WO2016203862A1 - Signal processing method, biosignal processing method, signal processing device, and biosignal processing device - Google Patents

Signal processing method, biosignal processing method, signal processing device, and biosignal processing device Download PDF

Info

Publication number
WO2016203862A1
WO2016203862A1 PCT/JP2016/063672 JP2016063672W WO2016203862A1 WO 2016203862 A1 WO2016203862 A1 WO 2016203862A1 JP 2016063672 W JP2016063672 W JP 2016063672W WO 2016203862 A1 WO2016203862 A1 WO 2016203862A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
signal
noise
measurement
signal processing
Prior art date
Application number
PCT/JP2016/063672
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 冨田
Original Assignee
フォスター電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フォスター電機株式会社 filed Critical フォスター電機株式会社
Publication of WO2016203862A1 publication Critical patent/WO2016203862A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure

Definitions

  • the present invention relates to a signal processing method, a biological signal processing method, a signal processing device, and a biological signal processing device that extract information signals by removing noise from a measurement signal measured in a state where information signals and noise are mixed.
  • a pulse wave acquisition earphone by incorporating a sensor in the earphone. That is, a sensor for measuring a pulse wave, which is a signal linked to the heartbeat, is attached to the earphone, so that a biological signal can be acquired and analyzed on a daily basis.
  • the results obtained by measuring pulse waves in this way can be applied to daily health management, lifestyle-related diseases, chronic stress diagnosis, etc., and are useful for healthcare problems that are an issue in developed countries. It is expected. For example, during exercise for maintaining health, it is becoming common to exercise while measuring the heart rate in order to make the effect of exercise effective. For such heart rate management during exercise, the above-described pulse wave acquisition earphone can be used in a portable biometric device or the like.
  • body motion noise has a frequency close to that of a pulse wave and has a large amplitude, so it cannot be easily removed. For this reason, there are two main approaches to countermeasures.
  • the first is hardware design for stabilizing the contact state of the sensor, and the second is noise removal by signal processing.
  • the hardware design includes reduction of the earphone cable swing due to wireless communication and a special shape for fixing the sensor.
  • the optimal hardware form largely depends on the usage scene, it cannot cope with all situations.
  • noise removal by signal processing has high utility value because it is not so limited by the usage scene.
  • a body motion sensor that detects the body motion of the subject is provided to separate the pulse wave signal included in the measurement signal from the body motion noise.
  • a body motion sensor in this case, a triaxial acceleration sensor or the like is necessary, and it is difficult to incorporate it in a small earphone.
  • noise other than body movement noise due to disturbance light
  • Frequency selection The frequency of the measurement signal is selected using a band pass filter or the like. In this case, the structure is simple and easy to design, but there is a problem that it is difficult to remove noise close to the frequency of the pulse wave.
  • b. Sudden noise removal Remove sudden noise by using a median filter. In this case, even if the amplitude is large, it can be removed, but there is a problem that it is difficult to remove if the sudden noise is continuous.
  • the existing methods a to c have a common problem that the effect is small for noise having a frequency close to that of the pulse wave.
  • the present invention has been made to solve the above-described problems, and a signal processing method, a biological signal processing method, and a signal that can obtain an estimated signal from which noise has been removed by filtering the information signal.
  • An object is to provide a processing device and a biological signal processing device.
  • the present invention is a signal processing method for extracting an information signal by removing noise from a measurement signal measured in a state where information signals and noise are mixed, and acquiring a plurality of measurement signals at different measurement locations. Detecting a correlation between the plurality of measurement signals, detecting phase synchronization between the plurality of measurement signals, and detecting a non-correlated component having a low correlation from each of the plurality of measurement signals and the phase synchronization. And a plurality of estimated signals estimated as the information signal are output.
  • a correlation is detected by calculating a mutual spectrum of a plurality of measurement signals.
  • the cross spectrum of the plurality of measurement signals is calculated to detect the correlation, and the phase synchronization is detected by a non-phase synchronization cancel function of the plurality of measurement signals. It is characterized by that.
  • the plurality of measurement signals are two pulse wave signals obtained by measuring pulse waves at left and right target positions of the subject, and the measurement signals according to any one of (1) to (3) above
  • This is biological signal processing characterized by using signal processing.
  • a plurality of measurement signals at different measurement locations are acquired, the correlation between the plurality of measurement signals is detected, the phase synchronism between the plurality of measurement signals is detected, and each of the plurality of measurement signals is detected. Since the uncorrelated component and the non-phase-synchronous component are removed from the output signal and the multiple estimated signals that are estimated as the information signal are output, the correlation and synchronism between the signals are evaluated and it does not depend on the frequency information Even when the frequency of the information signal and the noise is close, it is possible to remove the noise from the measurement signal in which the information signal and the noise are mixed and extract a desired information signal.
  • the pulse wave signal has phase synchronization and correlation.
  • To detect the correlation by calculating the mutual spectrum of multiple measurement signals and detecting the phase synchronization by the non-phase synchronization cancellation function of the mutual spectrum of multiple measurement signals. Even if the frequency of noise is close to that of the noise, the noise and the information signal can be separated by filtering focusing on the correlation and phase synchronization, and the noise from the measurement signal in which the information signal and noise are mixed Thus, it is possible to extract a desired information signal.
  • Sensor 11 and sensor 12 are a plurality of sensors arranged at different measurement locations that measure pulse waves, which are signals linked to the heartbeat of the subject.
  • the sensor 11 and the sensor 12 can be configured by known optical sensors or the like.
  • the plurality of sensors are at least two, but may be more than that.
  • sensors 11 and 12 In the present embodiment, a description will be given using a specific example in which two sensors 11 and 12 are provided and signal processing is executed based on two measurement results. These sensors 11 and 12 measure pulse waves at different measurement locations, and generate information signals from the measurement results of pulse waves that are desired measurement targets. In addition, these sensors 11 and 12 output noise as measurement signals in a state where measurement signals other than pulse waves due to body movements, disturbance light, and the like of the subject are mixed in the information signal.
  • the signal processing apparatus 100 removes the noises n1 and n2 from the plurality of measurement signals x1 and x2 measured in a state where the information signals (pulse waves) s1 and s2 and the noises n1 and n2 coexist, thereby removing the information signals (pulses). Wave) components are extracted and a plurality of estimated signals s′1 and s′2 are output.
  • the inner product is 0, the inner product of s1 and n2 is 0, the inner product of s2 and n1 is 0, and the inner product of s2 and n2 is 0).
  • the signal processing apparatus 100 includes a signal acquisition unit 101 and a signal acquisition unit 102 that acquire a plurality of measurement signals x1 and x2 from the sensor 11 and the sensor 12. Further, the signal processing apparatus 100 includes a signal output unit 131 and a signal output unit 132 in order to output a plurality of estimated signals s′1 and s′2 subjected to signal processing.
  • the signal processing apparatus 100 includes a filter coefficient generation unit 110 and an information signal extraction unit 120 in order to execute signal processing.
  • the filter coefficient generator 110 includes a cross spectrum calculator 111, a phase synchronization detector 112, a power spectrum calculator 113, a power spectrum calculator 114, an inverse processor 115, an inverse processor 116, and an operator 117. And a calculation unit 118.
  • the cross spectrum calculation unit 111 calculates a cross spectrum (mutual spectrum) C x1x2 meaning cross-correlation by multiplying the frequency components of the plurality of input measurement signals x1 and x2.
  • the phase synchronization detection unit 112 calculates phase synchronization related to the phase difference between the plurality of input measurement signals x1 and x2.
  • a function (non-phase synchronization cancellation function) ⁇ meaning phase synchronization is introduced.
  • ⁇ using the phase of the cross spectrum as an input variable approaches 0.
  • the power spectrum calculation unit 113 squares the Fourier spectrum of one measurement signal x1 to calculate a power spectrum (self spectrum) that means autocorrelation. Similarly, the power spectrum calculation unit 114 squares the Fourier spectrum of the other measurement signal x2 to calculate a power spectrum that means autocorrelation.
  • the reciprocal processing unit 115 generates a reciprocal C ⁇ 1 X1X1 of the power spectrum of one measurement signal x1.
  • the reciprocal processing unit 116 generates the reciprocal C ⁇ 1 X2X2 of the power spectrum of the other measurement signal x2.
  • the information signal extraction unit 120 includes a filter processing unit 121 and a filter processing unit 122.
  • the filter processing unit 121 and the filter processing unit 122 perform the filter processing generated by the filter coefficient generation unit 110 on the plurality of measurement signals x1 and x2 from the sensors 11 and 12, thereby causing noise n1.
  • N2 and a plurality of estimated signals s′1, s′2 are extracted.
  • the sensor 11 is installed on one of the earphones, and generates a measurement signal x1 measured in a state where the information signal (pulse wave) s1 and the noise n1 are mixed.
  • the sensor 12 is installed on the other side of the earphone, and generates a measurement signal x2 measured in a state where an information signal (pulse wave) s2 and noise n2 are mixed.
  • the information signal s1 and the information signal s2 are caused by a pulse wave that is a signal linked to the heartbeat of the subject, and from both ears that are the left and right target positions of the subject. Since it was measured, it has high correlation and high phase synchronization.
  • the information signal s1 and the noise n1 are caused by completely different vibration sources and often do not have correlation and phase synchronization (non-correlation and non-phase synchronization).
  • the information signal s2 and the noise n2 are caused by completely different vibration sources, and often have neither correlation nor phase synchronization (non-correlation and non-phase synchronization).
  • the noise n1 and the noise n2 often have no correlation and phase synchronism, or have low correlation and phase synchronism (non-correlation and non-phase synchronism).
  • Measured signal model There are two types of measurement signals x1 and x2, each of which comprises information signals s1 and s2 and noises n1 and n2.
  • the information signal and noise are uncorrelated (the inner product of s1 and n1 is 0, the inner product of s1 and n2 is 0, the inner product of s2 and n1 is 0, and the inner product of s2 and n2 is 0).
  • ⁇ Purpose of processing An estimated signal from which the noise signal is removed is obtained by filtering the measurement signal including the information signal and noise.
  • Solution policy A Wiener filter that minimizes the mean square error between the information signal and the estimated signal can be used.
  • Solution 1 A cross spectrum is introduced in the derivation of the Wiener filter. In this case, if the noise is uncorrelated (the inner product of n1 and n2 is 0), the effect can be expected.
  • Solution 2 In addition to the above solution technique 1, a non-phase synchronization cancellation function ( ⁇ ) is further introduced. In this case, even if the noise is correlated, if it is non-phase-synchronized (the inner product of n1 and n2 is not 0, but the phase difference is not 0), it can be expected to exert an effect.
  • the cross spectrum calculation unit 111, the power spectrum calculation unit 113, the power spectrum calculation unit 114, the reciprocal number processing unit 115, and the reciprocal number processing unit 116 detect the correlation between the plurality of measurement signals x1 and x2.
  • a correlation detection unit is configured.
  • the Wiener filter can be obtained using only the measurement signal by assuming that there is no correlation between the noise and the pulse wave, two correlations between the noise and the like.
  • the phase synchronization detection unit 112 constitutes a phase synchronization detection unit that detects the phase synchronization of the plurality of measurement signals x1 and x2.
  • a filter coefficient for removing the noise can be obtained if the phases are out of phase and non-phase-synchronous.
  • the filter processing unit 121 and the filter processing unit 122 are each composed of a time series filter, and the correlation is obtained from each of the plurality of measurement signals based on the filter coefficient generated by the correlation and the phase synchronization.
  • the non-correlated component having a low phase and the non-phase synchronous component having a low phase synchronism are removed to constitute an information signal extraction unit 120 that extracts an information signal.
  • an information signal extraction unit 120 that extracts an information signal.
  • filter coefficients are generated so as to extract high components from two measurement signals obtained from the two sensors 11 and 12 while suppressing low correlation and phase synchronization components from the above conditions. Generated by the unit 110. Then, the information signal extraction unit 120 using the filter coefficient extracts high components from the two measurement signals obtained from the two sensors 11 and 12 while suppressing components having low correlation and phase synchronization. Noise is removed by filtering.
  • noise removal is signal processing for obtaining estimated signals s′1 and s′2 close to s using only the measurement signals x1 and x2.
  • the Wiener filter is a filter that regards signals and noise as stochastic processes and minimizes the mean square error that is an evaluation function.
  • 2 ] ⁇ [
  • ⁇ [] means an expected value of the expression in [].
  • H1 ( ⁇ ) ⁇ [X * 1 ( ⁇ ) X1 ( ⁇ )] ⁇ 1 ⁇ [S * ( ⁇ ) X1 ( ⁇ )] (6) It becomes. Thereby, the winner filter H1 ( ⁇ ) is obtained.
  • the one with * on the right shoulder of a character means a complex conjugate.
  • Equations (8) and (9) will not be equal, but noise non-phase synchrony is assumed and the noise phase difference is considered. To further increase the noise effect. For this reason, in the phase synchronization detection unit 112 using a function (non-phase synchronization cancellation function) ⁇ meaning phase synchronization, The above C X1X2 ( ⁇ ) is changed to ⁇ ( ⁇ ) C X1X2 ( ⁇ ) (12) And
  • ⁇ ( ⁇ ) ⁇ (cos ( ⁇ C X1X2 ( ⁇ )) + 1) / 2 ⁇ p (13) Then, the filter coefficient is calculated.
  • p is a parameter for adjusting how far non-phase synchronism is allowed.
  • FIG. 2 shows ⁇ ( ⁇ ) when p is changed.
  • the angle is 0 [rad]
  • ⁇ ( ⁇ ) 1
  • the above C X1X2 ( ⁇ ) is stored as it is.
  • ⁇ ( ⁇ ) 1
  • the value of the above equation (12) decreases, and its component is suppressed by the Wiener filter.
  • p is increased
  • the effect of removing the non-phase-synchronous component is increased. Therefore, it is desirable to increase p.
  • the filter is generated by ⁇ C X1X2 calculated by the cross spectrum calculation unit 111 and the phase synchronization detection unit 112 as described above, and C ⁇ 1 X1X1 calculated by the power spectrum calculation unit 113 and the reciprocal processing unit 115, and the filter
  • H2 ( ⁇ ) C ⁇ 1 X2X2 ⁇ C X1X2 (11 ′) It becomes.
  • the filter processing unit 121 configured with a time-series filter removes noise from the measurement signal using uncorrelated components and non-phase-synchronized components by executing processing using the filter coefficient of the above equation (10 ′).
  • an estimated signal estimated as a pulse wave can be output.
  • the filter processing unit 122 configured with a time-series filter performs processing using the filter coefficient of the above equation (11 ′), so that noise is generated from the measurement signal by uncorrelated components and non-phase-synchronized components. And an estimated signal estimated as a pulse wave can be output.
  • the noise removal method proposed in this embodiment is expressed by the block diagram shown in FIG.
  • the estimated signals s′1 and s′2 are obtained from the measurement signals x1 and x2 by the filter coefficients h1 and h2.
  • the filter coefficient is sequentially updated by the frame processing.
  • the pulse wave component is replaced with a sine wave and non-phase-synchronous noise is mixed in the two measurement signals.
  • the experimental conditions in this case are shown in FIG. A measurement signal in a state where a sine wave noise of 1.5 [Hz] and white noise are superimposed on a sine wave pulse signal of 1.0 [Hz] is used.
  • the sine wave noise of 1.5 [Hz] is shifted in phase by 0.1 ⁇ on the left and right.
  • the allowable parameter p of non-phase synchronicity is 100
  • the update coefficient ⁇ is 0.5
  • the number of FIR taps is 100
  • the frequency conversion window length is 15 [s]
  • the frame shift time is 0.5 [s].
  • FIG. 4 (1) and (2) show that the measurement signals x1 and x2 are mixed with sinusoidal pulse wave signals and sinusoidal noise. In this state, the pulse wave component cannot be read from the waveforms of x1 and x2.
  • the estimated signals s ′ 1 and s ′ 2 with the noise removed and the pulse wave s component appear are extracted. can do.
  • the experiment was also performed with the pulse wave based on the heartbeat of the subject and the jaw moved as the body motion of the subject.
  • the measurement signal x1 shown in FIG. 5 (1) shows a state in which the pulse wave signal of the subject and the body movement noise of the subject are mixed. In this state, the pulse wave component cannot be read from the waveform of x1.
  • the sensors 11 and 12 are supposed to be attached to the left and right positions of the subject, for example, both ears. However, the present invention can be applied even when the sensors are arranged at different positions other than both ears.
  • phase shift of the pulse wave is expected, it is necessary to calculate and give the phase shift ⁇ in advance when determining the parameter ⁇ described above.
  • ⁇ ( ⁇ ) ⁇ (cos ( ⁇ C X1X2 ( ⁇ ) ⁇ ⁇ ) +1) / 2 ⁇ p (13 ′) It is possible to respond by changing.
  • the noise changes from moment to moment, but the peak frequency and intensity of the pulse wave change only within a certain range. Therefore, by specifying the pulse wave change range in advance, the pulse rate detection accuracy can be increased.
  • the pulse wave has been described using a specific example of removing noise included in the measurement signal.
  • the present invention can be applied to various biological signals other than the pulse wave.
  • the mutual spectrum of a plurality of measurement signals is calculated to detect the correlation and filter processing is performed, it is possible to remove the noise from the measurement signal in which the information signal and the noise are mixed to extract a desired information signal. It becomes possible.
  • information signals and noise are mixed because the cross spectrum of multiple measurement signals is calculated to detect correlation and the phase synchronization is detected by the non-phase synchronization cancellation function of the mutual spectrum of multiple measurement signals. It is possible to extract a desired information signal by removing noise from the measured signal.
  • the pulse wave signal includes phase synchronization and correlation.
  • the noise and the information signal can be separated by filtering focusing on the correlation and phase synchronization, and the noise can be removed from the measurement signal mixed with the information signal and noise.
  • the desired information signal can be extracted by removing the signal.

Abstract

[Problem] To find an estimated signal from which noise has been removed using a filter process on an information signal. [Solution] Provided is a signal processing method that extracts an information signal by removing noise from a measured signal that is measured in circumstances in which the information signal and noise are mixed, wherein the method obtains a plurality of measured signals from different measurement locations, detects correlations among the plurality of measured signals, detects phase synchronicity among the plurality of measured signals, and outputs a plurality of estimated signals that are estimated to be the information signal by removing uncorrelated components with low correlation and non-phase synchronous components with low phase synchronicity from each of the plurality of measured signals.

Description

信号処理方法、生体信号処理方法、信号処理装置及び生体信号処理装置Signal processing method, biological signal processing method, signal processing apparatus, and biological signal processing apparatus
 本発明は、情報信号とノイズとが混在した状態で測定された測定信号からノイズを除去して情報信号を抽出する信号処理方法、生体信号処理方法、信号処理装置及び生体信号処理装置に関する。 The present invention relates to a signal processing method, a biological signal processing method, a signal processing device, and a biological signal processing device that extract information signals by removing noise from a measurement signal measured in a state where information signals and noise are mixed.
 ヘルスケアの分野において、イヤホンにセンサを内蔵させることで、脈波取得イヤホンを構成することが可能である。
 すなわち、心臓の拍動と連動した信号である脈波を計測するセンサをイヤホンに取り付け、日常的に生体信号の取得や解析を行なうことが可能になる。
In the health care field, it is possible to configure a pulse wave acquisition earphone by incorporating a sensor in the earphone.
That is, a sensor for measuring a pulse wave, which is a signal linked to the heartbeat, is attached to the earphone, so that a biological signal can be acquired and analyzed on a daily basis.
 このように脈波を計測して得られた結果から、日々の健康管理、生活習慣病、慢性的なストレス診断などへの応用が可能となり、先進国で課題となっているヘルスケア問題に役立つことが期待される。
 例えば、健康維持のための運動時において、運動の効果を効果的にするため、心拍数を計測しつつ運動することが一般的になってきている。このような運動時の心拍数管理として、ポータブルの生体測定機器などに上述した脈波取得イヤホンを使用することができる。
The results obtained by measuring pulse waves in this way can be applied to daily health management, lifestyle-related diseases, chronic stress diagnosis, etc., and are useful for healthcare problems that are an issue in developed countries. It is expected.
For example, during exercise for maintaining health, it is becoming common to exercise while measuring the heart rate in order to make the effect of exercise effective. For such heart rate management during exercise, the above-described pulse wave acquisition earphone can be used in a portable biometric device or the like.
 なお、この種の脈波取得イヤホンにおいては、体動や外乱光によってノイズが混入する問題が発生する。このため、脈波取得イヤホンで取得された測定信号からノイズを除去して、脈波の成分を抽出することが重要である。
 この種の脈波を正確に測定する技術に関連し、例えば、以下の特許文献に各種の提案がなされている。
In this type of pulse wave acquisition earphone, there is a problem that noise is mixed due to body movement or disturbance light. For this reason, it is important to remove the noise from the measurement signal acquired by the pulse wave acquisition earphone and extract the component of the pulse wave.
For example, various proposals have been made in the following patent documents related to a technique for accurately measuring this type of pulse wave.
特許第5060186号Patent No. 5060186 特許第3735774号Japanese Patent No. 3735774 特許第3705814号Japanese Patent No. 3705814
 一般に、体動ノイズは脈波と周波数が近い上に振幅が大きいため、簡単に除去することはできない。このため、対策法は大別して二つのアプローチがある。
 第一は、センサの接触状態を安定させるためのハードウエア設計であり、第二は信号処理によるノイズ除去である。
In general, body motion noise has a frequency close to that of a pulse wave and has a large amplitude, so it cannot be easily removed. For this reason, there are two main approaches to countermeasures.
The first is hardware design for stabilizing the contact state of the sensor, and the second is noise removal by signal processing.
 ハードウエア設計としては、無線化によるイヤホンケーブル揺れの低減、センサを固定するための特殊な形状などがある。しかし、最適なハード形態は利用シーンに大きく依存するため、全ての状況に対応できるものではない。
 一方、信号処理によるノイズ除去は利用シーンにそれほど制約されないため利用価値は高い。
The hardware design includes reduction of the earphone cable swing due to wireless communication and a special shape for fixing the sensor. However, since the optimal hardware form largely depends on the usage scene, it cannot cope with all situations.
On the other hand, noise removal by signal processing has high utility value because it is not so limited by the usage scene.
 以上の特許文献1に記載の手法では、被検者の体動を検出する体動センサを設け、測定信号に含まれる脈波信号と体動ノイズとを分離するようにしている。この場合の体動センサとしては、3軸加速度センサ等が必要であり、小型のイヤホンに内蔵することは難しい。また、体動以外のノイズ(外乱光によるノイズ)を除去できない問題がある。 In the method described in Patent Document 1 described above, a body motion sensor that detects the body motion of the subject is provided to separate the pulse wave signal included in the measurement signal from the body motion noise. As a body motion sensor in this case, a triaxial acceleration sensor or the like is necessary, and it is difficult to incorporate it in a small earphone. In addition, there is a problem that noise other than body movement (noise due to disturbance light) cannot be removed.
 以上の特許文献2に記載の手法では、心拍間隔と心臓収縮時間を元にして推定波形を生成し、この推定波形を用いて生体信号の信号処理を実行している。しかし、この手法では、心拍数が急激に変化した場合や、不整脈が現れた場合などに、推定波形が正しく対応しないために、正確な信号処理ができないという問題が存在する。 In the method described in Patent Document 2 described above, an estimated waveform is generated based on the heartbeat interval and the cardiac contraction time, and the biological signal processing is executed using the estimated waveform. However, this method has a problem that accurate signal processing cannot be performed because the estimated waveform does not correspond correctly when the heart rate changes suddenly or when an arrhythmia appears.
 以上の特許文献3に記載の手法では、波長の異なる光により測定した2つの信号を用いてノイズ処理を実行することが提案されている。しかし、これを実行するためには、適切な周波数の選択と事前の調整が必要になる問題がある。
 また、これら以外の各種の手法として、複数の測定信号を利用している場合でも、脈波とノイズが相関している場合には、精度良くノイズを分離することが出来ない問題があった。
In the method described in Patent Document 3 described above, it is proposed to perform noise processing using two signals measured by light having different wavelengths. However, in order to perform this, there is a problem that it is necessary to select an appropriate frequency and to adjust in advance.
Further, as various methods other than these, even when a plurality of measurement signals are used, there is a problem that noise cannot be accurately separated when pulse waves and noise are correlated.
 また、測定信号からノイズを取り除くため、信号処理としての既存手法として、以下の方法等が提案されている。以下、各種既存手法とその問題点を列記する。
 a. 周波数選択:
 バンドパスフィルタ等を用いて測定信号の周波数を選別する。この場合、構造はシンプルで設計しやすいが、脈波の周波数に近いノイズは除去しづらい問題がある。
Further, in order to remove noise from the measurement signal, the following methods and the like have been proposed as existing methods for signal processing. Below, various existing methods and their problems are listed.
a. Frequency selection:
The frequency of the measurement signal is selected using a band pass filter or the like. In this case, the structure is simple and easy to design, but there is a problem that it is difficult to remove noise close to the frequency of the pulse wave.
 b. 突発性ノイズ除去:
 メディアンフィルタ等を使用して突発性のノイズを除去する。この場合、大振幅であっても除去できるが、突発性ノイズが連続してはいると除去しづらい問題がある。
 c. トレンド除去:
 多項式フィッティング、Savitzky-Golayスムージングフィルタ等を使用してノイズを除去する。この場合、脈拍数の推定精度向上が期待できるが、高周波のノイズは除去しづらい問題がある。
b. Sudden noise removal:
Remove sudden noise by using a median filter. In this case, even if the amplitude is large, it can be removed, but there is a problem that it is difficult to remove if the sudden noise is continuous.
c. Remove trend:
Noise is removed using polynomial fitting, Savitzky-Golay smoothing filter, etc. In this case, improvement in pulse rate estimation accuracy can be expected, but there is a problem that high-frequency noise is difficult to remove.
 そして、以上の既存手法 a ~ c では、脈波と周波数の近いノイズに対しては効果が小さいという共通した問題がある。
 本発明は上記の問題点を解消するために成されたもので、情報信号へのフィルタ処理で、ノイズが除去された推定信号を求めることが可能な、信号処理方法、生体信号処理方法、信号処理装置及び生体信号処理装置を提供することを目的とする。
The existing methods a to c have a common problem that the effect is small for noise having a frequency close to that of the pulse wave.
The present invention has been made to solve the above-described problems, and a signal processing method, a biological signal processing method, and a signal that can obtain an estimated signal from which noise has been removed by filtering the information signal. An object is to provide a processing device and a biological signal processing device.
 (1)この発明は、情報信号とノイズとが混在した状態で測定された測定信号からノイズを除去して情報信号を抽出する信号処理方法であって、測定場所の異なる複数の測定信号を取得し、複数の前記測定信号間の相関性を検出し、複数の前記測定信号間の位相同期性を検出し、複数の前記測定信号のそれぞれから前記相関性の低い無相関成分と前記位相同期性の低い非位相同期成分とを除去して前記情報信号と推定される複数の推定信号を出力する、ことを特徴とする。 (1) The present invention is a signal processing method for extracting an information signal by removing noise from a measurement signal measured in a state where information signals and noise are mixed, and acquiring a plurality of measurement signals at different measurement locations. Detecting a correlation between the plurality of measurement signals, detecting phase synchronization between the plurality of measurement signals, and detecting a non-correlated component having a low correlation from each of the plurality of measurement signals and the phase synchronization. And a plurality of estimated signals estimated as the information signal are output.
 (2)上記(1)において、複数の測定信号の相互スペクトルを算出して相関性を検出する、ことを特徴とする。
 (3)上記(1)において、複数の前記測定信号の相互スペクトルを算出して前記相関性を検出し、複数の前記測定信号の相互スペクトルの非位相同期キャンセル関数により前記位相同期性を検出する、ことを特徴とする。
(2) In the above (1), a correlation is detected by calculating a mutual spectrum of a plurality of measurement signals.
(3) In the above (1), the cross spectrum of the plurality of measurement signals is calculated to detect the correlation, and the phase synchronization is detected by a non-phase synchronization cancel function of the plurality of measurement signals. It is characterized by that.
 (4)複数の測定信号は、被検体の左右対象な位置で脈波を測定することにより得られた2つの脈波信号であって、上記(1)~(3)のいずれかに記載の信号処理を用いたことを特徴とする生体信号処理である。 (4) The plurality of measurement signals are two pulse wave signals obtained by measuring pulse waves at left and right target positions of the subject, and the measurement signals according to any one of (1) to (3) above This is biological signal processing characterized by using signal processing.
 (1)本発明では、測定場所の異なる複数の測定信号を取得し、複数の測定信号間の相関性を検出し、複数の測定信号間の位相同期性を検出し、複数の測定信号のそれぞれから無相関成分と非位相同期成分とを除去して情報信号と推定される複数の推定信号を出力する際に、信号間の相関性と同期性を評価しており、周波数情報に依存しないため、情報信号とノイズとの周波数が近い場合であっても、情報信号とノイズとが混在した測定信号からノイズを除去して所望の情報信号を抽出することが可能になる。 (1) In the present invention, a plurality of measurement signals at different measurement locations are acquired, the correlation between the plurality of measurement signals is detected, the phase synchronism between the plurality of measurement signals is detected, and each of the plurality of measurement signals is detected. Since the uncorrelated component and the non-phase-synchronous component are removed from the output signal and the multiple estimated signals that are estimated as the information signal are output, the correlation and synchronism between the signals are evaluated and it does not depend on the frequency information Even when the frequency of the information signal and the noise is close, it is possible to remove the noise from the measurement signal in which the information signal and the noise are mixed and extract a desired information signal.
 (2)上記(1)において、複数の測定信号の相互スペクトルを算出して相関性を検出してフィルタ処理を行うため、情報信号とノイズとが混在した測定信号からノイズを除去して所望の情報信号を抽出することが可能になる。
 (3)上記(1)において、複数の測定信号の相互スペクトルを算出して相関性を検出し、かつ、複数の測定信号の相互スペクトルの非位相同期キャンセル関数により位相同期性を検出するため、情報信号とノイズとが混在した測定信号からノイズを除去して所望の情報信号を抽出することが可能になる。
(2) In the above (1), since the mutual spectrum of a plurality of measurement signals is calculated and the correlation is detected and the filter process is performed, the noise is removed from the measurement signal in which the information signal and the noise are mixed and the desired signal is obtained. An information signal can be extracted.
(3) In the above (1), in order to detect the correlation by calculating the mutual spectrum of the plurality of measurement signals and to detect the phase synchronization by the non-phase synchronization cancellation function of the mutual spectrum of the plurality of measurement signals, It is possible to extract a desired information signal by removing the noise from the measurement signal in which the information signal and the noise are mixed.
 (4)複数の測定信号として、被検体の左右対象な位置で脈波を測定することにより得られた2つの脈波信号を用いる生体信号処理において、脈波信号には位相同期性と相関性とが存在しており、複数の測定信号の相互スペクトルを算出して相関性を検出し、かつ、複数の測定信号の相互スペクトルの非位相同期キャンセル関数により位相同期性を検出するため、情報信号とノイズとの周波数が近い場合であっても、ノイズと情報信号とを相関性や位相同期性に着目してフィルタ処理により分離することができ、情報信号とノイズとが混在した測定信号からノイズを除去して所望の情報信号を抽出することが可能になる。 (4) In biological signal processing using two pulse wave signals obtained by measuring a pulse wave at left and right target positions of the subject as a plurality of measurement signals, the pulse wave signal has phase synchronization and correlation. To detect the correlation by calculating the mutual spectrum of multiple measurement signals and detecting the phase synchronization by the non-phase synchronization cancellation function of the mutual spectrum of multiple measurement signals. Even if the frequency of noise is close to that of the noise, the noise and the information signal can be separated by filtering focusing on the correlation and phase synchronization, and the noise from the measurement signal in which the information signal and noise are mixed Thus, it is possible to extract a desired information signal.
本発明の実施形態の信号処理装置の構成を示す構成図である。It is a block diagram which shows the structure of the signal processing apparatus of embodiment of this invention. 本発明の実施形態の信号処理における特性を示す説明図である。It is explanatory drawing which shows the characteristic in the signal processing of embodiment of this invention. 本発明の実施形態の信号処理における実験条件を示す説明図である。It is explanatory drawing which shows the experimental condition in the signal processing of embodiment of this invention. 本発明の実施形態の信号処理における特性を示す説明図である。It is explanatory drawing which shows the characteristic in the signal processing of embodiment of this invention. 本発明の実施形態の信号処理における特性を示す説明図である。It is explanatory drawing which shows the characteristic in the signal processing of embodiment of this invention.
 以下、図面を参照して本発明を実施するための最良の形態(以下、実施形態)を詳細に説明する。
 〔実施形態の構成〕
 以下、本発明の実施形態の信号処理方法を実行する信号処理装置100の構成を図1に従って説明する。
The best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described below in detail with reference to the drawings.
[Configuration of Embodiment]
The configuration of the signal processing apparatus 100 that executes the signal processing method according to the embodiment of the present invention will be described with reference to FIG.
 センサ11とセンサ12とは、被検体の心臓の拍動と連動した信号である脈波を計測する、それぞれ異なる測定場所に配置された複数のセンサである。なお、このセンサ11とセンサ12とは既知の光学式センサなどで構成することができる。また、本実施形態では、センサ11とセンサ12との、複数のセンサを被検体の左右対象な位置に装着し、脈波を測定することが好ましい。 Sensor 11 and sensor 12 are a plurality of sensors arranged at different measurement locations that measure pulse waves, which are signals linked to the heartbeat of the subject. Note that the sensor 11 and the sensor 12 can be configured by known optical sensors or the like. Moreover, in this embodiment, it is preferable to mount a plurality of sensors 11 and 12 at left and right positions of the subject and measure pulse waves.
 例えば、被検体が装着するステレオのイヤホンやヘッドホン等に内蔵されたものだけでなく、両方の耳たぶを挟むようにクリップ形式で装着されたもの、ヘッドバンドの左右のこめかみ付近に設置されたもの、両手首に装着されたもの、両足首に装着されたもの、などであっても良い。なお、この複数のセンサは、最低2個であるが、それ以上の個数であっても良い。 For example, not only those that are built into the stereo earphones or headphones that the subject wears, but also those that are attached in a clip format so that both ear lobes are sandwiched, those that are installed near the left and right temples of the headband, It may be the one attached to both wrists, the one attached to both ankles, or the like. The plurality of sensors are at least two, but may be more than that.
 なお、本実施形態では、2個のセンサ11とセンサ12を設けて、2つの測定結果により信号処理を実行する具体例を用いて説明する。
 これらセンサ11とセンサ12は、それぞれ異なる測定場所で脈波を測定し、所望の測定対象である脈波の測定結果から情報信号を生成する。また、これらセンサ11とセンサ12では、被検体の体動や外乱光などによる脈波以外の測定結果であるノイズが、情報信号に混在した状態で、測定信号として出力している。
In the present embodiment, a description will be given using a specific example in which two sensors 11 and 12 are provided and signal processing is executed based on two measurement results.
These sensors 11 and 12 measure pulse waves at different measurement locations, and generate information signals from the measurement results of pulse waves that are desired measurement targets. In addition, these sensors 11 and 12 output noise as measurement signals in a state where measurement signals other than pulse waves due to body movements, disturbance light, and the like of the subject are mixed in the information signal.
 信号処理装置100は、情報信号(脈波)s1,s2とノイズn1,n2とが混在した状態で測定された複数の測定信号x1,x2からノイズn1,n2を除去することで情報信号(脈波)の成分を抽出して、複数の推定信号s'1,s'2を出力する。
 なお、複数(2種類)の測定信号x1,x2のそれぞれは、情報信号とノイズ信号で構成されている(x1=s1+n1,x2=s2+n2)が、情報信号とノイズは無相関(s1とn1の内積が0,s1とn2の内積が0,s2とn1の内積が0,s2とn2の内積が0)である。
The signal processing apparatus 100 removes the noises n1 and n2 from the plurality of measurement signals x1 and x2 measured in a state where the information signals (pulse waves) s1 and s2 and the noises n1 and n2 coexist, thereby removing the information signals (pulses). Wave) components are extracted and a plurality of estimated signals s′1 and s′2 are output.
Each of a plurality (two types) of measurement signals x1 and x2 includes an information signal and a noise signal (x1 = s1 + n1, x2 = s2 + n2), but the information signal and the noise are uncorrelated (s1 and n1). The inner product is 0, the inner product of s1 and n2 is 0, the inner product of s2 and n1 is 0, and the inner product of s2 and n2 is 0).
 このため、信号処理装置100は、センサ11とセンサ12からの複数の測定信号x1,x2を取得する信号取得部101と信号取得部102とを備えている。また、信号処理装置100は、信号処理された複数の推定信号s'1,s'2を出力するするため、信号出力部131と信号出力部132とを備えている。 Therefore, the signal processing apparatus 100 includes a signal acquisition unit 101 and a signal acquisition unit 102 that acquire a plurality of measurement signals x1 and x2 from the sensor 11 and the sensor 12. Further, the signal processing apparatus 100 includes a signal output unit 131 and a signal output unit 132 in order to output a plurality of estimated signals s′1 and s′2 subjected to signal processing.
 また、信号処理装置100は、信号処理を実行するため、フィルタ係数生成部110と、情報信号抽出部120とを備えて構成されている。
 フィルタ係数発生部110は、クロススペクトル算出部111と、位相同期検出部112と、パワースペクトル算出部113と、パワースペクトル算出部114と、逆数処理部115と、逆数処理部116と、演算部117と、演算部118と、を備えて構成されている。
The signal processing apparatus 100 includes a filter coefficient generation unit 110 and an information signal extraction unit 120 in order to execute signal processing.
The filter coefficient generator 110 includes a cross spectrum calculator 111, a phase synchronization detector 112, a power spectrum calculator 113, a power spectrum calculator 114, an inverse processor 115, an inverse processor 116, and an operator 117. And a calculation unit 118.
 ここで、クロススペクトル算出部111は、入力された複数の測定信号x1,x2の周波数成分同士を掛け合わせることで、相互相関を意味するクロススペクトル(相互スペクトル)Cx1x2を算出する。なお、n1とn2が無相関である場合、x1,x2のクロススペクトルはs1(=s2)のパワースペクトルに相当する。 Here, the cross spectrum calculation unit 111 calculates a cross spectrum (mutual spectrum) C x1x2 meaning cross-correlation by multiplying the frequency components of the plurality of input measurement signals x1 and x2. When n1 and n2 are uncorrelated, the cross spectrum of x1 and x2 corresponds to the power spectrum of s1 (= s2).
 位相同期検出部112は、入力された複数の測定信号x1,x2の位相差に関連する位相同期性を算出する。なお、位相同期性を意味する関数(非位相同期キャンセル関数)αを導入する。ここで、0≦α≦1として、n1とn2が非位相同期である場合は、クロススペクトルの位相を入力変数とするαは0に近づく。 The phase synchronization detection unit 112 calculates phase synchronization related to the phase difference between the plurality of input measurement signals x1 and x2. A function (non-phase synchronization cancellation function) α meaning phase synchronization is introduced. Here, when 0 ≦ α ≦ 1 and n1 and n2 are non-phase-synchronized, α using the phase of the cross spectrum as an input variable approaches 0.
 パワースペクトル算出部113は、一方の測定信号x1のフーリエスペクトルを自乗して自己相関を意味するパワースペクトル(自己スペクトル)を算出する。同様に、パワースペクトル算出部114は、他方の測定信号x2のフーリエスペクトルを自乗して自己相関を意味するパワースペクトルを算出する。逆数処理部115は、一方の測定信号x1のパワースペクトルの逆数C-1 X1X1を生成する。逆数処理部116は、他方の測定信号x2のパワースペクトルの逆数C-1 X2X2を生成する。 The power spectrum calculation unit 113 squares the Fourier spectrum of one measurement signal x1 to calculate a power spectrum (self spectrum) that means autocorrelation. Similarly, the power spectrum calculation unit 114 squares the Fourier spectrum of the other measurement signal x2 to calculate a power spectrum that means autocorrelation. The reciprocal processing unit 115 generates a reciprocal C −1 X1X1 of the power spectrum of one measurement signal x1. The reciprocal processing unit 116 generates the reciprocal C −1 X2X2 of the power spectrum of the other measurement signal x2.
 情報信号抽出部120は、フィルタ処理部121とフィルタ処理部122を備えて構成される。ここで、フィルタ処理部121とフィルタ処理部122は、センサ11とセンサ12からの複数の測定信号x1,x2に対して、フィルタ係数生成部110で生成されたフィルタ処理を行うことにより、ノイズn1,n2を除去して、複数の推定信号s'1,s'2を抽出する。 The information signal extraction unit 120 includes a filter processing unit 121 and a filter processing unit 122. Here, the filter processing unit 121 and the filter processing unit 122 perform the filter processing generated by the filter coefficient generation unit 110 on the plurality of measurement signals x1 and x2 from the sensors 11 and 12, thereby causing noise n1. , N2 and a plurality of estimated signals s′1, s′2 are extracted.
 〔実施形態の動作〕
 以下、本発明の実施形態の動作として、信号処理装置100の動作である信号処理方法について、図2以下を参照して説明する。ここで、センサ11とセンサ12とはステレオイヤホンのそれぞれに設置されているものとする。
[Operation of Embodiment]
Hereinafter, as an operation of the embodiment of the present invention, a signal processing method which is an operation of the signal processing apparatus 100 will be described with reference to FIG. Here, it is assumed that the sensor 11 and the sensor 12 are installed in each stereo earphone.
 〔前提となる条件〕
 センサ11は、イヤホンの一方に設置されており、情報信号(脈波)s1とノイズn1とが混在した状態で測定された測定信号x1を生成する。同様に、センサ12は、イヤホンの他方に設置されており、情報信号(脈波)s2とノイズn2とが混在した状態で測定された測定信号x2を生成する。
[Prerequisites]
The sensor 11 is installed on one of the earphones, and generates a measurement signal x1 measured in a state where the information signal (pulse wave) s1 and the noise n1 are mixed. Similarly, the sensor 12 is installed on the other side of the earphone, and generates a measurement signal x2 measured in a state where an information signal (pulse wave) s2 and noise n2 are mixed.
 ここで、情報信号s1と情報信号s2とは、被検体の心臓の拍動と連動した信号である脈波に起因するものであり、かつ、被検体の左右対象な位置である両耳それぞれから測定されたものであるため、高い相関性と高い位相同期性とを有している。
 一方、情報信号s1とノイズn1とは、全く別の振動源に起因するものであり、相関性と位相同期性とを有しないことが多い(無相関性かつ非位相同期性)。また、情報信号s2とノイズn2とは、全く別の振動源に起因するものであり、相関性と位相同期性とを有しないことが多い(無相関性かつ非位相同期性)。
Here, the information signal s1 and the information signal s2 are caused by a pulse wave that is a signal linked to the heartbeat of the subject, and from both ears that are the left and right target positions of the subject. Since it was measured, it has high correlation and high phase synchronization.
On the other hand, the information signal s1 and the noise n1 are caused by completely different vibration sources and often do not have correlation and phase synchronization (non-correlation and non-phase synchronization). Further, the information signal s2 and the noise n2 are caused by completely different vibration sources, and often have neither correlation nor phase synchronization (non-correlation and non-phase synchronization).
 一方、被検体の体動として首を振った場合やセンサを触った場合など、ノイズのタイミングやノイズの大きさが複数のセンサで一致する可能性は小さい。また、センサに対する外乱光があった場合、入射光路が異なるため、ノイズのタイミングやノイズの大きさが複数のセンサで一致する可能性は小さい。従って、ノイズn1とノイズn2では、相関性と位相同期性とを有しない、または、相関性と位相同期性が低いことが多い(無相関性かつ非位相同期性)。 On the other hand, it is unlikely that the timing of the noise and the magnitude of the noise will be the same for a plurality of sensors, such as when the subject shakes his head or touches the sensor. In addition, when there is disturbance light on the sensor, the incident optical path is different, and therefore there is little possibility that the noise timing and the noise magnitude match among the plurality of sensors. Therefore, the noise n1 and the noise n2 often have no correlation and phase synchronism, or have low correlation and phase synchronism (non-correlation and non-phase synchronism).
 〔問題設定〕
・測定信号モデル:
 2種類の測定信号x1,x2があり、それぞれが情報信号s1,s2と、ノイズn1,n2で構成される。
x1=s1+n1,
x2=s2+n2,
 ここで、情報信号とノイズは無相関(s1とn1の内積が0,s1とn2の内積が0,s2とn1の内積が0,s2とn2の内積が0)である。
・処理の目的:
 情報信号とノイズで構成される測定信号へのフィルタ処理で、ノイズ信号が除去された推定信号を求める。
・解決方針:
 情報信号と推定信号の平均二乗誤差を最小化するウィナーフィルタが利用できる。
[Problem setting]
・ Measured signal model:
There are two types of measurement signals x1 and x2, each of which comprises information signals s1 and s2 and noises n1 and n2.
x1 = s1 + n1,
x2 = s2 + n2,
Here, the information signal and noise are uncorrelated (the inner product of s1 and n1 is 0, the inner product of s1 and n2 is 0, the inner product of s2 and n1 is 0, and the inner product of s2 and n2 is 0).
・ Purpose of processing:
An estimated signal from which the noise signal is removed is obtained by filtering the measurement signal including the information signal and noise.
・ Solution policy:
A Wiener filter that minimizes the mean square error between the information signal and the estimated signal can be used.
 ここで、ウィナーフィルタを導出するためには、以下の2つの手法(従来手法)が考えられる。
 従来手法1.情報信号のスペクトルを推定する。但し、情報信号は直接計測できない場合がある。
Here, in order to derive the Wiener filter, the following two methods (conventional methods) can be considered.
Conventional method Estimate the spectrum of the information signal. However, the information signal may not be directly measured.
 従来手法2.
 スペクトルサブトラクション法(spectral subtraction method)により、ノイズのパワースペクトルの平均値を推定し、雑音を含んだ測定信号のパワースペクトルから引くことで雑音の低減を行う。但し、ノイズだけを得られない場合がある。
・解決策:
 以上の従来手法では解決に至ることができない。そこで、以下の解決手法を提案する。
Conventional method 2.
The average value of the noise power spectrum is estimated by a spectral subtraction method, and the noise is reduced by subtracting it from the power spectrum of the measurement signal including noise. However, there are cases where only noise cannot be obtained.
·solution:
The above conventional methods cannot be solved. Therefore, the following solution is proposed.
 解決手法1.ウィナーフィルタの導出にクロススペクトルを導入する。この場合、ノイズが無相関(n1とn2の内積が0)であれば効果を発揮することが期待できる。
 解決手法2.以上の解決手法1に加えて、更に非位相同期キャンセル関数(α)を導入する。この場合、ノイズが相関していても非位相同期であれば(n1とn2の内積は0でないが、位相差は0でない)、効果を発揮することが期待できる。
Solution 1 A cross spectrum is introduced in the derivation of the Wiener filter. In this case, if the noise is uncorrelated (the inner product of n1 and n2 is 0), the effect can be expected.
Solution 2 In addition to the above solution technique 1, a non-phase synchronization cancellation function (α) is further introduced. In this case, even if the noise is correlated, if it is non-phase-synchronized (the inner product of n1 and n2 is not 0, but the phase difference is not 0), it can be expected to exert an effect.
 〔処理の概要〕
 ここで、クロススペクトル算出部111と、パワースペクトル算出部113と、パワースペクトル算出部114と、逆数処理部115と、逆数処理部116とで、複数の測定信号x1,x2の相関性を検出する相関性検出部を構成している。ここで、ノイズと脈波との無相関性、2つのノイズの無相関性等を仮定することで、測定信号のみを用いてウィナーフィルタを求めることができる。
[Outline of processing]
Here, the cross spectrum calculation unit 111, the power spectrum calculation unit 113, the power spectrum calculation unit 114, the reciprocal number processing unit 115, and the reciprocal number processing unit 116 detect the correlation between the plurality of measurement signals x1 and x2. A correlation detection unit is configured. Here, the Wiener filter can be obtained using only the measurement signal by assuming that there is no correlation between the noise and the pulse wave, two correlations between the noise and the like.
 また、位相同期検出部112が、複数の測定信号x1,x2の位相同期性を検出する位相同期性検出部を構成している。ここで、2つのノイズが相関性を持っていたとしても、位相がずれていて非位相同期性であれば、ノイズを除去するためのフィルタ係数を求めることができる。 Also, the phase synchronization detection unit 112 constitutes a phase synchronization detection unit that detects the phase synchronization of the plurality of measurement signals x1 and x2. Here, even if the two noises have a correlation, a filter coefficient for removing the noise can be obtained if the phases are out of phase and non-phase-synchronous.
 そして、フィルタ処理部121とフィルタ処理部122とが、それぞれ時系列フィルタで構成されており、相関性と位相同期性とにより生成されたフィルタ係数に基づいて、複数の測定信号のそれぞれから相関性の低い無相関成分と位相同期性の低い非位相同期成分とを除去して、情報信号を抽出する情報信号抽出部120を構成している。ここで、相関性に対して位相同期性をも加味することで、従来の基本的なウィナーフィルタの構成では実現できないノイズ除去効果が期待できるようになる。 The filter processing unit 121 and the filter processing unit 122 are each composed of a time series filter, and the correlation is obtained from each of the plurality of measurement signals based on the filter coefficient generated by the correlation and the phase synchronization. The non-correlated component having a low phase and the non-phase synchronous component having a low phase synchronism are removed to constitute an information signal extraction unit 120 that extracts an information signal. Here, by adding the phase synchronism to the correlation, it is possible to expect a noise removal effect that cannot be realized by the conventional basic Wiener filter configuration.
 すなわち、上記の条件より、2つのセンサ11,12から得られた二つの測定信号から、相関性と位相同期性の低い成分を抑制しつつ、高い成分を抽出するようなフィルタ係数をフィルタ係数生成部110で生成する。そして、そのフィルタ係数を用いた情報信号抽出部120では、2つのセンサ11,12から得られた二つの測定信号から、相関性と位相同期性の低い成分を抑制しつつ、高い成分を抽出するフィルタ処理により、ノイズを除去する。 That is, filter coefficients are generated so as to extract high components from two measurement signals obtained from the two sensors 11 and 12 while suppressing low correlation and phase synchronization components from the above conditions. Generated by the unit 110. Then, the information signal extraction unit 120 using the filter coefficient extracts high components from the two measurement signals obtained from the two sensors 11 and 12 while suppressing components having low correlation and phase synchronization. Noise is removed by filtering.
 〔処理の詳細〕
 脈波信号にノイズが混入した時の測定信号は以下のように表わされる。
x1=s1+n1,
x2=s2+n2,   …(1)
 x1は有限長Tの列ベクトルであり、脈波信号s1にノイズn1 が加算されていると考えられる。x2も同様に、有限長Tの列ベクトルであり、脈波信号s2にノイズn2 が加算されていると考えられる。そして、本実施形態において、ノイズ除去は、測定信号x1,x2だけを用いて、sに近い推定信号s'1,s'2を求める信号処理である。
[Details of processing]
The measurement signal when noise is mixed in the pulse wave signal is expressed as follows.
x1 = s1 + n1,
x2 = s2 + n2, (1)
x1 is a column vector of finite length T, and it is considered that noise n1 is added to the pulse wave signal s1. Similarly, x2 is a column vector of finite length T, and it is considered that noise n2 is added to the pulse wave signal s2. In the present embodiment, noise removal is signal processing for obtaining estimated signals s′1 and s′2 close to s using only the measurement signals x1 and x2.
 本実施形態において、ウィナーフィルタ(Wiener filter)は、信号や雑音を確率過程とみなし、評価関数である平均二乗誤差を最小にするフィルタである。
 以上の式(1)の、一方の測定信号x1を例にとると、推定信号s'1はウィナーフィルタh1と測定信号x1との畳み込み積分で、
s'1=h1 * x1    …(2)
のように表わされる。
In the present embodiment, the Wiener filter is a filter that regards signals and noise as stochastic processes and minimizes the mean square error that is an evaluation function.
Taking one measurement signal x1 of the above equation (1) as an example, the estimation signal s'1 is a convolution integral of the Wiener filter h1 and the measurement signal x1,
s'1 = h1 * x1 (2)
It is expressed as
 さらに、ある区間の定常性を仮定すると周波数領域で、
S1(ω)=H1(ω)X1(ω)      …(3)
となる。
 推定値S'1(ω)の測定信号に対する誤差は、
 E1(ω)=S(ω)-S1(ω)
=S(ω)-H1(ω)X1(ω)      …(4)
となる。
Furthermore, assuming the stationarity of a certain section, in the frequency domain,
S1 (ω) = H1 (ω) X1 (ω) (3)
It becomes.
The error of the estimated value S′1 (ω) with respect to the measurement signal is
E1 (ω) = S (ω) −S1 (ω)
= S (ω) −H1 (ω) X1 (ω) (4)
It becomes.
 そして、誤差の平均二乗値、すなわち、
ε[|E1(ω)|2]=ε[|S(ω)-H1(ω)X1(ω)|2]   …(5)
を最小化することが、ノイズを最大限に抑制することになる。
 ここで、ε[ ]は、[]内の式の期待値を意味する。
And the mean square value of the error, i.e.
ε [| E1 (ω) | 2 ] = ε [| S (ω) −H1 (ω) X1 (ω) | 2 ] (5)
Minimizing the noise suppresses the noise to the maximum.
Here, ε [] means an expected value of the expression in [].
 そこで、式(5)をH1(ω)で偏微分した結果を0とおくと、
H1(ω)=ε[X*1(ω) X1(ω)]-1 ε[S*(ω) X1(ω)]   …(6)
となる。
 これにより、ウィナーフィルタH1(ω)が求まる。
ここで、文字の右肩に*が付されたものは複素共役を意味する。
Therefore, if the result of partial differentiation of equation (5) with H1 (ω) is 0,
H1 (ω) = ε [X * 1 (ω) X1 (ω)] −1 ε [S * (ω) X1 (ω)] (6)
It becomes.
Thereby, the winner filter H1 (ω) is obtained.
Here, the one with * on the right shoulder of a character means a complex conjugate.
 また、他方の測定信号x2も同様であり、
H2(ω)=ε[X*2(ω) X2(ω)]-1 ε[S*(ω) X2(ω)]   …(7)
となる。
 ところで、以上の式(6)、式(7)において、S(ω)は未知であるため直接利用することはできない。そこで脈波S(ω)とノイズN(ω)とが無相関であると仮定すると、
 S*(ω) X1(ω)
=S*(ω)(S(ω)+N1(ω))
=S*(ω) S(ω)      …(8)
となる。
The same applies to the other measurement signal x2.
H2 (ω) = ε [X * 2 (ω) X2 (ω)] −1 ε [S * (ω) X2 (ω)] (7)
It becomes.
By the way, in the above formulas (6) and (7), S (ω) is unknown and cannot be used directly. Therefore, assuming that the pulse wave S (ω) and the noise N (ω) are uncorrelated,
S * (ω) X1 (ω)
= S * (ω) (S (ω) + N1 (ω))
= S * (ω) S (ω) (8)
It becomes.
 また、ノイズN1(ω)とノイズN2(ω)の無相関性を仮定し、測定信号X1とX2のクロススペクトル(相互スペクトル)を、クロススペクトル算出部111において計算すると
*1(ω) X2(ω)
=(S(ω)+N1(ω))(S(ω)+N2(ω))
=S*(ω) S(ω)      …(9)
となる。
Further, assuming that the noise N1 (ω) and the noise N2 (ω) are uncorrelated and the cross spectrum (cross spectrum) of the measurement signals X1 and X2 is calculated by the cross spectrum calculation unit 111, X * 1 (ω) X2 (ω)
= (S (ω) + N1 (ω)) * (S (ω) + N2 (ω))
= S * (ω) S (ω) (9)
It becomes.
 他方のセンサについても同様であるため、式(6)、(7)は、
H1(ω)
=ε[X*1(ω)X1(ω)]-1ε[X*1(ω)X2(ω)]
=C-1 X1X1(ω) CX1X2(ω)      …(10)
H2(ω)
=ε[X*2(ω)X2(ω)]-1ε[X*1(ω)X2(ω)]
=C-1 X2X2(ω) CX1X2(ω)      …(11)
となる。すなわち、測定信号のみを用いて、フィルタ係数を求めることができる。
Since the same applies to the other sensor, the equations (6) and (7)
H1 (ω)
= Ε [X * 1 (ω) X1 (ω)] −1 ε [X * 1 (ω) X2 (ω)]
= C -1 X1X1 (ω) C X1X2 (ω) (10)
H2 (ω)
= Ε [X * 2 (ω) X2 (ω)] −1 ε [X * 1 (ω) X2 (ω)]
= C -1 X2X2 (ω) C X1X2 (ω) (11)
It becomes. That is, the filter coefficient can be obtained using only the measurement signal.
 また、N1(ω)とN2(ω)の無相関が成り立たない場合は、式(8)と式(9)は等しくならないが、ノイズの非位相同期性を仮定し、ノイズの位相差を考慮することでさらにノイズ効果を高める。
 このため、位相同期性を意味する関数(非位相同期キャンセル関数)αを用いて、位相同期検出部112において、
以上のCX1X2(ω)を、α(ω)CX1X2(ω)      …(12)
とする。
If N1 (ω) and N2 (ω) are not uncorrelated, Equations (8) and (9) will not be equal, but noise non-phase synchrony is assumed and the noise phase difference is considered. To further increase the noise effect.
For this reason, in the phase synchronization detection unit 112 using a function (non-phase synchronization cancellation function) α meaning phase synchronization,
The above C X1X2 (ω) is changed to α (ω) C X1X2 (ω) (12)
And
 ここで、
α(ω)={(cos(∠CX1X2(ω))+1)/2}p   …(13)
と置き換えた後に、フィルタ係数を計算することとする。
 ここで、pは非位相同期性をどこまで許容するかを調整するパラメータである。
here,
α (ω) = {(cos (∠C X1X2 (ω)) + 1) / 2} p (13)
Then, the filter coefficient is calculated.
Here, p is a parameter for adjusting how far non-phase synchronism is allowed.
 このpを変更した際のα(ω)を、図2に示す。角度が0[rad]の時、すなわち位相が同期している信号は、α(ω)=1であり、以上のCX1X2(ω)がそのまま保存される。
 一方で、位相ずれが大きくなるとα(ω)が小さくなり、以上の式(12)の値は小さくなり、その成分はウィナーフィルタによって抑制される。ここでは、pを大きくするほどに、非位相同期成分の除去効果が大きくなるため、pは大きくすることが望ましい。
FIG. 2 shows α (ω) when p is changed. When the angle is 0 [rad], that is, the signal whose phase is synchronized, α (ω) = 1, and the above C X1X2 (ω) is stored as it is.
On the other hand, when the phase shift increases, α (ω) decreases, the value of the above equation (12) decreases, and its component is suppressed by the Wiener filter. Here, as p is increased, the effect of removing the non-phase-synchronous component is increased. Therefore, it is desirable to increase p.
 最後に、ノイズが極端に大きい場合にフィルタ特性が0≦|H|(ω)≦1を満たさない場合が考えられる。このため、|H(ω)|≧1の場合は、
H(ω)=H(ω)/(|H(ω)|)   …(14)
によってフィルタ係数を調整する。
Finally, it can be considered that the filter characteristics do not satisfy 0 ≦ | H | (ω) ≦ 1 when the noise is extremely large. Therefore, if | H (ω) | ≧ 1,
H (ω) = H (ω) / (| H (ω) |) (14)
To adjust the filter coefficient.
 以上のようにしてクロススペクトル算出部111と位相同期検出部112とで算出されたαCX1X2と、パワースペクトル算出部113と逆数処理部115とで算出されたC-1 X1X1とにより生成され、フィルタ処理部121に向けて供給されるフィルタ係数H1(ω)は、
H1(ω)=C-1 X1X1  αCX1X2   …(10')
となる。
The filter is generated by αC X1X2 calculated by the cross spectrum calculation unit 111 and the phase synchronization detection unit 112 as described above, and C −1 X1X1 calculated by the power spectrum calculation unit 113 and the reciprocal processing unit 115, and the filter The filter coefficient H1 (ω) supplied to the processing unit 121 is
H1 (ω) = C −1 X1X1 αC X1X2 (10 ′)
It becomes.
 同様に、以上のようにしてクロススペクトル算出部111と位相同期検出部112とで算出されたαCX1X2と、パワースペクトル算出部114と逆数処理部116とで算出されたC-1 X2X2とにより生成され、フィルタ処理部122に向けて供給されるフィルタ係数H2(ω)は、
H2(ω)=C-1 X2X2  αCX1X2   …(11')
となる。
Similarly, it is generated by αC X1X2 calculated by the cross spectrum calculation unit 111 and the phase synchronization detection unit 112 as described above, and C −1 X2X2 calculated by the power spectrum calculation unit 114 and the reciprocal processing unit 116. The filter coefficient H2 (ω) supplied to the filter processing unit 122 is
H2 (ω) = C −1 X2X2 αC X1X2 (11 ′)
It becomes.
 すなわち、測定信号のみを用いて、無相関成分と非位相同期成分とを除去するためのフィルタ係数を求めることができた。
 時系列フィルタで構成されたフィルタ処理部121は、以上の式(10')のフィルタ係数を用いた処理を実行することで、測定信号から無相関成分と非位相同期成分とによりノイズを除去して、脈波と推定される推定信号を出力することができる。
That is, it was possible to obtain filter coefficients for removing uncorrelated components and non-phase-synchronized components using only the measurement signal.
The filter processing unit 121 configured with a time-series filter removes noise from the measurement signal using uncorrelated components and non-phase-synchronized components by executing processing using the filter coefficient of the above equation (10 ′). Thus, an estimated signal estimated as a pulse wave can be output.
 同様に、時系列フィルタで構成されたフィルタ処理部122は、以上の式(11')のフィルタ係数を用いた処理を実行することで、測定信号から無相関成分と非位相同期成分とによりノイズを除去して、脈波と推定される推定信号を出力することができる。
 〔処理の実装方法〕
 本実施形態で提案するノイズ除去方法は、上述した図1に示されるブロック図で表現される。
Similarly, the filter processing unit 122 configured with a time-series filter performs processing using the filter coefficient of the above equation (11 ′), so that noise is generated from the measurement signal by uncorrelated components and non-phase-synchronized components. And an estimated signal estimated as a pulse wave can be output.
[Method of implementation]
The noise removal method proposed in this embodiment is expressed by the block diagram shown in FIG.
 ここで、測定信号x1、x2からフィルタ係数h1、h2によって、推定信号s'1、s'2を求めている。
 この手法は自己スペクトルと相互スペクトルの計算を行なうため、フレーム処理によってフィルタ係数が遂次更新される。
Here, the estimated signals s′1 and s′2 are obtained from the measurement signals x1 and x2 by the filter coefficients h1 and h2.
In this method, since the self spectrum and the cross spectrum are calculated, the filter coefficient is sequentially updated by the frame processing.
 フレームk-1でのフィルタ特徴をH(k-1,ω)とすると、フレームkでのフィルタ特徴H(k,ω)は、
H(k,ω)=μH(k,ω)+(1-μ)H(k-1,ω)      …(15)
のように、更新係数μを用いて求められる。ここで、0<μ≦1である。
If the filter feature at frame k−1 is H (k−1, ω), the filter feature H (k, ω) at frame k is
H (k, ω) = μH (k, ω) + (1−μ) H (k−1, ω) (15)
As shown in FIG. Here, 0 <μ ≦ 1.
 このμを大きくすると早く収束するが、フレーム処理をどれくらいの頻度で行なうかも考慮しなくてはならない。
 〔処理の実験結果〕
 以下、本実施形態の動作と効果とを検証する。
When μ is increased, the convergence is quicker, but it is necessary to consider how often frame processing is performed.
[Results of treatment experiment]
Hereinafter, the operation and effect of this embodiment will be verified.
 ここでは脈波成分を正弦波に置き換え、2つの測定信号に非位相同期性のノイズが混入した時を想定する。この場合の実験条件を図3に示す。
 1.0[Hz]の正弦波の脈波信号に対して、1.5[Hz]の正弦波ノイズとホワイトノイズとを重畳した状態の測定信号を使用する。また、ここで、1.5[Hz]の正弦波ノイズは、左右で0.1πだけ位相がずれているとする。また、非位相同期性の許容パラメータpを100、更新係数μを0.5、FIRのタップ数を100、周波数変換の窓長を15[s]、フレームのシフト時間を0.5[s]として、実験を実行する。
Here, it is assumed that the pulse wave component is replaced with a sine wave and non-phase-synchronous noise is mixed in the two measurement signals. The experimental conditions in this case are shown in FIG.
A measurement signal in a state where a sine wave noise of 1.5 [Hz] and white noise are superimposed on a sine wave pulse signal of 1.0 [Hz] is used. Here, it is assumed that the sine wave noise of 1.5 [Hz] is shifted in phase by 0.1π on the left and right. Further, the allowable parameter p of non-phase synchronicity is 100, the update coefficient μ is 0.5, the number of FIR taps is 100, the frequency conversion window length is 15 [s], and the frame shift time is 0.5 [s]. As an experiment.
 図4(1)(2)に示される測定信号x1、x2には正弦波の脈波信号と正弦波のノイズとが混入した様子を示している。この状態では、x1とx2の波形から脈波の成分を読み取ることができない。そして、本実施形態を適用した場合、図4(3)(4)に示すように、ノイズが除去されて、脈波sの成分が現れた状態の推定信号s'1、s'2を抽出することができる。 FIG. 4 (1) and (2) show that the measurement signals x1 and x2 are mixed with sinusoidal pulse wave signals and sinusoidal noise. In this state, the pulse wave component cannot be read from the waveforms of x1 and x2. When this embodiment is applied, as shown in FIGS. 4 (3) and 4 (4), the estimated signals s ′ 1 and s ′ 2 with the noise removed and the pulse wave s component appear are extracted. can do.
 一方、実際に被検体の心拍に基づく脈波と、被検体の体動として顎を動かした状態でも実験を行った。図5(1)に示される測定信号x1には被検体の脈波信号と、被検体の体動のノイズとが混入した様子を示している。この状態では、x1の波形から脈波の成分を読み取ることができない。 On the other hand, the experiment was also performed with the pulse wave based on the heartbeat of the subject and the jaw moved as the body motion of the subject. The measurement signal x1 shown in FIG. 5 (1) shows a state in which the pulse wave signal of the subject and the body movement noise of the subject are mixed. In this state, the pulse wave component cannot be read from the waveform of x1.
 そして、本実施形態を適用した場合、図5(2)に示すように、ノイズが除去されて、脈波sの成分が現れた状態の推定信号s'1を抽出することができる。なお、図5において、測定信号x2と推定信号s'2とは示されていないが、同様に、x2の波形から脈波の成分を読み取ることができないが、本実施形態を適用することで、ノイズが除去されて脈波sの成分が現れた状態の推定信号s'2を抽出することができた。 And when this embodiment is applied, as shown in FIG. 5 (2), it is possible to extract the estimated signal s′1 in a state where the noise is removed and the component of the pulse wave s appears. In FIG. 5, the measurement signal x2 and the estimation signal s′2 are not shown. Similarly, although the pulse wave component cannot be read from the waveform of x2, by applying this embodiment, The estimated signal s'2 in the state where the noise was removed and the component of the pulse wave s appeared could be extracted.
 なお、以上の図4と図5の実験結果では、フーリエ変換窓が15[s]に設定されているため、15[s]からノイズ処理が開始された様子を示している。
 〔その他の実施形態(1)〕
 以上の説明において、センサ11,12は被検体の左右対象な位置、例えば両耳に装着するとしていたが、両耳以外の異なる位置にセンサを配置した場合でも適応可能である。
Note that the experimental results of FIGS. 4 and 5 described above show that the noise processing is started from 15 [s] because the Fourier transform window is set to 15 [s].
[Other Embodiments (1)]
In the above description, the sensors 11 and 12 are supposed to be attached to the left and right positions of the subject, for example, both ears. However, the present invention can be applied even when the sensors are arranged at different positions other than both ears.
 例えば、例えば、指と耳でもノイズの無相関性・非位相同期性が想定できる。しかし、脈波の位相ズレが予想されるので、上述したパラメータαを求める際に、位相ズレφを事前に計算し与えておく必要がある。
α(ω)={(cos(∠CX1X2(ω)±Φ)+1)/2}p   …(13')
と変更することで対応可能である。
For example, for example, noise non-correlation and non-phase synchronization can be assumed for fingers and ears. However, since the phase shift of the pulse wave is expected, it is necessary to calculate and give the phase shift φ in advance when determining the parameter α described above.
α (ω) = {(cos (∠C X1X2 (ω) ± Φ) +1) / 2} p (13 ′)
It is possible to respond by changing.
 〔その他の実施形態(2)〕
 また、以上の実施形態では、複数の測定信号が必要である。具体的には、被検体の両耳から測定信号が取得できている必要がある。このため、イヤホン等において片耳の接触状態が極端に悪い場合は、一方の測定信号のみしか得られない。このような異常状態を判定する機能を追加することが望ましい。
[Other embodiment (2)]
In the above embodiment, a plurality of measurement signals are required. Specifically, it is necessary to obtain measurement signals from both ears of the subject. For this reason, when the contact state of one ear in an earphone or the like is extremely bad, only one measurement signal can be obtained. It is desirable to add a function for determining such an abnormal state.
 このような一方の測定信号のみしか得られない異常状態において、異常状態を報知する報知部を設けることも好ましい。あるいは、このような一方の測定信号のみしか得られない異常状態において、一方の測定信号のみで信号処理を行う従来の手法に切り替えることも可能である。 In such an abnormal state in which only one of the measurement signals can be obtained, it is also preferable to provide a notification unit that notifies the abnormal state. Alternatively, it is possible to switch to a conventional method in which signal processing is performed using only one measurement signal in an abnormal state where only one measurement signal is obtained.
 〔その他の実施形態(3)〕
 本実施形態では、脈拍数の計算機能を一部兼ねることが可能である。脈拍数を求める場合は、通常は脈波をフーリエ変換した後に周波数領域でのピーク値を検出する方法が用いられる。本実施形態では、の式(12)で求められた値が脈波のフーリエ変換に相当するため、この値を参照して脈拍数を計算することも可能である。
[Other embodiment (3)]
In this embodiment, a part of the pulse rate calculation function can be used. When obtaining the pulse rate, a method of detecting the peak value in the frequency domain after Fourier transforming the pulse wave is usually used. In the present embodiment, since the value obtained by equation (12) corresponds to the Fourier transform of the pulse wave, the pulse rate can be calculated with reference to this value.
 この場合において、ノイズは時々刻々と変化するが、脈波のピーク周波数と強度はある一定の範囲でしか変化しない。そのため、事前に脈波の変化範囲を指定することで、脈拍数の検出精度を上げる事ができる。
 〔その他の実施形態(4)〕
 以上の実施形態の説明では、脈波について測定信号に含まれるノイズを除去する具体例を用いて説明してきたが、脈波以外の各種の生体信号に応用することも可能である。
In this case, the noise changes from moment to moment, but the peak frequency and intensity of the pulse wave change only within a certain range. Therefore, by specifying the pulse wave change range in advance, the pulse rate detection accuracy can be increased.
[Other embodiment (4)]
In the above description of the embodiment, the pulse wave has been described using a specific example of removing noise included in the measurement signal. However, the present invention can be applied to various biological signals other than the pulse wave.
 また、生体信号以外の各種の信号に対して無相関、非位相同期のノイズが混在する場合において、ノイズ除去の信号処理を行うことが可能である。
 〔実施形態により得られる効果〕
 この実施形態では、測定場所の異なる複数の測定信号を取得し、複数の測定信号間の相関性を検出し、複数の測定信号間の位相同期性を検出し、複数の測定信号のそれぞれから無相関成分と非位相同期成分とを除去して情報信号と推定される複数の推定信号を出力する際に、信号間の相関性と同期性を評価しており、周波数情報に依存しないため、情報信号とノイズとの周波数が近い場合であっても、情報信号とノイズとが混在した測定信号からノイズを除去して所望の情報信号を抽出することが可能になる。
Further, when non-correlated and non-phase-synchronized noise is mixed with various signals other than biological signals, it is possible to perform signal processing for noise removal.
[Effect obtained by the embodiment]
In this embodiment, a plurality of measurement signals at different measurement locations are acquired, the correlation between the plurality of measurement signals is detected, the phase synchronism between the plurality of measurement signals is detected, and there is no difference from each of the plurality of measurement signals. When outputting a plurality of estimated signals estimated as information signals by removing the correlation component and non-phase synchronization component, the correlation and synchronization between the signals are evaluated and do not depend on the frequency information. Even if the frequency of the signal and the noise is close, it is possible to extract the desired information signal by removing the noise from the measurement signal in which the information signal and the noise are mixed.
 また、複数の測定信号の相互スペクトルを算出して相関性を検出してフィルタ処理を行うため、情報信号とノイズとが混在した測定信号からノイズを除去して所望の情報信号を抽出することが可能になる。
 また、複数の測定信号の相互スペクトルを算出して相関性を検出し、かつ、複数の測定信号の相互スペクトルの非位相同期キャンセル関数により位相同期性を検出するため、情報信号とノイズとが混在した測定信号からノイズを除去して所望の情報信号を抽出することが可能になる。
In addition, since the mutual spectrum of a plurality of measurement signals is calculated to detect the correlation and filter processing is performed, it is possible to remove the noise from the measurement signal in which the information signal and the noise are mixed to extract a desired information signal. It becomes possible.
In addition, information signals and noise are mixed because the cross spectrum of multiple measurement signals is calculated to detect correlation and the phase synchronization is detected by the non-phase synchronization cancellation function of the mutual spectrum of multiple measurement signals. It is possible to extract a desired information signal by removing noise from the measured signal.
 また、複数の測定信号として、被検体の左右対象な位置で脈波を測定することにより得られた2つの脈波信号を用いる生体信号処理において、脈波信号には位相同期性と相関性とが存在しており、複数の測定信号の相互スペクトルを算出して相関性を検出し、かつ、複数の測定信号の相互スペクトルの非位相同期キャンセル関数により位相同期性を検出するため、情報信号とノイズとの周波数が近い場合であっても、ノイズと情報信号とを相関性や位相同期性に着目してフィルタ処理により分離することができ、情報信号とノイズとが混在した測定信号からノイズを除去して所望の情報信号を抽出することが可能になる。
Further, in the biological signal processing using two pulse wave signals obtained by measuring the pulse wave at the left and right target positions of the subject as a plurality of measurement signals, the pulse wave signal includes phase synchronization and correlation. In order to detect the correlation by calculating the mutual spectrum of the plurality of measurement signals and to detect the phase synchronization by the non-phase synchronization cancellation function of the mutual spectrum of the plurality of measurement signals, Even when the frequency of the noise is close, the noise and the information signal can be separated by filtering focusing on the correlation and phase synchronization, and the noise can be removed from the measurement signal mixed with the information signal and noise. The desired information signal can be extracted by removing the signal.
11,12 センサ
100 信号処理装置
110 フィルタ係数生成部
120 情報信号抽出部
11, 12 Sensor 100 Signal processor 110 Filter coefficient generator 120 Information signal extractor

Claims (6)

  1.  情報信号とノイズとが混在した状態で測定された測定信号からノイズを除去して情報信号を抽出する信号処理方法であって、
     測定場所の異なる複数の測定信号を取得し、
     複数の前記測定信号間の相関性を検出し、
     複数の前記測定信号間の位相同期性を検出し、
     複数の前記測定信号のそれぞれから前記相関性の低い無相関成分と前記位相同期性の低い非位相同期成分とを除去して前記情報信号と推定される複数の推定信号を出力する、
    ことを特徴とする信号処理方法。
    A signal processing method for extracting information signals by removing noise from a measurement signal measured in a state where information signals and noise are mixed,
    Acquire multiple measurement signals at different measurement locations,
    Detecting a correlation between the plurality of measurement signals;
    Detecting phase synchronism between the plurality of measurement signals;
    Removing a non-correlated component with low correlation and a non-phase synchronous component with low phase synchronization from each of a plurality of measurement signals, and outputting a plurality of estimated signals estimated as the information signal,
    And a signal processing method.
  2.  複数の前記測定信号の相互スペクトルを算出して前記相関性を検出する、
    ことを特徴とする請求項1に記載の信号処理方法。
    Calculating a mutual spectrum of a plurality of the measurement signals to detect the correlation;
    The signal processing method according to claim 1.
  3.  複数の前記測定信号の相互スペクトルを算出して前記相関性を検出し、
     複数の前記測定信号の相互スペクトルの非位相同期キャンセル関数により前記位相同期性を検出する、
    ことを特徴とする請求項1に記載の信号処理方法。
    Calculating the cross spectrum of the plurality of measurement signals to detect the correlation;
    Detecting the phase synchronism by a non-phase synchronization cancellation function of a mutual spectrum of a plurality of the measurement signals;
    The signal processing method according to claim 1.
  4.  複数の前記測定信号は、被検体の左右対象な位置で脈波を測定することにより得られた2つの脈波信号であって、
     請求項1に記載の信号処理方法を用いたことを特徴とする生体信号処理方法。
    The plurality of measurement signals are two pulse wave signals obtained by measuring pulse waves at left and right positions of the subject,
    A biological signal processing method using the signal processing method according to claim 1.
  5.  情報信号とノイズとが混在した状態で測定された測定信号からノイズを除去して情報信号を抽出する信号処理装置であって、
     測定場所の異なる複数の測定信号を取得する信号取得部と、
     複数の前記測定信号間の相関性を検出する相関性検出部と、
     複数の前記測定信号間の位相同期性を検出する位相同期性検出部と、
     複数の前記測定信号のそれぞれから前記相関性の低い無相関成分と前記位相同期性の低い非位相同期成分とを除去して前記情報信号と推定される複数の推定信号を生成する情報信号抽出部と、
    を有することを特徴とする信号処理装置。
    A signal processing apparatus that extracts information signals by removing noise from a measurement signal measured in a state where information signals and noise are mixed,
    A signal acquisition unit for acquiring a plurality of measurement signals at different measurement locations;
    A correlation detection unit for detecting correlation between the plurality of measurement signals;
    A phase synchronism detecting unit for detecting phase synchronism between the plurality of measurement signals;
    An information signal extraction unit that generates a plurality of estimated signals estimated as the information signal by removing the uncorrelated component having low correlation and the non-phase synchronizing component having low phase synchronization from each of the plurality of measurement signals When,
    A signal processing apparatus comprising:
  6.  請求項5に記載の信号処理装置を備え、
     被検体の左右対象な位置で脈波を測定することにより得られた2つの脈波信号を複数の測定信号として、情報信号と推定される複数の推定信号を生成する、
    ことを特徴とする生体信号処理装置。
    A signal processing device according to claim 5,
    Using two pulse wave signals obtained by measuring pulse waves at left and right positions of the subject as a plurality of measurement signals, and generating a plurality of estimation signals that are estimated as information signals,
    A biological signal processing apparatus.
PCT/JP2016/063672 2015-06-15 2016-05-06 Signal processing method, biosignal processing method, signal processing device, and biosignal processing device WO2016203862A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015120597A JP6501643B2 (en) 2015-06-15 2015-06-15 Signal processing method, biological signal processing method, signal processing device and biological signal processing device
JP2015-120597 2015-06-15

Publications (1)

Publication Number Publication Date
WO2016203862A1 true WO2016203862A1 (en) 2016-12-22

Family

ID=57545185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063672 WO2016203862A1 (en) 2015-06-15 2016-05-06 Signal processing method, biosignal processing method, signal processing device, and biosignal processing device

Country Status (2)

Country Link
JP (1) JP6501643B2 (en)
WO (1) WO2016203862A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3501382A1 (en) * 2017-12-22 2019-06-26 Stichting IMEC Nederland A system and a method for motion artifact reduction in a ppg signal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6727469B1 (en) * 2018-09-10 2020-07-22 三菱電機株式会社 Information processing apparatus, program, and information processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020836A (en) * 2004-07-08 2006-01-26 Hitachi Ltd Biological optical metering apparatus and optical measurement method
JP2006212178A (en) * 2005-02-03 2006-08-17 Nippon Telegr & Teleph Corp <Ntt> Blood pressure-measuring apparatus and blood pressure judgment method
JP2006247221A (en) * 2005-03-11 2006-09-21 Omron Healthcare Co Ltd Pulse wave detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008207672B2 (en) * 2008-02-15 2013-10-31 Impedimed Limited Impedance Analysis
JP2009195571A (en) * 2008-02-22 2009-09-03 Kanazawa Inst Of Technology Noise removal method and biological information measuring apparatus using the method and brain magnetic field measuring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020836A (en) * 2004-07-08 2006-01-26 Hitachi Ltd Biological optical metering apparatus and optical measurement method
JP2006212178A (en) * 2005-02-03 2006-08-17 Nippon Telegr & Teleph Corp <Ntt> Blood pressure-measuring apparatus and blood pressure judgment method
JP2006247221A (en) * 2005-03-11 2006-09-21 Omron Healthcare Co Ltd Pulse wave detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3501382A1 (en) * 2017-12-22 2019-06-26 Stichting IMEC Nederland A system and a method for motion artifact reduction in a ppg signal

Also Published As

Publication number Publication date
JP2017000625A (en) 2017-01-05
JP6501643B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
CN107949321B (en) Temporal interference removal and improved heart rate measurement tracking mechanism
CN109222948B (en) Method, device, electronic equipment and storage medium for eliminating motion interference noise
Morgan et al. Novel signal processing techniques for Doppler radar cardiopulmonary sensing
JP2008272447A (en) Method for accurate determining of cpr chest compression depth in real time
Yousefi et al. Adaptive cancellation of motion artifact in wearable biosensors
RU2677007C2 (en) Apparatus and method for ecg motion artifact removal
Zheng et al. Single-lead fetal electrocardiogram estimation by means of combining R-peak detection, resampling and comb filter
Jiang et al. Real-time quantifying heart beat rate from facial video recording on a smart phone using Kalman filters
WO2016203862A1 (en) Signal processing method, biosignal processing method, signal processing device, and biosignal processing device
Periyasamy et al. Review on heart-rate estimation from photoplethysmography and accelerometer signals during physical exercise
CN110292372B (en) Detection device
KR101514151B1 (en) Noise robust algorithm for ppg signal measurement
Shin et al. Noise-robust heart rate estimation algorithm from photoplethysmography signal with low computational complexity
US20180000423A1 (en) Measuring apparatus, measuring method and non-transitory computer readable medium
JP2013106837A (en) Heart rate detection method, heart rate detector, and mental stress measuring apparatus
CN109620198B (en) Cardiovascular index detection and model training method and device
WO2020070808A1 (en) Pulse wave calculation device, pulse wave calculation method, and pulse wave calculation program
KR20220137856A (en) Signal processing method, signal filtering apparatus and signal processing unit
EP2938247B1 (en) Method and apparatus for reducing motion artifacts in ecg signals
Orini et al. Modeling and estimation of time-varying heart rate variability during stress test by parametric and non parametric analysis
CN114403820A (en) Vital sign detection method and system for moving target
JP2006043146A (en) Pulse wave analysis method and apparatus
KR20180067348A (en) Apparatus and method for estimating heart beat using photo-plethysmogram
Horimoto et al. Heartbeat Harmonics Detectability During Driving Simulation Using NHA and CW Doppler Radar
Yan et al. Research on an anti-motion interference algorithm of blood oxygen saturation based on AC and DC analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811337

Country of ref document: EP

Kind code of ref document: A1