schematic structure of the device manufacturing system containing the exposure apparatus which performs the exposure process to the board | substrate of 1st Embodiment. 図1に示す複数の描画ユニットの配置関係、および、基板の被照射面上に設置される各描画ユニットの描画ラインの配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship of the some drawing unit shown in FIG. 1, and the arrangement | positioning relationship of the drawing line of each drawing unit installed on the to-be-irradiated surface of a board | substrate. 主走査方向に隣り合う描画ラインの端部同士を一致させる場合の各描画ユニットの描画ラインの配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship of the drawing line of each drawing unit in the case of making the edge part of the drawing line adjacent in the main scanning direction correspond. 走査方向に隣り合う描画ラインの端部同士を一定長ずつ重畳させる場合の各描画ユニットの描画ラインの配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship of the drawing line of each drawing unit when the edge parts of the drawing line adjacent to a scanning direction are overlapped by fixed length. -Yt(-Y)方向側からみた図1に示す描画ユニットの構成図である。FIG. 2 is a configuration diagram of the drawing unit shown in FIG. 1 as viewed from the −Yt (−Y) direction side. +Zt方向側からみた図5に示す描画ユニットの構成図である。FIG. 6 is a configuration diagram of the drawing unit shown in FIG. 5 viewed from the + Zt direction side. 図5に示す光学素子およびコリメートレンズを透過して反射ミラーに入射するビームの光路を+Zt方向側からみた図である。It is the figure which looked at the optical path of the beam which permeate | transmits the optical element and collimating lens shown in FIG. 5, and injects into a reflective mirror from the + Zt direction side. 反射ミラーから描画ユニットの反射ミラーに入射するビームの光路を+Xt方向側からみた示す図である。It is a figure which saw the optical path of the beam which injects into the reflective mirror of a drawing unit from a reflective mirror seen from the + Xt direction side. 図5に示す描画ユニット内の反射部材としての反射ミラーと集光レンズとの配置関係をXtZt面内でみた図である。It is the figure which looked at the arrangement | positioning relationship between the reflective mirror as a reflective member in the drawing unit shown in FIG. 5, and a condensing lens in XtZt plane. 図9に示す反射部材としての反射ミラーと集光レンズとの配置関係をXtYt面内でみた図である。It is the figure which looked at the positional relationship of the reflective mirror as a reflective member shown in FIG. 9, and a condensing lens in XtYt plane. 図11Aは、図5に示す描画ユニット全体を所定の角度だけ回動中心軸の回りに回動させたときに、反射部材としての反射ミラーに平行に入射したビームの反射方向が変化する様子を+Zt方向側からみた図であり、図11Bは、図5に示す描画ユニット全体を所定の角度だけ回動させたときの反射部材としての反射ミラーでのビームの位置変化をビームの進行方向側からみた図である。FIG. 11A shows how the reflection direction of a beam incident in parallel to a reflection mirror as a reflection member changes when the entire drawing unit shown in FIG. 5 is rotated about a rotation center axis by a predetermined angle. FIG. 11B is a diagram seen from the + Zt direction side, and FIG. 11B shows the change in the position of the beam on the reflecting mirror as the reflecting member when the entire drawing unit shown in FIG. 5 is rotated by a predetermined angle from the traveling direction side of the beam. FIG. 第1の実施の形態の変形例1におけるポリゴンミラーによるビーム走査系を+Zt方向側からみたときの図である。It is a figure when the beam scanning system by the polygon mirror in the modification 1 of 1st Embodiment is seen from the + Zt direction side. 図12のビーム走査系を+Xt方向側からみたときの図である。It is a figure when the beam scanning system of FIG. 12 is seen from the + Xt direction side. 第1の実施の形態の変形例2におけるポリゴンミラーに入射して反射するビームの光路を+Zt方向側からみたときの図である。It is a figure when the optical path of the beam which injects into the polygon mirror in the modification 2 of 1st Embodiment and reflects is seen from the + Zt direction side. 図14のビーム走査系を+Xt方向側からみたときの図である。It is a figure when the beam scanning system of FIG. 14 is seen from the + Xt direction side. 図16Aは、第1の実施の形態の変形例4におけるポリゴンミラーによるビーム走査系を+Zt方向側からみたときの図であり、図16Bは、図16Aのビーム走査系を-Xt方向側からみたときの図である。FIG. 16A is a diagram when the beam scanning system using the polygon mirror in the fourth modification of the first embodiment is viewed from the + Zt direction side, and FIG. 16B is the beam scanning system in FIG. 16A viewed from the −Xt direction side. It is a figure of time. 第2の実施の形態における描画ユニットの一部の構成を示す図である。It is a figure which shows the structure of a part of drawing unit in 2nd Embodiment. -Yt(-Y)方向側からみた第3の実施の形態の描画ユニットUbの構成図である。FIG. 10 is a configuration diagram of a drawing unit Ub according to a third embodiment viewed from the −Yt (−Y) direction side. 図18に示す描画ユニットのうち、ポリゴンミラーから+Zt側の構成を+Xt方向側みた図である。FIG. 19 is a diagram of the + Zt side configuration viewed from the + Xt direction side from the polygon mirror in the drawing unit illustrated in FIG. 18. 図18に示す描画ユニットのうち、ポリゴンミラーから-Zt方向側の構成を+Zt方向側からみた図である。FIG. 19 is a diagram illustrating the configuration on the −Zt direction side from the polygon mirror as viewed from the + Zt direction side in the drawing unit illustrated in FIG. 18. 基板上に形成される電子デバイス形成領域としての露光領域をY(Yt)方向に6分割し、ストライプ状の複数の分割領域の各々を、6つの描画ラインによってパターンを描画する場合の一例を示す。An example in which an exposure region as an electronic device formation region formed on a substrate is divided into six in the Y (Yt) direction, and each of the plurality of stripe-shaped divided regions is drawn with six drawing lines is shown. . 第3の実施の形態のFθレンズの後に設けられる反射ミラーの配置角度の例を示す図である。It is a figure which shows the example of the arrangement | positioning angle of the reflective mirror provided after the F (theta) lens of 3rd Embodiment. 図1中に示した光源装置14から提供される2本のビームを、図2中の4つの各描画ユニットの各々に分配するためのビーム分配系の一例の構成を示す図である。It is a figure which shows the structure of an example of the beam distribution system for distributing the two beams provided from the light source device shown in FIG. 1 to each of four drawing units in FIG. 第4の実施の形態による描画ユニットのポリゴンミラーと後続の反射ミラーとの間でのビームの偏向状態を説明する図である。It is a figure explaining the deflection state of the beam between the polygon mirror of the drawing unit by 4th Embodiment, and a subsequent reflective mirror. 図24のポリゴンミラーや反射ミラーにおける反射率の入射角依存性の一例による特性を示すグラフである。It is a graph which shows the characteristic by an example of the incident angle dependence of the reflectance in the polygon mirror and reflection mirror of FIG. 反射ミラーの反射率の入射角依存性によるビーム強度の変動を調整するための音響光学変調素子(AOM)による制御系の構成を示す図である。It is a figure which shows the structure of the control system by the acousto-optic modulation element (AOM) for adjusting the fluctuation | variation of the beam intensity by the incident angle dependence of the reflectance of a reflective mirror. 図26の制御系における各部の信号の波形やタイミングの一例を示すタイムチャート図である。FIG. 27 is a time chart showing an example of waveforms and timings of signals at various parts in the control system of FIG. 26.
 本発明の態様に係るパターン描画装置およびパターン描画方法について、好適な実施の形態を掲げ、添付の図面を参照しながら以下、詳細に説明する。なお、本発明の態様は、これらの実施の形態に限定されるものではなく、多様な変更または改良を加えたものも含まれる。つまり、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれ、以下に記載した構成要素は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換または変更を行うことができる。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A pattern drawing apparatus and a pattern drawing method according to an aspect of the present invention will be described in detail below with reference to the accompanying drawings by listing preferred embodiments. In addition, the aspect of this invention is not limited to these embodiment, What added the various change or improvement is included. That is, the constituent elements described below include those that can be easily assumed by those skilled in the art and substantially the same elements, and the constituent elements described below can be appropriately combined. In addition, various omissions, substitutions, or changes of the components can be made without departing from the scope of the present invention.
[第1の実施の形態]
 図1は、第1の実施の形態の基板(被照射体)Pに露光処理を施す露光装置EXを含むデバイス製造システム10の概略構成を示す図である。なお、以下の説明においては、重力方向をZ方向とするXYZ直交座標系を設定し、特に断わりのない限り、図に示す矢印にしたがって、X方向、Y方向、およびZ方向を説明する。
[First Embodiment]
FIG. 1 is a diagram showing a schematic configuration of a device manufacturing system 10 including an exposure apparatus EX that performs an exposure process on a substrate (irradiated body) P according to the first embodiment. In the following description, an XYZ orthogonal coordinate system in which the gravity direction is the Z direction is set, and the X direction, the Y direction, and the Z direction will be described according to the arrows shown in the drawings unless otherwise specified.
 デバイス製造システム10は、例えば、電子デバイスとしてのフレキシブル・ディスプレイ、フィルム状のタッチパネル、液晶表示パネル用のフィルム状のカラーフィルター、或いは電子部品がハンダ付けされるフレキシブル配線シート等を製造する製造ラインが構築された製造システムである。以下、電子デバイスとしてフレキシブル・ディスプレイを前提として説明する。フレキシブル・ディスプレイとしては、例えば、有機ELディスプレイ、液晶ディスプレイ等がある。デバイス製造システム10は、可撓性のシート状(フィルム状)の基板(シート基板)Pをロール状に巻いた図示しない供給ロールから基板Pが送出され、送出された基板Pに対して各種処理を連続的に施した後、各種処理後の基板Pを図示しない回収ロールで巻き取る、いわゆる、ロール・ツー・ロール(Roll To Roll)方式の構造を有する。基板Pは、基板Pの移動方向が長手方向(長尺)となり、幅方向が短手方向(短尺)となる帯状の形状を有する。前記供給ロールから送られた基板Pは、順次、プロセス装置PR1、露光装置(パターン描画装置、ビーム走査装置)EX、および、プロセス装置PR2等で各種処理が施され、前記回収ロールで巻き取られる。 The device manufacturing system 10 includes, for example, a manufacturing line for manufacturing a flexible display as an electronic device, a film-like touch panel, a film-like color filter for a liquid crystal display panel, or a flexible wiring sheet on which electronic components are soldered. It is a built manufacturing system. The following description is based on the assumption that a flexible display is used as the electronic device. Examples of the flexible display include an organic EL display and a liquid crystal display. The device manufacturing system 10 sends out a substrate P from a supply roll (not shown) in which a flexible sheet-like (film-like) substrate (sheet substrate) P is wound in a roll shape, and performs various processes on the delivered substrate P. Is applied, and then the substrate P after various treatments is wound up by a collection roll (not shown), which has a so-called roll-to-roll structure. The substrate P has a belt-like shape in which the moving direction of the substrate P is a long direction (long) and the width direction is a short direction (short). The substrate P sent from the supply roll is sequentially subjected to various processes by the process apparatus PR1, the exposure apparatus (pattern drawing apparatus, beam scanning apparatus) EX, the process apparatus PR2, and the like, and is taken up by the collection roll. .
 なお、X方向は、水平面内において、プロセス装置PR1から露光装置EXを経てプロセス装置PR2に向かう方向(搬送方向)である。Y方向は、水平面内においてX方向に直交する方向であり、基板Pの幅方向である。Z方向は、X方向とY方向とに直交する方向(上方向)であり、重力が働く方向と平行である。 The X direction is a direction (conveyance direction) from the process apparatus PR1 to the process apparatus PR2 through the exposure apparatus EX in the horizontal plane. The Y direction is a direction orthogonal to the X direction in the horizontal plane, and is the width direction of the substrate P. The Z direction is a direction (upward direction) orthogonal to the X direction and the Y direction, and is parallel to the direction in which gravity acts.
 基板Pは、例えば、樹脂フィルム、若しくは、ステンレス鋼等の金属または合金からなる箔(フォイル)等が用いられる。樹脂フィルムの材質としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、および酢酸ビニル樹脂のうち、少なくとも1つ以上を含んだものを用いてもよい。また、基板Pの厚みや剛性(ヤング率)は、露光装置EXの搬送路を通る際に、基板Pに座屈による折れ目や非可逆的なシワが生じないような範囲であればよい。基板Pの母材として、厚みが25μm~200μm程度のPET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)等のフィルムは、好適なシート基板の典型である。 For the substrate P, for example, a resin film or a foil (foil) made of a metal or alloy such as stainless steel is used. Examples of the material of the resin film include polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, and vinyl acetate resin. Among them, one containing at least one or more may be used. Further, the thickness and rigidity (Young's modulus) of the substrate P may be in a range that does not cause folds or irreversible wrinkles due to buckling in the substrate P when passing through the transport path of the exposure apparatus EX. As a base material of the substrate P, a film such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) having a thickness of about 25 μm to 200 μm is typical of a suitable sheet substrate.
 基板Pは、プロセス装置PR1、露光装置EX、およびプロセス装置PR2で施される各処理において熱を受ける場合があるため、熱膨張係数が顕著に大きくない材質の基板Pを選定することが好ましい。例えば、無機フィラーを樹脂フィルムに混合することによって熱膨張係数を抑えることができる。無機フィラーは、例えば、酸化チタン、酸化亜鉛、アルミナ、または酸化ケイ素等でもよい。また、基板Pは、フロート法等で製造された厚さ100μm程度の極薄ガラスの単層体であってもよいし、この極薄ガラスに上記の樹脂フィルム、箔等を貼り合わせた積層体であってもよい。 Since the substrate P may receive heat in each process performed by the process apparatus PR1, the exposure apparatus EX, and the process apparatus PR2, it is preferable to select the substrate P made of a material that does not have a significantly large thermal expansion coefficient. For example, the thermal expansion coefficient can be suppressed by mixing an inorganic filler with a resin film. The inorganic filler may be, for example, titanium oxide, zinc oxide, alumina, or silicon oxide. The substrate P may be a single layer of ultrathin glass having a thickness of about 100 μm manufactured by a float process or the like, or a laminate in which the above resin film, foil, or the like is bonded to the ultrathin glass. It may be.
 ところで、基板Pの可撓性(flexibility)とは、基板Pに自重程度の力を加えてもせん断したり破断したりすることはなく、その基板Pを撓めることが可能な性質をいう。また、自重程度の力によって屈曲する性質も可撓性に含まれる。また、基板Pの材質、大きさ、厚さ、基板P上に成膜される層構造、温度、湿度等の環境等に応じて、可撓性の程度は変わる。いずれにしろ、本第1の実施の形態によるデバイス製造システム10内の搬送路に設けられる各種の搬送用ローラ、回転ドラム等の搬送方向転換用の部材に基板Pを正しく巻き付けた場合に、座屈して折り目がついたり、破損(破れや割れが発生)したりせずに、基板Pを滑らかに搬送できれば、可撓性の範囲といえる。 By the way, the flexibility of the substrate P means the property that the substrate P can be bent without being sheared or broken even when a force of its own weight is applied to the substrate P. . In addition, flexibility includes a property of bending by a force of about its own weight. The degree of flexibility varies depending on the material, size, and thickness of the substrate P, the layer structure formed on the substrate P, the environment such as temperature and humidity, and the like. In any case, when the substrate P is correctly wound around the conveyance direction changing members such as various conveyance rollers and rotating drums provided in the conveyance path in the device manufacturing system 10 according to the first embodiment, If the substrate P can be smoothly transported without being bent and creased or damaged (breaking or cracking), it can be said to be a flexible range.
 プロセス装置PR1は、露光装置EXで露光処理される基板Pに対して前工程の処理を行う。プロセス装置PR1は、前工程の処理を行った基板Pを露光装置EXへ向けて送る。この前工程の処理により、露光装置EXへ送られる基板Pは、その表面に感光性機能層(光感応層、感光層)が形成された基板(感光基板)Pとなっている。 The process apparatus PR1 performs a pre-process on the substrate P to be exposed by the exposure apparatus EX. The process apparatus PR1 sends the substrate P that has been subjected to the previous process to the exposure apparatus EX. The substrate P sent to the exposure apparatus EX by this pre-process is a substrate (photosensitive substrate) P having a photosensitive functional layer (photosensitive layer, photosensitive layer) formed on the surface thereof.
 この感光性機能層は、溶液として基板P上に塗布され、乾燥することによって層(膜)となる。感光性機能層の典型的なものはフォトレジストであるが、現像処理が不要な材料として、紫外線の照射を受けた部分の親撥液性が改質される感光性シランカップリング剤(SAM)、或いは紫外線の照射を受けた部分にメッキ還元基が露呈する感光性還元剤等がある。感光性機能層として感光性シランカップリング剤を用いる場合は、基板P上の紫外線で露光されたパターン部分が撥液性から親液性に改質される。そのため、親液性となった部分の上に導電性インク(銀や銅等の導電性ナノ粒子を含有するインク)や半導体材料を含有した液体等を選択塗布することで、薄膜トランジスタ(TFT)等を構成する電極、半導体、絶縁、或いは接続用の配線となるパターン層を形成することができる。感光性機能層として、感光性還元剤を用いる場合は、基板P上の紫外線で露光されたパターン部分にメッキ還元基が露呈する。そのため、露光後、基板Pを直ちにパラジウムイオン等を含むメッキ液中に一定時間浸漬することで、パラジウムによるパターン層が形成(析出)される。このようなメッキ処理はアディティブ(additive)なプロセスであるが、その他、サブトラクティブ(subtractive)なプロセスとしてのエッチング処理を前提にする場合、露光装置EXへ送られる基板Pは、母材をPETやPENとし、その表面にアルミニウム(Al)や銅(Cu)等の金属性薄膜を全面または選択的に蒸着し、さらにその上にフォトレジスト層を積層したものであってもよい。 This photosensitive functional layer is applied as a solution on the substrate P and dried to form a layer (film). A typical photosensitive functional layer is a photoresist, but a photosensitive silane coupling agent (SAM) that is modified in the lyophilicity of a portion irradiated with ultraviolet rays as a material that does not require development processing. Alternatively, there is a photosensitive reducing agent or the like in which a plating reducing group is exposed in a portion irradiated with ultraviolet rays. When a photosensitive silane coupling agent is used as the photosensitive functional layer, the pattern portion exposed to ultraviolet rays on the substrate P is modified from lyophobic to lyophilic. Therefore, by selectively applying conductive ink (ink containing conductive nanoparticles such as silver or copper) or a liquid containing a semiconductor material on the lyophilic portion, a thin film transistor (TFT) or the like A pattern layer to be an electrode, a semiconductor, insulation, or a wiring for connection can be formed. When a photosensitive reducing agent is used as the photosensitive functional layer, the plating reducing group is exposed to the pattern portion exposed to ultraviolet rays on the substrate P. Therefore, after exposure, the substrate P is immediately immersed in a plating solution containing palladium ions or the like for a certain period of time, so that a pattern layer of palladium is formed (deposited). Such a plating process is an additive process. However, in the case of assuming an etching process as a subtractive process, the substrate P sent to the exposure apparatus EX has a base material of PET or the like. PEN may be formed by depositing a metallic thin film such as aluminum (Al) or copper (Cu) on the entire surface or selectively, and further laminating a photoresist layer thereon.
 本第1の実施の形態においては、露光装置EXは、マスクを用いない直描方式の露光装置、いわゆるラスタースキャン方式の露光装置である。露光装置EXは、プロセス装置PR1から供給された基板Pの被照射面(感光面)に対して、ディスプレイ用の回路または配線等の所定のパターンに応じた光パターンを照射する。後で詳細に説明するが、露光装置EXは、基板Pを+X方向(副走査の方向)に搬送しながら、露光用のビームLBのスポット光SPを、基板P上(基板Pの被照射面上)で所定の走査方向(Y方向)に1次元に走査(主走査)しつつ、スポット光SPの強度をパターンデータ(描画データ)に応じて高速に変調(オン/オフ)する。これにより、基板Pの被照射面にディスプレイ用の回路または配線等の所定のパターンに応じた光パターンが描画露光される。つまり、基板Pの副走査と、スポット光SPの主走査とで、スポット光SPが基板Pの被照射面上で相対的に2次元走査されて、基板Pに所定のパターンが描画露光される。また、露光装置EXは、基板Pに対して電子デバイス用のパターン露光を繰り返し行い、基板Pは、搬送方向(+X方向)に沿って搬送されていることから、露光装置EXによってパターンが露光される露光領域Wは、基板Pの長尺方向に沿って所定の間隔をあけて複数設けられることになる(図2参照)。この露光領域Wに電子デバイスが形成されるので、露光領域Wは、電子デバイス形成領域でもある。なお、電子デバイスは、複数のパターン層(パターンが形成された層)が重ね合わされることで構成されるので、露光装置EXによって各層に対応したパターンが露光される。 In the first embodiment, the exposure apparatus EX is a direct drawing type exposure apparatus that does not use a mask, that is, a so-called raster scan type exposure apparatus. The exposure apparatus EX irradiates the irradiated surface (photosensitive surface) of the substrate P supplied from the process apparatus PR1 with a light pattern corresponding to a predetermined pattern such as a display circuit or wiring. As will be described in detail later, the exposure apparatus EX converts the spot light SP of the exposure beam LB onto the substrate P (the irradiated surface of the substrate P while transporting the substrate P in the + X direction (sub-scanning direction). The intensity of the spot light SP is modulated (ON / OFF) at a high speed according to the pattern data (drawing data) while one-dimensionally scanning (main scanning) in the predetermined scanning direction (Y direction). As a result, a light pattern corresponding to a predetermined pattern such as a display circuit or wiring is drawn and exposed on the irradiated surface of the substrate P. That is, the spot light SP is relatively two-dimensionally scanned on the irradiated surface of the substrate P by the sub-scanning of the substrate P and the main scanning of the spot light SP, and a predetermined pattern is drawn and exposed on the substrate P. . The exposure apparatus EX repeatedly performs pattern exposure for electronic devices on the substrate P. Since the substrate P is transported along the transport direction (+ X direction), the pattern is exposed by the exposure apparatus EX. A plurality of exposure regions W are provided at predetermined intervals along the longitudinal direction of the substrate P (see FIG. 2). Since an electronic device is formed in the exposure area W, the exposure area W is also an electronic device formation area. In addition, since an electronic device is comprised by the several pattern layer (layer in which the pattern was formed) being piled up, the pattern corresponding to each layer is exposed by the exposure apparatus EX.
 プロセス装置PR2は、露光装置EXで露光処理された基板Pに対しての後工程の処理(例えばメッキ処理または現像・エッチング処理等)を行う。この後工程の処理により、基板P上にデバイスのパターン層が形成される。 The process apparatus PR2 performs a post-process process (for example, a plating process or a development / etching process) on the substrate P exposed by the exposure apparatus EX. The pattern layer of the device is formed on the substrate P by the subsequent process.
 上述したように、電子デバイスは、複数のパターン層が重ね合わされることで構成されるので、デバイス製造システム10の少なくとも各処理を経て、1つのパターン層が生成される。そのため、電子デバイスを生成するために、図1に示すようなデバイス製造システム10の各処理を少なくとも2回は経なければならない。そのため、基板Pが巻き取られた回収ロールを供給ロールとして別のデバイス製造システム10に装着することで、パターン層を積層することができる。そのような動作を繰り返して、電子デバイスが形成される。そのため、処理後の基板Pは、複数の電子デバイスが所定の間隔をあけて基板Pの長尺方向に沿って連なった状態となる。つまり、基板Pは、多面取り用の基板となっている。 As described above, since the electronic device is configured by superimposing a plurality of pattern layers, one pattern layer is generated through at least each process of the device manufacturing system 10. Therefore, in order to generate an electronic device, each process of the device manufacturing system 10 as shown in FIG. 1 must be performed at least twice. Therefore, a pattern layer can be laminated | stacked by mounting | wearing another device manufacturing system 10 with the collection | recovery roll by which the board | substrate P was wound up as a supply roll. Such an operation is repeated to form an electronic device. Therefore, the processed substrate P is in a state in which a plurality of electronic devices are connected along the longitudinal direction of the substrate P with a predetermined interval. That is, the substrate P is a multi-sided substrate.
 電子デバイスが連なった状態で形成された基板Pを回収した回収ロールは、図示しないダイシング装置に装着されてもよい。回収ロールが装着されたダイシング装置は、処理後の基板Pを電子デバイスごとに分割(ダイシング)することで、複数の枚葉となった電子デバイスにする。基板Pの寸法は、例えば、幅方向(短尺となる方向)の寸法が10cm~2m程度であり、長さ方向(長尺となる方向)の寸法が10m以上である。なお、基板Pの寸法は、上記した寸法に限定されない。 The collection roll that collects the substrate P formed in a state where the electronic devices are connected may be mounted on a dicing apparatus (not shown). The dicing apparatus equipped with the collection roll divides the processed substrate P for each electronic device (dicing) to form a plurality of electronic devices. Regarding the dimensions of the substrate P, for example, the dimension in the width direction (short direction) is about 10 cm to 2 m, and the dimension in the length direction (long direction) is 10 m or more. In addition, the dimension of the board | substrate P is not limited to an above-described dimension.
 次に、露光装置EXについて詳しく説明する。露光装置EXは、温調チャンバーECV内に格納されている。この温調チャンバーECVは、内部を所定の温度、所定の湿度に保つことで、内部において搬送される基板Pの温度による形状変化を抑制するとともに、基板Pの吸湿性や搬送に伴って発生する静電気の帯電等を考慮した湿度に設定される。温調チャンバーECVは、パッシブまたはアクティブな防振ユニットSU1、SU2を介して製造工場の設置面Eに配置される。防振ユニットSU1、SU2は、設置面Eからの振動を低減する。この設置面Eは、工場の床面上に専用に敷かれた設置土台(ペデスタル)上の面であってもよく、床であってもよい。露光装置EXは、基板搬送機構12と、光源装置14と、露光ヘッド16と、制御装置18と、アライメント顕微鏡AMa(AMa1~AMa4)、AMb(AMb1~AMb4)とを少なくとも備えている。 Next, the exposure apparatus EX will be described in detail. The exposure apparatus EX is stored in the temperature control chamber ECV. This temperature control chamber ECV keeps the inside at a predetermined temperature and a predetermined humidity, thereby suppressing a change in shape due to the temperature of the substrate P transported inside, and occurring along with the hygroscopicity and transport of the substrate P. The humidity is set in consideration of static charge. The temperature control chamber ECV is arranged on the installation surface E of the manufacturing factory via passive or active vibration isolation units SU1, SU2. The anti-vibration units SU1 and SU2 reduce vibration from the installation surface E. The installation surface E may be a surface on an installation base (pedestal) dedicated to the floor of the factory, or may be a floor. The exposure apparatus EX includes at least a substrate transport mechanism 12, a light source device 14, an exposure head 16, a control device 18, and alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4).
 基板搬送機構12は、プロセス装置PR1から搬送される基板Pを、プロセス装置PR2に所定の速度で搬送する。この基板搬送機構12によって、露光装置EX内で搬送される基板Pの搬送路が規定される。基板搬送機構12は、基板Pの搬送方向の上流側(-X方向側)から順に、エッジポジションコントローラEPC、駆動ローラR1、テンション調整ローラRT1、回転ドラム(円筒ドラムステージ)DR1、テンション調整ローラRT2、回転ドラム(円筒ドラムステージ)DR2、テンション調整ローラRT3、および、駆動ローラR2を有している。 The substrate transport mechanism 12 transports the substrate P transported from the process apparatus PR1 to the process apparatus PR2 at a predetermined speed. The substrate transport mechanism 12 defines a transport path for the substrate P transported in the exposure apparatus EX. The substrate transport mechanism 12 includes an edge position controller EPC, a driving roller R1, a tension adjusting roller RT1, a rotating drum (cylindrical drum stage) DR1, and a tension adjusting roller RT2 in order from the upstream side (−X direction side) in the transport direction of the substrate P. , A rotating drum (cylindrical drum stage) DR2, a tension adjusting roller RT3, and a driving roller R2.
 エッジポジションコントローラEPCは、プロセス装置PR1から搬送される基板Pの幅方向(Y方向であって基板Pの短尺方向)における位置を調整する。つまり、エッジポジションコントローラEPCは、所定のテンションが掛けられた状態で搬送されている基板Pの幅方向の端部(エッジ)における位置が、目標位置に対して±十数μm~数十μm程度の範囲(許容範囲)に収まるように、基板Pを幅方向に移動させて、基板Pの幅方向における位置を調整する。エッジポジションコントローラEPCは、所定のテンションがかけられた状態で基板Pが掛け渡されるローラと、基板Pの幅方向の端部(エッジ)の位置を検出する図示しないエッジセンサ(端部検出部)とを有する。エッジポジションコントローラEPCは、前記エッジセンサが検出した検出信号に基づいて、エッジポジションコントローラEPCの前記ローラをY方向に移動させて、基板Pの幅方向における位置を調整する。駆動ローラ(ニップローラ)R1は、エッジポジションコントローラEPCから搬送される基板Pの表裏両面を保持しながら回転し、基板Pを回転ドラムDR1へ向けて搬送する。エッジポジションコントローラEPCは、回転ドラムDR1に搬送される基板Pの長尺方向が、回転ドラムDR1の中心軸AXo1に対して直交するように、基板Pの幅方向における位置を調整する。駆動ローラR1から搬送された基板Pは、テンション調整ローラRT1に掛け渡された後、回転ドラムDR1に案内される。 The edge position controller EPC adjusts the position in the width direction (the Y direction and the short direction of the substrate P) of the substrate P transported from the process apparatus PR1. In other words, the edge position controller EPC has a position at the end (edge) in the width direction of the substrate P that is transported in a state where a predetermined tension is applied. The position of the substrate P in the width direction is adjusted by moving the substrate P in the width direction so that it falls within this range (allowable range). The edge position controller EPC includes a roller on which the substrate P is stretched in a state where a predetermined tension is applied, and an edge sensor (end detection unit) (not shown) that detects the position of the end (edge) in the width direction of the substrate P. And have. The edge position controller EPC adjusts the position of the substrate P in the width direction by moving the roller of the edge position controller EPC in the Y direction based on the detection signal detected by the edge sensor. The driving roller (nip roller) R1 rotates while holding both front and back surfaces of the substrate P conveyed from the edge position controller EPC, and conveys the substrate P toward the rotating drum DR1. The edge position controller EPC adjusts the position of the substrate P in the width direction so that the longitudinal direction of the substrate P conveyed to the rotating drum DR1 is orthogonal to the central axis AXo1 of the rotating drum DR1. The substrate P conveyed from the driving roller R1 is passed over the tension adjusting roller RT1, and then guided to the rotary drum DR1.
 回転ドラム(第1回転ドラム)DR1は、Y方向に延びるとともに重力が働く方向と交差した方向に延びた中心軸(第1中心軸)AXo1と、中心軸AXo1から一定半径の円筒状の外周面とを有する。回転ドラムDR1は、この外周面(円周面)に倣って基板Pの一部を長尺方向に円筒面状に湾曲させて支持しつつ、中心軸AXo1を中心に回転して基板Pを+X方向に搬送する。回転ドラムDR1は、重力が働く方向側とは反対側(+Z方向側)で、感光面が形成された面とは反対側の面(裏面)側から基板Pを支持する。回転ドラムDR1は、後述する露光ヘッド16の描画ユニットU1、U2、U5、U6の各々からのビームのスポット光が投射される基板P上の領域(部分)をその円周面で支持する。回転ドラムDR1のY方向の両側には、回転ドラムDR1が中心軸AXo1の周りを回転するように環状のベアリングで支持されたシャフトSft1が設けられている。このシャフトSft1は、制御装置18によって制御される図示しない回転駆動源(例えば、モータや減速機構等)からの回転トルクが与えられることで中心軸AXo1回りに回転する。なお、便宜的に、中心軸AXo1を含み、YZ平面と平行な平面を中心面Poc1と呼ぶ。 The rotating drum (first rotating drum) DR1 has a center axis (first center axis) AXo1 extending in the Y direction and extending in a direction intersecting with the direction in which gravity works, and a cylindrical outer peripheral surface having a constant radius from the center axis AXo1. And have. The rotating drum DR1 follows the outer peripheral surface (circumferential surface) and supports a part of the substrate P by curving it into a cylindrical surface in the longitudinal direction while rotating about the central axis AXo1 to + X Transport in the direction. The rotary drum DR1 supports the substrate P from the surface (back surface) opposite to the surface on which the photosensitive surface is formed, on the side opposite to the direction in which gravity acts (+ Z direction side). The rotary drum DR1 supports an area (portion) on the substrate P on which the spot light of the beam from each of drawing units U1, U2, U5, and U6 of the exposure head 16 described later is projected on its circumferential surface. On both sides in the Y direction of the rotary drum DR1, shafts Sft1 supported by annular bearings are provided so that the rotary drum DR1 rotates around the central axis AXo1. The shaft Sft1 rotates around the central axis AXo1 when a rotational torque from a rotation driving source (not shown) (for example, a motor or a speed reduction mechanism) controlled by the control device 18 is applied. For convenience, a plane including the central axis AXo1 and parallel to the YZ plane is referred to as a central plane Poc1.
 回転ドラムDR1から搬出された基板Pは、テンション調整ローラRT2に掛け渡された後、回転ドラムDR1より下流側(+X方向側)に設けられた回転ドラムDR2に案内される。回転ドラム(第2回転ドラム)DR2は、回転ドラムDR1と同一の構成を有する。つまり、回転ドラムDR2は、Y方向に延びるとともに重力が働く方向と交差した方向に延びた中心軸(第2中心軸)AXo2と、中心軸AXo2から一定半径の円筒状の外周面とを有する。回転ドラムDR2は、この外周面(円周面)に倣って基板Pの一部を長尺方向に円筒面状に湾曲させて支持しつつ、中心軸AXo2を中心に回転して基板Pを+X方向に搬送する。回転ドラムDR2は、重力が働く方向側とは反対側(+Z方向側)で、裏面側から基板Pを支持する。回転ドラムDR2は、後述する露光ヘッド16の描画ユニットU3、U4の各々からの描画用のビームのスポット光が投射される基板P上の領域(部分)をその円周面で支持する。回転ドラムDR2にもシャフトSft2が設けられている。このシャフトSft2は、制御装置18によって制御される図示しない回転駆動源(例えば、モータや減速機構等)からの回転トルクが与えられることで中心軸AXo2回りに回転する。回転ドラムDR1の中心軸AXo1と回転ドラムDR2の中心軸AXo2とは平行状態となっている。なお、便宜的に、中心軸AXo2を含み、YZ平面と平行な平面を中心面Poc2と呼ぶ。 The substrate P unloaded from the rotary drum DR1 is passed over the tension adjustment roller RT2, and then guided to the rotary drum DR2 provided on the downstream side (+ X direction side) from the rotary drum DR1. The rotating drum (second rotating drum) DR2 has the same configuration as the rotating drum DR1. That is, the rotating drum DR2 has a central axis (second central axis) AXo2 extending in the Y direction and extending in a direction intersecting with the direction in which gravity works, and a cylindrical outer peripheral surface having a constant radius from the central axis AXo2. The rotating drum DR2 follows the outer peripheral surface (circumferential surface) and supports a part of the substrate P by curving it into a cylindrical surface in the longitudinal direction while rotating about the central axis AXo2 to + X the substrate P. Transport in the direction. The rotating drum DR2 supports the substrate P from the back side on the side opposite to the direction in which gravity acts (+ Z direction side). The rotary drum DR2 supports an area (portion) on the substrate P on which the spot light of the drawing beam from each of the drawing units U3 and U4 of the exposure head 16 to be described later is projected on its circumferential surface. The rotary drum DR2 is also provided with a shaft Sft2. The shaft Sft2 rotates around the central axis AXo2 when a rotational torque from a rotation driving source (not shown) (for example, a motor or a speed reduction mechanism) controlled by the control device 18 is applied. The central axis AXo1 of the rotating drum DR1 and the central axis AXo2 of the rotating drum DR2 are in a parallel state. For convenience, a plane including the central axis AXo2 and parallel to the YZ plane is referred to as a central plane Poc2.
 回転ドラムDR2から搬出された基板Pは、テンション調整ローラRT2に掛け渡された後、駆動ローラR2に案内される。駆動ローラ(ニップローラ)R2は、駆動ローラR1と同様に、基板Pの表裏両面を保持しながら回転し、基板Pをプロセス装置PR2へ向けて搬送する。テンション調整ローラRT1~RT3は、-Z方向に付勢されており、回転ドラムDR1、DR2に巻き付けられて支持されている基板Pに長尺方向に所定のテンションを与えている。これにより、回転ドラムDR1、DR2にかかる基板Pに付与される長尺方向のテンションを所定の範囲内に安定化させている。なお、制御装置18は、図示しない回転駆動源(例えば、モータや減速機等)を制御することで、駆動ローラR1、R2を回転させる。 The substrate P carried out from the rotary drum DR2 is passed over the tension adjustment roller RT2, and then guided to the drive roller R2. Similarly to the driving roller R1, the driving roller (nip roller) R2 rotates while holding both front and back surfaces of the substrate P, and conveys the substrate P toward the process apparatus PR2. The tension adjusting rollers RT1 to RT3 are urged in the −Z direction, and apply a predetermined tension in the longitudinal direction to the substrate P that is wound around and supported by the rotary drums DR1 and DR2. Thereby, the longitudinal tension applied to the substrate P applied to the rotary drums DR1 and DR2 is stabilized within a predetermined range. In addition, the control apparatus 18 rotates drive roller R1, R2 by controlling the rotation drive source (For example, a motor, a reduction gear, etc.) which is not shown in figure.
 光源装置14は、光源(パルス光源)を有し、パルス状のビーム(パルス光、レーザ)LBを描画ユニットU1~U6の各々に射出するものである。このビームLBは、370nm以下の波長帯域にピーク波長を有する紫外線光であり、ビームLBの発光周波数をFsとする。光源装置14は、制御装置18の制御にしたがって、発光周波数FsでビームLBを発光して射出する。 The light source device 14 has a light source (pulse light source) and emits a pulsed beam (pulse light, laser) LB to each of the drawing units U1 to U6. This beam LB is ultraviolet light having a peak wavelength in a wavelength band of 370 nm or less, and the emission frequency of the beam LB is Fs. The light source device 14 emits and emits the beam LB at the emission frequency Fs under the control of the control device 18.
 露光ヘッド16は、光源装置14からのビームLBがそれぞれ入射する複数の描画ユニットU(U1~U6)を備えている。露光ヘッド16は、回転ドラムDR1、DR2の円周面で支持されている基板Pの一部分に、複数の描画ユニットU(U1~U6)によってパターンを描画する。露光ヘッド16は、構成が同一の複数の描画ユニットU(U1~U6)を有することで、いわゆるマルチビーム型の露光ヘッドとなっている。描画ユニットU1、U5、U2、U6は、回転ドラムDR1の上方に設けられ、描画ユニットU3、U4は、回転ドラムDR2の上方に設けられている。描画ユニットU1、U5は、中心面Poc1に対して基板Pの搬送方向の上流側(-X方向側)に配置され、且つ、Y方向に沿って所定の間隔だけ離して配置されている。描画ユニットU2、U6は、中心面Poc1に対して基板Pの搬送方向の下流側(+X方向側)に配置され、且つ、Y方向に沿って所定の間隔だけ離して配置されている。また、描画ユニットU3は、中心面Poc2に対して基板Pの搬送方向の上流側(-X方向側)に配置されている。描画ユニットU4は、中心面Poc2に対して基板Pの搬送方向の下流側(+X方向側)に配置されている。描画ユニットU1、U5と、描画ユニットU2、U6とは、中心面Poc1に対して対称に設けられ、描画ユニットU3と描画ユニットU4とは、中心面Poc2に対して対称に設けられている。 The exposure head 16 includes a plurality of drawing units U (U1 to U6) into which the beams LB from the light source device 14 are respectively incident. The exposure head 16 draws a pattern on a part of the substrate P supported by the circumferential surfaces of the rotary drums DR1 and DR2 by a plurality of drawing units U (U1 to U6). The exposure head 16 is a so-called multi-beam type exposure head by including a plurality of drawing units U (U1 to U6) having the same configuration. The drawing units U1, U5, U2, and U6 are provided above the rotating drum DR1, and the drawing units U3 and U4 are provided above the rotating drum DR2. The drawing units U1 and U5 are arranged on the upstream side (−X direction side) in the transport direction of the substrate P with respect to the center plane Poc1, and are arranged at a predetermined interval along the Y direction. The drawing units U2 and U6 are arranged on the downstream side (+ X direction side) in the transport direction of the substrate P with respect to the center plane Poc1, and are arranged at a predetermined interval along the Y direction. Further, the drawing unit U3 is arranged on the upstream side (−X direction side) in the transport direction of the substrate P with respect to the center plane Poc2. The drawing unit U4 is arranged on the downstream side (+ X direction side) in the transport direction of the substrate P with respect to the center plane Poc2. The drawing units U1 and U5 and the drawing units U2 and U6 are provided symmetrically with respect to the center plane Poc1, and the drawing unit U3 and the drawing unit U4 are provided symmetrically with respect to the center plane Poc2.
 各描画ユニットU(U1~U6)は、光源装置14からの送られてくる2つのビームLBの各々を基板Pの被照射面上で収斂させて基板Pの被照射面(感光面)に投射しつつ、基板Pの被照射面上で収斂された2つのスポット光SPを所定の2つの描画ライン(走査線)SLa、SLbに沿って1次元に走査する。この描画ユニットUの構成については、後で詳しく説明するが、本第1の実施の形態では、1つの描画ユニットUには、1つの回転ポリゴンミラー(ビーム偏向器、光偏向部材)と2つのfθレンズ系(走査光学系)とが設けられ、1つの描画ユニットU(U1~U6)は、基板P上の異なる2ヶ所の各々にスポット光SPによる走査線を形成する。そのため、光源装置14からは各描画ユニットUの各々に2つのビームLBが送られる。なお、光源装置14からのビームLBは、図示しない反射ミラーおよびビームスプリッタ等によって構成されるビーム分配系を介して複数のビームLBに分岐され、各描画ユニットU(U1~U6)の各々に、2つのビームLBとなって入射するものとする。 Each drawing unit U (U1 to U6) converges each of the two beams LB sent from the light source device 14 on the irradiated surface of the substrate P and projects it onto the irradiated surface (photosensitive surface) of the substrate P. However, the two spot lights SP converged on the irradiated surface of the substrate P are scanned one-dimensionally along two predetermined drawing lines (scanning lines) SLa and SLb. Although the configuration of the drawing unit U will be described in detail later, in the first embodiment, one drawing unit U includes one rotating polygon mirror (beam deflector, light deflecting member) and two An fθ lens system (scanning optical system) is provided, and one drawing unit U (U1 to U6) forms a scanning line by the spot light SP at each of two different locations on the substrate P. Therefore, two beams LB are sent from the light source device 14 to each drawing unit U. The beam LB from the light source device 14 is branched into a plurality of beams LB via a beam distribution system constituted by a reflection mirror and a beam splitter (not shown), and each drawing unit U (U1 to U6) Assume that two beams LB are incident.
 各描画ユニットU(U1~U6)は、XZ平面において、2つのビームLBが回転ドラムDR1の中心軸AXo1、または、回転ドラムDR2の中心軸AXo2に向かって進むように、2つのビームLBを基板Pに向けて照射する。これにより、各描画ユニットU(U1~U6)から基板P上の2つ描画ラインSLa、SLbに向かって進む2つのビームLBの光路(ビーム中心軸)は、XZ平面において、基板Pの被照射面の法線と平行となる。本第1の実施の形態では、描画ユニットU1、U5から回転ドラムDR1に向かって進むビームLBの光路(ビーム中心軸)は、中心面Poc1に対して角度が-θ1となるように設定されている。描画ユニットU2、U6から回転ドラムDR2に向かって進むビームLBの光路(ビーム中心軸)は、中心面Poc1に対して角度が+θ1となるように設定されている。また、描画ユニットU3から回転ドラムDR2に向かって進むビームLBの光路(ビーム中心軸)は、中心面Poc2に対して角度が-θ1となるように設定されている。描画ユニットU4から回転ドラムDR2に向かって進むビームLBの光路(ビーム中心軸)は、中心面Poc2に対して角度が+θ1となるように設定されている。また、各描画ユニットU(U1~U6)は、2つの描画ラインSLa、SLbに照射するビームLBが、YZ平面と平行な面内では基板Pの被照射面に対して垂直となるように、ビームLBを基板Pに向けて照射する。すなわち、被照射面でのスポット光SPの主走査方向に関して、基板Pに投射されるビームLBはテレセントリックな状態で走査される。 Each drawing unit U (U1 to U6) has two beams LB on the substrate so that the two beams LB travel toward the central axis AXo1 of the rotary drum DR1 or the central axis AXo2 of the rotary drum DR2 in the XZ plane. Irradiate toward P. Thereby, the optical paths (beam central axes) of the two beams LB traveling from the respective drawing units U (U1 to U6) toward the two drawing lines SLa and SLb on the substrate P are irradiated on the substrate P in the XZ plane. Parallel to the surface normal. In the first embodiment, the optical path (beam center axis) of the beam LB traveling from the drawing units U1 and U5 toward the rotary drum DR1 is set so that the angle is −θ1 with respect to the center plane Poc1. Yes. The optical path (beam center axis) of the beam LB traveling from the drawing units U2 and U6 toward the rotary drum DR2 is set so that the angle is + θ1 with respect to the center plane Poc1. The optical path (beam center axis) of the beam LB traveling from the drawing unit U3 toward the rotary drum DR2 is set so that the angle is −θ1 with respect to the center plane Poc2. The optical path (beam center axis) of the beam LB traveling from the drawing unit U4 toward the rotary drum DR2 is set so that the angle is + θ1 with respect to the center plane Poc2. Further, each drawing unit U (U1 to U6) is configured so that the beam LB irradiated to the two drawing lines SLa and SLb is perpendicular to the irradiated surface of the substrate P in a plane parallel to the YZ plane. The beam LB is irradiated toward the substrate P. That is, the beam LB projected onto the substrate P is scanned in a telecentric state with respect to the main scanning direction of the spot light SP on the irradiated surface.
 複数の描画ユニットU(U1~U6)は、図2に示すように所定の配置関係で配置されている。各描画ユニットU(U1~U6)の2つの描画ラインSLa、SLbは、主走査方向、つまり、Y方向に延びており、基板Pの被照射面上で副走査方向(X方向)に関して同じ位置であって、且つ、主走査方向(Y方向)にずれて配置されている。つまり、各描画ユニットU(U1~U6)の描画ラインSLa、SLbは、平行な状態で主走査方向(Y方向)にのみ離間して配置されている。また、描画ラインSLa、SLbの走査長(長さ)は同一に設定されているとともに、描画ラインSLaと描画ラインSLbとは、主走査方向に走査長以下の間隔で離間するように設定されている。 The plurality of drawing units U (U1 to U6) are arranged in a predetermined arrangement relationship as shown in FIG. The two drawing lines SLa and SLb of each drawing unit U (U1 to U6) extend in the main scanning direction, that is, the Y direction, and are the same position on the irradiated surface of the substrate P in the sub-scanning direction (X direction). In addition, they are arranged shifted in the main scanning direction (Y direction). That is, the drawing lines SLa and SLb of the respective drawing units U (U1 to U6) are arranged in parallel and separated only in the main scanning direction (Y direction). In addition, the scanning lengths (lengths) of the drawing lines SLa and SLb are set to be the same, and the drawing line SLa and the drawing line SLb are set to be separated from each other in the main scanning direction by an interval equal to or less than the scanning length. Yes.
 複数の描画ユニットU(U1~U6)は、複数の描画ユニットU(U1~U6)の描画ラインSLa、SLbが、図2に示すように、Y方向(基板Pの幅方向、主走査方向)に関して、互いに分離することなく、継ぎ合わされるように配置されている。各描画ユニットU(U1~U6)は、描画ライン(走査線)SLa、SLbのXY面内での傾き調整のために、回動中心軸AXr回りに、例えば±1.5度の範囲内でμradの分解能で微小回動可能である。この回動中心軸AXrは、描画ライン(第1の走査線)SLaの中点と描画ライン(第2の走査線)SLbの中点とを結ぶ線分の中心点(中点)を基板Pに対して垂直に通る軸である。その軸の延長は、図1中の回転ドラムDR1の中心軸AXo1、または回転ドラムDR2の、中心軸AXo2と交差する。なお、第1の実施の形態においては、各描画ユニットU(U1~U6)の描画ラインSLaと描画ラインSLbとは、副走査方向に関して同じ位置で、且つ、主走査方向に互いに離間しているので、回動中心軸AXrは、描画ラインSLa、SLbとを通る直線上に配置され、描画ラインSLaと描画ラインSLbとの隙間の中心点に配置されている。 In the plurality of drawing units U (U1 to U6), the drawing lines SLa and SLb of the plurality of drawing units U (U1 to U6) are arranged in the Y direction (width direction of the substrate P, main scanning direction) as shown in FIG. With respect to each other without being separated from each other. Each drawing unit U (U1 to U6) adjusts the inclination of the drawing lines (scanning lines) SLa and SLb in the XY plane within a range of, for example, ± 1.5 degrees around the rotation center axis AXr. Micro-rotation is possible with a resolution of μrad. The rotation center axis AXr is the center point (midpoint) of the line segment connecting the midpoint of the drawing line (first scanning line) SLa and the midpoint of the drawing line (second scanning line) SLb. Axis passing perpendicular to The extension of the axis intersects the central axis AXo1 of the rotary drum DR1 in FIG. 1 or the central axis AXo2 of the rotary drum DR2. In the first embodiment, the drawing line SLa and the drawing line SLb of each drawing unit U (U1 to U6) are at the same position in the sub-scanning direction and are separated from each other in the main scanning direction. Therefore, the rotation center axis AXr is arranged on a straight line passing through the drawing lines SLa and SLb, and is arranged at the center point of the gap between the drawing line SLa and the drawing line SLb.
 描画ユニットU(U1~U6)が回動中心軸AXr回りに微少量でも回動(回転)すると、ビームLBのスポット光SPが走査される描画ラインSLa、SLbも、それに応じて回動中心軸AXrを中心に回動(回転)する。これにより、描画ユニットU(U1~U6)が、一定の角度だけ回動すると、それに応じて描画ラインSLa、SLbも回動中心軸AXrを中心にY方向(Y軸)に対して一定の角度だけ傾くことになる。この各描画ユニットU(U1~U6)は、制御装置18の制御の下、アクチュエータを含む図示しない応答性の高い駆動機構によって、回動中心軸AXr回りに回動する。 When the drawing unit U (U1 to U6) is rotated (rotated) even by a small amount around the rotation center axis AXr, the drawing lines SLa and SLb scanned with the spot light SP of the beam LB are also rotated accordingly. It rotates (rotates) around AXr. As a result, when the drawing unit U (U1 to U6) rotates by a certain angle, the drawing lines SLa and SLb correspondingly rotate at a certain angle with respect to the Y direction (Y axis) about the rotation center axis AXr. Will just lean. Each of the drawing units U (U1 to U6) is rotated around the rotation center axis AXr by a highly responsive drive mechanism (not shown) including an actuator under the control of the control device 18.
 なお、描画ユニットU1の2つの描画ラインSLa、SLbをSL1a、SL1bで表し、同様に、描画ユニットU2~U6の2つの描画ラインSLa、SLbを、SL2a、SL2b~SL6a、SL6bで表す場合がある。また、描画ラインSLa、SLbを総称して単に描画ラインSLと呼ぶ場合がある。 The two drawing lines SLa, SLb of the drawing unit U1 may be represented by SL1a, SL1b, and similarly, the two drawing lines SLa, SLb of the drawing units U2-U6 may be represented by SL2a, SL2b-SL6a, SL6b. . Further, the drawing lines SLa and SLb may be collectively referred to simply as a drawing line SL.
 図2に示すように、複数の描画ユニットU(U1~U6)は全部で露光領域Wの幅方向の全てをカバーするように、各描画ユニットU(U1~U6)は、走査領域を分担している。これにより、各描画ユニットU(U1~U6)は、基板Pの幅方向に分割された複数の領域毎にパターンを描画することができる。例えば、描画ラインSLの走査長(長さ)を20~40mm程度とすると、計6個の描画ユニットUをY方向に配置することによって、描画可能なY方向の幅を約240~480mm程度に広げている。各描画ラインSL(SL1a、SL1b~SL6a、SL6b)の長さ(走査長)は、原則として同一とする。つまり、複数の描画ラインSL(SL1a、SL1b~SL6a、SL6b)の各々に沿って走査されるビームLBのスポット光SPの走査距離は、原則として同一とする。なお、露光領域Wの幅を広げたい場合は、描画ラインSL(SLa、SLb)自体の長さを長くするか、Y方向に配置する描画ユニットUの数を増やすことで対応することができる。 As shown in FIG. 2, the drawing units U (U1 to U6) share the scanning area so that the plurality of drawing units U (U1 to U6) cover all of the width direction of the exposure area W in total. ing. Accordingly, each drawing unit U (U1 to U6) can draw a pattern for each of a plurality of regions divided in the width direction of the substrate P. For example, if the scanning length (length) of the drawing line SL is about 20 to 40 mm, a total of six drawing units U are arranged in the Y direction so that the width in the Y direction that can be drawn is about 240 to 480 mm. It is spreading. In principle, the length (scanning length) of each drawing line SL (SL1a, SL1b to SL6a, SL6b) is the same. That is, the scanning distance of the spot light SP of the beam LB scanned along each of the plurality of drawing lines SL (SL1a, SL1b to SL6a, SL6b) is basically the same. Note that the width of the exposure region W can be increased by increasing the length of the drawing line SL (SLa, SLb) itself or increasing the number of drawing units U arranged in the Y direction.
 描画ラインSL1a、SL1b、SL2a、SL2b、SL5a、SL5b、SL6a、SL6bは、回転ドラムDR1で支持された基板Pの被照射面上に位置する。描画ラインSL1a、SL1b、SL2a、SL2b、SL5a、SL5b、SL6a、SL6bは、中心面Poc1を挟んで、回転ドラムDR1の周方向に2列に配置されている。描画ラインSL1a、SL1b、SL5a、SL5bは、中心面Poc1に対して基板Pの搬送方向の上流側(-X方向側)の基板Pの被照射面上に位置する。描画ラインSL2a、SL2b、SL6a、SL6bは、中心面Poc1に対して基板Pの搬送方向の下流側(+X方向側)の基板Pに被照射面上に位置する。 The drawing lines SL1a, SL1b, SL2a, SL2b, SL5a, SL5b, SL6a, and SL6b are positioned on the irradiated surface of the substrate P supported by the rotary drum DR1. The drawing lines SL1a, SL1b, SL2a, SL2b, SL5a, SL5b, SL6a, and SL6b are arranged in two rows in the circumferential direction of the rotary drum DR1 with the center surface Poc1 interposed therebetween. The drawing lines SL1a, SL1b, SL5a, and SL5b are positioned on the irradiated surface of the substrate P on the upstream side (−X direction side) in the transport direction of the substrate P with respect to the center plane Poc1. The drawing lines SL2a, SL2b, SL6a, and SL6b are positioned on the irradiated surface of the substrate P on the downstream side (+ X direction side) in the transport direction of the substrate P with respect to the center plane Poc1.
 描画ラインSL3a、SL3b、SL4a、SL4bは、回転ドラムDR2で支持された基板Pの被照射面上に位置する。描画ラインSL3a、SL3b、SL4a、SL4bは、中心面Poc2を挟んで、回転ドラムDR2の周方向に2列に配置されている。描画ラインSL3a、SL3bは、中心面Poc2に対して基板Pの搬送方向の上流側(-X方向側)の基板Pの被照射面上に位置する。描画ラインSL4a、SL4bは、中心面Poc2に対して基板Pの搬送方向の下流側(+X方向側)の基板Pの被照射面上に位置する。描画ラインSLa1、SL1b~SL6a、SL6bは、基板Pの幅方向、つまり、回転ドラムDR1、DR2の中心軸AXo1、AXo2と略並行となっている。 The drawing lines SL3a, SL3b, SL4a, and SL4b are located on the irradiated surface of the substrate P supported by the rotary drum DR2. The drawing lines SL3a, SL3b, SL4a, and SL4b are arranged in two rows in the circumferential direction of the rotary drum DR2 with the center surface Poc2 interposed therebetween. The drawing lines SL3a and SL3b are located on the irradiated surface of the substrate P on the upstream side (−X direction side) in the transport direction of the substrate P with respect to the center plane Poc2. The drawing lines SL4a and SL4b are located on the irradiated surface of the substrate P on the downstream side (+ X direction side) in the transport direction of the substrate P with respect to the center plane Poc2. The drawing lines SLa1, SL1b to SL6a, SL6b are substantially parallel to the width direction of the substrate P, that is, the central axes AXo1, AXo2 of the rotary drums DR1, DR2.
 奇数番の描画ラインSL1a、SL1b、SL3a、SL3b、SL5a、SL5bは、Y方向(基板Pの幅方向)に関して、基板Pの幅方向(走査方向)に沿って所定の間隔をあけて直線上に配置されている。偶数番の描画ラインSL2a、SL2b、SL4a、SL4b、SL6a、SL6bも同様に、Y方向に関して、基板Pの幅方向に沿って所定の間隔をあけて直線上に配置されている。このとき、描画ラインSL1bは、Y方向に関して、描画ラインSL2aと描画ラインSL2bとの間に配置される。描画ラインSL3aは、Y方向に関して、描画ラインSL2bと描画ラインSL4aとの間に配置される。描画ラインSL3bは、Y方向に関して、描画ラインSL4aと描画ラインSL4bとの間に配置される。描画ラインSL5aは、Y方向に関して、描画ラインSL4bと描画ラインSL6aとの間に配置されている。描画ラインSL5bは、Y方向に関して描画ラインSL6aと描画ラインSL6bとの間に配置されている。つまり、描画ラインSLは、Y方向に関して、-Y方向側から順に、SL1a、SL2a、SL1b、SL2b、SL3a、SL4a、SL3b、SL4b、SL5a、SL6a、SL5b、SL6bの順に、描画されるパターンがY方向の端部で継ぎ合わされるように配置されている。 The odd-numbered drawing lines SL1a, SL1b, SL3a, SL3b, SL5a, and SL5b are linearly spaced at a predetermined interval along the width direction (scanning direction) of the substrate P with respect to the Y direction (width direction of the substrate P). Has been placed. Similarly, even-numbered drawing lines SL2a, SL2b, SL4a, SL4b, SL6a, and SL6b are arranged on a straight line with a predetermined interval in the width direction of the substrate P in the Y direction. At this time, the drawing line SL1b is arranged between the drawing line SL2a and the drawing line SL2b in the Y direction. The drawing line SL3a is arranged between the drawing line SL2b and the drawing line SL4a in the Y direction. The drawing line SL3b is arranged between the drawing line SL4a and the drawing line SL4b in the Y direction. The drawing line SL5a is arranged between the drawing line SL4b and the drawing line SL6a in the Y direction. The drawing line SL5b is arranged between the drawing line SL6a and the drawing line SL6b in the Y direction. That is, in the drawing line SL, with respect to the Y direction, the patterns drawn in the order of SL1a, SL2a, SL1b, SL2b, SL3a, SL4a, SL3b, SL4b, SL5a, SL6a, SL5b, and SL6b in order from the −Y direction. It is arranged to be spliced at the end in the direction.
 奇数番の描画ラインSL1a、SL1b、SL3a、SL3b、SL5a、SL5bの各々に沿って走査されるビームLBのスポット光SPの走査方向は、1次元の方向となっており、同じ方向(+Y方向)となっている。偶数番の描画ラインSL2a、SL2b、SL4a、SL4b、SL6a、SL6bの各々に沿って走査されるビームLBのスポット光SPの走査方向は、1次元の方向となっており、同じ方向(-Y方向)となっている。この奇数番の描画ラインSL1a、SL1b、SL3a、SL3b、SL5a、SL5bに沿って走査されるビームLBのスポット光SPの走査方向(+Y方向)と、偶数番の描画ラインSL2a、SL2b、SL4a、SL4b、SL6a、SL6bに沿って走査されるビームLBのスポット光SPの走査方向(-Y方向)とは互いに逆方向となっている。これにより、描画ラインSL1b、SL3a、SL3b、SL5a、SL5bの描画開始位置(描画開始点の位置)と、描画ラインSL2a、SL2b、SL4a、SL4b、SL6aの描画開始位置とで描画されるパターンが継ぎ合わされる。また、描画ラインSL1a、SL1b、SL3a、SL3b、SL5a、SL5bの描画終了位置(描画終了点の位置)と、描画ラインSL2a、SL2b、SL4a、SL4b、SL6a、SL6bの描画終了位置とで描画されるパターンが継ぎ合わされる。なお、初期状態では、直線上に位置する奇数番の描画ラインSL1a、SL1b、SL5a、SL5bと、直線上に位置する偶数番の描画ラインSL2a、SL2b、SL6a、SL6bとは、基板Pの搬送方向(回転ドラムDR1の周方向)に沿って一定の長さ(間隔長)だけ離れて配置される。同様に、初期状態では、直線上に位置する奇数番の描画ラインSL3a、SL3bと、直線上に位置する偶数番の描画ラインSL4a、SL4bとは、基板Pの搬送方向(回転ドラムDR2の周方向)に沿って一定の長さ(間隔長)だけ離れて配置される。 The scanning direction of the spot light SP of the beam LB scanned along each of the odd-numbered drawing lines SL1a, SL1b, SL3a, SL3b, SL5a, and SL5b is a one-dimensional direction and is the same direction (+ Y direction). It has become. The scanning direction of the spot light SP of the beam LB scanned along each of the even-numbered drawing lines SL2a, SL2b, SL4a, SL4b, SL6a, and SL6b is a one-dimensional direction, and is the same direction (−Y direction) ). The scanning direction (+ Y direction) of the spot light SP of the beam LB scanned along the odd numbered drawing lines SL1a, SL1b, SL3a, SL3b, SL5a, and SL5b and the even numbered drawing lines SL2a, SL2b, SL4a, and SL4b , The scanning direction (−Y direction) of the spot light SP of the beam LB scanned along SL6a and SL6b is opposite to each other. As a result, the pattern drawn at the drawing start position (the drawing start point position) of the drawing lines SL1b, SL3a, SL3b, SL5a, and SL5b and the drawing start positions of the drawing lines SL2a, SL2b, SL4a, SL4b, and SL6a are joined. Combined. In addition, drawing is performed at the drawing end positions (drawing end positions) of the drawing lines SL1a, SL1b, SL3a, SL3b, SL5a, and SL5b and the drawing end positions of the drawing lines SL2a, SL2b, SL4a, SL4b, SL6a, and SL6b. Patterns are stitched together. In the initial state, the odd-numbered drawing lines SL1a, SL1b, SL5a, and SL5b located on the straight line and the even-numbered drawing lines SL2a, SL2b, SL6a, and SL6b located on the straight line are in the transport direction of the substrate P. They are arranged along the (circumferential direction of the rotating drum DR1) by a certain length (interval length). Similarly, in the initial state, the odd-numbered drawing lines SL3a and SL3b positioned on the straight line and the even-numbered drawing lines SL4a and SL4b positioned on the straight line are in the transport direction of the substrate P (the circumferential direction of the rotary drum DR2). ) Are spaced apart by a certain length (interval length).
 なお、描画ラインSLの幅(X方向の寸法)は、スポット光SPのサイズ(直径)φに応じた太さである。例えば、スポット光SPの実効的なサイズφが3μmの場合は、描画ラインSLの幅も3μmとなる。スポット光SPは、所定の長さ(例えば、スポット光SPの実効的なサイズφの半分)だけオーバーラップするように、描画ラインSLに沿って投射されてもよい。また、走査方向に関してお互いに隣接する描画ラインSLの端部(例えば、描画ラインSL1aの描画終了点と描画ラインSL2aの描画終了点)は、所定の長さ(例えば、スポット光SPのサイズφの半分)だけ、Y方向にオーバーラップしていてもよい。 Note that the width (dimension in the X direction) of the drawing line SL is a thickness corresponding to the size (diameter) φ of the spot light SP. For example, when the effective size φ of the spot light SP is 3 μm, the width of the drawing line SL is also 3 μm. The spot light SP may be projected along the drawing line SL so as to overlap by a predetermined length (for example, half the effective size φ of the spot light SP). Also, the ends of the drawing lines SL adjacent to each other in the scanning direction (for example, the drawing end point of the drawing line SL1a and the drawing end point of the drawing line SL2a) have a predetermined length (for example, the size φ of the spot light SP). (Half) may overlap in the Y direction.
 図3は、主走査方向に隣り合う描画ラインSLの端部同士を一致(隣接)させる場合の各描画ユニットUの描画ラインSLa、SLbの配置関係を示す図である。図3に示すように、描画ユニットUの描画ラインSLa、SLbの走査長、および、描画ユニットUの描画ラインSLaと描画ラインSLbとのY方向の離間距離(隙間)をともにLoとする。したがって、互いに対向する描画ユニットU1、U3、U5の描画ラインSLa、SLbと描画ユニットU2、U4、U6の描画ラインSLa、SLbとを、主走査方向に隣り合う描画ラインSL同士で、その端部が主走査方向に隣接するように配置することができる。なお、描画ユニットUの回動中心軸AXrは、描画ラインSLa、SLb間の離間距離Loの中心点を通るように設定されている。 FIG. 3 is a diagram showing an arrangement relationship between the drawing lines SLa and SLb of each drawing unit U when the ends of the drawing lines SL adjacent in the main scanning direction are matched (adjacent). As shown in FIG. 3, the scanning length of the drawing lines SLa and SLb of the drawing unit U and the distance (gap) in the Y direction between the drawing lines SLa and SLb of the drawing unit U are both set to Lo. Therefore, the drawing lines SLa, SLb of the drawing units U1, U3, U5 facing each other and the drawing lines SLa, SLb of the drawing units U2, U4, U6 are adjacent to each other in the main scanning direction. Can be arranged adjacent to each other in the main scanning direction. The rotation center axis AXr of the drawing unit U is set so as to pass through the center point of the separation distance Lo between the drawing lines SLa and SLb.
 図4は、走査方向に隣り合う描画ラインSLの端部同士をα/2(一定長)ずつ重畳させる場合の各描画ユニットUの描画ラインSLa、SLbの配置関係を示す図である。図4に示すように、描画ラインSLa、SLbの走査長をLoとし、描画ユニットUの描画ラインSLaと描画ラインSLbとのY方向の離間距離(隙間)をLo-αとする。したがって、互いに対向する描画ユニットU1、U3、U5の描画ラインSLa、SLbと描画ユニットU2、U4、U6の描画ラインSLa、SLbとを、主走査方向に隣り合う描画ラインSL同士で、その端部が主走査方向にα/2で重畳するように配置することができる。なお、描画ユニットUの回動中心軸AXrは、描画ラインSLa、SLb間の離間距離Lo-αの中心点を通るように設定されている。 FIG. 4 is a diagram showing an arrangement relationship between the drawing lines SLa and SLb of each drawing unit U when the ends of the drawing lines SL adjacent in the scanning direction are overlapped by α / 2 (a certain length). As shown in FIG. 4, the scanning length of the drawing lines SLa and SLb is Lo, and the distance (gap) in the Y direction between the drawing line SLa and the drawing line SLb of the drawing unit U is Lo-α. Therefore, the drawing lines SLa, SLb of the drawing units U1, U3, U5 facing each other and the drawing lines SLa, SLb of the drawing units U2, U4, U6 are adjacent to each other in the main scanning direction. Can be arranged so as to overlap at α / 2 in the main scanning direction. The rotation center axis AXr of the drawing unit U is set so as to pass through the center point of the separation distance Lo-α between the drawing lines SLa and SLb.
 図1に示した制御装置18は、露光装置EXの各部を制御するものである。この制御装置18は、コンピュータとプログラムが記録された記録媒体等とを含み、該コンピュータがプログラムを実行することで、本第1の実施の形態の制御装置18として機能する。また、図1に示したアライメント顕微鏡AMa(AMa1~AMa4)、AMb(AMb1~AMb4)は、図2に示す基板Pに形成されたアライメントマークMK(MK1~MK4)を検出するためのものである。複数のアライメント顕微鏡AMa(AMa1~AMa4)は、Y方向に沿って設けられている。同様に、複数のアライメント顕微鏡AMb(AMb1~AMb4)も、Y方向に沿って設けられている。アライメントマークMK(MK1~MK4)は、基板Pの被照射面上の露光領域Wに描画されるパターンと基板Pとを相対的に位置合わせする(アライメントする)ための基準マークである。アライメント顕微鏡AMa(AMa1~AMa4)は、回転ドラムDR1の円周面で支持されている基板P上で、アライメントマークMK(MK1~MK4)を検出する。アライメント顕微鏡AMa(AMa1~AMa4)は、描画ユニットU1、5から基板Pの被照射面上に照射されるビームLBのスポット光SPの位置(描画ラインSL1a、SL1b、SL5a、SL5b)よりも基板Pの搬送方向の上流側(-X方向側)に設けられている。また、アライメント顕微鏡AMb(AMb1~AMb4)は、回転ドラムDR2の円周面で支持されている基板P上で、アライメントマークMK(MK1~MK4)を検出する。アライメント顕微鏡AMb(AMb1~AMb4)は、描画ユニットU3から基板Pの被照射面上に照射されるビームLBのスポット光SPの位置(描画ラインSL3a、SL3b)よりも基板Pの搬送方向の上流側(-X方向側)に設けられている。 The control device 18 shown in FIG. 1 controls each part of the exposure apparatus EX. The control device 18 includes a computer and a recording medium on which the program is recorded, and functions as the control device 18 of the first embodiment when the computer executes the program. The alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4) shown in FIG. 1 are for detecting the alignment marks MK (MK1 to MK4) formed on the substrate P shown in FIG. . The plurality of alignment microscopes AMa (AMa1 to AMa4) are provided along the Y direction. Similarly, a plurality of alignment microscopes AMb (AMb1 to AMb4) are also provided along the Y direction. The alignment marks MK (MK1 to MK4) are reference marks for relatively aligning (aligning) the pattern drawn on the exposure area W on the irradiated surface of the substrate P and the substrate P. The alignment microscope AMa (AMa1 to AMa4) detects the alignment mark MK (MK1 to MK4) on the substrate P supported by the circumferential surface of the rotary drum DR1. The alignment microscope AMa (AMa1 to AMa4) is configured so that the substrate P is positioned more than the position of the spot light SP of the beam LB irradiated on the irradiated surface of the substrate P from the drawing units U1 and 5 (drawing lines SL1a, SL1b, SL5a, SL5b). Is provided on the upstream side in the transport direction (−X direction side). The alignment microscope AMb (AMb1 to AMb4) detects the alignment mark MK (MK1 to MK4) on the substrate P supported by the circumferential surface of the rotary drum DR2. The alignment microscope AMb (AMb1 to AMb4) is upstream of the position of the spot light SP of the beam LB irradiated on the irradiated surface of the substrate P from the drawing unit U3 (drawing lines SL3a and SL3b) in the transport direction of the substrate P. (−X direction side).
 アライメント顕微鏡AMa(AMa1~AMa4)、AMb(AMb1~AMb4)は、図示しないがアライメント用の照明光を基板Pに投射する光源とその反射光を撮像する撮像素子(CCD、CMOS等)とを有する。アライメント顕微鏡AMa(AMa1~AMa4)、AMb(AMb1~AMb4)が撮像した撮像信号は、制御装置18に送られる。アライメント顕微鏡AMa(AMa1~AMa4)、AMb(AMb1~AMb4)は、図示しない観察領域内に存在するアライメントマークMK(MK1~MK4)を撮像する。各アライメント顕微鏡AMa(AMa1~AMa4)、AMb(AMb1~AMb4)の観察領域は、Y方向に沿って設けられており、アライメントマークMK(MK1~MK4)のY方向の位置に応じて配置されている。したがって、アライメント顕微鏡AMa1、AMb1は、アライメントマークMK1を撮像し、同様に、アライメント顕微鏡AMa2~AMa4、AMb2~AMb4は、アライメントマークMK2~MK4を撮像することができる。この観察領域の基板Pの被照射面上の大きさは、アライメントマークMK(MK1~MK4)の大きさやアライメント精度(位置測定精度)に応じて設定されるが、100~500μm程度角の大きさである。制御装置18は、アライメント顕微鏡AMa(AMa1~AMa4)、AMb(AMb1~AMb4)からの撮像信号に基づいて、アライメントマークMKの位置を検出する。なお、アライメント用の照明光は、基板Pの感光性機能層に対してほとんど感度を持たない波長域の光、例えば、波長500nm~800nm程度の光である。また、アライメント顕微鏡AMa、AMbの撮像素子は、基板Pが移動している間にアライメントマークMKを撮像する必要があるため、基板Pの搬送速度に応じた高速なシャッター時間(電荷蓄積時間等の撮像時間)に設定される。 Although not shown, the alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4) have a light source that projects alignment illumination light onto the substrate P and an image sensor (CCD, CMOS, etc.) that captures the reflected light. . The imaging signals captured by the alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4) are sent to the control device 18. The alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4) image the alignment marks MK (MK1 to MK4) present in the observation region (not shown). The observation areas of the alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4) are provided along the Y direction, and are arranged according to the positions of the alignment marks MK (MK1 to MK4) in the Y direction. Yes. Therefore, the alignment microscopes AMa1 and AMb1 can image the alignment mark MK1, and similarly, the alignment microscopes AMa2 to AMa4 and AMb2 to AMb4 can image the alignment marks MK2 to MK4. The size of the observation region on the surface to be irradiated of the substrate P is set according to the size of the alignment mark MK (MK1 to MK4) and the alignment accuracy (position measurement accuracy), but is about 100 to 500 μm square. It is. The control device 18 detects the position of the alignment mark MK based on the imaging signals from the alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4). The illumination light for alignment is light in a wavelength region that has little sensitivity to the photosensitive functional layer of the substrate P, for example, light having a wavelength of about 500 nm to 800 nm. In addition, since the imaging elements of the alignment microscopes AMa and AMb need to image the alignment mark MK while the substrate P is moving, a high-speed shutter time (charge accumulation time, etc.) corresponding to the transport speed of the substrate P is required. Imaging time).
 次に、描画ユニットUの構成ついて説明する。各描画ユニットUは、同一の構成を有するので、本第1の実施の形態においては、描画ユニットU2を例にして説明する。以下、描画ユニットUの説明では、描画ユニットU内の各部材やビームの配置を特定するために、直交座標系XtYtZtを設定する。直交座標系XtYtZtのYt軸は直交座標系XYZのY軸と平行に設定され、直交座標系XtYtZtは、直交座標系XYZに対してY軸回りに一定角度だけ傾けたものに設定される。 Next, the configuration of the drawing unit U will be described. Since each drawing unit U has the same configuration, the drawing unit U2 will be described as an example in the first embodiment. Hereinafter, in the description of the drawing unit U, an orthogonal coordinate system XtYtZt is set in order to specify the arrangement of each member and beam in the drawing unit U. The Yt axis of the Cartesian coordinate system XtYtZt is set parallel to the Y axis of the Cartesian coordinate system XYZ, and the Cartesian coordinate system XtYtZt is set to be inclined by a certain angle around the Y axis with respect to the Cartesian coordinate system XYZ.
 図5は、-Yt(-Y)方向側からみた描画ユニットU2の構成図、図6は、+Zt方向側からみた描画ユニットU2の構成図である。描画ユニットU2に入射する2つのビームLBのうち、一方のビームLBをLBaで表し、他方のビームLBをLBbで表すものとする。また、ビーム(第1のビーム)LBaのスポット光SPをSPaで表し、ビーム(第2のビーム)LBbのスポット光SPをSPbで表す場合がある。スポット光(第1のスポット光)SPaは描画ラインSL2a(SLa)上を走査し、スポット光(第2のスポット光)SPbは描画ラインSL2b(SLb)上を走査する。 FIG. 5 is a configuration diagram of the drawing unit U2 viewed from the −Yt (−Y) direction side, and FIG. 6 is a configuration diagram of the drawing unit U2 viewed from the + Zt direction side. Of the two beams LB incident on the drawing unit U2, one beam LB is represented by LBa and the other beam LB is represented by LBb. Further, the spot light SP of the beam (first beam) LBa may be represented by SPa, and the spot light SP of the beam (second beam) LBb may be represented by SPb. The spot light (first spot light) SPa scans the drawing line SL2a (SLa), and the spot light (second spot light) SPb scans the drawing line SL2b (SLb).
 なお、図6においては、わかり易くするために、スポット光SPa、SPbを、描画ラインSL2a、SL2bより太い点で表している。また、図5、図6においては、回動中心軸AXrと平行する方向をZt方向とし、Zt方向と直交する平面上にあって、基板Pがプロセス装置PR1から露光装置EXを経てプロセス装置PR2に向かう方向をXt方向とし、Zt方向と直交する平面上であって、Xt方向と直交する方向をYt方向とする。つまり、図5、図6のXt、Yt、Ztの3次元座標は、図1のX、Y、Zの3次元座標を、Y軸を中心にZ軸方向が回動中心軸AXrと平行となるように回転させた3次元座標である。 In FIG. 6, for easy understanding, the spot lights SPa and SPb are represented by thicker points than the drawing lines SL2a and SL2b. 5 and 6, the direction parallel to the rotation center axis AXr is the Zt direction, and the substrate P is on a plane orthogonal to the Zt direction, and the substrate P passes through the exposure apparatus EX from the process apparatus PR1 to the process apparatus PR2. The direction toward the Xt direction is the Xt direction, the direction perpendicular to the Zt direction and the direction perpendicular to the Xt direction is the Yt direction. That is, the three-dimensional coordinates Xt, Yt, and Zt in FIGS. 5 and 6 are the same as the three-dimensional coordinates X, Y, and Z in FIG. 1, and the Z-axis direction is parallel to the rotation center axis AXr. The three-dimensional coordinates rotated so that
 描画ユニットU2は、反射ミラーM1、集光レンズCD、三角反射ミラーM2、反射ミラーM3a、M3b、シフト光学部材(シフト光学板)SRa、SRb、ビーム成形光学系BFa、BFb、反射ミラーM4、シリンドリカルレンズCY1、反射ミラーM5、ポリゴンミラーPM、反射ミラーM6a、M6b、fθレンズFTa、FTb、反射ミラーM7a、M7b、および、シリンドリカルレンズCY2a、CY2bの光学系を備える。これら光学系(反射ミラーM1、集光レンズCD等)は、1つの描画ユニットU2として一体的に高剛性の筐体内に形成されている。つまり、描画ユニットU2は、これらの光学系を一体的に保持する。2つのビームLBa、LBbがともに入射する光学系については、単に参照符号を付し、2つのビームLBa、LBbの各々が別個に入射し、且つ、2つのビームLBa、LBbに関して一対で設けられた光学系については、参照符号の後にa、bを付している。簡単にいうと、ビームLBaのみが入射する光学系については参照符号の後にaを付し、ビームLBbのみが入射する光学系については参照符号の後にbを付している。 The drawing unit U2 includes a reflection mirror M1, a condenser lens CD, a triangular reflection mirror M2, reflection mirrors M3a and M3b, shift optical members (shift optical plates) SRa and SRb, beam shaping optical systems BFa and BFb, a reflection mirror M4, and a cylindrical mirror. The optical system includes a lens CY1, a reflection mirror M5, a polygon mirror PM, reflection mirrors M6a and M6b, fθ lenses FTa and FTb, reflection mirrors M7a and M7b, and cylindrical lenses CY2a and CY2b. These optical systems (reflection mirror M1, condensing lens CD, etc.) are integrally formed in a highly rigid housing as one drawing unit U2. That is, the drawing unit U2 integrally holds these optical systems. The optical system on which the two beams LBa and LBb are incident is simply given a reference numeral, each of the two beams LBa and LBb is incident separately, and a pair of the two beams LBa and LBb is provided. About an optical system, a and b are attached | subjected after the referential mark. In short, an optical system in which only the beam LBa is incident is denoted by a after the reference symbol, and an optical system in which only the beam LBb is incident is denoted by b after the reference symbol.
 図5に示すように、光源装置14からの2つのビームLBa、LBbは、2つの光学素子AOMa、AOMb、および、2つのコリメートレンズCLa、CLbを透過した後、反射ミラーM8で反射されて、描画ユニットU2にZt軸と平行な状態で入射する。描画ユニットU2に入射した2つのビームLBa、LBbは、XtZt平面において、描画ユニットU2の回動中心軸AXrに沿って反射ミラーM1に入射する。図7は、光学素子AOMa、AOMbおよびコリメートレンズCLa、CLbを透過して反射ミラーM8に入射するビームLBa、LBbの光路を+Zt方向側からみた図であり、図8は、反射ミラーM8から描画ユニットU2の反射ミラーM1に入射するビームLBa、LBbの光路を+Xt方向側からみた示す図である。なお、図7、図8においても、Xt、Yt、Ztの3次元座標系で表している。 As shown in FIG. 5, the two beams LBa and LBb from the light source device 14 pass through the two optical elements AOMa and AOMb and the two collimating lenses CLa and CLb, and then are reflected by the reflection mirror M8. The light enters the drawing unit U2 in a state parallel to the Zt axis. The two beams LBa and LBb that have entered the drawing unit U2 enter the reflecting mirror M1 along the rotation center axis AXr of the drawing unit U2 on the XtZt plane. FIG. 7 is a view of the optical paths of the beams LBa and LBb that are transmitted through the optical elements AOMa and AOMb and the collimating lenses CLa and CLb and are incident on the reflection mirror M8, as viewed from the + Zt direction, and FIG. It is a figure which looked at the optical path of the beams LBa and LBb which inject into the reflective mirror M1 of the unit U2 from the + Xt direction side. 7 and 8 also represent the three-dimensional coordinate system of Xt, Yt, and Zt.
 光学素子AOMa、AOMbは、ビームLBa、LBbに対して透過性を有するものであり、音響光学変調素子(AOM:Acousto-Optic Modulator)である。光学素子AOMa、AOMbは、超音波(高周波信号)を用いることで、入射したビームLBa、LBbを高周波の周波数に応じた回折角で回折させて、ビームLBa、LBbの光路、つまり、進行方向を変える。光学素子AOMa、AOMbは、制御装置18からの駆動信号(高周波信号)のオン/オフにしたがって、入射したビームLBa、LBbを回折させた回折光(1次回折ビーム)の発生をオン/オフする。 The optical elements AOMa and AOMb are transparent to the beams LBa and LBb, and are acousto-optic modulators (AOMs). The optical elements AOMa and AOMb use ultrasonic waves (high-frequency signals) to diffract the incident beams LBa and LBb at a diffraction angle corresponding to the high-frequency frequency, and change the optical paths of the beams LBa and LBb, that is, the traveling directions. Change. The optical elements AOMa and AOMb turn on / off generation of diffracted light (first-order diffracted beam) obtained by diffracting the incident beams LBa and LBb in accordance with on / off of a drive signal (high frequency signal) from the control device 18. .
 光学素子AOMaは、制御装置18からの駆動信号(高周波信号)がオフの状態ときは、入射したビームLBaを回折させずに透過する。したがって、駆動信号がオフの状態のときは、光学素子AOMaを透過したビームLBaは、コリメートレンズCLaおよび反射ミラーM8に入射することなく、図示しない吸収体に入射する。このことは、基板Pの被照射面上に投射されるスポット光SPaの強度が低レベル(ゼロ)に変調されていることを意味する。一方、光学素子AOMaが、制御装置18からの駆動信号(高周波信号)によりオンの状態のときは、入射したビームLBaを回折させた1次回折ビームを発生する。したがって、駆動信号がオンの状態のときは、光学素子AOMaで偏向された1次回折ビーム(説明を簡単にするため、光学素子AOMaからのビームLBaとする)は、コリメートレンズCLaを透過し後反射ミラーM8に入射する。このことは、基板Pの被照射面上に投射されるスポット光SPaの強度が高レベルに変調されることを意味する。 The optical element AOMa transmits the incident beam LBa without diffracting it when the drive signal (high frequency signal) from the control device 18 is off. Therefore, when the drive signal is off, the beam LBa transmitted through the optical element AOMa is incident on an absorber (not shown) without entering the collimator lens CLa and the reflection mirror M8. This means that the intensity of the spot light SPa projected onto the irradiated surface of the substrate P is modulated to a low level (zero). On the other hand, when the optical element AOMa is turned on by a drive signal (high frequency signal) from the control device 18, a first-order diffracted beam is generated by diffracting the incident beam LBa. Therefore, when the drive signal is on, the first-order diffracted beam deflected by the optical element AOMa (for the sake of simplicity, the beam LBa from the optical element AOMa) is transmitted through the collimator lens CLa. The light enters the reflection mirror M8. This means that the intensity of the spot light SPa projected on the irradiated surface of the substrate P is modulated to a high level.
 同様にして、光学素子AOMbは、制御装置18からの駆動信号(高周波信号)がオフの状態のときは、入射したビームLBbを回折させずに透過するので、光学素子AOMbを透過したビームLBbは、コリメートレンズCLbおよび反射ミラーM8に入射することなく、図示しない吸収体に入射する。このことは、基板Pの被照射面上に投射されるスポット光SPbの強度が低レベル(ゼロ)に変調されていることを意味する。一方、光学素子AOMbが、制御装置18からの駆動信号(高周波信号)によりオンの状態のときは、入射したビームLBbを回折させるので、光学素子AOMbで偏向されたビームLBb(1次回折ビーム)は、コリメートレンズCLbを透過した後反射ミラーM8に入射する。このことは、基板Pの被照射面上に投射されるスポット光SPbの強度が高レベルに変調されることを意味する。制御装置18は、描画ラインSL2aによって描画されるパターンのパターンデータ(ビットマップ)に基づいて、光学素子AOMaに印加する駆動信号を高速にオン/オフするとともに、描画ラインSL2bによって描画されるパターンのパターンデータに基づいて、光学素子AOMbに印加する駆動信号を高速にオン/オフする。つまり、スポット光SPa、SPbの強度は、パターンデータに応じて高レベルと低レベルとに変調されることになる。なお、光学素子AOMa、AOMbに入射するビームLBa、LBbは、光学素子AOMa、AOMb内でビームウェストとなるように集光されることから、光学素子AOMa、AOMbで偏向されて出力されるビームLBa、LBb(1次回折ビーム)は、発散光となっており、コリメートレンズCLa、CLbは、その発散光を所定ビーム径の平行光束にする。 Similarly, the optical element AOMb transmits the incident beam LBb without being diffracted when the drive signal (high-frequency signal) from the control device 18 is off, so that the beam LBb transmitted through the optical element AOMb is Without entering the collimator lens CLb and the reflection mirror M8, the light enters the absorber (not shown). This means that the intensity of the spot light SPb projected onto the irradiated surface of the substrate P is modulated to a low level (zero). On the other hand, when the optical element AOMb is turned on by the drive signal (high frequency signal) from the control device 18, the incident beam LBb is diffracted, so that the beam LBb deflected by the optical element AOMb (first-order diffracted beam) Enters the reflecting mirror M8 after passing through the collimating lens CLb. This means that the intensity of the spot light SPb projected on the irradiated surface of the substrate P is modulated to a high level. Based on the pattern data (bitmap) of the pattern drawn by the drawing line SL2a, the control device 18 turns on and off the drive signal applied to the optical element AOMa at a high speed and also displays the pattern drawn by the drawing line SL2b. Based on the pattern data, the drive signal applied to the optical element AOMb is turned on / off at high speed. That is, the intensity of the spot lights SPa and SPb is modulated to a high level and a low level according to the pattern data. The beams LBa and LBb incident on the optical elements AOMa and AOMb are condensed so as to form a beam waist in the optical elements AOMa and AOMb. , LBb (first-order diffracted beam) is divergent light, and the collimating lenses CLa and CLb convert the divergent light into a parallel light beam having a predetermined beam diameter.
 反射ミラーM8は、入射したビームLBa、LBbを-Zt方向に反射して描画ユニットU2の反射ミラー(反射部材)M1に導く。反射ミラーM8で反射したビームLBa、LBbは、回動中心軸AXrに対して対称となるように描画ユニットU2の反射ミラーM1に入射する。このとき、ビームLBa、LBbは、反射ミラーM1上で交差してもよいし、交差しなくてもよい。図6、図8では、反射ミラーM1上の回動中心軸AXrの位置でビームLBa、LBbが交差する例を示している。つまり、ビームLBa、LBbは、回動中心軸AXrに対して一定の角度を持って反射ミラーM1に入射する。本第1の実施の形態においては、Yt(Y)方向に沿って、回動中心軸AXrに対して対称となるようにビームLBa、LBbが、反射ミラーM1に入射する。なお、ビームLBa、LBbが、回動中心軸AXrに対して対称となるように平行に反射ミラーM1に入射するように設計してもよい。 The reflection mirror M8 reflects the incident beams LBa and LBb in the −Zt direction and guides them to the reflection mirror (reflection member) M1 of the drawing unit U2. The beams LBa and LBb reflected by the reflection mirror M8 enter the reflection mirror M1 of the drawing unit U2 so as to be symmetric with respect to the rotation center axis AXr. At this time, the beams LBa and LBb may or may not intersect on the reflection mirror M1. 6 and 8 show an example in which the beams LBa and LBb intersect at the position of the rotation center axis AXr on the reflection mirror M1. That is, the beams LBa and LBb are incident on the reflection mirror M1 at a certain angle with respect to the rotation center axis AXr. In the first embodiment, the beams LBa and LBb are incident on the reflection mirror M1 so as to be symmetric with respect to the rotation center axis AXr along the Yt (Y) direction. The beams LBa and LBb may be designed to enter the reflection mirror M1 in parallel so as to be symmetric with respect to the rotation center axis AXr.
 図5、図6の説明に戻り、反射ミラーM1は、入射したビームLBa、LBbを+Xt方向に反射する。反射ミラーM1で反射されたビームLBa、LBb(各々平行光束)は、図6のようにXtYt面内では、互いに一定の開き角で離れていく。集光レンズCDは、反射ミラーM1からのビームLBa、LBbの各々の中心軸をXtYt面内で互いに平行にするとともに、ビームLBa、LBbの各々を所定の焦点位置に集光させるレンズである。この集光レンズCDの機能については後で後述するが、集光レンズCDの前側焦点位置が反射ミラーM1の反射面上、またはその近傍になるように設定されている。三角反射ミラーM2は、集光レンズCDを透過したビームLBaを-Yt(-Y)方向側に90度で反射して反射ミラーM3aに導くとともに、集光レンズCDを透過したビームLBbを+Yt(+Y)方向側に90度で反射して反射ミラーM3bに導く。 5 and 6, the reflection mirror M1 reflects the incident beams LBa and LBb in the + Xt direction. The beams LBa and LBb (each of the parallel light beams) reflected by the reflection mirror M1 are separated from each other at a constant opening angle in the XtYt plane as shown in FIG. The condensing lens CD is a lens that makes the central axes of the beams LBa and LBb from the reflecting mirror M1 parallel to each other in the XtYt plane and condenses each of the beams LBa and LBb at a predetermined focal position. The function of the condensing lens CD will be described later, but the front focal position of the condensing lens CD is set to be on or near the reflecting surface of the reflecting mirror M1. The triangular reflection mirror M2 reflects the beam LBa transmitted through the condensing lens CD at 90 degrees in the −Yt (−Y) direction side and guides it to the reflecting mirror M3a. The light is reflected by 90 degrees toward the + Y) direction and guided to the reflection mirror M3b.
 反射ミラーM3aは、入射したビームLBaを+Xt方向側に90度で反射する。反射ミラーM3aで反射したビームLBaは、シフト光学部材(平行平板による第1シフト光学部材)SRaおよびビーム成形光学系BFaを透過して反射ミラーM4に入射する。反射ミラーM3bは、入射したビームLBbを+Xt方向側に90度で反射する。反射ミラーM3bで反射したビームLBbは、シフト光学部材(平行平板による第2シフト光学部材)SRbおよびビーム成形光学系BFbを透過して反射ミラーM4に入射する。三角反射ミラーM2と反射ミラーM3a、M3bとによって、集光レンズCDを透過したビームLBa、LBbの各中心軸のYt方向の距離が拡大される。シフト光学部材SRa、SRbは、ビームLBa、LBbの進行方向と直交する平面(YtZt平面)内において、ビームLBa、LBbの中心位置を調整する。シフト光学部材SRa、SRbは、YtZt平面と平行な2枚の石英の平行板を有し、一方の平行板は、Yt軸回りに傾斜可能であり、他方の平行板は、Zt軸回りに傾斜可能である。この2枚の平行板がそれぞれ、Yt軸、Zt軸回りに傾斜することで、ビームLBa、LBbの進行方向と直交するYtZt平面において、ビームLBa、LBbの中心の位置を2次元に微小量シフトする。この2枚の平行板は、制御装置18の制御の下、図示しないアクチュエータ(駆動部)によって駆動する。ビーム成形光学系BFa、BFbは、ビームLBa、LBbを成形する光学系であり、例えば、集光レンズCDによって集光されたビームLBa、LBbの径を予め決められた大きさの径に成形する。 The reflection mirror M3a reflects the incident beam LBa to the + Xt direction side at 90 degrees. The beam LBa reflected by the reflection mirror M3a passes through the shift optical member (first shift optical member using a parallel plate) SRa and the beam shaping optical system BFa and enters the reflection mirror M4. The reflection mirror M3b reflects the incident beam LBb at 90 degrees toward the + Xt direction. The beam LBb reflected by the reflection mirror M3b passes through the shift optical member (second shift optical member using a parallel plate) SRb and the beam shaping optical system BFb and enters the reflection mirror M4. The triangular reflection mirror M2 and the reflection mirrors M3a and M3b increase the distance in the Yt direction between the central axes of the beams LBa and LBb transmitted through the condenser lens CD. The shift optical members SRa and SRb adjust the center positions of the beams LBa and LBb in a plane (YtZt plane) orthogonal to the traveling direction of the beams LBa and LBb. The shift optical members SRa and SRb have two parallel quartz plates parallel to the YtZt plane. One parallel plate can tilt around the Yt axis, and the other parallel plate tilts around the Zt axis. Is possible. The two parallel plates are inclined about the Yt axis and the Zt axis, respectively, so that the positions of the centers of the beams LBa and LBb are minutely shifted two-dimensionally on the YtZt plane orthogonal to the traveling direction of the beams LBa and LBb. To do. The two parallel plates are driven by an actuator (drive unit) (not shown) under the control of the control device 18. The beam shaping optical systems BFa and BFb are optical systems for shaping the beams LBa and LBb. For example, the diameters of the beams LBa and LBb collected by the condenser lens CD are shaped to a predetermined size. .
 反射ミラーM4は、図5に示すようにビーム成形光学系BFa、BFbからのビームLBa、LBbを-Zt方向に反射させる。反射ミラーM4で反射したビームLBa、LBbは、第1のシリンドリカルレンズCY1を透過して反射ミラーM5に入射する。反射ミラーM5は、反射ミラーM4からのビームLBa、LBbを-Xt方向に反射してポリゴンミラーPMの別々の反射面RPに入射させる。ビームLBaは、第1方向からポリゴンミラーPMの第1の反射面RPに入射し、ビームLBbは、第1方向とは異なる第2方向からポリゴンミラーPMの別の第2の反射面RPに入射する。 The reflection mirror M4 reflects the beams LBa and LBb from the beam shaping optical systems BFa and BFb in the −Zt direction as shown in FIG. The beams LBa and LBb reflected by the reflection mirror M4 pass through the first cylindrical lens CY1 and enter the reflection mirror M5. The reflection mirror M5 reflects the beams LBa and LBb from the reflection mirror M4 in the −Xt direction and makes them enter different reflection surfaces RP of the polygon mirror PM. The beam LBa is incident on the first reflecting surface RP of the polygon mirror PM from the first direction, and the beam LBb is incident on another second reflecting surface RP of the polygon mirror PM from a second direction different from the first direction. To do.
 ポリゴンミラーPMは、入射したビームLBa、LBbをfθレンズFTa、FTbに向けて反射する。ポリゴンミラーPMは、ビームLBa、LBbのスポット光SPa、SPbを基板Pの被照射面上で走査するために、入射したビームLBa、LBbを偏向して反射する。これにより、ポリゴンミラーPMの回転によってビームLBa、LBbはXtYt平面と平行な面内で1次元に偏向走査される。具体的には、ポリゴンミラーPMは、Zt軸方向に延びる回転軸AXpと、回転軸AXpを取り囲むように回転軸AXpの回りに配置された複数の反射面RPとを有する回転多面鏡である。第1の実施の形態においては、ポリゴンミラーPMは、Zt軸と平行な反射面RPを8つ有し、正八角形の形状を有する回転多面鏡である。回転軸AXpを中心にこのポリゴンミラーPMを所定の回転方向に回転させることで反射面RPに照射されるパルス状のビームLBa、LBbの反射角を連続的に変化させることができる。これにより、第1の反射面RPと第2の反射面RPの各々によってビームLBa、LBbの反射方向が偏向され、基板Pに被照射面上に照射されるビームLBa、LBbのスポット光SPa、SPbを主走査方向に沿って走査することができる。 The polygon mirror PM reflects the incident beams LBa and LBb toward the fθ lenses FTa and FTb. The polygon mirror PM deflects and reflects the incident beams LBa and LBb in order to scan the spot lights SPa and SPb of the beams LBa and LBb on the irradiated surface of the substrate P. Thereby, the beams LBa and LBb are deflected and scanned in a one-dimensional manner in a plane parallel to the XtYt plane by the rotation of the polygon mirror PM. Specifically, the polygon mirror PM is a rotary polygon mirror having a rotation axis AXp extending in the Zt-axis direction and a plurality of reflecting surfaces RP arranged around the rotation axis AXp so as to surround the rotation axis AXp. In the first embodiment, the polygon mirror PM is a rotating polygonal mirror having eight reflective surfaces RP parallel to the Zt axis and having a regular octagonal shape. By rotating the polygon mirror PM around the rotation axis AXp in a predetermined rotation direction, the reflection angles of the pulsed beams LBa and LBb irradiated on the reflection surface RP can be continuously changed. Thereby, the reflection directions of the beams LBa and LBb are deflected by the first reflecting surface RP and the second reflecting surface RP, respectively, and the spot light SPa of the beams LBa and LBb irradiated onto the irradiated surface on the substrate P, SPb can be scanned along the main scanning direction.
 ポリゴンミラーPMの1つの反射面RPは、ビームLBa、LBbのいずれをも偏向走査するため、スポット光SPa、SPbを描画ラインSL2a、SL2bに沿って走査することができる。このため、ポリゴンミラーPMの1回転で、基板Pの被照射面上の描画ラインSL2a、SL2bに沿ったスポット光SPa、SPbの走査回数は、最大で反射面RPの数と同じ8回となる。ポリゴンミラーPMは、モータ等を含むポリゴン駆動部によって一定の速度で回転する。このポリゴン駆動部によりポリゴンミラーPMの回転は、制御装置18によって制御される。 Since one reflecting surface RP of the polygon mirror PM deflects and scans both the beams LBa and LBb, the spot lights SPa and SPb can be scanned along the drawing lines SL2a and SL2b. For this reason, the number of scans of the spot lights SPa and SPb along the drawing lines SL2a and SL2b on the irradiated surface of the substrate P is 8 times at the maximum with one rotation of the polygon mirror PM. . The polygon mirror PM is rotated at a constant speed by a polygon driving unit including a motor and the like. The rotation of the polygon mirror PM is controlled by the control device 18 by the polygon driving unit.
 なお、描画ラインSL2a、SL2bの長さを、例えば、30mmとし、3μmのスポット光SPa、SPbを1.5μmずつオーバーラップさせるようにパルス発光させながらスポット光SPa、SPbを描画ラインSL2a、SL2bに沿って基板Pの被照射面上に照射する場合は、1回の走査で照射されるスポット光SPの数(パルス発光数)は、20000(30mm/1.5μm)となる。また、描画ラインSL2a、SL2bに沿ったスポット光SPa、SPbの走査時間を200μsecとすると、この間に、パルス状のスポット光SPを20000回照射しなければならないので、光源装置14の発光周波数Fsは、Fs≧20000回/200μsec=100MHzとなる。 The lengths of the drawing lines SL2a and SL2b are, for example, 30 mm, and the spot lights SPa and SPb are applied to the drawing lines SL2a and SL2b while pulsed light is emitted so that the 3 μm spot lights SPa and SPb overlap each other by 1.5 μm. In the case of irradiating the irradiated surface of the substrate P along, the number of spot lights SP (number of pulse emission) irradiated in one scan is 20000 (30 mm / 1.5 μm). Further, if the scanning time of the spot lights SPa and SPb along the drawing lines SL2a and SL2b is 200 μsec, the pulsed spot light SP has to be irradiated 20000 times during this time, so the emission frequency Fs of the light source device 14 is Fs ≧ 20,000 times / 200 μsec = 100 MHz.
 第1のシリンドリカルレンズCY1は、ポリゴンミラーPMによる走査方向(回転方向)と直交する非走査方向(Zt方向)に関して、入射したビームLBa、LBbをポリゴンミラーPMの反射面RP上に収斂する。この母線がYt方向と平行となっている第1のシリンドリカルレンズCY1、および、後述の第2のシリンドリカルレンズCY2a、CY2bによって、反射面RPがZt方向に対して傾いている場合(XtYt平面の法線であるZt軸に対する反射面RPの傾き)があっても、その影響を抑制することができる。例えば、基板Pの被照射面上に照射されるビームLBa、LBbのスポット光SPa、SPb(描画ラインSL2a、SL2b)の照射位置が、ポリゴンミラーPMの各反射面RP毎の僅かな傾き誤差によってXt方向にずれることを抑制することができる。 The first cylindrical lens CY1 converges the incident beams LBa and LBb on the reflection surface RP of the polygon mirror PM in the non-scanning direction (Zt direction) orthogonal to the scanning direction (rotation direction) of the polygon mirror PM. When the reflection surface RP is inclined with respect to the Zt direction by the first cylindrical lens CY1 and the second cylindrical lenses CY2a and CY2b described later (the XtYt plane method) Even if there is an inclination of the reflecting surface RP with respect to the Zt axis, which is a line, the influence can be suppressed. For example, the irradiation position of the spot lights SPa and SPb (drawing lines SL2a and SL2b) of the beams LBa and LBb irradiated on the irradiated surface of the substrate P is caused by a slight tilt error for each reflecting surface RP of the polygon mirror PM. Deviation in the Xt direction can be suppressed.
 詳しくは、ポリゴンミラーPMは、入射したビームLBaを-Yt(-Y)方向側に反射して反射ミラーM6aに導く。また、ポリゴンミラーPMは、入射したビームLBbを+Yt(+Y)方向側に反射して反射ミラーM6bに導く。反射ミラーM6aは、入射したビームLBaを-Xt方向側に反射してXt軸方向に延びる光軸AXfaを有するfθレンズFTaに導く。反射ミラーM6bは、入射したビームLBbを-Xt方向側に反射してXt軸方向に延びる光軸AXfb(光軸AXfaと平行)を有するfθレンズFTbに導く。 Specifically, the polygon mirror PM reflects the incident beam LBa toward the -Yt (-Y) direction side and guides it to the reflection mirror M6a. The polygon mirror PM reflects the incident beam LBb toward the + Yt (+ Y) direction and guides it to the reflection mirror M6b. The reflection mirror M6a reflects the incident beam LBa to the −Xt direction side and guides it to an fθ lens FTa having an optical axis AXfa extending in the Xt axis direction. The reflection mirror M6b reflects the incident beam LBb to the −Xt direction side and guides it to an fθ lens FTb having an optical axis AXfb (parallel to the optical axis AXfa) extending in the Xt axis direction.
 fθ(f-θ)レンズFTa、FTbは、反射ミラーM6a、M6bで反射されたポリゴンミラーPMからのビームLBa、LBbを、XtYt平面において、光軸AXfa、AXfbと平行となるように反射ミラーM7a、M7bに投射するテレセントリック系のスキャンレンズである。反射ミラーM7aは、入射したビームLBaを基板Pの被照射面に向けて-Zt方向に反射し、反射ミラーM7bは、入射したビームLBbを基板Pの被照射面に向けて-Zt方向に反射する。反射ミラーM7aで反射したビームLBaは、第2のシリンドリカルレンズCY2aを透過して基板Pに被照射面に投射され、反射ミラーM7bで反射したビームLBbは、第2のシリンドリカルレンズCY2bを透過して基板Pに被照射面に投射される。このfθレンズFTaおよび母線がYt方向と平行となっている第2のシリンドリカルレンズCY2aによって、基板Pに投射されるビームLBaが基板Pの被照射面上で実効的な直径が数μm程度(例えば、3μm)の微小なスポット光SPaに収斂される。同様にして、fθレンズFTbおよび母線がYt方向と平行となっている第2のシリンドリカルレンズCY2bによって、基板Pに投射されるビームLBbが基板Pの被照射面上で実効的な直径が数μ程度(例えば、3μm)の微小なスポット光SPbに収斂される。この基板Pの被照射面上に投射されるスポット光SPa、SPbは、1つのポリゴンミラーPMの回転によって、主走査方向(Yt方向、Y方向)に延びる描画ラインSL2a、SL2bに沿って同時に1次元走査される。 The fθ (f−θ) lenses FTa and FTb are the reflecting mirrors M7a so that the beams LBa and LBb from the polygon mirror PM reflected by the reflecting mirrors M6a and M6b are parallel to the optical axes AXfa and AXfb on the XtYt plane. , M7b, a telecentric scan lens. The reflecting mirror M7a reflects the incident beam LBa toward the irradiated surface of the substrate P in the -Zt direction, and the reflecting mirror M7b reflects the incident beam LBb toward the irradiated surface of the substrate P in the -Zt direction. To do. The beam LBa reflected by the reflection mirror M7a is transmitted through the second cylindrical lens CY2a and projected onto the irradiated surface on the substrate P, and the beam LBb reflected by the reflection mirror M7b is transmitted through the second cylindrical lens CY2b. It is projected onto the surface to be irradiated onto the substrate P. By this fθ lens FTa and the second cylindrical lens CY2a in which the generatrix is parallel to the Yt direction, the beam LBa projected onto the substrate P has an effective diameter on the irradiated surface of the substrate P of about several μm (for example, 3 μm) is converged on a minute spot light SPa. Similarly, the effective diameter of the beam LBb projected on the substrate P on the irradiated surface of the substrate P is several μm by the fθ lens FTb and the second cylindrical lens CY2b whose generating line is parallel to the Yt direction. The light is converged to a minute spot light SPb having a degree (for example, 3 μm). The spot lights SPa and SPb projected onto the irradiated surface of the substrate P are simultaneously 1 along the drawing lines SL2a and SL2b extending in the main scanning direction (Yt direction, Y direction) by the rotation of one polygon mirror PM. Dimensionally scanned.
 fθレンズFTa、FTbへのビームの入射角θ(光軸に対する角度)は、ポリゴンミラーPMの回転角(θ/2)に応じて変わる。fθレンズFTaは、ビームLBaの入射角に比例した基板Pの被照射面上の像高位置にビームLBaのスポット光SPaを投射する。同様にして、fθレンズFTbは、ビームLBbの入射角に比例した基板Pの被照射面上の像高位置にビームLBbのスポット光SPbを投射する。焦点距離をfとし、像高位置をyとすると、fθレンズFTa、FTbは、y=f×θ、の関係(歪曲収差)を有する。したがって、このfθレンズFTa、FTbによって、ビームLBa、LBbのスポット光SPa、SPbをYt方向(Y方向)に正確に等速で走査することが可能となる。fθレンズFTa、FTbへのビームLBa、LBbの入射角θが0度のときに、fθレンズFTa、FTbに入射したビームLBa、LBbは、光軸AXfa、AXfb上に沿って進む。 The incident angle θ (angle with respect to the optical axis) of the beam to the fθ lenses FTa and FTb varies depending on the rotation angle (θ / 2) of the polygon mirror PM. The fθ lens FTa projects the spot light SPa of the beam LBa on the image height position on the irradiated surface of the substrate P proportional to the incident angle of the beam LBa. Similarly, the fθ lens FTb projects the spot light SPb of the beam LBb onto the image height position on the irradiated surface of the substrate P that is proportional to the incident angle of the beam LBb. When the focal length is f and the image height position is y, the fθ lenses FTa and FTb have a relationship (distortion aberration) of y = f × θ. Therefore, the fθ lenses FTa and FTb enable the spot lights SPa and SPb of the beams LBa and LBb to be scanned accurately at a constant speed in the Yt direction (Y direction). When the incident angle θ of the beams LBa and LBb to the fθ lenses FTa and FTb is 0 degree, the beams LBa and LBb incident on the fθ lenses FTa and FTb travel along the optical axes AXfa and AXfb.
 以上の集光レンズCD、三角反射ミラーM2、反射ミラーM3a、シフト光学部材SRa、ビーム成形光学系BFa、反射ミラーM4、第1のシリンドリカルレンズCY1、および、反射ミラーM5は、ビームLBaを第1方向からポリゴンミラーPMに向けて導く第1導光光学系20として機能する。また、集光レンズCD、三角反射ミラーM2、反射ミラーM3b、シフト光学部材SRb、ビーム成形光学系BFb、反射ミラーM4、第1のシリンドリカルレンズCY1、および、反射ミラーM5は、ビームLBbを第1方向とは異なる第2方向からポリゴンミラーPMに向けて導く第2導光光学系22として機能する。なお、集光レンズCD、三角反射ミラーM2、反射ミラーM4、第1のシリンドリカルレンズCY1、および、反射ミラーM5を、第1導光光学系20と第2導光光学系22とで共通の部材としたが、これらの部材のうち少なくとも一部は、第1導光光学系20と第2導光光学系22とで別個に設けるようにしてもよい。また、反射ミラーM6a、fθレンズFTa、反射ミラーM7a、および、第2のシリンドリカルレンズCY2aは、ポリゴンミラーPMで反射されたビームLBaを集光してスポット光SPaとして描画ラインSL2a(SLa)上に投射する第1投射光学系24として機能する。同様に、反射ミラーM6b、fθレンズFTb、反射ミラーM7b、および、第2のシリンドリカルレンズCY2bは、ポリゴンミラーPMで反射されたビームLBbを集光してスポット光SPbとして描画ラインSL2b(SLb)上に投射する第2投射光学系26として機能する。この第1投射光学系24と第2投射光学系26とは、描画ラインSLa、SLbが副走査方向に関して同じ位置であって、且つ、主走査方向に離間するように配置されている。また、描画ラインSLa、SLbが主走査方向に走査長以下の間隔で離間するように第1投射光学系24と第2投射光学系26とが配置されている。 The condensing lens CD, the triangular reflection mirror M2, the reflection mirror M3a, the shift optical member SRa, the beam shaping optical system BFa, the reflection mirror M4, the first cylindrical lens CY1, and the reflection mirror M5 are used to convert the beam LBa into the first. It functions as the first light guide optical system 20 that leads from the direction toward the polygon mirror PM. In addition, the condensing lens CD, the triangular reflection mirror M2, the reflection mirror M3b, the shift optical member SRb, the beam shaping optical system BFb, the reflection mirror M4, the first cylindrical lens CY1, and the reflection mirror M5 are used for the first beam LBb. It functions as a second light guide optical system 22 that leads toward the polygon mirror PM from a second direction different from the direction. In addition, the condensing lens CD, the triangular reflection mirror M2, the reflection mirror M4, the first cylindrical lens CY1, and the reflection mirror M5 are members common to the first light guide optical system 20 and the second light guide optical system 22. However, at least a part of these members may be provided separately for the first light guide optical system 20 and the second light guide optical system 22. Further, the reflection mirror M6a, the fθ lens FTa, the reflection mirror M7a, and the second cylindrical lens CY2a condense the beam LBa reflected by the polygon mirror PM and on the drawing line SL2a (SLa) as the spot light SPa. It functions as the first projection optical system 24 that projects. Similarly, the reflection mirror M6b, the fθ lens FTb, the reflection mirror M7b, and the second cylindrical lens CY2b condense the beam LBb reflected by the polygon mirror PM and on the drawing line SL2b (SLb) as the spot light SPb. It functions as the second projection optical system 26 that projects onto the screen. The first projection optical system 24 and the second projection optical system 26 are arranged such that the drawing lines SLa and SLb are at the same position in the sub-scanning direction and are separated from each other in the main scanning direction. The first projection optical system 24 and the second projection optical system 26 are arranged so that the drawing lines SLa and SLb are separated from each other in the main scanning direction at an interval equal to or shorter than the scanning length.
 本第1の実施の形態の場合、反射ミラーM1上の回動中心軸AXrが通る位置にビームLBa、LBbを入射させた場合であっても、ビームLBa、LBbは、回動中心軸AXrと平行に反射ミラーM1に入射するのでなく、図8で示したように回動中心軸AXrに対して一定の傾きを持って反射ミラーM1上(またはその近傍)で交差するように入射する。したがって、描画ユニットU2全体が回動中心軸AXr回りに回動すると、ビームLBa、LBbの反射ミラーM1に対する入射角度が相対的に変化する。これによって、反射ミラーM1で反射されたビームLBa、LBbの描画ユニットU2内における反射方向が、描画ユニットU2の回動中心軸AXr回りの回動に応じて2次元的に変化する。 In the case of the first embodiment, even when the beams LBa and LBb are incident on the reflection mirror M1 at a position where the rotation center axis AXr passes, the beams LBa and LBb are in contact with the rotation center axis AXr. Instead of being incident on the reflecting mirror M1 in parallel, it is incident on the reflecting mirror M1 (or in the vicinity thereof) with a certain inclination with respect to the rotation center axis AXr as shown in FIG. Therefore, when the entire drawing unit U2 rotates about the rotation center axis AXr, the incident angles of the beams LBa and LBb with respect to the reflection mirror M1 change relatively. As a result, the reflection directions of the beams LBa and LBb reflected by the reflection mirror M1 in the drawing unit U2 change two-dimensionally according to the rotation of the drawing unit U2 around the rotation center axis AXr.
 図9、図10は、回動中心軸AXr回りに描画ユニットU2が回動してない初期位置状態と、描画ユニットU2が初期位置からΔθzだけ回動した状態とにおける、ビームLBaの描画ユニットU2内の反射方向の変化(ビーム進路の変化)を誇張して示す図である。図9は、反射ミラー(反射部材)M1と集光レンズCDとの配置関係をXtZt面内でみたものであり、図10は、反射ミラーM1と集光レンズCDとの配置関係をXtYt面内でみたものである。なお、回動中心軸AXr回りに描画ユニットU2が回動したときにビームLBbの描画ユニットU2内の反射方向が変化する原理は、ビームLBaのときと同様なのでビームLBaについてのみ説明する。ここで、集光レンズCDの光軸AXcは、反射ミラーM1の反射面(XtYt面に対して45°に設定)で回動中心軸AXrと交差するように設定され、集光レンズCDの前側焦点距離faの位置に反射ミラーM1の反射面が設定される。さらにビームLBa、LBbは、集光レンズCDの後側焦点距離fbの位置の面Pcd(後側焦点面)において、ビームウェスト(最小径)となるように収斂された後に発散する。図9、図10において、実線で示しているビームLBa-1は、描画ユニットU2全体が回転していない初期位置状態、つまり、描画ラインSL2aがYt(Y)方向と平行な状態のときのビームLBaを示している。二点鎖線で示しているビームLBa-2は、描画ユニットU2全体が回動中心軸AXr回りにΔθzだけ回動した状態のときのビームLBaを示している。 9 and 10 show the drawing unit U2 of the beam LBa in the initial position state where the drawing unit U2 is not rotated around the rotation center axis AXr and in the state where the drawing unit U2 is rotated by Δθz from the initial position. It is a figure which exaggerates and shows the change of the reflection direction (change of a beam course). 9 shows the positional relationship between the reflecting mirror (reflecting member) M1 and the condenser lens CD in the XtZt plane, and FIG. 10 shows the positional relationship between the reflecting mirror M1 and the condenser lens CD in the XtYt plane. It is what I saw. The principle that the reflection direction of the beam LBb in the drawing unit U2 changes when the drawing unit U2 rotates about the rotation center axis AXr is the same as that of the beam LBa, and therefore only the beam LBa will be described. Here, the optical axis AXc of the condensing lens CD is set so as to intersect the rotation center axis AXr on the reflecting surface of the reflecting mirror M1 (set to 45 ° with respect to the XtYt surface), and the front side of the condensing lens CD. The reflecting surface of the reflecting mirror M1 is set at the position of the focal distance fa. Further, the beams LBa and LBb diverge after being converged so as to have a beam waist (minimum diameter) on the surface Pcd (rear focal plane) at the rear focal length fb of the condenser lens CD. 9 and 10, the beam LBa-1 indicated by a solid line is an initial position state where the entire drawing unit U2 is not rotated, that is, the beam when the drawing line SL2a is parallel to the Yt (Y) direction. LBa is shown. A beam LBa-2 indicated by a two-dot chain line indicates the beam LBa when the entire drawing unit U2 is rotated by Δθz around the rotation center axis AXr.
 描画ユニットU2が、回動中心軸AXr回りに回動すると、反射ミラーM1の反射面に対するビームLBa(LBb)の相対的な入射角度は変化する。図10に示すように、反射ミラーM1の直前の反射ミラーM8の反射面上に投射されるビームLBaをLBa(M8)とすると、図8のビーム配向状態から明らかなように、反射ミラーM1上に投射されるビームLBaとビームLBa(M8)のXtYt面内での各位置は、初期位置状態ではYt軸と平行な方向に離間している。描画ユニットU2全体が初期位置状態から角度Δθzだけ回転(傾斜)した場合、反射ミラーM1から見ると、反射ミラーM8上のビームLBa(M8)の位置が角度Δθzに対応して相対的にXt方向にシフト(実際は回動中心軸AXrの回りに回転)したことになる。 When the drawing unit U2 rotates about the rotation center axis AXr, the relative incident angle of the beam LBa (LBb) with respect to the reflection surface of the reflection mirror M1 changes. As shown in FIG. 10, when the beam LBa projected onto the reflecting surface of the reflecting mirror M8 immediately before the reflecting mirror M1 is LBa (M8), as apparent from the beam orientation state of FIG. The positions of the beam LBa and the beam LBa (M8) projected on the XtYt plane are separated in a direction parallel to the Yt axis in the initial position state. When the entire drawing unit U2 is rotated (tilted) by an angle Δθz from the initial position state, when viewed from the reflection mirror M1, the position of the beam LBa (M8) on the reflection mirror M8 is relatively corresponding to the angle Δθz in the Xt direction. (Actually rotated around the rotation center axis AXr).
 よって、初期位置状態のときに反射ミラーM1で反射したビームLBa-1の光路(中心線)は、描画ユニットU2全体が角度Δθzだけ回転した後は、ビームLBa-2となってXtYt面内で傾く。なお、図10において、初期位置状態のときのビームLBa-1の中心線と集光レンズCDの光軸AXcとのXtYt面内での交差角は、図8に示したビームLBaの中心線と回動中心軸AXrとのYtZt面内での交差角と一致している。したがって、初期位置状態でのビームLBa-1の後側焦点面Pcd内での収斂位置BW1は、描画ユニットU2全体の角度Δθzの回転後に、後側焦点面Pcd内でビームLBa-2の収斂位置BW2としてYt方向にΔYhだけ位置ずれ(平行シフト)する。その位置ずれ量ΔYhは、角度Δθzとの間で、ΔYh=fy(Δθz)の幾何学的な関係式で一義的に求まる。なお、集光レンズCDから後側焦点面Pcdに向かうビームLBa-1とビームLBa-2の各中心線は、いずれも光軸AXcと平行になる。 Therefore, the optical path (center line) of the beam LBa-1 reflected by the reflecting mirror M1 in the initial position state becomes the beam LBa-2 after the entire drawing unit U2 is rotated by the angle Δθz and is in the XtYt plane. Tilt. In FIG. 10, the crossing angle in the XtYt plane between the center line of the beam LBa-1 in the initial position state and the optical axis AXc of the condenser lens CD is the center line of the beam LBa shown in FIG. This coincides with the intersection angle with the rotation center axis AXr in the YtZt plane. Therefore, the convergence position BW1 in the rear focal plane Pcd of the beam LBa-1 in the initial position state is the convergence position of the beam LBa-2 in the rear focal plane Pcd after the rotation of the angle Δθz of the entire drawing unit U2. BW2 is displaced (parallel shift) by ΔYh in the Yt direction. The positional deviation amount ΔYh is uniquely determined by a geometric relational expression of ΔYh = fy (Δθz) between the angle Δθz. Note that the center lines of the beams LBa-1 and LBa-2 from the condenser lens CD toward the rear focal plane Pcd are both parallel to the optical axis AXc.
 一方、図9で誇張して示すように、描画ユニットU2全体を初期位置状態から角度Δθzだけ回転させた後のビームLBa-2の配向状態をXtZt面内で見てみると、反射ミラーM1に入射するビームLBaの中心線が回動中心軸AXrに対してYt方向に傾いていることから、角度Δθzの回転後の反射ミラーM1からビームLBa-2は、初期位置状態のビームLBa-1(光軸AXcと平行)に対してZt軸方向に傾いて進んで集光レンズCDに入射する。そのため、初期位置状態でのビームLBa-1の後側焦点面Pcd内での収斂位置BW1は、描画ユニットU2全体の角度Δθzの回転後に、後側焦点面Pcd内でビームLBa-2の収斂位置BW2としてZt方向にΔZhだけ位置ずれ(平行シフト)する。その位置ずれ量ΔZhは、角度Δθzとの間で、ΔZh=fz(Δθz)の幾何学的な関係式で一義的に求まる。なお、本第1の実施の形態の構成では、Zt軸方向の位置ずれ量ΔZhの方がYt軸方向の位置ずれ量ΔYhよりも大きくなる。以上の作用は、ビームLBbにおいても同様であり、描画ユニットU2全体を角度Δθzだけ回転させた後に集光レンズCDによって収斂される後側焦点面Pcd内でのビームLBb-2の位置は、初期位置状態のときのビームLBb-1の後側焦点面Pcd内での位置に対して、Yt方向とZt方向に位置ずれする。 On the other hand, as shown in an exaggerated manner in FIG. 9, when the orientation state of the beam LBa-2 after the entire drawing unit U2 is rotated by the angle Δθz from the initial position state is viewed in the XtZt plane, the reflection mirror M1 Since the center line of the incident beam LBa is tilted in the Yt direction with respect to the rotation center axis AXr, the beam LBa-2 from the reflecting mirror M1 after the rotation of the angle Δθz is changed to the beam LBa-1 ( The light advances toward the Zt axis direction with respect to the optical axis AXc) and enters the condenser lens CD. Therefore, the convergence position BW1 in the rear focal plane Pcd of the beam LBa-1 in the initial position state is the convergence position of the beam LBa-2 in the rear focal plane Pcd after the rotation of the entire drawing unit U2 by the angle Δθz. BW2 is displaced (parallel shift) by ΔZh in the Zt direction. The positional deviation amount ΔZh is uniquely determined by a geometric relational expression of ΔZh = fz (Δθz) between the angle Δθz. In the configuration of the first embodiment, the positional deviation amount ΔZh in the Zt-axis direction is larger than the positional deviation amount ΔYh in the Yt-axis direction. The above operation is the same for the beam LBb. The position of the beam LBb-2 in the rear focal plane Pcd converged by the condenser lens CD after the entire drawing unit U2 is rotated by the angle Δθz is the initial position. The position is shifted in the Yt direction and the Zt direction with respect to the position in the rear focal plane Pcd of the beam LBb-1 in the position state.
 以上のように、本第1の実施の形態では、前側焦点距離faの位置に反射ミラーM1の反射面がくるような集光レンズCDを備えることによって、集光レンズCDから射出するビームLBa-2(LBb-2)の中心線とビームLBa-1(LBb-1)の中心線とを常に平行にすることができる。したがって、集光レンズCDの後に配置されたシフト光学部材SRa、SRbの傾き調整によって、描画ユニットU2全体が角度Δθzだけ回転した後に生じるビームLBa、LBbの位置ずれ量ΔYh、ΔZhがゼロになるように補正する。これにより、2つのビームLBa、LBbを、初期位置状態のときの光路に沿って以降の光学系に正しく通すことができる。シフト光学部材SRa、SRbの傾き調整は、幾何学的な関係式、ΔYh=fy(Δθz)、ΔZh=fz(Δθz)に基づいて予め作成された角度Δθzと傾き調整量との関係テーブル等を使うことで、高速に実行することができる。これにより、描画ユニットU2全体が回動した場合であっても、ポリゴンミラーPMの反射面RPの適切な位置にビームLBa、LBbを入射させることができる。 As described above, in the first embodiment, the beam LBa− emitted from the condensing lens CD is provided by providing the condensing lens CD such that the reflecting surface of the reflecting mirror M1 comes to the position of the front focal length fa. 2 (LBb-2) and the center line of the beam LBa-1 (LBb-1) can always be parallel. Therefore, by adjusting the inclination of the shift optical members SRa and SRb arranged after the condenser lens CD, the positional deviation amounts ΔYh and ΔZh of the beams LBa and LBb generated after the entire drawing unit U2 is rotated by the angle Δθz become zero. To correct. Thus, the two beams LBa and LBb can be correctly passed through the subsequent optical system along the optical path in the initial position state. The inclination adjustment of the shift optical members SRa and SRb is performed by using a relationship table between the angle Δθz and the inclination adjustment amount created in advance based on a geometric relational expression, ΔYh = fy (Δθz), ΔZh = fz (Δθz). By using it, it can be executed at high speed. As a result, even when the entire drawing unit U2 is rotated, the beams LBa and LBb can be made incident at appropriate positions on the reflecting surface RP of the polygon mirror PM.
 なお、反射ミラーM8からのビームLBa、LBbを回動中心軸AXrと同軸上に反射ミラーM1に入射させることができれば、描画ユニットUの回動中心軸AXr回りの回動によって、ビームLBa、LBbの反射ミラーM1に対する入射角度は変化しない。そのため、描画ユニットU内において、反射ミラーM1で反射されるビームLBa、LBbの反射方向が描画ユニットUの回動によって変化することはない。反射ミラーM1に入射する2つのビームLBa、LBbを同軸にしつつ、反射ミラーM1以降の描画ユニットU2内では2つのビームLBa、LBbを空間的に分離する1つの方法は、反射ミラーM1の後に偏光ビームスプリッタ等を配置し、偏光状態が互いに直交したビームLBa、LBbを同軸合成して反射ミラーM1に入射させ、偏光ビームスプリッタ等で偏光分離する系を組むことである。 If the beams LBa and LBb from the reflection mirror M8 can be incident on the reflection mirror M1 coaxially with the rotation center axis AXr, the beams LBa and LBb are rotated by rotation around the rotation center axis AXr of the drawing unit U. The incident angle with respect to the reflecting mirror M1 does not change. Therefore, in the drawing unit U, the reflection directions of the beams LBa and LBb reflected by the reflecting mirror M1 are not changed by the rotation of the drawing unit U. One method of spatially separating the two beams LBa and LBb in the drawing unit U2 after the reflection mirror M1 while making the two beams LBa and LBb incident on the reflection mirror M1 coaxial is polarization after the reflection mirror M1. A beam splitter or the like is arranged, and beams LBa and LBb whose polarization states are orthogonal to each other are coaxially combined and incident on the reflection mirror M1, and a system for polarization separation by the polarization beam splitter or the like is assembled.
 図9、図10においては、回動中心軸AXrに対して一定の傾きをもち、且つ、回動中心軸AXrに対して対称となるようなビームLBa、LBb(平行光束)を反射ミラーM1の同じ位置に入射させた場合を例にして説明したが、回動中心軸AXrに関してYt方向に対称であって、回動中心軸AXrと互いに平行に配向される2つのビームLBa、LBb(平行光束)を反射ミラーM1に入射させる場合について説明する。図11Aは、描画ユニットU2全体を角度(所定の角度)Δθzだけ回動中心軸AXrの回りに回動させたときに、反射ミラー(反射部材)M1に入射したビームLBa、LBbの反射方向が変化する様子を+Zt方向側から誇張して示す図であり、図11Bは、描画ユニットU2全体を角度Δθzだけ回動させたときの反射ミラーM1でのビームLBa、LBbの位置変化をビームLBa、LBbの進行方向側(+Xt方向側)からみた図である。 In FIGS. 9 and 10, beams LBa and LBb (parallel light beams) having a fixed inclination with respect to the rotation center axis AXr and symmetric with respect to the rotation center axis AXr are applied to the reflection mirror M1. The case where the light beams are incident on the same position has been described as an example. However, two beams LBa and LBb (parallel light beams) that are symmetrical in the Yt direction with respect to the rotation center axis AXr and are oriented parallel to the rotation center axis AXr. ) Is incident on the reflection mirror M1. FIG. 11A shows the reflection directions of the beams LBa and LBb incident on the reflection mirror (reflection member) M1 when the entire drawing unit U2 is rotated about the rotation center axis AXr by an angle (predetermined angle) Δθz. FIG. 11B is a diagram showing the state of the change exaggerated from the + Zt direction side, and FIG. 11B shows changes in the positions of the beams LBa and LBb at the reflection mirror M1 when the entire drawing unit U2 is rotated by the angle Δθz. It is the figure seen from the advancing direction side (+ Xt direction side) of LBb.
 なお、図11Aにおいて、直交座標系XtYtZtは、描画ユニットU2に対して設定されたものであるので、描画ユニットU2全体が角度Δθzだけ回動した後の直交座標系XtYtZtは、破線で示すようにZt軸回りに角度Δθzだけ傾いたものとなる。したがって、描画ユニットU2が回動していない初期位置状態のときは、描画ラインSL2に沿ったスポット光SPの主走査方向(Yt方向)はY方向と平行しているが、描画ユニットU2全体が角度Δθzだけ回動した場合は、回動後の描画ユニットU2の描画ラインSL2に沿ったスポット光SPの主走査方向(Yt方向)は、Y方向に対して傾くことになる。また、図11A、図11Bのように、2つのビームLBa、LBbのYt方向の中間位置でXt方向に延びるように設定され、回動中心軸AXrと直交する線を中心軸AXtとする。この中心軸AXtは、先の図9、図10における集光レンズCDの光軸AXcに相当するものである。さらに、図11A、図11Bのように反射ミラーM1で反射した2つのビームLBa、LBbが中心軸AXtと平行に進むようにした場合、先の図9、図10で説明した集光レンズCDは、小さな径のものに変えて2つのビームLBa、LBbの各々の光路中に個別に設けられる。 In FIG. 11A, since the orthogonal coordinate system XtYtZt is set with respect to the drawing unit U2, the orthogonal coordinate system XtYtZt after the entire drawing unit U2 is rotated by the angle Δθz is indicated by a broken line. It is inclined by an angle Δθz around the Zt axis. Accordingly, when the drawing unit U2 is in the initial position state where the drawing unit U2 is not rotated, the main scanning direction (Yt direction) of the spot light SP along the drawing line SL2 is parallel to the Y direction, but the entire drawing unit U2 is When rotated by the angle Δθz, the main scanning direction (Yt direction) of the spot light SP along the drawing line SL2 of the drawn drawing unit U2 is inclined with respect to the Y direction. Further, as shown in FIGS. 11A and 11B, a line that extends in the Xt direction at an intermediate position in the Yt direction of the two beams LBa and LBb and is orthogonal to the rotation center axis AXr is defined as a center axis AXt. This central axis AXt corresponds to the optical axis AXc of the condenser lens CD in FIGS. Furthermore, when the two beams LBa and LBb reflected by the reflecting mirror M1 travel in parallel with the central axis AXt as shown in FIGS. 11A and 11B, the condenser lens CD described with reference to FIGS. Instead of a small diameter, they are provided individually in the optical paths of the two beams LBa and LBb.
 図11Aにおいて、実線で示している反射ミラーM1は、描画ユニットU2が回動していない初期位置状態、つまり、描画ラインSL2a、SL2bがY方向と平行な状態のときの反射ミラーM1を示している。また、実線で示しているビームLBa-1、LBb-1は、初期位置状態のときの反射ミラーM1への入射位置、および、その反射ミラーM1でXt軸方向に反射したビームLBa、LBbを示している。また、二点鎖線で示している反射ミラーM1’は、描画ユニットU2が角度Δθzだけ回動した状態のときの反射ミラーM1の配置を誇張して示している。さらに、二点鎖線で示しているビームLBa-2、LBb-2は、描画ユニットU2が角度Δθzだけ回動した状態のときの反射ミラーM1’で反射したビームLBa、LBbを示している。 In FIG. 11A, the reflecting mirror M1 indicated by a solid line indicates the reflecting mirror M1 when the drawing unit U2 is not rotated, that is, when the drawing lines SL2a and SL2b are parallel to the Y direction. Yes. Beams LBa-1 and LBb-1 shown by solid lines indicate the incident position on the reflection mirror M1 in the initial position state, and the beams LBa and LBb reflected by the reflection mirror M1 in the Xt-axis direction. ing. A reflection mirror M1 'indicated by a two-dot chain line exaggerates the arrangement of the reflection mirror M1 when the drawing unit U2 is rotated by an angle Δθz. Further, beams LBa-2 and LBb-2 indicated by two-dot chain lines indicate the beams LBa and LBb reflected by the reflection mirror M1 'when the drawing unit U2 is rotated by an angle Δθz.
 描画ユニットU2が回動すると、XtYt平面においては、反射ミラーM1’で反射するビームLBa-2、LBb-2の反射方向も描画ユニットU2の回動に応じて回転する。さらに、描画ユニットU2の回動によって、ビームLBa、LBbが反射ミラーM1に入射する相対的な位置(特にZt方向の位置)が変化するため、中心軸AXtと垂直な平面Pv(YtZt面と平行)において、反射ミラーM1’で反射したビームLBa-2、LBb-2の各中心線は、図11Bに示すように、中心軸AXtと平行ではあるが、中心軸AXtを中心に回るように位置変化する。 When the drawing unit U2 rotates, on the XtYt plane, the reflection directions of the beams LBa-2 and LBb-2 reflected by the reflecting mirror M1 'also rotate according to the rotation of the drawing unit U2. Further, the rotation of the drawing unit U2 changes the relative position (particularly the position in the Zt direction) where the beams LBa and LBb are incident on the reflection mirror M1, so that the plane Pv perpendicular to the central axis AXt (parallel to the YtZt plane). ), The center lines of the beams LBa-2 and LBb-2 reflected by the reflecting mirror M1 ′ are parallel to the center axis AXt as shown in FIG. 11B, but are positioned so as to turn around the center axis AXt. Change.
 図11Bに示すように、描画ユニットU2が初期位置状態のときは、反射ミラーM1で反射するビームLBa-1、LBb-1は、中心軸AXtから±Yt(Y)方向に一定距離だけ離れて平行に位置する。しかしながら、描画ユニットU2が角度Δθzだけ回動すると、それに応じて、中心軸AXtを中心に円弧を描くように、反射ミラーM1で反射したビームLBa-2は-Zt方向および+Yt方向に移動し、反射ミラーM1で反射したビームLBb-2は、+Zt方向および-Yt方向に移動する。そのため、反射ミラーM1以降の各光学部材を通る2つのビームLBa、LBbの各光路が、初期位置状態のときの光路と異なってしまい、ポリゴンミラーPMの反射面RPの適切な位置にビームLBa、LBbを入射させることができなくなる。 As shown in FIG. 11B, when the drawing unit U2 is in the initial position state, the beams LBa-1 and LBb-1 reflected by the reflecting mirror M1 are separated from the central axis AXt by a certain distance in the ± Yt (Y) direction. Located in parallel. However, when the drawing unit U2 rotates by the angle Δθz, the beam LBa-2 reflected by the reflecting mirror M1 moves in the −Zt direction and the + Yt direction so as to draw an arc around the central axis AXt. The beam LBb-2 reflected by the reflection mirror M1 moves in the + Zt direction and the -Yt direction. Therefore, the optical paths of the two beams LBa and LBb passing through the optical members after the reflecting mirror M1 are different from the optical paths in the initial position state, and the beams LBa, LBb cannot enter.
 しかしながら、本第1の実施の形態においては、反射ミラーM1以降にシフト光学部材SRa、SRbが設けられているので、ビームLBa、LBbの各々の中心線を、平面Pv内において、Yt方向とZt方向とに2次元的に調整することができる。したがって、描画ユニットU2全体が回動した場合であっても、描画ユニットU2内のシフト光学部材SRa、SRb以降においては、ビームLBa、LBbの各々の光路を、描画ユニットUが回動していない初期位置状態のときの正しい光路に補正(調整)することができる。これにより、ポリゴンミラーPMの反射面RPの適切な位置にビームLBa、LBbを入射させることができる。 However, in the first embodiment, since the shift optical members SRa and SRb are provided after the reflection mirror M1, the center lines of the beams LBa and LBb are set in the Yt direction and Zt in the plane Pv. It can be adjusted two-dimensionally in the direction. Therefore, even when the drawing unit U2 as a whole rotates, the drawing unit U does not rotate along the optical paths of the beams LBa and LBb after the shift optical members SRa and SRb in the drawing unit U2. Correction (adjustment) can be made to the correct optical path in the initial position state. As a result, the beams LBa and LBb can be made incident at appropriate positions on the reflection surface RP of the polygon mirror PM.
 なお、三角反射ミラーM2と反射ミラーM3a、M3bとによって、反射ミラーM1で反射したビームLBa、LBbの中心線のXtYt面内におけるYt方向の間隔を広げているので、描画ユニットU2の反射ミラーM1に入射する2つのビームLBa、LBbの各中心線の間隔を短くすることができ、描画ユニットU2(反射ミラーM1)に入射するビームLBa、LBbを回動中心軸AXrに近づけることができる。その結果、描画ユニットUbが回動した場合であっても、その回動に伴うビームLBa、LBbの各中心線の平面Pv内での位置変化量を小さく抑えることができる。 Note that the triangular reflection mirror M2 and the reflection mirrors M3a and M3b increase the interval in the Yt direction in the XtYt plane of the center line of the beams LBa and LBb reflected by the reflection mirror M1, so that the reflection mirror M1 of the drawing unit U2 The distance between the center lines of the two beams LBa and LBb incident on the beam can be shortened, and the beams LBa and LBb incident on the drawing unit U2 (reflection mirror M1) can be brought closer to the rotation center axis AXr. As a result, even when the drawing unit Ub is rotated, the amount of change in position within the plane Pv of each center line of the beams LBa and LBb accompanying the rotation can be suppressed.
 ところで、制御装置18は、アライメント顕微鏡AMa(AMa1~AMa4)、AMb(AMb1~AMb4)を用いて検出したアライメントマークMK(MK1~MK4)の位置に基づいて、露光領域Wの傾斜(傾き)や歪み(変形)を検出することができる。この露光領域Wの傾斜(傾き)や歪みは、例えば、回転ドラムDR1、DR2に巻き付けられて搬送されている基板Pの長尺方向が中心軸AXo1、AXo2に対して傾斜し、または歪んでいることによって、露光領域Wが傾斜し若しくは歪む場合がある。また、回転ドラムDR1、DR2に巻き付けられて搬送されている基板Pが傾斜していない若しくは歪んでいない場合であっても、下層のパターン層の形成時に、基板Pが傾斜して(傾いて)若しくは歪んで搬送されたことによって露光領域W自体が歪むことがある。その他、前工程で基板Pに加えられた熱的な影響によって基板P自体が線形または非線形に変形していることもある。 Incidentally, the control device 18 determines the inclination (inclination) of the exposure region W based on the position of the alignment mark MK (MK1 to MK4) detected using the alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4). Distortion (deformation) can be detected. As for the inclination (inclination) and distortion of the exposure area W, for example, the longitudinal direction of the substrate P wound around the rotary drums DR1 and DR2 is inclined or distorted with respect to the central axes AXo1 and AXo2. As a result, the exposure region W may be inclined or distorted. Further, even when the substrate P wound around the rotary drums DR1 and DR2 and transported is not tilted or distorted, the substrate P is tilted (tilted) when the lower pattern layer is formed. Alternatively, the exposure area W itself may be distorted due to being distorted and conveyed. In addition, the substrate P itself may be deformed linearly or nonlinearly due to the thermal effect applied to the substrate P in the previous process.
 そのため、制御装置18は、アライメント顕微鏡AMa(AMa1~AMb4)を用いて検出した露光領域Wの全体または一部分の傾斜(傾き)や歪みに応じて描画ユニットU1、U2、U5、U6を回動中心軸AXr回りに回動させる。また、制御装置18は、アライメント顕微鏡AMb(AMb1~AMb4)を用いて検出した露光領域Wの全体または一部分の傾斜(傾き)や歪みに応じて描画ユニットU3、U4を回動中心軸AXr回りに回動させる。この際、制御装置18は、描画ユニットU(U1~U6)の回動角に応じて、シフト光学部材SRa、SRbも駆動させる。 Therefore, the control device 18 rotates the drawing units U1, U2, U5, and U6 at the center of rotation according to the inclination (inclination) or distortion of the whole or a part of the exposure area W detected by using the alignment microscope AMa (AMa1 to AMb4). Rotate around axis AXr. Further, the control device 18 moves the drawing units U3 and U4 about the rotation center axis AXr according to the inclination (inclination) or distortion of the whole or a part of the exposure area W detected using the alignment microscope AMb (AMb1 to AMb4). Rotate. At this time, the control device 18 also drives the shift optical members SRa and SRb in accordance with the rotation angle of the drawing unit U (U1 to U6).
 具体的には、例えば、回転ドラムDR1、DR2に巻き付けられて搬送されている基板Pが傾斜している(傾いている)若しくは歪んでいるため、その傾斜(傾き)、歪みに応じて描画する所定のパターンも傾斜させ若しくは歪ませる必要が生じる。また、別の例として、下層のパターンの上に新たに所定のパターンを重ね合わせて描画する際に、下層のパターンの全体または一部の傾き若しくは歪みに応じて、描画する所定のパターンも傾斜させ若しくは歪ませる必要が生じる。したがって、描画する所定のパターンを傾斜若しくは歪ませるために、制御装置18は、描画ユニットU(U1~U6)を個別に回動させて、描画ラインSLa、SLbをY方向に対して傾斜させる。 Specifically, for example, since the substrate P wound around the rotary drums DR1 and DR2 and transported is inclined (inclined) or distorted, drawing is performed according to the inclination (inclination) and distortion. The predetermined pattern also needs to be inclined or distorted. As another example, when a predetermined pattern is newly superimposed on a lower layer pattern and drawn, the predetermined pattern to be drawn is also inclined according to the inclination or distortion of the whole or a part of the lower layer pattern. Need to be distorted or distorted. Therefore, in order to incline or distort a predetermined pattern to be drawn, the control device 18 individually rotates the drawing units U (U1 to U6) to incline the drawing lines SLa and SLb with respect to the Y direction.
 このように、第1の実施の形態においては、1つのポリゴンミラーPMを用いて、ビームLBa、LBbのスポット光SPa、SPbを描画ラインSLa、SLbに沿って走査する描画ユニットUであって、描画ラインSLa、SLbが、基板P上で副走査の方向に関して同じ位置であって、且つ、主走査の方向に離間して位置するように、第1投射光学系24と第2投射光学系26とを配置した。さらに、2つの描画ラインSLa、SLbの主走査方向の間の位置、好ましくは、描画ラインSLa、SLbの各々の主走査方向に関する中点位置を2等分する位置に、描画ユニットUの回動中心軸を設定する。 Thus, in the first embodiment, the drawing unit U scans the spot lights SPa and SPb of the beams LBa and LBb along the drawing lines SLa and SLb using one polygon mirror PM. The first projection optical system 24 and the second projection optical system 26 are such that the drawing lines SLa and SLb are located on the substrate P in the same position in the sub-scanning direction and spaced apart in the main scanning direction. And arranged. Further, the drawing unit U is rotated to a position between the two drawing lines SLa and SLb in the main scanning direction, preferably a position that bisects the midpoint position of each of the drawing lines SLa and SLb in the main scanning direction. Set the center axis.
 これにより、描画ユニットUを回動させても、描画ユニットUによってビームLBa、LBbのスポット光SPa、SPbが走査される描画ラインSLa、SLbの基板P上の位置ずれが大きくなることを抑制でき、描画ラインSLa、SLbの傾きを簡単に調整することが可能となる。逆に、主走査方向に関して同じ位置で、副走査方向に関して互いに離間するように走査線を複数設けた特開2004-117865号公報では、レーザ走査装置を回動させて複数の走査線の傾きを調整した場合は、レーザ走査装置の回動中心位置を中心として円弧を描くように走査線が移動してしまう。そのため、回動中心位置から遠い走査線程、レーザ走査装置の回動による走査線の被照射体上の位置ずれが大きくなる。すなわち、本第1の実施の形態では、副走査方向に関して同じ位置にし、主走査方向に離間するように描画ラインSLa、SLbを設定したので、描画ユニットUの回動による描画ラインSLa、SLbの基板P上の位置ずれが不必要に大きくならないようにすることができる。また、描画ラインSLの走査長を短くすることができるので、高詳細なパターン描画に必要な走査線の配置精度や光学性能を安定に維持することができる。 Thereby, even if the drawing unit U is rotated, it is possible to suppress an increase in displacement of the drawing lines SLa and SLb on the substrate P where the spot lights SPa and SPb of the beams LBa and LBb are scanned by the drawing unit U. The inclination of the drawing lines SLa and SLb can be easily adjusted. Conversely, in Japanese Patent Application Laid-Open No. 2004-117865 in which a plurality of scanning lines are provided at the same position in the main scanning direction and separated from each other in the sub-scanning direction, the laser scanning device is rotated so that the inclination of the plurality of scanning lines is increased. When adjusted, the scanning line moves so as to draw an arc around the rotation center position of the laser scanning device. Therefore, as the scanning line is farther from the rotation center position, the positional deviation of the scanning line on the irradiated body due to the rotation of the laser scanning device becomes larger. That is, in the first embodiment, since the drawing lines SLa and SLb are set so as to be at the same position in the sub-scanning direction and separated in the main scanning direction, the drawing lines SLa and SLb by the rotation of the drawing unit U are set. It is possible to prevent the displacement on the substrate P from becoming unnecessarily large. In addition, since the scanning length of the drawing line SL can be shortened, it is possible to stably maintain the scanning line arrangement accuracy and optical performance necessary for high-detail pattern drawing.
 描画ラインSLa、SLbの各走査長が同じに設定されるとともに、描画ラインSLa、SLbが主走査の方向に走査長以下の間隔で分離して設定されるように、第1投射光学系24と第2投射光学系26とを配置した。これにより、複数の描画ユニットUによって、各描画ユニットUの描画ラインSLa、SLbを主走査方向に継ぎ合わせることが可能となるとともに、各描画ユニットUの描画ラインSLa、SLbの基板P上の位置ずれが大きくなることを抑制でき、且つ、描画ラインSLa、SLbの傾きを簡単に調整することが可能となる。 The first projection optical system 24 and the first projection optical system 24 are set so that the scanning lengths of the drawing lines SLa and SLb are set to be the same, and the drawing lines SLa and SLb are set separately in the main scanning direction at intervals equal to or shorter than the scanning length. A second projection optical system 26 is arranged. As a result, the drawing lines SLa and SLb of each drawing unit U can be spliced in the main scanning direction by a plurality of drawing units U, and the positions of the drawing lines SLa and SLb of each drawing unit U on the substrate P An increase in deviation can be suppressed, and the inclination of the drawing lines SLa and SLb can be easily adjusted.
 描画ユニットUの回動中心軸AXrは、描画ユニットUの描画ラインSLa、SLbの各々の中点を結ぶ線分の中心点を基板Pに対して垂直に通るようにした。これにより、描画ユニットUの回動に伴う描画ラインSLa、SLbの位置ずれを最小限にしつつ、描画ラインSLa、SLbの傾きを簡単に調整することができる。 The rotation center axis AXr of the drawing unit U passes through the center point of the line segment connecting the midpoints of the drawing lines SLa and SLb of the drawing unit U perpendicularly to the substrate P. Thereby, the inclination of the drawing lines SLa and SLb can be easily adjusted while minimizing the positional deviation of the drawing lines SLa and SLb accompanying the rotation of the drawing unit U.
 光源装置14からのビームLBa、LBbは、回動中心軸AXrに対して対称となるように描画ユニットUに入射するので、描画ユニットUが回動中心軸AXr回りに回動した場合であっても、描画ユニットU内を通るビームLBa、LBbの各中心線の位置のずれが大きくなることを抑えることができる。 Since the beams LBa and LBb from the light source device 14 are incident on the drawing unit U so as to be symmetric with respect to the rotation center axis AXr, the drawing unit U rotates about the rotation center axis AXr. In addition, it is possible to suppress the displacement of the positions of the center lines of the beams LBa and LBb passing through the drawing unit U from increasing.
 描画ユニットUは、入射したビームLBa、LBbを反射して第1導光光学系20および第2導光光学系22に導く反射ミラーM1を、回動中心軸AXrが通る位置に備える。これにより、描画ユニットUが回動した場合であっても、光源装置14からのビームLBa、LBbは描画ユニットU内で最初に反射ミラーM1に入射するので、描画ラインSLa、SLb上にビームLBa、LBbのスポット光SPa、SPbを投射することができる。 The drawing unit U includes a reflection mirror M1 that reflects the incident beams LBa and LBb and guides them to the first light guide optical system 20 and the second light guide optical system 22 at a position where the rotation center axis AXr passes. Thereby, even when the drawing unit U is rotated, the beams LBa and LBb from the light source device 14 are first incident on the reflection mirror M1 in the drawing unit U. Therefore, the beams LBa on the drawing lines SLa and SLb. , LBb spot lights SPa and SPb can be projected.
 第1導光光学系20は、反射ミラーM1から反射されたビームLBaの位置を、ビームLBaの進行方向と交差する平面上でシフトするシフト光学部材SRaを備え、第2導光光学系22は、反射ミラーM1から反射されたビームLBbの位置を、ビームLBbの進行方向と交差する平面上でシフトするシフト光学部材SRbを備える。これにより、描画ユニットUが回動した場合であっても、ビームLBa、LBbを描画ユニットU内の適切な光路を通してポリゴンミラーPMに入射させることができる。したがって、描画ユニットUの回動によって、スポット光SPa、SPbが基板Pの被照射面に照射されなかったり、傾き調整後の描画ラインSLa、SLbから外れた位置にスポット光SPa、SPbが投射されたりといった問題が発生することを抑制することができる。 The first light guide optical system 20 includes a shift optical member SRa that shifts the position of the beam LBa reflected from the reflection mirror M1 on a plane that intersects the traveling direction of the beam LBa, and the second light guide optical system 22 includes A shift optical member SRb that shifts the position of the beam LBb reflected from the reflection mirror M1 on a plane that intersects the traveling direction of the beam LBb is provided. Thereby, even when the drawing unit U rotates, the beams LBa and LBb can be made incident on the polygon mirror PM through an appropriate optical path in the drawing unit U. Accordingly, the spot light SPa, SPb is projected to the position where the spot light SPa, SPb is not irradiated on the irradiated surface of the substrate P or is shifted from the drawing lines SLa, SLb after the tilt adjustment by the rotation of the drawing unit U. It is possible to suppress the occurrence of problems such as
 複数の描画ユニットUは、各々の描画ラインSLa、SLbが主走査方向(基板Pの幅方向)に沿って継ぎ合わさる(繋ぎ合わさる)ように配置されている。これにより、基板Pの幅方向における描画可能な範囲を広げることができる。 The plurality of drawing units U are arranged such that the drawing lines SLa and SLb are joined (joined) along the main scanning direction (width direction of the substrate P). Thereby, the range which can be drawn in the width direction of the board | substrate P can be expanded.
 複数の描画ユニットUのうち、所定数の描画ユニットUの描画ラインSLa、SLbが回転ドラムDR1の外周面に支持された基板P上に位置し、残りの描画ユニットの描画ラインSLa、SLbが回転ドラムDR2の外周面に支持された基板P上に位置するように、複数の描画ユニットUを配置した。これにより、1つの回転ドラムDRに対して全ての描画ユニットUを配置する必要がなくなり、描画ユニットUの配置の自由度が向上する。なお、3つ以上の回転ドラムDRを設け、3つ以上の回転ドラムDRの各々に対して描画ユニットUを1つ以上配置してもよい。 Among the plurality of drawing units U, the drawing lines SLa and SLb of a predetermined number of drawing units U are positioned on the substrate P supported on the outer peripheral surface of the rotary drum DR1, and the drawing lines SLa and SLb of the remaining drawing units rotate. A plurality of drawing units U are arranged so as to be positioned on the substrate P supported by the outer peripheral surface of the drum DR2. Thereby, it is not necessary to arrange all the drawing units U with respect to one rotating drum DR, and the degree of freedom of arrangement of the drawing units U is improved. Three or more rotating drums DR may be provided, and one or more drawing units U may be arranged for each of the three or more rotating drums DR.
 基板Pの被照射面上に描画すべき所定のパターンを傾斜させるために描画ラインSLa、SLb(描画ユニット)を回動(傾斜)させる。これにより、基板Pの搬送状態や基板Pの露光領域Wの形状に応じた描画する所定のパターンの形状を変化させることができる。また、基板Pの被照射面上に予め形成された下層のパターンの上に新たに所定のパターンを重ね合わせて描画する際に、下層のパターンの全体または一部の傾き、或いは非線形な変形の計測結果に基づいて、描画ラインSLa、SLbを回動(傾斜)させることができる。これにより、下層に形成されたパターンに対する重ね合わせ精度が向上する。 The drawing lines SLa and SLb (drawing units) are rotated (tilted) to tilt a predetermined pattern to be drawn on the irradiated surface of the substrate P. Thereby, the shape of the predetermined pattern drawn according to the conveyance state of the board | substrate P and the shape of the exposure area | region W of the board | substrate P can be changed. In addition, when a predetermined pattern is newly superimposed on a lower layer pattern formed in advance on the surface to be irradiated of the substrate P, the whole or a part of the lower layer pattern is inclined or nonlinearly deformed. Based on the measurement result, the drawing lines SLa and SLb can be rotated (tilted). Thereby, the overlay accuracy with respect to the pattern formed in the lower layer is improved.
 なお、各描画ユニットU(U1~U6)の描画ラインSLa、SLbを、副走査方向に関して同じ位置に配置したが、副走査方向に関して異なる位置に配置してもよい。要は、描画ラインSLa、SLbが主走査方向に互いに離間していればよい。この場合であっても、回動中心軸AXrは、描画ラインSLaの中点と描画ラインSLbの中点との間に設定される点、或いは描画ラインSLaと描画ラインSLbの各中点を結ぶ線分上に設定される中心点を、基板Pの被照射面に対して垂直に通るので、描画ユニットUの回動に伴う描画ラインSLa、SLbの位置ずれを小さくすることができる。 The drawing lines SLa and SLb of each drawing unit U (U1 to U6) are arranged at the same position in the sub-scanning direction, but may be arranged at different positions in the sub-scanning direction. In short, the drawing lines SLa and SLb may be separated from each other in the main scanning direction. Even in this case, the rotation center axis AXr is a point set between the midpoint of the drawing line SLa and the midpoint of the drawing line SLb, or connects the midpoints of the drawing line SLa and the drawing line SLb. Since the center point set on the line segment passes perpendicularly to the surface to be irradiated of the substrate P, the positional deviation of the drawing lines SLa and SLb accompanying the rotation of the drawing unit U can be reduced.
 さらに、本第1の実施の形態では、2本の描画ラインSLa、SLbの各々に沿ったスポット光SPa、SPbの主走査を、1つのポリゴンミラーPMで行うため、図2に示すように、Y方向の幅が広い基板P上の露光領域Wに対応して12本の描画ラインSL1a~SL6a、SL1b~SL6bを設定する場合でも、ポリゴンミラーPMの数は半分の6個で済む。そのため、ポリゴンミラーPMの高速回転(例えば2万rpm以上)に伴って発生する振動や騒音(風切音)も抑えられる。 Furthermore, in the first embodiment, since the main scanning of the spot lights SPa and SPb along each of the two drawing lines SLa and SLb is performed by one polygon mirror PM, as shown in FIG. Even when twelve drawing lines SL1a to SL6a and SL1b to SL6b are set corresponding to the exposure region W on the substrate P having a wide width in the Y direction, the number of polygon mirrors PM is only half, ie six. For this reason, vibration and noise (wind noise) generated with high-speed rotation (for example, 20,000 rpm or more) of the polygon mirror PM can be suppressed.
 [第1の実施の形態の変形例]
 上記第1の実施の形態は、以下のような変形例も可能である。
[Modification of First Embodiment]
The first embodiment can be modified as follows.
 (変形例1)図12は、上記第1の実施の形態の変形例1におけるポリゴンミラーPMによるビーム走査系を+Zt方向側からみたときの図であり、図13は、図12のビーム走査系を+Xt方向側からみたときの図である。なお、上記第1の実施の形態と同様の構成については同一の符号を付してその説明を省略し、上記第1の実施の形態と異なる部分だけを説明する。本変形例1のポリゴンミラーPMも、図12のように8つの反射面RPa~RPhを有する正八角形であり、回転軸AXpを挟んで対称的に位置する2つの反射面同士(例えば反射面RPaと反射面RPe、反射面RPcと反射面RPg等)は互いに平行になっている。 (Modification 1) FIG. 12 is a view of a beam scanning system by the polygon mirror PM in Modification 1 of the first embodiment as viewed from the + Zt direction side, and FIG. 13 is a diagram of the beam scanning system of FIG. It is a figure when seeing from the + Xt direction side. Note that the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only portions different from those in the first embodiment are described. The polygon mirror PM of the first modification is also a regular octagon having eight reflecting surfaces RPa to RPh as shown in FIG. And the reflecting surface RPe, the reflecting surface RPc, and the reflecting surface RPg are parallel to each other.
 図13に示すように、反射ミラーM4aは、ビーム成形光学系BFaを透過して+Xt方向に進むビームLBaを、-Zt方向に反射する。反射ミラーM4aによって-Zt方向に反射されたビームLBaは、Xt軸と平行に母線が設定される第1のシリンドリカルレンズCY1aを通過した後、反射ミラーM5aに入射する。反射ミラーM5aは、入射したビームLBaを+Yt方向に反射してポリゴンミラーPMの第1の反射面RPcに導く。ポリゴンミラーPMは、図12に示すように、入射したビームLBaを反射ミラーM5a側(-Yt方向側)に反射して反射ミラーM6aに導く。反射ミラーM6aは、上記第1の実施の形態で説明したように、入射したビームLBaを-Xt方向に反射してfθレンズFTaに導く。同様に、反射ミラーM4bは、ビーム成形光学系BFbを透過して+X方向に進むビームLBbを、-Zt方向に反射する。反射ミラーM4bによって-Zt方向に反射されたビームLBbは、Xt軸と平行に母線が設定される第1のシリンドリカルレンズCY1bを通過した後、反射ミラーM5bに入射する。反射ミラーM5bは、入射したビームLBbを-Yt方向に反射してポリゴンミラーPMの第2の反射面RPgに導く。ポリゴンミラーPMは、入射したビームLBbを反射ミラーM5b側(+Yt方向側)に反射して反射ミラーM6bに導く。反射ミラーM6bは、上記第1の実施の形態で説明したように、入射したビームLBbを-Xt方向に反射してfθレンズFTbに導く。反射ミラーM6a、M6bは、Zt方向に関して同じ位置に配置されている。そして、反射ミラーM5aは、反射ミラーM6aより-Zt方向側に配置されており、反射ミラーM5bは、反射ミラーM6bより+Zt方向側に配置されている。また、反射ミラーM5a、5bと、反射ミラーM6a、6bとは、Xt方向に関して略同じ位置に設けられている。つまり、反射ミラーM5a、5b、反射ミラーM6a、6bとは、Yt方向に沿って設けられている。 As shown in FIG. 13, the reflection mirror M4a reflects the beam LBa transmitted through the beam shaping optical system BFa and traveling in the + Xt direction in the −Zt direction. The beam LBa reflected in the −Zt direction by the reflection mirror M4a passes through the first cylindrical lens CY1a in which the generating line is set parallel to the Xt axis, and then enters the reflection mirror M5a. The reflection mirror M5a reflects the incident beam LBa in the + Yt direction and guides it to the first reflection surface RPc of the polygon mirror PM. As shown in FIG. 12, the polygon mirror PM reflects the incident beam LBa to the reflection mirror M5a side (−Yt direction side) and guides it to the reflection mirror M6a. As described in the first embodiment, the reflection mirror M6a reflects the incident beam LBa in the −Xt direction and guides it to the fθ lens FTa. Similarly, the reflection mirror M4b reflects the beam LBb that passes through the beam shaping optical system BFb and travels in the + X direction in the −Zt direction. The beam LBb reflected in the −Zt direction by the reflection mirror M4b passes through the first cylindrical lens CY1b in which the generating line is set parallel to the Xt axis, and then enters the reflection mirror M5b. The reflection mirror M5b reflects the incident beam LBb in the -Yt direction and guides it to the second reflection surface RPg of the polygon mirror PM. The polygon mirror PM reflects the incident beam LBb to the reflection mirror M5b side (+ Yt direction side) and guides it to the reflection mirror M6b. As described in the first embodiment, the reflection mirror M6b reflects the incident beam LBb in the −Xt direction and guides it to the fθ lens FTb. The reflection mirrors M6a and M6b are arranged at the same position in the Zt direction. The reflection mirror M5a is disposed on the −Zt direction side from the reflection mirror M6a, and the reflection mirror M5b is disposed on the + Zt direction side from the reflection mirror M6b. The reflection mirrors M5a and 5b and the reflection mirrors M6a and 6b are provided at substantially the same position in the Xt direction. That is, the reflection mirrors M5a and 5b and the reflection mirrors M6a and 6b are provided along the Yt direction.
 この反射ミラーM4a、M4bは、上記第1の実施の形態の反射ミラーM4に代えて設けられたものであり、反射ミラーM4と同等の機能を有する。また、第1のシリンドリカルレンズCY1a、CY1bは、上記第1の実施の形態の第1のシリンドリカルレンズCY1に代えて設けられたものであり、第1のシリンドリカルレンズCY1と同等の機能を有する。つまり、シリンドリカルレンズCY1a、CY1bは、ポリゴンミラーPMによる走査方向(回転方向)と直交する非走査方向(Zt方向)に関して、入射したビームLBa、LBbをポリゴンミラーPMの反射面RP上に収斂する。同様に、反射ミラーM5a、M5bは、上記第1の実施の形態の反射ミラーM5に代えて設けられたものであり、反射ミラーM5と同等の機能を有する。このように、上記第1の実施の形態の反射ミラーM4、第1のシリンドリカルレンズCY1、および、反射ミラーM5を、第1導光光学系20と第2導光光学系22の各々で別個に設けたものが、反射ミラーM4a、M4b、第1のシリンドリカルレンズCY1a、CY1b、および、反射ミラーM5a、M5bとなる。 The reflection mirrors M4a and M4b are provided in place of the reflection mirror M4 of the first embodiment, and have the same function as the reflection mirror M4. The first cylindrical lenses CY1a and CY1b are provided in place of the first cylindrical lens CY1 in the first embodiment, and have functions equivalent to those of the first cylindrical lens CY1. That is, the cylindrical lenses CY1a and CY1b converge the incident beams LBa and LBb on the reflection surface RP of the polygon mirror PM in the non-scanning direction (Zt direction) orthogonal to the scanning direction (rotation direction) of the polygon mirror PM. Similarly, the reflection mirrors M5a and M5b are provided in place of the reflection mirror M5 of the first embodiment, and have the same function as the reflection mirror M5. As described above, the reflection mirror M4, the first cylindrical lens CY1, and the reflection mirror M5 of the first embodiment are separately provided in each of the first light guide optical system 20 and the second light guide optical system 22. The provided mirrors are the reflection mirrors M4a and M4b, the first cylindrical lenses CY1a and CY1b, and the reflection mirrors M5a and M5b.
 なお、反射ミラーM4a、M4bに入射するビームLBa、LBbのXtYt面内におけるYt方向の距離は、図6中に示した三角反射ミラーM2と反射ミラーM3a、M3bとによって、ポリゴンミラーPMのYt方向の寸法(直径)よりも大きくなるように拡大されている。 The distance in the Yt direction of the beams LBa and LBb incident on the reflection mirrors M4a and M4b in the XtYt plane is determined by the triangular reflection mirror M2 and the reflection mirrors M3a and M3b shown in FIG. It is enlarged so that it may become larger than the dimension (diameter).
 本変形例1では、図13に示すようにポリゴンミラーPMの回転軸AXpが、Zt軸と平行な状態からYt方向に一定角度θy(45°未満)だけ傾斜するように、ポリゴンミラーPM全体を傾けて配置する。そのため、ポリゴンミラーPMの各反射面RPのうち、回転中に反射ミラーM6a、M6bの各々と対面するように位置した反射面RPc、RPgは、Zt軸に対してYt方向に一定角度θyだけ傾斜することになる。図12、図13は、そのようなポリゴンミラーPMの反射面RPcと、回転軸AXpを挟んで反射面RPcと対向した反射面RPgとが、ともにXt軸と平行になった瞬間の状態を示す。このときに回転軸AXpと直交するXt方向からみてポリゴンミラーPMの反射面RPc、RPgに入射するビームLBa、LBbは、各反射面RPc、RPgに対して斜めに入射角θyで入射するので、ポリゴンミラーPMによるビームLBa、LBbの反射位置をZt方向に関して同一の高さ位置にすることができる。すなわち、反射ミラーM6a、M6bの各々のZt方向の位置を同じにすることができる。さらに、ポリゴンミラーPMで反射して反射ミラーM6a、M6bに向かうビームLBa、LBbの各中心線(進行方向)をXtYt面と平行に設定できる。これにより、第1投射光学系24および第2投射光学系26のZt方向における位置を同じ位置にすることができ、基板Pの被照射面上における描画ラインSLa、SLbを直線上に配置しやすくなる。 In the first modification, as shown in FIG. 13, the entire polygon mirror PM is arranged such that the rotation axis AXp of the polygon mirror PM is inclined by a certain angle θy (less than 45 °) in the Yt direction from a state parallel to the Zt axis. Tilt and place. Therefore, among the reflecting surfaces RP of the polygon mirror PM, the reflecting surfaces RPc and RPg positioned so as to face each of the reflecting mirrors M6a and M6b during rotation are inclined by a certain angle θy in the Yt direction with respect to the Zt axis. Will do. 12 and 13 show a state at the moment when the reflection surface RPc of the polygon mirror PM and the reflection surface RPg facing the reflection surface RPc across the rotation axis AXp are both parallel to the Xt axis. . At this time, the beams LBa and LBb incident on the reflection surfaces RPc and RPg of the polygon mirror PM as viewed from the Xt direction orthogonal to the rotation axis AXp are incident on the reflection surfaces RPc and RPg at an angle of incidence θy. The reflection positions of the beams LBa and LBb by the polygon mirror PM can be set to the same height position in the Zt direction. That is, the positions of the reflecting mirrors M6a and M6b in the Zt direction can be made the same. Furthermore, each center line (traveling direction) of the beams LBa and LBb reflected by the polygon mirror PM and directed to the reflecting mirrors M6a and M6b can be set parallel to the XtYt plane. Thereby, the position in the Zt direction of the 1st projection optical system 24 and the 2nd projection optical system 26 can be made into the same position, and it is easy to arrange | position drawing lines SLa and SLb on the to-be-irradiated surface of the board | substrate P on a straight line. Become.
 なお、図13のように、ポリゴンミラーPMを角度θyだけ傾けて、ビームLBa、LBbの各々をポリゴンミラーPMの互いに平行な2つの反射面RPc、RPgのそれぞれにYt方向から投射する構成とし、反射面RPc上のビームLBaの投射位置と反射面RPg上のビームLBbの投射位置とのZt方向の高さを揃える場合、傾き角度θyを大きくすると、反射面RPa~RPhの回転軸AXp方向の高さ寸法も大きくする必要がある。本変形例1の場合、ポリゴンミラーPMの傾き角度θyを大きくすると、反射ミラーM5a、M5b、M6a、M6b等の配置が容易になる反面、ポリゴンミラーPMの反射面RPa~RPhの回転軸AXp方向の寸法が大きくなり、ポリゴンミラーPMの質量が増大する。したがって、回転の高速化のためにポリゴンミラーPMの質量を小さくすることを優先する場合には、Zt方向に関して、反射面RPc上のビームLBaの投射位置と反射面RPg上のビームLBbの投射位置とを異ならせてもよい。 As shown in FIG. 13, the polygon mirror PM is tilted by an angle θy, and each of the beams LBa and LBb is projected from the Yt direction to each of two parallel reflecting surfaces RPc and RPg of the polygon mirror PM. When aligning the height in the Zt direction between the projection position of the beam LBa on the reflection surface RPc and the projection position of the beam LBb on the reflection surface RPg, if the inclination angle θy is increased, the rotation axis AXp direction of the reflection surfaces RPa to RPh is increased. It is also necessary to increase the height dimension. In the case of the first modification, when the inclination angle θy of the polygon mirror PM is increased, the arrangement of the reflection mirrors M5a, M5b, M6a, M6b, etc. is facilitated, while the rotation directions AXp of the reflection surfaces RPa to RPh of the polygon mirror PM , And the mass of the polygon mirror PM increases. Therefore, when priority is given to reducing the mass of the polygon mirror PM for speeding up the rotation, the projection position of the beam LBa on the reflection surface RPc and the projection position of the beam LBb on the reflection surface RPg in the Zt direction. May be different.
 また、図13に示すように、回転軸AXpと直交するXt方向からみてポリゴンミラーPMの描画に寄与する反射面RPc、RPgに入射するビームLBa、LBbを反射面RPc、RPgに対してYtZt面内で斜めに傾けて入射させることで、ビームLBa、LBbの入射方向と反射方向とを、回転軸AXp方向またはZt方向に異ならせることができる。これにより、回転軸AXp方向、若しくは、Zt方向からポリゴンミラーPMをみた場合(図12の状態)、描画に寄与する反射面RPc、RPgに各ビームLBa、LBbを略直交するように入射させることができる。すなわち、XtYt面内でみた場合、反射ミラーM5a、M5bで反射してポリゴンミラーPMの反射面RPc、RPgに向かうビームLBa、LBbの各中心線AXsの延長が、いずれもポリゴンミラーPMの回転軸AXpを通るように設定することができる。 Further, as shown in FIG. 13, when viewed from the Xt direction orthogonal to the rotation axis AXp, the beams LBa and LBb incident on the reflecting surfaces RPc and RPg that contribute to the drawing of the polygon mirror PM are reflected on the YtZt surface with respect to the reflecting surfaces RPc and RPg. The incident direction and the reflection direction of the beams LBa and LBb can be made different from each other in the rotation axis AXp direction or the Zt direction. As a result, when the polygon mirror PM is viewed from the rotation axis AXp direction or the Zt direction (the state of FIG. 12), the beams LBa and LBb are incident on the reflecting surfaces RPc and RPg contributing to drawing so as to be substantially orthogonal to each other. Can do. That is, when viewed in the XtYt plane, each of the center lines AXs of the beams LBa and LBb that are reflected by the reflection mirrors M5a and M5b and go to the reflection surfaces RPc and RPg of the polygon mirror PM is an axis of rotation of the polygon mirror PM. It can be set to pass through AXp.
 このように構成することにより、XtYt面内でみたとき、ポリゴンミラーPMの描画に寄与する反射面RPc、RPgの各々で反射したビームLBa、LBbは、中心線AXsを中心として一定の角度範囲θsで偏向走査された状態で、第1投射光学系24(具体的には、fθレンズFTa)および第2投射光学系26(具体的には、fθレンズFTb)に導かれる。したがって、回転軸AXp方向またはZt方向からみた場合に、描画ラインSLa、SLbに沿ったスポット光SPa、SPbの1回の走査のために、1つの反射面RP(RPc、RPg)に連続的に入射するパルス状のビームLBa、LBbの実効的な反射角範囲(θs)を、中心線AXsを中心とした均等な角度範囲(±θs/2)に振り分けることができる。これにより、ポリゴンミラーPMで走査されたビームLBa、LBbやスポット光SPa、SPbの光学性能(収差特性、フォーカス特性、スポット品質等)や等速性が向上し、走査精度が向上する。 With this configuration, when viewed in the XtYt plane, the beams LBa and LBb reflected by the reflecting surfaces RPc and RPg that contribute to the drawing of the polygon mirror PM have a certain angular range θs centered on the center line AXs. In the state of being deflected and scanned, the light is guided to the first projection optical system 24 (specifically, the fθ lens FTa) and the second projection optical system 26 (specifically, the fθ lens FTb). Therefore, when viewed from the rotation axis AXp direction or the Zt direction, it is continuously applied to one reflecting surface RP (RPc, RPg) for one scanning of the spot lights SPa, SPb along the drawing lines SLa, SLb. The effective reflection angle range (θs) of the incident pulsed beams LBa and LBb can be distributed to an equal angle range (± θs / 2) around the center line AXs. As a result, the optical performance (aberration characteristics, focus characteristics, spot quality, etc.) and constant velocity of the beams LBa, LBb and spot lights SPa, SPb scanned by the polygon mirror PM are improved, and the scanning accuracy is improved.
 (変形例2)図14は、上記第1の実施の形態の変形例2におけるポリゴンミラーPMaによるビーム走査系を+Zt方向側からみたときの図であり、図15は、図14のビーム走査系を+Xt方向側からみたときの図である。なお、上記第1の実施の形態の変形例1と同一の構成については同一の符号を付し、異なる部分だけを説明する。なお、反射ミラーM5a、M5bは、Zt方向に関して同じ位置にあり、反射ミラーM6a、6bより+Zt方向側に配置されている。また、反射ミラーM5a、5bと、反射ミラーM6a、6bとは、Xt方向に関して略同じ位置に設けられている。 (Modification 2) FIG. 14 is a view of the beam scanning system by the polygon mirror PMa in Modification 2 of the first embodiment as viewed from the + Zt direction side, and FIG. 15 is a beam scanning system of FIG. It is a figure when seeing from the + Xt direction side. In addition, the same code | symbol is attached | subjected about the structure same as the modification 1 of the said 1st Embodiment, and only a different part is demonstrated. The reflection mirrors M5a and M5b are at the same position with respect to the Zt direction, and are arranged on the + Zt direction side of the reflection mirrors M6a and 6b. The reflection mirrors M5a and 5b and the reflection mirrors M6a and 6b are provided at substantially the same position in the Xt direction.
 本変形例2では、8つの反射面RPa~RPhを有するポリゴンミラーPMaの回転軸AXpをZt軸と平行にし、ポリゴンミラーPMaの各反射面RPa~RPhを回転軸AXpに対して角度θyだけ傾斜するように形成した。図14、図15は、そのようなポリゴンミラーPMaの第1の反射面RPcと、回転軸AXpを挟んで反射面RPcと対向した第2の反射面RPgとが、ともにXt軸と平行になった瞬間の状態を示す。そして、図15のように、回転軸AXpと直交するXt方向からみて、ポリゴンミラーPMの反射面RPcに向かうビームLBa、反射面RPgに向かうビームLBbの各々を反射面RPc、RPgに対して斜め上方(+Zt方向)から投射すると、ビームLBa、LBbの各反射面RPc、RPg上での反射位置をXtYt面と平行な面内、すなわちZt方向に関して同一の高さ位置に設定することができる。つまり、Zt方向に関してポリゴンミラーPMが反射するビームLBa、LBbの中心線の位置を同じにすることができる。これにより、上記第1の実施の形態の変形例1と同様に、第1投射光学系24および第2投射光学系26のZt方向における位置を同じ位置にすることができ、基板Pの被照射面上における描画ラインSLa、SLbを直線上に配置しやすくなる。 In the second modification, the rotation axis AXp of the polygon mirror PMa having eight reflection surfaces RPa to RPh is made parallel to the Zt axis, and each reflection surface RPa to RPh of the polygon mirror PMa is inclined by the angle θy with respect to the rotation axis AXp. Formed to be. 14 and 15, the first reflecting surface RPc of the polygon mirror PMa and the second reflecting surface RPg facing the reflecting surface RPc across the rotation axis AXp are both parallel to the Xt axis. The state at the moment. As shown in FIG. 15, when viewed from the Xt direction orthogonal to the rotation axis AXp, the beam LBa toward the reflection surface RPc of the polygon mirror PM and the beam LBb toward the reflection surface RPg are inclined with respect to the reflection surfaces RPc and RPg. When projected from above (+ Zt direction), the reflection positions of the beams LBa and LBb on the reflection surfaces RPc and RPg can be set in the plane parallel to the XtYt plane, that is, at the same height position with respect to the Zt direction. That is, the positions of the center lines of the beams LBa and LBb reflected by the polygon mirror PM in the Zt direction can be made the same. Thereby, similarly to the modification 1 of the said 1st Embodiment, the position in the Zt direction of the 1st projection optical system 24 and the 2nd projection optical system 26 can be made into the same position, and to-be-irradiated of the board | substrate P It becomes easy to arrange the drawing lines SLa and SLb on the surface on a straight line.
 また、Xt方向からみて、ポリゴンミラーPMaの反射面RPa~RPhのうち、回転軸AXpを挟んで対向する2つの反射面RP(例えばRPcとRPg)の各々に入射するビームLBa、LBbを、反射面RPに対してZ方向に傾けて斜めに入射させるので、YtZt面内でみると、図15のようにビームLBa、LBbの入射角度方向と反射角度方向とを、回転軸AXp方向(Zt方向)に角度2θyだけ離すことができる。これにより、回転軸AXp方向(Zt方向)からポリゴンミラーPMaをみた場合は、図14のように、ビームLBa、LBbの各々の入射方向と反射方向とを同方向にすることができる。その結果、ポリゴンミラーPMaで反射した反射ミラーM5a、M5bからのビームLBa、LBbが、反射ミラーM5a、M5bに戻ることなく、反射ミラーM6a、M6bに入射する。 Further, when viewed from the Xt direction, the beams LBa and LBb incident on each of the two reflecting surfaces RP (for example, RPc and RPg) facing each other across the rotation axis AXp among the reflecting surfaces RPa to RPh of the polygon mirror PMa are reflected. Since the light is incident obliquely with respect to the plane RP in the Z direction, when viewed in the YtZt plane, the incident angle direction and the reflection angle direction of the beams LBa and LBb are set in the rotation axis AXp direction (Zt direction) as shown in FIG. ) Can be separated by an angle 2θy. Thereby, when the polygon mirror PMa is viewed from the rotation axis AXp direction (Zt direction), the incident direction and the reflection direction of each of the beams LBa and LBb can be made the same direction as shown in FIG. As a result, the beams LBa and LBb from the reflection mirrors M5a and M5b reflected by the polygon mirror PMa enter the reflection mirrors M6a and M6b without returning to the reflection mirrors M5a and M5b.
 本変形例2においても、先の図12の変形例1と同様に、ポリゴンミラーPMaの描画に寄与する反射面RPc、RPgの各々で反射したビームLBa、LBbは、中心線AXsを中心として一定の角度範囲θsで偏向走査された状態で、第1投射光学系24(具体的には、fθレンズFTa)および第2投射光学系26(具体的には、fθレンズFTb)に導かれる。したがって、描画ラインSLa、SLbに沿ったスポット光の1回の走査のために、1つの反射面RP(RPc、RPg)に連続的に入射するパルス状のビームLBa、LBbの実効的な反射角範囲(θs)を、中心線AXsを中心とした均等な角度範囲(±θs/2)に振り分けることができる。これにより、ポリゴンミラーPMaで走査されたビームLBa、LBbやスポット光SPa、SPbの光学性能(収差特性、フォーカス特性、スポット品質等)や等速性が向上し、走査精度が向上する。 Also in the second modification, as in the first modification shown in FIG. 12, the beams LBa and LBb reflected by the reflecting surfaces RPc and RPg contributing to the drawing of the polygon mirror PMa are constant around the center line AXs. In the state of being deflected and scanned in the angle range θs, the light is guided to the first projection optical system 24 (specifically, the fθ lens FTa) and the second projection optical system 26 (specifically, the fθ lens FTb). Therefore, the effective reflection angle of the pulsed beams LBa and LBb continuously incident on one reflecting surface RP (RPc, RPg) for one scanning of the spot light along the drawing lines SLa, SLb. The range (θs) can be distributed to an equal angular range (± θs / 2) around the center line AXs. As a result, the optical performance (aberration characteristics, focus characteristics, spot quality, etc.) and constant velocity of the beams LBa, LBb and spot lights SPa, SPb scanned by the polygon mirror PMa are improved, and the scanning accuracy is improved.
 (変形例3)上記第1の実施の形態の変形例1では、ポリゴンミラーPMの回転軸AXpをZt軸に対してYz方向に角度θyだけ傾けるようにし、上記変形例2では、ポリゴンミラーPMaの回転軸AXpをZt軸と平行にし、ポリゴンミラーPMaの各反射面RPa~RPhをZt軸に対して角度θyだけ傾斜するように形成した。しかしながら、ポリゴンミラーPMの配置や各反射面RP(RPa~RPh)の構成は、上記変形例1、2に限定されない。例えば、上記第1の実施の形態のような構成のポリゴンミラーPMを用いて、各反射面RP(Zt軸および回転軸AXpと平行)と垂直な面(XtYt面と平行)に対して斜め上方(または下方)からビームLBを入射させるようにしてもよい。これにより、ポリゴンミラーPMの回転軸AXp方向からポリゴンミラーPMをみた場合に、ビームLBa、LBbが垂直入射するように各反射面RPが位置した状態では、ビームLBa,LBbの入射方向と反射方向とを同一にすることができ、ビームLBa、LBbの入射方向と反射方向とを回転軸AXp(Zt軸)方向にずらすことができる。したがって、ポリゴンミラーPMは、2つの反射面RPの各々で反射したビームLBa、LBbを、中心線AXsを中心として一定の角度範囲θs(中心線AXsを中心とした角度±θs/2の振分け)で偏向して、第1投射光学系24(具体的には、fθレンズFTa)および第2投射光学系26(具体的には、fθレンズFTb)に導くことができる。このように、変形例3の場合であっても、上記第1の実施の形態の変形例1、2と同様に、ポリゴンミラーPMで走査されたビームLBa、LBbやスポット光SPa、SPbの光学性能(収差特性、フォーカス特性、スポット品質等)や等速性が向上し、走査精度が向上する。 (Modification 3) In the modification 1 of the first embodiment, the rotation axis AXp of the polygon mirror PM is inclined by the angle θy in the Yz direction with respect to the Zt axis. In the modification 2, the polygon mirror PMa The rotation axis AXp is made parallel to the Zt axis, and the reflecting surfaces RPa to RPh of the polygon mirror PMa are inclined with respect to the Zt axis by an angle θy. However, the arrangement of the polygon mirror PM and the configuration of the reflecting surfaces RP (RPa to RPh) are not limited to the first and second modifications. For example, using the polygon mirror PM having the configuration as in the first embodiment, a diagonally upward direction with respect to a plane (parallel to the XtYt plane) perpendicular to each reflection plane RP (parallel to the Zt axis and the rotation axis AXp) The beam LB may be incident from (or below). Thereby, when the polygon mirror PM is viewed from the direction of the rotation axis AXp of the polygon mirror PM, the incident directions and the reflection directions of the beams LBa and LBb are in a state where the respective reflecting surfaces RP are positioned so that the beams LBa and LBb are perpendicularly incident. And the incident direction and the reflection direction of the beams LBa and LBb can be shifted in the rotation axis AXp (Zt axis) direction. Therefore, the polygon mirror PM distributes the beams LBa and LBb reflected by each of the two reflecting surfaces RP to a constant angle range θs centered on the center line AXs (distribution of angles ± θs / 2 centered on the center line AXs). And can be guided to the first projection optical system 24 (specifically, the fθ lens FTa) and the second projection optical system 26 (specifically, the fθ lens FTb). As described above, even in the case of the third modification, as in the first and second modifications of the first embodiment, the optical beams LBa and LBb and the spot lights SPa and SPb scanned by the polygon mirror PM are used. Performance (aberration characteristics, focus characteristics, spot quality, etc.) and constant speed are improved, and scanning accuracy is improved.
 (変形例4)上記の変形例3のように、回転軸AXpがZt軸と平行であり、各反射面RPa~RPhも回転軸AXpと平行な正八角形のポリゴンミラーPMを用いて、先の変形例1~3の各々のように、描画に寄与するポリゴンミラーPMの反射面RPに入射するビームLBa、LBbの入射方向とその反射方向とを、XtYt面内でみたときに同じ方向にする他の構成として、図16A、図16Bに示すように、偏光ビームスプリッタPBS(PBSa、PBSb)を用いてもよい。図16Aは、上記第1の実施の形態の変形例4におけるポリゴンミラーPMによるビーム走査系を+Zt方向側からみたときの図であり、図16Bは、図16Aのビーム走査系を-Xt方向側からみたときの図である。なお、先の第1の実施の形態、変形例1~2の各々で説明した部材と同一のものについては同一の符号を付し、異なる部分だけを説明する。 (Modification 4) As in Modification 3 above, the rotation axis AXp is parallel to the Zt axis, and each reflection surface RPa to RPh is also a regular octagonal polygon mirror PM parallel to the rotation axis AXp. As in each of the first to third modifications, the incident directions of the beams LBa and LBb that are incident on the reflecting surface RP of the polygon mirror PM that contributes to drawing and the reflecting directions thereof are the same when viewed in the XtYt plane. As another configuration, a polarization beam splitter PBS (PBSa, PBSb) may be used as shown in FIGS. 16A and 16B. FIG. 16A is a view of the beam scanning system by the polygon mirror PM in the fourth modification of the first embodiment as viewed from the + Zt direction side, and FIG. 16B is a view of the beam scanning system in FIG. 16A on the −Xt direction side. It is a figure when it sees. The same members as those described in the first embodiment and each of the first and second modifications are denoted by the same reference numerals, and only different portions will be described.
 図16A、図16Bのように、本変形例4では、ポリゴンミラーPMと反射ミラーM6aとの間に、ビームの入射出面がXtYt面、XtZt面の各々と平行な直方体状の偏光ビームスプリッタPBSaが配置され、ポリゴンミラーPMと反射ミラーM6bとの間に、ビームの入射出面がXtYt面、XtZt面の各々と平行な直方体状の偏光ビームスプリッタPBSbが配置される。偏光ビームスプリッタPBSa、PBSbの各々の偏光分離面は、XtYt面とXtZt面のいずれに対しても45°で傾くように設定される。さらに、偏光ビームスプリッタPBSaとポリゴンミラーPMの間には、1/4波長板QPaが設けられ、偏光ビームスプリッタPBSbとポリゴンミラーPMの間には、1/4波長板QPbが設けられる。 As shown in FIGS. 16A and 16B, in the fourth modification, a rectangular parallelepiped polarization beam splitter PBSa having a beam incident / exit plane parallel to the XtYt plane and the XtZt plane is provided between the polygon mirror PM and the reflection mirror M6a. Between the polygon mirror PM and the reflection mirror M6b, a polarizing beam splitter PBSb having a rectangular parallelepiped shape in which the beam incident / exit surface is parallel to each of the XtYt plane and the XtZt plane is disposed. The polarization separation planes of the polarization beam splitters PBSa and PBSb are set so as to be inclined at 45 ° with respect to both the XtYt plane and the XtZt plane. Further, a quarter wavelength plate QPa is provided between the polarization beam splitter PBSa and the polygon mirror PM, and a quarter wavelength plate QPb is provided between the polarization beam splitter PBSb and the polygon mirror PM.
 以上の構成において、光学素子(音響光学変調素子)AOMa(図5、図7参照)で変調を受けたビームLBaは、図16Bに示すように、母線がXt軸と平行な第1のシリンドリカルレンズCY1aによってYt方向に収斂した状態で偏光ビームスプリッタPBSaに+Zt方向側からZt軸と平行に入射する。ビームLBaを直線S偏光とすると、ビームLBaは偏光ビームスプリッタPBSaの偏光分離面で大部分が反射して、1/4波長板QPaを透過して円偏光となってポリゴンミラーPMに向かう。ポリゴンミラーPMの回転角度位置が、例えば図16Aのように、ビームLBaによる描画に寄与する1つの反射面PRcがXtZt面と平行な状態から角度±θs/2の範囲内になったとき、1/4波長板QPaを透過したビームLBaは反射面PRcで反射されて、再び1/4波長板QPaを通って直線P偏光となって偏光ビームスプリッタPBSaに戻る。そのため、反射面PRcで反射されたビームLBaの大部分が、偏光ビームスプリッタPBSaの偏光分離面を透過して反射ミラーM6aに向かう。 In the above configuration, the beam LBa modulated by the optical element (acousto-optic modulation element) AOMa (see FIGS. 5 and 7) is a first cylindrical lens whose bus is parallel to the Xt axis, as shown in FIG. 16B. In the state converged in the Yt direction by CY1a, the light enters the polarization beam splitter PBSa from the + Zt direction side in parallel with the Zt axis. If the beam LBa is linear S-polarized light, most of the beam LBa is reflected by the polarization separation surface of the polarization beam splitter PBSa, passes through the quarter-wave plate QPa, becomes circularly polarized light, and travels toward the polygon mirror PM. When the rotational angle position of the polygon mirror PM is within a range of an angle ± θs / 2 from a state in which one reflecting surface PRc contributing to drawing by the beam LBa is parallel to the XtZt plane as shown in FIG. 16A, for example, The beam LBa that has passed through the / 4 wavelength plate QPa is reflected by the reflection surface PRc, passes through the ¼ wavelength plate QPa again, becomes linear P-polarized light, and returns to the polarization beam splitter PBSa. Therefore, most of the beam LBa reflected by the reflection surface PRc passes through the polarization separation surface of the polarization beam splitter PBSa and travels toward the reflection mirror M6a.
 同様に、光学素子(音響光学変調素子)AOMb(図5、図7参照)で変調を受けたビームLBbは、図16Bに示すように、母線がXt軸と平行な第1のシリンドリカルレンズCY1bによってYt方向に収斂した状態で偏光ビームスプリッタPBSbに+Zt方向側からZt軸と平行に入射する。ビームLBbを直線S偏光とすると、ビームLBbは偏光ビームスプリッタPBSbの偏光分離面で大部分が反射して、1/4波長板QPbを透過して円偏光となってポリゴンミラーPMに向かう。ポリゴンミラーPMの回転角度位置が、図16Aのように、ビームLBbによる描画に寄与する1つの反射面PRgがXtZt面と平行な状態から角度±θs/2の範囲内になったとき、1/4波長板QPbを透過したビームLBbは反射面PRgで反射されて、再び1/4波長板QPbを通って直線P偏光となって偏光ビームスプリッタPBSbに戻る。そのため、反射面PRgで反射されたビームLBbの大部分が、偏光ビームスプリッタPBSbの偏光分離面を透過して反射ミラーM6bに向かう。 Similarly, the beam LBb modulated by the optical element (acousto-optic modulation element) AOMb (see FIGS. 5 and 7) is, as shown in FIG. 16B, generated by the first cylindrical lens CY1b whose generating line is parallel to the Xt axis. In the state converged in the Yt direction, the light enters the polarization beam splitter PBSb in parallel with the Zt axis from the + Zt direction side. If the beam LBb is linear S-polarized light, most of the beam LBb is reflected by the polarization separation surface of the polarization beam splitter PBSb, passes through the quarter-wave plate QPb, becomes circularly polarized light, and travels toward the polygon mirror PM. When the rotational angle position of the polygon mirror PM is within the range of the angle ± θs / 2 from the state in which one reflecting surface PRg contributing to the drawing by the beam LBb is parallel to the XtZt plane as shown in FIG. The beam LBb that has passed through the four-wave plate QPb is reflected by the reflecting surface PRg, passes through the quarter-wave plate QPb again, becomes linear P-polarized light, and returns to the polarization beam splitter PBSb. Therefore, most of the beam LBb reflected by the reflection surface PRg passes through the polarization separation surface of the polarization beam splitter PBSb and travels toward the reflection mirror M6b.
 以上のような構成により、反射ミラーM6aで反射されたビームLBa、反射ミラーM6bで反射されたビームLBbの各々は、XtYt面と平行な面内で、角度範囲θs内で走査される。また、反射ミラーM6aの後に配置されている第1投射光学系24(具体的には、fθレンズFTa)の光軸AXfaの延長線は、反射ミラーM6aで90°だけ曲げられてポリゴンミラーPMの回転軸AXpと交差し、反射ミラーM6bの後に配置されている第2投射光学系26(具体的には、fθレンズFTb)の光軸AXfbの延長線は、反射ミラーM6bで90°だけ曲げられてポリゴンミラーPMの回転軸AXpと交差するように配置される。したがって、本変形例4においても、ポリゴンミラーPMは、2つの反射面(例えばRPcとRPg)の各々で反射したビームLBa、LBbを、光軸AXfa、AXfbを中心として一定の角度範囲θs(光軸AXfa、AXfbを中心とした角度±θs/2の振分け)で偏向して、第1投射光学系24(fθレンズFTa)および第2投射光学系26(fθレンズFTb)に導くことができる。このように、変形例4の場合であっても、ポリゴンミラーPMで走査されたビームLBa、LBbやスポット光SPa、SPbの光学性能(収差特性、フォーカス特性、スポット品質等)や等速性が向上し、走査精度が向上する。また、先の第1の実施の形態、およびその変形例1~3と同様に、本変形例4においても、1つのポリゴンミラーPMによる2つのビームLBa、LBbの各々の偏光走査により生成される描画ラインSLa、SLbは、描画すべきパターンの微細度(最小線幅)やスポット光SPa、SPbの実効的な寸法(直径)に応じた精度で直線性を保つことができる長さ、例えば30~80mm程度に設定することができる。 With the above configuration, each of the beam LBa reflected by the reflection mirror M6a and the beam LBb reflected by the reflection mirror M6b is scanned within an angle range θs in a plane parallel to the XtYt plane. Further, the extension line of the optical axis AXfa of the first projection optical system 24 (specifically, the fθ lens FTa) disposed after the reflection mirror M6a is bent by 90 ° by the reflection mirror M6a, and the polygon mirror PM The extension line of the optical axis AXfb of the second projection optical system 26 (specifically, the fθ lens FTb) that intersects the rotation axis AXp and is arranged behind the reflection mirror M6b is bent by 90 ° by the reflection mirror M6b. Are arranged so as to intersect the rotational axis AXp of the polygon mirror PM. Accordingly, also in the fourth modification example, the polygon mirror PM uses the beams LBa and LBb reflected by the two reflecting surfaces (for example, RPc and RPg) to a certain angular range θs (light) with the optical axes AXfa and AXfb as the center. It can be deflected by an angle ± θs / 2 with the axes AXfa and AXfb as the center, and guided to the first projection optical system 24 (fθ lens FTa) and the second projection optical system 26 (fθ lens FTb). As described above, even in the case of the modified example 4, the optical performance (aberration characteristics, focus characteristics, spot quality, etc.) and constant velocity of the beams LBa, LBb and spot lights SPa, SPb scanned by the polygon mirror PM are obtained. And the scanning accuracy is improved. Similarly to the first embodiment and the first to third modifications thereof, the fourth modification is also generated by the polarization scanning of each of the two beams LBa and LBb by one polygon mirror PM. The drawing lines SLa and SLb have a length that can maintain linearity with accuracy according to the fineness (minimum line width) of the pattern to be drawn and the effective dimensions (diameters) of the spot lights SPa and SPb, for example, 30 It can be set to about 80 mm.
 なお、以上の変形例4において、ポリゴンミラーPMで偏向走査されたビームLBa、LBbは、図16Aに示すように、描画ラインSLa、SLbの長さに対応した実効的な角度範囲θs内で偏光ビームスプリッタPBSa、PBSbに入射する。したがって、偏光ビームスプリッタPBSa、PBSbのP偏光とS偏光との分離度合いである消光比は、その角度範囲θs以上に渡って最大となるように設定される。そのような偏光ビームスプリッタPBSa、PBSbの一例として、偏光分離面に酸化ハフニウム(HfO2)の膜と二酸化ケイ素(SiO2)の膜とを繰り返し積層したものが、国際公開第2014/073535号パンフレットに開示されている。 In the fourth modification described above, the beams LBa and LBb deflected and scanned by the polygon mirror PM are polarized within an effective angle range θs corresponding to the lengths of the drawing lines SLa and SLb, as shown in FIG. 16A. The light enters the beam splitters PBSa and PBSb. Therefore, the extinction ratio, which is the degree of separation between the P-polarized light and the S-polarized light of the polarizing beam splitters PBSa and PBSb, is set to be the maximum over the angular range θs or more. As an example of such polarizing beam splitters PBSa and PBSb, a film in which a hafnium oxide (HfO 2) film and a silicon dioxide (SiO 2) film are repeatedly laminated on a polarization separation surface is disclosed in International Publication No. 2014/073535. Has been.
[第2の実施の形態]
 図17は、第2の実施の形態における描画ユニットUaの一部の構成を示す図である。各描画ユニットUaは、同一の構成を有するので、本第2の実施の形態においても、描画ラインSL2a、SL2b上に沿ってスポット光SPa、SPbを走査する描画ユニットUa2を例にして説明する。なお、上記第1の実施の形態と同一の構成については同一の符号を付す。また、上記第1の実施の形態と異なる部分だけを説明する。
[Second Embodiment]
FIG. 17 is a diagram illustrating a partial configuration of the drawing unit Ua according to the second embodiment. Since each drawing unit Ua has the same configuration, the second embodiment will be described by taking the drawing unit Ua2 that scans the spot lights SPa and SPb along the drawing lines SL2a and SL2b as an example. In addition, the same code | symbol is attached | subjected about the same structure as the said 1st Embodiment. Only the parts different from the first embodiment will be described.
 第2の実施の形態においては、ポリゴンミラーPMは、回転軸AXpがXt軸方向に延びるように設けられ、fθレンズFTa、FTbは、その光軸AXfa、AXfbがZt軸方向に延びるように設けられている。このポリゴンミラーPMの8つの反射面RPのうちで、YtZt面内において互いに90°の角をなす2つの反射面RP(図17では反射面RPb、RPh)には、-Zt軸方向に進むビームLBa、LBbが入射する。ポリゴンミラーPMの第1の反射面RP(ここではRPh)は、第1方向から入射したビームLBaを-Yt方向側に反射して反射ミラーM6aに導く。反射ミラーM6aで反射したビームLBaは、-Zt方向に進み、fθレンズFTaおよびシリンドリカルレンズCY2aを透過した後、基板Pに入射する。このfθレンズFTaおよびシリンドリカルレンズCY2aによって、基板Pに入射するビームLBaは、基板Pの被照射面上でスポット光SPaとなる。また、ポリゴンミラーPMの第2の反射面RP(ここではRPb)は、第1方向とは異なる第2方向から入射したビームLBbを+Yt方向側に反射して反射ミラーM6bに導く。反射ミラーM6aで反射したビームLBbは、-Zt方向に進み、fθレンズFTbおよびシリンドリカルレンズCY2bを透過した後、基板Pに入射する。このfθレンズFTbおよびシリンドリカルレンズCY2bによって、基板Pに入射するビームLBbは、基板Pの被照射面上でスポット光SPbとなる。基板Pの被照射面上に投射されたスポット光SPa、SPbは、ポリゴンミラーPMの回転によって描画ラインSL2a、SL2b上を等速走査する。 In the second embodiment, the polygon mirror PM is provided so that the rotation axis AXp extends in the Xt axis direction, and the fθ lenses FTa and FTb are provided so that the optical axes AXfa and AXfb extend in the Zt axis direction. It has been. Of the eight reflecting surfaces RP of the polygon mirror PM, two reflecting surfaces RP (reflecting surfaces RPb and RPh in FIG. 17) that form an angle of 90 ° with each other in the YtZt plane are beams traveling in the −Zt axis direction. LBa and LBb are incident. The first reflecting surface RP (here, RPh) of the polygon mirror PM reflects the beam LBa incident from the first direction toward the −Yt direction and guides it to the reflecting mirror M6a. The beam LBa reflected by the reflection mirror M6a travels in the −Zt direction, passes through the fθ lens FTa and the cylindrical lens CY2a, and then enters the substrate P. By the fθ lens FTa and the cylindrical lens CY2a, the beam LBa incident on the substrate P becomes the spot light SPa on the irradiated surface of the substrate P. The second reflecting surface RP (here, RPb) of the polygon mirror PM reflects the beam LBb incident from the second direction different from the first direction to the + Yt direction side and guides it to the reflecting mirror M6b. The beam LBb reflected by the reflection mirror M6a travels in the −Zt direction, passes through the fθ lens FTb and the cylindrical lens CY2b, and then enters the substrate P. By the fθ lens FTb and the cylindrical lens CY2b, the beam LBb incident on the substrate P becomes spot light SPb on the irradiated surface of the substrate P. The spot lights SPa and SPb projected on the irradiated surface of the substrate P scan the drawing lines SL2a and SL2b at a constant speed by the rotation of the polygon mirror PM.
 このように、ポリゴンミラーPMを回転軸AXpがXt軸方向に延びるように設け、fθレンズFTa、FTbをその光軸AXfa、AXfbがZt軸方向に延びるように設けているので、上記第1の実施の形態のように、fθレンズFTa、FTbを透過した-Xt方向に進むビームLBa、LBbを、-Z方向に反射する反射ミラーM7a、M7bを設ける必要はない。このような構成にしても、上記第1の実施の形態と同様の効果を得ることができる。 As described above, the polygon mirror PM is provided so that the rotation axis AXp extends in the Xt axis direction, and the fθ lenses FTa and FTb are provided so that the optical axes AXfa and AXfb extend in the Zt axis direction. Unlike the embodiment, it is not necessary to provide the reflection mirrors M7a and M7b that reflect the beams LBa and LBb transmitted through the fθ lenses FTa and FTb in the −Xt direction in the −Z direction. Even if it is such a structure, the effect similar to the said 1st Embodiment can be acquired.
 なお、本第2の実施の形態では、反射ミラーM6a、fθレンズFTa、および、シリンドリカルレンズCY2aが、第1投射光学系24aとして機能し、反射ミラーM6a、fθレンズFTb、および、シリンドリカルレンズCY2bが第2投射光学系26aとして機能する。本第2の実施の形態の描画ユニットUaも、回動中心軸AXr回りに回動可能であり、回動中心軸AXrは、描画ラインSL2aの中点と描画ラインSL2bの中点とを結ぶ線分の中心点を通り、基板Pの被照射面に対して垂直に通る。 In the second embodiment, the reflection mirror M6a, the fθ lens FTa, and the cylindrical lens CY2a function as the first projection optical system 24a, and the reflection mirror M6a, the fθ lens FTb, and the cylindrical lens CY2b It functions as the second projection optical system 26a. The drawing unit Ua of the second embodiment is also rotatable around the rotation center axis AXr, and the rotation center axis AXr is a line connecting the midpoint of the drawing line SL2a and the midpoint of the drawing line SL2b. It passes through the center point of the minute and passes perpendicularly to the irradiated surface of the substrate P.
 また、本第2の実施の形態においては、特に図示はしないが、上記第1の実施の形態の第1導光光学系20および第2導光光学系22に代えて、光源装置14からのビームLBa、LBbが-Z方向に進んでポリゴンミラーPMに入射するように、ビームLBa、LBbをポリゴンミラーPMに導く第1導光光学系および第2導光光学系が配置されている。 In the second embodiment, although not particularly illustrated, instead of the first light guide optical system 20 and the second light guide optical system 22 of the first embodiment, the light source device 14 A first light guide optical system and a second light guide optical system that guide the beams LBa and LBb to the polygon mirror PM are arranged so that the beams LBa and LBb travel in the −Z direction and enter the polygon mirror PM.
 上記第1の実施の形態の変形例3で説明したように、反射面RPの回転方向と交差する方向(ポリゴンミラーPMの回転軸AXpが延びる方向)に対して斜めにビームLBを反射面RPに入射させることで、ビームLBa、LBbの入射方向と反射方向とを回転軸AXp方向でずらすこともできる。したがって、上記第1の実施の形態の変形例3と同様の効果を得ることができる。 As described in the third modification of the first embodiment, the beam LB is obliquely reflected on the reflection surface RP with respect to the direction intersecting the rotation direction of the reflection surface RP (the direction in which the rotation axis AXp of the polygon mirror PM extends). , The incident direction and the reflection direction of the beams LBa and LBb can be shifted in the direction of the rotation axis AXp. Accordingly, the same effect as that of the third modification of the first embodiment can be obtained.
 また、ポリゴンミラーPMは、上記第1の実施の形態の変形例1で説明したように、回転軸AXpと直交する方向からみた場合に、ポリゴンミラーPMの回転軸AXpをXt方向に対して傾斜させてもよい。また、上記第1の実施の形態の変形例2で説明したポリゴンミラーPMaを用いてもよい。すなわち、図17中のポリゴンミラーPMの回転軸AXpをXt軸と平行にし、ポリゴンミラーPMの各反射面RP(RPa~RPh)を回転軸AXpと平行な状態から図15のように角度θyだけ傾斜するように形成してもよい。これにより、回転軸AXpと直交する方向からみてポリゴンミラーPMの各反射面RP(RPa~RPh)に入射するビームLBa、LBbを各反射面RPに対して斜めに入射させることで、上記第1の実施の形態の変形例1、2と同様の効果を得ることができる。 Further, as described in the first modification of the first embodiment, the polygon mirror PM tilts the rotation axis AXp of the polygon mirror PM with respect to the Xt direction when viewed from the direction orthogonal to the rotation axis AXp. You may let them. Further, the polygon mirror PMa described in the second modification of the first embodiment may be used. That is, the rotation axis AXp of the polygon mirror PM in FIG. 17 is made parallel to the Xt axis, and each reflection surface RP (RPa to RPh) of the polygon mirror PM is parallel to the rotation axis AXp by an angle θy as shown in FIG. You may form so that it may incline. As a result, the beams LBa and LBb incident on the reflection surfaces RP (RPa to RPh) of the polygon mirror PM as viewed from the direction orthogonal to the rotation axis AXp are incident on the reflection surfaces RP obliquely, thereby causing the first. The same effects as those of the first and second modifications of the embodiment can be obtained.
[第3の実施の形態]
 図18は、-Yt(-Y)方向側からみた第3の実施の形態の描画ユニットUbの構成図、図19は、ポリゴンミラーPMbから+Zt側の描画ユニットUbの構成を+Xt方向側みた図、図20は、ポリゴンミラーPMbから-Zt方向側の描画ユニットUbの構成を+Zt方向側からみた図である。なお、上記第1の実施の形態と同一の構成については同一の符号を付す。また、上記第1の実施の形態と異なる部分だけを説明する。
[Third Embodiment]
FIG. 18 is a configuration diagram of the drawing unit Ub of the third embodiment viewed from the −Yt (−Y) direction side, and FIG. 19 is a diagram of the configuration of the drawing unit Ub on the + Zt side from the polygon mirror PMb viewed from the + Xt direction side. FIG. 20 is a diagram of the configuration of the drawing unit Ub on the −Zt direction side from the polygon mirror PMb as viewed from the + Zt direction side. In addition, the same code | symbol is attached | subjected about the same structure as the said 1st Embodiment. Only the parts different from the first embodiment will be described.
 描画ユニットUbは、図19に示すように、稜線がXt軸と平行な三角反射ミラー(直角ミラー)M10、反射ミラーM11a、M11b、シフト光学部材SRa、SRb、母線がXt軸と平行なシリンドリカルレンズCY1a、CY1b、8反射面RPのポリゴンミラーPMb、反射ミラーM12a、M12b、反射ミラーM13a、M13b、反射ミラーM14a、M14b、fθレンズFTa、FTb、反射ミラーM15a、M15b、および、母線がYt軸と平行なシリンドリカルレンズCY2a、CY2bの光学系を備える。2つのビームLBa、LBbに関して一対に設けられた光学部材については、参照符号の後にa、bを付している。 As shown in FIG. 19, the drawing unit Ub includes a triangular reflecting mirror (right angle mirror) M10 whose ridgeline is parallel to the Xt axis, reflecting mirrors M11a and M11b, shift optical members SRa and SRb, and a cylindrical lens whose generating line is parallel to the Xt axis. CY1a, CY1b, polygon mirror PMb with eight reflecting surfaces RP, reflecting mirrors M12a, M12b, reflecting mirrors M13a, M13b, reflecting mirrors M14a, M14b, fθ lenses FTa, FTb, reflecting mirrors M15a, M15b, and the bus line with the Yt axis An optical system of parallel cylindrical lenses CY2a and CY2b is provided. The optical members provided in pairs with respect to the two beams LBa and LBb are denoted by a and b after the reference numerals.
 図19に示すように、光源装置14からの2つのビームLBa、LBb(ともに平行光束)は、回動中心軸AXrを挟んで平行に並んで-Zt方向に進み、描画ユニットUbの三角反射ミラーM10の稜線を挟んだ別々の反射面M10a、M10bに入射する。このビームLBa、LBbは、Zt軸と平行な回動中心軸AXrに対してYt方向に対称となるように描画ユニットUbの三角反射ミラーM10の各反射面M10a、M10bに入射する。三角反射ミラーM10の反射面M10aは、ビームLBaを-Yt方向に反射して反射ミラーM11aに導き、三角反射ミラーM10の反射面M10bは、ビームLBbを+Yt方向に反射して反射ミラーM11bに導く。反射ミラーM11aで反射したビームLBaは、-Zt方向に進み、シフト光学部材SRaおよびシリンドリカルレンズCY1aを透過した後、ポリゴンミラーPMbの反射面RP(例えば、反射面RPa)に入射する。反射ミラーM11bで反射したビームLBbは、-Zt方向に進み、シフト光学部材SRbおよびシリンドリカルレンズCY1bを透過した後、ポリゴンミラーPMbの反射面RP(例えば、反射面RPe)に入射する。ポリゴンミラーPMbの反射面RPaと反射面RPeは、ポリゴンミラーPMbの回転軸AXpを挟んで対称に位置する。 As shown in FIG. 19, the two beams LBa and LBb (both parallel beams) from the light source device 14 are aligned in parallel with the rotation center axis AXr in between and proceed in the −Zt direction, and the triangular reflection mirror of the drawing unit Ub. The light is incident on separate reflecting surfaces M10a and M10b across the ridge line of M10. The beams LBa and LBb are incident on the reflecting surfaces M10a and M10b of the triangular reflecting mirror M10 of the drawing unit Ub so as to be symmetric in the Yt direction with respect to the rotation center axis AXr parallel to the Zt axis. The reflecting surface M10a of the triangular reflecting mirror M10 reflects the beam LBa in the -Yt direction and guides it to the reflecting mirror M11a, and the reflecting surface M10b of the triangular reflecting mirror M10 reflects the beam LBb in the + Yt direction and guides it to the reflecting mirror M11b. . The beam LBa reflected by the reflection mirror M11a travels in the −Zt direction, passes through the shift optical member SRa and the cylindrical lens CY1a, and then enters the reflection surface RP (for example, the reflection surface RPa) of the polygon mirror PMb. The beam LBb reflected by the reflection mirror M11b travels in the −Zt direction, passes through the shift optical member SRb and the cylindrical lens CY1b, and then enters the reflection surface RP (for example, the reflection surface RPe) of the polygon mirror PMb. The reflective surface RPa and the reflective surface RPe of the polygon mirror PMb are positioned symmetrically across the rotation axis AXp of the polygon mirror PMb.
 本第3の実施の形態では、図20に示すように、ポリゴンミラーPMbの回転軸AXpが回動中心軸AXrと同軸となるように設定されている。三角反射ミラーM10および反射ミラーM11a、M11b(図19参照)で、ポリゴンミラーPMbに入射するビームLBa、LBbの各中心線間のYt方向の距離を拡大させている。これにより、描画ユニットUbに入射するビームLBa、LBbの光軸間の距離を短くすることができ、描画ユニットUb(三角反射ミラーM10)に入射するビームLBa、LBbを回動中心軸AXrに近づけることができる。その結果、描画ユニットUb全体が回動した場合であっても、その回動に伴うビームLBa、LBbの各中心線の位置が描画ユニットUb内で大きく変化することを抑えることができる。描画ユニットUbの回動に伴うビームLBa、LBbの各中心線の位置変化は、第1の実施の形態と同様に機能するシフト光学部材SRa、SRbによって補正される。 In the third embodiment, as shown in FIG. 20, the rotation axis AXp of the polygon mirror PMb is set to be coaxial with the rotation center axis AXr. The triangular reflection mirror M10 and the reflection mirrors M11a and M11b (see FIG. 19) enlarge the distance in the Yt direction between the center lines of the beams LBa and LBb incident on the polygon mirror PMb. Accordingly, the distance between the optical axes of the beams LBa and LBb incident on the drawing unit Ub can be shortened, and the beams LBa and LBb incident on the drawing unit Ub (triangular reflection mirror M10) are brought closer to the rotation center axis AXr. be able to. As a result, even when the entire drawing unit Ub is rotated, it is possible to prevent the positions of the center lines of the beams LBa and LBb from changing greatly in the drawing unit Ub. Changes in the position of the center lines of the beams LBa and LBb accompanying the rotation of the drawing unit Ub are corrected by the shift optical members SRa and SRb that function in the same manner as in the first embodiment.
 なお、三角反射ミラーM10の反射面M10a、反射ミラーM11a、シフト光学部材SRa、および、シリンドリカルレンズCY1aは、ビームLBaをポリゴンミラーPMbの第1の反射面RP(RPa)に向けて導く第1導光光学系20bとして機能する。また、三角反射ミラーM10の反射面M10b、反射ミラーM11b、シフト光学部材SRb、および、シリンドリカルレンズCY1bは、ビームLBbをポリゴンミラーPMbの第1の反射面と異なる第2の反射面RP(RPe)に向けて導く第2導光光学系22bとして機能する。なお、三角反射ミラーM10の各反射面M10a、M10bは、第1導光光学系20bと第2導光光学系22bとで別個に設けた平面ミラーにしてもよい。なお、シリンドリカルレンズCY1a(CY1bも同様)は、平行光束として入射したビームLBa(LBb)をYt方向にだけ収斂する屈折力を有するので、ポリゴンミラーPMbの反射面RPa(反射面RPe)上には、Xt方向にスリット状に延びたスポット光が投射される。 The reflecting surface M10a, the reflecting mirror M11a, the shift optical member SRa, and the cylindrical lens CY1a of the triangular reflecting mirror M10 are the first guides that guide the beam LBa toward the first reflecting surface RP (RPa) of the polygon mirror PMb. It functions as the optical optical system 20b. Further, the reflecting surface M10b, the reflecting mirror M11b, the shift optical member SRb, and the cylindrical lens CY1b of the triangular reflecting mirror M10 have a second reflecting surface RP (RPe) that is different from the first reflecting surface of the polygon mirror PMb. It functions as the second light guide optical system 22b that guides toward. The reflecting surfaces M10a and M10b of the triangular reflecting mirror M10 may be flat mirrors provided separately for the first light guiding optical system 20b and the second light guiding optical system 22b. Since the cylindrical lens CY1a (same for CY1b) has a refractive power that converges the beam LBa (LBb) incident as a parallel light beam only in the Yt direction, the cylindrical lens CY1a has a refractive power on the reflection surface RPa (reflection surface RPe) of the polygon mirror PMb. , A spot light extending in a slit shape in the Xt direction is projected.
 本第3の実施の形態のポリゴンミラーPMbは、XtYt面内でみると、図20のように外形は正八角形をしており、その周囲に形成される8つの反射面RPa~RPh(図19ではRPa~RPeを図示)の各々は、回転軸AXp(回動中心軸AXr)に対して45度だけ傾斜するように形成されている。すなわち、ポリゴンミラーPMbは、底面が正八角形で8つの側面の各々が中心線に対して45度傾いた正八角錐体を中心線方向に適当な厚さで切り出したような形状となっている。したがって、ポリゴンミラーPMbの各反射面(RPa~RPh)は、-Zt方向に進むビームLBaを-Yt方向側に直角に反射して反射ミラーM12aに導き、-Zt方向に進むビームLBbを+Y方向側に直角に反射して反射ミラーM12bに導く。したがって、上記第1の実施の形態の変形例2のように、ポリゴンミラーPMbは、8つの反射面RPa~RPhのうちの例えば反射面RPa、RPeで反射したビームLBa、LBbを、各中心線AXs(2つのfθレンズFTa、FTbの各光軸AXfa、AXfbと同軸)を中心として一定の角度範囲θsで反射することができる。これにより、ポリゴンミラーPMbによるビームLBa、LBbのスポット光SPa、SPbの光学性能、走査直線性、等速性が向上し、走査精度(描画精度)が向上する。 When viewed in the XtYt plane, the polygon mirror PMb of the third embodiment has a regular octagonal shape as shown in FIG. 20, and has eight reflecting surfaces RPa to RPh formed around it (FIG. 19). Each of RPa to RPe is formed so as to be inclined by 45 degrees with respect to the rotation axis AXp (rotation center axis AXr). That is, the polygon mirror PMb has a shape in which a regular octagonal pyramid with a bottom surface of a regular octagon and each of the eight side surfaces inclined by 45 degrees with respect to the centerline is cut out with an appropriate thickness in the direction of the centerline. Accordingly, each reflecting surface (RPa to RPh) of the polygon mirror PMb reflects the beam LBa traveling in the −Zt direction at right angles to the −Yt direction side to guide it to the reflecting mirror M12a, and the beam LBb traveling in the −Zt direction to the + Y direction. The light is reflected perpendicularly to the side and guided to the reflection mirror M12b. Therefore, as in the second modification of the first embodiment, the polygon mirror PMb uses, for example, the beams LBa and LBb reflected by the reflecting surfaces RPa and RPe, among the eight reflecting surfaces RPa to RPh, as center lines. The light can be reflected in a certain angle range θs around AXs (coaxial with the optical axes AXfa and AXfb of the two fθ lenses FTa and FTb). Thereby, the optical performance, scanning linearity, and constant velocity of the spot lights SPa and SPb of the beams LBa and LBb by the polygon mirror PMb are improved, and the scanning accuracy (drawing accuracy) is improved.
 図18、図20に示すように、反射ミラーM12aによって-Xt方向に反射されたポリゴンミラーPMb(例えば反射面RPa)からのビームLBaは、反射ミラーM13a、M14aを経由してfθレンズFTaに導かれる。同様に、反射ミラーM12bによって+Xt方向に反射されたポリゴンミラーPMb(例えば反射面RPe)からのビームLBbは、反射ミラーM13b、M14bを経由してfθレンズFTbに導かれる。反射ミラーM13aは、反射ミラーM12aから-Xt方向に進むビームLBaを、折り曲げ位置p13aで-Zt方向に反射し、反射ミラーM14aは、反射ミラーM13aからのビームLBaを折り曲げ位置p14aで+Xt方向に反射してfθレンズFTaに導く。反射ミラーM13bは、反射ミラーM12bから+Xt方向に進むビームLBbを、折り曲げ位置p13bで-Zt方向に反射し、反射ミラーM14bは、反射ミラーM13aからのビームLBbを折り曲げ位置p14bで-Xt方向に反射してfθレンズFTbに導く。なお、図20では図示を省略したが、反射ミラーM12a、M13a、M14aを介してfθレンズFTaに入射するビームLBaは、シリンドリカルレンズCY1aの作用によって、XtYt面内でみると略平行光束であり、XtZt面内でみると図18のように発散光束となっている。 As shown in FIGS. 18 and 20, the beam LBa from the polygon mirror PMb (for example, the reflecting surface RPa) reflected in the −Xt direction by the reflecting mirror M12a is guided to the fθ lens FTa via the reflecting mirrors M13a and M14a. It is burned. Similarly, the beam LBb from the polygon mirror PMb (for example, the reflection surface RPe) reflected in the + Xt direction by the reflection mirror M12b is guided to the fθ lens FTb via the reflection mirrors M13b and M14b. The reflecting mirror M13a reflects the beam LBa traveling in the −Xt direction from the reflecting mirror M12a in the −Zt direction at the folding position p13a, and the reflecting mirror M14a reflects the beam LBa from the reflecting mirror M13a in the + Xt direction at the folding position p14a. To the fθ lens FTa. The reflecting mirror M13b reflects the beam LBb traveling in the + Xt direction from the reflecting mirror M12b in the −Zt direction at the folding position p13b, and the reflecting mirror M14b reflects the beam LBb from the reflecting mirror M13a in the −Xt direction at the folding position p14b. To the fθ lens FTb. Although not shown in FIG. 20, the beam LBa incident on the fθ lens FTa through the reflection mirrors M12a, M13a, and M14a is a substantially parallel light beam when viewed in the XtYt plane due to the action of the cylindrical lens CY1a. When viewed in the XtZt plane, it becomes a divergent light beam as shown in FIG.
 fθレンズFTa(光軸AXfaはXt軸と平行)を透過して+Xt方向に進むビームLBaは、テレセントリックな状態で反射ミラーM15aによって-Zt方向に反射され、シリンドリカルレンズCY2aを透過した後、基板Pの被照射面上に円形のスポット光SPaとなって投射される。同様に、fθレンズFTb(光軸AXfbはXt軸と平行)を透過して-Xt方向に進むビームLBbは、テレセントリックな状態で反射ミラーM15bによって-Zt方向に反射され、シリンドリカルレンズCY2bを透過した後、基板Pの被照射面上に円形のスポット光SPbとなって投射される。fθレンズFTaおよびシリンドリカルレンズCY2aによって、基板Pに投射されるビームLBaが基板Pの被照射面上で微小なスポット光SPaとして収斂される。同様にして、fθレンズFTbおよびシリンドリカルレンズCY2bによって、基板Pに投射されるビームLBbが基板Pの被照射面上で微小なスポット光SPbとして収斂される。1つのポリゴンミラーPMbの回転によって、基板Pの被照射面上に投射される2つのスポット光SPa、SPbが同時に描画ラインSLa、SLb上で1次元走査される。本第3の実施の形態の構成の場合、2つのスポット光SPa、SPbは、描画ラインSLa、SLbに沿って互いに逆向きに走査移動する。そして、図20のようにポリゴンミラーPMbをXtYt面内で時計回りに回転させると、描画パターンのYt方向の継ぎ部となる描画ラインSLaの+Yt方向の端部と描画ラインSLbの-Yt方向の端部とが、それぞれスポット光SPa、SPbの走査終了位置になるように設定される。逆に、ポリゴンミラーPMbをXtYt面内で反時計回りに回転させると、描画パターンのYt方向の継ぎ部となる描画ラインSLaの+Yt方向の端部と描画ラインSLbの-Yt方向の端部とが、それぞれスポット光SPa、SPbの走査開始位置になるように設定される。 The beam LBa that passes through the fθ lens FTa (the optical axis AXfa is parallel to the Xt axis) and travels in the + Xt direction is reflected in the −Zt direction by the reflection mirror M15a in a telecentric state, passes through the cylindrical lens CY2a, and then passes through the substrate P Are projected as circular spot light SPa on the irradiated surface. Similarly, the beam LBb that passes through the fθ lens FTb (the optical axis AXfb is parallel to the Xt axis) and travels in the −Xt direction is reflected in the −Zt direction by the reflection mirror M15b in a telecentric state, and is transmitted through the cylindrical lens CY2b. After that, it is projected as a circular spot light SPb on the irradiated surface of the substrate P. The beam LBa projected onto the substrate P is converged as a minute spot light SPa on the irradiated surface of the substrate P by the fθ lens FTa and the cylindrical lens CY2a. Similarly, the beam LBb projected onto the substrate P is converged as a minute spot light SPb on the irradiated surface of the substrate P by the fθ lens FTb and the cylindrical lens CY2b. By the rotation of one polygon mirror PMb, the two spot lights SPa and SPb projected on the irradiated surface of the substrate P are simultaneously one-dimensionally scanned on the drawing lines SLa and SLb. In the case of the configuration of the third embodiment, the two spot lights SPa and SPb scan and move in opposite directions along the drawing lines SLa and SLb. Then, when the polygon mirror PMb is rotated clockwise in the XtYt plane as shown in FIG. 20, the + Yt direction end of the drawing line SLa and the drawing line SLb in the −Yt direction become the Yt direction joints of the drawing pattern. The end portions are set to be the scanning end positions of the spot lights SPa and SPb, respectively. Conversely, when the polygon mirror PMb is rotated counterclockwise within the XtYt plane, the + Yt direction end of the drawing line SLa and the end of the drawing line SLb in the −Yt direction become the Yt direction joints of the drawing pattern. Are set to be the scanning start positions of the spot lights SPa and SPb, respectively.
 以上の構成において、反射ミラーM12a、M13a、M14a、M15a、fθレンズFTa、および、シリンドリカルレンズCY2aは、ポリゴンミラーPMbで反射されて偏向走査されるビームLBaを集光してスポット光SPaとして描画ラインSLa上に投射する第1投射光学系24bとして機能する。また、反射ミラーM12b、M13b、M14b、M15b、fθレンズFTb、および、シリンドリカルレンズCY2bは、ポリゴンミラーPMbで反射されて偏向走査されるビームLBbを集光してスポット光SPbとして描画ラインSLb上に投射する第2投射光学系26bとして機能する。 In the above configuration, the reflection mirrors M12a, M13a, M14a, M15a, the fθ lens FTa, and the cylindrical lens CY2a condense the beam LBa reflected and deflected by the polygon mirror PMb to draw the spot light SPa. It functions as a first projection optical system 24b that projects onto SLa. Further, the reflection mirrors M12b, M13b, M14b, M15b, the fθ lens FTb, and the cylindrical lens CY2b condense the beam LBb reflected and deflected and scanned by the polygon mirror PMb to form the spot light SPb on the drawing line SLb. It functions as the 2nd projection optical system 26b which projects.
 また、図18、図20に示すように、第3の実施の形態では、ポリゴンミラーPMbの反射面RPからfθレンズFTa、FTbまでの光路長が、その間の反射ミラーM12a~M14a、M12b~M14bによって引き延ばされているため、fθレンズFTa、FTbとしてビーム入射側の焦点距離が長いものを使うことができる。一般に、ポリゴンミラーPM(PMa、PMbも同じ)の反射面は、テレセントリックなfθレンズFTa(FTb)のビーム入射側の焦点距離fsの位置(瞳位置)、若しくはその近傍に配置される。そのため、描画ラインSLa(SLb)の被照射面上での長さをLssとし、そのときにfθレンズに入射するビームの偏向角度範囲をθsとすると、近似的に、Lss≒fs・sin(θs)の関係で表される。したがって、描画ラインSLa(SLb)の長さLssを一定値とした場合、焦点距離fsの長いfθレンズを使用すれば、それに応じて偏向角度範囲θsを小さくすることができる。このことは、描画ラインSLa(SLb)に沿ったスポット光SPa(SPb)の1回の走査に寄与するポリゴンミラーPM(PMa、PMb)の回転角度範囲θs/2が小さくなることを意味し、高速化につながると言った利点がある。 As shown in FIGS. 18 and 20, in the third embodiment, the optical path length from the reflection surface RP of the polygon mirror PMb to the fθ lenses FTa and FTb is the reflection mirrors M12a to M14a and M12b to M14b between them. Therefore, fθ lenses FTa and FTb having a long focal length on the beam incident side can be used. In general, the reflecting surface of the polygon mirror PM (same for PMa and PMb) is disposed at or near the position (pupil position) of the focal length fs on the beam incident side of the telecentric fθ lens FTa (FTb). Therefore, assuming that the length of the drawing line SLa (SLb) on the irradiated surface is Lss and the deflection angle range of the beam incident on the fθ lens at that time is θs, approximately Lss≈fs · sin (θs ). Accordingly, when the length Lss of the drawing line SLa (SLb) is set to a constant value, the deflection angle range θs can be reduced accordingly by using an fθ lens having a long focal length fs. This means that the rotation angle range θs / 2 of the polygon mirror PM (PMa, PMb) that contributes to one scan of the spot light SPa (SPb) along the drawing line SLa (SLb) is reduced. There is an advantage that it leads to high speed.
 本第3の実施の形態による描画ユニットUbは、図20に示すように、スポット光SPa、スポット光SPbの各々が走査される描画ラインSLaと描画ラインSLbとは、副走査方向に関して互いに離間し、且つ、主走査方向に関して端部が隣接または一部重畳するように、描画ラインSLaと描画ラインSLbはYt方向にずらして設定されている。つまり、描画ラインSLa、SLbは、平行な状態で副走査方向(基板Pの搬送方向)には離間し、主走査方向には隙間無く連続するように配置されている。そこで、このような描画ユニットUbを複数配置する場合は、例えば図21のように配置する。 In the drawing unit Ub according to the third embodiment, as shown in FIG. 20, the drawing line SLa and the drawing line SLb scanned with each of the spot light SPa and the spot light SPb are separated from each other in the sub-scanning direction. In addition, the drawing line SLa and the drawing line SLb are set to be shifted in the Yt direction so that the end portions are adjacent to each other or partially overlap with each other in the main scanning direction. That is, the drawing lines SLa and SLb are arranged in parallel so as to be separated from each other in the sub-scanning direction (the transport direction of the substrate P) and to be continuous without a gap in the main scanning direction. Therefore, when arranging a plurality of such drawing units Ub, they are arranged as shown in FIG.
 図21は、先の図2に対応して、基板P上に形成される電子デバイス形成領域としての露光領域WをY(Yt)方向に6分割し、ストライプ状の複数の分割領域WS1~WS6の各々を、6つの描画ラインSL1a、SL1b、SL2a、SL2b、SL3a、SL3bによってパターンを描画する場合の一例を示す。ここで、先の図18~図20のような描画ユニットUbと同じ構成の第1の描画ユニットUb1による2つの描画ラインSL1a、SL1bは、それぞれY方向に隣接した分割領域WS1、WS2にパターンを描画するように設定される。同様に、描画ユニットUbと同じ構成の第2の描画ユニットUb2による2つの描画ラインSL2a、SL2bは、それぞれY方向に隣接した分割領域WS3、WS4にパターンを描画するように設定され、描画ユニットUbと同じ構成の第3の描画ユニットUb3による2つの描画ラインSL3a、SL3bは、それぞれY方向に隣接した分割領域WS5、WS6にパターンを描画するように設定される。分割領域WS1とWS2の継ぎ部STa、分割領域WS2とWS3の継ぎ部STb、分割領域WS3とWS4の継ぎ部STc、分割領域WS4とWS5の継ぎ部STd、および分割領域WS5とWS6の継ぎ部STeでは、6つの描画ラインSL1a、・・・、SL3a、SL3bの各々の端部がY方向に関して精密に一致、または僅かに重畳するように、各描画ラインのY方向の位置や各描画ライン毎の描画倍率が精密に調整される。 FIG. 21 corresponds to FIG. 2 described above, and an exposure region W as an electronic device formation region formed on the substrate P is divided into six in the Y (Yt) direction, and a plurality of stripe-shaped divided regions WS1 to WS6 are formed. An example in which a pattern is drawn by each of the six drawing lines SL1a, SL1b, SL2a, SL2b, SL3a, and SL3b is shown. Here, the two drawing lines SL1a and SL1b by the first drawing unit Ub1 having the same configuration as the drawing unit Ub as shown in FIGS. 18 to 20 have patterns in the divided areas WS1 and WS2 adjacent in the Y direction, respectively. Set to draw. Similarly, the two drawing lines SL2a and SL2b by the second drawing unit Ub2 having the same configuration as the drawing unit Ub are set so as to draw patterns in the divided areas WS3 and WS4 adjacent in the Y direction, respectively, and the drawing unit Ub The two drawing lines SL3a and SL3b by the third drawing unit Ub3 having the same configuration as those in FIG. 6 are set so as to draw a pattern in the divided areas WS5 and WS6 adjacent in the Y direction. A joint STa between the divided areas WS1 and WS2, a joint STb between the divided areas WS2 and WS3, a joint STc between the divided areas WS3 and WS4, a joint STd between the divided areas WS4 and WS5, and a joint STe between the divided areas WS5 and WS6. Then, the position of each drawing line in the Y direction and each drawing line so that the ends of each of the six drawing lines SL1a,..., SL3a, SL3b are precisely matched or slightly overlapped with respect to the Y direction. The drawing magnification is adjusted precisely.
 このように、本第3の実施の形態では、描画ユニットUb(Ub1~Ub3)でスポット光SPa、SPbが走査される2つの描画ラインSLa、SLbが、副走査方向に関して互いに離間し、且つ、主走査方向に関して端部が隣接または一部重畳するように設定されている。この場合であっても、描画ユニットUb全体を微少回転させる場合の回動中心軸AXrは、2つの描画ラインSLa、SLbの中点を結ぶ線分の中心点を基板Pに対して垂直に通るように設定できる。そのため、高い重ね合せ精度を得るために描画ユニットUb全体を回動中心軸AXr回りに回動させた場合であっても、描画ユニットUbによってスポット光SPa、SPbが走査される2つの描画ラインSLa、SLbの基板P上の位置ずれが大きくなることを抑制できるので、高精度なパターン描画を行いつつ、描画ラインSLa、SLbの傾き(被照射面内でのY軸に対する傾き)を簡単に調整することができる。 As described above, in the third embodiment, the two drawing lines SLa and SLb scanned by the spot light SPa and SPb in the drawing unit Ub (Ub1 to Ub3) are separated from each other in the sub-scanning direction, and The end portions are set so as to be adjacent or partially overlapped with respect to the main scanning direction. Even in this case, the rotation center axis AXr for slightly rotating the entire drawing unit Ub passes through the center point of the line segment connecting the midpoints of the two drawing lines SLa and SLb perpendicularly to the substrate P. Can be set as follows. Therefore, even when the entire drawing unit Ub is rotated around the rotation center axis AXr in order to obtain high overlay accuracy, the two drawing lines SLa scanned by the spot light SPa and SPb by the drawing unit Ub. Since the displacement of SLb on the substrate P can be suppressed, the inclination of the drawing lines SLa and SLb (the inclination with respect to the Y axis in the irradiated surface) can be easily adjusted while performing high-precision pattern drawing. can do.
 なお、上記各実施の形態(変形例も含む)においては、複数の描画ユニットU、Ua、Ubの描画ラインSLは、全て同じ走査長としたが、走査長を異ならせてもよい。この場合、描画ユニットU、Ua、Ub間で描画ラインSLの走査長を異ならせるようにしてもよいし、同一の描画ユニットU、Ua、Ubの中で、描画ラインSLa、SLbの走査長を異ならせるようにしてもよい。さらに、回動中心軸AXrを、描画ユニットU、Ua、Ubの描画ラインSLa、SLbの各々の中点を結ぶ線分の中心点を基板Pに対して垂直に通るようにしたが、基板Pに対して垂直な方向であり、且つ、描画ラインSLa、SLbの各々の中点を結ぶ線分上に設定してもよい。 In the above-described embodiments (including modifications), the drawing lines SL of the plurality of drawing units U, Ua, Ub are all set to the same scanning length, but the scanning lengths may be different. In this case, the scanning length of the drawing line SL may be made different between the drawing units U, Ua, Ub, and the scanning length of the drawing lines SLa, SLb may be set within the same drawing unit U, Ua, Ub. You may make it differ. Furthermore, the rotation center axis AXr passes through the center point of the line segment connecting the midpoints of the drawing lines SLa and SLb of the drawing units U, Ua and Ub perpendicularly to the substrate P. May be set on a line segment connecting the midpoints of the drawing lines SLa and SLb.
 以上の第3の実の施形態の場合、第1の実施の形態のように回転ドラムDR1、DR2によって長尺方向に円筒面状に支持された基板Pの被照射面にパターン描画を行うためには、図22に示すように、描画ユニットUbのfθレンズFTa(FTb)の後の反射ミラーM15a(M15b)によって折り曲げられた光軸AXfa(AXfb)の延長線が、回転ドラムDR1、またはDR2の中心軸(回転中心軸)AXo1またはAXo2に向かうように、反射ミラーM15a(M15b)のXZ面内での傾きを45度以外の角度に設定し、シリンドリカルレンズCY2a(CY2b)も、その傾いた光軸AXfa(AXfb)に合うようにXY面に対して傾けて配置すればよい。なお、基板PをXY面と平行に平坦に支持する場合は、例えば、国際公開第2013/150677号パンフレットに開示された搬送装置を使うことができる。また、基板Pを長尺方向に円筒状に湾曲させて支持するために円筒面状に湾曲した表面に多数の微細な気体噴出孔(および多数の微細な吸引孔)が形成され、基板Pの裏面側を気体ベアリングで非接触または低摩擦状態で支持するパット部材(基板支持ホルダ)を、回転ドラムDR1、DR2に代えて用いてもよい。また、上記第1~第2の実施の形態、および、それらの変形例においても、回転ドラムDR1、DR2に代えて、国際公開第2013/150677号パンフレットに開示された基板PをXY面と平行に平坦に支持する搬送装置を用いてもよいし、基板Pの裏面側を気体ベアリングで非接触または低摩擦状態で支持する上述したパット部材(基板支持ホルダ)を用いてもよい。 In the case of the third embodiment described above, in order to perform pattern drawing on the irradiated surface of the substrate P supported in a cylindrical shape in the longitudinal direction by the rotating drums DR1 and DR2 as in the first embodiment. As shown in FIG. 22, the extended line of the optical axis AXfa (AXfb) bent by the reflection mirror M15a (M15b) after the fθ lens FTa (FTb) of the drawing unit Ub is a rotating drum DR1 or DR2. The tilt in the XZ plane of the reflection mirror M15a (M15b) is set to an angle other than 45 degrees so that the central lens (rotation center axis) AXo1 or AXo2 is directed, and the cylindrical lens CY2a (CY2b) is also tilted. What is necessary is just to incline and arrange | position with respect to XY plane so that optical axis AXfa (AXfb) may be suited. In addition, when supporting the board | substrate P flatly in parallel with XY surface, the conveying apparatus disclosed by the international publication 2013/150677 pamphlet can be used, for example. In addition, in order to support the substrate P by bending it in a cylindrical shape in the longitudinal direction, a large number of fine gas ejection holes (and a large number of fine suction holes) are formed on the surface curved in a cylindrical surface. A pad member (substrate support holder) that supports the back side in a non-contact or low friction state with a gas bearing may be used in place of the rotary drums DR1 and DR2. Also in the first to second embodiments and their modifications, the substrate P disclosed in International Publication No. 2013/150677 pamphlet is parallel to the XY plane instead of the rotary drums DR1 and DR2. Alternatively, a transport device that supports the substrate P flatly may be used, or the above-described pad member (substrate support holder) that supports the back side of the substrate P in a non-contact or low-friction state with a gas bearing may be used.
 [第1~第3の実施の形態の変形例]
 第1~第3の実施の形態は、以下のような変形例も可能である。
[Modifications of the first to third embodiments]
The first to third embodiments can be modified as follows.
  (変形例1)図23は、図1中に示した光源装置14から提供されるビームLB(2本
のビームLBa、LBb)を、例えば、図2中の4つの各描画ユニットU1、U2、U5、U6の各々に分配するためのビーム分配系の一例の構成を示す図である。なお、このビーム分配系は、第1の実施の形態のみならず、第2、第3の実施の形態、およびそれらの変形例による描画装置のいずれにも適用可能である。
(Modification 1) FIG. 23 shows a beam LB (two beams LBa, LBb) provided from the light source device 14 shown in FIG. 1, for example, each of the four drawing units U1, U2, It is a figure which shows the structure of an example of the beam distribution system for distributing to each of U5 and U6. Note that this beam distribution system is applicable not only to the first embodiment but also to any of the second and third embodiments and drawing apparatuses according to modifications thereof.
 光源装置14には、紫外域の高輝度なレーザビーム(連続光またはパルス光)を出力するレーザ光源LS、レーザ光源LSからのビームを所定の直径(例えば数mm径)の平行光束に変換するビームエクスパンダBX、平行光束となったビームを2分割する第1のビームスプリッタ(ハーフミラー)BS1、およびミラーMR1が設けられる。ビームスプリッタBS1で反射されたビームは、ビームLBaとして第2のビームスプリッタBS2aに入射し、ビームスプリッタBS1を透過したビームは、ミラーMR1で反射されて、ビームLBbとして第2のビームスプリッタBS2bに入射する。ビームスプリッタBS1の分割比は1:1であり、ビームLBa、LBbの各光強度(照度)は略等しい。ビームスプリッタBS2aに入射したビームLBa、およびビームスプリッタBS2bに入射したビームLBbは、さらに等しい強度比で2分割される。 The light source device 14 converts a laser light source LS that outputs a high-luminance laser beam (continuous light or pulsed light) in the ultraviolet region into a parallel light beam having a predetermined diameter (for example, several millimeters in diameter). A beam expander BX, a first beam splitter (half mirror) BS1 that divides a beam that has become a parallel light beam into two, and a mirror MR1 are provided. The beam reflected by the beam splitter BS1 enters the second beam splitter BS2a as a beam LBa, and the beam that has passed through the beam splitter BS1 is reflected by the mirror MR1 and enters the second beam splitter BS2b as a beam LBb. To do. The split ratio of the beam splitter BS1 is 1: 1, and the light intensities (illuminance) of the beams LBa and LBb are substantially equal. The beam LBa incident on the beam splitter BS2a and the beam LBb incident on the beam splitter BS2b are further divided into two at an equal intensity ratio.
 ビームスプリッタBS2aに入射したビームLBaのうちで、ビームスプリッタBS2aを透過したビームLBaは、第3のビームスプリッタBS3a(分割比は1:1)に入射する。ビームスプリッタBS2bに入射したビームLBbのうちで、ビームスプリッタBS2bを透過したビームLBbは、第3のビームスプリッタBS3b(分割比は1:1)に入射する。ビームスプリッタBS3a、BS3bの各々で反射された2つのビームLBa、LBbは、描画ユニットU1の回動中心軸AXrを挟んで互いに平行となって、対応する光学素子AOMa、AOMb(図5等参照)を介して描画ユニットU1に向かう。そして、ビームスプリッタBS3a、BS3bの各々を透過した2つのビームLBa、LBbは、それぞれミラーMR2a、MR2bで反射された後、描画ユニットU2の回動中心軸AXrを挟んで互いに平行となって、対応する光学素子AOMa、AOMbを介して描画ユニットU2に向かう。 Among the beams LBa incident on the beam splitter BS2a, the beam LBa transmitted through the beam splitter BS2a is incident on the third beam splitter BS3a (division ratio is 1: 1). Of the beams LBb incident on the beam splitter BS2b, the beam LBb transmitted through the beam splitter BS2b is incident on the third beam splitter BS3b (division ratio is 1: 1). The two beams LBa and LBb reflected by the beam splitters BS3a and BS3b are parallel to each other across the rotation center axis AXr of the drawing unit U1, and corresponding optical elements AOMa and AOMb (see FIG. 5 and the like). To the drawing unit U1. The two beams LBa and LBb transmitted through the beam splitters BS3a and BS3b are reflected by the mirrors MR2a and MR2b, respectively, and then parallel to each other with the rotation center axis AXr of the drawing unit U2 interposed therebetween. To the drawing unit U2 through the optical elements AOMa and AOMb.
 さらに、先のビームスプリッタBS2aで反射されたビームLBaは、第4のビームスプリッタBS4a(分割比は1:1)に入射し、先のビームスプリッタBS2bで反射されたビームLBbは、第4のビームスプリッタBS4b(分割比は1:1)に入射する。ビームスプリッタBS4a、BS4bの各々で反射された2つのビームLBa、LBbは、描画ユニットU5の回動中心軸AXrを挟んで互いに平行となって、対応する光学素子AOMa、AOMbを介して描画ユニットU5に向かう。そして、ビームスプリッタBS4a、BS4bの各々を透過した2つのビームLBa、LBbは、それぞれミラーMR3a、MR3bで反射された後、描画ユニットU6の回動中心軸AXrを挟んで互いに平行となって、対応する光学素子AOMa、AOMbを介して描画ユニットU6に向かう。以上の構成により、4つの描画ユニットU1、U2、U5の各々に分配されるビームLBa、LBbは、いずれも略等しい光強度に設定される。 Further, the beam LBa reflected by the previous beam splitter BS2a is incident on the fourth beam splitter BS4a (division ratio is 1: 1), and the beam LBb reflected by the previous beam splitter BS2b is the fourth beam splitter BS2b. The light enters the splitter BS4b (division ratio is 1: 1). The two beams LBa and LBb reflected by each of the beam splitters BS4a and BS4b are parallel to each other with the rotation center axis AXr of the drawing unit U5 interposed therebetween, and the drawing unit U5 passes through the corresponding optical elements AOMa and AOMb. Head for. The two beams LBa and LBb transmitted through the beam splitters BS4a and BS4b are reflected by the mirrors MR3a and MR3b, respectively, and then parallel to each other with the rotation center axis AXr of the drawing unit U6 interposed therebetween. To the drawing unit U6 via the optical elements AOMa and AOMb. With the above configuration, the beams LBa and LBb distributed to each of the four drawing units U1, U2, and U5 are set to substantially the same light intensity.
 ところで、光源装置14内のレーザ光源は、紫外域波長の高輝度なビームを放射するものであれば、固体レーザ、気体レーザのいずれであってもよい。固体レーザとして、半導体レーザダイオードからの赤外域波長のビーム(数百MHzのパルス光)をファイバー増幅器で増幅した後、波長変換素子によって紫外域波長のビーム(パルス光)として放射するファイバーレーザ光源を用いると、比較的にコンパクトな筐体であるにも関わらず、高出力な紫外線ビームを得ることができ、露光装置(描画装置)EXの本体内への組み込みが容易になる。さらに、以上の第1~第3の実施の形態、および各変形例においては、露光装置EX本体内で回動中心軸AXrを中心に旋回可能な描画ユニットU(Ua、Ub)内には、描画用の光源を設けない構成としたが、半導体レーザダイオード(LD)や発光ダイオード(LED)等からのビームの強度で十分にパターン描画(露光)が可能な場合は、各描画ユニットU(Ua、Ub)内にビームLBa、LBbを供給するLDやLEDを設けてもよい。但し、それらのLDやLEDによる光源部は、パターン描画動作中は相当に温度上昇するため、描画ユニットU(Ua、Ub)内での光源部の断熱、冷却等の温度調整機構を設けて、描画ユニットU(Ua、Ub)全体の温度変化を小さく抑える必要がある。この場合は、図5に示すような光学素子AOMa、AOMbも各描画ユニットU(Ua、Ub)内に設ける。 Incidentally, the laser light source in the light source device 14 may be either a solid-state laser or a gas laser as long as it emits a high-luminance beam having an ultraviolet wavelength. As a solid-state laser, a fiber laser light source that amplifies an infrared wavelength beam (several hundred MHz pulsed light) from a semiconductor laser diode with a fiber amplifier and then emits it as an ultraviolet wavelength beam (pulsed light) by a wavelength conversion element. When used, a high-power ultraviolet beam can be obtained in spite of a relatively compact housing, and the exposure apparatus (drawing apparatus) EX can be easily incorporated into the main body. Further, in the first to third embodiments and the modifications described above, in the drawing unit U (Ua, Ub) that can turn around the rotation center axis AXr in the exposure apparatus EX main body, The drawing light source is not provided. However, when the pattern drawing (exposure) can be sufficiently performed with the intensity of the beam from the semiconductor laser diode (LD) or the light emitting diode (LED), each drawing unit U (Ua , Ub) may be provided with LDs or LEDs for supplying the beams LBa, LBb. However, since the temperature of the light source unit by the LD or LED rises considerably during the pattern drawing operation, a temperature adjustment mechanism such as heat insulation and cooling of the light source unit in the drawing unit U (Ua, Ub) is provided. It is necessary to keep the temperature change of the entire drawing unit U (Ua, Ub) small. In this case, optical elements AOMa and AOMb as shown in FIG. 5 are also provided in each drawing unit U (Ua, Ub).
 (変形例2)以上の第1~第3の実施の形態、およびそれらの各変形例では、ポリゴンミラーPM(PMa、PMb)が8つの反射面を回転軸AXpの回りに45度間隔で配置した8面体(または8角錐体状)としたが、反射面の数はいくつであってもよく、3面~6面、9面、10面、12面、15面、16面、18面、20面等のポリゴンミラーを同様に使うことができる。一般に、同じ直径のポリゴンでも、反射面数が多くなれば風損が小さくなるので、より高速に回転させることが可能である。また、第1~第3の実施の形態、およびそれらの各変形例では図示、および説明を省略したが、ポリゴンミラーPM(PMa、PMb)の異なる反射面の各々で反射する2つのビームLBa、LBbが、描画ライン(走査線)SLa、SLb上でのスポット光SPa、SPbの走査開始点にそれぞれ対応するような反射方向となるタイミングで原点信号を出力する原点センサーが、ポリゴンミラーPM(PMa、PMb)の周囲の2ヶ所に設けられている。描画ラインSLa、SLbに沿ったスポット光SPa、SPbの走査位置の管理(オフセット設定等)や、パターンデータに基づくスポット光SPa、SPbの強度変調(光学素子AOMa、AOMbのOn/Off)のタイミング等は、その原点信号とスポット光SPa、SPbの走査速度に対応したクロック信号とに基づいて制御される。 (Modification 2) In the first to third embodiments described above and the modifications thereof, the polygon mirror PM (PMa, PMb) has eight reflecting surfaces arranged at intervals of 45 degrees around the rotation axis AXp. The octahedron (or the shape of an octagonal pyramid) is used, but the number of reflecting surfaces may be any number, 3 to 6, 9, 10, 12, 15, 16, 18, Polygon mirrors such as 20 surfaces can be used similarly. Generally, even polygons having the same diameter can be rotated at a higher speed because the windage loss decreases as the number of reflecting surfaces increases. Although not shown and described in the first to third embodiments and their modifications, the two beams LBa reflected by the different reflecting surfaces of the polygon mirror PM (PMa, PMb) are provided. An origin sensor that outputs an origin signal at a timing at which LBb has a reflection direction corresponding to the scanning start points of the spot lights SPa and SPb on the drawing lines (scanning lines) SLa and SLb is a polygon mirror PM (PMa , PMb). Timing of spot light SPa, SPb scanning position management (offset setting, etc.) along the drawing lines SLa, SLb, and intensity modulation of the spot light SPa, SPb (On / Off of optical elements AOMa, AOMb) based on pattern data Are controlled based on the origin signal and a clock signal corresponding to the scanning speed of the spot lights SPa and SPb.
[第4の実施の形態]
 以上の第1~第3の実施の形態、およびそれらの各変形例において、ポリゴンミラーPM(PMa、PMb)からfθレンズFTa、FTbまでの光路中には、ポリゴンミラーPM(PMa、PMb)で反射するビームLBa、LBbが偏向される面(図5、図6の実施の形態、図12~図16の各実施の形態、図18~図20の実施の形態ではXtYt面と平行な面、図17の実施の形態ではYtZt面と平行な面)内で、ビームLBa、LBbを折り曲げる反射ミラーM6a、M6b、或いは、M12a、M12bが設けられている。光源装置14からのビームLB(LBa、LBb)が波長240nm程度よりも長い紫外波長域である場合、ポリゴンミラーPM(PMa、PMb)や各反射ミラーの反射面は、ガラスやセラミックスの母材の表面に高い反射率を有するアルミニウム層を蒸着し、さらにその上に酸化防止等のための誘電体薄膜(単層または複数層)を蒸着して作られる。ポリゴンミラーPMの場合、母材自体をアルミニウムで形成加工し、反射面となる部分を光学研磨した後、その表面に誘電体薄膜(単層または複数層)が蒸着される。このような反射面の構造を持つポリゴンミラーPM(PMa、PMb)や反射ミラーM6a、M6b、M12a、M12bにおいては、反射面に入射するビームLBa、LBbの入射角が、主走査のためのビーム偏向の角度に応じて大きく変化することになり、ビームLBa、LBbが偏光特性を持っている場合には、入射角の変化に応じて反射したビームの強度が変化する傾向、すなわち、反射面の反射率の入射角依存性の影響が無視できない場合がある。
[Fourth Embodiment]
In the first to third embodiments described above and the modifications thereof, the polygon mirror PM (PMa, PMb) is used in the optical path from the polygon mirror PM (PMa, PMb) to the fθ lenses FTa, FTb. Surfaces to which the reflected beams LBa and LBb are deflected (the embodiments shown in FIGS. 5 and 6, the embodiments shown in FIGS. 12 to 16, the surfaces parallel to the XtYt plane in the embodiments shown in FIGS. 18 to 20, In the embodiment of FIG. 17, reflection mirrors M6a and M6b or M12a and M12b for bending the beams LBa and LBb are provided in a plane parallel to the YtZt plane. When the beam LB (LBa, LBb) from the light source device 14 has an ultraviolet wavelength range longer than about 240 nm, the polygon mirror PM (PMa, PMb) and the reflecting surface of each reflecting mirror are made of a glass or ceramic base material. It is made by depositing an aluminum layer having a high reflectance on the surface, and further depositing a dielectric thin film (single layer or multiple layers) for preventing oxidation. In the case of the polygon mirror PM, the base material itself is formed and processed with aluminum, and the portion that becomes the reflection surface is optically polished, and then a dielectric thin film (single layer or multiple layers) is deposited on the surface. In the polygon mirror PM (PMa, PMb) and the reflection mirrors M6a, M6b, M12a, and M12b having such a reflection surface structure, the incident angles of the beams LBa and LBb incident on the reflection surface are the beams for main scanning. When the beams LBa and LBb have polarization characteristics, the intensity of the reflected beam tends to change according to the change in the incident angle, that is, on the reflection surface. In some cases, the influence of the dependency of the reflectance on the incident angle cannot be ignored.
 図24は、先の図17で説明したポリゴンミラーPMと反射ミラーM6aの各々に投射されるビームLBaの入射角や反射角の状況をYtZt面内で説明する図である。図24で説明する状況は、その他の実施の形態(図5、図6、図12~図16、図18~図20)においても同様に生じる得るものである。図24において、ポリゴンミラーPMの1つの反射面RPhのYtZt面内での角度θoが45°のとき、Zt軸と平行に入射したビームLBaはYt軸と平行になるように反射面RPhで反射された後、反射ミラーM6aで90°に折り曲げられて、後続のfθレンズFTaの光軸AXfaと同軸に進むものとする。ポリゴンミラーPMが図24中で時計回りに回転しているものとすると、描画ラインSL2a(SLa)に沿ったスポット光SPaの実効的な走査の開始点は、反射面RPhがYtZt面内で角度θo-Δθaとなった時点であり、スポット光SPaの実効的な走査の終了点は、反射面RPhがYtZt面内で角度θo+Δθaとなった時点である。したがって、ポリゴンミラーPMの反射面RPhで反射されて反射ミラーM6aに向かうビームLBaの光軸AXfaに対する偏向角度範囲は±2Δθaとなる。光軸AXfaに対するビームLBaの偏向角が+2Δθaのとき、反射ミラーM6aの反射面に投射されるビームLBaの入射角θm1は、θm1=45°-2Δθaとなり、光軸AXfaに対するビームLBaの偏向角が-2Δθaのとき、反射ミラーM6aの反射面に投射されるビームLBaの入射角θm2は、θm2=45°+2Δθaとなる。 FIG. 24 is a diagram for explaining the incident angle and reflection angle state of the beam LBa projected on each of the polygon mirror PM and the reflection mirror M6a described in FIG. 17 in the YtZt plane. The situation described with reference to FIG. 24 can also occur in other embodiments (FIGS. 5, 6, 12 to 16, and 18 to 20). In FIG. 24, when the angle θo in the YtZt plane of one reflecting surface RPh of the polygon mirror PM is 45 °, the beam LBa incident parallel to the Zt axis is reflected by the reflecting surface RPh so as to be parallel to the Yt axis. After that, it is bent at 90 ° by the reflection mirror M6a and proceeds coaxially with the optical axis AXfa of the subsequent fθ lens FTa. Assuming that the polygon mirror PM rotates clockwise in FIG. 24, the effective scanning start point of the spot light SPa along the drawing line SL2a (SLa) is that the reflection surface RPh is an angle within the YtZt plane. The time point when θo−Δθa is reached, and the end point of the effective scanning of the spot light SPa is the time point when the reflecting surface RPh becomes the angle θo + Δθa in the YtZt plane. Therefore, the deflection angle range with respect to the optical axis AXfa of the beam LBa that is reflected by the reflection surface RPh of the polygon mirror PM and travels toward the reflection mirror M6a is ± 2Δθa. When the deflection angle of the beam LBa with respect to the optical axis AXfa is + 2Δθa, the incident angle θm1 of the beam LBa projected on the reflecting surface of the reflecting mirror M6a is θm1 = 45 ° -2Δθa, and the deflection angle of the beam LBa with respect to the optical axis AXfa is When −2Δθa, the incident angle θm2 of the beam LBa projected onto the reflecting surface of the reflecting mirror M6a is θm2 = 45 ° + 2Δθa.
 ここで、図25を用いて、反射ミラーM6aへのビームLBaの入射角の変化による影響を説明する。図25は、アルミニウム層と誘電体薄膜とで構成される反射面に、紫外波長域の偏光特性を有するビームを入射させた場合にみられる反射率の入射角依存性の特性CV1を説明するグラフであり、縦軸は反射面の反射率(%)を表し、横軸はビームの反射面への入射角(度)を表す。一般に、反射面に入射角0°(すなわち垂直入射)でビームを投射したときに、反射率は最大となる。図25の特性CV1の場合、最大の反射率は90%程度である。入射角が45°辺りでは、約87%の反射率であるが、入射角がさらに大きくなるにつれて、反射率は大きく低下していく。ポリゴンミラーPMの各反射面(RPh)の反射率が特性CV1と同様だった場合、図24に示すように、ポリゴンミラーPMの反射面RPhに入射するビームLBaの入射角は、45°を中心として、±Δθaの範囲で変化する。ここで、描画ラインSLaを走査するためにfθレンズ系FTaに入射するビームLBaの最大の偏向角度範囲±2Δθaが光軸AXfaを中心に±15°であったとすると、Δθaが7.5°となるので、ポリゴンミラーPMの反射面RPhへのビームLBaの入射角は、45°を中心に37.5°~52.5°の範囲で変化する。特性CV1上で、入射角37.5°における反射率は約88%であり、入射角52.5°における反射率は約85.5%である。 Here, the influence of the change in the incident angle of the beam LBa on the reflection mirror M6a will be described with reference to FIG. FIG. 25 is a graph for explaining the incident angle dependence characteristic CV1 of the reflectivity observed when a beam having a polarization characteristic in the ultraviolet wavelength region is incident on a reflecting surface composed of an aluminum layer and a dielectric thin film. The vertical axis represents the reflectance (%) of the reflecting surface, and the horizontal axis represents the incident angle (degree) of the beam to the reflecting surface. Generally, when a beam is projected onto a reflecting surface at an incident angle of 0 ° (that is, perpendicular incidence), the reflectance is maximized. In the case of the characteristic CV1 in FIG. 25, the maximum reflectance is about 90%. When the incident angle is around 45 °, the reflectivity is about 87%. However, as the incident angle further increases, the reflectivity greatly decreases. When the reflectance of each reflecting surface (RPh) of the polygon mirror PM is the same as the characteristic CV1, the incident angle of the beam LBa incident on the reflecting surface RPh of the polygon mirror PM is centered at 45 ° as shown in FIG. As shown in FIG. Here, if the maximum deflection angle range ± 2Δθa of the beam LBa incident on the fθ lens system FTa for scanning the drawing line SLa is ± 15 ° about the optical axis AXfa, Δθa is 7.5 °. Therefore, the incident angle of the beam LBa on the reflecting surface RPh of the polygon mirror PM varies in the range of 37.5 ° to 52.5 ° centering on 45 °. On the characteristic CV1, the reflectance at an incident angle of 37.5 ° is about 88%, and the reflectance at an incident angle of 52.5 ° is about 85.5%.
 以上のことから、ポリゴンミラーPMで反射したビームLBaをそのままfθレンズ系FTaに入射させる場合、描画ラインSLa上の走査開始点でのスポット光SPaの強度と、走査終了点でのスポット光SPaの強度とは、特性CV1より、88%-85.5%=2.5%の差が生じることになる。これは、描画ラインSLaの中央付近におけるスポット光SPaの強度を基準にすると、描画ラインSLaの両端部で±1.25%の強度誤差となることを意味する。基板P上に形成された感光性機能層がフォトレジストやドライフィルムの場合、主走査中におけるスポット光SPの強度ムラの許容範囲は±2%程度と言われており、±1.25%の強度誤差(ムラ)であれば許容され得る。 From the above, when the beam LBa reflected by the polygon mirror PM is directly incident on the fθ lens system FTa, the intensity of the spot light SPa at the scanning start point on the drawing line SLa and the spot light SPa at the scanning end point are measured. The difference between the strength and the characteristic CV1 is 88% −85.5% = 2.5%. This means that if the intensity of the spot light SPa near the center of the drawing line SLa is used as a reference, an intensity error of ± 1.25% occurs at both ends of the drawing line SLa. When the photosensitive functional layer formed on the substrate P is a photoresist or a dry film, it is said that the allowable range of intensity unevenness of the spot light SP during main scanning is about ± 2%, which is ± 1.25%. Any intensity error (unevenness) is acceptable.
 しかしながら、図24のように、ポリゴンミラーPMの後にも、ビームLBaの主走査のための偏向によって入射角が大きく変化する反射ミラーM6aがあるため、基板P上に投射されるスポット光SPaの強度は、主走査方向に関して、さらに大きな強度誤差を生じる。先に説明したように、反射ミラーM6aに入射するビームLBaの入射角は、θm1~θm2の間で変化する。Δθaを7.5°とした場合、θm1=45°-15°=30°、θm2=45°+15°=60°となる。反射ミラーM6aの反射率の入射角依存性も、図25の特性CV1と同じものとすると、描画ラインSLa上のスポット光SPaの走査開始点では、反射ミラーM6aへのビームLBaの入射角がθm1=30°となるので、その入射角での反射ミラーM6aの反射率は約88.5%となる。したがって、ポリゴンミラーPMの反射面RPhにおける反射率88%との積により、スポット光SPaの走査開始点では、トータルでは77.9%(88%×88.5%)の反射率となる。また、描画ラインSLa上のスポット光SPaの走査終了点では、反射ミラーM6aへのビームLBaの入射角がθm2=60°となるので、その入射角での反射ミラーM6aの反射率は約81%となる。したがって、ポリゴンミラーPMの反射面RPhにおける反射率85.5%との積により、スポット光SPaの走査終了点では、トータルで69.3%(85.5%×81%)の反射率となる。以上のことから、ポリゴンミラーPMの反射面と反射ミラーM6aの反射面でのトータルの反射率の入射角依存性は、図25中の特性CV2のようになる。なお、ポリゴンミラーPMの反射面と反射ミラーM6aの反射面との両方に対するビームLBaの入射角が45°のとき、トータルの反射率は約75.7%(87%×87%)となる。 However, as shown in FIG. 24, after the polygon mirror PM, since there is a reflection mirror M6a whose incident angle greatly changes due to deflection for the main scanning of the beam LBa, the intensity of the spot light SPa projected on the substrate P is increased. Causes a larger intensity error in the main scanning direction. As described above, the incident angle of the beam LBa incident on the reflection mirror M6a changes between θm1 and θm2. When Δθa is 7.5 °, θm1 = 45 ° −15 ° = 30 ° and θm2 = 45 ° + 15 ° = 60 °. If the incidence angle dependency of the reflectance of the reflection mirror M6a is also the same as the characteristic CV1 in FIG. 25, the incident angle of the beam LBa to the reflection mirror M6a is θm1 at the scanning start point of the spot light SPa on the drawing line SLa. = 30 °, the reflectivity of the reflection mirror M6a at the incident angle is about 88.5%. Therefore, the product of the reflectance 88% on the reflecting surface RPh of the polygon mirror PM results in a total reflectance of 77.9% (88% × 88.5%) at the scanning start point of the spot light SPa. Further, at the scanning end point of the spot light SPa on the drawing line SLa, the incident angle of the beam LBa to the reflecting mirror M6a is θm2 = 60 °, so the reflectance of the reflecting mirror M6a at the incident angle is about 81%. It becomes. Accordingly, the product of the reflectance of 85.5% on the reflective surface RPh of the polygon mirror PM results in a total reflectance of 69.3% (85.5% × 81%) at the scanning end point of the spot light SPa. . From the above, the incident angle dependence of the total reflectance on the reflecting surface of the polygon mirror PM and the reflecting surface of the reflecting mirror M6a is as shown by the characteristic CV2 in FIG. When the incident angle of the beam LBa on both the reflection surface of the polygon mirror PM and the reflection surface of the reflection mirror M6a is 45 °, the total reflectivity is about 75.7% (87% × 87%).
 以上のように、反射ミラーM6a(M6b、M12a、M12bも同様)は、ポリゴンミラーPMで反射したビームLBa(LBb)が偏向される面(図17の実施の形態ではYtZt面と平行、その他の実施の形態ではXtYt面と平行)と直交するような反射面を有するため、ビームLBa(LBb)の入射角の変化が大きく、図25の特性CV2の場合、スポット光SPa(SPb)の強度は、走査開始点と走査終了点とで約8.6%の誤差が発生することになる。この値は必ずしも許容される範囲ではなく、必要であれば何らかの補正(調整)機構を設けることが望ましい。図25に示した特性CV1は一例であって、反射ミラーの反射面が誘電体の多層膜で構成されている場合、入射角に対する反射率の変化率(傾き)は、さらに大きくなることもある。したがって、実際に使用するポリゴンミラーPMと反射ミラーM6a(M6b)の各々の反射率の特性CV1を実験やシミュレーション等で予め求め、描画ラインSLa(SLb)上のスポット光SPa(SPb)の走査位置に対するビーム強度の変化の傾向(強度ムラ、傾き等)を求めておく。 As described above, the reflection mirror M6a (same for M6b, M12a, and M12b) is a surface on which the beam LBa (LBb) reflected by the polygon mirror PM is deflected (in the embodiment of FIG. 17, parallel to the YtZt surface, other In the embodiment, since it has a reflecting surface orthogonal to (parallel to the XtYt surface), the incident angle of the beam LBa (LBb) changes greatly. In the case of the characteristic CV2 in FIG. 25, the intensity of the spot light SPa (SPb) is An error of about 8.6% occurs between the scanning start point and the scanning end point. This value is not necessarily within the allowable range, and it is desirable to provide some correction (adjustment) mechanism if necessary. The characteristic CV1 shown in FIG. 25 is an example, and when the reflection surface of the reflection mirror is formed of a dielectric multilayer film, the change rate (slope) of the reflectivity with respect to the incident angle may be further increased. . Therefore, the reflectance characteristics CV1 of the polygon mirror PM and the reflection mirror M6a (M6b) that are actually used are obtained in advance through experiments and simulations, and the scanning position of the spot light SPa (SPb) on the drawing line SLa (SLb). The tendency (change in intensity, inclination, etc.) of the change of the beam intensity with respect to is obtained in advance.
 そのビーム強度の変化の傾向が許容範囲以上である場合は、反射ミラーM6a、M6b、M12a、M12bの後のビーム光路中に、主走査方向に関する透過率が連続的または段階的に変化する減光フィルター(NDフィルター)板を設け、基板P上でのスポット光SPa(SPb)の走査位置に対する強度変化の傾向(強度ムラ、傾き等)を光学的に抑制、または補正することができる。減光フィルター板は、反射ミラーM6a、M6b(M12a、M12b)とfθレンズ系FTa、FTbとの間の光路中、またはfθレンズ系FTa、FTbと基板Pとの間の光路中に配置できる。fθレンズ系FTa、FTbの後の光路中には、描画ラインSLa、SLbを覆うような寸法で平凸状の第2のシリンドリカルレンズのCY2a、CY2bが設けられているので、このシリンドリカルレンズのCY2a、CY2bの近傍に減光フィルター板を設けてもよい。また、図5、図18、図22に示したように、fθレンズ系FTa、FTbから射出する走査ビームLBa、LBbを基板Pに垂直入射させるように折り曲げる反射ミラーM7a、M7b、M15a、M15bが設けられている場合は、反射ミラーM7a、M7b、M15a、M15bの主走査方向に関する反射率を連続的または段階的に変化させる薄膜を反射面に蒸着したり、厚さ0.1mm以下の薄いガラスによる減光フィルター板を反射面に積層したりして、スポット光SPa(SPb)の主走査の位置に対する強度ムラを光学的に調整(補正)してもよい。 When the tendency of the change in the beam intensity is beyond an allowable range, the light attenuation in which the transmittance in the main scanning direction continuously or stepwise changes in the beam optical path after the reflection mirrors M6a, M6b, M12a, and M12b. A filter (ND filter) plate can be provided, and the tendency (intensity unevenness, inclination, etc.) of the intensity change with respect to the scanning position of the spot light SPa (SPb) on the substrate P can be optically suppressed or corrected. The neutral density filter plate can be disposed in the optical path between the reflection mirrors M6a and M6b (M12a and M12b) and the fθ lens systems FTa and FTb, or in the optical path between the fθ lens systems FTa and FTb and the substrate P. In the optical path after the fθ lens systems FTa and FTb, there are provided CY2a and CY2b of plano-convex second cylindrical lenses with dimensions that cover the drawing lines SLa and SLb. Therefore, CY2a of this cylindrical lens is provided. Further, a neutral density filter plate may be provided in the vicinity of CY2b. Further, as shown in FIGS. 5, 18, and 22, there are reflection mirrors M7a, M7b, M15a, and M15b that bend the scanning beams LBa and LBb emitted from the fθ lens systems FTa and FTb so that they are perpendicularly incident on the substrate P. If provided, a thin film that continuously or stepwise changes the reflectance of the reflecting mirrors M7a, M7b, M15a, and M15b in the main scanning direction is deposited on the reflecting surface, or a thin glass having a thickness of 0.1 mm or less. The non-uniformity of the intensity of the spot light SPa (SPb) with respect to the main scanning position may be optically adjusted (corrected) by laminating a neutral density filter plate on the reflecting surface.
 スポット光SPa(SPb)の走査位置に対する強度変化の傾向(強度ムラ、傾き等)の補正は電気的な補正機構によっても可能である。図26は、描画ユニットのポリゴンミラーPM(PMa、PMb)に入射する前のビームを描画データに基づいてオン/オフするために、先の図5、図7で示したように設けられる光学素子(音響光学変調素子、強度調整部材)AOMa、AOMbの制御系の一例を示すブロック図である。図26において、ドライブ回路100は、光学素子AOMa(AOMb)にオン/オフ用の高周波の駆動信号Sdvを出力する。ここで、光学素子AOMa(AOMb)のオフ状態とは、光学素子AOMa(AOMb)に高周波の駆動信号Sdvが印加されずに、光源装置14からのビームLBをそのまま0次のビームLBuとして透過する状態であり、オン状態とは光学素子AOMa(AOMb)に高周波の駆動信号Sdvが印加され、光源装置14からのビームLBの1次回折光をビームLBa(LBb)として所定の回折角で偏向して出力している状態である。その回折角は、駆動信号Sdv(高周波信号)の周波数(例えば80MHz)によって決まる。さらに、駆動信号Sdvの振幅を変えると回折効率が変化して、1次回折光であるビームLBa(LBb)の強度を調整することができる。 Correction of the intensity change tendency (intensity unevenness, inclination, etc.) with respect to the scanning position of the spot light SPa (SPb) can also be performed by an electrical correction mechanism. 26 shows an optical element provided as shown in FIGS. 5 and 7 in order to turn on / off the beam before entering the polygon mirror PM (PMa, PMb) of the drawing unit based on the drawing data. (Acousto-optic modulation element, intensity adjusting member) It is a block diagram showing an example of a control system of AOMa and AOMb. In FIG. 26, the drive circuit 100 outputs a high-frequency drive signal Sdv for on / off to the optical element AOMa (AOMb). Here, the OFF state of the optical element AOMa (AOMb) means that the high-frequency drive signal Sdv is not applied to the optical element AOMa (AOMb), and the beam LB from the light source device 14 is transmitted as it is as the zero-order beam LBu. The ON state is a state in which a high-frequency drive signal Sdv is applied to the optical element AOMa (AOMb), and the first-order diffracted light of the beam LB from the light source device 14 is deflected as a beam LBa (LBb) at a predetermined diffraction angle. The output state. The diffraction angle is determined by the frequency (for example, 80 MHz) of the drive signal Sdv (high frequency signal). Further, when the amplitude of the drive signal Sdv is changed, the diffraction efficiency changes, and the intensity of the beam LBa (LBb) that is the first-order diffracted light can be adjusted.
 ドライブ回路100は、周波数が一定で振幅が安定している高周波発振器SFからの高周波信号と、1画素を1ビットに対応付けたビットマップ形式の描画データ(パターンデータ)を記憶するメモリから、画素単位でビットシリアルに読み出される描画ビット信号CLTと、制御信号DEとを入力する。ドライブ回路100は、描画ビット信号CLTが論理値「1」の間は高周波発振器SFからの高周波信号を駆動信号Sdvとして出力し、描画ビット信号CLTが論理値「0」の間は駆動信号Sdvの送出を禁止する。さらに、ドライブ回路100内は、高周波発振器SFからの高周波信号の振幅を制御信号DEに応じて可変とするパワーアンプが設けられている。制御信号DEは、アナログまたはデジタルな信号であり、例えば、パワーアンプの増幅率(ゲイン)を指示する値である。ここでは、制御信号DEをアナログ信号とする。 The drive circuit 100 includes a high-frequency signal from a high-frequency oscillator SF with a constant frequency and a stable amplitude, and a memory that stores drawing data (pattern data) in bitmap format in which one pixel is associated with one bit. A drawing bit signal CLT that is read in bit-serial units and a control signal DE are input. The drive circuit 100 outputs the high-frequency signal from the high-frequency oscillator SF as the drive signal Sdv while the drawing bit signal CLT is the logical value “1”, and the drive signal Sdv when the drawing bit signal CLT is the logical value “0”. Prohibit sending. Further, in the drive circuit 100, a power amplifier that makes the amplitude of the high-frequency signal from the high-frequency oscillator SF variable according to the control signal DE is provided. The control signal DE is an analog or digital signal, for example, a value indicating an amplification factor (gain) of the power amplifier. Here, the control signal DE is an analog signal.
 ここで、図27のタイムチャートを用いて、描画ラインSLa(SLb)に沿ってスポット光SPa(SPb)が走査されるパターン描画動作中に、ビームLBa(LBb)の強度を調整する様子を説明する。図27において、原点信号は、ポリゴンミラーPMの反射面が所定の角度位置に回転して、基板P上でスポット光SPa(SPb)の走査が開始される直前の時点でパルス波形を発生する。したがって、ポリゴンミラーPMの反射面が8面の場合、原点信号のパルス波形はポリゴンミラーPMの1回転中に8回発生する。原点信号のパルス波形が発生してから一定の遅延時間Tsqの後に描画ON信号(論理値「1」)が発生し、描画ビット信号CLTがドライブ回路100に印加されて、ビームLBa(LBb)によるパターン描画が開始される。このとき制御信号DEの値(アナログ電圧)は、描画ON信号が論理値「1」になった時点での値Raから増大し、描画ON信号が論理値「1」から「0」に変わった時点で値Rbに達するような特性CCvで推移する。図27において、制御信号DEの値がRoの場合、ドライブ回路100内のパワーアンプのゲインは初期値(例えば10倍)に設定される。図27の場合、Ra<Ro<Rbに設定されているので、描画ON信号が「1」に立上る描画ラインSLa上の走査開始点付近では、パワーアンプのゲインが初期値よりも低く設定されるので、基板Pに投射されるスポット光SPa(SPb)の強度は、初期値よりも小さくなる。また、描画ON信号が「0」に降下する描画ラインSLa上の走査終了点付近では、パワーアンプのゲインが初期値よりも高く設定されるので、基板Pに投射されるスポット光SPa(SPb)の強度は、初期値よりも大きくなる。これによって、スポット光SPa(SPb)の主走査方向の位置に応じて発生する強度ムラを電気的に調整(補正)することができる。 Here, the state of adjusting the intensity of the beam LBa (LBb) during the pattern drawing operation in which the spot light SPa (SPb) is scanned along the drawing line SLa (SLb) will be described using the time chart of FIG. To do. In FIG. 27, the origin signal generates a pulse waveform just before the scanning of the spot light SPa (SPb) on the substrate P starts when the reflecting surface of the polygon mirror PM rotates to a predetermined angular position. Accordingly, when the polygon mirror PM has eight reflecting surfaces, the pulse waveform of the origin signal is generated eight times during one rotation of the polygon mirror PM. A drawing ON signal (logical value “1”) is generated after a certain delay time Tsq from the generation of the pulse waveform of the origin signal, and the drawing bit signal CLT is applied to the drive circuit 100 to generate the beam LBa (LBb). Pattern drawing starts. At this time, the value (analog voltage) of the control signal DE increases from the value Ra when the drawing ON signal becomes the logical value “1”, and the drawing ON signal changes from the logical value “1” to “0”. It changes with the characteristic CCv that reaches the value Rb at the time. In FIG. 27, when the value of the control signal DE is Ro, the gain of the power amplifier in the drive circuit 100 is set to an initial value (for example, 10 times). In the case of FIG. 27, since Ra <Ro <Rb is set, the gain of the power amplifier is set lower than the initial value near the scanning start point on the drawing line SLa where the drawing ON signal rises to “1”. Therefore, the intensity of the spot light SPa (SPb) projected on the substrate P is smaller than the initial value. Further, in the vicinity of the scanning end point on the drawing line SLa where the drawing ON signal drops to “0”, the gain of the power amplifier is set higher than the initial value, so that the spot light SPa (SPb) projected on the substrate P is set. The strength of is greater than the initial value. Accordingly, it is possible to electrically adjust (correct) the intensity unevenness that occurs according to the position of the spot light SPa (SPb) in the main scanning direction.
 このような制御信号DEの波形は、描画ON信号や原点信号を入力する簡単な時定数回路(積分回路等)によって生成することができる。また、制御信号DEの特性CCvは、図27では直線的に変化するものとしたが、適当なフィルタ回路によって非線形に変化させてもよい。制御信号DEをアナログ波形ではなくデジタル情報で与える場合は、パワーアンプのゲインを制御信号DEのデジタル値で可変できるように変形すればよい。 Such a waveform of the control signal DE can be generated by a simple time constant circuit (such as an integration circuit) that inputs a drawing ON signal or an origin signal. Further, although the characteristic CCv of the control signal DE is assumed to change linearly in FIG. 27, it may be changed nonlinearly by an appropriate filter circuit. When the control signal DE is given as digital information instead of an analog waveform, the gain of the power amplifier may be modified so that it can be varied by the digital value of the control signal DE.
 以上の図26、図27で説明したように、光学素子AOMa(AOMb)に与える高周波の駆動信号Sdvの振幅を変化させて、基板Pに投射されるビームLBa(LBb)の強度を調整する電気的な調整機構は、複数の描画ユニットの各々から基板Pに投射されるビーム間の相対的な強度差を調整する際にも有効である。なお、ビームLBa(LBb)の強度を電気的に調整する機構は、光源装置14が紫外波長域のレーザビームを発生する半導体レーザ光源、或いは高輝度LED光源の場合、光源の発光輝度自体を調整することでも実現可能である。 As described above with reference to FIG. 26 and FIG. 27, the electric for adjusting the intensity of the beam LBa (LBb) projected onto the substrate P by changing the amplitude of the high-frequency drive signal Sdv applied to the optical element AOMa (AOMb). The typical adjustment mechanism is also effective when adjusting the relative intensity difference between the beams projected from each of the plurality of drawing units onto the substrate P. The mechanism that electrically adjusts the intensity of the beam LBa (LBb) adjusts the light emission luminance itself of the light source device 14 when the light source device 14 is a semiconductor laser light source that generates a laser beam in the ultraviolet wavelength region or a high-intensity LED light source. This is also possible.
 また、以上の図5、図6、図17に示したように、反射面が8面のポリゴンミラーPMに向かう2本のビームLBa、LBbが互いに平行な状態であって、ポリゴンミラーPMの反射面のうち互いに90°の関係になっている反射面の各々でビームLBaとLBbを反射させる場合、ビームLBaによるスポット光SPaとビームLBbによるスポット光SPbとは、同じタイミングで基板P上を走査する。しかしながら、国際公開第2015/166910号パンフレットに開示されているように、1つの光源装置14からのビームLBを、時分割でビームLBaとLBbとに振り分ける場合、スポット光SPaによる主走査とスポット光SPbによる主走査とが同じタイミングで実行されないように設定する必要がある。そのための簡単な実施の形態は、図5、図6、図17に示した構成において、ポリゴンミラーPMとして反射面が9面のものを使うことである。9面のポリゴンミラーにした場合、例えば、1つの反射面の回転方向の中央にビームLBaが入射しているタイミングでは、他のビームLBbは9面のポリゴンミラーの反射面と反射面との間(稜線部)に入射するようなタイミングとなる。すなわち、反射面の数を変えることで、スポット光SPaによる主走査とスポット光SPbによる主走査とのタイミングをずらすことが可能となる。また、図5、図6、図17に示した構成で、8面のポリゴンミラーPMのままで、スポット光SPaによる主走査とスポット光SPbによる主走査とのタイミングをずらす場合は、ポリゴンミラーPMに向かうビームLBaとLBbとを互いに平行な状態から非平行な状態にすればよい。 Further, as shown in FIGS. 5, 6, and 17, the two beams LBa and LBb directed to the polygon mirror PM having the eight reflecting surfaces are parallel to each other, and the reflection of the polygon mirror PM is performed. When the beams LBa and LBb are reflected by each of the reflecting surfaces having a 90 ° relationship with each other, the spot light SPa generated by the beam LBa and the spot light SPb generated by the beam LBb are scanned on the substrate P at the same timing. To do. However, as disclosed in International Publication No. 2015/166910, when the beam LB from one light source device 14 is divided into the beams LBa and LBb in a time division manner, the main scanning and the spot light by the spot light SPa are performed. It is necessary to set so that main scanning by SPb is not executed at the same timing. A simple embodiment for that purpose is to use a polygon mirror PM having nine reflecting surfaces in the configuration shown in FIGS. In the case of the nine-surface polygon mirror, for example, at the timing when the beam LBa is incident on the center of one reflection surface in the rotation direction, the other beam LBb is between the reflection surface and the reflection surface of the nine-surface polygon mirror. The timing is such that the light enters the (ridge line portion). That is, by changing the number of reflection surfaces, it is possible to shift the timing of the main scanning with the spot light SPa and the main scanning with the spot light SPb. 5, 6, and 17, when the timing of main scanning with the spot light SPa and main scanning with the spot light SPb is shifted while the eight-sided polygon mirror PM remains unchanged, the polygon mirror PM is used. The beams LBa and LBb heading toward each other may be changed from a parallel state to a non-parallel state.

Claims (23)

  1.  光源装置からのビームを被照射体上でスポットに集光し、集光されたスポット光を所定の走査線に沿って主走査するとともに、前記被照射体を副走査することによって、前記被照射体上に所定のパターンを描画するパターン描画装置であって、
     前記主走査のために回転軸の回りに回転する回転多面鏡と、
     前記光源装置からの第1のビームを第1方向から前記回転多面鏡に向けて投射する第1導光光学系と、
     前記光源装置からの第2のビームを前記第1方向とは異なる第2方向から前記回転多面鏡に向けて投射する第2導光光学系と、
     前記回転多面鏡で反射された前記第1のビームを集光して第1のスポット光として第1の走査線上に投射する第1投射光学系と、
     前記回転多面鏡で反射された前記第2のビームを集光して第2のスポット光として第2の走査線上に投射する第2投射光学系と、
     を備え、
     前記第1の走査線と前記第2の走査線とが、前記被照射体上で前記副走査の方向に関して同じ位置であって、且つ、前記主走査の方向にずれて位置するように、前記第1投射光学系と前記第2投射光学系とを配置した、パターン描画装置。
    The beam from the light source device is condensed onto a spot on the irradiated object, and the focused spot light is subjected to main scanning along a predetermined scanning line, and the irradiated object is sub-scanned to thereby perform the irradiation. A pattern drawing device for drawing a predetermined pattern on a body,
    A rotating polygon mirror that rotates about a rotation axis for the main scanning;
    A first light guide optical system that projects a first beam from the light source device from a first direction toward the rotary polygon mirror;
    A second light guide optical system that projects the second beam from the light source device from a second direction different from the first direction toward the rotary polygon mirror;
    A first projection optical system that condenses the first beam reflected by the rotary polygon mirror and projects the first beam onto the first scanning line as a first spot light;
    A second projection optical system for condensing the second beam reflected by the rotary polygon mirror and projecting it on the second scanning line as a second spot light;
    With
    The first scanning line and the second scanning line are located at the same position on the irradiated body with respect to the sub-scanning direction and shifted in the main scanning direction. A pattern drawing apparatus in which a first projection optical system and the second projection optical system are arranged.
  2.  可撓性の長尺のシート基板である被照射体を長手方向に副走査しつつ、描画データに基づいて強度変調されるスポット光を前記被照射体の長手方向と直交した幅方向に延びる走査線に沿って主走査することによって、前記被照射体上に前記描画データに応じたパターンを描画するパターン描画装置であって、
     前記主走査のために回転軸の回りに回転する回転多面鏡と、
     第1のビームを第1方向から前記回転多面鏡に向けて投射する第1導光光学系と、
     第2のビームを前記第1方向とは異なる第2方向から前記回転多面鏡に向けて投射する第2導光光学系と、
     前記回転多面鏡で反射された前記第1のビームを集光して第1のスポット光として第1の走査線上に投射する第1投射光学系と、
     前記回転多面鏡で反射された前記第2のビームを集光して第2のスポット光として第2の走査線上に投射する第2投射光学系と、
     を備え、
     前記第1の走査線と前記第2の走査線の各走査長が同じに設定されるとともに、前記第1の走査線と前記第2の走査線が前記主走査の方向に前記走査長以下の間隔で分離して設定されるように、前記第1投射光学系と前記第2投射光学系とを配置した、パターン描画装置。
    Scanning in the width direction perpendicular to the longitudinal direction of the irradiated body while spot scanning whose intensity is modulated on the basis of the drawing data while scanning the irradiated body, which is a flexible long sheet substrate, in the longitudinal direction A pattern drawing apparatus for drawing a pattern according to the drawing data on the irradiated object by performing main scanning along a line,
    A rotating polygon mirror that rotates about a rotation axis for the main scanning;
    A first light guide optical system for projecting a first beam from a first direction toward the rotary polygon mirror;
    A second light guide optical system for projecting the second beam from the second direction different from the first direction toward the rotary polygon mirror;
    A first projection optical system that condenses the first beam reflected by the rotary polygon mirror and projects the first beam onto the first scanning line as a first spot light;
    A second projection optical system for condensing the second beam reflected by the rotary polygon mirror and projecting it on the second scanning line as a second spot light;
    With
    The scanning lengths of the first scanning line and the second scanning line are set to be the same, and the first scanning line and the second scanning line are equal to or shorter than the scanning length in the main scanning direction. A pattern drawing apparatus in which the first projection optical system and the second projection optical system are arranged so as to be set separately at intervals.
  3.  請求項2に記載のパターン描画装置であって、
     前記第1の走査線と前記第2の走査線とが、前記被照射体上で前記副走査の方向に関して同じ位置となるように、前記第1投射光学系と前記第2投射光学系とが配置されている、パターン描画装置。
    The pattern drawing apparatus according to claim 2,
    The first projection optical system and the second projection optical system are arranged such that the first scanning line and the second scanning line are at the same position on the irradiated body with respect to the sub-scanning direction. Arranged pattern drawing device.
  4.  請求項1~3のいずれか1項に記載のパターン描画装置であって、
     前記回転多面鏡は、前記回転軸を取り囲むように配置した複数の反射面を有し、
     前記第1導光光学系は、前記回転多面鏡の複数の反射面のうちの第1の反射面に投射する前記第1のビームの入射方向を、前記回転軸が延びる方向に関して前記第1の反射面で反射する前記第1のビームの反射方向と異ならせるように設けられ、
     前記第2導光光学系は、前記回転多面鏡の複数の反射面のうちの前記第1の反射面と異なる第2の反射面に投射する前記第2のビームの入射方向を、前記回転軸が延びる方向に関して前記第2の反射面で反射する前記第2のビームの反射方向と異ならせるように設けられる、パターン描画装置。
    The pattern drawing apparatus according to any one of claims 1 to 3,
    The rotary polygon mirror has a plurality of reflecting surfaces arranged so as to surround the rotation axis,
    The first light guide optical system is configured to change an incident direction of the first beam projected onto a first reflecting surface among a plurality of reflecting surfaces of the rotary polygon mirror with respect to a direction in which the rotation axis extends. Provided so as to be different from the reflection direction of the first beam reflected by the reflection surface;
    The second light guide optical system is configured to change an incident direction of the second beam projected on a second reflection surface different from the first reflection surface among the plurality of reflection surfaces of the rotary polygon mirror, to the rotation axis. A pattern drawing apparatus provided so as to be different from a reflection direction of the second beam reflected by the second reflection surface with respect to a direction in which the light beam extends.
  5.  請求項1~4のいずれか1項に記載のパターン描画装置であって、
     前記回転多面鏡、前記第1導光光学系、前記第2導光光学系、前記第1投射光学系、および、前記第2投射光学系は、回動可能な1つの描画ユニットとして一体的に形成され、
     前記描画ユニットの回動中心軸は、前記第1の走査線の中点と前記第2の走査線の中点とを結ぶ線分上の点を前記被照射体に対して垂直に通るように設定される、パターン描画装置。
    The pattern drawing apparatus according to any one of claims 1 to 4,
    The rotating polygon mirror, the first light guide optical system, the second light guide optical system, the first projection optical system, and the second projection optical system are integrated as one rotatable drawing unit. Formed,
    The rotation center axis of the drawing unit passes through a point on a line segment connecting the midpoint of the first scan line and the midpoint of the second scan line perpendicularly to the irradiated object. The pattern drawing device to be set.
  6.  請求項5に記載のパターン描画装置であって、
     前記第1のビームおよび前記第2のビームは、前記回動中心軸に対して対称となるように前記描画ユニットに入射する、パターン描画装置。
    It is a pattern drawing apparatus of Claim 5, Comprising:
    The pattern drawing apparatus, wherein the first beam and the second beam are incident on the drawing unit so as to be symmetric with respect to the rotation center axis.
  7.  請求項6に記載のパターン描画装置であって、
     前記描画ユニットは、入射した前記第1のビームと前記第2のビームとを反射して前記第1導光光学系と前記第2導光光学系とに導く反射部材を備える、パターン描画装置。
    It is a pattern drawing apparatus of Claim 6, Comprising:
    The drawing unit includes a reflecting member that reflects the incident first beam and the second beam and guides them to the first light guide optical system and the second light guide optical system.
  8.  請求項7に記載のパターン描画装置であって、
     前記第1導光光学系は、前記反射部材から反射された前記第1のビームの位置を、前記第1のビームの進行方向と交差する面内でシフトする第1シフト光学部材を備え、
     前記第2導光光学系は、前記反射部材から反射された前記第2のビームの位置を、前記第2のビームの進行方向と交差する面内でシフトする第2シフト光学部材を備える、パターン描画装置。
    The pattern drawing apparatus according to claim 7,
    The first light guiding optical system includes a first shift optical member that shifts the position of the first beam reflected from the reflecting member within a plane that intersects the traveling direction of the first beam,
    The second light guide optical system includes a second shift optical member that shifts the position of the second beam reflected from the reflection member within a plane intersecting the traveling direction of the second beam. Drawing device.
  9.  請求項5~8のいずれか1項に記載のパターン描画装置であって、
     前記描画ユニットが複数設けられ、
     複数の前記描画ユニットの各々の前記第1の走査線および前記第2の走査線が前記被照射体の幅方向に沿って継ぎ合わさるように、複数の前記描画ユニットが配置されている、パターン描画装置。
    The pattern drawing apparatus according to any one of claims 5 to 8,
    A plurality of the drawing units are provided,
    A pattern drawing in which a plurality of drawing units are arranged so that the first scanning line and the second scanning line of each of the plurality of drawing units are joined along the width direction of the irradiated object apparatus.
  10.  請求項9に記載のパターン描画装置であって、
     前記被照射体の長手方向と直交する幅方向に延びた第1中心軸と、前記第1中心軸から一定半径の円筒状の外周面とを有し、前記外周面に倣って前記被照射体の一部を長手方向に湾曲させて支持しつつ、前記第1中心軸を中心に回転して前記被照射体を搬送することで、前記被照射体を副走査する第1回転ドラムと、
     前記第1回転ドラムの搬送方向の下流側に設けられ、前記被照射体の長手方向と直交する幅方向に延びた第2中心軸と、前記第2中心軸から一定半径の円筒状の外周面とを有し、前記外周面に倣って前記被照射体の一部を長手方向に湾曲させて支持しつつ、前記第2中心軸を中心に回転して前記被照射体を搬送することで、前記被照射体を副走査する第2回転ドラムと、
     を備え、
     複数の前記描画ユニットのうち、所定数の前記描画ユニットの前記第1の走査線および前記第2の走査線が前記第1回転ドラムの外周面に支持された前記被照射体上に位置し、残りの前記描画ユニットの前記第1の走査線および前記第2の走査線が前記第2回転ドラムの外周面に支持された前記被照射体上に位置するように、複数の前記描画ユニットが配置されている、パターン描画装置。
    It is a pattern drawing apparatus of Claim 9, Comprising:
    A first central axis extending in a width direction orthogonal to a longitudinal direction of the irradiated body; and a cylindrical outer peripheral surface having a constant radius from the first central axis, and the irradiated body following the outer peripheral surface A first rotating drum that sub-scans the irradiated object by transporting the irradiated object by rotating around the first central axis while supporting a part of the curved object in the longitudinal direction;
    A second central axis provided downstream of the first rotating drum in the conveying direction and extending in a width direction perpendicular to the longitudinal direction of the irradiated object; and a cylindrical outer peripheral surface having a constant radius from the second central axis And supporting the curved body in a longitudinal direction along the outer peripheral surface, while supporting the irradiated body by rotating around the second central axis, A second rotating drum for sub-scanning the irradiated body;
    With
    Among the plurality of drawing units, the first scanning line and the second scanning line of a predetermined number of the drawing units are located on the irradiated body supported on the outer peripheral surface of the first rotating drum, The plurality of drawing units are arranged so that the first scanning lines and the second scanning lines of the remaining drawing units are positioned on the irradiated body supported on the outer peripheral surface of the second rotating drum. A pattern drawing device.
  11.  光源装置からのビームを被照射体上でスポットに集光し、集光されたスポット光を所定の走査線に沿って主走査するとともに、前記被照射体を副走査することによって、前記被照射体上に所定のパターンを描画するパターン描画方法であって、
     前記光源装置からの第1のビームを第1方向から回転多面鏡に向けて投射することと、
     前記光源装置からの第2のビームを前記第1方向とは異なる第2方向から前記回転多面鏡に向けて投射することと、
     前記回転多面鏡の異なる反射面に入射して反射する前記第1のビームおよび前記第2のビームを、前記回転多面鏡の回転によって偏向走査することと、
     前記回転多面鏡で反射された前記第1のビームを集光して第1のスポット光として第1の走査線上に投射することと、
     前記回転多面鏡で反射された前記第2のビームを集光して第2のスポット光として第2の走査線上に投射することと、
     を含み、
     前記第1の走査線と前記第2の走査線とが、前記被照射体上で前記副走査の方向に関して同じ位置であって、且つ、前記主走査の方向にずれている、パターン描画方法。
    The beam from the light source device is condensed onto a spot on the irradiated object, and the focused spot light is subjected to main scanning along a predetermined scanning line, and the irradiated object is sub-scanned to thereby perform the irradiation. A pattern drawing method for drawing a predetermined pattern on a body,
    Projecting a first beam from the light source device from a first direction toward a rotating polygon mirror;
    Projecting the second beam from the light source device from a second direction different from the first direction toward the rotary polygon mirror;
    Deflecting and scanning the first beam and the second beam incident and reflected on different reflecting surfaces of the rotating polygon mirror by rotation of the rotating polygon mirror;
    Condensing the first beam reflected by the rotary polygon mirror and projecting it on the first scan line as a first spot light;
    Condensing the second beam reflected by the rotary polygon mirror and projecting it on the second scan line as a second spot light;
    Including
    The pattern drawing method, wherein the first scanning line and the second scanning line are at the same position on the irradiated body with respect to the sub-scanning direction and shifted in the main scanning direction.
  12.  可撓性の長尺のシート基板である被照射体を長手方向に副走査しつつ、描画データに基づいて強度変調されるスポット光を前記被照射体の長手方向と直交した幅方向に延びる走査線に沿って主走査することによって、前記被照射体上に前記描画データに応じたパターンを描画するパターン描画方法であって、
     第1のビームを第1方向から回転多面鏡に向けて投射することと、
     第2のビームを前記第1方向とは異なる第2方向から前記回転多面鏡に向けて投射することと、
     前記回転多面鏡の異なる反射面に入射して反射する前記第1のビームおよび前記第2のビームを、前記回転多面鏡の回転によって偏向走査することと、
     前記回転多面鏡で反射された前記第1のビームを集光して第1のスポット光として第1の走査線上に投射することと、
     前記回転多面鏡で反射された前記第2のビームを集光して第2のスポット光として第2の走査線上に投射することと、
     を含み、
     前記第1の走査線と前記第2の走査線の各走査長が同じに設定されるとともに、前記第1の走査線と前記第2の走査線が前記主走査の方向に前記走査長以下の間隔で分離して設定されている、パターン描画方法。
    Scanning in the width direction perpendicular to the longitudinal direction of the irradiated body while spot scanning whose intensity is modulated on the basis of the drawing data while scanning the irradiated body, which is a flexible long sheet substrate, in the longitudinal direction A pattern drawing method for drawing a pattern according to the drawing data on the irradiated object by performing main scanning along a line,
    Projecting the first beam from the first direction toward the rotating polygon mirror;
    Projecting the second beam from a second direction different from the first direction toward the rotating polygon mirror;
    Deflecting and scanning the first beam and the second beam incident and reflected on different reflecting surfaces of the rotating polygon mirror by rotation of the rotating polygon mirror;
    Condensing the first beam reflected by the rotary polygon mirror and projecting it on the first scan line as a first spot light;
    Condensing the second beam reflected by the rotary polygon mirror and projecting it on the second scan line as a second spot light;
    Including
    The scanning lengths of the first scanning line and the second scanning line are set to be the same, and the first scanning line and the second scanning line are equal to or shorter than the scanning length in the main scanning direction. A pattern drawing method that is set separately at intervals.
  13.  請求項11または12に記載のパターン描画方法であって、
     前記第1の走査線の中点と前記第2の走査線の中点とを結ぶ線分上の点を前記被照射体に対して垂直に通る回動中心軸を中心に、前記第1の走査線と前記第2の走査線とを回動させることを含む、パターン描画方法。
    The pattern drawing method according to claim 11 or 12,
    The first scan line is centered on a pivot axis passing through a point on a line segment connecting the midpoint of the first scan line and the midpoint of the second scan line perpendicularly to the irradiated body. A pattern drawing method including rotating a scanning line and the second scanning line.
  14.  被照射体を副走査の方向に搬送しつつ、光源装置からのビームを前記被照射体上でスポットに集光し、集光されたスポット光を前記副走査の方向と直交した走査線に沿って主走査することによって、前記被照射体上に所定のパターンを描画するパターン描画装置であって、
     所定の回転軸の回りに回転する回転多面鏡と、
     前記光源装置からの第1のビームを第1方向から前記回転多面鏡に向けて投射する第1導光光学系と、
     前記光源装置からの第2のビームを前記第1方向とは異なる第2方向から前記回転多面鏡に向けて投射する第2導光光学系と、
     前記回転多面鏡で反射された前記第1のビームを集光して第1のスポット光として第1の走査線上に投射する第1投射光学系と、
     前記回転多面鏡で反射された前記第2のビームを集光して第2のスポット光として第2の走査線上に投射する第2投射光学系と、
     を備え、
     前記第1の走査線と前記第2の走査線とが、前記被照射体上で前記主走査の方向および前記副走査の方向の少なくとも一方の方向に平行にずれて配置されるように、前記回転多面鏡、前記第1導光光学系、前記第2導光光学系、前記第1投射光学系、および、前記第2投射光学系を一体的に保持して回動可能な描画ユニットを備え、
     前記描画ユニットの回動中心軸が、前記第1の走査線の中点と前記第2の走査線の中点との間を前記被照射体に対して垂直に通るように設定されている、パターン描画装置。
    Conveying the irradiated object in the sub-scanning direction, condensing the beam from the light source device onto the spot on the irradiated object, and the condensed spot light along a scanning line orthogonal to the sub-scanning direction A pattern drawing apparatus for drawing a predetermined pattern on the irradiated object by performing main scanning with
    A rotating polygon mirror that rotates about a predetermined rotation axis;
    A first light guide optical system that projects a first beam from the light source device from a first direction toward the rotary polygon mirror;
    A second light guide optical system that projects the second beam from the light source device from a second direction different from the first direction toward the rotary polygon mirror;
    A first projection optical system that condenses the first beam reflected by the rotary polygon mirror and projects the first beam onto the first scanning line as a first spot light;
    A second projection optical system for condensing the second beam reflected by the rotary polygon mirror and projecting it on the second scanning line as a second spot light;
    With
    The first scanning line and the second scanning line are arranged on the irradiated body so as to be shifted in parallel to at least one of the main scanning direction and the sub-scanning direction. A rotating polygon mirror, the first light guide optical system, the second light guide optical system, the first projection optical system, and a drawing unit capable of rotating while integrally holding the second projection optical system. ,
    The rotation center axis of the drawing unit is set so as to pass perpendicularly to the irradiated body between the midpoint of the first scan line and the midpoint of the second scan line. Pattern drawing device.
  15.  請求項14に記載のパターン描画装置であって、
     前記回動中心軸は、前記第1の走査線の中点と前記第2の走査線の中点とを結ぶ線分の中心点に設定されている、パターン描画装置。
    The pattern drawing apparatus according to claim 14,
    The pattern drawing apparatus, wherein the rotation center axis is set to a center point of a line segment connecting a midpoint of the first scan line and a midpoint of the second scan line.
  16.  請求項15に記載のパターン描画装置であって、
     前記第1の走査線と前記第2の走査線とは、副走査方向に関して互いに離間し、前記主走査の方向に関して互いに隣接または一部重畳する、パターン描画装置。
    The pattern drawing apparatus according to claim 15,
    The pattern drawing apparatus, wherein the first scanning line and the second scanning line are separated from each other in the sub-scanning direction, and are adjacent to each other or partially overlapped in the main scanning direction.
  17.  被照射体を副走査の方向に搬送しつつ、光源装置からのビームを前記被照射体上でスポットに集光し、集光されたスポット光を前記副走査の方向と直交した方向に延びる走査線に沿って主走査することによって、前記被照射体上に所定のパターンを描画するパターン描画方法であって、
     前記光源装置からの第1のビームを第1方向から回転多面鏡に向けて投射することと、
     前記光源装置からの第2のビームを前記第1方向とは異なる第2方向から前記回転多面鏡に向けて投射することと、
     前記回転多面鏡の異なる反射面に入射して反射する前記第1のビームおよび前記第2のビームを、前記回転多面鏡の回転によって偏向走査することと、
     前記回転多面鏡で反射された前記第1のビームを集光して第1のスポット光として第1の走査線上に投射することと、
     前記回転多面鏡で反射された前記第2のビームを集光して第2のスポット光として第2の走査線上に投射することと、
     前記被照射体に対して垂直であり、前記第1の走査線の中点と前記第2の走査線の中点との間に設定された回動中心軸を中心に、前記第1の走査線と前記第2の走査線とを回動させることと、
     を含む、パターン描画方法。
    While the object to be irradiated is conveyed in the sub-scanning direction, the beam from the light source device is condensed on the spot on the object to be irradiated, and the condensed spot light is extended in a direction orthogonal to the sub-scanning direction. A pattern drawing method for drawing a predetermined pattern on the irradiated object by performing main scanning along a line,
    Projecting a first beam from the light source device from a first direction toward a rotating polygon mirror;
    Projecting the second beam from the light source device from a second direction different from the first direction toward the rotary polygon mirror;
    Deflecting and scanning the first beam and the second beam incident and reflected on different reflecting surfaces of the rotating polygon mirror by rotation of the rotating polygon mirror;
    Condensing the first beam reflected by the rotary polygon mirror and projecting it on the first scan line as a first spot light;
    Condensing the second beam reflected by the rotary polygon mirror and projecting it on the second scan line as a second spot light;
    The first scan is centered on a rotation center axis that is perpendicular to the irradiated body and is set between the midpoint of the first scan line and the midpoint of the second scan line. Rotating the line and the second scanning line;
    A pattern drawing method including:
  18.  請求項17に記載のパターン描画方法であって、
     前記被照射体上に描画すべき前記所定のパターンを傾斜させるために前記第1の走査線と前記第2の走査線とを回動させる、または、前記被照射体上に予め形成された下層のパターンの上に新たに前記所定のパターンを重ね合わせて描画する際に、前記下層のパターンの全体または一部分の傾きに対応して、前記第1の走査線と前記第2の走査線とを回動させる、パターン描画方法。
    The pattern drawing method according to claim 17,
    The first scanning line and the second scanning line are rotated to incline the predetermined pattern to be drawn on the irradiated body, or a lower layer formed in advance on the irradiated body When the predetermined pattern is newly overlaid on the pattern, the first scanning line and the second scanning line are set corresponding to the inclination of the whole or a part of the lower layer pattern. A pattern drawing method for rotating.
  19.  光源装置からのビームを被照射体上で主走査するとともに、前記主走査と交差する方向に前記被照射体と前記ビームとを相対的に副走査することによって、前記被照射体上にパターンを描画するパターン描画装置であって、
     前記主走査のために反射面の角度を変える光偏向部材と、
     第1方向から前記光偏向部材に投射されて前記光偏向部材の反射面で反射した第1のビームを、前記被照射体上で主走査の方向に走査されるビームとして投射する第1投射光学系と、
     第1方向と異なる第2方向から前記光偏向部材に投射されて前記光偏向部材の反射面で反射した第2のビームを、前記被照射体上で主走査の方向に走査されるビームとして投射する第2投射光学系と、を備え、
     前記第1のビームの主走査により形成される第1の走査線と、前記第2のビームの主走査により形成される第2の走査線とが、前記主走査の方向にずれるように前記第1投射光学系と前記第2投射光学系とを配置した、パターン描画装置。
    The main scanning of the beam from the light source device is performed on the irradiated object, and a pattern is formed on the irradiated object by relatively sub-scanning the irradiated object and the beam in a direction crossing the main scanning. A pattern drawing device for drawing,
    A light deflecting member that changes the angle of the reflecting surface for the main scanning;
    First projection optics for projecting the first beam projected from the first direction onto the light deflection member and reflected by the reflecting surface of the light deflection member as a beam scanned in the main scanning direction on the irradiated body. The system,
    The second beam projected on the light deflection member from a second direction different from the first direction and reflected by the reflection surface of the light deflection member is projected as a beam scanned in the main scanning direction on the irradiated body. A second projection optical system,
    The first scanning line formed by the main scanning of the first beam and the second scanning line formed by the main scanning of the second beam are shifted in the main scanning direction. A pattern drawing apparatus in which one projection optical system and the second projection optical system are arranged.
  20.  請求項19に記載のパターン描画装置であって、
     前記第1投射光学系と前記第2投射光学系の各々は、前記光偏向部材で主走査の方向に偏向される角度と、主走査方向における前記ビームの前記被照射体上の投射位置とが比例関係となるf-θレンズ系を含む、パターン描画装置。
    The pattern drawing apparatus according to claim 19,
    Each of the first projection optical system and the second projection optical system has an angle deflected in the main scanning direction by the light deflecting member and a projection position of the beam on the irradiated body in the main scanning direction. A pattern drawing apparatus including an f-θ lens system having a proportional relationship.
  21.  請求項20に記載のパターン描画装置であって、
     前記第1投射光学系と前記第2投射光学系の各々は、前記f-θレンズ系と前記光偏向部材との間に配置される反射部材を含み、
     該反射部材は、前記光偏向部材によって前記ビームが偏向される面内で前記ビームを折り曲げる、パターン描画装置。
    The pattern drawing apparatus according to claim 20, wherein
    Each of the first projection optical system and the second projection optical system includes a reflecting member disposed between the f-θ lens system and the light deflection member,
    The pattern drawing apparatus, wherein the reflecting member bends the beam in a plane where the beam is deflected by the light deflecting member.
  22.  請求項21に記載のパターン描画装置であって、
     前記光偏向部材は、回転軸の回りに回転する回転多面鏡であり、前記第1のビームは前記回転多面鏡の第1の反射面で反射され、前記第2のビームは前記回転多面鏡の前記第1の反射面と異なる第2の反射面で反射される、パターン描画装置。
    The pattern drawing apparatus according to claim 21,
    The light deflecting member is a rotating polygon mirror that rotates about a rotation axis, the first beam is reflected by a first reflecting surface of the rotating polygon mirror, and the second beam is the rotation polygon mirror. The pattern drawing apparatus reflected by the 2nd reflective surface different from a said 1st reflective surface.
  23.  請求項22に記載のパターン描画装置であって、
     前記第1投射光学系に含まれる前記反射部材への前記第1のビームの入射角の変化によって生じる前記第1のビームの主走査方向における強度変化、および前記第2投射光学系に含まれる前記反射部材への前記第2のビームの入射角の変化によって生じる前記第2のビームの主走査方向における強度変化を調整する強度調整部材を更に備える、パターン描画装置。
    The pattern drawing apparatus according to claim 22, wherein
    An intensity change in the main scanning direction of the first beam caused by a change in an incident angle of the first beam on the reflecting member included in the first projection optical system, and the second projection optical system included in the second projection optical system A pattern writing apparatus, further comprising: an intensity adjusting member that adjusts an intensity change in the main scanning direction of the second beam caused by a change in an incident angle of the second beam on a reflecting member.
PCT/JP2016/068075 2015-06-17 2016-06-17 Pattern drawing device and pattern drawing method WO2016204267A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202010601959.6A CN111665687B (en) 2015-06-17 2016-06-17 Pattern drawing device
CN201680035608.5A CN107735715B (en) 2015-06-17 2016-06-17 Pattern drawing device and pattern drawing method
JP2017524853A JP6627875B2 (en) 2015-06-17 2016-06-17 Pattern drawing apparatus and pattern drawing method
CN202010601953.9A CN111665686B (en) 2015-06-17 2016-06-17 Pattern drawing method
KR1020237042530A KR20230173214A (en) 2015-06-17 2016-06-17 Pattern rendering device and pattern rendering method
KR1020177036155A KR102680203B1 (en) 2015-06-17 2016-06-17 Pattern drawing device and pattern drawing method
HK18103077.0A HK1243772A1 (en) 2015-06-17 2018-03-02 Pattern drawing device and pattern drawing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-121839 2015-06-17
JP2015121839 2015-06-17

Publications (1)

Publication Number Publication Date
WO2016204267A1 true WO2016204267A1 (en) 2016-12-22

Family

ID=57546184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068075 WO2016204267A1 (en) 2015-06-17 2016-06-17 Pattern drawing device and pattern drawing method

Country Status (6)

Country Link
JP (3) JP6627875B2 (en)
KR (2) KR20230173214A (en)
CN (3) CN107735715B (en)
HK (1) HK1243772A1 (en)
TW (2) TWI689788B (en)
WO (1) WO2016204267A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022018293A (en) * 2020-07-15 2022-01-27 シャープ株式会社 Optical scanner and image forming apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7136601B2 (en) * 2018-06-25 2022-09-13 川崎重工業株式会社 Light guide device and laser processing device
TWI693482B (en) * 2018-12-22 2020-05-11 財團法人工業技術研究院 Exposure apparatus
EP4148500A4 (en) * 2020-05-09 2023-10-25 Inspec Inc. Drawing method, drawing device, and program

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105117A (en) * 1981-12-18 1983-06-22 Fujitsu Ltd Photoscanner
JPH1048558A (en) * 1996-07-29 1998-02-20 Nec Niigata Ltd Laser scanning optical unit
JP2003140069A (en) * 2001-10-30 2003-05-14 Panasonic Communications Co Ltd Optical scanner and its adjusting method
JP2006058795A (en) * 2004-08-23 2006-03-02 Ricoh Co Ltd Light beam scanner and image forming apparatus
JP2008263090A (en) * 2007-04-12 2008-10-30 Nikon Corp Pattern generator, pattern forming apparatus and pattern generating method
JP2011090188A (en) * 2009-10-23 2011-05-06 Sharp Corp Optical scanner and image forming apparatus using the same
JP2012163868A (en) * 2011-02-09 2012-08-30 Ricoh Co Ltd Optical scanner, and image forming apparatus
JP2012220695A (en) * 2011-04-08 2012-11-12 Ricoh Co Ltd Optical scanner and image forming apparatus
WO2013145683A1 (en) * 2012-03-29 2013-10-03 川崎重工業株式会社 Optical scanning device and laser processing device
JP2015210437A (en) * 2014-04-28 2015-11-24 株式会社ニコン Pattern drawing device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016058A (en) * 1983-07-08 1985-01-26 Hitachi Ltd Optical beam scanning device
US5969347A (en) * 1996-12-26 1999-10-19 Asahi Kogaku Kogyo Kabushiki Kaisha Synchronizing apparatus of a cascade scanning optical system having tilting measurement of reflecting surfaces
CN1189040A (en) * 1997-01-06 1998-07-29 旭光学工业株式会社 Scanning apparatus having cascade scanning optical system
US6288817B2 (en) * 1998-01-21 2001-09-11 Avanex Corporation High duty cycle synchronized multi-line scanner
JP4141056B2 (en) * 1999-06-25 2008-08-27 株式会社リコー Multi-beam image forming apparatus
FR2800968B1 (en) * 1999-11-05 2002-09-13 Automa Tech Sa LASER RADIATION PANEL EXPOSURE MACHINE
JP2001162863A (en) * 1999-12-13 2001-06-19 Asahi Optical Co Ltd Resolution variable light scanning device
JP4315573B2 (en) * 2000-05-08 2009-08-19 富士フイルム株式会社 Optical recording method and optical recording apparatus using the same
JP2002023089A (en) * 2000-07-04 2002-01-23 Asahi Optical Co Ltd Scanning-type plotting device
JP4731761B2 (en) * 2001-08-24 2011-07-27 株式会社リコー Optical writing apparatus and image forming apparatus
JP2006251688A (en) * 2005-03-14 2006-09-21 Ricoh Co Ltd Optical scanner/image forming apparatus
JP2007118329A (en) * 2005-10-27 2007-05-17 Noritsu Koki Co Ltd Exposure method, exposure device, and photograph processor using the same
JP5223211B2 (en) * 2006-03-15 2013-06-26 株式会社リコー Image processing method and image processing apparatus
TWI638241B (en) * 2012-03-26 2018-10-11 日商尼康股份有限公司 Substrate processing apparatus, processing apparatus and device manufacturing method
WO2014041941A1 (en) * 2012-09-14 2014-03-20 株式会社ニコン Substrate processing device and device manufacturing method
CN109343214B (en) * 2014-04-28 2021-05-18 株式会社尼康 Pattern drawing device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105117A (en) * 1981-12-18 1983-06-22 Fujitsu Ltd Photoscanner
JPH1048558A (en) * 1996-07-29 1998-02-20 Nec Niigata Ltd Laser scanning optical unit
JP2003140069A (en) * 2001-10-30 2003-05-14 Panasonic Communications Co Ltd Optical scanner and its adjusting method
JP2006058795A (en) * 2004-08-23 2006-03-02 Ricoh Co Ltd Light beam scanner and image forming apparatus
JP2008263090A (en) * 2007-04-12 2008-10-30 Nikon Corp Pattern generator, pattern forming apparatus and pattern generating method
JP2011090188A (en) * 2009-10-23 2011-05-06 Sharp Corp Optical scanner and image forming apparatus using the same
JP2012163868A (en) * 2011-02-09 2012-08-30 Ricoh Co Ltd Optical scanner, and image forming apparatus
JP2012220695A (en) * 2011-04-08 2012-11-12 Ricoh Co Ltd Optical scanner and image forming apparatus
WO2013145683A1 (en) * 2012-03-29 2013-10-03 川崎重工業株式会社 Optical scanning device and laser processing device
JP2015210437A (en) * 2014-04-28 2015-11-24 株式会社ニコン Pattern drawing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022018293A (en) * 2020-07-15 2022-01-27 シャープ株式会社 Optical scanner and image forming apparatus
JP7443176B2 (en) 2020-07-15 2024-03-05 シャープ株式会社 Optical scanning device and image forming device
US11933964B2 (en) 2020-07-15 2024-03-19 Sharp Kabushiki Kaisha Optical scanning apparatus and image forming apparatus

Also Published As

Publication number Publication date
TWI689788B (en) 2020-04-01
CN111665687B (en) 2023-06-16
JP2020064306A (en) 2020-04-23
CN111665687A (en) 2020-09-15
TWI736147B (en) 2021-08-11
KR102680203B1 (en) 2024-07-02
TW201702762A (en) 2017-01-16
TW202022506A (en) 2020-06-16
JP6911907B2 (en) 2021-07-28
JP2019074748A (en) 2019-05-16
JPWO2016204267A1 (en) 2018-04-12
CN107735715B (en) 2020-07-17
KR20180018568A (en) 2018-02-21
KR20230173214A (en) 2023-12-26
CN111665686B (en) 2024-01-05
HK1243772A1 (en) 2018-07-20
CN111665686A (en) 2020-09-15
JP6627875B2 (en) 2020-01-08
JP6614319B2 (en) 2019-12-04
CN107735715A (en) 2018-02-23

Similar Documents

Publication Publication Date Title
JP6614319B2 (en) Pattern drawing device
JP7074160B2 (en) Pattern drawing device
JP7226499B2 (en) drawing device
JP6648798B2 (en) Pattern drawing equipment
JP6806139B2 (en) Beam scanning device and pattern drawing device
JP2016177251A (en) Beam scanning device and drawing device
KR20160095681A (en) System and apparatus for manufacturing fine pattern using unit for adjusting depth of focus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524853

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177036155

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811741

Country of ref document: EP

Kind code of ref document: A1