JP2013106837A - Heart rate detection method, heart rate detector, and mental stress measuring apparatus - Google Patents

Heart rate detection method, heart rate detector, and mental stress measuring apparatus Download PDF

Info

Publication number
JP2013106837A
JP2013106837A JP2011255024A JP2011255024A JP2013106837A JP 2013106837 A JP2013106837 A JP 2013106837A JP 2011255024 A JP2011255024 A JP 2011255024A JP 2011255024 A JP2011255024 A JP 2011255024A JP 2013106837 A JP2013106837 A JP 2013106837A
Authority
JP
Japan
Prior art keywords
frequency
signal
low
heartbeat
heart rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011255024A
Other languages
Japanese (ja)
Inventor
Shinichi Suzuki
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2011255024A priority Critical patent/JP2013106837A/en
Publication of JP2013106837A publication Critical patent/JP2013106837A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heart rate detection method for correctly extracting an acceleration pulse wave signal from a volume pulse wave signal without amplifying only noise components by second order differential processing to obtain the variation amount of a pulse wave signal nor submerging thereby the original pulse wave signal in noise.SOLUTION: The heart rate detection method for detecting the heart rate by intensity of a light transmitting through or reflecting from a living body includes: a first process of converting the transmitted or reflected light into an electric signal, and subjecting the electric signal to a low frequency transmission filtering; a second process of subjecting the signal after passing through the first process to differential processing; a third process of subjecting the signal after passing through the second process to the low frequency transmission filtering; a fourth process of subjecting the signal after passing through the third process to the differential processing; a fifth process of subjecting the signal after passing through the fourth process to the low frequency transmission filtering; and a sixth process of detecting the peak value from the signal after passing through the fifth process, and assuming the interval of the peak value as a heartbeat interval.

Description

本発明は、生体の計測データを処理し、心拍波形を測定する心拍検知方法、心拍検知装置および精神ストレス計測装置に関する。   The present invention relates to a heartbeat detection method, a heartbeat detection device, and a mental stress measurement device that process biological measurement data and measure a heartbeat waveform.

身体のストレスを表す指標を求める場合、心拍波形のピーク間隔(これをR−R間隔という。)の時間的な揺らぎを用いることが知られている。R−R間隔を周波数解析し、事前に設定した2つの異なる周波数範囲のパワーの比をストレスを表す指標として用いている。心拍波形を取得する方法として心臓の筋肉の活動電位を測定する方法があり、これによりストレス計測のための脈波を取得することができる。また、簡易な測定方法として身体の特定部位の光の透過率あるいは反射率を用いる方法がある。例えば、図9に示すように指先に赤外線を照射したときの反射率または耳たぶに赤外線を照射したときの透過率などを用いる方法である。なお、図9中の101は人の指先を、102は赤外線投光器を、103は赤外線受光器をそれぞれ表す。赤外線受光器103は、赤外線投光器102から照射され指先で反射する赤外線を検知する。これら特定部位の赤外線の透過率あるいは反射率はその部位を流れる血液量と関係があり、これら特定部位の赤外線の透過率あるいは反射率を測定することにより得られる波形を容積脈波と呼ぶ。また心筋の活動を表す心拍信号の代替として、この容積脈波を2階微分し、血流の加速度成分を表す加速度脈波を用いる。   When obtaining an index representing physical stress, it is known to use temporal fluctuations in the peak interval of the heartbeat waveform (this is referred to as RR interval). The frequency of the RR interval is analyzed, and the ratio of power in two different frequency ranges set in advance is used as an index representing stress. As a method of acquiring a heartbeat waveform, there is a method of measuring an action potential of a heart muscle, whereby a pulse wave for stress measurement can be acquired. As a simple measuring method, there is a method using light transmittance or reflectance of a specific part of the body. For example, as shown in FIG. 9, there is a method using the reflectance when the fingertip is irradiated with infrared rays or the transmittance when the earlobe is irradiated with infrared rays. In FIG. 9, 101 represents a human fingertip, 102 represents an infrared projector, and 103 represents an infrared receiver. The infrared light receiver 103 detects infrared light that is irradiated from the infrared light projector 102 and reflected by the fingertip. The infrared transmittance or reflectance of these specific parts is related to the amount of blood flowing through that part, and the waveform obtained by measuring the infrared transmittance or reflectance of these specific parts is called a volume pulse wave. As an alternative to a heartbeat signal representing myocardial activity, this volume pulse wave is second-order differentiated and an acceleration pulse wave representing the blood flow acceleration component is used.

上記の心拍検知手段が、特許文献1における精神ストレス評価装置、特許文献2における自律神経系機能評価方法およびそのシステム及び特許文献3におけるストレスセンサシステムなどの発明に用いられている。   The above heart rate detection means is used in inventions such as a mental stress evaluation apparatus in Patent Document 1, an autonomic nervous system function evaluation method and system in Patent Document 2, and a stress sensor system in Patent Document 3.

容積脈波の波形の例を図10に示す。図9において赤外線受光器103が得た脈波信号を実際に測定すると図10に示されるような波形にはならない場合が多い。血流による反射光の変化は微少でありノイズの影響を受けやすいからである。また、赤外線受光器103により測定された脈波信号はA/D変換によりデジタルデータ化される場合があり、この場合、変換誤差や量子化誤差が加わることになる。実際の波形の例を図11に示す。微少時間(△t)での脈波信号の変化量を求めるため微分処理を行うこととなる。しかし、微分処理を行うと実際の信号処理において元信号のノイズ成分を増幅させてしまう。さらに、ノイズを増幅させる微分処理を続けて2回行う事はノイズ成分だけを増幅させる事になりかねず、本来の脈波信号がノイズに埋もれてしまう。例えば図11の信号を微分すると図12の様になり、ノイズが増幅され脈波の信号成分が埋もれてしまう。   An example of the waveform of the volume pulse wave is shown in FIG. In FIG. 9, when the pulse wave signal obtained by the infrared receiver 103 is actually measured, the waveform as shown in FIG. 10 is often not obtained. This is because the change in reflected light due to blood flow is very small and susceptible to noise. Further, the pulse wave signal measured by the infrared light receiver 103 may be converted into digital data by A / D conversion. In this case, a conversion error or a quantization error is added. An example of an actual waveform is shown in FIG. Differentiation processing is performed to obtain the amount of change of the pulse wave signal in a minute time (Δt). However, when differentiation is performed, the noise component of the original signal is amplified in actual signal processing. Further, if the differential process for amplifying the noise is continuously performed twice, only the noise component may be amplified, and the original pulse wave signal is buried in the noise. For example, when the signal of FIG. 11 is differentiated, it becomes as shown in FIG. 12, and the noise is amplified and the signal component of the pulse wave is buried.

そこで、本発明は、脈波信号の変化量を求めるための2階微分処理によりノイズ成分だけを増幅させること、及びこれにより本来の脈波信号がノイズに埋もれることがないように容積脈波信号から加速度脈波信号を正しく抽出する心拍検知方法を提供する事を目的とする。   Therefore, the present invention amplifies only the noise component by the second-order differentiation process for obtaining the amount of change of the pulse wave signal, and the volume pulse wave signal so that the original pulse wave signal is not buried in the noise. An object of the present invention is to provide a heartbeat detection method for correctly extracting an acceleration pulse wave signal from a heartbeat.

上記の課題を解決するため、本発明の心拍検知方法は、生体を透過あるいは反射する光の強弱により心拍を検知する心拍検知方法であって、透過あるいは反射した光を電気信号に変換し、電気信号に低周波透過フィルタを施す第1の工程と、第1の工程を通過後の信号に微分処理を施す第2の工程と、第2の工程を通過後の信号に低周波透過フィルタを施す第3の工程と、第3の工程を通過後の信号に微分処理を施す第4の工程と、第4の工程を通過後の信号に低周波透過フィルタを施す第5の工程と、第5の工程を通過後の信号からピーク値を検出し、ピーク値の間隔を心拍間隔とする第6の工程とを備えることを特徴とする。   In order to solve the above-described problems, a heartbeat detection method of the present invention is a heartbeat detection method for detecting a heartbeat based on the intensity of light transmitted or reflected through a living body, and converts the transmitted or reflected light into an electrical signal, A first step of applying a low-frequency transmission filter to the signal; a second step of performing a differentiation process on the signal after passing through the first step; and applying a low-frequency transmission filter to the signal after passing through the second step A third step, a fourth step for performing differentiation on the signal after passing through the third step, a fifth step for applying a low-frequency transmission filter to the signal after passing through the fourth step, And a sixth step of detecting a peak value from the signal after passing through the step and setting the interval between the peak values as a heartbeat interval.

本発明によれば、適時、低周波透過フィルタを通すことで、心拍信号の変化量を求めるための2階微分処理によりノイズ成分だけを増幅させること、及びこれにより本来の心拍信号がノイズに埋もれることを防ぐことができる。   According to the present invention, by passing through a low-frequency transmission filter in a timely manner, only the noise component is amplified by the second-order differentiation process for obtaining the amount of change in the heartbeat signal, and the original heartbeat signal is buried in the noise. Can be prevented.

本発明の実施形態の心拍検知方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the heart rate detection method of embodiment of this invention. 本発明の実施形態の心拍検知方法により処理された各手順ごとの心拍波形図である。It is a heartbeat waveform figure for every procedure processed by the heartbeat detection method of the embodiment of the present invention. 本発明の実施形態の心拍検知方法により処理された、カットオフ周波数を20Hzとしたときの各手順ごとの心拍波形図である。It is a heartbeat waveform figure for every procedure when the cutoff frequency is 20 Hz processed by the heartbeat detection method of the embodiment of the present invention. 本発明の実施形態の心拍検知方法により処理された、カットオフ周波数を3Hzとしたときの各手順ごとの心拍波形図である。It is a heart rate waveform figure for every procedure when the cutoff frequency is 3 Hz processed by the heart rate detection method of the embodiment of the present invention. 本発明の実施形態の心拍検知方法の手順において、R−R間隔を求める例を示した図である。It is the figure which showed the example which calculates | requires RR space | interval in the procedure of the heart rate detection method of embodiment of this invention. 本発明の実施形態の心拍検知方法によって得られたR−R間隔に基づいたストレス計測の手順を示すフロー図である。It is a flowchart which shows the procedure of the stress measurement based on the RR space | interval obtained by the heartbeat detection method of embodiment of this invention. 本発明の実施形態の心拍検知装置の概要を示すブロック図である。It is a block diagram which shows the outline | summary of the heart rate detection apparatus of embodiment of this invention. 本発明の実施形態のストレス計測装置の概要を示すブロック図である。It is a block diagram which shows the outline | summary of the stress measuring device of embodiment of this invention. 人の指先への赤外線反射率を用いた心拍波形計測手法の実例を示す図である。It is a figure which shows the actual example of the heart rate waveform measurement method using the infrared reflectance to a person's fingertip. 容積脈波の波形図の一例である。It is an example of the waveform figure of a volume pulse wave. 容積脈波の実際の波形図の一例である。It is an example of the actual waveform figure of a volume pulse wave. 容積脈波信号を2階微分処理したときの波形図の一例である。It is an example of a waveform diagram when the volume pulse wave signal is subjected to second-order differential processing.

本発明の実施形態の心拍検知方法について、図1を用いて以下説明する。血流量測定(ステップS1)により得られた情報はA/D変換器によりデジタルデータ化される(ステップS2)。ローパスフィルタ1はデジタル化されたデータに低周波透過フィルタを適応する(ステップS3)。次に微分処理1を行い(ステップS4)、ローパスフィルタ2により低周波透過フィルタを適応する(ステップS5)。その後、微分処理2を行い(ステップS6)、ローパスフィルタ3により低周波透過フィルタを適応する(ステップS7)。こうして2階微分された信号からのピーク検出出力により波形ピークの時間間隔を出力する(ステップS8)。   A heartbeat detection method according to an embodiment of the present invention will be described below with reference to FIG. Information obtained by blood flow measurement (step S1) is converted into digital data by an A / D converter (step S2). The low-pass filter 1 applies a low-frequency transmission filter to the digitized data (step S3). Next, differential processing 1 is performed (step S4), and a low-frequency transmission filter is applied by the low-pass filter 2 (step S5). Thereafter, differentiation processing 2 is performed (step S6), and a low-frequency transmission filter is applied by the low-pass filter 3 (step S7). The time interval between the waveform peaks is output based on the peak detection output from the second-order differentiated signal (step S8).

この処理を行った例を図2に示す。微分を行うとノイズ成分が増幅される。微分処理1の後にローパスフィルタ処理を行わないと次の微分時にノイズが増幅されてしまう。よって、微分処理の後にローパスフィルタを通す事により多段の微分処理を行った場合でもノイズ成分を最小限にする事ができる。つまりノイズ成分が増幅されることを防ぐことができる。   An example of this processing is shown in FIG. When differentiation is performed, noise components are amplified. If low-pass filter processing is not performed after differentiation processing 1, noise will be amplified during the next differentiation. Therefore, noise components can be minimized even when multi-stage differential processing is performed by passing a low-pass filter after differential processing. That is, it is possible to prevent noise components from being amplified.

低周波透過フィルタのカットオフ周波数をいくつにするか検討する。カットオフ周波数が高すぎるとノイズを除去出来ず、カットオフ周波数が低すぎるとピーク波形を鈍らせてしまいピーク間隔の精度が落ちる。例として、カットオフ周波数を20Hzとした場合の上記に示したステップS1〜ステップS8の各工程により得られた波形を図3に示す。また、カットオフ周波数を3Hzとした場合の各工程により得られた波形を図4に示す。   Consider the cutoff frequency of the low-frequency transmission filter. If the cut-off frequency is too high, noise cannot be removed, and if the cut-off frequency is too low, the peak waveform is dulled and the accuracy of the peak interval is lowered. As an example, FIG. 3 shows waveforms obtained by the steps S1 to S8 described above when the cutoff frequency is 20 Hz. Moreover, the waveform obtained by each process when a cutoff frequency is 3 Hz is shown in FIG.

人の心拍間隔はおよそ1秒間隔であり、図2に示すような加速度脈波のピークを示す山の時間は心拍間隔の約1/10である。そのため、カットオフ周波数を10Hzとすることが望ましい。このカットオフ周波数はピーク間隔を計測し随時変更しても良い。例えば過去10拍分のピーク間隔を平均した時間(t)として、その約1/10の時間(t/10)をカットオフ周波数(fc=10/t)として用いたローパスフィルタ処理を行う。こうすることで、間隔の変化する心拍のピーク間隔をより正しく検出する事が可能となる。なお、カットオフ周波数を約10Hzの固定周波数として処理を簡略化しても良い。この加速度脈波信号からのピーク値を検出し、そのピーク間隔を求めることとする。その例を図5に示す。ピークの間隔t1、t2、t3・・・を順次求め、この間隔をR−R間隔として出力する。   A person's heartbeat interval is about 1 second, and the time of a peak showing the peak of an acceleration pulse wave as shown in FIG. 2 is about 1/10 of the heartbeat interval. Therefore, it is desirable that the cutoff frequency is 10 Hz. This cutoff frequency may be changed at any time by measuring the peak interval. For example, as the time (t) obtained by averaging the peak intervals for the past 10 beats, low-pass filter processing is performed using about 1/10 of the time (t / 10) as the cutoff frequency (fc = 10 / t). In this way, it is possible to more accurately detect the peak interval of the heartbeat whose interval changes. The processing may be simplified by setting the cutoff frequency to a fixed frequency of about 10 Hz. A peak value from the acceleration pulse wave signal is detected and the peak interval is obtained. An example is shown in FIG. The peak intervals t1, t2, t3,... Are sequentially obtained, and the intervals are output as RR intervals.

上述のように、低周波透過フィルタのカットオフ周波数を心拍間隔の1/10に設定することにより、ノイズを適切に除去しつつ加速度脈波のピーク位置検出の精度を損なうこと無く正しい加速度脈波のピーク時間(R−R間隔)を求めることができる。なお、本実施形態ではA/D変換後にローパスフィルタ及び微分処理を行っているが、A/D変換する前にアナログ的にローパスフィルタ及び微分処理を行ってもよい。   As described above, by setting the cut-off frequency of the low-frequency transmission filter to 1/10 of the heartbeat interval, the correct acceleration pulse wave can be obtained without impairing the accuracy of peak position detection of the acceleration pulse wave while properly removing noise. Peak time (RR interval) can be obtained. In the present embodiment, the low-pass filter and differentiation processing are performed after A / D conversion, but the low-pass filter and differentiation processing may be performed in an analog manner before A / D conversion.

本発明の実施形態の精神ストレス計測の手順について以下説明する。すなわち、上記の手順によって検出されたR−R間隔に基づいてストレス計測を行う。   The procedure of mental stress measurement according to the embodiment of the present invention will be described below. That is, stress measurement is performed based on the RR interval detected by the above procedure.

ストレス計測の手順を図6に示す。測定されたR−R間隔を時系列にデータ化する(ステップS11)。例えばt2秒では値T1、t2+t3秒では値T2、t2+t3+t4秒では値T3と言うようにデータ化する。なお、このデータは時間間隔が等しくない。よって、時系列化したデータを等時間間隔となる様に変換する(ステップS12)。周波数解析をしてパワースペクトルを求める(ステップS13)場合、高速に周波数解析を行うにはデータの時間間隔は等しいデータ列である事が望ましいからである。その後、算出されたパワースペクトルデータから2つの周波数帯域のパワーを算出する(ステップS14)。例えば1つの帯域LF(Low Frequency)は直流DC成分を除去した0.15Hzから0.2Hzを上限とする帯域とし、もう一つの帯域HF(High Frequency)はLFの上限から0.5Hzを上限とする帯域である。このLFとHFの帯域のパワーをそれぞれ求める。そしてLFとHFの比として、例えばLF/HFを算出する(ステップS15)。こうして算出された値をストレスの指標として用いる(ステップS16)。   The procedure for stress measurement is shown in FIG. The measured RR interval is converted into data in time series (step S11). For example, the data is converted into a value T1 at t2 seconds, a value T2 at t2 + t3 seconds, and a value T3 at t2 + t3 + t4 seconds. Note that this data is not equal in time interval. Therefore, the time-series data is converted so as to have equal time intervals (step S12). This is because when the power spectrum is obtained by performing frequency analysis (step S13), it is desirable that the data time intervals are equal data strings in order to perform frequency analysis at high speed. Thereafter, power in two frequency bands is calculated from the calculated power spectrum data (step S14). For example, one band LF (Low Frequency) has a band whose upper limit is 0.15 Hz to 0.2 Hz from which the DC component is removed, and another band HF (High Frequency) has an upper limit of 0.5 Hz from the upper limit of LF. This is the bandwidth to be used. The powers of the LF and HF bands are obtained respectively. For example, LF / HF is calculated as the ratio of LF to HF (step S15). The value calculated in this way is used as an index of stress (step S16).

上記手順をとることにより、より正しいR−R間隔を求める事ができノイズに強いストレス計測が可能となる。なお、ステップS12における変換には、データ点とデータ点の間を直線近似し、時間間隔を細かくするアップサンプリングで実現できる。スプライン関数や高次関数でデータ点間を補間しアップサンプリングしても良い。時間間隔を等しくすることで高速フーリエ変換アルゴリズムに代表される計算処理によりフーリエ変換を行う事が可能となる。   By taking the above procedure, a more accurate RR interval can be obtained and stress measurement resistant to noise can be performed. Note that the conversion in step S12 can be realized by up-sampling in which the data points are linearly approximated and the time interval is reduced. Upsampling may be performed by interpolating between data points using a spline function or a higher-order function. By making the time intervals equal, it is possible to perform Fourier transform by calculation processing represented by a fast Fourier transform algorithm.

本発明の実施形態の心拍検知装置1は、生体を透過あるいは反射する光の強弱により心拍を検知する心拍検知部11、心拍検知部11により得られた情報をデジタルデータ化するA/D変換部12、低周波透過フィルタを透過させ高周波成分を除去するローパスフィルタ13〜15、加速度脈波を得るために微分処理を行う第1の微分処理部16及び第2の微分処理部17、及びピーク時間間隔(R−R間隔)を出力するピーク検出出力部18を備える。なお、低周波透過フィルタのカットオフ周波数は可変することができるもの(周波数可変部19を備える)であってもよいし、固定したものであってもよい。   A heartbeat detection device 1 according to an embodiment of the present invention includes a heartbeat detection unit 11 that detects a heartbeat based on the intensity of light transmitted or reflected through a living body, and an A / D conversion unit that converts information obtained by the heartbeat detection unit 11 into digital data. 12, low-pass filters 13 to 15 that transmit a low-frequency transmission filter and remove high-frequency components, a first differential processing unit 16 and a second differential processing unit 17 that perform differential processing to obtain acceleration pulse waves, and peak time A peak detection output unit 18 that outputs an interval (RR interval) is provided. Note that the cutoff frequency of the low-frequency transmission filter may be variable (including the frequency variable unit 19), or may be fixed.

また、本発明の実施形態の心拍検知装置1を備えた精神ストレス計測装置50は、R−R間隔を時系列にデータ化する時系列データ変換部51、時系列化したデータを等時間間隔となる様に変換するための等時間間隔変換部52、周波数解析によりパワースペクトルデータを算出するパワースペクトルデータ算出部53、パワースペクトルデータから2つの周波数帯域のパワーを算出する周波数帯域算出部54、2つの周波数帯域のパワー比を算出するパワー比算出部55、及びパワー比に応じたストレス値へ変換するストレス値変換部56を備える。   In addition, the mental stress measurement device 50 including the heartbeat detection device 1 according to the embodiment of the present invention includes a time series data conversion unit 51 that converts RR intervals into time series data, and sets the time series data as equal time intervals. An equal time interval conversion unit 52 for converting the power spectrum data, a power spectrum data calculation unit 53 for calculating power spectrum data by frequency analysis, and a frequency band calculation unit 54 for calculating power of two frequency bands from the power spectrum data. A power ratio calculation unit 55 that calculates a power ratio of two frequency bands, and a stress value conversion unit 56 that converts the power ratio to a stress value corresponding to the power ratio are provided.

なお、上述する各実施の形態は、本発明の好適な実施の形態であり、本発明の要旨を逸脱しない範囲内において種々変更実施が可能である。   Each of the above-described embodiments is a preferred embodiment of the present invention, and various modifications can be made without departing from the scope of the present invention.

1 心拍検知装置
11 心拍検知部
12 A/D変換部
13〜15 ローパスフィルタ1〜3
16 第1の微分処理部
17 第2の微分処理部
18 ピーク検出出力部
19 周波数可変部
50 精神ストレス計測装置
51 時系列データ変換部
52 等時間間隔変換部
53 パワースペクトルデータ算出部
54 周波数帯域算出部
55 パワー比算出部
56 ストレス値変換部
101 人の指先
102 赤外線の投光器
103 赤外線の受光器
DESCRIPTION OF SYMBOLS 1 Heartbeat detection apparatus 11 Heartbeat detection part 12 A / D conversion part 13-15 Low pass filter 1-3
DESCRIPTION OF SYMBOLS 16 1st differential process part 17 2nd differential process part 18 Peak detection output part 19 Frequency variable part 50 Mental stress measuring device 51 Time series data conversion part 52 Equal time interval conversion part 53 Power spectrum data calculation part 54 Frequency band calculation Unit 55 Power ratio calculation unit 56 Stress value conversion unit 101 Human fingertip 102 Infrared light projector 103 Infrared light receiver

特許第4238321号公報Japanese Patent No. 4238321 特開2003−190109号公報JP 2003-190109 A 特開2007−289540号公報JP 2007-289540 A

Claims (5)

生体を透過あるいは反射する光の強弱により心拍を検知する心拍検知方法であって、
透過あるいは反射した光を電気信号に変換し、
前記電気信号に低周波透過フィルタを施す第1の工程と、
前記第1の工程を通過後の信号に微分処理を施す第2の工程と、
前記第2の工程を通過後の信号に低周波透過フィルタを施す第3の工程と、
前記第3の工程を通過後の信号に微分処理を施す第4の工程と、
前記第4の工程を通過後の信号に低周波透過フィルタを施す第5の工程と、
前記第5の工程を通過後の信号からピーク値を検出し、ピーク値の間隔を心拍間隔とする第6の工程とを備えることを特徴とする心拍検知方法。
A heart rate detection method for detecting a heart rate by the intensity of light transmitted or reflected through a living body,
Converts transmitted or reflected light into an electrical signal,
A first step of applying a low frequency transmission filter to the electrical signal;
A second step of differentiating the signal after passing through the first step;
A third step of applying a low-frequency transmission filter to the signal after passing through the second step;
A fourth step of performing differentiation on the signal after passing through the third step;
A fifth step of applying a low-frequency transmission filter to the signal after passing through the fourth step;
A heart rate detection method comprising: a sixth step of detecting a peak value from the signal after passing through the fifth step and setting an interval between the peak values as a heart rate interval.
前記低周波透過フィルタのカットオフ周波数を心拍間隔の約1/10の周波数とすることを特徴とする請求項1に記載の心拍検知方法。   The heartbeat detection method according to claim 1, wherein a cut-off frequency of the low-frequency transmission filter is set to a frequency about 1/10 of a heartbeat interval. 生体を透過あるいは反射する光の強弱により心拍信号を検知する心拍検知部と、
前記心拍検知部により検知された前記心拍信号を電気信号に変換するA/D変換部と、
前記電気信号から高周波成分を除去する第1の低周波透過フィルタと、
前記第1の低周波透過フィルタを透過した信号を微分処理する第1の微分処理部と、
前記第1の微分処理部により微分処理された信号から高周波成分を除去する第2の低周波フィルタと、
前記第2の低周波フィルタを透過した信号を微分処理する第2の微分処理部と、
前記第2の微分処理部により微分処理された信号から高周波成分を除去する第3の低周波フィルタと、
前記第3の低周波フィルタを透過した信号からピーク値を検出し、ピーク値の間隔を心拍間隔とするピーク検出出力部とを備えることを特徴とする心拍検知装置。
A heartbeat detection unit that detects a heartbeat signal based on the intensity of light transmitted or reflected through a living body;
An A / D converter that converts the heartbeat signal detected by the heartbeat detector into an electrical signal;
A first low-frequency transmission filter that removes high-frequency components from the electrical signal;
A first differentiation processing unit for differentiating a signal transmitted through the first low-frequency transmission filter;
A second low-frequency filter for removing high-frequency components from the signal subjected to differentiation processing by the first differentiation processing unit;
A second differentiation processor for differentiating the signal transmitted through the second low-frequency filter;
A third low-frequency filter for removing high-frequency components from the signal subjected to differential processing by the second differential processing unit;
A heartbeat detection device comprising: a peak detection output unit that detects a peak value from a signal that has passed through the third low-frequency filter, and uses a peak value interval as a heartbeat interval.
前記第1の低周波フィルタ、前記第2の低周波フィルタ及び前記第3の低周波フィルタそれぞれのカットオフ周波数を心拍間隔の約1/10の周波数とする周波数可変部をさらに備えることを特徴とする請求項3に記載の心拍検知装置。   It further comprises a frequency variable unit that sets a cut-off frequency of each of the first low-frequency filter, the second low-frequency filter, and the third low-frequency filter to a frequency that is about 1/10 of a heartbeat interval. The heartbeat detection device according to claim 3. 請求項3又は4に記載の心拍検知装置を備え、
ピーク値の間隔を時系列にデータを変換する時系列データ変換部と、
時系列に変換されたデータを等時間間隔に変換する等時間間隔変換部と、
周波数解析によりパワースペクトルデータを算出するパワースペクトルデータ算出部と、
前記パワースペクトルデータから2つの周波数帯域のパワーを算出する周波数帯域算出部と、
2つの周波数帯域のパワー比を算出するパワー比算出部と、
前記パワー比に応じたストレス値へ変換するストレス値変換部を備えることを特徴とする精神ストレス計測装置。
A heartbeat detecting device according to claim 3 or 4,
A time-series data conversion unit that converts the peak value intervals into time-series data, and
An equal time interval conversion unit for converting the data converted into time series into equal time intervals;
A power spectrum data calculation unit for calculating power spectrum data by frequency analysis;
A frequency band calculation unit for calculating power of two frequency bands from the power spectrum data;
A power ratio calculator for calculating the power ratio of the two frequency bands;
A mental stress measurement apparatus comprising a stress value conversion unit that converts a stress value according to the power ratio.
JP2011255024A 2011-11-22 2011-11-22 Heart rate detection method, heart rate detector, and mental stress measuring apparatus Pending JP2013106837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011255024A JP2013106837A (en) 2011-11-22 2011-11-22 Heart rate detection method, heart rate detector, and mental stress measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011255024A JP2013106837A (en) 2011-11-22 2011-11-22 Heart rate detection method, heart rate detector, and mental stress measuring apparatus

Publications (1)

Publication Number Publication Date
JP2013106837A true JP2013106837A (en) 2013-06-06

Family

ID=48704242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011255024A Pending JP2013106837A (en) 2011-11-22 2011-11-22 Heart rate detection method, heart rate detector, and mental stress measuring apparatus

Country Status (1)

Country Link
JP (1) JP2013106837A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081888A (en) * 2013-10-24 2015-04-27 株式会社東芝 Biological sensor inspection device and biological sensor inspection method
JP2017077351A (en) * 2015-10-20 2017-04-27 株式会社デンソー Pulse wave signal processing device
US9737220B2 (en) 2015-07-07 2017-08-22 Samsung Electronics Co., Ltd. Apparatus and method for measuring biosignal
WO2020196498A1 (en) * 2019-03-26 2020-10-01 ミツフジ株式会社 Information provision program, terminal device, information provision system, and information provision method
JP2020166850A (en) * 2019-03-26 2020-10-08 ミツフジ株式会社 Information providing program, terminal device, information providing system, and information providing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081888A (en) * 2013-10-24 2015-04-27 株式会社東芝 Biological sensor inspection device and biological sensor inspection method
US9737220B2 (en) 2015-07-07 2017-08-22 Samsung Electronics Co., Ltd. Apparatus and method for measuring biosignal
JP2017077351A (en) * 2015-10-20 2017-04-27 株式会社デンソー Pulse wave signal processing device
WO2020196498A1 (en) * 2019-03-26 2020-10-01 ミツフジ株式会社 Information provision program, terminal device, information provision system, and information provision method
JP2020166850A (en) * 2019-03-26 2020-10-08 ミツフジ株式会社 Information providing program, terminal device, information providing system, and information providing method

Similar Documents

Publication Publication Date Title
US8655436B2 (en) Heart rate meter and heart beat detecting method
US7087025B2 (en) Blood pressure determination based on delay times between points on a heartbeat pulse
KR102532764B1 (en) Apparatus and method for estimating biophysiological rates
CA2843616A1 (en) Systems and methods for determining respiration information from a photoplethysmograph
JP2007054471A (en) Pulse rate measuring apparatus and pulse rate measuring method
JP4911409B2 (en) Method and apparatus for measuring pulse rate and oxygen saturation during exercise
JP2013106837A (en) Heart rate detection method, heart rate detector, and mental stress measuring apparatus
JP2004121625A (en) Arrangement for detecting pulse wave and fourier transform treatment apparatus
Hong et al. Aging index using photoplethysmography for a healthcare device: comparison with brachial-ankle pulse wave velocity
KR100755236B1 (en) Implementation of bio-information detecting system
CN110292372B (en) Detection device
JP2001198094A (en) Pulse rate detector
CN105816165B (en) real-time dynamic heart rate monitoring device and monitoring method
JPWO2018155384A1 (en) Detection device
US10980485B2 (en) Measuring apparatus, measuring method and non-transitory computer readable medium
TWI504378B (en) Denoising method and apparatus of pulse wave signal and pulse oximetry
JP2016182165A (en) Biological signal processing device, biological signal processing program, computer readable recording medium recording biological signal processing program and biological signal processing method
TW201332512A (en) Method and apparatus for heart rate measurement
EP2938247B1 (en) Method and apparatus for reducing motion artifacts in ecg signals
JP2013183845A (en) Pulsation detector, electronic device and program
CN107708533B (en) Viscoelastic property acquisition device, viscoelastic property acquisition method, viscoelastic property acquisition program, and storage medium storing the program
Zaeni et al. Implementation of Adaptive Threshold for Peak Detection of Photoplethysmography Applied on Microcontroller
JP2012024320A (en) Device and method for measuring biological signal
CN116028809A (en) Continuous blood pressure measurement model training and measuring method and device
CN116269319A (en) Accelerometer-based respiration rate detection method and device and wearable equipment