WO2016203624A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2016203624A1
WO2016203624A1 PCT/JP2015/067652 JP2015067652W WO2016203624A1 WO 2016203624 A1 WO2016203624 A1 WO 2016203624A1 JP 2015067652 W JP2015067652 W JP 2015067652W WO 2016203624 A1 WO2016203624 A1 WO 2016203624A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
source side
refrigerant
heat
heat exchanger
Prior art date
Application number
PCT/JP2015/067652
Other languages
French (fr)
Japanese (ja)
Inventor
寛也 石原
智隆 石川
孝 梅木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP18198946.8A priority Critical patent/EP3457049B1/en
Priority to JP2017524243A priority patent/JP6735744B2/en
Priority to PCT/JP2015/067652 priority patent/WO2016203624A1/en
Priority to EP15895644.1A priority patent/EP3312524B1/en
Publication of WO2016203624A1 publication Critical patent/WO2016203624A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/191Pressures near an expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part

Definitions

  • the present invention relates to a refrigeration cycle apparatus that can use local piping.
  • a refrigerant that flows from an outdoor unit to liquid piping that is local piping is decompressed by a flow control device into a gas-liquid two-phase state, thereby reducing the refrigerant cost.
  • a refrigeration apparatus is known (for example, Patent Document 1).
  • Patent Document 1 has a problem that the pressure loss and noise in the liquid pipe increase because the two-phase refrigerant flows through the liquid pipe.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a refrigeration cycle apparatus capable of reducing pressure loss and noise in a liquid pipe.
  • the refrigeration cycle apparatus includes a heat source side unit that houses a first compressor, a first heat source side heat exchanger, and a first heat source side pressure reducing device, a load side pressure reducing device, and a load side heat.
  • a first communication pipe that is disposed between the first heat source side pressure reducing device and the load side pressure reducing device, and the first compressor and the load side heat exchanger.
  • a load side unit connected to the heat source side unit via a second connecting pipe disposed between the control unit and a load side unit; the first compressor; the first heat source side heat exchanger; The first heat source side decompression device, the load side decompression device, and the load side heat exchanger are connected via a refrigerant pipe, and constitute a first refrigeration cycle for circulating the first refrigerant,
  • the control device The opening degree of the first heat source side pressure reducing device is adjusted so that the first refrigerant flows into the first connecting pipe as a liquid refrigerant whose pressure is lower than the design pressure of the first connecting pipe. is there.
  • the opening degree of the first heat source side pressure reducing device is adjusted, and the first refrigerant is supplied to the first communication pipe as a liquid refrigerant whose pressure is lower than the design pressure of the first communication pipe.
  • FIG. 1 is a schematic refrigerant circuit diagram illustrating an example of a refrigeration cycle apparatus 1 according to Embodiment 1 of the present invention. It is a control block diagram expressing a part of control in the control apparatus 50 of the refrigerating cycle apparatus 1 which concerns on Embodiment 1 of this invention. It is a flowchart which shows an example of the control processing at the time of air_conditionaing
  • FIG. 1 is a schematic refrigerant circuit diagram illustrating an example of the refrigeration cycle apparatus 1 according to the first embodiment.
  • the dimensional relationship and shape of each component may be different from the actual one.
  • the refrigeration cycle apparatus 1 includes a heat source side unit 100 (for example, an outdoor unit) and a load side unit 200 (for example, an indoor unit) arranged in parallel to the heat source side unit 100.
  • the heat source side unit 100 and the load side unit 200 are connected by a first connecting pipe 300 (liquid pipe) and a second connecting pipe 400 (gas pipe) which are local pipes.
  • first connecting pipe 300 liquid pipe
  • second connecting pipe 400 gas pipe
  • the refrigeration cycle apparatus 1 of the first embodiment includes a first compressor 2, a first heat source side heat exchanger 3, a first heat source side pressure reducing device 4, a load side pressure reducing device 5, and a load side.
  • a heat exchanger 6 is connected via a refrigerant pipe, and a first refrigeration cycle 500 for circulating the first refrigerant is provided.
  • the first refrigerant circulating in the first refrigeration cycle 500 can be selected from any type of refrigerant according to the application of the refrigeration cycle apparatus 1.
  • a natural refrigerant such as CO 2
  • a hydrofluorocarbon such as R32
  • a hydrofluorocarbon such as 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf)
  • a mixed solvent such as olefin and R410A can be used as the first refrigerant.
  • the first compressor 2 is a variable frequency fluid machine that is accommodated in the heat source side unit 100, compresses the sucked low-pressure first refrigerant, and discharges the compressed low-pressure first refrigerant.
  • a scroll compressor whose rotation frequency is controlled by an inverter can be used.
  • the first heat source side heat exchanger 3 is a heat exchanger that functions as a radiator (condenser) in the first embodiment, and is housed in the heat source side unit 100.
  • the first heat source side heat exchanger 3 includes a first refrigerant flowing inside the first heat source side heat exchanger 3 and a heat source side heat exchanger fan (not shown). It is comprised so that heat exchange with the external air (for example, outdoor air) ventilated may be performed.
  • the first heat source side heat exchanger 3 is configured as, for example, a cross-fin type fin-and-tube heat exchanger including a heat transfer tube and a plurality of fins.
  • the first heat source side decompression device 4 expands and decompresses the high-pressure liquid refrigerant flowing from the first heat source side heat exchanger 3, and the first connection piping 300 which is a local piping.
  • the first refrigerant having a pressure lower than the designed pressure is caused to flow into the first connecting pipe 300.
  • the design pressure of the first connecting pipe 300 is set to the pressure resistance reference value of the first connecting pipe 300.
  • the first heat source side decompression device 4 is housed in the heat source side unit 100 and is configured as an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple stages or continuously.
  • LEV linear electronic expansion valve
  • the load-side decompression device 5 further expands and decompresses the first refrigerant having a pressure lower than the design pressure of the first communication pipe 300 flowing from the first communication pipe 300, It is made to flow into the exchanger 6.
  • the load side decompression device 5 is accommodated in the load side unit 200, and is configured as an electronic expansion valve such as a linear electronic expansion valve whose opening degree can be adjusted in multiple stages or continuously.
  • the load-side heat exchanger 6 is a heat exchanger that functions as an evaporator (cooler) in the first embodiment, and is housed in the load-side unit 200.
  • the load side heat exchanger 6 is configured to exchange heat between, for example, a refrigerant flowing inside the load side heat exchanger 6 and outside air (for example, indoor air).
  • the load-side heat exchanger 6 can be configured as, for example, a cross-fin type fin-and-tube heat exchanger composed of a heat transfer tube and a plurality of fins. Moreover, you may comprise the load side heat exchanger 6 so that external air may be supplied with the ventilation from the fan for load side heat exchangers (not shown).
  • cooling operation the operation of the refrigeration cycle apparatus 1 in which the load-side heat exchanger 6 functions as an evaporator is referred to as “cooling operation”.
  • the refrigerant pipe housed in the heat source side unit 100 and disposed between the first heat source side pressure reducing device 4 and the first communication pipe 300 is connected to the first communication pipe 300.
  • a heat source side connection valve 7a is provided.
  • the heat source side refrigerant pipe accommodated in the heat source side unit 100 and disposed between the first compressor 2 and the second communication pipe 400 has a second heat source for connection to the second communication pipe 400.
  • a side connection valve 7b is provided.
  • the load side refrigerant pipe accommodated in the load side unit 200 and disposed between the load side pressure reducing device 5 and the first communication pipe 300 has a first load side for connection to the first communication pipe 300.
  • a connection valve 8a is provided.
  • the load-side refrigerant pipe accommodated in the load-side unit 200 and disposed between the load-side heat exchanger 6 and the second communication pipe 400 has a second load for connection to the second communication pipe 400.
  • a side connection valve 8b is provided.
  • the first heat source side connection valve 7a, the second heat source side connection valve 7b, the first load side connection valve 8a, and the second load side connection valve 8b are, for example, two-way capable of switching between open and closed It consists of a two-way valve such as a solenoid valve.
  • the supercooling heat exchanger 10 is disposed between the first heat source side heat exchanger 3 and the first heat source side pressure reducing device 4.
  • the supercooling heat exchanger 10 includes a first heat transfer tube 10 a and a second heat transfer tube 10 b and is accommodated in the heat source side unit 100.
  • the supercooling heat exchanger 10 includes the first high-pressure refrigerant flowing through the first heat transfer tube 10a and the first reduced pressure flowing through the second heat transfer tube 10b during the cooling operation. It is a heat exchanger that exchanges heat with a refrigerant.
  • the supercooling heat exchanger 10 can be configured as, for example, a cross fin type fin-and-tube heat exchanger including a first heat transfer tube 10a, a second heat transfer tube 10b, and a plurality of fins.
  • first heat transfer tube 10a and the first heat source side decompression device 4 are connected by a first heat source side refrigerant pipe 12.
  • the other one end of the first heat transfer tube 10a and the first heat source side heat exchanger 3 are connected by a second heat source side refrigerant pipe 13.
  • the branch connection portion 12 a disposed in the first heat source side refrigerant pipe 12 and one end portion of the second heat transfer pipe 10 b are connected by the first heat source side branch refrigerant pipe 16.
  • the other one end of the second heat transfer tube 10b and the intermediate pressure portion of the first compressor 2 are connected by a second heat source side branched refrigerant pipe 18.
  • first heat source side refrigerant pipe 12 and the second heat source side refrigerant pipe 13 are part of the refrigerant pipe constituting the first refrigeration cycle 500. Further, the first heat source side refrigerant pipe 12, the second heat source side refrigerant pipe 13, the first heat source side branch refrigerant pipe 16, and the second heat source side branch refrigerant pipe 18 are accommodated in the heat source side unit 100. Yes.
  • the second heat source side decompression device 20 is disposed in the first heat source side branch refrigerant pipe 16.
  • the second heat source-side decompression device 20 expands and decompresses the high-pressure liquid refrigerant that branches from the first heat source-side refrigerant pipe 12 to the first heat source-side branch refrigerant pipe 16 and flows into the second heat transfer pipe 10b. It is what is made to flow into.
  • the second heat source side pressure reducing device 20 is housed in the heat source side unit 100 and is configured as an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple stages or continuously.
  • LEV linear electronic expansion valve
  • the refrigeration cycle apparatus 1 includes a first temperature sensor 30, a second temperature sensor 35, a first pressure sensor 40, and a second pressure sensor 45.
  • the first temperature sensor 30 is disposed on the first heat source side refrigerant pipe 12 between the branch connection portion 12a and the first heat source side decompression device 4.
  • the first temperature sensor 30 outputs the temperature of the first refrigerant flowing out from the first heat transfer tube 10a of the supercooling heat exchanger 10 and flowing into the first heat source side decompression device 4 during the cooling operation. It is the temperature sensor which detects via.
  • the second temperature sensor 35 is disposed in the second heat source side branch refrigerant pipe 18.
  • the second temperature sensor 35 flows out of the second heat transfer tube 10b of the supercooling heat exchanger 10 during the cooling operation, and the temperature of the first refrigerant injected into the intermediate pressure portion of the first compressor 2. It is a temperature sensor which detects this through refrigerant piping.
  • first temperature sensor 30 and the second temperature sensor 35 As a material of the first temperature sensor 30 and the second temperature sensor 35, a semiconductor (for example, a thermistor) or a metal (for example, a resistance temperature detector) is used. Note that the first temperature sensor 30 and the second temperature sensor 35 may be made of the same material or different materials.
  • the first pressure sensor 40 is disposed in the second heat source side branched refrigerant pipe 18.
  • the first pressure sensor 40 flows out from the second heat transfer tube 10b of the supercooling heat exchanger 10 during the cooling operation, and the pressure of the first refrigerant injected into the intermediate pressure portion of the first compressor 2. It is a pressure sensor that detects
  • the second pressure sensor 45 is housed in the load-side unit 200 and is disposed in a load-side refrigerant pipe disposed between the first load-side connection valve 8a and the load-side decompression device 5.
  • the second pressure sensor 45 is a pressure sensor that detects the pressure of the first refrigerant flowing into the second pressure sensor 45 through the first communication pipe 300 during the cooling operation.
  • first pressure sensor 40 and the second pressure sensor 45 a crystal piezoelectric pressure sensor, a semiconductor sensor, a pressure transducer, or the like is used.
  • the first pressure sensor 40 and the second pressure sensor 45 may be made of the same type or different types.
  • FIG. 2 is a control block diagram representing a part of control in the control device 50 of the refrigeration cycle apparatus 1 according to the first embodiment.
  • the control device 50 controls the first refrigeration cycle 500, and includes a microcomputer having a CPU, a memory (eg, ROM, RAM, etc.), an I / O port, and the like. ing. As shown in FIG. 2, the control device 50 according to the first embodiment is configured such that the control device 50 detects the electrical signal of the temperature information detected by the first temperature sensor 30 and the second temperature sensor 35, and the first An electrical signal of pressure information detected by the pressure sensor 40 and the second pressure sensor 45 is configured to be received. The control device 50 transmits a control signal corresponding to the electrical signal of temperature information and the electrical signal of pressure information to the first heat source side decompression device 4, the load side decompression device 5, and the second heat source side decompression device 20. .
  • a microcomputer having a CPU, a memory (eg, ROM, RAM, etc.), an I / O port, and the like. ing.
  • the control device 50 according to the first embodiment is configured such that the control device 50 detects the electrical signal of the temperature information detected by the
  • the opening degree of the 1st heat source side decompression device 4 is adjusted according to the transmitted control signal.
  • the opening degree of the load-side decompression device 5 is adjusted according to the transmitted control signal.
  • the opening degree of the 2nd heat source side decompression device 20 is adjusted according to the transmitted control signal.
  • the control device 50 can be configured to control other components of the first refrigeration cycle 500.
  • the control device 50 can be configured to be able to control the operation state such as the start and stop of the operation of the heat source side unit 100 and the load side unit 200 and the adjustment of the operation frequency of the first compressor 2.
  • the control device 50 is configured to have a storage unit (not shown) that can store various data such as the design pressure of the first communication pipe 300. Further, the control device 50 can be configured to have an interface unit (not shown) that can input various data such as the design pressure of the first communication pipe 300.
  • the first refrigerant is discharged from the first compressor 2 as a high-temperature and high-pressure gas refrigerant and flows into the first heat source side heat exchanger 3.
  • the high-temperature and high-pressure gas refrigerant flowing into the first heat source side heat exchanger 3 is heat-exchanged by releasing heat to a low-temperature medium such as outdoor air, and the first refrigerant becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flows into the first heat transfer tube 10a of the supercooling heat exchanger 10 and is heat-exchanged with the first refrigerant flowing through the second heat transfer tube 10b to be supercooled. It becomes a supercooled high-pressure liquid refrigerant.
  • the first refrigerant flowing through the second heat transfer tube 10b is divided by the branch connection portion 12a of the first heat source side refrigerant pipe 12, and the first heat source side branch.
  • the liquid refrigerant or the two-phase refrigerant flows into the refrigerant pipe 16 and is expanded and depressurized by the second heat source side decompression device 20 (for example, medium pressure).
  • the first refrigerant flowing out of the second heat transfer tube 10b is injected into the intermediate pressure portion of the first compressor 2 via the second heat source side branched refrigerant pipe 18.
  • the high-pressure liquid refrigerant supercooled by the supercooling heat exchanger 10 flows into the first heat source side decompression device 4 and is expanded and decompressed by the first heat source side decompression device 4, and the first refrigerant is A reduced-pressure (for example, medium pressure) liquid refrigerant or a two-phase refrigerant is obtained.
  • the decompressed liquid refrigerant or two-phase refrigerant flows out of the heat source side unit 100 and flows into the load side unit 200 via the first connection pipe 300.
  • the decompressed liquid refrigerant or two-phase refrigerant that has flowed into the load-side decompression device 5 is further expanded and depressurized, and the first refrigerant becomes a low-temperature and low-pressure two-phase refrigerant.
  • the low-temperature and low-pressure two-phase refrigerant flows into the load-side heat exchanger 6 and absorbs heat from a high-temperature medium such as indoor air, and the first refrigerant evaporates and has a high dryness or a low-temperature and low-pressure refrigerant. Gas refrigerant.
  • the two-phase refrigerant having a high degree of dryness or the low-temperature and low-pressure gas refrigerant that has flowed out of the load-side heat exchanger 6 flows out of the load-side unit 200 and flows into the heat source-side unit 100 via the second connection pipe 400. .
  • the two-phase refrigerant or the low-temperature low-pressure gas refrigerant having a high dryness flowing into the load-side unit 200 is sucked into the first compressor 2.
  • the refrigerant sucked into the first compressor 2 is compressed, and the first refrigerant becomes a high-temperature and high-pressure gas refrigerant and is discharged from the first compressor 2.
  • the above cycle is repeated.
  • control processing in the control device 50 of the refrigeration cycle apparatus 1 according to Embodiment 1 will be described.
  • the control device 50 of the refrigeration cycle apparatus 1 adjusts the opening degree of the first heat source side decompression device 4 as a liquid refrigerant whose pressure is lower than the design pressure of the first communication pipe 300.
  • the first refrigerant is configured to flow into the first communication pipe 300.
  • control device 50 of the refrigeration cycle apparatus 1 adjusts the opening degree of the second heat source side decompression device 20 during the cooling operation to increase the degree of supercooling, and thereby the first heat source.
  • the temperature of the first refrigerant flowing into the side pressure reducing device 4 can be configured to be lower than the saturated liquid temperature of the first refrigerant at the design pressure.
  • the opening degree DH1 of the first heat source side decompression device 4 can be adjusted in the range of 0 ⁇ DH ⁇ 1.
  • the opening degree DH2 of the second heat source side decompression device 20 is adjustable in the range of 0 ⁇ DH2 ⁇ 1.
  • FIG. 3 is a flowchart showing an example of a control process during cooling operation in the control device 50 of the refrigeration cycle apparatus 1 according to the first embodiment.
  • the control process of FIG. 3 may be performed at all times during the cooling operation, or may be performed at any time when a change in the parameters of the refrigeration cycle apparatus 1 such as a change in the frequency of the first compressor 2 is detected. Also good.
  • step S11 the temperature Tc of the first refrigerant flowing into the first heat source side pressure reducing device 4 detected by the first temperature sensor 30 is equal to or higher than the saturated refrigerant temperature Ta of the first refrigerant at the design pressure Pm. It is determined in the control device 50 whether or not.
  • the saturated liquid temperature Ta is a temperature value calculated by the control device 50 based on the value of the design pressure Pm.
  • step S12 the control device 50 controls the opening degree DH2 of the second heat source side decompression device 20 to be opened by the adjustment value ⁇ DH2.
  • the adjustment value ⁇ DH2 is a constant that is arbitrarily determined in consideration of the specifications of the structure of the second heat source side decompression device 20, and the adjustment value ⁇ DH2 can be set to 0.02, for example.
  • the control device 50 repeats the control process of step S12 until the temperature Tc of the first refrigerant becomes lower than the saturated liquid temperature Ta.
  • Step S13 it is determined whether or not the pressure P of the first refrigerant flowing into the load side pressure reducing device 5 is equal to or lower than the saturated liquid pressure Ps. Determined at 50.
  • the pressure P of the first refrigerant flowing into the load-side decompression device 5 is detected by the second pressure sensor 45.
  • the saturated liquid pressure Ps is a pressure value calculated by the control device 50 based on the value of the temperature Tc of the first refrigerant.
  • the saturated liquid pressure Ps is changed from the temperature Tc of the first refrigerant by an equal enthalpy. Shown as a point on the saturated liquid line.
  • step S14 the control device 50 controls the opening degree DH1 of the first heat source side decompression device 4 to be opened by the adjustment value ⁇ DH1.
  • the adjustment value ⁇ DH1 is a constant that is arbitrarily determined in consideration of the specifications of the structure and the like of the first heat source-side decompression device 4, and the adjustment value ⁇ DH1 can be set to 0.01, for example.
  • the control device 50 repeats the control process of step S14 until the pressure P of the first refrigerant becomes higher than the saturated liquid pressure Ps.
  • the refrigeration cycle apparatus 1 includes the first compressor 2, the first heat source side heat exchanger 3, and the first heat source side decompression device 4.
  • a first connecting pipe 300 that accommodates the unit 100, the load-side decompressor 5 and the load-side heat exchanger 6 and is disposed between the first heat source-side decompressor 4 and the load-side decompressor 5;
  • the first compressor 2, the first heat source side heat exchanger 3, the first heat source side pressure reducing device 4, the load side pressure reducing device 5, and the load side heat exchanger 6 are connected via a refrigerant pipe,
  • the first refrigeration cycle 500 that circulates the first refrigerant is configured, and the control device 50 includes a load During the cooling operation in which the heat exchanger 6 functions as an evaporator, the opening degree of the first heat source side decompression device 4 is adjusted, and the first refrigerant is a liquid refrigerant having a pressure lower than the design pressure of the first communication pipe 300. The refrigerant is caused to flow into the first connecting pipe 300.
  • the refrigerant amount and the product cost are reduced by reducing the total refrigerant amount of the refrigeration device by passing the two-phase refrigerant through the local liquid piping.
  • the outdoor unit in order to allow the two-phase refrigerant to pass through the local liquid piping, the outdoor unit is provided with a first expansion valve, and the refrigerant is decompressed and expanded to flow the two-phase refrigerant into the local liquid piping. .
  • the indoor unit is provided with a second expansion valve, and the two-phase refrigerant flowing from the local liquid pipe is further depressurized and expanded to flow into the indoor heat exchanger functioning as an evaporator.
  • the conventional refrigeration apparatus has a so-called two-stage throttle structure in which the first expansion valve and the second expansion valve are provided before and after the local liquid piping.
  • the conventional refrigeration system has a problem that the pressure loss and noise in the local piping increase because the two-phase refrigerant flows into the local liquid piping.
  • the two-phase refrigerant flowing from the local liquid piping is not evenly distributed to the indoor heat exchangers.
  • the distribution of the refrigerant deteriorates.
  • the opening degree of the first heat source side decompression device 4 is adjusted, and the pressure is less than the design pressure of the first communication pipe 300.
  • the first refrigerant can flow into the first connecting pipe 300.
  • the refrigerant flowing into the first communication pipe 300 can be a liquid refrigerant, and the pressure loss and noise in the first communication pipe 300 can be reduced. Therefore, the refrigeration cycle apparatus 1 Energy consumption can be reduced.
  • the refrigerant flowing into the load side unit 200 from the first connecting pipe 300 becomes a liquid refrigerant, even when a plurality of load side heat exchangers 6 are installed in the refrigeration cycle apparatus 1, the refrigerant is evenly distributed. Can be distributed.
  • the refrigeration cycle apparatus 1 which can divert the existing local piping Can provide.
  • the first communication pipe 300 may cause a pressure loss of the first refrigerant in a range where the saturation temperature of the refrigerant in the load side heat exchanger 6 does not fall below the evaporation temperature of the load side heat exchanger 6. Can be diverted.
  • the heat source side unit 100 is disposed between the first heat source side heat exchanger 3 and the first heat source side decompression apparatus 4, and A first heat source side connecting the supercooling heat exchanger 10 having the heat transfer tube 10a and the second heat transfer tube 10b, and one end of the first heat transfer tube 10a and the first heat source side pressure reducing device 4.
  • the first heat source side branch refrigerant pipe 16 that connects the branch connection portion 12a arranged at the first end of the second heat transfer pipe 10b, and the other end of the second heat transfer pipe 10b.
  • the second heat source side branch refrigerant pipe 18 connecting the intermediate pressure portion of the first compressor 2 and the first heat source side branch refrigerant distribution And a second heat source side pressure reducing device 20 disposed in the subcooling heat exchanger 10.
  • the supercooling heat exchanger 10 includes a first refrigerant flowing through the first heat transfer tube 10 a and a second heat exchanger 10 during the cooling operation. Heat exchange is performed with the first refrigerant flowing through the heat transfer tube 10b, and the control device 50 adjusts the degree of subcooling by adjusting the opening of the second heat source side decompression device 20 during the cooling operation.
  • the temperature of the first refrigerant flowing into the first heat source side decompression device 4 can be made lower than the saturated liquid temperature of the first refrigerant at the design pressure.
  • the temperature of the first refrigerant flowing into the first heat source side decompression device 4 can be made lower than the saturated liquid temperature of the first refrigerant at the design pressure. Even after decompression and expansion by the side decompression device 4, it is easy to maintain the first refrigerant in the liquid state.
  • FIG. 4 is a Mollier diagram showing the operation of the refrigeration cycle apparatus 1 according to the first embodiment.
  • the vertical axis in the Mollier diagram of FIG. 4 is the absolute pressure (MPa), and the horizontal axis is the specific enthalpy (kJ / kg).
  • FIG. 4 shows a saturated liquid line, a saturated vapor line, and each stroke in the first refrigeration cycle 500.
  • the first heat source side pressure reducing device 4 is located at a position corresponding to the expansion stroke.
  • the load side decompression device 5 is schematically shown.
  • the Mollier diagram of FIG. 4 is a broken line that is a dashed-dotted line that is decompressed and expanded by the second heat source side decompression device 20 and heat-exchanged by the second heat transfer tube 10b of the supercooling heat exchanger 10. Shows the state.
  • the point A on the Mollier diagram in FIG. 4 indicates the position of the saturated refrigerant temperature Ta of the first refrigerant calculated from the design pressure Pm.
  • the point B on the Mollier diagram of FIG. 4 shows the position in the condensation step of the first refrigeration cycle 500 that has the same enthalpy as the point A.
  • the point C on the Mollier diagram of FIG. 4 shows the position of the temperature Tc of the first refrigerant flowing into the first heat source side decompression device 4 in the condensation process of the first refrigeration cycle 500.
  • the point D on the Mollier diagram of FIG. 4 shows the position in the expansion stroke of the first refrigeration cycle 500 at which the pressure is equal to the point C and the pressure is the design pressure Pm.
  • the point E on the Mollier diagram of FIG. 4 shows the intersection of the straight line indicating the expansion stroke of the first refrigeration cycle 500 and the saturated liquid line, and the pressure of the first refrigerant is the saturated liquid pressure Ps. It is a position.
  • the first refrigerant flowing through the first heat transfer tube 10a and the second heat transfer tube are adjusted by the supercooling heat exchanger 10 by adjusting the opening degree of the second heat source side decompression device 20.
  • Heat exchange can be performed with the first refrigerant flowing through 10b to increase the degree of supercooling. That is, according to the above-described configuration, the point C can be adjusted so as to be located on the left side of the point B in the Mollier diagram of FIG.
  • the temperature of the first refrigerant at the point B is the same as or slightly higher than the saturated liquid temperature Ta at the point A. Therefore, when the point C is located on the left side of the point B, the first heat source side pressure reducing device 4
  • the temperature Tc of the first refrigerant flowing in is always lower than the saturated liquid temperature Ta.
  • the first heat source side pressure reduction is performed so that the pressure P of the first refrigerant flowing into the first communication pipe 300 is larger than the saturated liquid pressure Ps and smaller than the design pressure Pm. It can be controlled by adjusting the opening of the device 4.
  • the state where the pressure P of the first refrigerant is larger than the saturated liquid pressure Ps and smaller than the design pressure Pm is the expansion stroke between the points D and E in FIG. 4. Corresponds to the position.
  • the first heat source side decompression device 4 may be controlled to 1.00 MPa to 1.64 MPa.
  • the temperature Tc of the first refrigerant flowing into the first heat source side decompression device 4 is set to be lower than the saturated liquid temperature Ta, so that the first heat source side Even after decompression and expansion by the decompression device 4, the first refrigerant can maintain the liquid state.
  • FIG. Embodiment 2 of the present invention is a modification of the refrigeration cycle apparatus 1 according to Embodiment 1 described above.
  • FIG. 5 is a schematic refrigerant circuit diagram illustrating an example of the refrigeration cycle apparatus 1 according to the second embodiment.
  • the heat source side unit 100 of the refrigeration cycle apparatus 1 according to the second embodiment includes a second communication pipe 400 instead of the first heat source side branch refrigerant pipe 16 of the refrigeration cycle apparatus 1 according to the first embodiment described above.
  • a third heat source side refrigerant pipe 14 connected between one end of the second heat transfer tube 10b of the supercooling heat exchanger 10 is provided.
  • the heat source side unit 100 of the refrigeration cycle apparatus 1 according to the second embodiment is a supercooling heat exchanger instead of the second heat source side branch refrigerant pipe 18 of the refrigeration cycle apparatus 1 according to the first embodiment described above.
  • a fourth heat source side refrigerant pipe 15 connected between the other end of the ten second heat transfer tubes 10 b and the first compressor 2.
  • the heat source side unit 100 of the refrigeration cycle apparatus 1 of the second embodiment does not have the second heat source side decompression device 20.
  • the second temperature sensor 35 and the first pressure sensor 40 are provided on the fourth heat source side refrigerant pipe 15 in the refrigeration cycle apparatus 1 of the second embodiment.
  • the other structure of the heat source side unit 100 of the refrigeration cycle apparatus 1 according to the second embodiment is the same as that of the refrigeration cycle apparatus 1 according to the first embodiment.
  • FIG. 6 is a control block diagram representing a part of control in the control device 50 of the refrigeration cycle apparatus 1 according to the second embodiment.
  • FIG. 6 is the same as the control block diagram of FIG. 2 except that the second heat source side pressure reducing device 20 is not provided.
  • the control device 50 of the refrigeration cycle apparatus 1 according to Embodiment 2 adjusts the opening degree of the load-side decompression device to increase the degree of supercooling during the cooling operation, and increases the degree of supercooling to the first heat source-side decompression device.
  • the temperature of the first refrigerant flowing in is configured to be lower than the saturated liquid temperature of the first refrigerant at the design pressure.
  • the opening degree DH1 of the first heat source side decompression device 4 can be adjusted in the range of 0 ⁇ DH ⁇ 1.
  • the opening DL of the load-side decompression device 5 is adjustable in the range of 0 ⁇ DL ⁇ 1.
  • FIG. 7 is a flowchart illustrating an example of a control process during cooling operation in the control device 50 of the refrigeration cycle apparatus 1 according to the second embodiment.
  • the control process of FIG. 7 may be performed at all times during the cooling operation, similarly to the control process of FIG. You may make it carry out at any time when it detects.
  • data of the design pressure Pm (for example, withstand pressure reference value) of the first communication pipe 300 is stored in the storage unit (not shown) of the control device 50 as in the first embodiment. Is stored.
  • data relating to the Mollier diagram (Ph diagram) representing the state of the first refrigerant in the refrigeration cycle apparatus 1 is stored in the storage unit of the control device 50 as, for example, a table.
  • step S21 as in step S11 of the first embodiment described above, the temperature Tc of the first refrigerant flowing into the first heat source side decompression device 4 detected by the first temperature sensor 30 is the design pressure.
  • the controller 50 determines whether or not the temperature is equal to or higher than the saturated refrigerant temperature Ta of the first refrigerant at Pm.
  • the controller 50 controls the opening DL of the load-side decompressor 5 to be opened by the adjustment value ⁇ DL in step S22.
  • the adjustment value ⁇ DL is a constant arbitrarily determined in consideration of the specifications of the structure and the like of the load-side decompression device 5, and the adjustment value ⁇ DH2 can be set to 0.02, for example.
  • the control device 50 repeats the control process of step S22 until the temperature Tc of the first refrigerant becomes lower than the saturated liquid temperature Ta.
  • step S23 as in step S13 of the first embodiment, when the temperature Tc of the first refrigerant is lower than the saturated liquid temperature Ta, the pressure P of the first refrigerant flowing into the load-side decompression device 5 is It is determined in the control device 50 whether or not it is equal to or lower than the saturated liquid pressure Ps. When the pressure P of the first refrigerant is higher than the saturated liquid pressure Ps, the control process ends.
  • step S24 as in step S14 of the first embodiment described above, when the pressure P of the first refrigerant is equal to or lower than the saturated liquid pressure Ps, the control device 50 opens the first heat source side decompression device 4.
  • the degree DH1 is controlled to be opened by the adjustment value ⁇ DH1.
  • the heat source side unit 100 of the refrigeration cycle apparatus 1 is disposed between the first heat source side heat exchanger 3 and the first heat source side pressure reducing device 4, and includes the first heat transfer tube 10a and the first heat transfer tube 10a.
  • a subcooling heat exchanger 10 having two heat transfer tubes 10b, a first heat source side refrigerant pipe 12 connecting one end of the first heat transfer tube 10a and the first heat source side decompression device 4,
  • a second heat source side refrigerant pipe 13 connecting the other end of the first heat transfer pipe 10a and the first heat source side heat exchanger 3, a second communication pipe 400, and a second heat transfer pipe 10b.
  • the supercooling heat exchanger 10 further includes a heat source side refrigerant pipe 15 and the first cooling pipe 10a that flows through the first heat transfer pipe 10a during the cooling operation.
  • the first refrigerant flowing through the second heat transfer tube 10b, and the control device 50 adjusts the opening degree of the load-side decompression device 5 during the cooling operation.
  • the degree of cooling is increased, and the temperature of the first refrigerant flowing into the first heat source side decompression device 4 is made lower than the saturated liquid temperature of the first refrigerant at the design pressure.
  • FIG. 8 is a Mollier diagram showing the operation of the refrigeration cycle apparatus 1 according to the second embodiment.
  • FIG. 8 is the same as the Mollier diagram of FIG. 4 except that the broken line indicating the state of the refrigerant heat-exchanged in the second heat transfer tube 10b of the supercooling heat exchanger 10 is not described. is there.
  • the opening degree of the load-side decompression device 5 is adjusted, and the first refrigerant that flows through the first heat transfer tube 10a and the second transfer in the supercooling heat exchanger 10 are obtained.
  • Heat exchange can be performed with the first refrigerant flowing through the heat pipe 10b to increase the degree of supercooling.
  • the temperature Tc of the first refrigerant flowing into the first heat source side decompression device 4 is lower than the saturated liquid temperature Ta, the first refrigerant after decompression and expansion by the first heat source side decompression device 4 is also achieved. Can maintain a liquid state.
  • the two-phase refrigerant or the low-temperature and low-pressure gas refrigerant that has flowed out of the load-side heat exchanger 6 is further superheated in the supercooling heat exchanger 10, so that the first Liquid return to the compressor 2 of 1 can be avoided. Therefore, according to the configuration of the second embodiment, the reliability of the refrigeration cycle apparatus 1 can be improved. Further, according to the configuration of the second embodiment, since all the first refrigerants flowing through the refrigeration cycle apparatus 1 can be used for heat exchange in the load side heat exchanger 6, the cooling capacity of the refrigeration cycle apparatus 1 Can be improved.
  • FIG. 9 is a schematic refrigerant circuit diagram illustrating an example of the refrigeration cycle apparatus 1 according to the third embodiment.
  • the heat source side unit 100 includes a second compressor 62, a second heat source side heat exchanger 63, and a third
  • the heat source side pressure reducing device 64 and the first heat source side heat exchanger 3 are connected via a refrigerant pipe, and further provided with a second refrigeration cycle 600 for circulating the second refrigerant, and the first heat source
  • the side heat exchanger 3 exchanges heat between the first refrigerant flowing from the first compressor 2 and the second refrigerant flowing from the third heat source side decompression device 64 during the cooling operation.
  • the second heat source side heat exchanger functions as a radiator.
  • the first heat source side heat exchanger 3 includes the first refrigerant flowing from the first compressor 2 and the third heat source side decompression during the cooling operation. It functions as a cascade heat exchanger that performs heat exchange with the second refrigerant flowing in from the device 64.
  • hydrofluorocarbons such as R32
  • hydrofluoroolefins such as 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), R410A and the like
  • a mixed solvent can be used as the second refrigerant.
  • FIG. 10 is a control block diagram representing a part of control in the control device 50 of the refrigeration cycle apparatus 1 according to the third embodiment.
  • FIG. 10 is the same as the control block diagram of FIG. 2 except that the opening degree of the third heat source side decompression device 64 is controlled by the control device 50.
  • FIG. 11 is a flowchart illustrating an example of a control process during cooling operation in the control device 50 of the refrigeration cycle apparatus 1 according to the third embodiment.
  • the control process of FIG. 11 is the same as the control process of FIG. 3, and steps S31 to S34 of FIG. 11 correspond to S11 to S14 of FIG.
  • the contents of other control processes are the same as the control processes of the first embodiment.
  • FIG. 12 is a Mollier diagram showing the operation of the refrigeration cycle apparatus 1 according to the third embodiment.
  • FIG. 12 is the same as the Mollier diagram of FIG.
  • the opening degree of the second heat source side decompression device 20 is adjusted and the supercooling heat exchanger 10 is used to adjust the first heat transfer tube 10a as in the first embodiment.
  • Heat exchange can be performed between the first refrigerant flowing through the first refrigerant and the first refrigerant flowing through the second heat transfer tube 10b to increase the degree of supercooling.
  • the temperature Tc of the first refrigerant flowing into the first heat source side decompression device 4 to be lower than the saturated liquid temperature Ta, the first refrigerant after decompression and expansion by the first heat source side decompression device 4 is also achieved. Can maintain a liquid state.
  • the configuration of the third embodiment, using CO 2 as the first refrigerant, for the CO 2 can be used in the following supercritical state can provide a refrigeration cycle device 1 with excellent safety.
  • the refrigeration cycle apparatus 1 of the above-described embodiment can be used for an air conditioner, a refrigerator, and the like, for example.
  • the refrigeration cycle apparatus 1 when used as an air conditioner, it can be configured to perform a heating operation.
  • a refrigerant flow switching device for example, a four-way valve
  • the cooling operation and the heating operation can be switched.
  • the opening degree of the 2nd heat-source side decompression device 20 or the load side decompression device 5 is adjusted using the 2nd temperature sensor 35 and the 1st pressure sensor 40 in the above-mentioned embodiment, and the 1st It is possible to control so that the amount of liquid returned to the compressor 2 is suppressed.
  • Refrigeration cycle device 2nd compressor, 1st heat source side heat exchanger, 4th heat source side decompression device, 5 load side decompression device, 6 load side heat exchanger, 7a 1st heat source side Connection valve, 7b Second heat source side connection valve, 8a First load side connection valve, 8b Second load side connection valve, 10 Subcooling heat exchanger, 10a First heat transfer tube, 10b Second heat transfer tube , 12 1st heat source side refrigerant pipe, 12a branch connection part, 13 2nd heat source side refrigerant pipe, 14 3rd heat source side refrigerant pipe, 15 4th heat source side refrigerant pipe, 16 1st heat source side branch refrigerant Piping, 18 second heat source side branch refrigerant piping, 20 second heat source side pressure reducing device, 30 first temperature sensor, 35 second temperature sensor, 40 first pressure sensor, 45 second pressure sensor, 50 Control device, 62 2nd Compressor, 63 3rd heat source side heat exchanger, 64 3rd heat source side pressure reducing device,

Abstract

A refrigeration cycle device is provided with a heat source-side unit, a load-side unit connected to the heat source-side unit via a first connection pipe and a second connection pipe, and a control device. A first compressor, a first heat source-side heat exchanger, a first heat source-side decompressor, a load-side decompressor, and a load-side heat exchanger constitute part of a first refrigeration cycle that is connected via a refrigerant pipeline and that circulates a first refrigerant. During a cooling operation in which the load-side heat exchanger functions as an evaporator, the control device adjusts the opening degree of the first heat source-side decompressor, and causes the first refrigerant to flow into the first connection pipeline as a liquid refrigerant having a pressure smaller than the design pressure of the first connection pipe.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、現地配管を利用可能な冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus that can use local piping.
 従来の現地配管を利用可能な冷凍サイクル装置としては、例えば、室外ユニットから現地配管である液配管に流れる冷媒を流量制御装置によって減圧して気液二相状態とし、冷媒コストを低減した二元冷凍装置が知られている(例えば、特許文献1)。 As a conventional refrigeration cycle apparatus that can use local piping, for example, a refrigerant that flows from an outdoor unit to liquid piping that is local piping is decompressed by a flow control device into a gas-liquid two-phase state, thereby reducing the refrigerant cost. A refrigeration apparatus is known (for example, Patent Document 1).
特開2012-112622号公報JP 2012-112622 A
 しかしながら、特許文献1の冷凍サイクル装置では、液配管に二相冷媒が流れるため、液配管での圧力損失及び騒音が大きくなるという問題点があった。 However, the refrigeration cycle apparatus of Patent Document 1 has a problem that the pressure loss and noise in the liquid pipe increase because the two-phase refrigerant flows through the liquid pipe.
 本発明は、上述の問題点を解決するためになされたものであり、液配管での圧力損失及び騒音を低減可能な冷凍サイクル装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a refrigeration cycle apparatus capable of reducing pressure loss and noise in a liquid pipe.
 本発明に係る冷凍サイクル装置は、第1の圧縮機と、第1の熱源側熱交換器と、第1の熱源側減圧装置とを収容する熱源側ユニットと、負荷側減圧装置と負荷側熱交換器とを収容し、前記第1の熱源側減圧装置と前記負荷側減圧装置との間に配置される第1の連絡配管、及び前記第1の圧縮機と前記負荷側熱交換器との間に配置される第2の連絡配管を介して前記熱源側ユニットと接続されている負荷側ユニットと、制御装置とを備え、前記第1の圧縮機、前記第1の熱源側熱交換器、前記第1の熱源側減圧装置、前記負荷側減圧装置、及び前記負荷側熱交換器は、冷媒配管を介して接続され、第1の冷媒を循環させる第1の冷凍サイクルを構成しており、前記制御装置は、前記負荷側熱交換器が蒸発器として機能する冷房運転時において、前記第1の熱源側減圧装置の開度を調整して、圧力が前記第1の連絡配管の設計圧未満の液冷媒として、前記第1の冷媒を前記第1の連絡配管に流入させるものである。 The refrigeration cycle apparatus according to the present invention includes a heat source side unit that houses a first compressor, a first heat source side heat exchanger, and a first heat source side pressure reducing device, a load side pressure reducing device, and a load side heat. A first communication pipe that is disposed between the first heat source side pressure reducing device and the load side pressure reducing device, and the first compressor and the load side heat exchanger. A load side unit connected to the heat source side unit via a second connecting pipe disposed between the control unit and a load side unit; the first compressor; the first heat source side heat exchanger; The first heat source side decompression device, the load side decompression device, and the load side heat exchanger are connected via a refrigerant pipe, and constitute a first refrigeration cycle for circulating the first refrigerant, In the cooling operation in which the load side heat exchanger functions as an evaporator, the control device The opening degree of the first heat source side pressure reducing device is adjusted so that the first refrigerant flows into the first connecting pipe as a liquid refrigerant whose pressure is lower than the design pressure of the first connecting pipe. is there.
 本発明によれば、第1の熱源側減圧装置の開度を調整して、圧力が前記第1の連絡配管の設計圧未満の液冷媒として、第1の冷媒を前記第1の連絡配管に流入させることができる。したがって、本発明によれば、第1の連絡配管に流入する冷媒を液冷媒とすることができるため、第1の連絡配管での圧力損失及び騒音を低減可能な冷凍サイクル装置を提供することができる。 According to the present invention, the opening degree of the first heat source side pressure reducing device is adjusted, and the first refrigerant is supplied to the first communication pipe as a liquid refrigerant whose pressure is lower than the design pressure of the first communication pipe. Can flow in. Therefore, according to the present invention, since the refrigerant flowing into the first communication pipe can be used as the liquid refrigerant, it is possible to provide a refrigeration cycle apparatus capable of reducing pressure loss and noise in the first communication pipe. it can.
本発明の実施の形態1に係る冷凍サイクル装置1の一例を示す概略的な冷媒回路図である。1 is a schematic refrigerant circuit diagram illustrating an example of a refrigeration cycle apparatus 1 according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍サイクル装置1の制御装置50における制御の一部を表現した制御ブロック図である。It is a control block diagram expressing a part of control in the control apparatus 50 of the refrigerating cycle apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置1の制御装置50における、冷房運転時の制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control processing at the time of air_conditionaing | cooling operation in the control apparatus 50 of the refrigerating-cycle apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置1の動作を示すモリエル線図である。It is a Mollier diagram which shows operation | movement of the refrigerating-cycle apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置1の一例を示す概略的な冷媒回路図である。It is a schematic refrigerant circuit diagram which shows an example of the refrigeration cycle apparatus 1 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置1の制御装置50における制御の一部を表現した制御ブロック図である。It is a control block diagram expressing a part of control in the control apparatus 50 of the refrigerating cycle apparatus 1 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置1の制御装置50における、冷房運転時の制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control processing at the time of air_conditionaing | cooling operation in the control apparatus 50 of the refrigerating-cycle apparatus 1 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置1の動作を示すモリエル線図である。It is a Mollier diagram which shows operation | movement of the refrigerating-cycle apparatus 1 which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置1の一例を示す概略的な冷媒回路図である。It is a schematic refrigerant circuit diagram which shows an example of the refrigeration cycle apparatus 1 which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置1の制御装置50における制御の一部を表現した制御ブロック図である。It is a control block diagram expressing a part of control in the control apparatus 50 of the refrigerating cycle apparatus 1 which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置1の制御装置50における、冷房運転時の制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control processing at the time of air_conditionaing | cooling operation in the control apparatus 50 of the refrigerating-cycle apparatus 1 which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置1の動作を示すモリエル線図である。It is a Mollier diagram which shows operation | movement of the refrigerating-cycle apparatus 1 which concerns on Embodiment 3 of this invention.
実施の形態1.
 本発明の実施の形態1に係る冷凍サイクル装置1について説明する。図1は、本実施の形態1に係る冷凍サイクル装置1の一例を示す概略的な冷媒回路図である。なお、図1を含む以下の図面では各構成部材の寸法の関係及び形状が、実際のものとは異なる場合がある。
Embodiment 1 FIG.
A refrigeration cycle apparatus 1 according to Embodiment 1 of the present invention will be described. FIG. 1 is a schematic refrigerant circuit diagram illustrating an example of the refrigeration cycle apparatus 1 according to the first embodiment. In the following drawings including FIG. 1, the dimensional relationship and shape of each component may be different from the actual one.
 図1に示すように、冷凍サイクル装置1は、熱源側ユニット100(例えば、室外機)と、熱源側ユニット100に対し並列に配置された負荷側ユニット200(例えば、室内機)とを備える。熱源側ユニット100と負荷側ユニット200との間は、現地配管である第1の連絡配管300(液配管)及び第2の連絡配管400(ガス配管)で接続されている。なお、図1の冷凍サイクル装置1は、負荷側ユニット200を1台接続した構成としているが、負荷側ユニット200を複数台接続した構成としてもよい。 As shown in FIG. 1, the refrigeration cycle apparatus 1 includes a heat source side unit 100 (for example, an outdoor unit) and a load side unit 200 (for example, an indoor unit) arranged in parallel to the heat source side unit 100. The heat source side unit 100 and the load side unit 200 are connected by a first connecting pipe 300 (liquid pipe) and a second connecting pipe 400 (gas pipe) which are local pipes. In addition, although the refrigerating-cycle apparatus 1 of FIG. 1 is set as the structure which connected one load side unit 200, it is good also as a structure which connected multiple load side units 200. FIG.
 本実施の形態1の冷凍サイクル装置1は、第1の圧縮機2と、第1の熱源側熱交換器3と、第1の熱源側減圧装置4と、負荷側減圧装置5と、負荷側熱交換器6とを冷媒配管を介して接続し、第1の冷媒を循環させる第1の冷凍サイクル500を備えている。なお、第1の冷凍サイクル500を循環する第1の冷媒は、冷凍サイクル装置1の用途に応じて任意の種類の冷媒を選択することが可能である。例えば、本実施の形態1の冷凍サイクル装置1では、CO等の自然冷媒、R32等のハイドロフルオロカーボン、2,3,3,3-テトラフルオロ-1-プロペン(HFO-1234yf)等のハイドロフルオロオレフィン、R410A等の混合溶媒を第1の冷媒として使用することができる。 The refrigeration cycle apparatus 1 of the first embodiment includes a first compressor 2, a first heat source side heat exchanger 3, a first heat source side pressure reducing device 4, a load side pressure reducing device 5, and a load side. A heat exchanger 6 is connected via a refrigerant pipe, and a first refrigeration cycle 500 for circulating the first refrigerant is provided. Note that the first refrigerant circulating in the first refrigeration cycle 500 can be selected from any type of refrigerant according to the application of the refrigeration cycle apparatus 1. For example, in the refrigeration cycle apparatus 1 of Embodiment 1, a natural refrigerant such as CO 2 , a hydrofluorocarbon such as R32, and a hydrofluorocarbon such as 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf) A mixed solvent such as olefin and R410A can be used as the first refrigerant.
 第1の圧縮機2は、熱源側ユニット100に収容され、吸入した低圧の第1の冷媒を圧縮し、高圧の第1の冷媒として吐出する周波数可変型の流体機械である。第1の圧縮機2は、例えば、インバータにより回転周波数が制御されるスクロール圧縮機を用いることができる。 The first compressor 2 is a variable frequency fluid machine that is accommodated in the heat source side unit 100, compresses the sucked low-pressure first refrigerant, and discharges the compressed low-pressure first refrigerant. As the first compressor 2, for example, a scroll compressor whose rotation frequency is controlled by an inverter can be used.
 第1の熱源側熱交換器3は、本実施の形態1においては、放熱器(凝縮器)として機能する熱交換器であり、熱源側ユニット100に収容されている。本実施の形態1においては、第1の熱源側熱交換器3は、第1の熱源側熱交換器3の内部を流れる第1の冷媒と、熱源側熱交換器用ファン(図示せず)によって送風される外気(例えば、室外空気)との熱交換を行うように構成される。第1の熱源側熱交換器3は、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器として構成される。 The first heat source side heat exchanger 3 is a heat exchanger that functions as a radiator (condenser) in the first embodiment, and is housed in the heat source side unit 100. In the first embodiment, the first heat source side heat exchanger 3 includes a first refrigerant flowing inside the first heat source side heat exchanger 3 and a heat source side heat exchanger fan (not shown). It is comprised so that heat exchange with the external air (for example, outdoor air) ventilated may be performed. The first heat source side heat exchanger 3 is configured as, for example, a cross-fin type fin-and-tube heat exchanger including a heat transfer tube and a plurality of fins.
 第1の熱源側減圧装置4は、本実施の形態1においては、第1の熱源側熱交換器3から流入する高圧液冷媒を膨張及び減圧させて、現地配管である第1の連絡配管300の設計圧未満の第1の冷媒として、第1の連絡配管300に流入させるものである。例えば、第1の連絡配管300の設計圧は、第1の連絡配管300の耐圧基準値に設定される。第1の熱源側減圧装置4は、熱源側ユニット100に収容され、例えば多段階又は連続的に開度を調節可能なリニア電子膨張弁(LEV)等の電子膨張弁として構成される。 In the first embodiment, the first heat source side decompression device 4 expands and decompresses the high-pressure liquid refrigerant flowing from the first heat source side heat exchanger 3, and the first connection piping 300 which is a local piping. The first refrigerant having a pressure lower than the designed pressure is caused to flow into the first connecting pipe 300. For example, the design pressure of the first connecting pipe 300 is set to the pressure resistance reference value of the first connecting pipe 300. The first heat source side decompression device 4 is housed in the heat source side unit 100 and is configured as an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple stages or continuously.
 負荷側減圧装置5は、本実施の形態1においては、第1の連絡配管300から流入する第1の連絡配管300の設計圧未満の第1の冷媒を更に膨張及び減圧させて、負荷側熱交換器6に流入させるものである。負荷側減圧装置5は、負荷側ユニット200に収容されており、例えば多段階又は連続的に開度を調節可能なリニア電子膨張弁等の電子膨張弁として構成される。 In the first embodiment, the load-side decompression device 5 further expands and decompresses the first refrigerant having a pressure lower than the design pressure of the first communication pipe 300 flowing from the first communication pipe 300, It is made to flow into the exchanger 6. The load side decompression device 5 is accommodated in the load side unit 200, and is configured as an electronic expansion valve such as a linear electronic expansion valve whose opening degree can be adjusted in multiple stages or continuously.
 負荷側熱交換器6は、本実施の形態1においては、蒸発器(冷却器)として機能する熱交換器であり、負荷側ユニット200に収容されている。負荷側熱交換器6は、例えば、負荷側熱交換器6の内部を流れる冷媒と、外気(例えば、室内空気)との熱交換を行うように構成される。負荷側熱交換器6は、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器として構成できる。また、負荷側熱交換器6は、負荷側熱交換器用ファン(図示せず)からの送風によって、外気が供給されるように構成してもよい。 The load-side heat exchanger 6 is a heat exchanger that functions as an evaporator (cooler) in the first embodiment, and is housed in the load-side unit 200. The load side heat exchanger 6 is configured to exchange heat between, for example, a refrigerant flowing inside the load side heat exchanger 6 and outside air (for example, indoor air). The load-side heat exchanger 6 can be configured as, for example, a cross-fin type fin-and-tube heat exchanger composed of a heat transfer tube and a plurality of fins. Moreover, you may comprise the load side heat exchanger 6 so that external air may be supplied with the ventilation from the fan for load side heat exchangers (not shown).
 以降では、負荷側熱交換器6が蒸発器として機能する冷凍サイクル装置1の運転動作を「冷房運転」と称する。 Hereinafter, the operation of the refrigeration cycle apparatus 1 in which the load-side heat exchanger 6 functions as an evaporator is referred to as “cooling operation”.
 熱源側ユニット100に収容され、第1の熱源側減圧装置4と第1の連絡配管300との間に配置されている冷媒配管には、第1の連絡配管300と接続するための第1の熱源側接続バルブ7aが設けられている。熱源側ユニット100に収容され、第1の圧縮機2と第2の連絡配管400との間に配置された熱源側冷媒配管には、第2の連絡配管400と接続するための第2の熱源側接続バルブ7bが設けられている。負荷側ユニット200に収容され、負荷側減圧装置5と第1の連絡配管300との間に配置された負荷側冷媒配管には、第1の連絡配管300と接続するための第1の負荷側接続バルブ8aが設けられている。負荷側ユニット200に収容され、負荷側熱交換器6と第2の連絡配管400との間に配置された負荷側冷媒配管には、第2の連絡配管400と接続するための第2の負荷側接続バルブ8bが設けられている。第1の熱源側接続バルブ7a、第2の熱源側接続バルブ7b、第1の負荷側接続バルブ8a、及び第2の負荷側接続バルブ8bは、例えば、開放及び閉止の切り替えが可能な二方向電磁弁等の二方弁で構成されている。 The refrigerant pipe housed in the heat source side unit 100 and disposed between the first heat source side pressure reducing device 4 and the first communication pipe 300 is connected to the first communication pipe 300. A heat source side connection valve 7a is provided. The heat source side refrigerant pipe accommodated in the heat source side unit 100 and disposed between the first compressor 2 and the second communication pipe 400 has a second heat source for connection to the second communication pipe 400. A side connection valve 7b is provided. The load side refrigerant pipe accommodated in the load side unit 200 and disposed between the load side pressure reducing device 5 and the first communication pipe 300 has a first load side for connection to the first communication pipe 300. A connection valve 8a is provided. The load-side refrigerant pipe accommodated in the load-side unit 200 and disposed between the load-side heat exchanger 6 and the second communication pipe 400 has a second load for connection to the second communication pipe 400. A side connection valve 8b is provided. The first heat source side connection valve 7a, the second heat source side connection valve 7b, the first load side connection valve 8a, and the second load side connection valve 8b are, for example, two-way capable of switching between open and closed It consists of a two-way valve such as a solenoid valve.
 次に、本実施の形態1の冷凍サイクル装置1における、過冷却熱交換器10及び第2の熱源側減圧装置20について説明する。 Next, the supercooling heat exchanger 10 and the second heat source side pressure reducing device 20 in the refrigeration cycle apparatus 1 of the first embodiment will be described.
 過冷却熱交換器10は、前記第1の熱源側熱交換器3と前記第1の熱源側減圧装置4との間に配置されている。過冷却熱交換器10は、第1の伝熱管10aと第2の伝熱管10bとを有しており、熱源側ユニット100に収容されている。本実施の形態1では、過冷却熱交換器10は、冷房運転時において、第1の伝熱管10aを流れる高圧の第1の冷媒と、第2の伝熱管10bを流れる減圧された第1の冷媒との間で熱交換を行う熱交換器である。過冷却熱交換器10は、例えば、第1の伝熱管10aと第2の伝熱管10bと複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器として構成できる。 The supercooling heat exchanger 10 is disposed between the first heat source side heat exchanger 3 and the first heat source side pressure reducing device 4. The supercooling heat exchanger 10 includes a first heat transfer tube 10 a and a second heat transfer tube 10 b and is accommodated in the heat source side unit 100. In the first embodiment, the supercooling heat exchanger 10 includes the first high-pressure refrigerant flowing through the first heat transfer tube 10a and the first reduced pressure flowing through the second heat transfer tube 10b during the cooling operation. It is a heat exchanger that exchanges heat with a refrigerant. The supercooling heat exchanger 10 can be configured as, for example, a cross fin type fin-and-tube heat exchanger including a first heat transfer tube 10a, a second heat transfer tube 10b, and a plurality of fins.
 第1の伝熱管10aの一方の端部と第1の熱源側減圧装置4とは、第1の熱源側冷媒配管12で接続されている。第1の伝熱管10aの他の一方の端部と第1の熱源側熱交換器3とは、第2の熱源側冷媒配管13で接続されている。第1の熱源側冷媒配管12に配置された分岐接続部12aと、第2の伝熱管10bの一方の端部とは、第1の熱源側分岐冷媒配管16で接続されている。第2の伝熱管10bの他の一方の端部と、第1の圧縮機2の中圧部分とは、第2の熱源側分岐冷媒配管18で接続されている。なお、第1の熱源側冷媒配管12及び第2の熱源側冷媒配管13は、第1の冷凍サイクル500を構成する冷媒配管の一部である。また、第1の熱源側冷媒配管12、第2の熱源側冷媒配管13、第1の熱源側分岐冷媒配管16、及び第2の熱源側分岐冷媒配管18は、熱源側ユニット100に収容されている。 One end portion of the first heat transfer tube 10a and the first heat source side decompression device 4 are connected by a first heat source side refrigerant pipe 12. The other one end of the first heat transfer tube 10a and the first heat source side heat exchanger 3 are connected by a second heat source side refrigerant pipe 13. The branch connection portion 12 a disposed in the first heat source side refrigerant pipe 12 and one end portion of the second heat transfer pipe 10 b are connected by the first heat source side branch refrigerant pipe 16. The other one end of the second heat transfer tube 10b and the intermediate pressure portion of the first compressor 2 are connected by a second heat source side branched refrigerant pipe 18. Note that the first heat source side refrigerant pipe 12 and the second heat source side refrigerant pipe 13 are part of the refrigerant pipe constituting the first refrigeration cycle 500. Further, the first heat source side refrigerant pipe 12, the second heat source side refrigerant pipe 13, the first heat source side branch refrigerant pipe 16, and the second heat source side branch refrigerant pipe 18 are accommodated in the heat source side unit 100. Yes.
 第2の熱源側減圧装置20は、第1の熱源側分岐冷媒配管16に配置されている。第2の熱源側減圧装置20は、第1の熱源側冷媒配管12から第1の熱源側分岐冷媒配管16に分岐して流入する高圧液冷媒を膨張及び減圧させて、第2の伝熱管10bに流入させるものである。第2の熱源側減圧装置20は、熱源側ユニット100に収容され、例えば多段階又は連続的に開度を調節可能なリニア電子膨張弁(LEV)等の電子膨張弁として構成される。 The second heat source side decompression device 20 is disposed in the first heat source side branch refrigerant pipe 16. The second heat source-side decompression device 20 expands and decompresses the high-pressure liquid refrigerant that branches from the first heat source-side refrigerant pipe 12 to the first heat source-side branch refrigerant pipe 16 and flows into the second heat transfer pipe 10b. It is what is made to flow into. The second heat source side pressure reducing device 20 is housed in the heat source side unit 100 and is configured as an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple stages or continuously.
 次に、本実施の形態1に係る冷凍サイクル装置1に配置されるセンサについて説明する。 Next, a sensor disposed in the refrigeration cycle apparatus 1 according to the first embodiment will be described.
 本実施の形態1に係る冷凍サイクル装置1は、第1の温度センサ30と、第2の温度センサ35と、第1の圧力センサ40と、第2の圧力センサ45とを備える。 The refrigeration cycle apparatus 1 according to the first embodiment includes a first temperature sensor 30, a second temperature sensor 35, a first pressure sensor 40, and a second pressure sensor 45.
 第1の温度センサ30は、第1の熱源側冷媒配管12の上の、分岐接続部12aと第1の熱源側減圧装置4との間に配置されている。第1の温度センサ30は、冷房運転時において、過冷却熱交換器10の第1の伝熱管10aから流出し、第1の熱源側減圧装置4に流入する第1の冷媒の温度を冷媒配管を介して検知する温度センサである。 The first temperature sensor 30 is disposed on the first heat source side refrigerant pipe 12 between the branch connection portion 12a and the first heat source side decompression device 4. The first temperature sensor 30 outputs the temperature of the first refrigerant flowing out from the first heat transfer tube 10a of the supercooling heat exchanger 10 and flowing into the first heat source side decompression device 4 during the cooling operation. It is the temperature sensor which detects via.
 第2の温度センサ35は、第2の熱源側分岐冷媒配管18に配置されている。第2の温度センサ35は、冷房運転時において、過冷却熱交換器10の第2の伝熱管10bから流出し、第1の圧縮機2の中圧部分に注入される第1の冷媒の温度を冷媒配管を介して検知する温度センサである。 The second temperature sensor 35 is disposed in the second heat source side branch refrigerant pipe 18. The second temperature sensor 35 flows out of the second heat transfer tube 10b of the supercooling heat exchanger 10 during the cooling operation, and the temperature of the first refrigerant injected into the intermediate pressure portion of the first compressor 2. It is a temperature sensor which detects this through refrigerant piping.
 第1の温度センサ30及び第2の温度センサ35の材料としては、半導体(例えば、サーミスタ)又は金属(例えば、測温抵抗体)等が用いられる。なお、第1の温度センサ30及び第2の温度センサ35は、同一の材料で構成してもよいし、異なる材料で構成してもよい。 As a material of the first temperature sensor 30 and the second temperature sensor 35, a semiconductor (for example, a thermistor) or a metal (for example, a resistance temperature detector) is used. Note that the first temperature sensor 30 and the second temperature sensor 35 may be made of the same material or different materials.
 第1の圧力センサ40は、第2の熱源側分岐冷媒配管18に配置されている。第1の圧力センサ40は、冷房運転時において、過冷却熱交換器10の第2の伝熱管10bから流出し、第1の圧縮機2の中圧部分に注入される第1の冷媒の圧力を検知する圧力センサである。 The first pressure sensor 40 is disposed in the second heat source side branched refrigerant pipe 18. The first pressure sensor 40 flows out from the second heat transfer tube 10b of the supercooling heat exchanger 10 during the cooling operation, and the pressure of the first refrigerant injected into the intermediate pressure portion of the first compressor 2. It is a pressure sensor that detects
 第2の圧力センサ45は、負荷側ユニット200に収容され、第1の負荷側接続バルブ8aと負荷側減圧装置5との間に配置された負荷側冷媒配管に配置されている。第2の圧力センサ45は、冷房運転時において、第1の連絡配管300を通って第2の圧力センサ45に流入する第1の冷媒の圧力を検知する圧力センサである。 The second pressure sensor 45 is housed in the load-side unit 200 and is disposed in a load-side refrigerant pipe disposed between the first load-side connection valve 8a and the load-side decompression device 5. The second pressure sensor 45 is a pressure sensor that detects the pressure of the first refrigerant flowing into the second pressure sensor 45 through the first communication pipe 300 during the cooling operation.
 第1の圧力センサ40及び第2の圧力センサ45としては、水晶圧電式圧力センサ、半導体センサ、又は圧力トランスデューサ等が用いられる。なお、第1の圧力センサ40及び第2の圧力センサ45は、同種類のもので構成してもよいし、異なる種類のもので構成してもよい。 As the first pressure sensor 40 and the second pressure sensor 45, a crystal piezoelectric pressure sensor, a semiconductor sensor, a pressure transducer, or the like is used. The first pressure sensor 40 and the second pressure sensor 45 may be made of the same type or different types.
 次に、本実施の形態1に係る制御装置50について図2を用いて説明する。図2は、本実施の形態1に係る冷凍サイクル装置1の制御装置50における制御の一部を表現した制御ブロック図である。 Next, the control device 50 according to the first embodiment will be described with reference to FIG. FIG. 2 is a control block diagram representing a part of control in the control device 50 of the refrigeration cycle apparatus 1 according to the first embodiment.
 本実施の形態1に係る制御装置50は、第1の冷凍サイクル500を制御するものであり、CPU、メモリ(例えば、ROM、RAM等)、I/Oポート等を備えたマイクロコンピュータを有している。図2に示すように、本実施の形態1に係る制御装置50は、制御装置50は、第1の温度センサ30及び第2の温度センサ35で検知した温度情報の電気信号、並びに第1の圧力センサ40及び第2の圧力センサ45で検知した圧力情報の電気信号を受信するように構成される。制御装置50は、温度情報の電気信号及び圧力情報の電気信号に応じた制御信号を、第1の熱源側減圧装置4、負荷側減圧装置5、及び第2の熱源側減圧装置20に送信する。第1の熱源側減圧装置4では、送信された制御信号に応じて、第1の熱源側減圧装置4の開度が調整される。負荷側減圧装置5では、送信された制御信号に応じて、負荷側減圧装置5の開度が調整される。第2の熱源側減圧装置20では、送信された制御信号に応じて、第2の熱源側減圧装置20の開度が調整される。また、制御装置50は、第1の冷凍サイクル500の他の構成要素の制御を行うように構成できる。例えば、制御装置50は、熱源側ユニット100及び負荷側ユニット200の運転の開始及び停止、第1の圧縮機2の運転周波数の調整等の運転状態を制御できるように構成できる。 The control device 50 according to the first embodiment controls the first refrigeration cycle 500, and includes a microcomputer having a CPU, a memory (eg, ROM, RAM, etc.), an I / O port, and the like. ing. As shown in FIG. 2, the control device 50 according to the first embodiment is configured such that the control device 50 detects the electrical signal of the temperature information detected by the first temperature sensor 30 and the second temperature sensor 35, and the first An electrical signal of pressure information detected by the pressure sensor 40 and the second pressure sensor 45 is configured to be received. The control device 50 transmits a control signal corresponding to the electrical signal of temperature information and the electrical signal of pressure information to the first heat source side decompression device 4, the load side decompression device 5, and the second heat source side decompression device 20. . In the 1st heat source side decompression device 4, the opening degree of the 1st heat source side decompression device 4 is adjusted according to the transmitted control signal. In the load-side decompression device 5, the opening degree of the load-side decompression device 5 is adjusted according to the transmitted control signal. In the 2nd heat source side decompression device 20, the opening degree of the 2nd heat source side decompression device 20 is adjusted according to the transmitted control signal. In addition, the control device 50 can be configured to control other components of the first refrigeration cycle 500. For example, the control device 50 can be configured to be able to control the operation state such as the start and stop of the operation of the heat source side unit 100 and the load side unit 200 and the adjustment of the operation frequency of the first compressor 2.
 制御装置50は、第1の連絡配管300の設計圧等の各種データを記憶できる記憶部(図示せず)を有するように構成される。また、制御装置50は、第1の連絡配管300の設計圧等の各種データを入力可能なインタフェース部(図示せず)を有するように構成できる。 The control device 50 is configured to have a storage unit (not shown) that can store various data such as the design pressure of the first communication pipe 300. Further, the control device 50 can be configured to have an interface unit (not shown) that can input various data such as the design pressure of the first communication pipe 300.
 次に、本実施の形態1に係る冷凍サイクル装置1の冷房運転時の動作について説明する。 Next, the operation during the cooling operation of the refrigeration cycle apparatus 1 according to the first embodiment will be described.
 第1の冷媒は、第1の圧縮機2から高温高圧のガス冷媒として吐出され、第1の熱源側熱交換器3へ流入する。第1の熱源側熱交換器3に流入した高温高圧のガス冷媒は、室外空気等の低温の媒体に熱を放出することによって熱交換され、第1の冷媒は高圧の液冷媒となる。 The first refrigerant is discharged from the first compressor 2 as a high-temperature and high-pressure gas refrigerant and flows into the first heat source side heat exchanger 3. The high-temperature and high-pressure gas refrigerant flowing into the first heat source side heat exchanger 3 is heat-exchanged by releasing heat to a low-temperature medium such as outdoor air, and the first refrigerant becomes a high-pressure liquid refrigerant.
 高圧の液冷媒は、過冷却熱交換器10の第1の伝熱管10aに流入し、第2の伝熱管10bを流れる第1の冷媒と熱交換されて過冷却され、第1の冷媒は、過冷却された高圧の液冷媒となる。本実施の形態1の冷凍サイクル装置1においては、第2の伝熱管10bを流れる第1の冷媒は、第1の熱源側冷媒配管12の分岐接続部12aで分流され、第1の熱源側分岐冷媒配管16に流入し、第2の熱源側減圧装置20によって、膨張及び減圧された(例えば、中圧の)液冷媒又は二相冷媒である。第2の伝熱管10bから流出した第1の冷媒は、第2の熱源側分岐冷媒配管18を経由して、第1の圧縮機2の中圧部分に注入される。 The high-pressure liquid refrigerant flows into the first heat transfer tube 10a of the supercooling heat exchanger 10 and is heat-exchanged with the first refrigerant flowing through the second heat transfer tube 10b to be supercooled. It becomes a supercooled high-pressure liquid refrigerant. In the refrigeration cycle apparatus 1 according to the first embodiment, the first refrigerant flowing through the second heat transfer tube 10b is divided by the branch connection portion 12a of the first heat source side refrigerant pipe 12, and the first heat source side branch. The liquid refrigerant or the two-phase refrigerant flows into the refrigerant pipe 16 and is expanded and depressurized by the second heat source side decompression device 20 (for example, medium pressure). The first refrigerant flowing out of the second heat transfer tube 10b is injected into the intermediate pressure portion of the first compressor 2 via the second heat source side branched refrigerant pipe 18.
 過冷却熱交換器10で過冷却された高圧の液冷媒は、第1の熱源側減圧装置4に流入し、第1の熱源側減圧装置4で膨張及び減圧されて、第1の冷媒は、減圧された(例えば、中圧の)液冷媒又は二相冷媒となる。減圧された液冷媒又は二相冷媒は、熱源側ユニット100から流出し、第1の連絡配管300を経由して、負荷側ユニット200に流入する。 The high-pressure liquid refrigerant supercooled by the supercooling heat exchanger 10 flows into the first heat source side decompression device 4 and is expanded and decompressed by the first heat source side decompression device 4, and the first refrigerant is A reduced-pressure (for example, medium pressure) liquid refrigerant or a two-phase refrigerant is obtained. The decompressed liquid refrigerant or two-phase refrigerant flows out of the heat source side unit 100 and flows into the load side unit 200 via the first connection pipe 300.
 負荷側ユニット200に流入した減圧された液冷媒又は二相冷媒は、負荷側減圧装置5に流入する。負荷側減圧装置5に流入した減圧された液冷媒又は二相冷媒は、更に膨張及び減圧されて、第1の冷媒は、低温低圧の二相冷媒となる。低温低圧の二相冷媒は、負荷側熱交換器6に流入し、室内空気等の高温の媒体から熱を吸収し、第1の冷媒は、蒸発して乾き度の高い二相冷媒又は低温低圧のガス冷媒となる。負荷側熱交換器6から流出した乾き度の高い二相冷媒又は低温低圧のガス冷媒は、負荷側ユニット200から流出し、第2の連絡配管400を経由して、熱源側ユニット100に流入する。負荷側ユニット200に流入した乾き度の高い二相冷媒又は低温低圧のガス冷媒は、第1の圧縮機2に吸入される。第1の圧縮機2に吸入された冷媒は圧縮されて、第1の冷媒は、高温高圧のガス冷媒となり、第1の圧縮機2から吐出される。冷凍サイクル装置1の冷房運転では以上のサイクルが繰り返される。 The decompressed liquid refrigerant or two-phase refrigerant that has flowed into the load-side unit 200 flows into the load-side decompressor 5. The decompressed liquid refrigerant or two-phase refrigerant that has flowed into the load-side decompression device 5 is further expanded and depressurized, and the first refrigerant becomes a low-temperature and low-pressure two-phase refrigerant. The low-temperature and low-pressure two-phase refrigerant flows into the load-side heat exchanger 6 and absorbs heat from a high-temperature medium such as indoor air, and the first refrigerant evaporates and has a high dryness or a low-temperature and low-pressure refrigerant. Gas refrigerant. The two-phase refrigerant having a high degree of dryness or the low-temperature and low-pressure gas refrigerant that has flowed out of the load-side heat exchanger 6 flows out of the load-side unit 200 and flows into the heat source-side unit 100 via the second connection pipe 400. . The two-phase refrigerant or the low-temperature low-pressure gas refrigerant having a high dryness flowing into the load-side unit 200 is sucked into the first compressor 2. The refrigerant sucked into the first compressor 2 is compressed, and the first refrigerant becomes a high-temperature and high-pressure gas refrigerant and is discharged from the first compressor 2. In the cooling operation of the refrigeration cycle apparatus 1, the above cycle is repeated.
 次に、本実施の形態1に係る冷凍サイクル装置1の制御装置50における制御処理を説明する。 Next, control processing in the control device 50 of the refrigeration cycle apparatus 1 according to Embodiment 1 will be described.
 本実施の形態1に係る冷凍サイクル装置1の制御装置50は、第1の熱源側減圧装置4の開度を調整して、圧力が第1の連絡配管300の設計圧未満の液冷媒として、第1の冷媒を第1の連絡配管300に流入させるように構成される。 The control device 50 of the refrigeration cycle apparatus 1 according to the first embodiment adjusts the opening degree of the first heat source side decompression device 4 as a liquid refrigerant whose pressure is lower than the design pressure of the first communication pipe 300. The first refrigerant is configured to flow into the first communication pipe 300.
 また、本実施の形態1に係る冷凍サイクル装置1の制御装置50は、冷房運転時において、第2の熱源側減圧装置20の開度を調整して過冷却度を大きくし、第1の熱源側減圧装置4に流入する前記第1の冷媒の温度が、設計圧における第1の冷媒の飽和液温度よりも低くなるように構成できる。 Further, the control device 50 of the refrigeration cycle apparatus 1 according to the first embodiment adjusts the opening degree of the second heat source side decompression device 20 during the cooling operation to increase the degree of supercooling, and thereby the first heat source. The temperature of the first refrigerant flowing into the side pressure reducing device 4 can be configured to be lower than the saturated liquid temperature of the first refrigerant at the design pressure.
 以降の本実施の形態1の制御処理の説明では、第1の熱源側減圧装置4の開度DH1は、0≦DH≦1の範囲で調整可能なものとする。開度DH1=0の状態は、第1の熱源側減圧装置4が閉止状態であることを示し、開度DH1=1の状態は、第1の熱源側減圧装置4が全開放状態であることを示す。 In the following description of the control process of the first embodiment, it is assumed that the opening degree DH1 of the first heat source side decompression device 4 can be adjusted in the range of 0 ≦ DH ≦ 1. The state of the opening degree DH1 = 0 indicates that the first heat source side decompression device 4 is in the closed state, and the state of the opening degree DH1 = 1 indicates that the first heat source side decompression device 4 is in the fully open state. Indicates.
 また、第2の熱源側減圧装置20の開度DH2は、0≦DH2≦1の範囲で調整可能なものとする。開度DH2=0の状態は、第2の熱源側減圧装置20が閉止状態であることを示し、開度DH2=1の状態は、第2の熱源側減圧装置20が全開放状態であることを示す。 Further, the opening degree DH2 of the second heat source side decompression device 20 is adjustable in the range of 0 ≦ DH2 ≦ 1. The state of the opening degree DH2 = 0 indicates that the second heat source side decompression device 20 is closed, and the state of the opening degree DH2 = 1 indicates that the second heat source side decompression device 20 is fully open. Indicates.
 図3は、本実施の形態1に係る冷凍サイクル装置1の制御装置50における、冷房運転時の制御処理の一例を示すフローチャートである。図3の制御処理は、冷房運転時に常時行うようにしてもよいし、例えば、第1の圧縮機2の周波数変動等の冷凍サイクル装置1のパラメータの変動を検知した際に随時行うようにしてもよい。 FIG. 3 is a flowchart showing an example of a control process during cooling operation in the control device 50 of the refrigeration cycle apparatus 1 according to the first embodiment. The control process of FIG. 3 may be performed at all times during the cooling operation, or may be performed at any time when a change in the parameters of the refrigeration cycle apparatus 1 such as a change in the frequency of the first compressor 2 is detected. Also good.
 本実施の形態1においては、制御装置50の記憶部(図示せず)には、第1の連絡配管300の設計圧Pm(例えば、耐圧基準値)のデータが記憶されているものとする。また、制御装置50の記憶部には、冷凍サイクル装置1における第1の冷媒の状態を表すモリエル線図(P-h線図)に関するデータが、例えばテーブル表として記憶されているものとする。 In the first embodiment, it is assumed that data of the design pressure Pm (for example, pressure resistance reference value) of the first connecting pipe 300 is stored in the storage unit (not shown) of the control device 50. In addition, it is assumed that data relating to the Mollier diagram (Ph diagram) representing the state of the first refrigerant in the refrigeration cycle apparatus 1 is stored in the storage unit of the control device 50 as, for example, a table.
 ステップS11においては、第1の温度センサ30で検知される、第1の熱源側減圧装置4に流入する第1の冷媒の温度Tcが、設計圧Pmにおける第1の冷媒の飽和液温度Ta以上であるか否かが制御装置50において判定される。飽和液温度Taは、設計圧Pmの値に基づいて制御装置50で算出される温度値である。 In step S11, the temperature Tc of the first refrigerant flowing into the first heat source side pressure reducing device 4 detected by the first temperature sensor 30 is equal to or higher than the saturated refrigerant temperature Ta of the first refrigerant at the design pressure Pm. It is determined in the control device 50 whether or not. The saturated liquid temperature Ta is a temperature value calculated by the control device 50 based on the value of the design pressure Pm.
 第1の冷媒の温度Tcが飽和液温度Ta以上である場合、ステップS12において、制御装置50は、第2の熱源側減圧装置20の開度DH2を調整値ΔDH2だけ開放するように制御する。ここで、調整値ΔDH2は、第2の熱源側減圧装置20の構造等の仕様を考慮して任意に定められる定数であり、例えば、調整値ΔDH2は0.02とすることができる。その後、第1の冷媒の温度Tcが飽和液温度Taより小さくなるまで、制御装置50では、ステップS12の制御処理が繰り返される。 When the temperature Tc of the first refrigerant is equal to or higher than the saturated liquid temperature Ta, in step S12, the control device 50 controls the opening degree DH2 of the second heat source side decompression device 20 to be opened by the adjustment value ΔDH2. Here, the adjustment value ΔDH2 is a constant that is arbitrarily determined in consideration of the specifications of the structure of the second heat source side decompression device 20, and the adjustment value ΔDH2 can be set to 0.02, for example. Thereafter, the control device 50 repeats the control process of step S12 until the temperature Tc of the first refrigerant becomes lower than the saturated liquid temperature Ta.
 第1の冷媒の温度Tcが飽和液温度Taより小さい場合、ステップS13において、負荷側減圧装置5に流入する第1の冷媒の圧力Pが、飽和液圧力Ps以下であるか否かが制御装置50において判定される。ここで、負荷側減圧装置5に流入する第1の冷媒の圧力Pは、第2の圧力センサ45で検知される。飽和液圧力Psは、第1の冷媒の温度Tcの値に基づいて制御装置50で算出される圧力値であり、モリエル線図上では、第1の冷媒の温度Tcから等比エンタルピ変化させた飽和液線上の点として示される。第1の冷媒の圧力Pが飽和液圧力Psより大きい場合には、制御処理は終了する。 When the temperature Tc of the first refrigerant is lower than the saturated liquid temperature Ta, in Step S13, it is determined whether or not the pressure P of the first refrigerant flowing into the load side pressure reducing device 5 is equal to or lower than the saturated liquid pressure Ps. Determined at 50. Here, the pressure P of the first refrigerant flowing into the load-side decompression device 5 is detected by the second pressure sensor 45. The saturated liquid pressure Ps is a pressure value calculated by the control device 50 based on the value of the temperature Tc of the first refrigerant. On the Mollier diagram, the saturated liquid pressure Ps is changed from the temperature Tc of the first refrigerant by an equal enthalpy. Shown as a point on the saturated liquid line. When the pressure P of the first refrigerant is higher than the saturated liquid pressure Ps, the control process ends.
 第1の冷媒の圧力Pが飽和液圧力Ps以下である場合、ステップS14において、制御装置50は、第1の熱源側減圧装置4の開度DH1を調整値ΔDH1だけ開放するように制御する。ここで、調整値ΔDH1は、第1の熱源側減圧装置4の構造等の仕様を考慮して任意に定められる定数であり、例えば、調整値ΔDH1は0.01とすることができる。その後、第1の冷媒の圧力Pが飽和液圧力Psよりも大きくなるまで、制御装置50では、ステップS14の制御処理が繰り返される。 When the pressure P of the first refrigerant is equal to or lower than the saturated liquid pressure Ps, in step S14, the control device 50 controls the opening degree DH1 of the first heat source side decompression device 4 to be opened by the adjustment value ΔDH1. Here, the adjustment value ΔDH1 is a constant that is arbitrarily determined in consideration of the specifications of the structure and the like of the first heat source-side decompression device 4, and the adjustment value ΔDH1 can be set to 0.01, for example. Thereafter, the control device 50 repeats the control process of step S14 until the pressure P of the first refrigerant becomes higher than the saturated liquid pressure Ps.
 次に、本実施の形態1による本発明の効果を説明する。 Next, the effect of the present invention according to the first embodiment will be described.
 上述したとおり、本実施の形態1に係る冷凍サイクル装置1は、第1の圧縮機2と、第1の熱源側熱交換器3と、第1の熱源側減圧装置4とを収容する熱源側ユニット100と、負荷側減圧装置5と負荷側熱交換器6とを収容し、第1の熱源側減圧装置4と負荷側減圧装置5との間に配置される第1の連絡配管300、及び第1の圧縮機2と負荷側熱交換器6との間に配置される第2の連絡配管400を介して熱源側ユニット100と接続されている負荷側ユニット200と、制御装置50とを備え、第1の圧縮機2、第1の熱源側熱交換器3、第1の熱源側減圧装置4、負荷側減圧装置5、及び負荷側熱交換器6は、冷媒配管を介して接続され、第1の冷媒を循環させる第1の冷凍サイクル500を構成しており、制御装置50は、負荷側熱交換器6が蒸発器として機能する冷房運転時において、第1の熱源側減圧装置4の開度を調整して、圧力が第1の連絡配管300の設計圧未満の液冷媒として、第1の冷媒を第1の連絡配管300に流入させるものである。 As described above, the refrigeration cycle apparatus 1 according to the first embodiment includes the first compressor 2, the first heat source side heat exchanger 3, and the first heat source side decompression device 4. A first connecting pipe 300 that accommodates the unit 100, the load-side decompressor 5 and the load-side heat exchanger 6 and is disposed between the first heat source-side decompressor 4 and the load-side decompressor 5; A load side unit 200 connected to the heat source side unit 100 via a second communication pipe 400 disposed between the first compressor 2 and the load side heat exchanger 6, and a control device 50 are provided. The first compressor 2, the first heat source side heat exchanger 3, the first heat source side pressure reducing device 4, the load side pressure reducing device 5, and the load side heat exchanger 6 are connected via a refrigerant pipe, The first refrigeration cycle 500 that circulates the first refrigerant is configured, and the control device 50 includes a load During the cooling operation in which the heat exchanger 6 functions as an evaporator, the opening degree of the first heat source side decompression device 4 is adjusted, and the first refrigerant is a liquid refrigerant having a pressure lower than the design pressure of the first communication pipe 300. The refrigerant is caused to flow into the first connecting pipe 300.
 従来の冷凍装置、例えば二元冷凍装置としては、現地液配管に二相冷媒を通過させることにより、冷凍装置の全体冷媒量を低減させて、冷媒コストの低減及び製品コストの低減を図ったものが一般的に知られている。従来の冷凍装置では、現地液配管に二相冷媒を通過させるために、室外ユニットに第1の膨張弁を設け、冷媒を減圧及び膨張させて、現地液配管に二相冷媒を流入させている。また、従来の冷凍装置では、室内ユニットに第2の膨張弁を設け、現地液配管から流入する二相冷媒を更に減圧及び膨張させて、蒸発器として機能する室内側熱交換器に流入させている。以上のように従来の冷凍装置では、第1の膨張弁及び第2の膨張弁を現地液配管の前後に設けた、いわゆる二段絞りの構造を有している。 As a conventional refrigeration device, for example, a two-way refrigeration device, the refrigerant amount and the product cost are reduced by reducing the total refrigerant amount of the refrigeration device by passing the two-phase refrigerant through the local liquid piping. Is generally known. In the conventional refrigeration system, in order to allow the two-phase refrigerant to pass through the local liquid piping, the outdoor unit is provided with a first expansion valve, and the refrigerant is decompressed and expanded to flow the two-phase refrigerant into the local liquid piping. . In the conventional refrigeration system, the indoor unit is provided with a second expansion valve, and the two-phase refrigerant flowing from the local liquid pipe is further depressurized and expanded to flow into the indoor heat exchanger functioning as an evaporator. Yes. As described above, the conventional refrigeration apparatus has a so-called two-stage throttle structure in which the first expansion valve and the second expansion valve are provided before and after the local liquid piping.
 しかしながら、従来の冷凍装置では現地液配管に二相冷媒を流入させているため、現地配管での圧損及び騒音が増加するという問題点があった。また、複数の室内側熱交換器が設置された場合(例えば、複数の室内ユニットが設置された場合)に、現地液配管から流入した二相冷媒が室内側熱交換器に均等に分配されず、室内側熱交換器が増加するにつれて冷媒の分配が悪化するという問題点があった。 However, the conventional refrigeration system has a problem that the pressure loss and noise in the local piping increase because the two-phase refrigerant flows into the local liquid piping. In addition, when a plurality of indoor heat exchangers are installed (for example, when a plurality of indoor units are installed), the two-phase refrigerant flowing from the local liquid piping is not evenly distributed to the indoor heat exchangers. As the number of indoor heat exchangers increases, there is a problem that the distribution of the refrigerant deteriorates.
 これに対し、本実施の形態1の構成によれば、冷房運転時において、第1の熱源側減圧装置4の開度を調整して、圧力が第1の連絡配管300の設計圧未満の液冷媒として、第1の冷媒を第1の連絡配管300に流入させることができる。 On the other hand, according to the configuration of the first embodiment, during the cooling operation, the opening degree of the first heat source side decompression device 4 is adjusted, and the pressure is less than the design pressure of the first communication pipe 300. As the refrigerant, the first refrigerant can flow into the first connecting pipe 300.
 本実施の形態1では、第1の連絡配管300に流入する冷媒を液冷媒とすることができ、第1の連絡配管300での圧力損失及び騒音を低減させることができるため、冷凍サイクル装置1におけるエネルギー消費量を削減することができる。また、第1の連絡配管300から負荷側ユニット200に流入する冷媒が液冷媒となるため、冷凍サイクル装置1に複数の負荷側熱交換器6が設置される場合であっても、冷媒を均等に分配することが可能となる。 In the first embodiment, the refrigerant flowing into the first communication pipe 300 can be a liquid refrigerant, and the pressure loss and noise in the first communication pipe 300 can be reduced. Therefore, the refrigeration cycle apparatus 1 Energy consumption can be reduced. In addition, since the refrigerant flowing into the load side unit 200 from the first connecting pipe 300 becomes a liquid refrigerant, even when a plurality of load side heat exchangers 6 are installed in the refrigeration cycle apparatus 1, the refrigerant is evenly distributed. Can be distributed.
 また、本実施の形態1では、第1の連絡配管300に流入する液冷媒の圧力は、第1の連絡配管300の設計圧未満にできるため、既存の現地配管を流用可能な冷凍サイクル装置1を提供できる。例えば、第1の連絡配管300は、負荷側熱交換器6での冷媒の飽和温度が、負荷側熱交換器6の蒸発温度を下回らない範囲で第1の冷媒の圧力損失が生じるものであれば流用可能である。 Moreover, in this Embodiment 1, since the pressure of the liquid refrigerant which flows into the 1st connection piping 300 can be made less than the design pressure of the 1st connection piping 300, the refrigeration cycle apparatus 1 which can divert the existing local piping Can provide. For example, the first communication pipe 300 may cause a pressure loss of the first refrigerant in a range where the saturation temperature of the refrigerant in the load side heat exchanger 6 does not fall below the evaporation temperature of the load side heat exchanger 6. Can be diverted.
 また、本実施の形態1に係る冷凍サイクル装置1においては、熱源側ユニット100は、第1の熱源側熱交換器3と第1の熱源側減圧装置4との間に配置され、第1の伝熱管10aと第2の伝熱管10bとを有する過冷却熱交換器10と、第1の伝熱管10aの一方の端部と第1の熱源側減圧装置4とを接続する第1の熱源側冷媒配管12と、第1の伝熱管10aの他の一方の端部と第1の熱源側熱交換器3とを接続する第2の熱源側冷媒配管13と、第1の熱源側冷媒配管12に配置された分岐接続部12aと、第2の伝熱管10bの一方の端部とを接続する第1の熱源側分岐冷媒配管16と、第2の伝熱管10bの他の一方の端部と、第1の圧縮機2の中圧部分とを接続する第2の熱源側分岐冷媒配管18と、第1の熱源側分岐冷媒配管16に配置された第2の熱源側減圧装置20とを更に備えており、過冷却熱交換器10は、冷房運転時において、第1の伝熱管10aを流れる第1の冷媒と、第2の伝熱管10bを流れる第1の冷媒との間で熱交換を行うものであり、制御装置50は、冷房運転時において、第2の熱源側減圧装置20の開度を調整して過冷却度を大きくし、第1の熱源側減圧装置4に流入する第1の冷媒の温度を、設計圧における第1の冷媒の飽和液温度よりも低くすることができる。 Further, in the refrigeration cycle apparatus 1 according to the first embodiment, the heat source side unit 100 is disposed between the first heat source side heat exchanger 3 and the first heat source side decompression apparatus 4, and A first heat source side connecting the supercooling heat exchanger 10 having the heat transfer tube 10a and the second heat transfer tube 10b, and one end of the first heat transfer tube 10a and the first heat source side pressure reducing device 4. A refrigerant pipe 12, a second heat source side refrigerant pipe 13 connecting the other end of the first heat transfer pipe 10a and the first heat source side heat exchanger 3, and a first heat source side refrigerant pipe 12 The first heat source side branch refrigerant pipe 16 that connects the branch connection portion 12a arranged at the first end of the second heat transfer pipe 10b, and the other end of the second heat transfer pipe 10b. The second heat source side branch refrigerant pipe 18 connecting the intermediate pressure portion of the first compressor 2 and the first heat source side branch refrigerant distribution And a second heat source side pressure reducing device 20 disposed in the subcooling heat exchanger 10. The supercooling heat exchanger 10 includes a first refrigerant flowing through the first heat transfer tube 10 a and a second heat exchanger 10 during the cooling operation. Heat exchange is performed with the first refrigerant flowing through the heat transfer tube 10b, and the control device 50 adjusts the degree of subcooling by adjusting the opening of the second heat source side decompression device 20 during the cooling operation. The temperature of the first refrigerant flowing into the first heat source side decompression device 4 can be made lower than the saturated liquid temperature of the first refrigerant at the design pressure.
 上述の構成によれば、第1の熱源側減圧装置4に流入する第1の冷媒の温度を、設計圧における第1の冷媒の飽和液温度よりも低くすることができるため、第1の熱源側減圧装置4で減圧及び膨張後も、第1の冷媒を液状態に維持することが容易となる。 According to the above-described configuration, the temperature of the first refrigerant flowing into the first heat source side decompression device 4 can be made lower than the saturated liquid temperature of the first refrigerant at the design pressure. Even after decompression and expansion by the side decompression device 4, it is easy to maintain the first refrigerant in the liquid state.
 図4は、本実施の形態1に係る冷凍サイクル装置1の動作を示すモリエル線図である。図4のモリエル線図における縦軸は絶対圧力(MPa)であり、横軸は比エンタルピ(kJ/kg)である。図4には、飽和液線と飽和蒸気線と、第1の冷凍サイクル500における各行程が示されており、説明のために、膨張行程の対応する位置に、第1の熱源側減圧装置4及び負荷側減圧装置5を概略的に表示している。また、図4のモリエル線図には、一点鎖線の折れ線で、第2の熱源側減圧装置20で減圧及び膨張され、過冷却熱交換器10の第2の伝熱管10bで熱交換された冷媒の状態を示している。 FIG. 4 is a Mollier diagram showing the operation of the refrigeration cycle apparatus 1 according to the first embodiment. The vertical axis in the Mollier diagram of FIG. 4 is the absolute pressure (MPa), and the horizontal axis is the specific enthalpy (kJ / kg). FIG. 4 shows a saturated liquid line, a saturated vapor line, and each stroke in the first refrigeration cycle 500. For the sake of explanation, the first heat source side pressure reducing device 4 is located at a position corresponding to the expansion stroke. And the load side decompression device 5 is schematically shown. In addition, the Mollier diagram of FIG. 4 is a broken line that is a dashed-dotted line that is decompressed and expanded by the second heat source side decompression device 20 and heat-exchanged by the second heat transfer tube 10b of the supercooling heat exchanger 10. Shows the state.
 また、図4のモリエル線図上のA点は、設計圧Pmから算出される第1の冷媒の飽和液温度Taの位置を示したものである。図4のモリエル線図上のB点は、A点と等比エンタルピとなる第1の冷凍サイクル500の凝縮工程における位置を示したものである。図4のモリエル線図上のC点は、第1の冷凍サイクル500の凝縮工程における、第1の熱源側減圧装置4に流入する第1の冷媒の温度Tcの位置を示したものである。図4のモリエル線図上のD点は、C点と等比エンタルピであり、かつ、圧力が設計圧Pmとなる第1の冷凍サイクル500の膨張行程における位置を示したものである。図4のモリエル線図上のE点は、第1の冷凍サイクル500の膨張行程を示す直線と、飽和液線との交点を示したものであり、第1の冷媒の圧力が飽和液圧力Psとなる位置である。 Further, the point A on the Mollier diagram in FIG. 4 indicates the position of the saturated refrigerant temperature Ta of the first refrigerant calculated from the design pressure Pm. The point B on the Mollier diagram of FIG. 4 shows the position in the condensation step of the first refrigeration cycle 500 that has the same enthalpy as the point A. The point C on the Mollier diagram of FIG. 4 shows the position of the temperature Tc of the first refrigerant flowing into the first heat source side decompression device 4 in the condensation process of the first refrigeration cycle 500. The point D on the Mollier diagram of FIG. 4 shows the position in the expansion stroke of the first refrigeration cycle 500 at which the pressure is equal to the point C and the pressure is the design pressure Pm. The point E on the Mollier diagram of FIG. 4 shows the intersection of the straight line indicating the expansion stroke of the first refrigeration cycle 500 and the saturated liquid line, and the pressure of the first refrigerant is the saturated liquid pressure Ps. It is a position.
 上述の構成によれば、第2の熱源側減圧装置20の開度を調整して、過冷却熱交換器10で、第1の伝熱管10aを流れる第1の冷媒と、第2の伝熱管10bを流れる第1の冷媒との間で熱交換を行い、過冷却度を大きくすることができる。すなわち、上述の構成によれば、図4のモリエル線図においては、C点は、B点の左側に位置するように調整することができる。B点における第1の冷媒の温度は、A点における飽和液温度Taと同一かわずかに高温となるため、C点がB点の左側に位置する場合は、第1の熱源側減圧装置4に流入する第1の冷媒の温度Tcは、必ず飽和液温度Taよりも低くなる。 According to the above-described configuration, the first refrigerant flowing through the first heat transfer tube 10a and the second heat transfer tube are adjusted by the supercooling heat exchanger 10 by adjusting the opening degree of the second heat source side decompression device 20. Heat exchange can be performed with the first refrigerant flowing through 10b to increase the degree of supercooling. That is, according to the above-described configuration, the point C can be adjusted so as to be located on the left side of the point B in the Mollier diagram of FIG. The temperature of the first refrigerant at the point B is the same as or slightly higher than the saturated liquid temperature Ta at the point A. Therefore, when the point C is located on the left side of the point B, the first heat source side pressure reducing device 4 The temperature Tc of the first refrigerant flowing in is always lower than the saturated liquid temperature Ta.
 したがって、上述の構成によれば、第1の連絡配管300に流入する第1の冷媒の圧力Pを、飽和液圧力Psよりも大きく、設計圧Pmよりも小さい状態に、第1の熱源側減圧装置4の開度を調整することによって制御できる。図4のモリエル線図においては、第1の冷媒の圧力Pが、飽和液圧力Psよりも大きく、設計圧Pmよりも小さい状態は、図4の点Dと点Eとの間の膨張行程の位置に対応している。 Therefore, according to the above-described configuration, the first heat source side pressure reduction is performed so that the pressure P of the first refrigerant flowing into the first communication pipe 300 is larger than the saturated liquid pressure Ps and smaller than the design pressure Pm. It can be controlled by adjusting the opening of the device 4. In the Mollier diagram of FIG. 4, the state where the pressure P of the first refrigerant is larger than the saturated liquid pressure Ps and smaller than the design pressure Pm is the expansion stroke between the points D and E in FIG. 4. Corresponds to the position.
 具体的には、第1の連絡配管300(現地配管)の設計圧が1.64MPaの場合、点Aは38℃となり、凝縮温度を50℃とすると、過冷却度は約30℃程度のため、点Cは20℃となる。したがって、第1の連絡配管300で冷媒を設計圧以下かつ液状態とするためには、第1の熱源側減圧装置4で1.00MPa~1.64MPaに制御すればよい。 Specifically, when the design pressure of the first connecting pipe 300 (on-site pipe) is 1.64 MPa, the point A is 38 ° C., and when the condensation temperature is 50 ° C., the degree of supercooling is about 30 ° C. , Point C is 20 ° C. Therefore, in order to bring the refrigerant below the design pressure and in the liquid state in the first connection pipe 300, the first heat source side decompression device 4 may be controlled to 1.00 MPa to 1.64 MPa.
 以上のとおり、本実施の形態1に係る構成によれば、第1の熱源側減圧装置4に流入する第1の冷媒の温度Tcを飽和液温度Ta未満とすることで、第1の熱源側減圧装置4で減圧及び膨張後も、第1の冷媒は液状態を維持することができる。 As described above, according to the configuration according to the first embodiment, the temperature Tc of the first refrigerant flowing into the first heat source side decompression device 4 is set to be lower than the saturated liquid temperature Ta, so that the first heat source side Even after decompression and expansion by the decompression device 4, the first refrigerant can maintain the liquid state.
実施の形態2.
 本発明の実施の形態2は、上述の実施の形態1に係る冷凍サイクル装置1の変形例である。図5は、本実施の形態2に係る冷凍サイクル装置1の一例を示す概略的な冷媒回路図である。
Embodiment 2. FIG.
Embodiment 2 of the present invention is a modification of the refrigeration cycle apparatus 1 according to Embodiment 1 described above. FIG. 5 is a schematic refrigerant circuit diagram illustrating an example of the refrigeration cycle apparatus 1 according to the second embodiment.
 本実施の形態2の冷凍サイクル装置1の熱源側ユニット100は、上述の実施の形態1に係る冷凍サイクル装置1の第1の熱源側分岐冷媒配管16の代わりに、第2の連絡配管400と過冷却熱交換器10の第2の伝熱管10bの一方の端部との間に接続される第3の熱源側冷媒配管14を備えている。また、本実施の形態2の冷凍サイクル装置1の熱源側ユニット100は、上述の実施の形態1に係る冷凍サイクル装置1の第2の熱源側分岐冷媒配管18の代わりに、過冷却熱交換器10の第2の伝熱管10bの他方の端部と第1の圧縮機2との間に接続される第4の熱源側冷媒配管15とを更に備えている。また、本実施の形態2の冷凍サイクル装置1の熱源側ユニット100は、第2の熱源側減圧装置20を有していない。また、第2の温度センサ35及び第1の圧力センサ40は、本実施の形態2の冷凍サイクル装置1においては、第4の熱源側冷媒配管15上に設けられている。本実施の形態2の冷凍サイクル装置1の熱源側ユニット100のその他の構造は、上述の実施の形態1に係る冷凍サイクル装置1と同一のものである。 The heat source side unit 100 of the refrigeration cycle apparatus 1 according to the second embodiment includes a second communication pipe 400 instead of the first heat source side branch refrigerant pipe 16 of the refrigeration cycle apparatus 1 according to the first embodiment described above. A third heat source side refrigerant pipe 14 connected between one end of the second heat transfer tube 10b of the supercooling heat exchanger 10 is provided. In addition, the heat source side unit 100 of the refrigeration cycle apparatus 1 according to the second embodiment is a supercooling heat exchanger instead of the second heat source side branch refrigerant pipe 18 of the refrigeration cycle apparatus 1 according to the first embodiment described above. And a fourth heat source side refrigerant pipe 15 connected between the other end of the ten second heat transfer tubes 10 b and the first compressor 2. Further, the heat source side unit 100 of the refrigeration cycle apparatus 1 of the second embodiment does not have the second heat source side decompression device 20. The second temperature sensor 35 and the first pressure sensor 40 are provided on the fourth heat source side refrigerant pipe 15 in the refrigeration cycle apparatus 1 of the second embodiment. The other structure of the heat source side unit 100 of the refrigeration cycle apparatus 1 according to the second embodiment is the same as that of the refrigeration cycle apparatus 1 according to the first embodiment.
 図6は、本実施の形態2に係る冷凍サイクル装置1の制御装置50における制御の一部を表現した制御ブロック図である。図6は、第2の熱源側減圧装置20を有していない点を除けば、図2の制御ブロック図と同一のものである。 FIG. 6 is a control block diagram representing a part of control in the control device 50 of the refrigeration cycle apparatus 1 according to the second embodiment. FIG. 6 is the same as the control block diagram of FIG. 2 except that the second heat source side pressure reducing device 20 is not provided.
 次に、本実施の形態2に係る冷凍サイクル装置1の制御装置50における制御処理を説明する。 Next, a control process in the control device 50 of the refrigeration cycle apparatus 1 according to the second embodiment will be described.
 本実施の形態2に係る冷凍サイクル装置1の制御装置50は、冷房運転時において、前記負荷側減圧装置の開度を調整して過冷却度を大きくし、前記第1の熱源側減圧装置に流入する前記第1の冷媒の温度を、前記設計圧における前記第1の冷媒の飽和液温度よりも低くするように構成される。 The control device 50 of the refrigeration cycle apparatus 1 according to Embodiment 2 adjusts the opening degree of the load-side decompression device to increase the degree of supercooling during the cooling operation, and increases the degree of supercooling to the first heat source-side decompression device. The temperature of the first refrigerant flowing in is configured to be lower than the saturated liquid temperature of the first refrigerant at the design pressure.
 以降の本実施の形態2の制御処理の説明では、第1の熱源側減圧装置4の開度DH1は、0≦DH≦1の範囲で調整可能なものとする。開度DH1=0の状態は、第1の熱源側減圧装置4が閉止状態であることを示し、開度DH1=1の状態は、第1の熱源側減圧装置4が全開放状態であることを示す。 In the following description of the control process of the second embodiment, it is assumed that the opening degree DH1 of the first heat source side decompression device 4 can be adjusted in the range of 0 ≦ DH ≦ 1. The state of the opening degree DH1 = 0 indicates that the first heat source side decompression device 4 is in the closed state, and the state of the opening degree DH1 = 1 indicates that the first heat source side decompression device 4 is in the fully open state. Indicates.
 また、負荷側減圧装置5の開度DLは、0≦DL≦1の範囲で調整可能なものとする。開度DL=0の状態は、負荷側減圧装置5が閉止状態であることを示し、開度DL=1の状態は、負荷側減圧装置5が全開放状態であることを示す。 Further, the opening DL of the load-side decompression device 5 is adjustable in the range of 0 ≦ DL ≦ 1. A state in which the opening degree DL = 0 indicates that the load-side decompression device 5 is in a closed state, and a state in which the opening degree DL = 1 indicates that the load-side decompression device 5 is in a fully open state.
 図7は、本実施の形態2に係る冷凍サイクル装置1の制御装置50における、冷房運転時の制御処理の一例を示すフローチャートである。図7の制御処理は、図3の制御処理と同様に、冷房運転時に常時行うようにしてもよいし、例えば、第1の圧縮機2の周波数変動等の冷凍サイクル装置1のパラメータの変動を検知した際に随時行うようにしてもよい。 FIG. 7 is a flowchart illustrating an example of a control process during cooling operation in the control device 50 of the refrigeration cycle apparatus 1 according to the second embodiment. The control process of FIG. 7 may be performed at all times during the cooling operation, similarly to the control process of FIG. You may make it carry out at any time when it detects.
 本実施の形態2においても、上述の実施の形態1と同様に制御装置50の記憶部(図示せず)には、第1の連絡配管300の設計圧Pm(例えば、耐圧基準値)のデータが記憶されているものとする。また、制御装置50の記憶部には、冷凍サイクル装置1における第1の冷媒の状態を表すモリエル線図(P-h線図)に関するデータが、例えばテーブル表として記憶されているものとする。 Also in the second embodiment, data of the design pressure Pm (for example, withstand pressure reference value) of the first communication pipe 300 is stored in the storage unit (not shown) of the control device 50 as in the first embodiment. Is stored. In addition, it is assumed that data relating to the Mollier diagram (Ph diagram) representing the state of the first refrigerant in the refrigeration cycle apparatus 1 is stored in the storage unit of the control device 50 as, for example, a table.
 ステップS21では、上述の実施の形態1のステップS11と同様に、第1の温度センサ30で検知される、第1の熱源側減圧装置4に流入する第1の冷媒の温度Tcが、設計圧Pmにおける第1の冷媒の飽和液温度Ta以上であるか否かが制御装置50において判定される。 In step S21, as in step S11 of the first embodiment described above, the temperature Tc of the first refrigerant flowing into the first heat source side decompression device 4 detected by the first temperature sensor 30 is the design pressure. The controller 50 determines whether or not the temperature is equal to or higher than the saturated refrigerant temperature Ta of the first refrigerant at Pm.
 第1の冷媒の温度Tcが飽和液温度Ta以上である場合、ステップS22において、制御装置50は、負荷側減圧装置5の開度DLを調整値ΔDLだけ開放するように制御する。ここで、調整値ΔDLは、負荷側減圧装置5の構造等の仕様を考慮して任意に定められる定数であり、例えば、調整値ΔDH2は0.02とすることができる。その後、第1の冷媒の温度Tcが飽和液温度Taより小さくなるまで、制御装置50では、ステップS22の制御処理が繰り返される。 When the temperature Tc of the first refrigerant is equal to or higher than the saturated liquid temperature Ta, the controller 50 controls the opening DL of the load-side decompressor 5 to be opened by the adjustment value ΔDL in step S22. Here, the adjustment value ΔDL is a constant arbitrarily determined in consideration of the specifications of the structure and the like of the load-side decompression device 5, and the adjustment value ΔDH2 can be set to 0.02, for example. Thereafter, the control device 50 repeats the control process of step S22 until the temperature Tc of the first refrigerant becomes lower than the saturated liquid temperature Ta.
 ステップS23では、上述の実施の形態1のステップS13と同様に、第1の冷媒の温度Tcが飽和液温度Taより小さい場合、負荷側減圧装置5に流入する第1の冷媒の圧力Pが、飽和液圧力Ps以下であるか否かが制御装置50において判定される。第1の冷媒の圧力Pが飽和液圧力Psより大きい場合には、制御処理は終了する。 In step S23, as in step S13 of the first embodiment, when the temperature Tc of the first refrigerant is lower than the saturated liquid temperature Ta, the pressure P of the first refrigerant flowing into the load-side decompression device 5 is It is determined in the control device 50 whether or not it is equal to or lower than the saturated liquid pressure Ps. When the pressure P of the first refrigerant is higher than the saturated liquid pressure Ps, the control process ends.
 ステップS24では、上述の実施の形態1のステップS14と同様に、第1の冷媒の圧力Pが飽和液圧力Ps以下である場合に、制御装置50は、第1の熱源側減圧装置4の開度DH1を調整値ΔDH1だけ開放するように制御する。 In step S24, as in step S14 of the first embodiment described above, when the pressure P of the first refrigerant is equal to or lower than the saturated liquid pressure Ps, the control device 50 opens the first heat source side decompression device 4. The degree DH1 is controlled to be opened by the adjustment value ΔDH1.
 本実施の形態2の冷凍サイクル装置1の熱源側ユニット100は、第1の熱源側熱交換器3と第1の熱源側減圧装置4との間に配置され、第1の伝熱管10aと第2の伝熱管10bとを有する過冷却熱交換器10と、第1の伝熱管10aの一方の端部と第1の熱源側減圧装置4とを接続する第1の熱源側冷媒配管12と、第1の伝熱管10aの他の一方の端部と第1の熱源側熱交換器3とを接続する第2の熱源側冷媒配管13と、第2の連絡配管400と第2の伝熱管10bの一方の端部との間に接続される第3の熱源側冷媒配管14と、第2の伝熱管10bの他方の端部と第1の圧縮機2との間に接続される第4の熱源側冷媒配管15とを更に備え、過冷却熱交換器10は、冷房運転時において、第1の伝熱管10aを流動する第1の冷媒と、第2の伝熱管10bを流動する第1の冷媒との間で熱交換を行うものであり、制御装置50は、冷房運転時において、負荷側減圧装置5の開度を調整して過冷却度を大きくし、第1の熱源側減圧装置4に流入する第1の冷媒の温度を、設計圧における第1の冷媒の飽和液温度よりも低くするものである。 The heat source side unit 100 of the refrigeration cycle apparatus 1 according to the second embodiment is disposed between the first heat source side heat exchanger 3 and the first heat source side pressure reducing device 4, and includes the first heat transfer tube 10a and the first heat transfer tube 10a. A subcooling heat exchanger 10 having two heat transfer tubes 10b, a first heat source side refrigerant pipe 12 connecting one end of the first heat transfer tube 10a and the first heat source side decompression device 4, A second heat source side refrigerant pipe 13 connecting the other end of the first heat transfer pipe 10a and the first heat source side heat exchanger 3, a second communication pipe 400, and a second heat transfer pipe 10b. A third heat source side refrigerant pipe 14 connected between one end of the second heat transfer pipe 10b and a fourth compressor connected between the other end of the second heat transfer pipe 10b and the first compressor 2. The supercooling heat exchanger 10 further includes a heat source side refrigerant pipe 15 and the first cooling pipe 10a that flows through the first heat transfer pipe 10a during the cooling operation. And the first refrigerant flowing through the second heat transfer tube 10b, and the control device 50 adjusts the opening degree of the load-side decompression device 5 during the cooling operation. The degree of cooling is increased, and the temperature of the first refrigerant flowing into the first heat source side decompression device 4 is made lower than the saturated liquid temperature of the first refrigerant at the design pressure.
 図8は、本実施の形態2に係る冷凍サイクル装置1の動作を示すモリエル線図である。図8は、過冷却熱交換器10の第2の伝熱管10bで熱交換された冷媒の状態を示す一点鎖線の折れ線が記載されていない点を除けば、図4のモリエル線図と同一である。 FIG. 8 is a Mollier diagram showing the operation of the refrigeration cycle apparatus 1 according to the second embodiment. FIG. 8 is the same as the Mollier diagram of FIG. 4 except that the broken line indicating the state of the refrigerant heat-exchanged in the second heat transfer tube 10b of the supercooling heat exchanger 10 is not described. is there.
 本実施の形態2の構成によれば、負荷側減圧装置5の開度を調整して、過冷却熱交換器10で、第1の伝熱管10aを流れる第1の冷媒と、第2の伝熱管10bを流れる第1の冷媒との間で熱交換を行い、過冷却度を大きくすることができる。また、第1の熱源側減圧装置4に流入する第1の冷媒の温度Tcを飽和液温度Ta未満とすることで、第1の熱源側減圧装置4で減圧及び膨張後も、第1の冷媒は液状態を維持することができる。 According to the configuration of the second embodiment, the opening degree of the load-side decompression device 5 is adjusted, and the first refrigerant that flows through the first heat transfer tube 10a and the second transfer in the supercooling heat exchanger 10 are obtained. Heat exchange can be performed with the first refrigerant flowing through the heat pipe 10b to increase the degree of supercooling. Further, by setting the temperature Tc of the first refrigerant flowing into the first heat source side decompression device 4 to be lower than the saturated liquid temperature Ta, the first refrigerant after decompression and expansion by the first heat source side decompression device 4 is also achieved. Can maintain a liquid state.
 また、本実施の形態2の構成によれば、負荷側熱交換器6から流出した乾き度の高い二相冷媒又は低温低圧のガス冷媒が過冷却熱交換器10で更に過熱されるため、第1の圧縮機2への液戻りが回避できる。したがって、本実施の形態2の構成によれば、冷凍サイクル装置1の信頼性を向上させることができる。また、本実施の形態2の構成によれば、冷凍サイクル装置1を流れる全ての第1の冷媒を負荷側熱交換器6での熱交換に用いることができるため、冷凍サイクル装置1の冷却能力を向上させることができる。 Further, according to the configuration of the second embodiment, the two-phase refrigerant or the low-temperature and low-pressure gas refrigerant that has flowed out of the load-side heat exchanger 6 is further superheated in the supercooling heat exchanger 10, so that the first Liquid return to the compressor 2 of 1 can be avoided. Therefore, according to the configuration of the second embodiment, the reliability of the refrigeration cycle apparatus 1 can be improved. Further, according to the configuration of the second embodiment, since all the first refrigerants flowing through the refrigeration cycle apparatus 1 can be used for heat exchange in the load side heat exchanger 6, the cooling capacity of the refrigeration cycle apparatus 1 Can be improved.
実施の形態3.
 本発明の実施の形態3は、上述の実施の形態1の冷凍サイクル装置1が、第2の冷凍サイクル600を更に備えたものである。図9は、本実施の形態3に係る冷凍サイクル装置1の一例を示す概略的な冷媒回路図である。
Embodiment 3 FIG.
In the third embodiment of the present invention, the refrigeration cycle apparatus 1 of the first embodiment described above further includes a second refrigeration cycle 600. FIG. 9 is a schematic refrigerant circuit diagram illustrating an example of the refrigeration cycle apparatus 1 according to the third embodiment.
 本実施の形態3の冷凍サイクル装置1は、上述の実施の形態1の構成に加え、熱源側ユニット100が、第2の圧縮機62と、第2の熱源側熱交換器63と、第3の熱源側減圧装置64と、第1の熱源側熱交換器3とを冷媒配管を介して接続し、第2の冷媒を循環させる第2の冷凍サイクル600を更に備えており、第1の熱源側熱交換器3は、冷房運転時において、第1の圧縮機2から流入する第1の冷媒と、第3の熱源側減圧装置64から流入する第2の冷媒との間で熱交換を行うものであり、第2の熱源側熱交換器は、放熱器として機能するものである。 In the refrigeration cycle apparatus 1 of the third embodiment, in addition to the configuration of the first embodiment, the heat source side unit 100 includes a second compressor 62, a second heat source side heat exchanger 63, and a third The heat source side pressure reducing device 64 and the first heat source side heat exchanger 3 are connected via a refrigerant pipe, and further provided with a second refrigeration cycle 600 for circulating the second refrigerant, and the first heat source The side heat exchanger 3 exchanges heat between the first refrigerant flowing from the first compressor 2 and the second refrigerant flowing from the third heat source side decompression device 64 during the cooling operation. The second heat source side heat exchanger functions as a radiator.
 第2の冷凍サイクル600における第2の圧縮機62、第2の熱源側熱交換器63、及び第3の熱源側減圧装置64の構造及び動作は、第1の圧縮機2、第1の熱源側熱交換器3、及び第1の熱源側減圧装置4と同一である。本実施の形態3においては、第1の熱源側熱交換器3は、上述したように、冷房運転時において、第1の圧縮機2から流入する第1の冷媒と、第3の熱源側減圧装置64から流入する第2の冷媒との間で熱交換を行うカスケード熱交換器として機能する。 The structure and operation of the second compressor 62, the second heat source side heat exchanger 63, and the third heat source side pressure reducing device 64 in the second refrigeration cycle 600 are the same as those of the first compressor 2, the first heat source. It is the same as the side heat exchanger 3 and the first heat source side decompression device 4. In the third embodiment, as described above, the first heat source side heat exchanger 3 includes the first refrigerant flowing from the first compressor 2 and the third heat source side decompression during the cooling operation. It functions as a cascade heat exchanger that performs heat exchange with the second refrigerant flowing in from the device 64.
 本実施の形態3の第2の冷凍サイクル600では、例えば、R32等のハイドロフルオロカーボン、2,3,3,3-テトラフルオロ-1-プロペン(HFO-1234yf)等のハイドロフルオロオレフィン、R410A等の混合溶媒を第2の冷媒として使用することができる。 In the second refrigeration cycle 600 of Embodiment 3, for example, hydrofluorocarbons such as R32, hydrofluoroolefins such as 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), R410A and the like A mixed solvent can be used as the second refrigerant.
 図10は、本実施の形態3に係る冷凍サイクル装置1の制御装置50における制御の一部を表現した制御ブロック図である。図10は、制御装置50によって第3の熱源側減圧装置64の開度が制御される点を除けば、図2の制御ブロック図と同一のものである。 FIG. 10 is a control block diagram representing a part of control in the control device 50 of the refrigeration cycle apparatus 1 according to the third embodiment. FIG. 10 is the same as the control block diagram of FIG. 2 except that the opening degree of the third heat source side decompression device 64 is controlled by the control device 50.
 図11は、本実施の形態3に係る冷凍サイクル装置1の制御装置50における、冷房運転時の制御処理の一例を示すフローチャートである。図11の制御処理は、図3の制御処理と同一のものであり、図11のステップS31~S34は、図3のS11~S14に対応する。その他の制御処理の内容も、上述の実施の形態1の制御処理と同様である。 FIG. 11 is a flowchart illustrating an example of a control process during cooling operation in the control device 50 of the refrigeration cycle apparatus 1 according to the third embodiment. The control process of FIG. 11 is the same as the control process of FIG. 3, and steps S31 to S34 of FIG. 11 correspond to S11 to S14 of FIG. The contents of other control processes are the same as the control processes of the first embodiment.
 図12は、本実施の形態3に係る冷凍サイクル装置1の動作を示すモリエル線図である。図12は、図4のモリエル線図と同一のものである。 FIG. 12 is a Mollier diagram showing the operation of the refrigeration cycle apparatus 1 according to the third embodiment. FIG. 12 is the same as the Mollier diagram of FIG.
 本実施の形態3の構成によっても、上述の実施の形態1と同様に、第2の熱源側減圧装置20の開度を調整して、過冷却熱交換器10で、第1の伝熱管10aを流れる第1の冷媒と、第2の伝熱管10bを流れる第1の冷媒との間で熱交換を行い、過冷却度を大きくすることができる。また、第1の熱源側減圧装置4に流入する第1の冷媒の温度Tcを飽和液温度Ta未満とすることで、第1の熱源側減圧装置4で減圧及び膨張後も、第1の冷媒は液状態を維持することができる。 Also in the configuration of the third embodiment, the opening degree of the second heat source side decompression device 20 is adjusted and the supercooling heat exchanger 10 is used to adjust the first heat transfer tube 10a as in the first embodiment. Heat exchange can be performed between the first refrigerant flowing through the first refrigerant and the first refrigerant flowing through the second heat transfer tube 10b to increase the degree of supercooling. Further, by setting the temperature Tc of the first refrigerant flowing into the first heat source side decompression device 4 to be lower than the saturated liquid temperature Ta, the first refrigerant after decompression and expansion by the first heat source side decompression device 4 is also achieved. Can maintain a liquid state.
 また、本実施の形態3の構成により、第1の冷媒としてCOを使用し、COを超臨界状態以下で使用することができるため、安全性に優れた冷凍サイクル装置1を提供できる。 Further, the configuration of the third embodiment, using CO 2 as the first refrigerant, for the CO 2 can be used in the following supercritical state can provide a refrigeration cycle device 1 with excellent safety.
その他の実施の形態.
 上述の実施の形態に限らず種々の変形が可能である。例えば、上述の実施の形態の冷凍サイクル装置1は、例えば、空気調和装置、冷凍機等に用いることができる。
Other embodiments.
The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the refrigeration cycle apparatus 1 of the above-described embodiment can be used for an air conditioner, a refrigerator, and the like, for example.
 また、冷凍サイクル装置1を空気調和装置として用いる場合には、暖房運転を行うことができるように構成できる。例えば、冷凍サイクル装置1に冷媒流路切替装置(例えば、四方弁)を設けて、冷房運転時と暖房運転時とを切り替え可能に構成できる。 Further, when the refrigeration cycle apparatus 1 is used as an air conditioner, it can be configured to perform a heating operation. For example, a refrigerant flow switching device (for example, a four-way valve) can be provided in the refrigeration cycle device 1 so that the cooling operation and the heating operation can be switched.
 また、上述の実施の形態における、第2の温度センサ35及び第1の圧力センサ40を用いて、第2の熱源側減圧装置20又は負荷側減圧装置5の開度を調整して、第1の圧縮機2への液戻り量を抑制するように制御することができる。 Moreover, the opening degree of the 2nd heat-source side decompression device 20 or the load side decompression device 5 is adjusted using the 2nd temperature sensor 35 and the 1st pressure sensor 40 in the above-mentioned embodiment, and the 1st It is possible to control so that the amount of liquid returned to the compressor 2 is suppressed.
 また、上述の実施の形態は互いに組み合わせて用いることが可能である。 Further, the above-described embodiments can be used in combination with each other.
 1 冷凍サイクル装置、2 第1の圧縮機、3 第1の熱源側熱交換器、4 第1の熱源側減圧装置、5 負荷側減圧装置、6 負荷側熱交換器、7a 第1の熱源側接続バルブ、7b 第2の熱源側接続バルブ、8a 第1の負荷側接続バルブ、8b 第2の負荷側接続バルブ、10 過冷却熱交換器、10a 第1の伝熱管、10b 第2の伝熱管、12 第1の熱源側冷媒配管、12a 分岐接続部、13 第2の熱源側冷媒配管、14 第3の熱源側冷媒配管、15 第4の熱源側冷媒配管、16 第1の熱源側分岐冷媒配管、18 第2の熱源側分岐冷媒配管、20 第2の熱源側減圧装置、30 第1の温度センサ、35 第2の温度センサ、40 第1の圧力センサ、45 第2の圧力センサ、50 制御装置、62 第2の圧縮機、63 第3の熱源側熱交換器、64 第3の熱源側減圧装置、100 熱源側ユニット、200 負荷側ユニット、300 第1の連絡配管、400 第2の連絡配管、500 第1の冷凍サイクル、600 第2の冷凍サイクル。 1 Refrigeration cycle device, 2nd compressor, 1st heat source side heat exchanger, 4th heat source side decompression device, 5 load side decompression device, 6 load side heat exchanger, 7a 1st heat source side Connection valve, 7b Second heat source side connection valve, 8a First load side connection valve, 8b Second load side connection valve, 10 Subcooling heat exchanger, 10a First heat transfer tube, 10b Second heat transfer tube , 12 1st heat source side refrigerant pipe, 12a branch connection part, 13 2nd heat source side refrigerant pipe, 14 3rd heat source side refrigerant pipe, 15 4th heat source side refrigerant pipe, 16 1st heat source side branch refrigerant Piping, 18 second heat source side branch refrigerant piping, 20 second heat source side pressure reducing device, 30 first temperature sensor, 35 second temperature sensor, 40 first pressure sensor, 45 second pressure sensor, 50 Control device, 62 2nd Compressor, 63 3rd heat source side heat exchanger, 64 3rd heat source side pressure reducing device, 100 Heat source side unit, 200 Load side unit, 300 1st connecting pipe, 400 2nd connecting pipe, 500 1st Refrigeration cycle, 600 second refrigeration cycle.

Claims (5)

  1.  第1の圧縮機と、第1の熱源側熱交換器と、第1の熱源側減圧装置とを収容する熱源側ユニットと、
     負荷側減圧装置と負荷側熱交換器とを収容し、前記第1の熱源側減圧装置と前記負荷側減圧装置との間に配置される第1の連絡配管、及び前記第1の圧縮機と前記負荷側熱交換器との間に配置される第2の連絡配管を介して前記熱源側ユニットと接続されている負荷側ユニットと、
     制御装置と
    を備え、
     前記第1の圧縮機、前記第1の熱源側熱交換器、前記第1の熱源側減圧装置、前記負荷側減圧装置、及び前記負荷側熱交換器は、冷媒配管を介して接続され、第1の冷媒を循環させる第1の冷凍サイクルを構成しており、
     前記制御装置は、
     前記負荷側熱交換器が蒸発器として機能する冷房運転時において、前記第1の熱源側減圧装置の開度を調整して、圧力が前記第1の連絡配管の設計圧未満の液冷媒として、前記第1の冷媒を前記第1の連絡配管に流入させるものである
     冷凍サイクル装置。
    A heat source side unit that houses a first compressor, a first heat source side heat exchanger, and a first heat source side pressure reducing device;
    A first communication pipe that houses a load-side decompression device and a load-side heat exchanger, and is disposed between the first heat source-side decompression device and the load-side decompression device; and the first compressor; A load side unit connected to the heat source side unit via a second connecting pipe disposed between the load side heat exchanger;
    A control device,
    The first compressor, the first heat source side heat exchanger, the first heat source side pressure reducing device, the load side pressure reducing device, and the load side heat exchanger are connected via a refrigerant pipe, Constituting a first refrigeration cycle for circulating one refrigerant,
    The controller is
    At the time of cooling operation in which the load side heat exchanger functions as an evaporator, the opening degree of the first heat source side pressure reducing device is adjusted, and the pressure is less than the design pressure of the first communication pipe, A refrigeration cycle apparatus for causing the first refrigerant to flow into the first communication pipe.
  2.  前記熱源側ユニットは、
     前記第1の熱源側熱交換器と前記第1の熱源側減圧装置との間に配置され、第1の伝熱管と第2の伝熱管とを有する過冷却熱交換器と、
     前記第1の伝熱管の一方の端部と前記第1の熱源側減圧装置とを接続する第1の熱源側冷媒配管と、
     前記第1の伝熱管の他の一方の端部と前記第1の熱源側熱交換器とを接続する第2の熱源側冷媒配管と、
     前記第1の熱源側冷媒配管に配置された分岐接続部と、前記第2の伝熱管の一方の端部とを接続する第1の熱源側分岐冷媒配管と、
     前記第2の伝熱管の他の一方の端部と、前記第1の圧縮機の中圧部分とを接続する第2の熱源側分岐冷媒配管と、
     前記第1の熱源側分岐冷媒配管に配置された第2の熱源側減圧装置と
    を更に備えており、
     前記過冷却熱交換器は、
     前記冷房運転時において、前記第1の伝熱管を流れる第1の冷媒と、前記第2の伝熱管を流れる第1の冷媒との間で熱交換を行うものであり、
     前記制御装置は、
     前記冷房運転時において、前記第2の熱源側減圧装置の開度を調整して過冷却度を大きくし、前記第1の熱源側減圧装置に流入する前記第1の冷媒の温度を、前記設計圧における前記第1の冷媒の飽和液温度よりも低くするものである
     請求項1に記載の冷凍サイクル装置。
    The heat source side unit is:
    A subcooling heat exchanger disposed between the first heat source side heat exchanger and the first heat source side pressure reducing device and having a first heat transfer tube and a second heat transfer tube;
    A first heat source side refrigerant pipe connecting one end of the first heat transfer tube and the first heat source side pressure reducing device;
    A second heat source side refrigerant pipe connecting the other one end of the first heat transfer tube and the first heat source side heat exchanger;
    A first heat source side branch refrigerant pipe connecting the branch connection portion arranged in the first heat source side refrigerant pipe and one end of the second heat transfer pipe;
    A second heat source side branched refrigerant pipe connecting the other one end of the second heat transfer pipe and the intermediate pressure portion of the first compressor;
    A second heat source side decompression device disposed in the first heat source side branch refrigerant pipe,
    The supercooling heat exchanger is
    During the cooling operation, heat exchange is performed between the first refrigerant flowing through the first heat transfer tube and the first refrigerant flowing through the second heat transfer tube,
    The controller is
    During the cooling operation, the degree of supercooling is increased by adjusting the opening degree of the second heat source side decompression device, and the temperature of the first refrigerant flowing into the first heat source side decompression device is set to the design. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is lower than a saturated liquid temperature of the first refrigerant at a pressure.
  3.  前記熱源側ユニットは、
     前記第1の熱源側熱交換器と前記第1の熱源側減圧装置との間に配置され、第1の伝熱管と第2の伝熱管とを有する過冷却熱交換器と、
     前記第1の伝熱管の一方の端部と前記第1の熱源側減圧装置とを接続する第1の熱源側冷媒配管と、
     前記第1の伝熱管の他の一方の端部と前記第1の熱源側熱交換器とを接続する第2の熱源側冷媒配管と、
     前記第2の連絡配管と前記第2の伝熱管の一方の端部との間に接続される第3の熱源側冷媒配管と、
     前記第2の伝熱管の他方の端部と前記第1の圧縮機との間に接続される第4の熱源側冷媒配管と
    を更に備え、
     前記過冷却熱交換器は、
     前記冷房運転時において、前記第1の伝熱管を流動する第1の冷媒と、前記第2の伝熱管を流動する第1の冷媒との間で熱交換を行うものであり、
     前記制御装置は、
     前記冷房運転時において、前記負荷側減圧装置の開度を調整して過冷却度を大きくし、前記第1の熱源側減圧装置に流入する前記第1の冷媒の温度を、前記設計圧における前記第1の冷媒の飽和液温度よりも低くするものである
     請求項1に記載の冷凍サイクル装置。
    The heat source side unit is:
    A subcooling heat exchanger disposed between the first heat source side heat exchanger and the first heat source side pressure reducing device and having a first heat transfer tube and a second heat transfer tube;
    A first heat source side refrigerant pipe connecting one end of the first heat transfer tube and the first heat source side pressure reducing device;
    A second heat source side refrigerant pipe connecting the other one end of the first heat transfer tube and the first heat source side heat exchanger;
    A third heat source side refrigerant pipe connected between the second communication pipe and one end of the second heat transfer pipe;
    A fourth heat source side refrigerant pipe connected between the other end of the second heat transfer tube and the first compressor;
    The supercooling heat exchanger is
    During the cooling operation, heat exchange is performed between the first refrigerant flowing through the first heat transfer tube and the first refrigerant flowing through the second heat transfer tube,
    The controller is
    During the cooling operation, the degree of supercooling is increased by adjusting the opening of the load-side decompression device, and the temperature of the first refrigerant flowing into the first heat source-side decompression device is set at the design pressure. The refrigeration cycle apparatus according to claim 1, wherein the temperature is lower than a saturated liquid temperature of the first refrigerant.
  4.  前記第1の冷媒がCOである
     請求項1~3のいずれか1項に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the first refrigerant is CO 2 .
  5.  前記熱源側ユニットが、
     第2の圧縮機と、第2の熱源側熱交換器と、第3の熱源側減圧装置と、前記第1の熱源側熱交換器とを冷媒配管を介して接続し、第2の冷媒を循環させる第2の冷凍サイクル
    を更に備えており、
     前記第1の熱源側熱交換器は、
     前記冷房運転時において、前記第1の圧縮機から流入する第1の冷媒と、前記第3の熱源側減圧装置から流入する第2の冷媒との間で熱交換を行うものであり、
     前記第2の熱源側熱交換器は、
     前記冷房運転時において、放熱器として機能するものである
     請求項1~4のいずれか1項に記載の冷凍サイクル装置。
    The heat source unit is
    A second compressor, a second heat source side heat exchanger, a third heat source side pressure reducing device, and the first heat source side heat exchanger are connected via a refrigerant pipe, and the second refrigerant is supplied. A second refrigeration cycle for circulation;
    The first heat source side heat exchanger is:
    During the cooling operation, heat exchange is performed between the first refrigerant flowing in from the first compressor and the second refrigerant flowing in from the third heat source side decompression device,
    The second heat source side heat exchanger is:
    The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein the refrigeration cycle apparatus functions as a radiator during the cooling operation.
PCT/JP2015/067652 2015-06-18 2015-06-18 Refrigeration cycle device WO2016203624A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18198946.8A EP3457049B1 (en) 2015-06-18 2015-06-18 Refrigeration cycle device
JP2017524243A JP6735744B2 (en) 2015-06-18 2015-06-18 Refrigeration cycle equipment
PCT/JP2015/067652 WO2016203624A1 (en) 2015-06-18 2015-06-18 Refrigeration cycle device
EP15895644.1A EP3312524B1 (en) 2015-06-18 2015-06-18 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067652 WO2016203624A1 (en) 2015-06-18 2015-06-18 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2016203624A1 true WO2016203624A1 (en) 2016-12-22

Family

ID=57546402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067652 WO2016203624A1 (en) 2015-06-18 2015-06-18 Refrigeration cycle device

Country Status (3)

Country Link
EP (2) EP3312524B1 (en)
JP (1) JP6735744B2 (en)
WO (1) WO2016203624A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843037A (en) * 2017-10-31 2018-03-27 广东美的暖通设备有限公司 Multiple on-line system and its supercooling control device and method
CN110686328A (en) * 2018-07-06 2020-01-14 江森自控科技公司 Variable refrigerant flow system with subcooling temperature optimization using extremum seeking control
CN110953699A (en) * 2018-09-26 2020-04-03 杭州三花研究院有限公司 Air conditioning system and control method thereof
JP2020201012A (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 air conditioner
WO2022118844A1 (en) * 2020-12-01 2022-06-09 ダイキン工業株式会社 Refrigeration cycle system
US11828507B2 (en) 2018-09-25 2023-11-28 Hangzhou Sanhua Research Institute Co., Ltd. Air conditioning system and control method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020122713A1 (en) 2020-08-31 2022-03-03 Andreas Bangheri Heat pump and method for operating a heat pump
CN112033040B (en) * 2020-09-15 2022-08-30 广东美的暖通设备有限公司 Control method of air conditioning system and computer-readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012825A (en) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd Control device for air conditioner
JP2011106695A (en) * 2009-11-13 2011-06-02 Mitsubishi Electric Corp Air conditioning device
JP2012112622A (en) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp Binary refrigeration device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4407012B2 (en) * 2000-06-06 2010-02-03 ダイキン工業株式会社 Refrigeration equipment
JP2003139422A (en) * 2001-10-31 2003-05-14 Daikin Ind Ltd Refrigerating machine
JP2003279170A (en) * 2002-03-20 2003-10-02 Sanyo Electric Co Ltd Air conditioning device
JP2004190917A (en) * 2002-12-10 2004-07-08 Sanyo Electric Co Ltd Refrigeration device
JP3966262B2 (en) * 2003-09-29 2007-08-29 三菱電機株式会社 Freezer refrigerator
JP5593618B2 (en) * 2008-02-28 2014-09-24 ダイキン工業株式会社 Refrigeration equipment
JP5452138B2 (en) * 2009-09-01 2014-03-26 三菱電機株式会社 Refrigeration air conditioner
JP5582773B2 (en) * 2009-12-10 2014-09-03 三菱重工業株式会社 Air conditioner and refrigerant amount detection method for air conditioner
JP2011242048A (en) * 2010-05-18 2011-12-01 Mitsubishi Electric Corp Refrigerating cycle device
ES2748573T3 (en) * 2011-11-29 2020-03-17 Mitsubishi Electric Corp Cooling / air conditioning device
JP5957232B2 (en) * 2012-01-30 2016-07-27 株式会社日本クライメイトシステムズ Air conditioner for vehicles
EP2765370A1 (en) * 2013-02-08 2014-08-13 Panasonic Corporation Refrigeration cycle apparatus and hot water generator provided with the same
EP2995885B1 (en) * 2013-05-08 2020-04-15 Mitsubishi Electric Corporation Binary refrigeration device
EP3012557A4 (en) * 2013-06-19 2017-02-22 Mitsubishi Electric Corporation Refrigeration cycle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012825A (en) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd Control device for air conditioner
JP2011106695A (en) * 2009-11-13 2011-06-02 Mitsubishi Electric Corp Air conditioning device
JP2012112622A (en) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp Binary refrigeration device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843037A (en) * 2017-10-31 2018-03-27 广东美的暖通设备有限公司 Multiple on-line system and its supercooling control device and method
CN107843037B (en) * 2017-10-31 2021-02-23 广东美的暖通设备有限公司 Multi-split air conditioning system and supercooling control device and method thereof
CN110686328A (en) * 2018-07-06 2020-01-14 江森自控科技公司 Variable refrigerant flow system with subcooling temperature optimization using extremum seeking control
JP2020008277A (en) * 2018-07-06 2020-01-16 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Variable refrigerant flow system with subcooling temperature optimization using extremum-seeking control
US11828507B2 (en) 2018-09-25 2023-11-28 Hangzhou Sanhua Research Institute Co., Ltd. Air conditioning system and control method therefor
CN110953699A (en) * 2018-09-26 2020-04-03 杭州三花研究院有限公司 Air conditioning system and control method thereof
JP2020201012A (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 air conditioner
JP7469583B2 (en) 2019-06-12 2024-04-17 ダイキン工業株式会社 air conditioner
WO2022118844A1 (en) * 2020-12-01 2022-06-09 ダイキン工業株式会社 Refrigeration cycle system
JPWO2022118844A1 (en) * 2020-12-01 2022-06-09

Also Published As

Publication number Publication date
EP3457049A1 (en) 2019-03-20
EP3312524A4 (en) 2018-07-04
JPWO2016203624A1 (en) 2018-01-18
EP3457049B1 (en) 2022-04-13
EP3312524B1 (en) 2020-06-03
EP3312524A1 (en) 2018-04-25
JP6735744B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
WO2016203624A1 (en) Refrigeration cycle device
CN107709900B (en) Refrigeration cycle device
US9709304B2 (en) Air-conditioning apparatus
JP4952210B2 (en) Air conditioner
WO2014128830A1 (en) Air conditioning device
CN109804209B (en) Air conditioner
CN109791003B (en) Air conditioner
EP2085719A1 (en) Air conditioning apparatus
KR101901540B1 (en) Air conditioning device
WO2018008139A1 (en) Refrigeration cycle apparatus and air-conditioning apparatus provided with same
WO2014128831A1 (en) Air conditioning device
US10168069B2 (en) Air-conditioning apparatus
WO2016194098A1 (en) Air-conditioning device and operation control device
WO2015140994A1 (en) Heat source side unit and air conditioner
WO2016208042A1 (en) Air-conditioning device
WO2016166801A1 (en) Air conditioning device
CN113439188B (en) Air conditioner
WO2017010007A1 (en) Air conditioner
JP6984048B2 (en) Air conditioner
WO2021166126A1 (en) Air-conditioning device
WO2019207618A1 (en) Refrigeration cycle device and refrigeration device
JP2021055955A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015895644

Country of ref document: EP