WO2016204209A1 - Laminated wiring board and probe card provided with same - Google Patents

Laminated wiring board and probe card provided with same Download PDF

Info

Publication number
WO2016204209A1
WO2016204209A1 PCT/JP2016/067878 JP2016067878W WO2016204209A1 WO 2016204209 A1 WO2016204209 A1 WO 2016204209A1 JP 2016067878 W JP2016067878 W JP 2016067878W WO 2016204209 A1 WO2016204209 A1 WO 2016204209A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
resin
wiring board
resin portion
Prior art date
Application number
PCT/JP2016/067878
Other languages
French (fr)
Japanese (ja)
Inventor
竹村 忠治
鉄三 原
正樹 葛西
徹 目黒
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020177031146A priority Critical patent/KR102014111B1/en
Priority to JP2017525284A priority patent/JP6500987B2/en
Publication of WO2016204209A1 publication Critical patent/WO2016204209A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated

Definitions

  • the present invention relates to a laminated wiring board including a core substrate formed by laminating a plurality of ceramic layers, and a resin portion laminated on one main surface of the core substrate, and a probe card including the laminated wiring substrate.
  • the multilayer wiring board 100 described in Patent Document 1 includes a core substrate 101 formed by stacking a plurality of ceramic layers 101 a and a plurality of resin layers 102 a (for example, polyimide).
  • the resin part 102 which comprises.
  • a plurality of connection electrodes 103 connected to the probe pins are formed on the upper surface of the multilayer wiring substrate 100.
  • a plurality of external electrodes 104 provided so as to correspond to the connection electrodes 103 are arranged on the lower surface of the multilayer wiring substrate 100 at a pitch wider than the pitch of the connection electrodes 103.
  • connection electrode 103 and the external electrode 104 are connected to each other via the wiring electrode 105 and the interlayer connection conductor 106 formed inside the multilayer wiring substrate 100, so that a rewiring structure is formed on the multilayer wiring substrate 100. Is formed.
  • the upper part of the multilayer wiring substrate 100 is formed by a resin portion 102 that is a laminate of a plurality of resin layers 102a formed of a thin film such as polyimide capable of forming a fine electrode pattern.
  • the lower part of the multilayer wiring substrate 100 where the wiring electrodes 105 and the interlayer connection conductors 106 are not required to have high density is made of ceramic (core substrate) that has higher rigidity than the resin laminate 103 and can easily ensure flatness by polishing or the like. Is formed.
  • a mounting electrode for the component is provided on the upper surface of the resin portion 102.
  • the adhesion strength between the resin portion 102 and the mounting electrode is low, an impact after mounting the component, etc.
  • the mounting electrode may be peeled off from the resin portion 102.
  • the resin of the resin portion 102 has a higher coefficient of thermal expansion than the metal forming the mounting electrode, there is a possibility that the mounting electrode may be peeled off even by a thermal change during the inspection of the probe card.
  • the present invention has been made in view of the above-described problems, and in a laminated wiring board in which a resin portion is laminated on a core substrate made of ceramic, a mounting electrode for a component mounted on the main surface of the resin portion The purpose is to reduce the peeling.
  • a multilayer wiring board includes a core board in which a plurality of ceramic layers are laminated in a multilayer wiring board to which a plurality of probe pins are connected, and one main surface of the core board.
  • a resin part having a through hole, a mounting electrode for mounting a component located on the one main surface of the core substrate, and the resin part among the resin part.
  • a plurality of connection electrodes are provided so as to be exposed on the opposite surface, which is the main surface opposite to the main surface facing the core substrate, and connected to the probe pins.
  • the mounting electrodes for component mounting are provided on the core substrate (ceramic) having higher adhesion strength than the resin forming the resin portion, peeling of the mounting electrodes can be reduced.
  • the ceramic that forms the core substrate has a smaller difference in thermal expansion coefficient from the metal that forms the mounting electrode than the resin that forms the resin portion. Can be reduced.
  • the mounting electrode is exposed to the opposite surface of the resin portion by being disposed in the through hole of the resin portion, it is possible to mount a component on the opposite surface of the resin portion while reducing peeling of the mounting electrode. it can.
  • the resin portion at the periphery of the through hole may cover the periphery of the mounting electrode. If it does in this way, since the peripheral part used as the starting point of peeling from the core substrate of a mounting electrode is protected by the resin part, peeling of a mounting electrode can further be reduced.
  • the mounting electrode is formed by stacking x (x is an integer of 2 or more) layer pad electrodes.
  • the pad electrode in contact with the core substrate is the first layer, and the nth (n is 2 or more and x
  • the pad electrode of the (integer) layer is formed to have a smaller area than the pad electrode of the (n ⁇ 1) th layer in plan view of the resin portion, and the pad electrode of the (n ⁇ 1) th layer. It may be arranged so as to fit in.
  • the resin portion is formed by laminating y resin layers (y is an integer equal to or greater than the number x of the pad electrodes), and the through hole is a layer through hole provided in each of the resin layers.
  • the resin layer that is connected and is in contact with the core substrate is the first layer, and the m-th (m is an integer of 2 or more and x + 1 or less) layer of the resin layer is the layer through-hole of the resin layer May be laminated on the m ⁇ 1th layer of the resin layer so that the periphery of the 2nd layer covers the periphery of the m ⁇ 1th layer of the pad electrode.
  • the above-described laminated wiring board may be used for a probe card that performs an electrical inspection of a semiconductor element.
  • the laminated wiring board of the present invention in which mounting electrodes are provided on a core board having a small difference in thermal expansion coefficient is suitable as a wiring board used for a probe card exposed to heat during electrical inspection.
  • the mounting electrode for component mounting is provided on the core substrate (ceramic) having higher adhesion strength than the resin forming the resin portion, it is possible to reduce the peeling of the mounting electrode.
  • the ceramic that forms the core substrate has a smaller difference in thermal expansion coefficient from the metal that forms the mounting electrode than the resin that forms the resin portion. Can be reduced.
  • the mounting electrode is exposed on the opposite surface of the resin portion, it is possible to mount a component on the opposite surface of the resin portion while reducing peeling of the mounting electrode.
  • FIGS. 1 and 2 A probe card 1 according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
  • 1 is a cross-sectional view of the probe card 1
  • FIG. 2 is a cross-sectional view of the multilayer wiring board 3a of FIG.
  • a part of the wiring electrodes and via conductors formed on the multilayer wiring board 3a is not shown.
  • the probe card 1 As shown in FIG. 1, the probe card 1 according to this embodiment is connected to a mother board 2, a laminated wiring board 3a mounted on one main surface 2a of the mother board 2, and the laminated wiring board 3a.
  • the apparatus includes a plurality of probe pins 5a to 5e and a probe head 4 that supports the probe pins 5a to 5e, and is used for, for example, an electrical inspection of an inspection object such as a semiconductor element.
  • each mounting electrode 6 is connected to predetermined external electrodes 7a to 7e by wiring electrodes 30 and via conductors 31 formed inside the mother substrate.
  • the mother substrate 2 is made of, for example, glass epoxy resin.
  • the laminated wiring board 3 a includes a core substrate 8 disposed on the mother substrate 2 side, and a resin portion 9 laminated on one main surface 80 a of the core substrate 8.
  • the core substrate 8 is formed of various ceramics such as a low-temperature co-fired ceramic (LTCC) and a high-temperature fired ceramic (HTCC) mainly composed of a ceramic (for example, alumina) containing borosilicate glass. be able to.
  • LTCC low-temperature co-fired ceramic
  • HTCC high-temperature fired ceramic
  • the low-temperature co-fired ceramic (LTCC) materials include CaO—SiO 2 —Al 2 O 3 —B 2 O 3 glass 50 to 65 wt% (preferably 60 wt%) and alumina 50 to 35 wt% ( Preferably 40% by weight).
  • a bonded body obtained by heat-pressing a dummy green sheet (a constrained layer sheet such as alumina) having a sintering temperature higher than that of the green sheet on both surfaces of the above-mentioned LTCC green sheet is bonded to the LTCC green sheet.
  • the LTCC substrate is fired without shrinkage at a sintering temperature of 800 to 1000 ° C. (preferably 900 ° C.).
  • the inner layer conductor pattern for example, the wiring electrode 14
  • Ag, Ag / Pd, Au, and Ag / Pt are used.
  • the substrate is fired while being pressurized at a pressure (for example, 2 to 20 kgf / cm 2 ) that is smaller than the pressure applied when the LTCC green sheet is pressure-bonded. Accordingly, the substrate surface is prevented from being convexly deformed at the inner layer conductor pattern portion during firing, the flatness of the substrate surface is ensured, and warpage or peeling (delamination) of the substrate during firing is also prevented.
  • Resin portion 9 is formed of a resin such as polyimide, for example.
  • the core substrate 8 and the resin portion 9 are each formed in a multilayer structure.
  • the probe head 4 that holds the probe pins 5a to 5e is formed of two holding plates 4a that are arranged substantially in parallel at a predetermined interval, and a spacer 4b that is arranged between the two holding plates 4a. 2 is fixedly arranged on the cover body 21 fixed to 2.
  • the multilayer wiring board 3a will be specifically described with reference to FIG. 2.
  • the core substrate 8 is composed of a laminate of a plurality of ceramic layers 8a.
  • a plurality of external connection electrodes 10a to 10e for mounting on the mother substrate 2 are formed on the main surface 80b on the opposite side of the resin portion 9 of the core substrate 8, and each of these external connection electrodes 10a to 10e is formed.
  • Each is connected to a predetermined mounting electrode 6 formed on the mother substrate 2 by soldering.
  • a mounting electrode 13 for mounting the component 12 is formed on the one main surface 80a of the core substrate 8 on the resin portion 9 side.
  • various wiring electrodes 14 and a plurality of via conductors 15 are formed in each ceramic layer 8a.
  • the external connection electrodes 10a to 10e, the wiring electrodes 14, the via conductors 15, and the mounting electrodes 13 are formed of any one of metals such as Cu, Ag, and Al, for example.
  • each of the external connection electrodes 10a to 10e, each of the wiring electrodes 14 and the mounting electrode 13 can be formed, for example, by screen printing using a conductive paste containing the metal (Cu, Ag, Al, etc.).
  • each of the external connection electrodes 10a to 10a and the mounting electrode 13 may have a structure in which a surface electrode formed by Ni / Au plating is laminated on a base electrode formed of the above-described metal.
  • the resin part 9 is composed of a laminate of a plurality of resin layers 9 a and is laminated on the one main surface 80 a of the core substrate 8.
  • 11e is formed.
  • the connection electrode 11a is connected to the probe pin 5a for supplying power
  • the connection electrode 11b and the connection electrode 11e are both connected to the probe pins 5b and 5e for grounding
  • the connection electrode 11c and the connection electrode 11d are connected to probe pins 5c and 5d for signal transmission / reception.
  • Each of the connection electrodes 11a to 11e can be formed of, for example, a base electrode made of Cu or the like and a surface electrode formed by applying Ni / Au plating on the base electrode.
  • each wiring electrode 17 forms a Ti film as a base electrode on the main surface of the resin layer 9a by sputtering or the like, and similarly forms a Cu film on the Ti film by sputtering or the like. And it can form by forming a Cu film
  • the wiring electrode 17 formed in each resin layer 9a is formed in a fine pattern by photolithography.
  • the wiring electrode 14 formed on the core substrate 8 is formed by screen printing or the like and thus has a thick film pattern, whereas the wiring electrode 17 formed on the resin portion 9 is formed by sputtering or the like. Therefore, it becomes a thin film pattern. Further, the wiring electrode 17 formed on the resin portion 9 is thinned by photolithography as described above.
  • connection electrodes 11a to 11e are electrically connected to predetermined external electrodes 7a to 7e formed on the other main surface of the mother substrate 2, respectively.
  • each of the connection electrodes 11a to 11e includes a wiring electrode 17 and a via conductor 18 formed on the resin portion 9, and a wiring electrode 14 formed on the core substrate 8, respectively.
  • via conductor 15, wiring electrode 30 formed on mother substrate 2, via conductor 31, and the like are connected to predetermined external electrodes 7 a to 7 e.
  • the resin portion 9 is disposed on the resin portion 9 in a thickness direction at a position overlapping the mounting electrode 13 in a plan view of the core substrate 8 (a plan view seen from a direction perpendicular to the one main surface 80a of the core substrate 8).
  • a penetrating through hole 16 is formed.
  • a part of the mounting electrode 13 is exposed to the main surface 90 a of the resin portion 9 through the through hole 16.
  • the peripheral edge portion of the mounting electrode 13 is covered with the resin portion 9 at the peripheral edge of the through hole 16.
  • the component 12 can be composed of, for example, a chip capacitor, a chip inductor, a chip resistor, and a fuse chip.
  • the component 12 includes a bypass capacitor (chip capacitor) connected between a power supply line connecting the connection electrode 11a and the external connection electrode 10b and a ground (ground) line.
  • the mounting electrode 13 for component mounting is provided on the core substrate 8 (ceramic) having higher adhesion strength than the resin forming the resin portion 9, so that the mounting electrode 13 is peeled off. Can be reduced.
  • the difference in thermal expansion coefficient between the mounting electrode 13 and the member on which the mounting electrode 13 is formed is the mounting electrode 13. Affects peeling.
  • the thermal expansion coefficient of the ceramic forming the core substrate 8 is 5.5 ppm / ° C.
  • the thermal expansion coefficient of the resin portion 9 when the resin forming the resin portion 9 is polyimide is 50 ppm / ° C.
  • the mounting electrode 13 is formed.
  • the thermal expansion coefficient of the mounting electrode 13 when the metal is Cu is 16.8 ppm / ° C.
  • the difference in thermal expansion coefficient between the core substrate 8 and the mounting electrode 13 is smaller than that of the resin portion 9, the temperature of the multilayer wiring substrate 3 a is formed by forming the mounting electrode 13 on the core substrate 8. The peeling of the mounting electrode 13 due to the change can be reduced.
  • bypass capacitor component 12
  • the bypass capacitor prevents the high frequency noise generated from the semiconductor element or the like during the electrical inspection of the probe card 1 from entering the power supply line
  • the mounting electrode 13 can be formed on the core substrate 8 while the component 12 is disposed on the main surface 90a of the resin portion 9, the function of the component 12 as a bypass capacitor is improved. Further, peeling of the mounting electrode 13 can be reduced.
  • the peripheral portion of the mounting electrode 13 is covered with the resin portion 9 at the peripheral edge of the through-hole 16, the peripheral portion serving as a base point for peeling the mounting electrode 13 from the core substrate 8 is protected by the resin portion 9. The peeling of the mounting electrode 13 can be further reduced.
  • FIG. 3 is a cross-sectional view of the multilayer wiring board 3b.
  • the laminated wiring board 3b according to this embodiment is different from the laminated wiring board 3a of the first embodiment described with reference to FIGS. 1 and 2 in that the resin portion 9 has a single layer as shown in FIG. That is, it is composed of the resin layer 9a and the wiring structure of the core substrate 8 is different. Since other configurations are the same as those of the multilayer wiring board 3a of the first embodiment, the description thereof is omitted by giving the same reference numerals.
  • connection electrodes 11a to 11e formed in the resin portion 9 in the multilayer wiring substrate 3a of the first embodiment Is formed.
  • the resin part 9 is provided with a through hole 16 for exposing the mounting electrode 13, and the peripheral part of the mounting electrode 13 is covered with the resin part 9 at the peripheral part of the through hole 16.
  • the connection electrodes 11 a to 11 e are also covered with the resin portion 9 at the periphery as in the mounting electrode 13.
  • the resin portion 9 is not formed with the wiring electrodes 17 and the via conductors 18 formed in the resin portion 9 of the multilayer wiring board 3a of the first embodiment.
  • the wiring structure by the wiring electrodes 14 and via conductors 15 is changed.
  • connection electrodes 11a to 11e are formed on the core substrate 8, peeling of the connection electrodes 11a to 11e can be reduced.
  • FIG. 4 is a partial cross-sectional view of the multilayer wiring board 3c, and shows the peripheral portion of the component 12 of the multilayer wiring board 3c.
  • the laminated wiring board 3c according to this embodiment is different from the laminated wiring board 3a of the first embodiment described with reference to FIGS. 1 and 2 as shown in FIG. Each configuration is different. Since other configurations are the same as those of the multilayer wiring board 3a of the first embodiment, the description thereof is omitted by giving the same reference numerals.
  • the mounting electrode 13 is formed by laminating a plurality of layers (three layers in this embodiment) of pad electrodes 13a to 13c.
  • a surface electrode 19 is laminated on the pad electrode 13c farthest from the core substrate 8 of the mounting electrode 13 by plating or the like.
  • the pad electrode 13a in contact with the core substrate 8 is the first layer
  • the pad electrode 13b stacked on the pad electrode 13a is the second layer
  • the pad electrode 13c stacked on the pad electrode 13b is the third layer.
  • the second-layer pad electrode 13b is formed so that the area in plan view is smaller than that of the first-layer pad electrode 13a and fits in the first-layer pad electrode 13a.
  • the third-layer pad electrode 13c is formed so that the area in plan view is smaller than that of the second-layer pad electrode 13b and fits in the second-layer pad electrode 13b.
  • the surface electrode 19 is formed so that the area in plan view is substantially the same as that of the third-layer pad electrode 13c.
  • the through hole 16 provided in the resin portion 9 is formed by connecting layer through holes 16a to 16d provided in each resin layer 9a.
  • the resin layer 9a in contact with the core substrate 8 is the first layer
  • the resin layer 9a laminated on the resin layer 9a is the second layer
  • the second resin layer 9a is the first layer of the resin layer 9a.
  • the first layer of the resin layer 9a has a pad of the first layer.
  • a layer through-hole 16a having an opening area larger than that of the electrode 13a is provided, and the first-layer pad electrode 13a is disposed in the layer through-hole 16a.
  • a layer through hole 16a is formed in the first resin layer 9a using a photolithography technique
  • the first layer pad electrode is formed by Cu plating in the layer through hole 16a. 13a is formed.
  • the second resin layer 9a is provided with a layer through hole 16b having an opening area larger than that of the second layer pad electrode 13b in plan view.
  • a second-layer pad electrode 13b is disposed in the through hole 16b.
  • the opening area of the layer through-hole 16b is such that the second-layer pad electrode 13b can be disposed, and the peripheral portion of the layer through-hole 16b of the second-layer resin layer 9a is first in plan view. It is formed in such a size as to cover the peripheral edge of the pad electrode 13a of the layer.
  • the second layer through-hole 16b and the pad electrode 13b can also be formed in the same manner as the first layer through-hole 16a and the pad electrode 13a.
  • the layer through hole 16c and the pad electrode 13c of the third resin layer 9a are also formed in the same manner as the first and second layer through holes 16a and 16b and the pad electrodes 13a and 13b.
  • the surface electrode 19 is further formed on the surface of the third-layer pad electrode 13c (exposed surface from the third-layer through-hole 16c).
  • the surface electrode 19 is formed by Ni / Au plating.
  • a layer through hole 16d is formed in a region overlapping the third layer pad electrode 13c in plan view of the fourth resin layer 9a.
  • the opening area of the layer through-hole 16d is formed such that the peripheral edge of the layer through-hole 16d of the fourth resin layer 9a covers the peripheral edge of the third-layer pad electrode 13c.
  • each of the pad electrodes 13a to 13c can be formed at the same time as the via conductor 18 formed in the same resin layer 9a, so that a new process is not required for forming the pad electrodes 13a to 13c.
  • this embodiment demonstrated the case where the number of layers (4 layers) of the resin part 9 was larger than the number of layers (3 layers) of the mounting electrode 13, these number of layers may be the same.
  • the number of layers of each resin layer 9a of the resin portion 9 and each of the pad electrodes 13a to 13c of the mounting electrode 13 can be changed as appropriate.
  • the number of layers of the mounting electrode is x (x is an integer of 2 or more) and the pad electrode 13a in contact with the core substrate 8 is the first layer
  • the nth (n is an integer of 2 or more and x or less)
  • the pad electrode in the layer is formed so as to have a smaller area than the pad electrode in the (n ⁇ 1) th layer in a plan view of the resin portion 9 and is fitted in the pad electrode in the (n ⁇ 1) th layer. It only has to be.
  • the resin portion at this time when the number of resin layers is y (an integer greater than or equal to the number x of the pad electrodes) and the resin layer in contact with the core substrate 8 is the first layer, the mth ( m is an integer not less than 2 and not more than x + 1) In the resin layer of the first layer, the periphery of the layer through hole of the resin layer covers the periphery of the pad electrode of the (m-1) th layer. It is preferable to be laminated on the m ⁇ 1th resin layer.
  • the area (area in plan view) of each of the pad electrodes 13a to 13c constituting the mounting electrode 13 increases as it approaches the core substrate 8, and therefore the connection surface of the mounting electrode 13 to the core substrate 8 is increased.
  • the area can be easily increased, whereby the adhesion strength between the mounting electrode 13 and the core substrate 8 can be improved.
  • the space of the main surface 90a of the resin part 9 can be expanded by reducing the area of the uppermost pad electrode 13c, the degree of freedom in designing the main surface 90a of the resin part 9 can be improved.
  • the peripheral portions of the pad electrodes 13a to 13c constituting the mounting electrode 13 are all covered with the resin layer 9a on one of the pad electrodes 13a to 13c, the mounting electrode 13 from the core substrate 8 is covered. Peeling can be reliably reduced.
  • the present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit of the invention.
  • the component 12 may be configured by a chip inductor.
  • the chip inductor may be connected in series with the power supply line.
  • each ceramic layer 8a and each resin layer 9a can be appropriately changed.
  • the present invention can be applied to various laminated wiring boards including a core substrate formed by laminating a plurality of ceramic layers, and a resin portion laminated on one main surface of the core substrate, and a probe card including the same. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

In a laminated wiring board comprising a resin portion laminated on a core board formed from ceramic, the peeling of a mounting electrode for a component mounted on a major plane of the resin portion is decreased. A laminated wiring board 3a to which a plurality of probe pins 5a to 5e is connected comprises a laminate of: a core board 8 comprising a laminate of a plurality of ceramic layers 8a; a mounting electrode 13 which is disposed on one major plane 80a of the core board 8 and which is used for mounting a component; a resin portion 9 which comprises a laminate of a plurality of resin layers 9a and which is laminated on the one major plane 80a of the core board 8; and a plurality of connecting electrode 11a to 11e which are exposed on a major plane 90a of the resin portion 9 on the opposite side from the core board 8, and which are connected to the probe pins 5a to 5e, wherein the mounting electrode 13 is partially exposed on the major plane 90a of the resin portion 9 via a through hole 16 formed in the resin portion 9.

Description

積層配線基板およびこれを備えるプローブカードMultilayer wiring board and probe card having the same
本発明は、複数のセラミック層が積層されて成るコア基板と、該コア基板の一方主面に積層された樹脂部とを備える積層配線基板およびこの積層配線基板を備えるプローブカードに関する。 The present invention relates to a laminated wiring board including a core substrate formed by laminating a plurality of ceramic layers, and a resin portion laminated on one main surface of the core substrate, and a probe card including the laminated wiring substrate.
 近年の半導体素子の外部端子の高密度化に伴い、この種の半導体素子の電気検査が可能なプローブカード用の配線基板の開発が進められている。例えば、図5に示すように、特許文献1に記載の積層配線基板100は、複数のセラミック層101aが積層されて成るコア基板101と、複数の樹脂層102a(例えば、ポリイミド)が積層されて成る樹脂部102とを備える。ここで、積層配線基板100の上面には、それぞれプローブピンと接続される複数の接続電極103が形成される。また、積層配線基板100の下面には、各接続電極103それぞれに対応するように設けられた複数の外部電極104が、各接続電極103のピッチよりも広いピッチで配置される。そして、対応する接続電極103と外部電極104同士が、積層配線基板100の内部に形成された配線電極105および層間接続導体106を介して接続されることで、積層配線基板100に再配線構造が形成されている。 With the recent increase in the density of external terminals of semiconductor elements, development of a wiring board for a probe card capable of electrical inspection of this type of semiconductor element is in progress. For example, as shown in FIG. 5, the multilayer wiring board 100 described in Patent Document 1 includes a core substrate 101 formed by stacking a plurality of ceramic layers 101 a and a plurality of resin layers 102 a (for example, polyimide). The resin part 102 which comprises. Here, a plurality of connection electrodes 103 connected to the probe pins are formed on the upper surface of the multilayer wiring substrate 100. A plurality of external electrodes 104 provided so as to correspond to the connection electrodes 103 are arranged on the lower surface of the multilayer wiring substrate 100 at a pitch wider than the pitch of the connection electrodes 103. Then, the corresponding connection electrode 103 and the external electrode 104 are connected to each other via the wiring electrode 105 and the interlayer connection conductor 106 formed inside the multilayer wiring substrate 100, so that a rewiring structure is formed on the multilayer wiring substrate 100. Is formed.
 このような再配線構造では、各接続電極103が形成される積層配線基板100の上部において、各外部電極104が形成される下部よりも配線電極105や層間接続導体106の密度を高くする必要がある。そのため、積層配線基板100の上部は、微細な電極パターンの形成が可能なポリイミド等の薄膜で形成された複数の樹脂層102aの積層体である樹脂部102で形成される。一方、配線電極105や層間接続導体106の高密度化が要求されない積層配線基板100の下部は、剛性が樹脂積層体103よりも高く、研磨等により平坦性を確保し易いセラミック(コア基板)で形成されている。 In such a rewiring structure, it is necessary to make the density of the wiring electrodes 105 and the interlayer connection conductors 106 higher in the upper part of the multilayer wiring substrate 100 in which each connection electrode 103 is formed than in the lower part in which each external electrode 104 is formed. is there. Therefore, the upper part of the multilayer wiring substrate 100 is formed by a resin portion 102 that is a laminate of a plurality of resin layers 102a formed of a thin film such as polyimide capable of forming a fine electrode pattern. On the other hand, the lower part of the multilayer wiring substrate 100 where the wiring electrodes 105 and the interlayer connection conductors 106 are not required to have high density is made of ceramic (core substrate) that has higher rigidity than the resin laminate 103 and can easily ensure flatness by polishing or the like. Is formed.
特開2011-222945号公報(段落0026~0028、図1等参照)Japanese Patent Laying-Open No. 2011-222945 (see paragraphs 0026 to 0028, FIG. 1, etc.)
 この種の積層配線基板100に部品を実装する場合、樹脂部102の上面に部品用の実装電極が設けられるが、樹脂部102と実装電極とは密着強度が低いため、部品実装後の衝撃などで実装電極が樹脂部102から剥離するおそれがある。また、樹脂部102の樹脂は、実装電極を形成する金属よりも熱膨張率が高いため、プローブカードの検査時の熱変化によっても、実装電極の剥離のおそれがある。 When a component is mounted on this type of multilayer wiring board 100, a mounting electrode for the component is provided on the upper surface of the resin portion 102. However, since the adhesion strength between the resin portion 102 and the mounting electrode is low, an impact after mounting the component, etc. Thus, the mounting electrode may be peeled off from the resin portion 102. Further, since the resin of the resin portion 102 has a higher coefficient of thermal expansion than the metal forming the mounting electrode, there is a possibility that the mounting electrode may be peeled off even by a thermal change during the inspection of the probe card.
 本発明は、上記した課題に鑑みてなされたものであり、セラミックで形成されたコア基板に樹脂部が積層されて成る積層配線基板において、樹脂部の主面に実装される部品用の実装電極の剥離を低減することを目的とする。 The present invention has been made in view of the above-described problems, and in a laminated wiring board in which a resin portion is laminated on a core substrate made of ceramic, a mounting electrode for a component mounted on the main surface of the resin portion The purpose is to reduce the peeling.
 上記した目的を達成するために、本発明の積層配線基板は、複数のプローブピンが接続される積層配線基板において、複数のセラミック層が積層されて成るコア基板と、前記コア基板の一方主面に積層され、貫通孔を有する樹脂部と、前記樹脂部の前記貫通孔に位置し、前記コア基板の前記一方主面上に設けられた部品実装用の実装電極と、前記樹脂部のうち前記コア基板に面する主面と反対側の主面である反対面に露出して設けられ、前記各プローブピンに接続される複数の接続電極とを備えることを特徴としている。 In order to achieve the above-described object, a multilayer wiring board according to the present invention includes a core board in which a plurality of ceramic layers are laminated in a multilayer wiring board to which a plurality of probe pins are connected, and one main surface of the core board. A resin part having a through hole, a mounting electrode for mounting a component located on the one main surface of the core substrate, and the resin part among the resin part. A plurality of connection electrodes are provided so as to be exposed on the opposite surface, which is the main surface opposite to the main surface facing the core substrate, and connected to the probe pins.
 この構成によると、部品実装用の実装電極が、樹脂部を形成する樹脂よりも密着強度が高いコア基板(セラミック)上に設けられるため、実装電極の剥離を低減することができる。また、コア基板を形成するセラミックは、実装電極を形成する金属との熱膨張係数の差が、樹脂部を形成する樹脂よりも小さいため、積層配線基板の温度変化に起因する実装電極の剥離を低減することができる。また、実装電極は、樹脂部の貫通孔に配置されることで樹脂部の前記反対面に露出するため、実装電極の剥離を低減しつつ、樹脂部の前記反対面に部品を実装することができる。 According to this configuration, since the mounting electrodes for component mounting are provided on the core substrate (ceramic) having higher adhesion strength than the resin forming the resin portion, peeling of the mounting electrodes can be reduced. In addition, the ceramic that forms the core substrate has a smaller difference in thermal expansion coefficient from the metal that forms the mounting electrode than the resin that forms the resin portion. Can be reduced. In addition, since the mounting electrode is exposed to the opposite surface of the resin portion by being disposed in the through hole of the resin portion, it is possible to mount a component on the opposite surface of the resin portion while reducing peeling of the mounting electrode. it can.
 また、前記貫通孔の周縁の前記樹脂部が、前記実装電極の周縁部を被覆していてもよい。このようにすると、実装電極のコア基板からの剥離の基点となる周縁部が、樹脂部で保護されるため、実装電極の剥離をさらに低減することができる。 Further, the resin portion at the periphery of the through hole may cover the periphery of the mounting electrode. If it does in this way, since the peripheral part used as the starting point of peeling from the core substrate of a mounting electrode is protected by the resin part, peeling of a mounting electrode can further be reduced.
 また、前記実装電極は、x(xは2以上の整数)層のパッド電極が積層されて成り、前記コア基板に接する前記パッド電極を第1層目として、第n(nは2以上かつx以下の整数)層目の前記パッド電極は、前記樹脂部を平面視して、第n-1層目の前記パッド電極よりも面積が小さく形成されて前記第n-1層目の前記パッド電極に収まるように配設されていてもよい。 The mounting electrode is formed by stacking x (x is an integer of 2 or more) layer pad electrodes. The pad electrode in contact with the core substrate is the first layer, and the nth (n is 2 or more and x The pad electrode of the (integer) layer is formed to have a smaller area than the pad electrode of the (n−1) th layer in plan view of the resin portion, and the pad electrode of the (n−1) th layer. It may be arranged so as to fit in.
 この構成によると、実装電極を構成する各パッド電極の面積は、コア基板に近づくにつれて大きくなるため、実装電極のコア基板との接続面の面積を容易に大きくでき、これにより、実装電極とコア基板の密着強度の向上を図ることができる。 According to this configuration, since the area of each pad electrode constituting the mounting electrode increases as it approaches the core substrate, the area of the connection surface of the mounting electrode with the core substrate can be easily increased. The adhesion strength of the substrate can be improved.
 また、前記樹脂部は、y(yは前記パッド電極の層数x以上の整数)層の樹脂層が積層されて成り、前記貫通孔は、前記各樹脂層それぞれに設けられた層貫通孔が連結されて成り、前記コア基板に接する前記樹脂層を第1層目として、第m(mは2以上かつx+1以下の整数)層目の前記樹脂層は、該樹脂層のうち前記層貫通孔の周縁部が、第m-1層目の前記パッド電極の周縁部を被覆するようにして、第m-1層目の前記樹脂層に積層されるようにしてもよい。 The resin portion is formed by laminating y resin layers (y is an integer equal to or greater than the number x of the pad electrodes), and the through hole is a layer through hole provided in each of the resin layers. The resin layer that is connected and is in contact with the core substrate is the first layer, and the m-th (m is an integer of 2 or more and x + 1 or less) layer of the resin layer is the layer through-hole of the resin layer May be laminated on the m−1th layer of the resin layer so that the periphery of the 2nd layer covers the periphery of the m−1th layer of the pad electrode.
 この構成によると、実装電極を構成する各パッド電極の周縁部が、いずれも樹脂部を構成する樹脂層により被覆されるため、実装電極のコア基板からの剥離を確実に低減することができる。 According to this configuration, since the peripheral portions of the pad electrodes constituting the mounting electrode are all covered with the resin layer constituting the resin portion, it is possible to reliably reduce the peeling of the mounting electrode from the core substrate.
 また、上述の積層配線基板が、半導体素子の電気検査を行うプローブカードに使用されるものであってもよい。この場合、熱膨張係数の差が小さいコア基板上に実装電極を設ける本発明の積層配線基板は、電気検査時に熱にさらされるプローブカードに使用する配線基板として好適である。 Further, the above-described laminated wiring board may be used for a probe card that performs an electrical inspection of a semiconductor element. In this case, the laminated wiring board of the present invention in which mounting electrodes are provided on a core board having a small difference in thermal expansion coefficient is suitable as a wiring board used for a probe card exposed to heat during electrical inspection.
 本発明によれば、部品実装用の実装電極が、樹脂部を形成する樹脂よりも密着強度が高いコア基板(セラミック)上に設けられるため、実装電極の剥離を低減することができる。また、コア基板を形成するセラミックは、実装電極を形成する金属との熱膨張係数の差が、樹脂部を形成する樹脂よりも小さいため、積層配線基板の温度変化に起因する実装電極の剥離を低減することができる。また、実装電極は、樹脂部の前記反対面に露出するため、実装電極の剥離を低減しつつ、樹脂部の前記反対面に部品を実装することができる。 According to the present invention, since the mounting electrode for component mounting is provided on the core substrate (ceramic) having higher adhesion strength than the resin forming the resin portion, it is possible to reduce the peeling of the mounting electrode. In addition, the ceramic that forms the core substrate has a smaller difference in thermal expansion coefficient from the metal that forms the mounting electrode than the resin that forms the resin portion. Can be reduced. In addition, since the mounting electrode is exposed on the opposite surface of the resin portion, it is possible to mount a component on the opposite surface of the resin portion while reducing peeling of the mounting electrode.
本発明の第1実施形態にかかるプローブカードの断面図である。It is sectional drawing of the probe card concerning 1st Embodiment of this invention. 図1の積層配線基板の断面図である。It is sectional drawing of the laminated wiring board of FIG. 本発明の第2実施形態にかかる積層配線基板の断面図である。It is sectional drawing of the laminated wiring board concerning 2nd Embodiment of this invention. 本発明の第3実施形態にかかる積層配線基板の部分断面図である。It is a fragmentary sectional view of the multilayer wiring board concerning a 3rd embodiment of the present invention. 従来の積層配線基板の断面図である。It is sectional drawing of the conventional multilayer wiring board.
 <第1実施形態>
 本発明の第1実施形態にかかるプローブカード1について、図1および図2を参照して説明する。なお、図1はプローブカード1の断面図、図2は図1の積層配線基板3aの断面図である。なお、図1では、積層配線基板3aに形成される配線電極およびビア導体の一部を図示省略している。
<First Embodiment>
A probe card 1 according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. 1 is a cross-sectional view of the probe card 1, and FIG. 2 is a cross-sectional view of the multilayer wiring board 3a of FIG. In FIG. 1, a part of the wiring electrodes and via conductors formed on the multilayer wiring board 3a is not shown.
 この実施形態にかかるプローブカード1は、図1に示すように、マザー基板2と、該マザー基板2の一方主面2aに実装された積層配線基板3aと、それぞれ積層配線基板3aに接続される複数のプローブピン5a~5eと、各プローブピン5a~5eを支持するプローブヘッド4とを備え、例えば、半導体素子などの被検査物の電気検査に使用されるものである。 As shown in FIG. 1, the probe card 1 according to this embodiment is connected to a mother board 2, a laminated wiring board 3a mounted on one main surface 2a of the mother board 2, and the laminated wiring board 3a. The apparatus includes a plurality of probe pins 5a to 5e and a probe head 4 that supports the probe pins 5a to 5e, and is used for, for example, an electrical inspection of an inspection object such as a semiconductor element.
 マザー基板2は、一方主面2aに積層配線基板3aを実装するための複数の実装電極6が形成されるとともに、他方主面2bに外部接続用の複数の外部電極7a~7eが形成される。ここで、各実装電極6は、マザー基板の内部に形成された配線電極30やビア導体31により所定の外部電極7a~7eに接続される。マザー基板2は、例えば、ガラスエポキシ樹脂などで形成されている。 In the mother substrate 2, a plurality of mounting electrodes 6 for mounting the multilayer wiring board 3a are formed on one main surface 2a, and a plurality of external electrodes 7a to 7e for external connection are formed on the other main surface 2b. . Here, each mounting electrode 6 is connected to predetermined external electrodes 7a to 7e by wiring electrodes 30 and via conductors 31 formed inside the mother substrate. The mother substrate 2 is made of, for example, glass epoxy resin.
 積層配線基板3aは、マザー基板2側に配置されたコア基板8と、該コア基板8の一方主面80aに積層された樹脂部9とを備える。このとき、コア基板8は、例えば、ホウケイ酸系ガラスを含有するセラミック(例えば、アルミナ)を主成分とする低温同時焼成セラミック(LTCC)、高温焼成セラミック(HTCC)など、種々のセラミックで形成することができる。 The laminated wiring board 3 a includes a core substrate 8 disposed on the mother substrate 2 side, and a resin portion 9 laminated on one main surface 80 a of the core substrate 8. At this time, the core substrate 8 is formed of various ceramics such as a low-temperature co-fired ceramic (LTCC) and a high-temperature fired ceramic (HTCC) mainly composed of a ceramic (for example, alumina) containing borosilicate glass. be able to.
 例えば、低温同時焼成セラミック(LTCC)の材料としては、CaO-SiO2-Al-B系ガラス50~65重量%(好ましくは60重量%)とアルミナ50~35重量%(好ましくは40重量%)との混合物を用いる。LTCCグリーンシートの焼成時には、上記LTCCグリーンシートの圧着体の両面に、該グリーンシートより焼結温度が高いダミーグリーンシート(アルミナ等の拘束層シート)を、加熱圧着した圧着体を、LTCCの焼結温度である800~1000℃(好ましくは900℃)で、LTCC基板を無収縮焼成する。この際、内層の導体パターン(例えば、配線電極14)としてCuを用いた場合には、酸化防止のため還元雰囲気中で焼成する必要があるが、Ag、Ag/Pd、Au、Ag/Ptを用いた場合には、酸化雰囲気(空気)中で焼成することが可能である。この焼成中は、LTCCグリーンシートの圧着時の加圧力より小さい圧力(例えば2~20Kgf/cm)で上記基板を加圧しながら焼成する。これにより、焼成時に基板表面が内層導体パターン部分で凸変形することが防がれ、基板表面の平坦度が確保されると共に、焼成時の基板の反りや剥離(デラミネーション)も防止される。 For example, the low-temperature co-fired ceramic (LTCC) materials include CaO—SiO 2 —Al 2 O 3 —B 2 O 3 glass 50 to 65 wt% (preferably 60 wt%) and alumina 50 to 35 wt% ( Preferably 40% by weight). When firing the LTCC green sheet, a bonded body obtained by heat-pressing a dummy green sheet (a constrained layer sheet such as alumina) having a sintering temperature higher than that of the green sheet on both surfaces of the above-mentioned LTCC green sheet is bonded to the LTCC green sheet. The LTCC substrate is fired without shrinkage at a sintering temperature of 800 to 1000 ° C. (preferably 900 ° C.). At this time, when Cu is used as the inner layer conductor pattern (for example, the wiring electrode 14), it is necessary to fire in a reducing atmosphere to prevent oxidation. However, Ag, Ag / Pd, Au, and Ag / Pt are used. When used, it can be fired in an oxidizing atmosphere (air). During this firing, the substrate is fired while being pressurized at a pressure (for example, 2 to 20 kgf / cm 2 ) that is smaller than the pressure applied when the LTCC green sheet is pressure-bonded. Accordingly, the substrate surface is prevented from being convexly deformed at the inner layer conductor pattern portion during firing, the flatness of the substrate surface is ensured, and warpage or peeling (delamination) of the substrate during firing is also prevented.
 樹脂部9は、例えば、ポリイミドなどの樹脂で形成される。なお、この実施形態では、コア基板8および樹脂部9は、それぞれ多層構造で形成されている。 Resin portion 9 is formed of a resin such as polyimide, for example. In this embodiment, the core substrate 8 and the resin portion 9 are each formed in a multilayer structure.
 各プローブピン5a~5eを保持するプローブヘッド4は、所定間隔で略平行に配置された2枚の保持板4aと、両保持板4aの間に配置されたスペーサ4bとで形成され、マザー基板2に固定されたカバー体21に固定配置される。 The probe head 4 that holds the probe pins 5a to 5e is formed of two holding plates 4a that are arranged substantially in parallel at a predetermined interval, and a spacer 4b that is arranged between the two holding plates 4a. 2 is fixedly arranged on the cover body 21 fixed to 2.
 積層配線基板3aについて、図2を参照して具体的に説明すると、コア基板8は、複数のセラミック層8aの積層体から成る。ここで、コア基板8の樹脂部9と反対側の主面80bには、マザー基板2に実装するための複数の外部接続電極10a~10eが形成され、これらの各外部接続電極10a~10eがマザー基板2に形成された所定の実装電極6にそれぞれ半田で接続される。 The multilayer wiring board 3a will be specifically described with reference to FIG. 2. The core substrate 8 is composed of a laminate of a plurality of ceramic layers 8a. Here, a plurality of external connection electrodes 10a to 10e for mounting on the mother substrate 2 are formed on the main surface 80b on the opposite side of the resin portion 9 of the core substrate 8, and each of these external connection electrodes 10a to 10e is formed. Each is connected to a predetermined mounting electrode 6 formed on the mother substrate 2 by soldering.
 コア基板8の樹脂部9側の一方主面80aには、部品12を実装するための実装電極13が形成される。また、各セラミック層8aには、各種配線電極14および複数のビア導体15が形成される。なお、各外部接続電極10a~10e、各配線電極14、各ビア導体15および実装電極13は、例えば、Cu、Ag、Al等の金属のいずれかで形成される。ここで、各外部接続電極10a~10e、各配線電極14および実装電極13は、例えば、上記金属(Cu、Ag、Al等)を含有する導電性ペーストを用いたスクリーン印刷により形成することができる。また、各外部接続電極10a~10aおよび実装電極13は、上述の金属で形成された下地電極に、Ni/Auめっきで形成された表面電極を積層する構成であってもよい。 A mounting electrode 13 for mounting the component 12 is formed on the one main surface 80a of the core substrate 8 on the resin portion 9 side. In addition, various wiring electrodes 14 and a plurality of via conductors 15 are formed in each ceramic layer 8a. The external connection electrodes 10a to 10e, the wiring electrodes 14, the via conductors 15, and the mounting electrodes 13 are formed of any one of metals such as Cu, Ag, and Al, for example. Here, each of the external connection electrodes 10a to 10e, each of the wiring electrodes 14 and the mounting electrode 13 can be formed, for example, by screen printing using a conductive paste containing the metal (Cu, Ag, Al, etc.). . Further, each of the external connection electrodes 10a to 10a and the mounting electrode 13 may have a structure in which a surface electrode formed by Ni / Au plating is laminated on a base electrode formed of the above-described metal.
 樹脂部9は、複数の樹脂層9aの積層体から成り、コア基板8の一方主面80aに積層される。ここで、樹脂部9のコア基板8と反対側の主面90a(本発明の「樹脂部の反対面」に相当)には、それぞれプローブピン5a~5eが接続される複数の接続電極11a~11eが形成される。この実施形態では、接続電極11aが電源供給用のプローブピン5aに接続され、接続電極11bおよび接続電極11eが、いずれも接地用のプローブピン5b,5eに接続され、接続電極11cおよび接続電極11dがいずれも信号送受信用のプローブピン5c,5dに接続される。なお、各接続電極11a~11eは、例えば、Cu等で形成された下地電極と、該下地電極上にNi/Auめっきが施されて成る表面電極とでそれぞれ形成することができる。 The resin part 9 is composed of a laminate of a plurality of resin layers 9 a and is laminated on the one main surface 80 a of the core substrate 8. Here, a plurality of connection electrodes 11a to 11a to which probe pins 5a to 5e are respectively connected to the main surface 90a of the resin portion 9 opposite to the core substrate 8 (corresponding to the “opposite surface of the resin portion” of the present invention). 11e is formed. In this embodiment, the connection electrode 11a is connected to the probe pin 5a for supplying power, the connection electrode 11b and the connection electrode 11e are both connected to the probe pins 5b and 5e for grounding, and the connection electrode 11c and the connection electrode 11d. Are connected to probe pins 5c and 5d for signal transmission / reception. Each of the connection electrodes 11a to 11e can be formed of, for example, a base electrode made of Cu or the like and a surface electrode formed by applying Ni / Au plating on the base electrode.
 各樹脂層9aには、各種配線電極17および複数のビア導体18が形成される。この場合、各配線電極17は、例えば、樹脂層9aの主面に、下地電極としてのTi膜をスパッタ等により成膜し、同じくスパッタ等によりTi膜上にCu膜を成膜する。そして、Cu膜上に、電解または無電解めっきにより、同じくCu膜を成膜することで形成することができる。また、各樹脂層9aに形成される配線電極17は、フォトリソグラフィ加工により微細パターンに形成される。なお、コア基板8に形成された配線電極14は、スクリーン印刷などで形成されるため厚膜パターンとなるのに対して、樹脂部9に形成された配線電極17は、スパッタ等で成膜されるため薄膜パターンとなる。また、樹脂部9に形成された配線電極17は、上記したようにフォトリソグラフィ加工で細線化される。 Various wiring electrodes 17 and a plurality of via conductors 18 are formed on each resin layer 9a. In this case, for example, each wiring electrode 17 forms a Ti film as a base electrode on the main surface of the resin layer 9a by sputtering or the like, and similarly forms a Cu film on the Ti film by sputtering or the like. And it can form by forming a Cu film | membrane similarly on a Cu film | membrane by electrolysis or electroless plating. Moreover, the wiring electrode 17 formed in each resin layer 9a is formed in a fine pattern by photolithography. The wiring electrode 14 formed on the core substrate 8 is formed by screen printing or the like and thus has a thick film pattern, whereas the wiring electrode 17 formed on the resin portion 9 is formed by sputtering or the like. Therefore, it becomes a thin film pattern. Further, the wiring electrode 17 formed on the resin portion 9 is thinned by photolithography as described above.
 各接続電極11a~11eは、マザー基板2の他方主面に形成された所定の外部電極7a~7eにそれぞれ電気的に接続される。具体的には、図1および図2に示すように、各接続電極11a~11eは、それぞれ、樹脂部9に形成された配線電極17およびビア導体18、コア基板8に形成された配線電極14およびビア導体15、マザー基板2に形成された配線電極30およびビア導体31等を介して所定の外部電極7a~7eに接続される。 The connection electrodes 11a to 11e are electrically connected to predetermined external electrodes 7a to 7e formed on the other main surface of the mother substrate 2, respectively. Specifically, as shown in FIGS. 1 and 2, each of the connection electrodes 11a to 11e includes a wiring electrode 17 and a via conductor 18 formed on the resin portion 9, and a wiring electrode 14 formed on the core substrate 8, respectively. Further, via conductor 15, wiring electrode 30 formed on mother substrate 2, via conductor 31, and the like are connected to predetermined external electrodes 7 a to 7 e.
 また、樹脂部9には、コア基板8の平面視(コア基板8の一方主面80aと垂直な方向から見た平面視)で実装電極13に重なる位置に、当該樹脂部9を厚み方向で貫通する貫通孔16が形成される。そして、当該貫通孔16を介して、実装電極13の一部が樹脂部9の主面90aに露出するように構成されている。ここで、実装電極13の周縁部は、貫通孔16の周縁の樹脂部9で被覆される。このように、樹脂部9に貫通孔を設けて実装電極13を樹脂部9の主面90aに露出させることで、コア基板8上の実装電極13と、樹脂部9の主面90aに配設された部品12との接続を可能にしている。なお、貫通孔16は、例えば、レーザ加工などで形成することができる。 In addition, the resin portion 9 is disposed on the resin portion 9 in a thickness direction at a position overlapping the mounting electrode 13 in a plan view of the core substrate 8 (a plan view seen from a direction perpendicular to the one main surface 80a of the core substrate 8). A penetrating through hole 16 is formed. A part of the mounting electrode 13 is exposed to the main surface 90 a of the resin portion 9 through the through hole 16. Here, the peripheral edge portion of the mounting electrode 13 is covered with the resin portion 9 at the peripheral edge of the through hole 16. Thus, by providing a through hole in the resin portion 9 and exposing the mounting electrode 13 to the main surface 90 a of the resin portion 9, the mounting electrode 13 on the core substrate 8 and the main surface 90 a of the resin portion 9 are disposed. It is possible to connect to the made component 12. The through-hole 16 can be formed by, for example, laser processing.
 部品12は、例えば、チップコンデンサ、チップインダクタ、チップ抵抗、ヒューズチップで構成することができる。この実施形態では、部品12が、接続電極11aと外部接続電極10bとを接続する電源ラインとグランド(接地)ラインとの間に接続されたバイパスコンデンサ(チップコンデンサ)で構成されている。 The component 12 can be composed of, for example, a chip capacitor, a chip inductor, a chip resistor, and a fuse chip. In this embodiment, the component 12 includes a bypass capacitor (chip capacitor) connected between a power supply line connecting the connection electrode 11a and the external connection electrode 10b and a ground (ground) line.
 したがって、上記した実施形態によれば、部品実装用の実装電極13が、樹脂部9を形成する樹脂よりも密着強度が高いコア基板8(セラミック)上に設けられるため、実装電極13の剥離を低減することができる。 Therefore, according to the above-described embodiment, the mounting electrode 13 for component mounting is provided on the core substrate 8 (ceramic) having higher adhesion strength than the resin forming the resin portion 9, so that the mounting electrode 13 is peeled off. Can be reduced.
 また、半導体素子などの電気検査に使用されるプローブカードでは、検査時に高温で使用されるため、実装電極13と、該実装電極13が形成される部材との熱膨張係数の差が実装電極13の剥離に影響する。ここで、コア基板8を形成するセラミックの熱膨張係数は5.5ppm/℃、樹脂部9を形成する樹脂がポリイミド場合の樹脂部9の熱膨張係数は50ppm/℃、実装電極13を形成する金属がCuの場合の実装電極13の熱膨張率は16.8ppm/℃である。この構成によると、コア基板8は、実装電極13との熱膨張係数の差が、樹脂部9よりも小さいため、コア基板8上に実装電極13を形成することで、積層配線基板3aの温度変化に起因する実装電極13の剥離を低減することができる。 In addition, since a probe card used for electrical inspection of a semiconductor element or the like is used at a high temperature during inspection, the difference in thermal expansion coefficient between the mounting electrode 13 and the member on which the mounting electrode 13 is formed is the mounting electrode 13. Affects peeling. Here, the thermal expansion coefficient of the ceramic forming the core substrate 8 is 5.5 ppm / ° C., the thermal expansion coefficient of the resin portion 9 when the resin forming the resin portion 9 is polyimide is 50 ppm / ° C., and the mounting electrode 13 is formed. The thermal expansion coefficient of the mounting electrode 13 when the metal is Cu is 16.8 ppm / ° C. According to this configuration, since the difference in thermal expansion coefficient between the core substrate 8 and the mounting electrode 13 is smaller than that of the resin portion 9, the temperature of the multilayer wiring substrate 3 a is formed by forming the mounting electrode 13 on the core substrate 8. The peeling of the mounting electrode 13 due to the change can be reduced.
 また、バイパスコンデンサ(部品12)により、プローブカード1の電気検査時に半導体素子などから発生する高周波ノイズが電源ラインに混入するのを防止する場合、半導体素子に近い位置にバイパスコンデンサを配置すると効率が良い。このような場合は、樹脂部9の主面90上に部品12の実装用の実装電極を形成するのが一般的であるが、上述のように、樹脂部9と実装電極13の密着強度は低いため、実装電極13の剥離のリスクが高まる。一方、この構成によると、部品12を樹脂部9の主面90aに配置しつつ、実装電極13をコア基板8上に形成することができるため、部品12のバイパスコンデンサとしての機能を向上させつつ、実装電極13の剥離を低減することができる。 Further, when the bypass capacitor (component 12) prevents the high frequency noise generated from the semiconductor element or the like during the electrical inspection of the probe card 1 from entering the power supply line, it is efficient to place the bypass capacitor close to the semiconductor element. good. In such a case, it is common to form a mounting electrode for mounting the component 12 on the main surface 90 of the resin part 9, but as described above, the adhesion strength between the resin part 9 and the mounting electrode 13 is Since it is low, the risk of peeling of the mounting electrode 13 increases. On the other hand, according to this configuration, since the mounting electrode 13 can be formed on the core substrate 8 while the component 12 is disposed on the main surface 90a of the resin portion 9, the function of the component 12 as a bypass capacitor is improved. Further, peeling of the mounting electrode 13 can be reduced.
 貫通孔16の周縁の樹脂部9により、実装電極13の周縁部が被覆されるため、実装電極13のコア基板8からの剥離の基点となる周縁部が、樹脂部9で保護されるため、実装電極13の剥離をさらに低減することができる。 Since the peripheral portion of the mounting electrode 13 is covered with the resin portion 9 at the peripheral edge of the through-hole 16, the peripheral portion serving as a base point for peeling the mounting electrode 13 from the core substrate 8 is protected by the resin portion 9. The peeling of the mounting electrode 13 can be further reduced.
 <第2実施形態>
 本発明の第2実施形態にかかる積層配線基板3bについて、図3を参照して説明する。なお、図3は積層配線基板3bの断面図である。
Second Embodiment
A laminated wiring board 3b according to a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a cross-sectional view of the multilayer wiring board 3b.
 この実施形態にかかる積層配線基板3bが、図1および図2を参照して説明した第1実施形態の積層配線基板3aと異なるところは、図3に示すように、樹脂部9が1層の樹脂層9aで構成されていることと、コア基板8の配線構造が異なることである。その他の構成は、第1実施形態の積層配線基板3aと同じであるため、同一符号を付すことにより説明を省略する。 The laminated wiring board 3b according to this embodiment is different from the laminated wiring board 3a of the first embodiment described with reference to FIGS. 1 and 2 in that the resin portion 9 has a single layer as shown in FIG. That is, it is composed of the resin layer 9a and the wiring structure of the core substrate 8 is different. Since other configurations are the same as those of the multilayer wiring board 3a of the first embodiment, the description thereof is omitted by giving the same reference numerals.
 この場合、コア基板8の一方主面80aには、部品12の実装用の実装電極13に加え、第1実施形態の積層配線基板3aで樹脂部9に形成されていた各接続電極11a~11eが形成される。樹脂部9には、実装電極13を露出させるための貫通孔16が設けられ、当該貫通孔16の周縁の樹脂部9により実装電極13の周縁部が被覆される。また、各接続電極11a~11eも実装電極13と同様に周縁部が樹脂部9により被覆される。
なお、樹脂部9には、第1実施形態の積層配線基板3aの樹脂部9に形成されていた配線電極17およびビア導体18が形成されておらず、これに伴って、コア基板8に形成された各配線電極14とビア導体15による配線構造が変更されている。
In this case, on one main surface 80a of the core substrate 8, in addition to the mounting electrode 13 for mounting the component 12, the connection electrodes 11a to 11e formed in the resin portion 9 in the multilayer wiring substrate 3a of the first embodiment. Is formed. The resin part 9 is provided with a through hole 16 for exposing the mounting electrode 13, and the peripheral part of the mounting electrode 13 is covered with the resin part 9 at the peripheral part of the through hole 16. The connection electrodes 11 a to 11 e are also covered with the resin portion 9 at the periphery as in the mounting electrode 13.
The resin portion 9 is not formed with the wiring electrodes 17 and the via conductors 18 formed in the resin portion 9 of the multilayer wiring board 3a of the first embodiment. The wiring structure by the wiring electrodes 14 and via conductors 15 is changed.
 この構成によると、第1実施形態の積層配線基板3aと同様の効果が得られる。また、各接続電極11a~11eが、コア基板8上に形成されるため、各接続電極11a~11eの剥離を低減することができる。 According to this configuration, the same effect as the multilayer wiring board 3a of the first embodiment can be obtained. Further, since the connection electrodes 11a to 11e are formed on the core substrate 8, peeling of the connection electrodes 11a to 11e can be reduced.
 <第3実施形態>
 本発明の第3実施形態にかかる積層配線基板3cについて、図4を参照して説明する。なお、図4は積層配線基板3cの部分断面図であって、積層配線基板3cの部品12の周辺部を示している。
<Third Embodiment>
A laminated wiring board 3c according to a third embodiment of the present invention will be described with reference to FIG. FIG. 4 is a partial cross-sectional view of the multilayer wiring board 3c, and shows the peripheral portion of the component 12 of the multilayer wiring board 3c.
 この実施形態にかかる積層配線基板3cが、図1および図2を参照して説明した第1実施形態の積層配線基板3aと異なるところは、図4に示すように、実装電極13および貫通孔16それぞれの構成が異なることである。その他の構成は、第1実施形態の積層配線基板3aと同じであるため、同一符号を付すことにより説明を省略する。 The laminated wiring board 3c according to this embodiment is different from the laminated wiring board 3a of the first embodiment described with reference to FIGS. 1 and 2 as shown in FIG. Each configuration is different. Since other configurations are the same as those of the multilayer wiring board 3a of the first embodiment, the description thereof is omitted by giving the same reference numerals.
 この場合、実装電極13は、複数層(この実施形態では3層)のパッド電極13a~13cが積層されて成る。また、実装電極13のコア基板8から最も離れたパッド電極13cには、めっき処理などで表面電極19が積層される。この場合、コア基板8に接するパッド電極13aを第1層目、パッド電極13aに積層されるパッド電極13bを第2層目、パッド電極13bに積層されるパッド電極13cを第3層目とした場合、第2層目のパッド電極13bは、平面視の面積が第1層目のパッド電極13aよりも小さく形成されて、第1層目のパッド電極13aに収まるように配設される。第3層目のパッド電極13cも同様に、平面視の面積が第2層目のパッド電極13bよりも小さく形成されて、第2層目のパッド電極13bに収まるように配設される。表面電極19は、平面視の面積が、第3層目のパッド電極13cと略同じに形成される。 In this case, the mounting electrode 13 is formed by laminating a plurality of layers (three layers in this embodiment) of pad electrodes 13a to 13c. A surface electrode 19 is laminated on the pad electrode 13c farthest from the core substrate 8 of the mounting electrode 13 by plating or the like. In this case, the pad electrode 13a in contact with the core substrate 8 is the first layer, the pad electrode 13b stacked on the pad electrode 13a is the second layer, and the pad electrode 13c stacked on the pad electrode 13b is the third layer. In this case, the second-layer pad electrode 13b is formed so that the area in plan view is smaller than that of the first-layer pad electrode 13a and fits in the first-layer pad electrode 13a. Similarly, the third-layer pad electrode 13c is formed so that the area in plan view is smaller than that of the second-layer pad electrode 13b and fits in the second-layer pad electrode 13b. The surface electrode 19 is formed so that the area in plan view is substantially the same as that of the third-layer pad electrode 13c.
 樹脂部9に設けられる貫通孔16は、各樹脂層9aそれぞれに設けられた層貫通孔16a~16dが連結されて成る。具体的に説明すると、樹脂部9において、コア基板8に接する樹脂層9aを第1層目、この樹脂層9aに積層される樹脂層9aを第2層目、第2層目の樹脂層9aに積層される樹脂層9aを第3層目、第3層目に積層される樹脂層9aを第4層目とした場合、第1層目の樹脂層9aには、第1層目のパッド電極13aよりも開口面積が大きい層貫通孔16aが設けられ、該層貫通孔16aに第1層目のパッド電極13aが配設される。この構成を形成するために、例えば、第1層目の樹脂層9aにフォトリソグラフィ技術を用いて層貫通孔16aを形成し、該層貫通孔16a内にCuめっきで第1層目のパッド電極13aを形成する。 The through hole 16 provided in the resin portion 9 is formed by connecting layer through holes 16a to 16d provided in each resin layer 9a. Specifically, in the resin portion 9, the resin layer 9a in contact with the core substrate 8 is the first layer, the resin layer 9a laminated on the resin layer 9a is the second layer, and the second resin layer 9a. When the resin layer 9a laminated on the third layer is the third layer and the resin layer 9a laminated on the third layer is the fourth layer, the first layer of the resin layer 9a has a pad of the first layer. A layer through-hole 16a having an opening area larger than that of the electrode 13a is provided, and the first-layer pad electrode 13a is disposed in the layer through-hole 16a. In order to form this configuration, for example, a layer through hole 16a is formed in the first resin layer 9a using a photolithography technique, and the first layer pad electrode is formed by Cu plating in the layer through hole 16a. 13a is formed.
 第2層目の樹脂層9aには、第1層目の樹脂層9aと同様に、平面視で第2層目のパッド電極13bよりも開口面積が大きい層貫通孔16bが設けられ、該層貫通孔16bに第2層目のパッド電極13bが配設される。このとき、層貫通孔16bの開口面積は、第2層目のパッド電極13bを配設でき、かつ、平面視で第2層目の樹脂層9aの当該層貫通孔16bの周縁部が第1層目のパッド電極13aの周縁部を被覆するような大きさで形成する。第2層目の層貫通孔16b、パッド電極13bも、第1層目の層貫通孔16aおよびパッド電極13aと同じ要領で形成することができる。 Similarly to the first resin layer 9a, the second resin layer 9a is provided with a layer through hole 16b having an opening area larger than that of the second layer pad electrode 13b in plan view. A second-layer pad electrode 13b is disposed in the through hole 16b. At this time, the opening area of the layer through-hole 16b is such that the second-layer pad electrode 13b can be disposed, and the peripheral portion of the layer through-hole 16b of the second-layer resin layer 9a is first in plan view. It is formed in such a size as to cover the peripheral edge of the pad electrode 13a of the layer. The second layer through-hole 16b and the pad electrode 13b can also be formed in the same manner as the first layer through-hole 16a and the pad electrode 13a.
 そして、第3層目の樹脂層9aの層貫通孔16cおよびパッド電極13cも、第1、第2層目の層貫通孔16a,16b、パッド電極13a,13bと同じ要領で形成する。ここで、第3層目のパッド電極13cの表面(第3層目の層貫通孔16cからの露出面)に、さらに表面電極19を形成する。表面電極19は、Ni/Auめっきにより形成される。 The layer through hole 16c and the pad electrode 13c of the third resin layer 9a are also formed in the same manner as the first and second layer through holes 16a and 16b and the pad electrodes 13a and 13b. Here, the surface electrode 19 is further formed on the surface of the third-layer pad electrode 13c (exposed surface from the third-layer through-hole 16c). The surface electrode 19 is formed by Ni / Au plating.
 最後に、第4層目の樹脂層9aの平面視で第3層目のパッド電極13cと重なる領域に層貫通孔16dを形成する。このとき、層貫通孔16dの開口面積は、第4層目の樹脂層9aの層貫通孔16dの周縁部が、第3層目のパッド電極13cの周縁部を被覆するような大きさで形成する。 Finally, a layer through hole 16d is formed in a region overlapping the third layer pad electrode 13c in plan view of the fourth resin layer 9a. At this time, the opening area of the layer through-hole 16d is formed such that the peripheral edge of the layer through-hole 16d of the fourth resin layer 9a covers the peripheral edge of the third-layer pad electrode 13c. To do.
 なお、各パッド電極13a~13cは、いずれも同じ樹脂層9aに形成されるビア導体18と同時に形成することができるため、パッド電極13a~13cの形成に新たな工程は不要である。また、この実施形態では、樹脂部9の層数(4層)が、実装電極13の層数(3層)よりも多い場合について説明したが、これらの層数が同じであってもよい。 Note that each of the pad electrodes 13a to 13c can be formed at the same time as the via conductor 18 formed in the same resin layer 9a, so that a new process is not required for forming the pad electrodes 13a to 13c. Moreover, although this embodiment demonstrated the case where the number of layers (4 layers) of the resin part 9 was larger than the number of layers (3 layers) of the mounting electrode 13, these number of layers may be the same.
 また、樹脂部9の各樹脂層9aや実装電極13の各パッド電極13a~13cそれぞれの層数は、適宜変更することができる。ここで、実装電極の層数がx(xは2以上の整数)で、コア基板8に接するパッド電極13aを第1層目とした場合は、第n(nは2以上かつx以下の整数)層目のパッド電極が、樹脂部9を平面視して、第n-1層目のパッド電極よりも面積が小さく形成されて第n-1層目のパッド電極に収まるように配設されていればよい。また、このときの樹脂部については、樹脂層の層数がy(前記パッド電極の層数x以上の整数)で、コア基板8に接する樹脂層を第1層目とした場合、第m(mは2以上かつx+1以下の整数)層目の樹脂層は、該樹脂層のうち層貫通孔の周縁部が、第m-1層目のパッド電極の周縁部を被覆するようにして、第m-1層目の樹脂層に積層されるとよい。 The number of layers of each resin layer 9a of the resin portion 9 and each of the pad electrodes 13a to 13c of the mounting electrode 13 can be changed as appropriate. Here, when the number of layers of the mounting electrode is x (x is an integer of 2 or more) and the pad electrode 13a in contact with the core substrate 8 is the first layer, the nth (n is an integer of 2 or more and x or less) ) The pad electrode in the layer is formed so as to have a smaller area than the pad electrode in the (n−1) th layer in a plan view of the resin portion 9 and is fitted in the pad electrode in the (n−1) th layer. It only has to be. Further, regarding the resin portion at this time, when the number of resin layers is y (an integer greater than or equal to the number x of the pad electrodes) and the resin layer in contact with the core substrate 8 is the first layer, the mth ( m is an integer not less than 2 and not more than x + 1) In the resin layer of the first layer, the periphery of the layer through hole of the resin layer covers the periphery of the pad electrode of the (m-1) th layer. It is preferable to be laminated on the m−1th resin layer.
 この構成によると、実装電極13を構成する各パッド電極13a~13cの面積(平面視での面積)は、コア基板8に近づくにつれて大きくなるため、実装電極13のコア基板8との接続面の面積を容易に大きくすることができ、これにより、実装電極13とコア基板8の密着強度の向上を図ることができる。また、最上層のパッド電極13cの面積を小さくできることで、樹脂部9の主面90aの空きスペースを広げることができるため、樹脂部9の主面90aの設計自由度を向上することができる。 According to this configuration, the area (area in plan view) of each of the pad electrodes 13a to 13c constituting the mounting electrode 13 increases as it approaches the core substrate 8, and therefore the connection surface of the mounting electrode 13 to the core substrate 8 is increased. The area can be easily increased, whereby the adhesion strength between the mounting electrode 13 and the core substrate 8 can be improved. Moreover, since the space of the main surface 90a of the resin part 9 can be expanded by reducing the area of the uppermost pad electrode 13c, the degree of freedom in designing the main surface 90a of the resin part 9 can be improved.
 また、実装電極13を構成する各パッド電極13a~13cの周縁部が、いずれも当該パッド電極13a~13cの1つ上の樹脂層9aにより被覆されるため、実装電極13のコア基板8からの剥離を確実に低減することができる。 Further, since the peripheral portions of the pad electrodes 13a to 13c constituting the mounting electrode 13 are all covered with the resin layer 9a on one of the pad electrodes 13a to 13c, the mounting electrode 13 from the core substrate 8 is covered. Peeling can be reliably reduced.
 なお、本発明は上記した各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上記したもの以外に種々の変更を行なうことが可能である。例えば、上記した各実施形態では、部品12がバイパスコンデンサである場合について説明したが、電源ラインにノイズが混入するのを防止する他の方法として、部品12をチップインダクタで構成してもよい。この場合、チップインダクタを電源ラインに直列接続するとよい。 The present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit of the invention. For example, in each of the embodiments described above, the case where the component 12 is a bypass capacitor has been described. However, as another method for preventing noise from entering the power supply line, the component 12 may be configured by a chip inductor. In this case, the chip inductor may be connected in series with the power supply line.
 また、各セラミック層8aおよび各樹脂層9aの層数それぞれは、適宜、変更することができる。 Moreover, the number of layers of each ceramic layer 8a and each resin layer 9a can be appropriately changed.
産業の利用可能性Industrial applicability
 本発明は、複数のセラミック層が積層されて成るコア基板と、該コア基板の一方主面に積層された樹脂部とを備える種々の積層配線基板およびこれを備えるプローブカードに適用することができる。 INDUSTRIAL APPLICABILITY The present invention can be applied to various laminated wiring boards including a core substrate formed by laminating a plurality of ceramic layers, and a resin portion laminated on one main surface of the core substrate, and a probe card including the same. .
 1  プローブカード
 3a~3c  積層配線基板
 8  コア基板
 8a  セラミック層
 9  樹脂部
 9a  樹脂層
 11a~11e  接続電極
 13  実装電極
 13a~13c  パッド電極
 16  貫通孔
 16a~16d  層貫通孔
 80a  コア基板の一方主面
 90a  樹脂部の主面(反対面)
DESCRIPTION OF SYMBOLS 1 Probe card 3a-3c Multilayer wiring board 8 Core board 8a Ceramic layer 9 Resin part 9a Resin layer 11a-11e Connection electrode 13 Mounting electrode 13a-13c Pad electrode 16 Through-hole 16a-16d Layer through-hole 80a One main surface of core board 90a Main surface of resin part (opposite surface)

Claims (5)

  1.  複数のプローブピンが接続される積層配線基板において、
     複数のセラミック層が積層されて成るコア基板と、
     前記コア基板の一方主面に積層され、貫通孔を有する樹脂部と、
     前記樹脂部の前記貫通孔に位置し、前記コア基板の前記一方主面上に設けられた部品実装用の実装電極と、
     前記樹脂部のうち前記コア基板に面する主面と反対側の主面である反対面に露出して設けられ、前記各プローブピンに接続される複数の接続電極と
    を備えることを特徴とする積層配線基板。
    In a laminated wiring board to which a plurality of probe pins are connected,
    A core substrate formed by laminating a plurality of ceramic layers;
    A resin portion laminated on one main surface of the core substrate and having a through hole;
    A mounting electrode for component mounting located on the one main surface of the core substrate, located in the through hole of the resin portion,
    A plurality of connection electrodes are provided which are exposed on the opposite surface which is the principal surface opposite to the principal surface facing the core substrate in the resin portion, and are connected to the probe pins. Multilayer wiring board.
  2.  前記貫通孔の周縁の前記樹脂部が、前記実装電極の周縁部を被覆していることを特徴とする請求項1に記載の積層配線基板。 2. The multilayer wiring board according to claim 1, wherein the resin portion at the periphery of the through hole covers the periphery of the mounting electrode.
  3.  前記実装電極は、x(xは2以上の整数)層のパッド電極が積層されて成り、
     前記コア基板に接する前記パッド電極を第1層目として、第n(nは2以上かつx以下の整数)層目の前記パッド電極は、前記樹脂部を平面視して、第n-1層目の前記パッド電極よりも面積が小さく形成されて前記第n-1層目の前記パッド電極に収まるように配設されることを特徴とする請求項1または2に記載の積層配線基板。
    The mounting electrode is formed by stacking x (x is an integer of 2 or more) layer pad electrodes,
    The pad electrode in contact with the core substrate is the first layer, and the pad electrode of the nth (n is an integer not less than 2 and not more than x) layer is the (n−1) th layer in plan view of the resin portion. 3. The multilayer wiring board according to claim 1, wherein the multilayer wiring board is formed so as to have a smaller area than the pad electrode of the eye and fit in the pad electrode of the (n−1) th layer.
  4.  前記樹脂部は、y(yは前記パッド電極の層数x以上の整数)層の樹脂層が積層されて成り、
     前記貫通孔は、前記各樹脂層それぞれに設けられた層貫通孔が連結されて成り、
     前記コア基板に接する前記樹脂層を第1層目として、第m(mは2以上かつx+1以下の整数)層目の前記樹脂層は、該樹脂層のうち前記層貫通孔の周縁部が、第m-1層目の前記パッド電極の周縁部を被覆するようにして、第m-1層目の前記樹脂層に積層されることを特徴とする請求項3に記載の積層配線基板。
    The resin portion is formed by laminating y resin layers (y is an integer greater than or equal to the number x of the pad electrodes).
    The through hole is formed by connecting layer through holes provided in each of the resin layers,
    The resin layer in contact with the core substrate is the first layer, and the m-th (m is an integer of 2 or more and x + 1 or less) layer of the resin layer has a peripheral portion of the layer through hole in the resin layer, 4. The multilayer wiring board according to claim 3, wherein the laminated wiring board is laminated on the m−1th resin layer so as to cover a peripheral edge of the m−1th layer pad electrode. 5.
  5.  請求項1ないし4のいずれかに記載の積層配線基板を備え、半導体素子の電気検査を行うことを特徴とするプローブカード。 5. A probe card comprising the laminated wiring board according to claim 1 and performing an electrical inspection of a semiconductor element.
PCT/JP2016/067878 2015-06-19 2016-06-16 Laminated wiring board and probe card provided with same WO2016204209A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177031146A KR102014111B1 (en) 2015-06-19 2016-06-16 Laminated wiring board and probe card having the same
JP2017525284A JP6500987B2 (en) 2015-06-19 2016-06-16 Laminated wiring board and probe card provided with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015124027 2015-06-19
JP2015-124027 2015-06-19

Publications (1)

Publication Number Publication Date
WO2016204209A1 true WO2016204209A1 (en) 2016-12-22

Family

ID=57545710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067878 WO2016204209A1 (en) 2015-06-19 2016-06-16 Laminated wiring board and probe card provided with same

Country Status (3)

Country Link
JP (1) JP6500987B2 (en)
KR (1) KR102014111B1 (en)
WO (1) WO2016204209A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663407B (en) * 2018-06-06 2019-06-21 中華精測科技股份有限公司 Probe card device and three-dimensional signal transfer structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234659A (en) * 2006-02-27 2007-09-13 Kyocera Corp Substrate and electronic apparatus employing it
JP2009081334A (en) * 2007-09-27 2009-04-16 Aisin Aw Co Ltd Multi-layer printed wiring board, and manufacturing method thereof
JP2012074635A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Method of inspecting semiconductor package substrate, method of manufacturing semiconductor package substrate, and semiconductor package substrate
JP2014116603A (en) * 2012-12-11 2014-06-26 Intel Corp Recessed mounting of discrete component on organic substrate
JP2015109379A (en) * 2013-12-05 2015-06-11 株式会社村田製作所 Component built-in module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574917B2 (en) 2010-03-25 2014-08-20 京セラ株式会社 Multilayer wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234659A (en) * 2006-02-27 2007-09-13 Kyocera Corp Substrate and electronic apparatus employing it
JP2009081334A (en) * 2007-09-27 2009-04-16 Aisin Aw Co Ltd Multi-layer printed wiring board, and manufacturing method thereof
JP2012074635A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Method of inspecting semiconductor package substrate, method of manufacturing semiconductor package substrate, and semiconductor package substrate
JP2014116603A (en) * 2012-12-11 2014-06-26 Intel Corp Recessed mounting of discrete component on organic substrate
JP2015109379A (en) * 2013-12-05 2015-06-11 株式会社村田製作所 Component built-in module

Also Published As

Publication number Publication date
KR102014111B1 (en) 2019-08-26
JPWO2016204209A1 (en) 2018-04-05
JP6500987B2 (en) 2019-04-17
KR20170132267A (en) 2017-12-01

Similar Documents

Publication Publication Date Title
JP3982563B2 (en) Ceramic electronic component and method for manufacturing the same
JP6304263B2 (en) Multilayer wiring board and inspection apparatus including the same
JP2005045013A (en) Circuit module and its manufacturing method
WO2015102107A1 (en) Stacked wiring substrate, and inspection device provided with same
WO2015151809A1 (en) Laminated wiring board and probe card provided with same
JPWO2005067359A1 (en) Ceramic multilayer substrate
JP6508416B2 (en) Laminated wiring board for probe card and probe card provided with the same
JP2008112790A (en) Semiconductor package and its manufacturing method
WO2018180628A1 (en) Electronic component-incorporating substrate
JP6589990B2 (en) Laminated wiring board for probe card and probe card having the same
JP4752612B2 (en) Manufacturing method of circuit board with protruding electrode
JP5958454B2 (en) Built-in module
WO2016204209A1 (en) Laminated wiring board and probe card provided with same
JP2004056115A (en) Multilayer wiring board
KR100882101B1 (en) Method of manufacturing the non-shrinkage ceramic substrate
JP2018049988A (en) Wiring substrate, electronic device, and electronic module
KR100956212B1 (en) Manufacturing method of multi-layer substrate
JP6418918B2 (en) Circuit board for probe card and probe card having the same
WO2016114170A1 (en) Probe card and multilayer wiring board with which said probe card is provided
JP6887862B2 (en) Organic circuit boards, circuit boards and probe cards
JP2009147160A (en) Manufacturing method of multilayer ceramic substrate, multilayer ceramic substrate, and electronic component using the same
JP2008072151A (en) Circuit board
KR100471149B1 (en) Method of manufacturing a low temperature co-fired ceramic substrate module package
JP2002368426A (en) Laminated ceramic electronic component and its manufacturing method as well as electronic device
JP6225057B2 (en) Multilayer ceramic circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177031146

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017525284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811683

Country of ref document: EP

Kind code of ref document: A1