WO2016203835A1 - Method for producing optical film - Google Patents

Method for producing optical film Download PDF

Info

Publication number
WO2016203835A1
WO2016203835A1 PCT/JP2016/062415 JP2016062415W WO2016203835A1 WO 2016203835 A1 WO2016203835 A1 WO 2016203835A1 JP 2016062415 W JP2016062415 W JP 2016062415W WO 2016203835 A1 WO2016203835 A1 WO 2016203835A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
opening
optical film
suction duct
optical
Prior art date
Application number
PCT/JP2016/062415
Other languages
French (fr)
Japanese (ja)
Inventor
研一 風間
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017524700A priority Critical patent/JP6737270B2/en
Publication of WO2016203835A1 publication Critical patent/WO2016203835A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/36Feeding the material on to the mould, core or other substrate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for producing an optical film, and more particularly to a method for producing an optical film used in a liquid crystal image display device.
  • Liquid crystal display devices have been widely used due to improvements in image quality and high definition technology. Further, a liquid crystal display device, particularly a liquid crystal display device used as a television receiver, is further required to have a large screen and high image quality. For this reason, the optical film provided in a liquid crystal display device, for example, a protective film for a polarizing plate, is not only improved in visibility, but also needs to be widened in order to cope with an increase in screen size. And in order to respond to the cost reduction of a liquid crystal display device, the increase in the demand of a liquid crystal display device, etc., it is also calculated
  • the method for continuously producing an optical film examples include a solution casting film forming method and a melt casting film forming method.
  • the solution casting film forming method is a method in which a resin solution obtained by dissolving a raw material resin in a solvent is cast on a traveling support, and the film obtained by drying to some extent is peeled off from the support, and the peeled film Is a method of producing a resin film by drying while transporting the film with a transport roller.
  • the melt casting film forming method is a method in which a resin obtained by heating and melting a raw material resin is cast on a support, and the film obtained by cooling and solidifying to some extent is peeled off from the support, and the peeled film is removed with a transport roller. This is a method for producing a resin film by further cooling and solidifying while being conveyed.
  • the resin film obtained by the method as described above sometimes had curls or wrinkles at the end during conveyance.
  • the resin film manufacturing is stopped by folding the end portion of the resin film into the transport roller during the transport of the resin film. There was also a risk.
  • the end of the resin film is conveyed while being transported at a predetermined position until the resin film is wound as a roller as an optical film.
  • a part (ear part) is cut out (trimmed) with a trim cutter. That is, during the production of the resin film, the film that remains by cutting the ear portion and separating the cut end film is used as the optical film.
  • the transport of the resin film before cutting and the transportability of the optical film after separating the end film are affected. Specifically, for example, even if the end film is broken during conveyance, the end film is detached from the predetermined conveyance path, or is not conveyed from the predetermined conveyance path, There is a concern that the end film after cutting is not smoothly conveyed due to clogging of the end film. In addition, since the end film is not smoothly conveyed, for example, the tension of the optical film or the like after being separated from the end film is lowered, and there is a problem that the conveyance of the optical film is hindered. There is also a case.
  • Patent Document 1 As a method for cutting and transporting the ear portion of such a film, a method for preventing the clogging of the discharge pipe by performing static elimination on the ear portion (Patent Document 1), or a suction port inlet of the ear portion. A method of blowing wind toward the outside (Patent Document 2) has been reported.
  • Patent Document 1 it is possible to prevent clogging of the ear part to some extent in the pipe for discharging the ear part. However, even if this method is used, it is difficult to prevent the ear portion from adhering to the inner wall of the suction duct.
  • the ears of the film can be efficiently collected.
  • the ears sometimes flutter by blowing air.
  • the ear portion when the cut ear portion is blown to the suction duct, the ear portion flutters due to the suction air, and the ear portion adheres to the inner wall of the suction duct, thereby changing the tension of the ear portion. May occur. If this fluctuation in tension is transmitted to the upstream slitting section, the slitting that cuts off the ear becomes unstable, and there is a risk of generating chips. When the chips adhere to the product, there is a problem that the quality of the obtained film is deteriorated.
  • the present invention has been made in view of such circumstances, and in a method for producing an optical film by cutting off a film ear using a melt casting film forming method or a solution casting film forming method, It is an object of the present invention to provide a method for producing an optical film having a high production efficiency in which the ear portion is smoothly collected without causing a flutter or the like.
  • the method for producing an optical film according to one embodiment of the present invention includes a step of obtaining a polymer film by a melt casting film forming method or a solution casting film forming method, cutting out the ears of the obtained film, and collecting the ears
  • An optical film manufacturing method including an air blowing process for air blowing to a pipe, wherein the suction duct wall for sending the ear part to the recovery pipe used in the air blowing process has an opening,
  • the ratio of the opening area by the opening is 40% to 70% with respect to the total opening area including the suction opening area of the suction duct and the opening.
  • the film ears in the method for producing an optical film by cutting off the film ears while conveying the film, the film ears can be stably cut off, and the chips to the obtained film, etc. It is possible to provide a high-quality optical film by suppressing the adhesion of.
  • FIG. 1 is a schematic diagram showing a basic configuration of an example of an apparatus for producing an optical film by a solution casting film forming method in the present embodiment.
  • FIG. 2 is a schematic perspective view showing an example of a suction duct for collecting the ear portion in the present embodiment.
  • the method for producing an optical film according to the present embodiment includes a step of obtaining a polymer film by a melt casting film forming method or a solution casting film forming method, cutting out the ears of the obtained film, and using the ears to a recovery pipe.
  • a method for producing an optical film including an air blowing step for air blowing, wherein an opening is present in a wall of a suction duct for feeding an ear portion to a recovery pipe used in the air blowing step, and The ratio of the opening area by the opening is 40% to 70% with respect to the total opening area including the suction opening area of the suction duct and the opening.
  • the manufacturing method of the optical film according to the present embodiment is not particularly limited as long as it includes the step of obtaining the film and the air feeding step. Specifically, for example, in the case of a solution casting film forming method, a method for producing an optical film by performing the air blowing process at a predetermined position after the film is peeled off from the support and wound up into a roller shape. Etc.
  • a solution flow including a peeling step of peeling a web formed by casting a polymer dope on a support from the support, and a drying step of drying the web peeled from the support to obtain a film.
  • a peeling step of peeling a web formed by casting a polymer dope on a support from the support and a drying step of drying the web peeled from the support to obtain a film.
  • the present invention is not limited to this, and the film obtained by the melt casting film forming method is cut off at the ear portion of the obtained film.
  • the manufacturing method of the optical film including the air feeding process which air-winds the ear
  • the optical film manufacturing method is formed by casting a resin solution (dope) containing a transparent resin (polymer) on a traveling support by, for example, a solution casting film forming method.
  • a peeling step for peeling the peeled web from the support a drawing step for drawing the peeled film, a winding step for winding the drawn film into a roller, and the like. It can implement by performing between a process and the said winding-up process. More specifically, for example, it is performed by an optical film manufacturing apparatus as shown in FIG. In addition, as an optical film manufacturing apparatus, if it performs each said process, it will not specifically limit to what is shown in FIG. 1, The manufacturing apparatus of another structure may be sufficient.
  • a film is a film after a cast film (web) made of a dope cast on a support is dried on the support and can be peeled off from the support.
  • the position of the air blowing process may be anywhere as long as it is between the peeling process and the winding process.
  • FIG. 1 shows one embodiment of an apparatus for carrying out the manufacturing method of the present embodiment
  • FIG. 2 shows its main part (suction duct of the ear part).
  • an optical film manufacturing apparatus includes a support 1 made of an endless belt, a dope casting die 2 for casting a resin solution (dope) containing a transparent resin on the support 1, and a support 1.
  • the heating and drying devices 3 and 4 for forming the web by heating and drying the dopes casted on the front and back sides of the upper and lower transfer paths and cast on the support 1, and the web (W) from the support 1.
  • the web peeling roller 5 to be peeled off, the drying device 6 for obtaining the film F by drying the web (W) peeled off from the support 1, and the width of the film F in the width direction both sides of the obtained film F are gripped.
  • a tenter device 7 that keeps the film F constant or stretches the film F in the width direction, and a trimming device 8 that cuts the film ear F1 whose width is restricted by the tenter device 7 and finishes the film F to the final product dimensions.
  • Cut Suction duct (ear part discharge conduit) 9 for discharging the taken ear part F1 and embossing for forming a number of micro protrusions having a height of several ⁇ m on both side edges in the width direction of the film F finished to the final product dimensions
  • a processing device (not shown) and a film winding device 10 for winding the embossed film F are provided.
  • the endless belt support 1 is a metal endless belt having a mirror surface and traveling infinitely.
  • a belt made of stainless steel or the like is preferably used from the viewpoint of peelability of the film.
  • the width of the casting film cast by the casting die 2 is not particularly limited. However, from the viewpoint of effectively utilizing the width of the endless belt support 1, the width of the endless belt support 1 is 80 to 99%. It is preferable that In addition, as a support body, you may use what consists of metal drums instead of an endless belt.
  • trimming device 8 may be installed at one place as shown in FIG. 1 or at a plurality of places.
  • Examples of the heating and drying devices 3 and 4 include a method of heating the web on the endless belt support 1 with an infrared heater, a method of heating the back surface of the endless belt support 1 with an infrared heater, and a web on the endless belt support 1. There are a method of heating by blowing heated air, a method of heating by blowing heated air to the back surface of the endless belt support 1, and the like, which can be appropriately selected as necessary.
  • the transport speed of the cast film by the endless belt support 1 is not particularly limited, but is preferably about 50 to 200 m / min, for example, from the viewpoint of productivity. Further, the ratio (draft ratio) of the transport speed of the cast film to the travel speed of the endless belt support 1 is preferably about 0.8 to 5.0. When the draft ratio is within this range, the cast film can be stably formed. For example, if the draft ratio is too large, there is a tendency to cause a phenomenon called neck-in in which the cast film is reduced in the width direction, and if so, a wide film cannot be formed.
  • the dried web (film) is peeled off by the peeling roller 5.
  • the film is stretched in the film transport direction (machine direction: MD direction) by the peeling tension and the subsequent transport tension.
  • MD direction film transport direction
  • the peeling tension and the conveying tension when peeling the film from the endless belt support 1 are, for example, 50 to 400 N / m 2 .
  • the total residual solvent amount of the film when the film is peeled from the endless belt support 1 is obtained after the peelability from the endless belt support 1, the residual solvent amount at the time of peeling, the transportability after peeling, and the transport / drying.
  • the physical properties of the optical film it is preferably 10 to 200% by mass.
  • the drying device 6 may be, for example, one in which a plurality of transport rollers 63 are provided in a staggered arrangement in a housing 60 having a hot air blowing port 61 and a discharge port 62.
  • the web W is transported by being hung on the transport roller 63 in the housing 60, and is dried by hot dry air blown from the hot air blowing port 61 during the transport.
  • a tenter that is provided with a plurality of drying devices 6 and regulates the width by holding the web width side edge portions between the drying devices 6 to keep the web width constant or by stretching the web in the width direction.
  • a (stretching) device 7 may be provided.
  • the tenter device 7 may have a drying function, and the film F may be obtained by finally drying the tenter device 7.
  • the drying device 6 may be dried by using heated air, infrared rays, or the like alone, or may be dried by using heated air and infrared rays in combination. It is preferable to use heated air from the viewpoint of simplicity.
  • the drying temperature varies depending on the amount of residual solvent in the film. However, the drying temperature is appropriately selected in the range of 30 to 180 ° C. depending on the amount of residual solvent in consideration of drying time, shrinkage unevenness, stability of expansion and contraction, and the like. That's fine. Further, it may be dried at a constant temperature, or may be divided into two to four stages of temperature and may be divided into several stages of temperature. In addition, the film can be stretched in the MD direction while being transported in the drying device 6.
  • the tenter device 7 stretches the film peeled from the endless belt support 1 in a direction (Transverse Direction: TD direction) perpendicular to the web conveyance direction. Specifically, both ends in a direction perpendicular to the film transport direction are gripped with a clip or the like, and the distance between the opposing clips is increased to extend in the TD direction.
  • TD direction Transverse Direction
  • the trimming device 8 is provided between the tenter device 7 and the winding device 10 and includes, for example, a roller 80 provided with round blades (trim cutters, not shown) at both ends of the peripheral surface.
  • the film winding apparatus 10 may include a plurality of transport rollers 101 and one winding core 102 provided in the housing 100. Then, the film F finished to the final product size in the trimming device 8 is conveyed on the conveyance roller 101 in the housing 100 and is wound on the winding core 102.
  • the trim cutter of the trimming device 8 cuts off the end in the direction (width direction) substantially perpendicular to the transport method of the transported film so that the remaining portion of the cut film becomes an optical film as a shipping product. Cut.
  • the edge part cut off in that case is processed as the ear
  • the suction duct 9 sucks the ear part F1 and blows it to the ear part collecting part.
  • the collected ears are finely cut by a cutting device (not shown) or the like and transported to a storage tank (not shown) or the like as a fine piece.
  • the configuration of the trim cutter is not particularly limited as long as the end of the conveyed film can be cut off.
  • the trim cutter it is preferable that the depth of cut with respect to the film can be arbitrarily adjusted in order to appropriately cut the end of the film.
  • the trim cutter includes a cutting blade composed of an upper round blade and a lower round blade. Rotating disc type or knife type.
  • the suction duct 9 is a pipe for blowing the film ears cut by the trimming device 8 to the collection unit, and the wall has an opening, and The ratio of the opening area by the opening is 40% to 70% with respect to the total opening area including the suction port area of the suction duct and the opening.
  • the inside of the suction duct 9 is sucked toward the downstream, and this suction is performed by generating wind blown toward the downstream inside the suction duct 9.
  • this suction is performed by generating wind blown toward the downstream inside the suction duct 9.
  • the air blowing can be generated by flowing air toward the downstream side.
  • FIG. 2 is a schematic perspective view showing an example of the suction duct 9 for collecting the ear portion in the present embodiment.
  • An opening 13 exists in the wall of the suction duct 9, and the opening 13 has a total opening area that is the sum of the area of the suction port 12 of the suction duct and the area of the opening 13. The ratio of the opening area is 40% to 70%.
  • FIG. 2 shows an example in which a circular opening 13 is provided in a suction duct 9 having a rectangular cross-sectional shape, but the suction duct of the present embodiment is not limited to this, and the cross-sectional shape of the duct may be circular. However, the shape of the opening may be other than circular.
  • the ratio of the area of the opening 13 can be calculated as follows.
  • the ratio of the opening area of the opening calculated in this way is less than 40%, sufficient wind speed toward the center of the duct cannot be obtained, and the ears of the film to be blown flutter, and the wall surface of the duct There is a risk of sticking.
  • the ratio of the opening area of the opening portion exceeds 70%, the wind speed at the suction port of the duct becomes low, the suction force for sucking the ear portion becomes weak, and the ear portion may flutter.
  • the ratio of the opening area of the opening is in the range of 40% to 70%, the air volume entering from the suction port and the air volume entering from the opening of the wall surface can be balanced, so that the flutter of the ear is suppressed and stable.
  • the ear portion can be sent to the collecting portion. More preferably, the ratio of the opening area of the opening is in the range of 50 to 60%.
  • the openings 13 of the present embodiment are provided evenly without the plurality of openings 13 being biased toward the wall surface of the suction duct 9.
  • the number and size of the openings are not particularly limited, but the number and size of the openings are, for example, so that the combined air volume from the openings 13 and the inlet 12 is about 0.5 m 3 / min to 80 m 3 / min. Etc. are preferably adjusted.
  • the total air volume of the air entering from the opening and the suction port is more preferably about 1 m 3 / min to 50 m 3 / min.
  • the wind speed of the wind can be measured using an anemometer, specifically, for example, a hybrid anemometer DP70 manufactured by Hiyoshi Corporation.
  • the size of each opening is preferably about 3 to 85 mm 2 per opening, although it depends on the size of the suction duct. If it is in such a range, it is thought that the effect of the present invention can be obtained more reliably by suppressing the fluttering of the ear part and stably blowing the ear part to the recovery part. More preferably, the area per opening is about 7 to 20 mm 2 .
  • the diameter of the opening is desirably about 2 to 10 mm, preferably about 3 to 5 mm.
  • the opening is present in a range of 500 mm or less from the suction port of the suction duct toward the downstream.
  • the opening is in the range of 5 to 400 mm downstream from the suction port of the suction duct.
  • a neutralizing blower 200 for neutralizing the film F by blowing ion wind over the entire width from the upper surface side of the film F in the trimming process may be provided above the roller 80 of the trimming device 8.
  • the static elimination blower 201 which neutralizes the ear
  • the winding device 10 winds a film having a predetermined residual solvent amount around the core to a required length.
  • the temperature at the time of winding is preferably cooled to room temperature in order to prevent scratches and loosening due to shrinkage after winding.
  • the winder to be used can be used without any particular limitation. It may be one generally used in optical film manufacturing methods, and can be wound by a winding method such as a constant tension method, a constant torque method, a taper tension method, a program tension controller method with a constant internal stress, or the like. .
  • the ears (ends) where the film thickness, the optical value, etc. are likely to be non-uniform are cut during the manufacturing of the optical film by the steps as described above. Therefore, an optical film having a uniform film thickness, optical value and the like can be obtained.
  • the optical film obtained by such a production method of the present invention is also included in the present invention.
  • the width of the obtained optical film is preferably 1000 to 3000 mm from the viewpoint of use in a large liquid crystal display device, use efficiency of the film during polarizing plate processing, and production efficiency.
  • the film thickness after drying is preferably 15 to 85 ⁇ m from the viewpoint of thinning the liquid crystal display device and stabilizing the production of the film.
  • the manufacturing method of the present embodiment can manufacture an optical film while suppressing the occurrence of defects even when the film thickness is as thin as 15 to 45 ⁇ m.
  • the film thickness is an average film thickness.
  • the film thickness is measured at 20 to 200 locations in the width direction of the film with a contact-type film thickness meter manufactured by Mitutoyo Corporation. Values are shown as film thickness.
  • composition of the polymer dope (resin solution) used in this embodiment will be described.
  • the transparent resin used in the present embodiment is not particularly limited as long as it is a resin having transparency when formed into a substrate by a solution casting film forming method or the like. It is preferable that the production is easy, the adhesiveness with the hard coat layer and the like is excellent, and the optical isotropy is.
  • the transparency means that the visible light transmittance is 60% or more, preferably 80% or more, and more preferably 90% or more.
  • the transparent resin polymer include cellulose ester resins such as cellulose triacetate resin.
  • the dope used in this embodiment may contain fine particles.
  • the fine particles to be used are appropriately selected according to the purpose of use, but are preferably fine particles that can scatter visible light when contained in a transparent resin.
  • the fine particles may be inorganic fine particles such as silicon oxide or organic fine particles such as acrylic resin.
  • a solvent containing a good solvent for the transparent resin can be used, and a poor solvent may be contained as long as the transparent resin does not precipitate.
  • the good solvent for the cellulose ester resin include organic halogen compounds such as methylene chloride.
  • Examples of the poor solvent for the cellulose ester resin include alcohols having 1 to 8 carbon atoms such as methanol.
  • the dope used in the present embodiment may contain components (additives) other than the transparent resin, fine particles, and solvent as long as the effects of the present invention are not impaired.
  • Examples of the additive include a plasticizer, an antioxidant, an ultraviolet absorber, a heat stabilizer, a conductive substance, a flame retardant, a lubricant, and a matting agent.
  • a cellulose ester resin solution is obtained by mixing the above-mentioned compositions.
  • the obtained cellulose ester resin solution is preferably filtered using a suitable filter medium such as filter paper.
  • the optical film obtained by the manufacturing method according to this embodiment is useful as a protective film for a polarizing plate.
  • the polarizing plate includes a polarizing element and a transparent protective film disposed on the surface of the polarizing element, and the transparent protective film is preferably an optical film according to the present embodiment.
  • the polarizing element is an optical element that emits incident light converted to polarized light.
  • polarizing plate for example, a completely saponified polyvinyl alcohol aqueous solution is used on at least one surface of a polarizing element produced by immersing and stretching a polyvinyl alcohol film in an iodine solution.
  • a laminate is preferred.
  • the said optical film may be laminated
  • resin films such as cyclic olefin resin other than a cellulose-ester film, an acrylic resin, polyester, a polycarbonate. In this case, since the saponification suitability is low, it is preferable to perform an adhesive process on the polarizing plate through an appropriate adhesive layer.
  • the polarizing plate uses the optical film as a protective film laminated on at least one surface side of the polarizing element.
  • the said optical film works as a phase difference film, it is preferable to arrange
  • a polyvinyl alcohol-type polarizing film is mentioned, for example.
  • Polyvinyl alcohol polarizing films include those obtained by dyeing iodine on polyvinyl alcohol films and those obtained by dyeing dichroic dyes.
  • a modified polyvinyl alcohol film modified with ethylene is preferably used as the polyvinyl alcohol film.
  • the polarizing element is obtained as follows, for example. First, a film is formed using a polyvinyl alcohol aqueous solution. The obtained polyvinyl alcohol film is uniaxially stretched and then dyed or dyed and then uniaxially stretched. And preferably, a durability treatment is performed with a boron compound.
  • the thickness of the polarizing element is preferably 5 to 40 ⁇ m, more preferably 5 to 30 ⁇ m, and even more preferably 5 to 20 ⁇ m.
  • the cellulose ester resin film When the cellulose ester resin film is laminated on the surface of the polarizing element, it is preferable to bond the cellulose ester resin film with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol. Moreover, in the case of resin films other than a cellulose ester-type resin film, it is preferable to carry out the adhesive process to a polarizing plate through a suitable adhesion layer.
  • the polarizing plate as described above uses the optical film according to the present embodiment as a transparent protective film of the polarizing element, the optical film has a uniform film thickness, optical value, and the like as a whole.
  • a polarizing plate capable of realizing high image quality of a liquid crystal display device excellent in contrast and the like can be obtained.
  • a wide optical film obtained by a stretching process or the like is used as an optical film used as a transparent protective film of a polarizing element, it can be applied to a liquid crystal display device having a large screen.
  • the polarizing plate using the optical film of the present embodiment as described above can be used for a liquid crystal display device.
  • a liquid crystal display device includes a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates is the polarizing plate.
  • the liquid crystal cell is a cell in which a liquid crystal substance is filled between a pair of electrodes, and by applying a voltage to the electrodes, the alignment state of the liquid crystal is changed and the amount of transmitted light is controlled.
  • the optical film according to the present embodiment uses the optical film according to the present embodiment as a transparent protective film for a polarizing plate, the optical film has a uniform film thickness, optical value, and the like as a whole. A high-quality liquid crystal display device with improved contrast and the like can be provided. Further, by using a wide film as the optical film according to this embodiment, a large screen can be obtained.
  • the method for producing an optical film according to one aspect of the present invention includes a step of obtaining a polymer film by a melt casting film forming method or a solution casting film forming method, and cutting off an ear portion of the obtained film.
  • a method of manufacturing an optical film including an air blowing process for air blowing a part to a recovery pipe, wherein an opening exists in a wall of a suction duct for feeding an ear part to the recovery pipe used in the air blowing process
  • the ratio of the opening area by the opening to the total opening area including the suction port area of the suction duct and the opening is 40% to 70%.
  • a film is obtained by peeling a web formed by casting a polymer dope on a support from the support, and drying the web peeled from the support. It is more preferable to include a step of obtaining a film by a solution casting film forming method including a drying step and an air feeding step of cutting out the ear portion of the film and blowing the ear portion to a recovery pipe. In such an embodiment, it is considered that the effect of the present invention is more exhibited.
  • the area per one opening in the suction duct is preferably 3 to 85 mm 2 .
  • the opening is present in a range within 500 mm from the suction port of the suction duct toward the downstream.
  • Example 1 (Preparation of dope) First, 100 parts by mass of cellulose triacetate resin (acetyl group substitution degree: 2.88) is added as a transparent resin to a dissolution tank containing 418 parts by mass of methylene chloride, and further 8 parts by mass of triphenyl phosphate and biphenyl diphenyl phosphate. (Liquid plasticizer) 4 parts by mass, 5-chloro-2- (3,5-di-sec-butyl-2-hydroxyphenyl) -2H-benzotriazole (liquid UV absorber) 1 part by mass, silicon dioxide 0.1 parts by mass of fine particles (Aerosil R972V) and 23 parts by mass of ethanol were added.
  • Liquid plasticizer 4 parts by mass, 5-chloro-2- (3,5-di-sec-butyl-2-hydroxyphenyl) -2H-benzotriazole (liquid UV absorber) 1 part by mass, silicon dioxide 0.1 parts by mass of fine particles (Aerosil R972V
  • the silicon dioxide fine particles were added in a state dispersed in ethanol. And after raising the liquid temperature to 80 ° C., the mixture was stirred for 3 hours. By doing so, a cellulose triacetate resin solution was obtained. Then, stirring was complete
  • the temperature of the obtained dope was adjusted to 34 ° C., and the temperature of the endless belt support was adjusted to 30 ° C. Then, using an optical film manufacturing apparatus as shown in FIG. 1, an endless belt support made of an endless belt made of stainless steel and polished to a super mirror surface with a conveyance speed of 80 m / min from a casting die (coat hanger die). The dope was cast. By doing so, a web was formed on the endless belt support and conveyed while drying. Then, the web is peeled from the endless belt support as a film, dried while being conveyed by a roller at 30 ° C., and when the residual solvent amount is 9%, the film is drawn at 180 ° C.
  • the film was stretched 1.15 times in the width direction while holding both ends of the film with clips. Then, using the trimming apparatus, the area
  • the suction duct a stainless steel square duct (the cross-sectional area of the hollow portion at the suction port is about 10,000 mm 2 ) was used. In addition, it was made to attract
  • the opening has an area per opening of 20 mm 2 , and the ratio of the opening area by the opening to the total opening area of the suction duct area and the opening area is 40% (opening)
  • the total number of parts was 333), and the opening was present in the range of 5 to 400 mm downstream from the suction port of the suction duct.
  • the ratio of the opening area was obtained by the following formula.
  • Example 2 to 9 and Comparative Examples 1 and 2 In Examples 2 to 9 and Comparative Examples 1 and 2, except that the percentage area of the opening, the opening area per opening, the number of openings, and the position of the opening were changed as shown in Table 1, In the same manner as in Example 1, an optical film was produced.
  • the adhesion area of the foreign matter can be further suppressed when the opening area per piece is in the range of 3 to 85 mm 2 and / or the position of the opening is within 500 mm from the suction port of the suction duct.
  • the opening area per piece is in the range of 3 to 85 mm 2 and / or the position of the opening is within 500 mm from the suction port of the suction duct.
  • the present invention has wide industrial applicability in the technical field of optical films used in display devices and the like and manufacturing methods thereof.

Abstract

The present invention pertains to a method for producing an optical film including an air-transport step for cutting the edge parts of a film manufactured by a melt-casting film-formation method or solution-casting film-formation method and transporting the edge parts by air to a recovery pipe, the method for producing an optical film characterized in that openings are present in the walls of a suction duct for delivering the edge parts to the recovery pipe used in the air-transport step, and the ratio of the opening area due to the openings to the total opening area combining a suction port area of the suction duct and the openings is 40-70%.

Description

光学フィルムの製造方法Manufacturing method of optical film
 本発明は、光学用フィルムの製造方法に関し、特に、液晶画像表示装置に使用される光学フィルムの製造方法に関する。 The present invention relates to a method for producing an optical film, and more particularly to a method for producing an optical film used in a liquid crystal image display device.
 液晶表示装置は、その画質や高精細化技術等の向上により、広く利用されるようになってきている。また、液晶表示装置、特にテレビジョン受像装置として用いる液晶表示装置は、大画面化及び高画質化等がさらに求められている。このため、液晶表示装置に備えられる光学フィルム、例えば、偏光板用保護フィルム等は、視認性の向上だけではなく、大画面化に対応するため、広幅化の要求も高まっている。そして、液晶表示装置のコストダウンや液晶表示装置の需要の高まり等に対応するため、光学フィルムの生産効率を高めることも求められている。 Liquid crystal display devices have been widely used due to improvements in image quality and high definition technology. Further, a liquid crystal display device, particularly a liquid crystal display device used as a television receiver, is further required to have a large screen and high image quality. For this reason, the optical film provided in a liquid crystal display device, for example, a protective film for a polarizing plate, is not only improved in visibility, but also needs to be widened in order to cope with an increase in screen size. And in order to respond to the cost reduction of a liquid crystal display device, the increase in the demand of a liquid crystal display device, etc., it is also calculated | required to raise the production efficiency of an optical film.
 光学フィルムの生産効率を高めるために、光学フィルムを連続生産することが考えられる。光学フィルムを連続生産する方法としては、例えば、溶液流延製膜法及び溶融流延製膜法等が挙げられる。溶液流延製膜法とは、原料樹脂を溶媒に溶解した樹脂溶液を、走行する支持体上に流延し、ある程度乾燥して得られたフィルムを支持体から剥離し、そして、剥離したフィルムを搬送ローラで搬送しながら乾燥させることによって、樹脂フィルムを製造する方法である。また、溶融流延製膜法とは、原料樹脂を加熱溶融した樹脂を支持体上に流延し、ある程度冷却固化して得られたフィルムを支持体から剥離し、剥離したフィルムを搬送ローラで搬送しながら、さらに冷却固化させることによって、樹脂フィルムを製造する方法である。 In order to increase the production efficiency of optical films, it is conceivable to continuously produce optical films. Examples of the method for continuously producing an optical film include a solution casting film forming method and a melt casting film forming method. The solution casting film forming method is a method in which a resin solution obtained by dissolving a raw material resin in a solvent is cast on a traveling support, and the film obtained by drying to some extent is peeled off from the support, and the peeled film Is a method of producing a resin film by drying while transporting the film with a transport roller. The melt casting film forming method is a method in which a resin obtained by heating and melting a raw material resin is cast on a support, and the film obtained by cooling and solidifying to some extent is peeled off from the support, and the peeled film is removed with a transport roller. This is a method for producing a resin film by further cooling and solidifying while being conveyed.
 上記のような方法によって得られた樹脂フィルムは、搬送中に、端部にカールやしわ等が発生する場合があった。このような場合、得られた樹脂フィルムを光学フィルムとして利用するためには、フィルム端部を別途裁断しなければ、生産効率が低下するという問題があった。さらに、上記のような方法では、特に、広幅化した樹脂フィルムを製造する際には、樹脂フィルムの搬送中、樹脂フィルムの端部が搬送ローラへ折り込まれること等によって、樹脂フィルムの製造が停止するおそれもあった。 The resin film obtained by the method as described above sometimes had curls or wrinkles at the end during conveyance. In such a case, in order to use the obtained resin film as an optical film, there is a problem that the production efficiency is lowered unless the film end is separately cut. Further, in the above-described method, particularly when a widened resin film is manufactured, the resin film manufacturing is stopped by folding the end portion of the resin film into the transport roller during the transport of the resin film. There was also a risk.
 これらの問題を解消するために、例えば、樹脂フィルムを支持体から剥離した後、樹脂フィルムを光学フィルムとしてローラ状に巻き取るまでの所定の位置で、樹脂フィルムを搬送しながら、樹脂フィルムの端部(耳部)をトリムカッタで切り取る(トリミングする)ことが行われている。すなわち、樹脂フィルムの製造中で、耳部を裁断し、裁断した端部フィルムを分離することによって残存したフィルムを光学フィルムとして利用している。 In order to solve these problems, for example, after the resin film is peeled off from the support, the end of the resin film is conveyed while being transported at a predetermined position until the resin film is wound as a roller as an optical film. A part (ear part) is cut out (trimmed) with a trim cutter. That is, during the production of the resin film, the film that remains by cutting the ear portion and separating the cut end film is used as the optical film.
 しかしながら、裁断後の端部フィルム(耳部)の搬送が円滑に行われなければ、裁断前の樹脂フィルムの搬送や端部フィルムを分離した後の光学フィルムの搬送性に影響があった。具体的には、例えば、端部フィルムが搬送中に破断したり、端部フィルムが所定の搬送路から外れたり、所定の搬送路から外れないように、配管内を搬送させても、配管内で端部フィルムが詰まる等によって、裁断後の端部フィルムの搬送が円滑に行われないというおそれがあった。そして、このような端部フィルムの搬送が円滑に行われないことによって、例えば、端部フィルムから分離した後の光学フィルム等の張力が低下し、光学フィルムの搬送が妨げられる等の問題が発生する場合もある。 However, unless the end film (ear part) after cutting is smoothly transported, the transport of the resin film before cutting and the transportability of the optical film after separating the end film are affected. Specifically, for example, even if the end film is broken during conveyance, the end film is detached from the predetermined conveyance path, or is not conveyed from the predetermined conveyance path, There is a concern that the end film after cutting is not smoothly conveyed due to clogging of the end film. In addition, since the end film is not smoothly conveyed, for example, the tension of the optical film or the like after being separated from the end film is lowered, and there is a problem that the conveyance of the optical film is hindered. There is also a case.
 このようなフィルムの耳部を切り取って搬送する方法としては、これまでに、耳部の除電を行うことにより、排出配管の詰まりを防ぐ方法(特許文献1)や、耳部の吸引口入口に向けて風を吹き込む方法(特許文献2)などが報告されている。 As a method for cutting and transporting the ear portion of such a film, a method for preventing the clogging of the discharge pipe by performing static elimination on the ear portion (Patent Document 1), or a suction port inlet of the ear portion. A method of blowing wind toward the outside (Patent Document 2) has been reported.
 特許文献1によれば、耳部を排出する配管において耳部の詰まりをある程度防止することはできる。しかし、この方法を用いても、耳部が吸引ダクトの内壁に付着することを抑制することは難しかった。 According to Patent Document 1, it is possible to prevent clogging of the ear part to some extent in the pipe for discharging the ear part. However, even if this method is used, it is difficult to prevent the ear portion from adhering to the inner wall of the suction duct.
 また、特許文献2によれば、フィルムの耳部の回収を効率よく行うことができるが、近年需要の高い薄膜フィルムでは、風を吹き込むことによりかえって耳部がばたつくことがある。 Further, according to Patent Document 2, the ears of the film can be efficiently collected. However, in the case of a thin film that is in high demand in recent years, the ears sometimes flutter by blowing air.
 このように、従来技術では、切り取られた耳部が吸引ダクトへ風送する際に、吸引風によって耳部のバタツキが発生し、吸引ダクト内壁へ耳部が付着すると、耳部の張力変動が生じてしまうことがある。この張力変動が上流のスリッティング部に伝わっってしまうと、耳部を切り取るスリッティングが不安定となり、切粉が発生するおそれがある。この切粉が製品に付着すると、得られるフィルムの品質低下につながるという問題があった。 As described above, in the conventional technology, when the cut ear portion is blown to the suction duct, the ear portion flutters due to the suction air, and the ear portion adheres to the inner wall of the suction duct, thereby changing the tension of the ear portion. May occur. If this fluctuation in tension is transmitted to the upstream slitting section, the slitting that cuts off the ear becomes unstable, and there is a risk of generating chips. When the chips adhere to the product, there is a problem that the quality of the obtained film is deteriorated.
 本発明は、かかる事情に鑑みてなされたものであり、溶融流延製膜法、または、溶液流延製膜法を用いて、フィルムの耳部を切り取って、光学フィルムを製造する方法において、前記耳部を、バタツキなどを発生させずに円滑に回収される生産効率の高い光学フィルムの製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and in a method for producing an optical film by cutting off a film ear using a melt casting film forming method or a solution casting film forming method, It is an object of the present invention to provide a method for producing an optical film having a high production efficiency in which the ear portion is smoothly collected without causing a flutter or the like.
特開2002-370242号公報JP 2002-370242 A 特開2010-46932号公報JP 2010-46932 A
 本発明者は、鋭意検討した結果、下記構成を有する光学フィルムの製造方法によって、前記課題が解決することを見出し、かかる知見に基づいて更に検討を重ねることによって本発明を完成した。 As a result of intensive studies, the present inventor has found that the above problem can be solved by a method for producing an optical film having the following configuration, and has further completed the present invention based on such findings.
 本発明の一態様に係る光学フィルムの製造方法は、溶融流延製膜法または溶液流延製膜法によりポリマーフィルムを得る工程と、得られたフィルムの耳部を切り取り、該耳部を回収配管へ風送する風送工程を含む光学フィルムの製造方法であって、前記風送工程において使用する、回収配管へ耳部を送り込むための吸引ダクトの壁には、開口部が存在すること、並びに、前記吸引ダクトの吸い込み口面積と前記開口部を合わせた全開口面積に対して、前記開口部による開口面積の割合が40%~70%であることを特徴とする。 The method for producing an optical film according to one embodiment of the present invention includes a step of obtaining a polymer film by a melt casting film forming method or a solution casting film forming method, cutting out the ears of the obtained film, and collecting the ears An optical film manufacturing method including an air blowing process for air blowing to a pipe, wherein the suction duct wall for sending the ear part to the recovery pipe used in the air blowing process has an opening, In addition, the ratio of the opening area by the opening is 40% to 70% with respect to the total opening area including the suction opening area of the suction duct and the opening.
 本発明によれば、フィルムを搬送しながら、フィルムの耳部を切り取り、光学フィルムを製造する方法において、フィルムの耳部の切り取りを安定して行うことができ、得られるフィルムへの切粉などの付着を抑制して、高品質な光学フィルムを提供することができる。 According to the present invention, in the method for producing an optical film by cutting off the film ears while conveying the film, the film ears can be stably cut off, and the chips to the obtained film, etc. It is possible to provide a high-quality optical film by suppressing the adhesion of.
図1は、本実施形態における、溶液流延製膜法による光学フィルムの製造する装置の一例の基本的な構成を示す概略図である。FIG. 1 is a schematic diagram showing a basic configuration of an example of an apparatus for producing an optical film by a solution casting film forming method in the present embodiment. 図2は、本実施形態における、耳部を回収する吸引ダクトの一例を示す斜視概略図である。FIG. 2 is a schematic perspective view showing an example of a suction duct for collecting the ear portion in the present embodiment.
 以下、本発明の光学フィルムの製造方法に係る実施形態について具体的に説明するが、本発明は、これらに限定されるものではない。 Hereinafter, embodiments according to the method for producing an optical film of the present invention will be specifically described, but the present invention is not limited thereto.
 (光学フィルムの製造方法)
 本実施形態に係る光学フィルムの製造方法は、溶融流延製膜法または溶液流延製膜法によりポリマーフィルムを得る工程と、得られたフィルムの耳部を切り取り、該耳部を回収配管へ風送する風送工程を含む光学フィルムの製造方法であって、前記風送工程において使用する、回収配管へ耳部を送り込むための吸引ダクトの壁には、開口部が存在すること、並びに、前記吸引ダクトの吸い込み口面積と前記開口部を合わせた全開口面積に対して、前記開口部による開口面積の割合が40%~70%であることを特徴とする。
(Optical film manufacturing method)
The method for producing an optical film according to the present embodiment includes a step of obtaining a polymer film by a melt casting film forming method or a solution casting film forming method, cutting out the ears of the obtained film, and using the ears to a recovery pipe. A method for producing an optical film including an air blowing step for air blowing, wherein an opening is present in a wall of a suction duct for feeding an ear portion to a recovery pipe used in the air blowing step, and The ratio of the opening area by the opening is 40% to 70% with respect to the total opening area including the suction opening area of the suction duct and the opening.
 本実施形態に係る光学フィルムの製造方法は、前記フィルムを得る工程及び前記風送工程を備えていれば、その他の工程については特に限定されない。具体的には、例えば、溶液流延製膜法の場合、フィルムを支持体から剥離した後、ローラ状に巻き取るまでの所定の位置で、前記風送工程を施して光学フィルムを製造する方法等が挙げられる。 The manufacturing method of the optical film according to the present embodiment is not particularly limited as long as it includes the step of obtaining the film and the air feeding step. Specifically, for example, in the case of a solution casting film forming method, a method for producing an optical film by performing the air blowing process at a predetermined position after the film is peeled off from the support and wound up into a roller shape. Etc.
 以下では、ポリマーのドープを支持体上に流延することにより形成されたウェブを支持体から剥離する剥離工程と、支持体から剥離したウェブを乾燥させてフィルムを得る乾燥工程とを含む溶液流延製膜法によりポリマーフィルムを得る工程を含む実施形態について説明するが、本発明はこれに限定されず、溶融流延製膜法によって得られたフィルムについて、得られたフィルムの耳部を切り取り、該耳部を回収配管へ風送する風送工程を含む光学フィルムの製造方法であってもよい。 In the following, a solution flow including a peeling step of peeling a web formed by casting a polymer dope on a support from the support, and a drying step of drying the web peeled from the support to obtain a film. Although an embodiment including a step of obtaining a polymer film by a casting film forming method will be described, the present invention is not limited to this, and the film obtained by the melt casting film forming method is cut off at the ear portion of the obtained film. The manufacturing method of the optical film including the air feeding process which air-winds the ear | edge part to collection | recovery piping may be sufficient.
 本実施形態に係る光学フィルムの製造方法は、例えば、溶液流延成膜法によって、透明性樹脂(ポリマー)を含有する樹脂溶液(ドープ)を、走行する支持体上に流延することにより形成されたウェブを支持体から剥離する剥離工程と、剥離したフィルムを延伸する延伸工程と、延伸したフィルムをローラ状に巻き取る巻取工程等を備え、上述したような風送工程を、前記剥離工程と前記巻取工程との間に行うことによって実施できる。より具体的には、例えば、図1に示すような光学フィルムの製造装置によって行われる。なお、光学フィルムの製造装置としては、前記各工程を行うものであれば、図1に示すものに特に限定されず、他の構成の製造装置であってもよい。また、本明細書において、フィルムとは、支持体上に流延されたドープからなる流延膜(ウェブ)が支持体上で乾燥され、支持体から剥離しうる状態となった以後のものを言う。風送工程の位置は、剥離工程から巻取工程の間であれば、どこにあっても良い。 The optical film manufacturing method according to the present embodiment is formed by casting a resin solution (dope) containing a transparent resin (polymer) on a traveling support by, for example, a solution casting film forming method. Provided with a peeling step for peeling the peeled web from the support, a drawing step for drawing the peeled film, a winding step for winding the drawn film into a roller, and the like. It can implement by performing between a process and the said winding-up process. More specifically, for example, it is performed by an optical film manufacturing apparatus as shown in FIG. In addition, as an optical film manufacturing apparatus, if it performs each said process, it will not specifically limit to what is shown in FIG. 1, The manufacturing apparatus of another structure may be sufficient. Moreover, in this specification, a film is a film after a cast film (web) made of a dope cast on a support is dried on the support and can be peeled off from the support. To tell. The position of the air blowing process may be anywhere as long as it is between the peeling process and the winding process.
 図1は本実施形態の製造方法を実施する装置の一実施態様を示し、図2はその要部(耳部の吸引ダクト)を示す。 FIG. 1 shows one embodiment of an apparatus for carrying out the manufacturing method of the present embodiment, and FIG. 2 shows its main part (suction duct of the ear part).
 図1および2において、各符号は以下を示す。1:支持体、5:剥離ローラ、6:乾燥装置、8:トリミング装置、9:吸引ダクト、10:フィルム巻取装置、12:吸い込み口、13:開口部、102:巻き取りコア、200,201:除電ブロワ、F:フィルム、F1:耳部、F2:ロール状フィルム、W:ウェブ。 1 and 2, each symbol indicates the following. 1: support, 5: peeling roller, 6: drying device, 8: trimming device, 9: suction duct, 10: film winding device, 12: suction port, 13: opening, 102: winding core, 200, 201: Static elimination blower, F: Film, F1: Ear, F2: Rolled film, W: Web.
 図1において、光学フィルムの製造装置は、無端ベルトからなる支持体1と、透明性樹脂を含有する樹脂溶液(ドープ)を支持体1上に流延するドープ流延ダイ2と、支持体1の上下の移送経路の表裏両側にそれぞれ配され、かつ支持体1上に流延されたドープを加熱乾燥してウェブを形成する加熱乾燥装置3、4と、ウェブ(W)を支持体1から剥離するウェブ剥離ローラ5と、支持体1から剥離したウェブ(W)を乾燥させてフィルムFを得る乾燥装置6と、得られたフィルムFの幅方向両側縁部を把持して、フィルムF幅を一定に保持、またはフィルムFを幅方向に延伸するテンター装置7と、テンター装置7により幅規制の行われたフィルムの耳部F1を切り取って、フィルムFを最終製品寸法に仕上げるトリミング装置8と、切り取られた耳部F1を排出する吸引ダクト(耳部排出管路)9と、最終製品寸法に仕上げられたフィルムFの幅方向両側縁部に数μmの高さの微小突起を多数形成するエンボス加工装置(図示略)と、エンボス加工が施されたフィルムFを巻き取るフィルム巻取装置10とを備えている。 In FIG. 1, an optical film manufacturing apparatus includes a support 1 made of an endless belt, a dope casting die 2 for casting a resin solution (dope) containing a transparent resin on the support 1, and a support 1. The heating and drying devices 3 and 4 for forming the web by heating and drying the dopes casted on the front and back sides of the upper and lower transfer paths and cast on the support 1, and the web (W) from the support 1. The web peeling roller 5 to be peeled off, the drying device 6 for obtaining the film F by drying the web (W) peeled off from the support 1, and the width of the film F in the width direction both sides of the obtained film F are gripped. A tenter device 7 that keeps the film F constant or stretches the film F in the width direction, and a trimming device 8 that cuts the film ear F1 whose width is restricted by the tenter device 7 and finishes the film F to the final product dimensions. , Cut Suction duct (ear part discharge conduit) 9 for discharging the taken ear part F1 and embossing for forming a number of micro protrusions having a height of several μm on both side edges in the width direction of the film F finished to the final product dimensions A processing device (not shown) and a film winding device 10 for winding the embossed film F are provided.
 前記無端ベルト支持体1は、図1に示すように、表面が鏡面の、無限に走行する金属製の無端ベルトである。前記ベルトとしては、フィルムの剥離性の点から、例えば、ステンレス鋼等からなるベルトが好ましく用いられる。前記流延ダイ2によって流延する流延膜の幅は、特に限定されないが、無端ベルト支持体1の幅を有効活用する観点から、無端ベルト支持体1の幅に対して、80~99%とすることが好ましい。なお、支持体としては、無端ベルトに代えて、金属製ドラムからなるものを用いてもよい。 As shown in FIG. 1, the endless belt support 1 is a metal endless belt having a mirror surface and traveling infinitely. As the belt, for example, a belt made of stainless steel or the like is preferably used from the viewpoint of peelability of the film. The width of the casting film cast by the casting die 2 is not particularly limited. However, from the viewpoint of effectively utilizing the width of the endless belt support 1, the width of the endless belt support 1 is 80 to 99%. It is preferable that In addition, as a support body, you may use what consists of metal drums instead of an endless belt.
 また、トリミング装置8は図1に示すように1箇所であっても、複数箇所に設置されていてもよい。 Further, the trimming device 8 may be installed at one place as shown in FIG. 1 or at a plurality of places.
 加熱乾燥装置3、4としては、例えば、無端ベルト支持体1上のウェブを赤外線ヒータで加熱する方法、無端ベルト支持体1の裏面を赤外線ヒータで加熱する方法、無端ベルト支持体1上のウェブに加熱風を吹き付けて加熱する方法、無端ベルト支持体1の裏面に加熱風を吹き付けて加熱する方法等が挙げられ、必要に応じて適宜選択することが可能である。 Examples of the heating and drying devices 3 and 4 include a method of heating the web on the endless belt support 1 with an infrared heater, a method of heating the back surface of the endless belt support 1 with an infrared heater, and a web on the endless belt support 1. There are a method of heating by blowing heated air, a method of heating by blowing heated air to the back surface of the endless belt support 1, and the like, which can be appropriately selected as necessary.
 前記無端ベルト支持体1による流延膜の搬送速度は、特に限定されないが、生産性の観点等から、例えば、50~200m/分程度であることが好ましい。また、前記無端ベルト支持体1の走行速度に対する、流延膜の搬送速度の比(ドラフト比)は、0.8~5.0程度であることが好ましい。前記ドラフト比がこの範囲内であると、安定して流延膜を形成させることができる。例えば、ドラフト比が大きすぎると、流延膜が幅方向に縮小されるネックインという現象を発生させる傾向があり、そうなると、広幅のフィルムを形成できなくなる。 The transport speed of the cast film by the endless belt support 1 is not particularly limited, but is preferably about 50 to 200 m / min, for example, from the viewpoint of productivity. Further, the ratio (draft ratio) of the transport speed of the cast film to the travel speed of the endless belt support 1 is preferably about 0.8 to 5.0. When the draft ratio is within this range, the cast film can be stably formed. For example, if the draft ratio is too large, there is a tendency to cause a phenomenon called neck-in in which the cast film is reduced in the width direction, and if so, a wide film cannot be formed.
 前記剥離ローラ5により、乾燥されたウェブ(フィルム)が剥離される。無端ベルト支持体1からフィルムを剥離する際に、剥離張力及びその後の搬送張力によってフィルムは、フィルムの搬送方向(Machine Direction:MD方向)に延伸する。このため、無端ベルト支持体1からフィルムを剥離する際の剥離張力及び搬送張力は、例えば、50~400N/mにすることが好ましい。 The dried web (film) is peeled off by the peeling roller 5. When the film is peeled from the endless belt support 1, the film is stretched in the film transport direction (machine direction: MD direction) by the peeling tension and the subsequent transport tension. For this reason, it is preferable that the peeling tension and the conveying tension when peeling the film from the endless belt support 1 are, for example, 50 to 400 N / m 2 .
 また、フィルムを無端ベルト支持体1から剥離する時のフィルムの全残留溶媒量は、無端ベルト支持体1からの剥離性、剥離時の残留溶媒量、剥離後の搬送性、搬送・乾燥後にできあがる光学フィルムの物理特性等を考慮し、10~200質量%であることが好ましい。 Further, the total residual solvent amount of the film when the film is peeled from the endless belt support 1 is obtained after the peelability from the endless belt support 1, the residual solvent amount at the time of peeling, the transportability after peeling, and the transport / drying. Considering the physical properties of the optical film, it is preferably 10 to 200% by mass.
 乾燥装置6は、例えば、熱風吹き込み口61および同排出口62を有するハウジング60内に、複数の搬送ローラ63が千鳥配置状に設けられたものであってもよい。乾燥装置6においては、ウェブWはハウジング60内を搬送ローラ63に掛けられて搬送され、その搬送中に、熱風吹き込み口61から吹き込まれる乾燥熱風により乾燥させられる。 また、複数の乾燥装置6が設けられ、乾燥装置6間において、ウェブの幅方向両側縁部を把持してウェブ幅を一定に保持、もしくはウェブを幅方向に延伸することにより幅規制を行うテンター(延伸)装置7が設けられていてもよい。さらに、テンター装置7に乾燥機能を持たせ、ここで最終的に乾燥させることによりフィルムFを得るようにしてもよい。 The drying device 6 may be, for example, one in which a plurality of transport rollers 63 are provided in a staggered arrangement in a housing 60 having a hot air blowing port 61 and a discharge port 62. In the drying device 6, the web W is transported by being hung on the transport roller 63 in the housing 60, and is dried by hot dry air blown from the hot air blowing port 61 during the transport. Also, a tenter that is provided with a plurality of drying devices 6 and regulates the width by holding the web width side edge portions between the drying devices 6 to keep the web width constant or by stretching the web in the width direction. A (stretching) device 7 may be provided. Furthermore, the tenter device 7 may have a drying function, and the film F may be obtained by finally drying the tenter device 7.
 前記乾燥装置6は、乾燥させる際、加熱空気、赤外線等を単独で用いて乾燥してもよいし、加熱空気と赤外線とを併用して乾燥してもよい。簡便さの点から加熱空気を用いることが好ましい。乾燥温度としては、フィルムの残留溶媒量により、好適温度が異なるが、乾燥時間、収縮ムラ、伸縮量の安定性等を考慮し、30~180℃の範囲で残留溶媒量により適宜選択して決めればよい。また、一定の温度で乾燥してもよいし、2~4段階の温度に分けて、数段階の温度に分けて乾燥してもよい。また、乾燥装置6内を搬送される間に、フィルムを、MD方向に延伸させることもできる。 The drying device 6 may be dried by using heated air, infrared rays, or the like alone, or may be dried by using heated air and infrared rays in combination. It is preferable to use heated air from the viewpoint of simplicity. The drying temperature varies depending on the amount of residual solvent in the film. However, the drying temperature is appropriately selected in the range of 30 to 180 ° C. depending on the amount of residual solvent in consideration of drying time, shrinkage unevenness, stability of expansion and contraction, and the like. That's fine. Further, it may be dried at a constant temperature, or may be divided into two to four stages of temperature and may be divided into several stages of temperature. In addition, the film can be stretched in the MD direction while being transported in the drying device 6.
 また、前記テンター装置7は、無端ベルト支持体1から剥離されたフィルムを、ウェブの搬送方向と直交する方向(Transverse Direction:TD方向)に延伸させる。具体的には、フィルムの搬送方向に垂直な方向の両端部をクリップ等で把持して、対向するクリップ間の距離を大きくすることによって、TD方向に延伸する。 Further, the tenter device 7 stretches the film peeled from the endless belt support 1 in a direction (Transverse Direction: TD direction) perpendicular to the web conveyance direction. Specifically, both ends in a direction perpendicular to the film transport direction are gripped with a clip or the like, and the distance between the opposing clips is increased to extend in the TD direction.
 次に、トリミング装置8は、前記テンター装置7と巻取装置10の間に設けられ、例えば、周面の両端部に丸刃(トリムカッタ、図示略)が設けられたローラ80からなる。フィルム巻取装置10は、ハウジング100内に設けられた複数の搬送ローラ101および1つの巻取コア102を備えていてもよい。そして、トリミング装置8において最終製品寸法に仕上げられたフィルムFは、ハウジング100内を搬送ローラ101に掛けられて搬送され、巻取コア102に巻き取られる。 Next, the trimming device 8 is provided between the tenter device 7 and the winding device 10 and includes, for example, a roller 80 provided with round blades (trim cutters, not shown) at both ends of the peripheral surface. The film winding apparatus 10 may include a plurality of transport rollers 101 and one winding core 102 provided in the housing 100. Then, the film F finished to the final product size in the trimming device 8 is conveyed on the conveyance roller 101 in the housing 100 and is wound on the winding core 102.
 前記トリミング装置8の前記トリムカッタは、搬送されてきたフィルムの搬送方法に略垂直な方向(幅方向)の端部を切り取って、切り取られたフィルムの残部が出荷製品としての光学フィルムとなるように裁断する。その際切り取った端部は、耳部フィルムF1として処理される。 The trim cutter of the trimming device 8 cuts off the end in the direction (width direction) substantially perpendicular to the transport method of the transported film so that the remaining portion of the cut film becomes an optical film as a shipping product. Cut. The edge part cut off in that case is processed as the ear | edge part film F1.
 前記吸引ダクト9は、前記耳部F1を吸引して、耳部回収部へと風送する。回収された耳部は、切断装置(不図示)などによって細かく切断されて細片として、貯留槽(不図示)などに搬送される。 The suction duct 9 sucks the ear part F1 and blows it to the ear part collecting part. The collected ears are finely cut by a cutting device (not shown) or the like and transported to a storage tank (not shown) or the like as a fine piece.
 前記トリムカッタの構成は、搬送されてきたフィルムの端部を切り取ることができれば、特に限定されない。前記トリムカッタとしては、フィルムの端部を適切に切り取るために、フィルムに対する切り込み深さが任意に調整できるようにされていることが好ましく、例えば、上丸刃及び下丸刃からなる切断刃を備えた回転円板式のものやナイフ式のもの等が挙げられる。 The configuration of the trim cutter is not particularly limited as long as the end of the conveyed film can be cut off. As the trim cutter, it is preferable that the depth of cut with respect to the film can be arbitrarily adjusted in order to appropriately cut the end of the film. For example, the trim cutter includes a cutting blade composed of an upper round blade and a lower round blade. Rotating disc type or knife type.
 本実施形態において、前記吸引ダクト9は、前記トリミング装置8で切り取られたフィルムの耳部を回収部へと風送するための配管であり、その壁には、開口部が存在すること、並びに、前記吸引ダクトの吸い込み口面積と前記開口部を合わせた全開口面積に対して、前記開口部による開口面積の割合が40%~70%であることを特徴とする。 In the present embodiment, the suction duct 9 is a pipe for blowing the film ears cut by the trimming device 8 to the collection unit, and the wall has an opening, and The ratio of the opening area by the opening is 40% to 70% with respect to the total opening area including the suction port area of the suction duct and the opening.
 このように吸引ダクト9の壁に、所定の割合で開口部が設けられていることにより、ダクトの壁面からダクト中央部へ向かう風の流れが発生するため、回収配管へ耳部を送り込むための吸引ダクト内における耳部のバタツキ、付着、絡まりを従来よりも抑えることができると考えられる。これにより、フィルムの耳部の切り取り及び耳部の搬送・回収を安定して行うことができ、得られるフィルムへの切粉などの付着を抑制して、高品質な光学フィルムを提供することができると考えられる。 Thus, since the flow of the wind which goes to the center part of a duct from the wall surface of a duct generate | occur | produces by providing the opening part in the wall of the suction duct 9 in a predetermined ratio, it is for sending an ear | edge part into collection | recovery piping. It is thought that the fluttering, adhesion, and entanglement of the ears in the suction duct can be suppressed more than before. Thereby, it is possible to stably cut out the ears of the film and transport and collect the ears, and to suppress the adhesion of chips and the like to the obtained film, thereby providing a high-quality optical film. It is considered possible.
 前記吸引ダクト9内は、下流に向かって吸引されており、この吸引は、吸引ダクト9内を下流に向かう風送風を発生させることによって行う。具体的には、例えば、前記吸引ダクト9の下流側に、ブロワ等を設置することにより、下流側に向けて空気を流入させることによって、前記風送風を発生させることができる。 The inside of the suction duct 9 is sucked toward the downstream, and this suction is performed by generating wind blown toward the downstream inside the suction duct 9. Specifically, for example, by installing a blower or the like on the downstream side of the suction duct 9, the air blowing can be generated by flowing air toward the downstream side.
 図2は、本実施形態における、耳部を回収する吸引ダクト9の一例を示す斜視概略図である。吸引ダクト9の壁には、開口部13が存在しており、かつ、前記吸引ダクトの吸い込み口12の面積と前記開口部13の面積を合わせた全開口面積に対して、前記開口部13による開口面積の割合は40%~70%である。 FIG. 2 is a schematic perspective view showing an example of the suction duct 9 for collecting the ear portion in the present embodiment. An opening 13 exists in the wall of the suction duct 9, and the opening 13 has a total opening area that is the sum of the area of the suction port 12 of the suction duct and the area of the opening 13. The ratio of the opening area is 40% to 70%.
 図2には長方形の断面形状を有する吸引ダクト9に、円形の開口部13を設けている例を示すが、本実施形態の吸引ダクトはこれに限定されず、ダクトの断面形状が円形でもよいし、開口部の形状が円形以外の形状であってもよい。 FIG. 2 shows an example in which a circular opening 13 is provided in a suction duct 9 having a rectangular cross-sectional shape, but the suction duct of the present embodiment is not limited to this, and the cross-sectional shape of the duct may be circular. However, the shape of the opening may be other than circular.
 図2に示すような吸引ダクトの場合、前記開口部13の面積の割合は以下のようにして算出することができる。 In the case of a suction duct as shown in FIG. 2, the ratio of the area of the opening 13 can be calculated as follows.
 r:開口部の半径、N:開口部の総数とした場合、
 開口部の総面積S1=πr×N
 吸引ダクト吸い込み口の開口面積S2:a×b
(a及びbは、図2に示すように吸引ダクト吸い込み口のそれぞれの一辺の内法を示す。)
 全開口面積に対する、開口部による開口面積S1の割合(%):
S1/(S1+S2)×100
When r is the radius of the opening, and N is the total number of openings,
Total area of openings S1 = πr 2 × N
Opening area S2 of suction duct suction port: a × b
(A and b show the inner method of each side of the suction duct suction port as shown in FIG. 2.)
Ratio (%) of opening area S1 due to the opening to the total opening area:
S1 / (S1 + S2) × 100
 このようにして算出した前記開口部の開口面積の割合が40%未満となると、ダクト中心部へ向かう十分な風速を得られずに、風送されるフィルムの耳部がばたつき、ダクトの壁面に付着してしまうおそれがある。一方、前記開口部の開口面積の割合が70%を超えると、ダクトの吸い込み口における風速が低くなり、耳部を吸い込む吸引力が弱くなって、耳部がばたつく場合がある。前記開口部の開口面積の割合が40%~70%の範囲であれば、吸い込み口から入る風量と壁面の開口部から入る風量のバランスが取れるため、耳部のバタつきを抑制し、安定して耳部を回収部へ風送することができる。より好ましくは、前記開口部の開口面積の割合は50~60%の範囲であることが望ましい。 When the ratio of the opening area of the opening calculated in this way is less than 40%, sufficient wind speed toward the center of the duct cannot be obtained, and the ears of the film to be blown flutter, and the wall surface of the duct There is a risk of sticking. On the other hand, if the ratio of the opening area of the opening portion exceeds 70%, the wind speed at the suction port of the duct becomes low, the suction force for sucking the ear portion becomes weak, and the ear portion may flutter. If the ratio of the opening area of the opening is in the range of 40% to 70%, the air volume entering from the suction port and the air volume entering from the opening of the wall surface can be balanced, so that the flutter of the ear is suppressed and stable. The ear portion can be sent to the collecting portion. More preferably, the ratio of the opening area of the opening is in the range of 50 to 60%.
 本実施形態の開口部13は、図2に示すように、複数の開口部13が吸引ダクト9の壁面に偏ることなく、まんべんなく設けられていることが望ましく、その個数や個々の開口部の大きさ等は特に限定されないが、例えば、開口部13と吸い込み口12から入る風を合わせた風量が、0.5m/分~80m/分程度となるように、開口部の個数や大きさ等を調整することが好ましい。 As shown in FIG. 2, it is desirable that the openings 13 of the present embodiment are provided evenly without the plurality of openings 13 being biased toward the wall surface of the suction duct 9. The number and size of the openings are not particularly limited, but the number and size of the openings are, for example, so that the combined air volume from the openings 13 and the inlet 12 is about 0.5 m 3 / min to 80 m 3 / min. Etc. are preferably adjusted.
 吸引ダクトにおいて、開口部と吸い込み口から入る風を合わせた風量は、より好ましくは、1m/分~50m/分程度である。なお、前記風速風の風速は、風速計、具体的には、例えば、株式会社日吉製のハイブリッド風速計DP70等を用いて測定することができる。 In the suction duct, the total air volume of the air entering from the opening and the suction port is more preferably about 1 m 3 / min to 50 m 3 / min. The wind speed of the wind can be measured using an anemometer, specifically, for example, a hybrid anemometer DP70 manufactured by Hiyoshi Corporation.
 好ましい実施形態において、個々の開口部の大きさは、吸引ダクトの大きさにもよるが、前記開口部1つあたりの面積が3~85mm程度であることが望ましい。このような範囲であれは、耳部のバタつきを抑制し、安定して耳部を回収部へ風送することができるという本発明の効果をより確実に得ることができると考えられる。さらに好ましくは、開口部1つあたりの面積が7~20mm程度であることが好ましい。 In a preferred embodiment, the size of each opening is preferably about 3 to 85 mm 2 per opening, although it depends on the size of the suction duct. If it is in such a range, it is thought that the effect of the present invention can be obtained more reliably by suppressing the fluttering of the ear part and stably blowing the ear part to the recovery part. More preferably, the area per opening is about 7 to 20 mm 2 .
 なお、例えば、開口部が図2に示すように円形である場合、開口部の直径は、2~10mm程度、好ましくは、3~5mm程度の範囲であることが望ましい。 For example, when the opening is circular as shown in FIG. 2, the diameter of the opening is desirably about 2 to 10 mm, preferably about 3 to 5 mm.
 また、前記開口部が、前記吸引ダクトの吸い込み口から下流に向かって500mm以内の範囲に存在していることが好ましい。このように、吸引ダクトの吸い込み口付近に開口部を設けることによって、吸い込み口から入る風量と壁面の開口部から入る風量のバランスがより取りやすくなると考えられる。より好ましくは、前記開口部が、前記吸引ダクトの吸い込み口から下流に向かって5~400mmの範囲に存在していることが望ましい。 Further, it is preferable that the opening is present in a range of 500 mm or less from the suction port of the suction duct toward the downstream. Thus, it is considered that by providing an opening near the suction port of the suction duct, it becomes easier to balance the amount of air entering from the suction port and the amount of air entering from the opening of the wall surface. More preferably, it is desirable that the opening is in the range of 5 to 400 mm downstream from the suction port of the suction duct.
 さらに、トリミング装置8のローラ80の上方に、トリミング工程中のフィルムFにその上面側から全幅にわたってイオン風を吹き付けることによりフィルムFを除電する除電ブロワ200が設けられていてもよい。また、トリミングローラ80と吸引ダクト9の入口との間に、切り取られた耳部F1の片面側からイオン風を吹き付けることにより耳部F1を除電する除電ブロワ201が設けられていてもよい。 Further, a neutralizing blower 200 for neutralizing the film F by blowing ion wind over the entire width from the upper surface side of the film F in the trimming process may be provided above the roller 80 of the trimming device 8. Moreover, between the trimming roller 80 and the inlet of the suction duct 9, the static elimination blower 201 which neutralizes the ear | edge part F1 by spraying an ion wind from the single side | surface side of the cut-off ear | edge part F1 may be provided.
 前記巻取装置10は、所定の残留溶媒量となったフィルムを必要量の長さにコアに巻き取る。なお、巻き取る際の温度は、巻き取り後の収縮によるスリキズ、巻き緩み等を防止するために室温まで冷却することが好ましい。使用する巻き取り機は、特に限定なく使用できる。光学フィルムの製造方法において一般的に使用されているものでよく、例えば、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントローラ法等の巻き取り方法で巻き取ることができる。 The winding device 10 winds a film having a predetermined residual solvent amount around the core to a required length. The temperature at the time of winding is preferably cooled to room temperature in order to prevent scratches and loosening due to shrinkage after winding. The winder to be used can be used without any particular limitation. It may be one generally used in optical film manufacturing methods, and can be wound by a winding method such as a constant tension method, a constant torque method, a taper tension method, a program tension controller method with a constant internal stress, or the like. .
 (光学フィルムの製造方法)
 本実施形態に係る光学フィルムの製造方法では、上記のような各工程によって、光学フィルムの製造中に、膜厚や光学値等が不均一になりやすい耳部(端部)が裁断されているので、膜厚や光学値等が全体的に均一な光学フィルムが得られる。このような本発明の製造方法によって得られる光学フィルムも、当然ながら本発明に包含される。
(Optical film manufacturing method)
In the manufacturing method of the optical film according to the present embodiment, the ears (ends) where the film thickness, the optical value, etc. are likely to be non-uniform are cut during the manufacturing of the optical film by the steps as described above. Therefore, an optical film having a uniform film thickness, optical value and the like can be obtained. Of course, the optical film obtained by such a production method of the present invention is also included in the present invention.
 得られる光学フィルムの幅は、大型の液晶表示装置への使用、偏光板加工時のフィルムの使用効率、生産効率の点から、1000~3000mmであることが好ましい。また、フィルムの膜厚は、液晶表示装置の薄型化、フィルムの生産安定化の観点等の点から、乾燥後の膜厚が15~85μmであることが好ましい。また、本実施形態の製造方法は、15~45μmという非常に薄い膜厚であっても、不具合の発生を抑制しながら光学フィルムを製造することができる。ここで膜厚とは、平均膜厚のことであり、例えば、株式会社ミツトヨ製の接触式膜厚計により、フィルムの幅方向に20~200箇所、膜厚を測定し、その測定値の平均値を膜厚として示す。 The width of the obtained optical film is preferably 1000 to 3000 mm from the viewpoint of use in a large liquid crystal display device, use efficiency of the film during polarizing plate processing, and production efficiency. The film thickness after drying is preferably 15 to 85 μm from the viewpoint of thinning the liquid crystal display device and stabilizing the production of the film. In addition, the manufacturing method of the present embodiment can manufacture an optical film while suppressing the occurrence of defects even when the film thickness is as thin as 15 to 45 μm. Here, the film thickness is an average film thickness. For example, the film thickness is measured at 20 to 200 locations in the width direction of the film with a contact-type film thickness meter manufactured by Mitutoyo Corporation. Values are shown as film thickness.
 次に、本実施形態で使用するポリマーのドープ(樹脂溶液)の組成について説明する。 Next, the composition of the polymer dope (resin solution) used in this embodiment will be described.

 本実施形態で使用される透明性樹脂は、溶液流延製膜法等によって基板状に成形したときに透明性を有する樹脂であればよく、特に制限されないが、溶液流延製膜法等による製造が容易であること、ハードコート層等との接着性に優れていること、光学的に等方性であること等が好ましい。なお、ここで透明性とは、可視光の透過率が60%以上であることであり、好ましくは80%以上、より好ましくは90%以上である。

The transparent resin used in the present embodiment is not particularly limited as long as it is a resin having transparency when formed into a substrate by a solution casting film forming method or the like. It is preferable that the production is easy, the adhesiveness with the hard coat layer and the like is excellent, and the optical isotropy is. Here, the transparency means that the visible light transmittance is 60% or more, preferably 80% or more, and more preferably 90% or more.

 前記透明性樹脂ポリマーとしては、具体的には、例えば、セルローストリアセテート樹脂等のセルロースエステル系樹脂等を挙げることができる。また、本実施形態で使用されるドープには、微粒子を含有させてもよい。その際、使用される微粒子は、使用目的に応じて適宜選択されるが、透明性樹脂中に含有することによって、可視光を散乱させることができる微粒子であることが好ましい。前記微粒子としては、酸化珪素等の無機微粒子であってもよいし、アクリル系樹脂等の有機微粒子であってもよい。本実施形態で使用される溶媒は、前記透明性樹脂に対する良溶媒を含有する溶媒を用いることができ、透明性樹脂が析出してこない範囲で、貧溶媒を含有させてもよい。セルロースエステル系樹脂に対する良溶媒としては、例えば、メチレンクロライド等の有機ハロゲン化合物等が挙げられる。また、セルロースエステル系樹脂に対する貧溶媒としては、例えば、メタノール等の炭素原子数1~8のアルコール等が挙げられる。本実施形態で使用されるドープは、本発明の効果を阻害しない範囲で、透明性樹脂、微粒子及び溶媒以外の他の成分(添加剤)を含有してもよい。前記添加剤としては、例えば、可塑剤、酸化防止剤、紫外線吸収剤、熱安定化剤、導電性物質、難燃剤、滑剤、及びマット剤等が挙げられる。

Specific examples of the transparent resin polymer include cellulose ester resins such as cellulose triacetate resin. The dope used in this embodiment may contain fine particles. In this case, the fine particles to be used are appropriately selected according to the purpose of use, but are preferably fine particles that can scatter visible light when contained in a transparent resin. The fine particles may be inorganic fine particles such as silicon oxide or organic fine particles such as acrylic resin. As the solvent used in the present embodiment, a solvent containing a good solvent for the transparent resin can be used, and a poor solvent may be contained as long as the transparent resin does not precipitate. Examples of the good solvent for the cellulose ester resin include organic halogen compounds such as methylene chloride. Examples of the poor solvent for the cellulose ester resin include alcohols having 1 to 8 carbon atoms such as methanol. The dope used in the present embodiment may contain components (additives) other than the transparent resin, fine particles, and solvent as long as the effects of the present invention are not impaired. Examples of the additive include a plasticizer, an antioxidant, an ultraviolet absorber, a heat stabilizer, a conductive substance, a flame retardant, a lubricant, and a matting agent.

 上記各組成を混合させることによってセルロースエステル系樹脂の溶液が得られる。また、得られたセルロースエステル系樹脂の溶液は、濾紙等の適当な濾過材を用いて濾過することが好ましい。

A cellulose ester resin solution is obtained by mixing the above-mentioned compositions. The obtained cellulose ester resin solution is preferably filtered using a suitable filter medium such as filter paper.

 (偏光板)

 本実施形態に係る製造方法によって得られる光学フィルムは、偏光板の保護フィルム等として有用である。偏光板は、偏光素子と、前記偏光素子の表面上に配置された透明保護フィルムとを備え、前記透明保護フィルムが、本実施形態に係る光学フィルムであることが好ましい。前記偏光素子とは、入射光を偏光に変えて射出する光学素子である。

(Polarizer)

The optical film obtained by the manufacturing method according to this embodiment is useful as a protective film for a polarizing plate. The polarizing plate includes a polarizing element and a transparent protective film disposed on the surface of the polarizing element, and the transparent protective film is preferably an optical film according to the present embodiment. The polarizing element is an optical element that emits incident light converted to polarized light.

 前記偏光板としては、例えば、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬して延伸することによって作製される偏光素子の少なくとも一方の表面に、完全鹸化型ポリビニルアルコール水溶液を用いて、前記光学フィルムを貼り合わせたものが好ましい。また、前記偏光素子のもう一方の表面にも、前記光学フィルムを積層させてもよいし、別の偏光板用の透明保護フィルムを積層させてもよい。あるいは、セルロースエステルフィルム以外の環状オレフィン樹脂、アクリル樹脂、ポリエステル、ポリカーボネート等の樹脂フィルムを用いてもよい。この場合は、ケン化適性が低いため、適当な接着層を介して偏光板に接着加工することが好ましい。

As the polarizing plate, for example, a completely saponified polyvinyl alcohol aqueous solution is used on at least one surface of a polarizing element produced by immersing and stretching a polyvinyl alcohol film in an iodine solution. A laminate is preferred. Moreover, the said optical film may be laminated | stacked also on the other surface of the said polarizing element, and the transparent protective film for another polarizing plate may be laminated | stacked. Or you may use resin films, such as cyclic olefin resin other than a cellulose-ester film, an acrylic resin, polyester, a polycarbonate. In this case, since the saponification suitability is low, it is preferable to perform an adhesive process on the polarizing plate through an appropriate adhesive layer.

 前記偏光板は、上述のように、偏光素子の少なくとも一方の表面側に積層する保護フィルムとして、前記光学フィルムを使用したものである。その際、前記光学フィルムが位相差フィルムとして働く場合、光学フィルムの遅相軸が偏光素子の吸収軸に実質的に平行または直交するように配置されていることが好ましい。

As described above, the polarizing plate uses the optical film as a protective film laminated on at least one surface side of the polarizing element. In that case, when the said optical film works as a phase difference film, it is preferable to arrange | position so that the slow axis of an optical film may be substantially parallel or orthogonal to the absorption axis of a polarizing element.

 また、前記偏光素子の具体例としては、例えば、ポリビニルアルコール系偏光フィルムが挙げられる。ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものとがある。前記ポリビニルアルコール系フィルムとしては、エチレンで変性された変性ポリビニルアルコール系フィルムが好ましく用いられる。

Moreover, as a specific example of the said polarizing element, a polyvinyl alcohol-type polarizing film is mentioned, for example. Polyvinyl alcohol polarizing films include those obtained by dyeing iodine on polyvinyl alcohol films and those obtained by dyeing dichroic dyes. As the polyvinyl alcohol film, a modified polyvinyl alcohol film modified with ethylene is preferably used.

 前記偏光素子は、例えば、以下のようにして得られる。まず、ポリビニルアルコール水溶液を用いて製膜する。得られたポリビニルアルコール系フィルムを一軸延伸させた後染色するか、染色した後一軸延伸する。そして、好ましくはホウ素化合物で耐久性処理を施す。

The polarizing element is obtained as follows, for example. First, a film is formed using a polyvinyl alcohol aqueous solution. The obtained polyvinyl alcohol film is uniaxially stretched and then dyed or dyed and then uniaxially stretched. And preferably, a durability treatment is performed with a boron compound.

 前記偏光素子の膜厚は、5~40μmであることが好ましく、5~30μmであることがより好ましく、5~20μmであることがより好ましい。

The thickness of the polarizing element is preferably 5 to 40 μm, more preferably 5 to 30 μm, and even more preferably 5 to 20 μm.

 該偏光素子の表面上に、セルロ-スエステル系樹脂フィルムを張り合わせる場合、完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせることが好ましい。また、セルロースエステル系樹脂フィルム以外の樹脂フィルムの場合は、適当な粘着層を介して偏光板に接着加工することが好ましい。

When the cellulose ester resin film is laminated on the surface of the polarizing element, it is preferable to bond the cellulose ester resin film with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol. Moreover, in the case of resin films other than a cellulose ester-type resin film, it is preferable to carry out the adhesive process to a polarizing plate through a suitable adhesion layer.

 上述のような偏光板は、偏光素子の透明保護フィルムとして、本実施形態に係る光学フィルムを用いることによって、前記光学フィルムが膜厚や光学値等が全体的に均一なものであるので、例えば、液晶表示装置に適用した際に、コントラスト等に優れた液晶表示装置の高画質化を実現できる偏光板が得られる。さらに、偏光素子の透明保護フィルムとして用いられる光学フィルムとして、延伸工程等によって得られた広幅の光学フィルムを用いた場合、大画面化した液晶表示装置にも適用可能である。

Since the polarizing plate as described above uses the optical film according to the present embodiment as a transparent protective film of the polarizing element, the optical film has a uniform film thickness, optical value, and the like as a whole. When applied to a liquid crystal display device, a polarizing plate capable of realizing high image quality of a liquid crystal display device excellent in contrast and the like can be obtained. Furthermore, when a wide optical film obtained by a stretching process or the like is used as an optical film used as a transparent protective film of a polarizing element, it can be applied to a liquid crystal display device having a large screen.

 (液晶表示装置)

 さらに、上述したような本実施形態の光学フィルムを用いた偏光板は、液晶表示装置に用いることができる。そのような液晶表示装置は、液晶セルと、前記液晶セルを挟むように配置された2枚の偏光板とを備え、前記2枚の偏光板のうち少なくとも一方が、前記偏光板である。なお、液晶セルとは、一対の電極間に液晶物質が充填されたものであり、この電極に電圧を印加することで、液晶の配向状態が変化され、透過光量が制御される。このような液晶表示装置は、偏光板用の透明保護フィルムとして、本実施形態に係る光学フィルムを用いることによって、前記光学フィルムが膜厚や光学値等が全体的に均一なものであるので、コントラスト等が向上された、高画質な液晶表示装置を提供することができる。また、本実施形態に係る光学フィルムとして広幅のものを用いることによって、大画面化が可能となる。

(Liquid crystal display device)

Furthermore, the polarizing plate using the optical film of the present embodiment as described above can be used for a liquid crystal display device. Such a liquid crystal display device includes a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates is the polarizing plate. Note that the liquid crystal cell is a cell in which a liquid crystal substance is filled between a pair of electrodes, and by applying a voltage to the electrodes, the alignment state of the liquid crystal is changed and the amount of transmitted light is controlled. Since such a liquid crystal display device uses the optical film according to the present embodiment as a transparent protective film for a polarizing plate, the optical film has a uniform film thickness, optical value, and the like as a whole. A high-quality liquid crystal display device with improved contrast and the like can be provided. Further, by using a wide film as the optical film according to this embodiment, a large screen can be obtained.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 すなわち、本発明の一つの局面に係る光学フィルムの製造方法は、溶融流延製膜法または溶液流延製膜法によりポリマーフィルムを得る工程と、得られたフィルムの耳部を切り取り、該耳部を回収配管へ風送する風送工程を含む光学フィルムの製造方法であって、前記風送工程において使用する、回収配管へ耳部を送り込むための吸引ダクトの壁には、開口部が存在すること、並びに、前記吸引ダクトの吸い込み口面積と前記開口部を合わせた全開口面積に対して、前記開口部による開口面積の割合が40%~70%であることを特徴とする。 That is, the method for producing an optical film according to one aspect of the present invention includes a step of obtaining a polymer film by a melt casting film forming method or a solution casting film forming method, and cutting off an ear portion of the obtained film. A method of manufacturing an optical film including an air blowing process for air blowing a part to a recovery pipe, wherein an opening exists in a wall of a suction duct for feeding an ear part to the recovery pipe used in the air blowing process In addition, the ratio of the opening area by the opening to the total opening area including the suction port area of the suction duct and the opening is 40% to 70%.
 このような構成により、回収配管へ耳部を送り込むための吸引ダクト内における耳部のバタツキ、付着、絡まりを従来よりも抑制することができる。ひいては、フィルムの耳部の切り取りを安定して行うことができ、フィルムへの切粉などの付着を抑制して、高品質な光学フィルムを提供することができると考えられる。 With such a configuration, it is possible to suppress the fluttering, adhesion, and entanglement of the ears in the suction duct for sending the ears to the recovery pipe as compared with the conventional case. As a result, it is thought that the ear | edge part of a film can be cut out stably and adhesion of chips etc. to a film can be suppressed and a high quality optical film can be provided.
 また、上記光学フィルムの製造方法において、ポリマーのドープを支持体上に流延することにより形成されたウェブを支持体から剥離する剥離工程と、支持体から剥離したウェブを乾燥させてフィルムを得る乾燥工程と、フィルムの耳部を切り取り、該耳部を回収配管へ風送する風送工程を含む溶液流延製膜法によりフィルムを得る工程を含むことがより好ましい。そのような実施態様において、本発明の効果がより発揮されると考えられる。 Further, in the method for producing an optical film, a film is obtained by peeling a web formed by casting a polymer dope on a support from the support, and drying the web peeled from the support. It is more preferable to include a step of obtaining a film by a solution casting film forming method including a drying step and an air feeding step of cutting out the ear portion of the film and blowing the ear portion to a recovery pipe. In such an embodiment, it is considered that the effect of the present invention is more exhibited.
 さらに、上記光学フィルムの製造方法において、前記吸引ダクトにおける前記開口部1つあたりの面積が3~85mmであることが好ましい。それにより、上述した効果をより確実に得ることができると考えられる。 Furthermore, in the method for producing an optical film, the area per one opening in the suction duct is preferably 3 to 85 mm 2 . Thereby, it is thought that the effect mentioned above can be acquired more reliably.
 さらに、上記光学フィルムの製造方法において、前記開口部が、前記吸引ダクトの吸い込み口から下流に向かって500mm以内の範囲に存在していることが好ましい。それにより、上述した効果をより確実に得ることができると考えられる。
Furthermore, in the manufacturing method of the optical film, it is preferable that the opening is present in a range within 500 mm from the suction port of the suction duct toward the downstream. Thereby, it is thought that the effect mentioned above can be acquired more reliably.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 [実施例1]
 (ドープの調製)
 まず、メチレンクロライド418質量部を入れた溶解タンクに、透明性樹脂としてセルローストリアセテート樹脂(アセチル基置換度:2.88)100質量部を添加し、さらに、トリフェニルホスフェート8質量部、ビフェニルジフェニルホスフェート(液体の可塑剤)4質量部、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール(液体の紫外線吸収剤)1質量部、二酸化ケイ素微粒子(アエロジルR972V)0.1質量部及びエタノール23質量部を添加した。なお、二酸化ケイ素微粒子は、エタノールに分散された状態で添加した。そして、液温が80℃になるまで昇温させた後、3時間攪拌した。そうすることによって、セルローストリアセテート樹脂溶液が得られた。その後、攪拌を終了し、液温が43℃になるまで放置した。そして、得られた樹脂溶液を、濾過精度0.005mmの濾紙を使用して濾過した。濾過後の樹脂溶液を一晩放置することにより、樹脂溶液中の気泡を脱泡させた。このようにして得られた樹脂溶液を、ドープとして使用して、以下のように、光学フィルムを製造した。
[Example 1]
(Preparation of dope)
First, 100 parts by mass of cellulose triacetate resin (acetyl group substitution degree: 2.88) is added as a transparent resin to a dissolution tank containing 418 parts by mass of methylene chloride, and further 8 parts by mass of triphenyl phosphate and biphenyl diphenyl phosphate. (Liquid plasticizer) 4 parts by mass, 5-chloro-2- (3,5-di-sec-butyl-2-hydroxyphenyl) -2H-benzotriazole (liquid UV absorber) 1 part by mass, silicon dioxide 0.1 parts by mass of fine particles (Aerosil R972V) and 23 parts by mass of ethanol were added. The silicon dioxide fine particles were added in a state dispersed in ethanol. And after raising the liquid temperature to 80 ° C., the mixture was stirred for 3 hours. By doing so, a cellulose triacetate resin solution was obtained. Then, stirring was complete | finished and it was left until the liquid temperature became 43 degreeC. Then, the obtained resin solution was filtered using a filter paper having a filtration accuracy of 0.005 mm. Air bubbles in the resin solution were degassed by allowing the resin solution after filtration to stand overnight. The resin solution thus obtained was used as a dope to produce an optical film as follows.
 (光学フィルムの製造)
 まず、得られたドープの温度を34℃に、無端ベルト支持体の温度を30℃に調整した。そして、図1に示すような光学フィルムの製造装置を用い、流延ダイ(コートハンガーダイ)から搬送速度80m/分の、ステンレス鋼製かつ超鏡面に研磨したエンドレスベルトからなる無端ベルト支持体にドープを流延した。そうすることによって、無端ベルト支持体上にウェブを形成し、乾燥させながら搬送した。そして、無端ベルト支持体からウェブをフィルムとして剥離し、30℃の雰囲気でローラ搬送しながら乾燥させ、残留溶媒量が9%のとき、フィルムを延伸装置(テンター)を用いて、180℃の雰囲気内でフィルムの両端をクリップで把持しながら幅手方向に1.15倍延伸した。その後、トリミング装置を用いて、クリップで把持されていた領域(フィルム端から120mmの幅)を切り取り、厚み20μmの光学フィルムを得た。その際、切り取られたフィルムの耳部を、吸引ダクトに風送し、下流にある切断装置によって、細片(短冊状)に切断した。吸引ダクトとしては、ステンレス製の四角形状のダクト(吸い込み口における中空部分の断面積が約10000mm)を用いた。なお、吸引ダクトの吸い込み口と開口部から入る風の風量は、30m/分となるように吸引させた。
(Manufacture of optical films)
First, the temperature of the obtained dope was adjusted to 34 ° C., and the temperature of the endless belt support was adjusted to 30 ° C. Then, using an optical film manufacturing apparatus as shown in FIG. 1, an endless belt support made of an endless belt made of stainless steel and polished to a super mirror surface with a conveyance speed of 80 m / min from a casting die (coat hanger die). The dope was cast. By doing so, a web was formed on the endless belt support and conveyed while drying. Then, the web is peeled from the endless belt support as a film, dried while being conveyed by a roller at 30 ° C., and when the residual solvent amount is 9%, the film is drawn at 180 ° C. using a stretching device (tenter). The film was stretched 1.15 times in the width direction while holding both ends of the film with clips. Then, using the trimming apparatus, the area | region (width of 120 mm from the film end) currently hold | gripped with the clip was cut off, and the optical film with a thickness of 20 micrometers was obtained. In that case, the ear | edge part of the cut-out film was air-fed to the suction duct, and it cut | disconnected to the strip (strip shape) with the cutting device downstream. As the suction duct, a stainless steel square duct (the cross-sectional area of the hollow portion at the suction port is about 10,000 mm 2 ) was used. In addition, it was made to attract | suck so that the air volume of the wind which enters from the suction inlet and opening part of a suction duct might be set to 30 m < 3 > / min.
 開口部は、開口部1個あたりの面積が20mm、吸引ダクトの吸い込み口面積と開口部の面積とを合わせた全開口面積に対して、前記開口部による開口面積の割合が40%(開口部の総数:333個)、開口部が吸引ダクトの吸い込み口から下流に向かって5~400mmの範囲に存在するようにした。開口面積の割合は下記式で求めた。開口部の総数は333個であった。
 開口部の開口面積:20×333/(20×333+10000)=40%
The opening has an area per opening of 20 mm 2 , and the ratio of the opening area by the opening to the total opening area of the suction duct area and the opening area is 40% (opening) The total number of parts was 333), and the opening was present in the range of 5 to 400 mm downstream from the suction port of the suction duct. The ratio of the opening area was obtained by the following formula. The total number of openings was 333.
Opening area of the opening: 20 × 333 / (20 × 333 + 10000) = 40%
 [実施例2~9、及び比較例1~2]
 実施例2~9、及び比較例1~2では、開口部の割合面積、開口部1個あたりの開口面積、開口部数、開口部の位置を表1に示すように変更した以外は、実施例1と同様にして光学フィルムを製造した。
[Examples 2 to 9 and Comparative Examples 1 and 2]
In Examples 2 to 9 and Comparative Examples 1 and 2, except that the percentage area of the opening, the opening area per opening, the number of openings, and the position of the opening were changed as shown in Table 1, In the same manner as in Example 1, an optical film was produced.
 実施例1~9、及び比較例1、2について、以下のような評価を行った。 Examples 1 to 9 and Comparative Examples 1 and 2 were evaluated as follows.
 (異物の付着)
 光学式表面検査装置((株)メック社製「LSC-6000」)を用いて、得られた光学フィルムに付着している大きさ10μm以上の異物の数を計測した。フィルム長さ300mを計測し、1mあたりの個数を算出した。評価の結果を表1に示す。なお、評価基準は以下の通りである:
 ◎:異物数0.2個/m未満
 ○:異物数0.2~2個/m未満
 ×:異物数2個/m以上
(Foreign matter adhesion)
Using an optical surface inspection apparatus (“LSC-6000” manufactured by MEC Co., Ltd.), the number of foreign matters having a size of 10 μm or more adhering to the obtained optical film was measured. A film length of 300 m was measured, and the number per 1 m 2 was calculated. The evaluation results are shown in Table 1. The evaluation criteria are as follows:
A: Less than 0.2 foreign matter / m 2 ○: Less than 0.2-2 foreign matter / m 2 ×: More than 2 foreign matter / m 2
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、本実施形態の製造方法で得られた光学フィルムでは異物の付着が抑制され、高品質なフィルムが得られることが確かめられた。これに対して、開口部の面積割合が本発明の範囲未満であった比較例1や、本発明の範囲を超えていた比較例2では、得られたフィルムに異物の付着が発生していた。 As can be seen from Table 1, it was confirmed that the optical film obtained by the production method of the present embodiment suppressed the adhesion of foreign matters and a high-quality film was obtained. In contrast, in Comparative Example 1 in which the area ratio of the opening was less than the range of the present invention and Comparative Example 2 in which the range of the present invention exceeded the range of the present invention, foreign matter adhered to the obtained film. .
 さらに、1個あたりの開口面積が3~85mmの範囲であること、及び/又は、開口部の位置が吸引ダクトの吸い込み口から500mm以内の範囲にあることによって、より異物の付着を抑制できることも、実施例5、8や実施例9の結果により示された。 Furthermore, the adhesion area of the foreign matter can be further suppressed when the opening area per piece is in the range of 3 to 85 mm 2 and / or the position of the opening is within 500 mm from the suction port of the suction duct. Were also shown by the results of Examples 5 and 8 and Example 9.
 この出願は、2015年6月19日に出願された日本国特許出願特願2015-123490を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2015-123490 filed on June 19, 2015, the contents of which are included in this application.
 本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to the drawings and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that it can be done. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明は、表示装置などに使用される光学フィルムおよびその製造方法の技術分野において、広範な産業上の利用可能性を有する。 The present invention has wide industrial applicability in the technical field of optical films used in display devices and the like and manufacturing methods thereof.

Claims (4)

  1.  溶融流延製膜法または溶液流延製膜法によりポリマーフィルムを得る工程と、得られたフィルムの耳部を切り取り、該耳部を回収配管へ風送する風送工程を含む、光学フィルムの製造方法であって、
     前記風送工程において使用する、回収配管へ耳部を送り込むための吸引ダクトの壁には、開口部が存在すること、並びに、前記吸引ダクトの吸い込み口面積と前記開口部を合わせた全開口面積に対して、前記開口部による開口面積の割合が40%~70%であることを特徴とする、光学フィルムの製造方法。
    An optical film comprising: a step of obtaining a polymer film by a melt casting film forming method or a solution casting film forming method; and an air blowing step of cutting off an ear portion of the obtained film and blowing the ear portion to a recovery pipe. A manufacturing method comprising:
    The wall of the suction duct for sending the ear part to the recovery pipe used in the air blowing process has an opening, and the total opening area that combines the suction port area of the suction duct and the opening. On the other hand, the ratio of the opening area by the opening is 40% to 70%.
  2.  ポリマーのドープを支持体上に流延することにより形成されたウェブを支持体から剥離する剥離工程と、
     支持体から剥離したウェブを乾燥させてフィルムを得る乾燥工程と、
     フィルムの耳部を切り取り、該耳部を回収配管へ風送する風送工程を含む溶液流延製膜法によりフィルムを得る工程をさらに含む、請求項1に記載の光学フィルムの製造方法。
    A peeling step of peeling the web formed by casting a polymer dope on the support from the support;
    A drying step of drying the web peeled from the support to obtain a film;
    The method for producing an optical film according to claim 1, further comprising a step of obtaining a film by a solution casting film forming method including an air blowing step of cutting out an ear portion of the film and blowing the ear portion to a recovery pipe.
  3.  前記吸引ダクトにおける前記開口部1つあたりの面積が3~85mmである、請求項1又は2に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 1 or 2, wherein an area per one opening in the suction duct is 3 to 85 mm 2 .
  4.  前記開口部が、前記吸引ダクトの吸い込み口から下流に向かって500mm以内の範囲に存在する、請求項1~3のいずれかに記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 3, wherein the opening is present within a range of 500 mm or less downstream from the suction port of the suction duct.
PCT/JP2016/062415 2015-06-19 2016-04-19 Method for producing optical film WO2016203835A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017524700A JP6737270B2 (en) 2015-06-19 2016-04-19 Method for manufacturing optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015123490 2015-06-19
JP2015-123490 2015-06-19

Publications (1)

Publication Number Publication Date
WO2016203835A1 true WO2016203835A1 (en) 2016-12-22

Family

ID=57545191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062415 WO2016203835A1 (en) 2015-06-19 2016-04-19 Method for producing optical film

Country Status (2)

Country Link
JP (1) JP6737270B2 (en)
WO (1) WO2016203835A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238801A (en) * 2004-01-30 2005-09-08 Fuji Photo Film Co Ltd Method and device for pneumatic sending of selvage waste of film and method for producing cellulose acetate film
JP2009281166A (en) * 2008-05-20 2009-12-03 Tigers Polymer Corp Synthetic resin duct and its manufacturing method
WO2010098044A1 (en) * 2009-02-26 2010-09-02 コニカミノルタオプト株式会社 Method for producing optical film, optical film, polarizer, and liquid crystal display apparatus
JP2011247104A (en) * 2010-05-24 2011-12-08 Inoac Corp Air-intake duct
JP2012030544A (en) * 2010-08-02 2012-02-16 Konica Minolta Opto Inc Method and device for film cutting
JP2013107148A (en) * 2011-11-18 2013-06-06 Fujifilm Corp Selvedge part processing device and solution film forming method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023880A (en) * 2003-07-04 2005-01-27 Matsushita Electric Ind Co Ltd Reciprocating compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238801A (en) * 2004-01-30 2005-09-08 Fuji Photo Film Co Ltd Method and device for pneumatic sending of selvage waste of film and method for producing cellulose acetate film
JP2009281166A (en) * 2008-05-20 2009-12-03 Tigers Polymer Corp Synthetic resin duct and its manufacturing method
WO2010098044A1 (en) * 2009-02-26 2010-09-02 コニカミノルタオプト株式会社 Method for producing optical film, optical film, polarizer, and liquid crystal display apparatus
JP2011247104A (en) * 2010-05-24 2011-12-08 Inoac Corp Air-intake duct
JP2012030544A (en) * 2010-08-02 2012-02-16 Konica Minolta Opto Inc Method and device for film cutting
JP2013107148A (en) * 2011-11-18 2013-06-06 Fujifilm Corp Selvedge part processing device and solution film forming method

Also Published As

Publication number Publication date
JPWO2016203835A1 (en) 2018-04-05
JP6737270B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP5522164B2 (en) Manufacturing method of optical film
JP6969378B2 (en) A polyvinyl alcohol-based film for a polarizing film, a method for producing the same, and a polarizing film using the polyvinyl alcohol-based film for the polarizing film.
WO2012132984A1 (en) Polyvinyl alcohol polymer film and process for producing same
JP6834956B2 (en) A polyvinyl alcohol-based film, a method for producing the same, and a polarizing film using the polyvinyl alcohol-based film.
WO2016084836A1 (en) Polyvinyl alcohol polymer film and method for producing same
JP2017037290A (en) Polyvinyl alcohol film, production method for the same, and polarizing film made of the film
JP6784142B2 (en) Method for manufacturing polyvinyl alcohol-based film for manufacturing polarizing film
JP5708654B2 (en) Manufacturing method of resin film, resin film, polarizing plate, and liquid crystal display device
JP2020166291A (en) Poly vinyl alcohol-based film, method for producing poly vinyl alcohol-based film, and polarizing film
JP7335697B2 (en) Polyvinyl alcohol film, polarizing film, polarizing plate, and method for producing polyvinyl alcohol film
JP6878778B2 (en) Method for manufacturing polyvinyl alcohol-based film
JP6801250B2 (en) Manufacturing method of polyvinyl alcohol film
WO2016203835A1 (en) Method for producing optical film
TW201730278A (en) Production method of optical film which is to cast the dope of material solution of the optical film on the support body in the solution casting film-making method and to form a blank sheet (a casted film) on the support body
JP6759690B2 (en) Polyvinyl alcohol-based film, method for producing polyvinyl alcohol-based film, and polarizing film
JP2005222075A (en) Polarizing plate protective film
US9492977B2 (en) Method for producing resin film, casting die, device for producing resin film, resin film, polarizing plate, and liquid crystal display device
JP7192198B2 (en) POLYVINYL ALCOHOL-BASED FILM FOR POLARIZING FILM AND METHOD FOR MANUFACTURING THE SAME AND POLARIZING FILM AND METHOD FOR MANUFACTURING THE SAME
JP5828284B2 (en) Manufacturing method of optical film
JP5776146B2 (en) Film cutting method and film cutting apparatus
WO2014141616A1 (en) Method for manufacturing resin film
JP6606137B2 (en) Solution casting method
WO2014141615A1 (en) Method for manufacturing resin film
JP2016172851A (en) Polyvinyl alcohol film, method for producing polyvinyl alcohol film, polarizing film, and polarizing plate
JP2023083358A (en) Polyvinyl alcohol-based film, polarizing film and polarizing plate and method for producing polyvinyl alcohol-based film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524700

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811310

Country of ref document: EP

Kind code of ref document: A1