WO2016203340A1 - Method for fabricating display device, display device, electronic device, projector, and head-mounted display - Google Patents

Method for fabricating display device, display device, electronic device, projector, and head-mounted display Download PDF

Info

Publication number
WO2016203340A1
WO2016203340A1 PCT/IB2016/053314 IB2016053314W WO2016203340A1 WO 2016203340 A1 WO2016203340 A1 WO 2016203340A1 IB 2016053314 W IB2016053314 W IB 2016053314W WO 2016203340 A1 WO2016203340 A1 WO 2016203340A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
display
transistor
insulating film
semiconductor substrate
Prior art date
Application number
PCT/IB2016/053314
Other languages
French (fr)
Japanese (ja)
Inventor
平佐真一
横山浩平
神保安弘
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2017524137A priority Critical patent/JP6708643B2/en
Publication of WO2016203340A1 publication Critical patent/WO2016203340A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • One embodiment of the present invention relates to a display device and a manufacturing method thereof.
  • Another embodiment of the present invention relates to an electronic device such as a head-mounted display or a projector.
  • one embodiment of the present invention is not limited to the above technical field. More specifically, the technical field of one embodiment of the invention disclosed in this specification and the like includes a semiconductor device, a display device, a light-emitting device, a power storage device, a memory device, an electronic device, a lighting device, an input / output device (eg, a touch panel) ), A driving method thereof, or a manufacturing method thereof can be given as an example.
  • high-resolution display on mobile phones such as smartphones (also referred to as mobile phones and mobile phone devices), portable information terminals such as tablet terminals, digital camera viewfinders, wearable displays such as head mounted displays, projectors, etc.
  • portable information terminals such as tablet terminals, digital camera viewfinders, wearable displays such as head mounted displays, projectors, etc.
  • wearable displays such as head mounted displays, projectors, etc.
  • a device is sought.
  • display devices used for portable electronic devices or wearable displays are required to be thin, lightweight, resistant to breakage, flexibility, and the like.
  • a light-emitting element also referred to as an EL element
  • EL electroluminescence
  • a light-emitting element utilizing an electroluminescence (hereinafter also referred to as EL) phenomenon is thin and lightweight, can respond to an input signal at high speed, and uses a DC low-voltage power supply. It has features such as being drivable, and its application to display devices is being studied.
  • Patent Document 1 discloses a flexible light-emitting device to which an organic EL element is applied.
  • a display device used for a portable electronic device or a wearable display has an extremely small display area as compared with a display device used for a television device. Therefore, in order to increase the resolution, the definition needs to be extremely high. . In addition, since electronic devices or wearable displays for portable use are required to be lightweight, it is desirable to use a thin and lightweight display device.
  • An object of one embodiment of the present invention is to provide a display device with extremely high definition and flexibility.
  • An object of one embodiment of the present invention is to provide a display device with extremely high definition and a curved surface.
  • An object of one embodiment of the present invention is to provide a display device that is small and flexible.
  • An object of one embodiment of the present invention is to provide a display device that is small in size and has a curved surface.
  • An object of one embodiment of the present invention is to provide a display device with high definition or high resolution.
  • An object of one embodiment of the present invention is to provide a small or lightweight display device.
  • An object of one embodiment of the present invention is to provide a thin display device.
  • An object of one embodiment of the present invention is to provide a display device having flexibility or a curved surface.
  • An object of one embodiment of the present invention is to provide a user with a strong stereoscopic feeling or depth feeling in a two-dimensional image.
  • An object of one embodiment of the present invention is to provide a display device that is not easily damaged.
  • An object of one embodiment of the present invention is to provide a display device with low power consumption.
  • An object of one embodiment of the present invention is to provide a highly reliable display device.
  • One embodiment of the present invention includes a step of forming a transistor having a channel formation region in a crystalline semiconductor substrate, a step of forming a display element electrically connected to the transistor over the crystalline semiconductor substrate, and a crystalline semiconductor substrate. And a step of forming a portion having a thickness of 1 ⁇ m to 100 ⁇ m on the crystalline semiconductor substrate.
  • One embodiment of the present invention includes a step of forming a transistor having a channel formation region in a crystalline semiconductor substrate, a step of forming a display element electrically connected to the transistor over the crystalline semiconductor substrate, and a crystalline semiconductor substrate. And a step of polishing the crystalline semiconductor substrate so that a part thereof remains.
  • the display device after polishing the crystalline semiconductor substrate has flexibility.
  • a light emitting element may be formed in the step of forming the display element.
  • a step of forming an insulating film over the light-emitting element and a step of forming a colored layer over the insulating film are included.
  • the insulating film has a function of transmitting light emitted from the light-emitting element.
  • the light-emitting element has a function of emitting light to the colored layer side.
  • a step of forming a separation layer over the formation substrate and a step of polishing the crystalline semiconductor substrate The crystalline semiconductor substrate and the manufacturing substrate are formed using the first adhesive layer so that the step of forming the insulating film, the step of forming the colored layer over the insulating film, and the light-emitting element and the colored layer face each other.
  • the insulating film and the film have a function of transmitting light emitted from the light-emitting element.
  • the light-emitting element has a function of emitting light to the colored layer side.
  • the crystalline semiconductor substrate is preferably a single crystal semiconductor substrate, and more preferably includes single crystal silicon.
  • One embodiment of the present invention includes a step of forming a transistor over a crystalline substrate, a step of forming a display element electrically connected to the transistor over the crystalline substrate, polishing the crystalline substrate, and a crystalline semiconductor Forming a portion having a thickness of 1 ⁇ m or more and 100 ⁇ m or less on a substrate.
  • a step of forming a transistor over a crystalline substrate a step of forming a display element electrically connected to the transistor over the crystalline substrate, and a part of the crystalline substrate remain And a step of polishing the crystalline substrate.
  • the display device after polishing the crystalline substrate has flexibility.
  • the crystalline substrate preferably includes single crystal silicon.
  • the crystalline substrate preferably includes quartz glass or sapphire.
  • One embodiment of the present invention is a display device manufactured using any of the above methods for manufacturing a display device.
  • One embodiment of the present invention includes a crystalline semiconductor substrate, a transistor having a channel formation region in the crystalline semiconductor substrate, and a display element electrically connected to the transistor, and the crystalline semiconductor substrate has a thickness of 1 ⁇ m or more.
  • One embodiment of the present invention is a display device in which at least part is flexible, a crystalline semiconductor substrate, a transistor having a channel formation region in the crystalline semiconductor substrate, and a display element electrically connected to the transistor And a display device.
  • One embodiment of the present invention is a display device having at least a curved surface, a crystalline semiconductor substrate, a transistor having a channel formation region in the crystalline semiconductor substrate, a display element electrically connected to the transistor, It is a display apparatus which has.
  • the display element may be a light emitting element.
  • the display device may include a sealing layer on the display element and a colored layer on the sealing layer.
  • the colored layer has a portion overlapping with the light emitting element.
  • the sealing layer has a function of transmitting light emitted from the light emitting element.
  • the light-emitting element has a function of emitting light to the colored layer side.
  • an insulating film over the colored layer, an adhesive layer over the insulating film, and a flexible substrate over the adhesive layer may be included.
  • Each display device may include a touch sensor positioned between the crystalline semiconductor substrate and the flexible substrate.
  • One embodiment of the present invention is a display device in which at least a part is flexible, and includes a crystalline substrate, a transistor over the crystalline substrate, and a display element electrically connected to the transistor. Device.
  • One embodiment of the present invention is a display device having a curved surface at least in part, the display device including a crystalline substrate, a transistor over the crystalline substrate, and a display element electrically connected to the transistor. is there.
  • Each display device having the crystalline substrate may have a sealing layer on the display element and a colored layer on the sealing layer.
  • the display element may be a light emitting element.
  • the colored layer has a portion overlapping with the light emitting element.
  • the sealing layer has a function of transmitting light emitted from the light emitting element.
  • the light-emitting element has a function of emitting light to the colored layer side.
  • the display device may include an insulating film over the colored layer, an adhesive layer over the insulating film, and a flexible substrate over the adhesive layer.
  • the display element in the case where the display element is a light-emitting element, the display element may include a colored layer positioned between the crystalline substrate and the light-emitting element.
  • the crystalline substrate has a function of transmitting light emitted from the light-emitting element.
  • the light-emitting element has a function of emitting light to the colored layer side.
  • the crystalline substrate preferably includes single crystal silicon.
  • the crystalline substrate preferably includes quartz or sapphire.
  • each display device is preferably 400 ppi or more and 4000 ppi or less.
  • One embodiment of the present invention includes a display device having any one of the above-described structures, a module to which a connector such as an FPC (Flexible printed circuit) or TCP (Tape Carrier Package) is attached, or a COG (Chip On Glass) method.
  • a module such as a module in which an IC is mounted by a COF (Chip On Film) method or the like.
  • any of the above structures or manufacturing methods may be applied to a light-emitting device or an input / output device (such as a touch panel) instead of a display device.
  • One embodiment of the present invention is an electronic device including the display device having any one of the above structures and at least one of an antenna, a battery, a housing, a camera, a speaker, a microphone, and an operation button.
  • One embodiment of the present invention is a head-mounted display including the display device having any one of the above structures and at least one of an antenna, a battery, a camera, a speaker, a headphone, an earphone, a microphone, and an operation button. .
  • One embodiment of the present invention includes a left-eye display portion, a right-eye display portion, and at least one of an antenna, a battery, a camera, a speaker, a headphone, an earphone, a microphone, and an operation button.
  • Each of the display unit for the right eye and the display unit for the right eye is a head mounted display having the display device having any one of the above configurations.
  • One embodiment of the present invention is a projector including the display device having any one of the above structures and at least one of a lens, a mirror, a prism, an antenna, and an operation button.
  • a display device with extremely high definition and flexibility can be provided.
  • a display device with extremely high definition and a curved surface can be provided.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • Sectional drawing which shows an example of a display apparatus.
  • Sectional drawing which shows an example of a display apparatus.
  • Sectional drawing which shows an example of a display apparatus.
  • Sectional drawing which shows an example of a display apparatus Sectional drawing which shows an example of a display apparatus.
  • Sectional drawing which shows an example of a display apparatus Sectional drawing which shows an example of a display apparatus.
  • FIG. 6 is a circuit diagram illustrating an example of a pixel circuit.
  • Sectional drawing which shows an example of a display apparatus.
  • Sectional drawing which shows an example of a display apparatus.
  • Sectional drawing which shows an example of a display apparatus.
  • Sectional drawing which shows an example of a display apparatus.
  • FIG. 14 illustrates an example of an electronic device.
  • FIG. 14 illustrates an example of an electronic device.
  • FIG. 6 illustrates an example of an electronic device and a lighting device.
  • FIG. 14 illustrates an example of an electronic device.
  • FIG. 14 illustrates an example of an electronic device.
  • FIG. 14 illustrates an example of an electronic device.
  • Sectional drawing which shows an example of the processing method of wiring or an electrode.
  • Sectional drawing which shows an example of the processing method of wiring or an electrode.
  • Sectional drawing which shows an example of the processing method of wiring or an electrode.
  • the “substrate” preferably has a function of supporting at least one of a functional circuit, a functional element, a functional film, and the like. Note that the “substrate” may not have a function of supporting these, and for example, at least one of a function for protecting the surface of the device or a functional circuit, a functional element, a functional film, and the like is sealed. It may have a function to stop.
  • a glass substrate is often used as the substrate of the display device.
  • the glass may shrink due to a heating process in manufacturing the display device.
  • the thermal shrinkage of glass is derived from the relaxation of the glass structure caused by heat treatment. Specifically, by heating the glass, the glass structure is relaxed to a more stable state and densified (that is, contracted).
  • the maximum temperature in the manufacturing process may be about 600 ° C., so that the problem of thermal shrinkage of the glass substrate becomes significant.
  • a substrate with less heat shrinkage is used.
  • a transistor having a channel formation region over a substrate with little thermal contraction is formed.
  • a transistor and a display element are formed over a substrate with little heat shrinkage.
  • a crystalline substrate is used as the substrate with less heat shrinkage.
  • a crystalline substrate it is possible to prevent the pattern from being shifted due to thermal contraction of the substrate. Accordingly, deterioration in characteristics of the transistor or the display element or a reduction in yield in the manufacturing process can be suppressed.
  • a display device with extremely high definition can be manufactured. Specifically, by applying one embodiment of the present invention, a display device having a definition of 400 ppi to 4000 ppi or 4000 ppi can be manufactured.
  • the user can obtain a stereoscopic effect on the two-dimensional image. Since the display device of one embodiment of the present invention has high definition, the user can add a stereoscopic effect to an image without using a complicated configuration (for example, an image including binocular parallax or stereoscopic glasses). Obtainable.
  • the display device preferably has a large number of pixels. For example, it is preferable that full high-definition, 4K, or 8K display can be performed.
  • crystalline substrate for example, a single crystal substrate, a polycrystalline substrate, a compound substrate, an oxide substrate, or the like can be used. Specifically, silicon (Si), germanium (Ge), silicon germanium (SiGe), SiC, SiO 2 , GaAs, InAs, InP, GaSb, InSb, GaN, AlN, GaP, GaInAsP, Al 2 O 3 ( sapphire ), A crystalline substrate containing CdSe, CdS, ZnSe, ZnTe, ZnS, MgO, SrTiO 3 , ZnO, or the like can be used.
  • a silicon wafer is preferable because it is flatter and less swelled than glass.
  • the thermal shrinkage rate of the crystalline substrate is preferably greater than 0 ppm / ° C. and not greater than 10 ppm / ° C., more preferably greater than 0 ppm / ° C. and not greater than 5 ppm / ° C., and greater than 0 ppm / ° C. and not greater than 3 ppm / ° C. More preferably it is.
  • a single crystal substrate As the crystalline substrate, it is particularly preferable to use a single crystal substrate.
  • a single crystal semiconductor substrate, a single crystal metal substrate, an artificial crystal (quartz single crystal) substrate, or the like can be used.
  • a crystalline semiconductor substrate is used as a material of the crystalline semiconductor substrate.
  • a material of the crystalline semiconductor substrate for example, Si, Ge, SiGe, SiC, or the like can be suitably used.
  • a single crystal semiconductor substrate is preferably used, and a single crystal silicon substrate is more preferably used.
  • the crystalline substrate is polished.
  • the crystalline substrate is polished so that the display device has flexibility or the crystalline substrate has a portion with a thickness of 1 ⁇ m to 100 ⁇ m.
  • a display device manufactured using one embodiment of the present invention may be bent repeatedly by a user.
  • the display device may be able to maintain the bent state (the state having a curved surface) by being bent once.
  • the display device may not be bent.
  • a transistor, a display element, or the like may be manufactured over a flexible crystalline substrate.
  • the crystalline substrate may not be polished after the transistor, the display element, and the like are manufactured.
  • a crystalline substrate having flexibility may be polished to further reduce the thickness, weight, or flexibility.
  • the crystalline substrate preferably has a sufficient thickness at the time of manufacturing the transistor, the display element, and the like in order to facilitate the manufacturing process and the transport of the display device. It is preferable to reduce the thickness by polishing the crystalline substrate.
  • the display device of one embodiment of the present invention can be easily reduced in size and thickness, the display device can be reduced in weight and can be favorably used for portable electronic devices and wearable displays.
  • FIGS. 2A to 2C are top views of a display device of one embodiment of the present invention.
  • the pixel portion 160 is provided over the crystalline semiconductor substrate 101.
  • the pixel portion 160 is sealed with the crystalline semiconductor substrate 101, the adhesive layer 196, and the flexible substrate 191.
  • the signal line driver circuit 4003 and the scan line driver circuit 4004 are mounted in a region different from the region sealed with the adhesive layer 196 and the flexible substrate 191 over the crystalline semiconductor substrate 101.
  • the signal line driver circuit 4003 and the scan line driver circuit 4004 are each formed using a single crystal semiconductor or a polycrystalline semiconductor over a separately prepared substrate.
  • a variety of signals and potentials are supplied to the signal line driver circuit 4003, the scan line driver circuit 4004, or the pixel portion 160 from an FPC 4018a and an FPC 4018b.
  • a flexible substrate is also referred to as a flexible substrate.
  • the pixel portion 160 and the scan line driver circuit 150 are provided over the crystalline semiconductor substrate 101.
  • the pixel portion 160 and the scan line driver circuit 150 are sealed with the crystalline semiconductor substrate 101, the adhesive layer 196, and the flexible substrate 191.
  • the signal line driver circuit 4003 is mounted in a region different from the region sealed by the adhesive layer 196 and the flexible substrate 191 over the crystalline semiconductor substrate 101. Yes.
  • the signal line driver circuit 4003 is formed using a single crystal semiconductor or a polycrystalline semiconductor over a separately prepared substrate. 2B and 2C, various signals and potentials supplied to the signal line driver circuit 4003, the scan line driver circuit 4004, or the pixel portion 160 are supplied from an FPC 4018.
  • FIGS. 2B and 2C illustrate an example in which the signal line driver circuit 4003 is separately formed and mounted on the crystalline semiconductor substrate 101; however, the present invention is not limited to this structure.
  • the scan line driver circuit may be separately formed and mounted, or only part of the signal line driver circuit or part of the scan line driver circuit may be separately formed and mounted.
  • connection method of a driver circuit which is separately formed is not particularly limited, and wire bonding, COG, TCP, COF, or the like can be used.
  • 2A is an example in which the signal line driver circuit 4003 and the scanning line driver circuit 4004 are mounted by COG
  • FIG. 2B is an example in which the signal line driver circuit 4003 is mounted by COG
  • (C) is an example in which the signal line driver circuit 4003 is mounted by TCP.
  • the pixel portion 160 and the scan line driver circuit 150 provided over the crystalline semiconductor substrate 101 include a plurality of transistors.
  • the display device 110 may be fixed by another member.
  • the member glass, plastic, metal, alloy, wood, stone, or the like can be used.
  • the member may have a single layer structure or a laminated structure, and for example, a plate or a film may be laminated.
  • the member shall transmit visible light.
  • the member is disposed so as not to overlap the display surface side of the display device 110.
  • the display device 110 may be fixed to the member 210 while being bent along the curved surface of the member 210.
  • the display device 110 may be detachably fixed, or may be attached to the curved surface of the member 210 with an adhesive or the like.
  • the display device 110 may be sandwiched between the members 215a and 215b, and the display device 110 may be fixed in a bent state.
  • the members 215a and 215b may be attached to each other with an adhesive or the like.
  • the member 215a and the member 215b may be detachably fixed by a fastener or the like.
  • FIG. 1 is a cross-sectional view of the scan line driver circuit 150 and the pixel portion 160 in FIG.
  • the crystalline semiconductor substrate 101, the transistor 151n, the transistor 151p, the transistor 161, the transistor 162, the element isolation region 118, the light emitting element 180, the flexible substrate 191, the adhesive layer 192, the insulating film 193, the light shielding layer 194, and the coloring A layer 195, an adhesive layer 196, and the like are shown.
  • a channel formation region of a transistor can be provided in the crystalline semiconductor substrate 101. Since the crystalline semiconductor substrate 101 is hardly contracted by a heating step in manufacturing the display device, deterioration in characteristics of the transistor or the display element or a decrease in yield in the manufacturing process can be suppressed, so that a display device with high definition can be manufactured.
  • the crystalline semiconductor substrate 101 preferably has flexibility.
  • the thickness of the crystalline semiconductor substrate 101 is preferably 1 ⁇ m to 100 ⁇ m, and more preferably 1 ⁇ m to 50 ⁇ m.
  • Each of the scan line driver circuit 150 and the pixel portion 160 may include only a p-type transistor or may include only an n-type transistor. Both the p-type transistor and the n-type transistor may be included. You may have.
  • FIG. 1 shows an example in which a p-type transistor 151 p and an n-type transistor 151 n are provided over the crystalline semiconductor substrate 101 in the scan line driver circuit 150.
  • FIG. 1 illustrates an example in which n-type transistors 161 and 162 are provided over the crystalline semiconductor substrate 101 in the pixel portion 160.
  • One of the p-type impurity regions 113p included in the transistor 151p is electrically connected to the conductive film 124a over the insulating film 122 through the conductive film 123a, and the other is connected to the insulating film 122 through the conductive film 123b. It is electrically connected to the upper conductive film 124b.
  • the transistor 151n is an n-type transistor.
  • the transistor 151n includes a p-well 112p, an n-type impurity region 113n, an LDD region 114n, a gate insulating film 115, a gate 116b, a sidewall 117, an insulating film 121, an insulating film 122, a conductive film 123c, a conductive film 123d, a conductive film 124c, And a conductive film 124d.
  • One of n-type impurity regions 113n included in the transistor 151n is electrically connected to the conductive film 124c over the insulating film 122 through the conductive film 123c, and the other is connected to the insulating film 122 through the conductive film 123d. It is electrically connected to the upper conductive film 124d.
  • the transistor 161 is an n-type transistor.
  • the transistor 161 includes a p-well 112p, an n-type impurity region 113n, an LDD region 114n, a gate insulating film 115, a gate 116c, a sidewall 117, an insulating film 121, an insulating film 122, a conductive film 123e, a conductive film 123f, a conductive film 124e, And a conductive film 124f.
  • One of n-type impurity regions 113n included in the transistor 161 is electrically connected to the conductive film 124e over the insulating film 122 through the conductive film 123e, and the other is connected to the insulating film 122 through the conductive film 123f. It is electrically connected to the upper conductive film 124f.
  • the transistor 162 is an n-type transistor.
  • the transistor 162 includes a p-well 112p, an n-type impurity region 113n, an LDD region 114n, a gate insulating film 115, a gate 116d, a sidewall 117, an insulating film 121, an insulating film 122, a conductive film 123g, a conductive film 123h, a conductive film 124g, And a conductive film 124h.
  • One of n-type impurity regions 113n included in the transistor 162 is electrically connected to the conductive film 124g over the insulating film 122 through the conductive film 123g, and the other is connected to the insulating film 122 through the conductive film 123h. It is electrically connected to the upper conductive film 124h.
  • a gate 116 c of the transistor 161 is electrically connected to a source or a drain of the transistor 162. Specifically, the gate 116c is electrically connected to the conductive film 124g through the conductive film 123i. The conductive film 124g is electrically connected to the n-type impurity region 113n through the conductive film 123g.
  • an n-well 112n and a p-well 112p may be formed on part of the crystalline semiconductor substrate 101.
  • an impurity element such as boron imparting p-type conductivity may be added to the crystalline semiconductor substrate 101 to form the p-well 112p.
  • an n-well 112n may be formed by adding an impurity element such as phosphorus imparting n-type conductivity to the crystalline semiconductor substrate 101.
  • Each transistor has a pair of n-type impurity regions 113n or a pair of p-type impurity regions 113p.
  • One of the pair of impurity regions functions as a source region, and the other functions as a drain region.
  • the n-type impurity region 113n contains an impurity element such as phosphorus which imparts n-type conductivity.
  • the p-type impurity region 113p contains an impurity element such as boron that imparts p-type conductivity.
  • Each transistor may have a low concentration impurity region.
  • the LDD region 114n of the n-type transistor contains an impurity element such as phosphorus that imparts n-type conductivity.
  • the LDD region 114p of the p-type transistor contains an impurity element such as boron that imparts p-type conductivity.
  • the gate insulating film 115 is located between the crystalline semiconductor substrate 101 and the gate of each transistor.
  • the gate of each transistor overlaps with the channel formation region of the crystalline semiconductor substrate 101 with the gate insulating film 115 interposed therebetween.
  • Each transistor is electrically isolated by an element isolation region 118.
  • the element isolation region 118 can be formed using a LOCOS (Local Oxidation of Silicon) method, an STI (Shallow Trench Isolation) method, or the like.
  • LOCOS Local Oxidation of Silicon
  • STI Shallow Trench Isolation
  • the light-emitting element 180 includes an electrode 181, an EL layer 183, and an electrode 185.
  • the light emitting element 180 emits light to the colored layer 195 side.
  • One of the electrode 181 and the electrode 185 functions as an anode, and the other functions as a cathode.
  • a voltage higher than the threshold voltage of the light emitting element 180 is applied between the electrode 181 and the electrode 185, holes are injected into the EL layer 183 from the anode side and electrons are injected from the cathode side.
  • the injected electrons and holes are recombined in the EL layer 183, and the light-emitting substance contained in the EL layer 183 emits light.
  • the source or drain of the transistor 161 is electrically connected to the electrode 181 over the insulating film 125 through the conductive film 127.
  • Planarization treatment is preferably performed on the top surfaces of the insulating film 122, the insulating film 125, and the like as necessary by a CMP (Chemical Mechanical Polishing) method or the like.
  • CMP Chemical Mechanical Polishing
  • the electrode 181 functions as a pixel electrode and is provided for each light emitting element 180. Two adjacent electrodes 181 are electrically insulated by an insulating film 128.
  • the electrode 185 functions as a common electrode and is provided over the plurality of light emitting elements 180.
  • FIG. 1 shows an example in which the insulating film 128 is an inorganic insulating film
  • the insulating film 128 may be an organic insulating film.
  • the insulating film 193, the light-blocking layer 194, and the coloring layer 195 manufactured over a substrate different from the crystalline semiconductor substrate 101 are attached to the crystalline semiconductor substrate 101 with an adhesive layer 196.
  • the insulating film 193, the light-blocking layer 194, the coloring layer 195, and the like are not necessarily formed over the crystalline substrate. Note that in the case where fine processing is required for manufacturing, the insulating film 193, the light-blocking layer 194, the coloring layer 195, and the like are also preferably formed over the crystalline substrate.
  • the insulating film 193, the light shielding layer 194, and the coloring layer 195 may be directly formed over the flexible substrate 191.
  • the reliability of the display device may be insufficient if the gas barrier property of the flexible substrate 191 is low.
  • the insulating film 193 preferably has a high gas barrier property. In the structure illustrated in FIG.
  • the insulating film 193, the light-shielding layer 194, and the coloring layer 195 manufactured over the manufacturing substrate are transferred onto the crystalline semiconductor substrate 101 with the adhesive layer 196, and then the manufacturing substrate is peeled off to be insulated.
  • the film 193 and the flexible substrate 191 can be manufactured by bonding with an adhesive layer 192.
  • the light emitting element 180 overlaps the colored layer 195 with the adhesive layer 196 interposed therebetween.
  • the insulating film 128 overlaps the light shielding layer 194 with the adhesive layer 196 interposed therebetween.
  • FIG. 1 An example of a manufacturing method of the cross-sectional configuration example 1 (FIG. 1) will be described with reference to FIGS.
  • transistors 151p, 151n, 161, and 162 an insulating film 125, a light-emitting element 180, and the like are formed over the crystalline semiconductor substrate 101.
  • a separation layer 992 is formed over the manufacturing substrate 911.
  • an insulating film 193 is formed over the separation layer 992.
  • a light-blocking layer 194 and a colored layer 195 are formed over the insulating film 193.
  • the manufacturing substrate 911 a substrate having heat resistance that can withstand at least a processing temperature in the manufacturing process is used.
  • a glass substrate, a quartz substrate, a sapphire substrate, a semiconductor substrate, a ceramic substrate, a metal substrate, a resin substrate, a plastic substrate, or the like can be used.
  • a large glass substrate is preferably used as the formation substrate 911 in order to improve mass productivity.
  • an insulating film such as a silicon oxide film, a silicon oxynitride film, a silicon nitride film, or a silicon nitride oxide film is formed as a base film between the manufacturing substrate 911 and the separation layer 992. Then, contamination from the glass substrate can be prevented, which is preferable.
  • the separation layer 992 is formed using an element selected from tungsten, molybdenum, titanium, tantalum, niobium, nickel, cobalt, zirconium, zinc, ruthenium, rhodium, palladium, osmium, iridium, silicon, an alloy material containing the element, or the element It can form using the compound material etc. which contain.
  • the crystal structure of the layer containing silicon may be any of amorphous, microcrystalline, and polycrystalline.
  • a metal oxide such as aluminum oxide, gallium oxide, zinc oxide, titanium dioxide, indium oxide, indium tin oxide, indium zinc oxide, or In—Ga—Zn oxide may be used. It is preferable to use a refractory metal material such as tungsten, titanium, or molybdenum for the separation layer 992 because the degree of freedom in the formation process of the layer to be separated is increased.
  • the release layer 992 can be formed by, for example, a sputtering method, a plasma CVD method, a coating method (including a spin coating method, a droplet discharge method, a dispensing method, or the like), a printing method, or the like.
  • the thickness of the release layer 992 is, for example, 1 nm to 200 nm, preferably 10 nm to 100 nm.
  • a tungsten layer, a molybdenum layer, or a layer containing a mixture of tungsten and molybdenum is preferably formed.
  • a layer containing tungsten oxide or oxynitride, a layer containing molybdenum oxide or oxynitride, or a layer containing an oxide or oxynitride of a mixture of tungsten and molybdenum may be formed.
  • the mixture of tungsten and molybdenum corresponds to, for example, an alloy of tungsten and molybdenum.
  • a layer containing tungsten is formed, and an insulating film formed using an oxide is formed thereover.
  • a layer containing an oxide of tungsten is formed at the interface between the tungsten layer and the insulating film.
  • the surface of the layer containing tungsten is subjected to thermal oxidation treatment, oxygen plasma treatment, nitrous oxide (N 2 O) plasma treatment, treatment with a solution having strong oxidizing power such as ozone water, and the like to form tungsten oxide.
  • An included layer may be formed.
  • the plasma treatment or the heat treatment may be performed in oxygen, nitrogen, nitrous oxide alone, or a mixed gas atmosphere of the gas and another gas.
  • the peeling layer is not necessarily provided.
  • glass is used as a manufacturing substrate, and an organic resin such as polyimide, polyester, polyolefin, polyamide, polycarbonate, or acrylic is formed in contact with the glass.
  • an organic resin such as polyimide, polyester, polyolefin, polyamide, polycarbonate, or acrylic is formed in contact with the glass.
  • the adhesion between the manufacturing substrate and the organic resin is improved by performing laser irradiation or heat treatment.
  • a transistor or the like is formed over the organic resin.
  • laser irradiation can be performed at an energy density higher than that of the previous laser irradiation, or heat treatment can be performed at a temperature higher than that of the previous heat treatment, so that separation can be performed at the interface between the formation substrate and the organic resin.
  • the liquid may penetrate into the interface between the manufacturing substrate and the organic resin to be separated.
  • the organic resin may be used as a substrate included in the device, or the organic resin may be removed and another substrate may be bonded to the exposed surface of the layer to be peeled using an adhesive.
  • a metal layer may be provided between the manufacturing substrate and the organic resin, and current may be supplied to the metal layer to heat the metal layer, and separation may be performed at the interface between the metal layer and the organic resin.
  • the layer formed as the layer to be peeled there is no particular limitation on the layer formed as the layer to be peeled.
  • an insulating film 193 in contact with the peeling layer 992, a light-blocking layer 194, and a coloring layer 195 are manufactured.
  • the insulating film 193 is preferably formed as a single layer or a multilayer using a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon nitride oxide film, or the like.
  • the insulating film 193 can be formed by a sputtering method, a plasma CVD method, a coating method, a printing method, or the like.
  • the insulating film 193 is formed at a film formation temperature of 250 ° C. or more and 400 ° C. or less by a plasma CVD method.
  • a dense film having a very high gas barrier property can be obtained.
  • the thickness of the insulating film 193 is preferably 10 nm to 3000 nm, and more preferably 200 nm to 1500 nm.
  • the crystalline semiconductor substrate 101 and the formation substrate 911 are attached to each other using an adhesive layer 196.
  • the starting point of peeling is formed using a laser beam or a sharp blade.
  • a crack in the release layer 992 causing a film crack or a crack
  • a starting point of the release can be formed.
  • part of the film included in the insulating film 193 can be dissolved, evaporated, or thermally destroyed by laser light irradiation.
  • the insulating film 193 and the manufacturing substrate are formed from the starting point of the separation by a physical force (a process of peeling with a human hand or a jig, or a process of separating by rotating a roller in close contact with the substrate). 911 is separated.
  • a separation layer 992 separated from the insulating film 193 and a manufacturing substrate 911 are shown.
  • the exposed insulating film 193 and the flexible substrate 191 are bonded using the adhesive layer 192 (FIG. 5).
  • the crystalline semiconductor substrate 101 is polished or ground to reduce the thickness.
  • the thickness of the crystalline semiconductor substrate 101 before polishing is shown by a dotted line.
  • a yield of a display device with high definition that is hardly affected by thermal contraction of the substrate even when heat treatment is performed. can be made well.
  • a highly reliable display device can be manufactured by forming an insulating film over a manufacturing substrate at a high temperature. Further, by peeling the manufacturing substrate, attaching a flexible substrate, and polishing the crystalline substrate, the display device can be reduced in thickness, weight, and flexibility.
  • a cross-sectional configuration example different from the cross-sectional configuration example 1 is shown below. Note that detailed description of the same parts as those in the cross-sectional configuration example 1 may be omitted.
  • ⁇ Cross-section configuration example 2> 6A and 6B are cross-sectional views of a pixel portion different from that in FIG.
  • Cross-sectional configuration example 2 is different from the configuration in FIG. 1 in that transistors 163 and 164 are included.
  • FIG. 6A is a cross-sectional view of the transistor 163 in the channel length direction
  • FIG. 6B is a cross-sectional view of the transistor 163 in the channel width direction.
  • a Fin-type transistor such as the transistor 163 and the transistor 164 may be used for the display device.
  • the effective channel width can be increased and the on-state characteristics of the transistor can be improved.
  • the contribution of the electric field of the gate can be increased, off characteristics of the transistor can be improved.
  • part of the crystalline semiconductor substrate 101 has a convex shape, and a gate insulating film 115 and a gate 116c are provided along a side surface and an upper surface thereof.
  • a gate insulating film 115 and a gate 116c are provided along a side surface and an upper surface thereof.
  • a semiconductor film having a convex shape may be formed by processing an SOI (Silicon on Insulator) substrate.
  • the transistor 163 is an n-type transistor.
  • the transistor 163 includes an n-type impurity region 113n, an LDD region 114n, a gate insulating film 115, a gate 116c, a sidewall 117, an insulating film 121, an insulating film 122, a conductive film 123e, a conductive film 123f, a conductive film 124e, a conductive film 124f, A conductive film 129e and a conductive film 129f are included.
  • One of n-type impurity regions 113n included in the transistor 163 is electrically connected to the conductive film 124e over the insulating film 122 through the conductive film 123e and the conductive film 129e, and the other is connected to the conductive film 123f and the conductive film. It is electrically connected to the conductive film 124f over the insulating film 122 through 129f.
  • the transistor 164 is an n-type transistor.
  • the transistor 164 includes an n-type impurity region 113n, an LDD region 114n, a gate insulating film 115, a gate 116d, a sidewall 117, an insulating film 121, an insulating film 122, a conductive film 123g, a conductive film 123h, a conductive film 124g, a conductive film 124h, A conductive film 129g and a conductive film 129h are included.
  • One of n-type impurity regions 113n included in the transistor 164 is electrically connected to the conductive film 124g over the insulating film 122 through the conductive film 123g and the conductive film 129g, and the other is connected to the conductive film 123h and the conductive film. It is electrically connected to the conductive film 124h on the insulating film 122 through 129h.
  • the gate 116c of the transistor 163 is electrically connected to the source or the drain of the transistor 164. Specifically, as illustrated in FIGS. 6A and 6B, the gate 116c is electrically connected to the conductive film 124g through the conductive film 123i and the conductive film 129i. As shown in FIG. 6A, the conductive film 124g is electrically connected to the n-type impurity region 113n through the conductive film 123g and the conductive film 129g.
  • the source or drain of the transistor 163 is electrically connected to the electrode 181 over the insulating film 125 through the conductive film 126 and the conductive film 127.
  • FIG. 6A illustrates an example in which the insulating film 128 is an organic insulating film.
  • FIG. 7 is a cross-sectional view of a pixel portion different from that in FIG.
  • FIG. 7 is different from FIG. 1 in that an insulating film 197 is provided over the light-emitting element and a colored layer is provided over the insulating film 197.
  • FIG. 7 illustrates the crystalline semiconductor substrate 101, the transistor 161, the transistor 162, the element isolation region 118, the light emitting element 180G, the light emitting element 180R, the colored layer 195R, the colored layer 195G, the insulating film 197, and the like.
  • FIG. 7 shows a cross-sectional view of the adjacent red subpixel and green subpixel, the color and arrangement of the subpixels constituting the pixel are not limited.
  • the red subpixel includes a light emitting element 180R.
  • the green subpixel includes a light emitting element 180G.
  • the light-emitting element 180R and the light-emitting element 180G emit light having different colors depending on whether the material of at least one layer (for example, the light-emitting layer) included in the EL layer 183 is different or a microcavity structure is applied. It may be possible to inject.
  • the light emitted from the light emitting element 180R passes through the colored layer 195R, so that red light is extracted from the red subpixel.
  • light emitted from the light emitting element 180G passes through the colored layer 195G, so that green light is extracted from the green subpixel.
  • the light emitting element 180R and the light emitting element 180G may have the same configuration.
  • each of the light emitting element 180R and the light emitting element 180G may be configured to emit white light.
  • the white light emitted from the light emitting element 180R passes through the colored layer 195R, so that the red light is extracted from the red subpixel.
  • white light emitted from the light emitting element 180G passes through the colored layer 195G, so that green light is extracted from the green subpixel.
  • An insulating film 197 is provided over the light-emitting element 180R and the light-emitting element 180G.
  • a colored layer 195R is provided over the light-emitting element 180R with an insulating film 197 interposed therebetween.
  • a colored layer 195G is provided over the light-emitting element 180G with an insulating film 197 interposed therebetween.
  • an insulating film 197 having a high gas barrier property may be formed over the light-emitting element, and a coloring layer may be formed over the insulating film 197.
  • the insulating film 197 functions as a sealing layer of the light emitting element. By providing the sealing layer, it is not necessary to separately provide a substrate for sealing, so that it is easy to make the display device thinner, lighter, flexible, or the like. Further, in the case where the colored layer is formed over a substrate different from the light-emitting element, the higher the definition of the display device, the higher the accuracy of bonding of the substrates to align the position of the light-emitting element and the colored layer. On the other hand, in the structure of FIG. 7, since the colored layer can be directly formed on the light emitting element through the insulating film 197, a technique for attaching the substrate with high accuracy is unnecessary, and the colored layer can be formed in a desired region. It becomes easy.
  • a sealing layer may be provided over the light-emitting element, and a flexible substrate for sealing may be attached using an adhesive layer. That is, a sealing layer may be provided between the light emitting element 180 and the adhesive layer 196 in FIG.
  • the structures of the transistor 161 and the transistor 162 illustrated in FIG. 7 are similar to those in FIG.
  • FIG. 8 is a cross-sectional view of the scanning line driver circuit 150 and the pixel portion 160 which are different from those in FIG.
  • FIG. 8 is different from FIG. 1 in that the color separation method is applied instead of the color filter method.
  • FIG. 8 illustrates the crystalline semiconductor substrate 101, the transistor 151n, the transistor 151p, the transistor 161, the transistor 162, the element isolation region 118, the light emitting element 180, the insulating film 197, and the like.
  • FIG. 8 illustrates an example in which the entire EL layer 183 is separately applied between sub-pixels of different colors, but one embodiment of the present invention is not limited thereto.
  • at least one layer (e.g., a light-emitting layer) included in the EL layer 183 is separately applied between sub-pixels having different colors.
  • An insulating film 197 is provided over the light emitting element 180.
  • the insulating film functioning as a sealing layer over the light-emitting element it is not necessary to separately provide a substrate for sealing, so that the display device can be easily reduced in thickness, weight, flexibility, and the like.
  • the light emitting element 180 emits light to the insulating film 197 side.
  • the structures of the transistor 151n, the transistor 151p, the transistor 161, and the transistor 162 illustrated in FIG. 8 are similar to those in FIG.
  • FIG. 9A is a cross-sectional view of a pixel portion 160 which is different from that in FIG.
  • FIG. 9A is different from FIG. 1 in that a liquid crystal element is used as a display element.
  • the liquid crystal element 250 is applied with an FFS (Fringe Field Switching) mode.
  • the liquid crystal element 250 includes a conductive film 251, a conductive film 252, and a liquid crystal 254.
  • the alignment of the liquid crystal 254 can be controlled by an electric field generated between the conductive films 251 and 252.
  • the conductive film 251 can function as a pixel electrode.
  • the conductive film 252 can function as a common electrode.
  • the display device of one embodiment of the present invention can be used as a reflective liquid crystal display device. Can function.
  • a conductive material that transmits visible light is used for the conductive films 251 and 252, so that the display device of one embodiment of the present invention can be a transmissive liquid crystal display. It can function as a device.
  • a material containing one kind selected from indium (In), zinc (Zn), and tin (Sn) may be used.
  • indium oxide, indium tin oxide (ITO: Indium Tin Oxide) indium zinc oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, Examples thereof include indium tin oxide containing titanium oxide, indium tin oxide containing silicon oxide, zinc oxide, and zinc oxide containing gallium.
  • a film containing graphene can also be used. The film containing graphene can be formed, for example, by reducing a film containing graphene oxide formed in a film shape.
  • a semiconductor such as an oxide semiconductor containing an impurity element may be used.
  • Examples of the conductive material that reflects visible light include aluminum, silver, and alloys containing these metal materials.
  • the conductive film 251 functioning as a pixel electrode is electrically connected to the source or drain of the transistor 161.
  • the conductive film 251 is electrically connected to the conductive film 124e through the conductive film 127.
  • the conductive film 252 has a comb-like upper surface shape (also referred to as a planar shape) or an upper surface shape provided with a slit.
  • An insulating film 253 is provided between the conductive films 251 and 252.
  • the conductive film 251 has a portion overlapping with the conductive film 252 with the insulating film 253 provided therebetween.
  • the conductive film 252 has a portion where the conductive film 252 is not provided.
  • the flexible substrate 191 is provided with a light shielding layer 194, a colored layer 195, and an overcoat 255.
  • the colored layer 195 has a portion overlapping with the liquid crystal element 250.
  • the overcoat 255 preferably has a function of preventing impurities included in the colored layer 195, the light-shielding layer 194, and the like from diffusing into the liquid crystal 254.
  • the overcoat 255 may not be provided.
  • an alignment film in contact with the liquid crystal 254 may be provided.
  • the alignment film can control the alignment of the liquid crystal 254.
  • the display device includes a spacer 256.
  • the spacer 256 has a function of preventing the distance between the crystalline semiconductor substrate 101 and the flexible substrate 191 from approaching a certain distance.
  • FIG. 9A illustrates an example in which the spacer 256 is provided over the overcoat 255; however, one embodiment of the present invention is not limited thereto.
  • the spacer 256 may be provided on the crystalline semiconductor substrate 101 side, or may be provided on the flexible substrate 191 side.
  • FIG. 9A illustrates an example in which the spacer 256 is in contact with the insulating film 253 and the overcoat 255; however, the spacer 256 is in contact with a structure provided on either the crystalline semiconductor substrate 101 side or the flexible substrate 191 side. It does not have to be.
  • a granular spacer may be used as the spacer 256.
  • a material such as silica can be used.
  • an elastic material such as resin or rubber. At this time, the granular spacer may be crushed in the vertical direction.
  • the display device of one embodiment of the present invention functions as a transmissive liquid crystal display device
  • two polarizing plates are provided so as to sandwich the display portion.
  • Light from a backlight disposed outside the polarizing plate is incident through the polarizing plate.
  • the orientation of the liquid crystal 254 can be controlled by the voltage applied between the conductive film 251 and the conductive film 252, and the optical modulation of light can be controlled. That is, the intensity of light emitted through the polarizing plate can be controlled.
  • the incident light is absorbed by the colored layer 195 outside the specific wavelength region, the emitted light is, for example, light exhibiting red, blue, or green.
  • a circular polarizing plate can be used.
  • a circularly-polarizing plate what laminated
  • the circularly polarizing plate can reduce the viewing angle dependency of display of the display device.
  • liquid crystal element 250 liquid crystal elements to which various modes are applied can be used without being limited thereto.
  • VA Very Alignment
  • TN Transmission Nematic
  • IPS In-Plane-Switching
  • ASM Analy Symmetrical Aligned Micro-cell
  • OCB Optical BLC
  • AFLC Antiferroelectric Liquid Crystal
  • a normally black liquid crystal display device such as a transmissive liquid crystal display device using a vertical alignment (VA) mode may be used.
  • VA vertical alignment
  • an MVA (Multi-Domain Vertical Alignment) mode, a PVA (Patterned Vertical Alignment) mode, an ASV mode, or the like can be used.
  • the liquid crystal element is an element that controls transmission or non-transmission of light by an optical modulation action of liquid crystal.
  • the optical modulation action of the liquid crystal is controlled by an electric field applied to the liquid crystal (including a horizontal electric field, a vertical electric field, or an oblique electric field).
  • a thermotropic liquid crystal a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal (PDLC), a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like is used.
  • PDLC polymer dispersed liquid crystal
  • ferroelectric liquid crystal an antiferroelectric liquid crystal, or the like
  • These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
  • an optimal liquid crystal material can be used from positive liquid crystals and negative liquid crystals depending on the mode and design to be applied.
  • a liquid crystal exhibiting a blue phase for which an alignment film is unnecessary may be used.
  • the blue phase is one of the liquid crystal phases.
  • a liquid crystal composition mixed with 5% by weight or more of a chiral agent is used for the liquid crystal 254 in order to improve the temperature range.
  • a liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed and is optically isotropic.
  • a liquid crystal composition including a liquid crystal exhibiting a blue phase and a chiral agent does not require alignment treatment and has a small viewing angle dependency.
  • a rubbing process is unnecessary, so that electrostatic breakdown caused by the rubbing process can be prevented, and defects or breakage of the liquid crystal display device during the manufacturing process can be reduced.
  • a substrate that is directly touched by a detection object such as a finger or a stylus may be provided above the flexible substrate 191.
  • a polarizing plate or a circularly polarizing plate is preferably provided between the flexible substrate 191 and the substrate.
  • a protective layer ceramic coating or the like
  • an inorganic insulating material such as silicon oxide, aluminum oxide, yttrium oxide, and yttria-stabilized zirconia (YSZ) can be used.
  • tempered glass may be used for the substrate.
  • a glass to which a physical or chemical treatment is applied by an ion exchange method or an air cooling tempering method and a compressive stress is applied to the surface can be used.
  • transistors 161 and 162 illustrated in FIG. 9A are similar to those in FIG.
  • FIGS. 1-10 Further, other structural examples of the liquid crystal element are illustrated in FIGS.
  • both the conductive film 251 and the conductive film 252 have a comb-like upper surface shape (also referred to as a planar shape) or an upper surface shape provided with slits. May be.
  • the end of the slit of one conductive film may overlap with the end of the slit of the other conductive film.
  • a cross-sectional view in this case is shown in FIG.
  • the conductive film 251 and the conductive film 252 may have a portion where both are not provided.
  • a cross-sectional view in this case is shown in FIG.
  • the conductive film 251 and the conductive film 252 may have a portion where they overlap each other when viewed from above.
  • a cross-sectional view in this case is shown in FIG.
  • the conductive film 251 may overlap with the conductive film 252 with the liquid crystal 254 interposed therebetween. That is, the conductive film 251 may be provided on the crystalline semiconductor substrate 101 side with respect to the liquid crystal 254, and the conductive film 252 may be provided on the flexible substrate 191 side with respect to the liquid crystal 254. Further, a polymer wall 257 made of resin or the like may be provided in the liquid crystal 254. Even when a flexible liquid crystal display device is bent by providing a polymer wall 257 between a pair of layers in contact with the liquid crystal 254 (between the conductive film 251 and the conductive film 252 in FIG. 9E), The distance between the pair of substrates can be kept constant.
  • an alignment film 258 may be provided between the liquid crystal 254 and the conductive film 251.
  • an alignment film 259 may be provided between the liquid crystal 254 and the conductive film 252.
  • cross-sectional configuration examples 1 to 5 an example in which a channel formation region of a transistor is provided in the crystalline semiconductor substrate 101 is described; however, one embodiment of the present invention is not limited thereto.
  • a semiconductor film is separately formed on the crystalline substrate 102 is shown.
  • silicon such as polycrystalline silicon, or an oxide semiconductor containing at least one of indium, gallium, and zinc can be used as a semiconductor material.
  • FIG. 10 is a cross-sectional view of the scanning line driver circuit 150 and the pixel portion 160 which are different from those in FIG. Further, FIG. 10 also shows a cross-sectional view of a connection portion of the FPC 4018 in the display device.
  • the crystalline substrate 102, the transistor 153, the transistor 165, the transistor 166, the light emitting element 180, the flexible substrate 191, the adhesive layer 192, the insulating film 193, the light shielding layer 194, the coloring layer 195, the adhesive layer 196, and the like are shown. ing.
  • the crystalline substrate 102 illustrated in FIG. 10 may be any of a conductive substrate, a semiconductor substrate, and an insulating substrate. Since the crystalline substrate 102 is hardly contracted by a heating process in manufacturing the display device, deterioration in characteristics of the transistor or the display element or a decrease in yield in the manufacturing process can be suppressed, so that a display device with high definition can be manufactured.
  • the crystalline substrate 102 preferably has flexibility.
  • the thickness of the crystalline substrate 102 is preferably 1 ⁇ m to 100 ⁇ m, and more preferably 1 ⁇ m to 50 ⁇ m.
  • a transistor 153 is provided over the crystalline substrate 102 with an insulating film 111 interposed therebetween.
  • a transistor 165 and a transistor 166 are provided over the crystalline substrate 102 with an insulating film 111 interposed therebetween.
  • the insulating film 111 functions as a base film.
  • the insulating film 111 is not necessarily provided.
  • the transistors 153, 165, and 166 have the same structure, but any of the transistors may have a different structure.
  • Various semiconductors can be used for a channel formation region of the transistor.
  • silicon such as an oxide semiconductor, polycrystalline silicon, single crystal silicon transferred from a single crystal silicon substrate, or the like can be given.
  • the structure of the transistor is not limited.
  • Each transistor illustrated in FIG. 10 is a bottom-gate transistor including a gate 116, a gate insulating film 115, a semiconductor film 131, and two conductive films 123.
  • One of the two conductive films 123 functions as a source, and the other functions as a drain.
  • Each transistor is covered with an insulating film 121.
  • the light-emitting element 180 includes an electrode 181, an EL layer 183, and an electrode 185.
  • the light emitting element 180 emits light to the colored layer 195 side.
  • a source or a drain of the transistor 165 is electrically connected to an electrode 181 over the insulating film 125 through a conductive film 124 over the insulating film 122.
  • the electrode 181 functions as a pixel electrode and is provided for each light emitting element 180. Two adjacent electrodes 181 are electrically insulated by an insulating film 128.
  • the electrode 185 functions as a common electrode and is provided over the plurality of light emitting elements 180.
  • the conductive film 187 over the gate insulating film 115 functions as a lead wiring for connecting an external input terminal that transmits an external signal (such as a video signal, a clock signal, a start signal, or a reset signal) or a potential.
  • an external signal such as a video signal, a clock signal, a start signal, or a reset signal
  • a conductive film functioning as a lead-out wiring is preferably formed using the same material and the same process as at least one of an electrode or another wiring constituting a transistor or a display element because an increase in the number of processes can be suppressed.
  • the conductive film 187 is manufactured using the same material and the same process as the source and drain of the transistor, and the conductive film 189 is manufactured using the same material and the same process as the electrode 181 of the light-emitting element 180.
  • the insulating film 193, the light-blocking layer 194, and the coloring layer 195 which are manufactured over a substrate different from the crystalline substrate 102 are attached to the crystalline substrate 102 with an adhesive layer 196.
  • the light emitting element 180 overlaps the colored layer 195 with the adhesive layer 196 interposed therebetween.
  • the insulating film 128 overlaps the light shielding layer 194 with the adhesive layer 196 interposed therebetween.
  • a transistor and a display element are formed over a crystalline substrate; therefore, a display device which is hardly affected by thermal contraction of the substrate even when heat treatment is performed and has extremely high definition is manufactured with high yield. Can do.
  • a highly reliable display device can be manufactured by forming an insulating film over a manufacturing substrate at a high temperature. Further, the display device can be reduced in thickness, weight, and flexibility by peeling the manufacturing substrate, attaching a flexible substrate, and polishing or grinding the crystalline substrate.
  • FIG. 11 is a cross-sectional view of the scanning line driver circuit 150 and the pixel portion 160 which are different from those in FIG.
  • Cross-sectional configuration example 7 is different from the configuration of FIG.
  • the crystalline substrate 102, the insulating film 111, the transistor 154, the transistor 167, the transistor 168, the light emitting element 180, the flexible substrate 191, the adhesive layer 192, the insulating film 193, the light shielding layer 194, the colored layer 195, and the adhesive layer. 196 etc. are shown.
  • Each transistor illustrated in FIG. 11 is a top-gate transistor including a gate 116, a gate insulating film 115, a semiconductor film (including a channel formation region 119a and a low-resistance region 119b), and two conductive films 123.
  • One of the two conductive films 123 functions as a source, and the other functions as a drain.
  • a source or a drain of the transistor 167 is electrically connected to an electrode 181 over the insulating film 125 through a conductive film 124 over the insulating film 122.
  • the transistor 169 illustrated in FIG. 12A can be applied to the display device of one embodiment of the present invention.
  • FIG. 12A shows a top view of the transistor 169.
  • FIG. FIG. 12B is a cross-sectional view in the channel length direction of the transistor 169 in the display device of one embodiment of the present invention.
  • a transistor 169 illustrated in FIG. 12B corresponds to a cross section along the dashed-dotted line X1-X2 in FIG.
  • FIG. 12C is a cross-sectional view in the channel width direction of the transistor 169 in the display device of one embodiment of the present invention.
  • a transistor 169 illustrated in FIG. 12C corresponds to a cross section taken along dashed-dotted line Y1-Y2 in FIG.
  • the transistor 169 is a kind of top-gate transistor having a back gate.
  • the semiconductor film 119 is formed over the protrusion provided in the insulating film 135.
  • the side surface of the semiconductor film 119 can be covered with the gate 116.
  • the transistor 169 has a structure in which the semiconductor film 119 can be electrically surrounded by the electric field of the gate 116.
  • the structure of a transistor that electrically surrounds a semiconductor film in which a channel is formed by an electric field of a conductive film is referred to as a surrounded channel (s-channel) structure.
  • a transistor having an s-channel structure is also referred to as an “s-channel transistor” or an “s-channel transistor”.
  • a channel can be formed in the entire semiconductor film 119 (bulk).
  • the drain current of the transistor can be increased and a larger on-current can be obtained. Further, the entire region of the channel formation region formed in the semiconductor film 119 can be depleted by the electric field of the gate 116. Therefore, in the s-channel structure, the off-state current of the transistor can be further reduced.
  • the back gate 136 is provided on the crystalline substrate 102 with an insulating film 111 interposed therebetween.
  • the conductive film 123x provided over the insulating film 122 is electrically connected to the semiconductor film 119 through the gate insulating film 115, the insulating film 121x, the insulating film 121y, and the opening 747x provided in the insulating film 122.
  • the conductive film 123y provided over the insulating film 122 is electrically connected to the semiconductor film 119 through the gate insulating film 115, the insulating film 121x, the insulating film 121y, and the opening 747y provided in the insulating film 122. Yes.
  • the gate 116 provided over the gate insulating film 115 is electrically connected to the back gate 136 through an opening 748 x and an opening 748 y provided in the gate insulating film 115 and the insulating film 135. Therefore, the same potential is supplied to the gate 116 and the back gate 136.
  • One of the opening 748x and the opening 748y may not be provided. Further, both the opening 748x and the opening 748y may not be provided. In the case where both the opening 748x and the opening 748y are not provided, different potentials can be supplied to the back gate 136 and the gate 116.
  • an oxide semiconductor silicon such as polycrystalline silicon, single crystal silicon transferred from a single crystal silicon substrate, or the like can be given.
  • the conductive film 123x is electrically connected to the electrode 181 over the insulating film 125.
  • FIG. 13 is a cross-sectional view of a pixel portion 160 different from that in FIG.
  • FIG. 13 a crystalline substrate 951, a transistor 165, a coloring layer 195, a light-emitting element 180, a flexible substrate 191, an adhesive layer 196, and the like are illustrated.
  • the crystalline substrate 951 shown in FIG. 13 a crystalline substrate that transmits visible light is used.
  • the crystalline substrate 951 can be a substrate on the display surface side of the display device.
  • FIG. 13 illustrates a display device having a bottom emission structure.
  • the crystalline substrate 951 is hardly contracted by a heating step in manufacturing the display device, deterioration in characteristics of the transistor or the display element or reduction in yield in the manufacturing process can be suppressed, so that a display device with high definition can be manufactured. .
  • the crystalline substrate 951 preferably has flexibility.
  • the thickness of the crystalline substrate 951 is preferably 1 ⁇ m to 100 ⁇ m, and more preferably 1 ⁇ m to 50 ⁇ m.
  • a transistor 165 is provided over the crystalline substrate 951.
  • An insulating film 111 functioning as a base film may be provided between the crystalline substrate 951 and the transistor 165.
  • the light-emitting element 180 includes an electrode 181, an EL layer 183, and an electrode 185.
  • the light emitting element 180 emits light to the colored layer 195 side.
  • FIG. 13 illustrates an example in which the coloring layer 195 is provided over the insulating film 121; however, one embodiment of the present invention is not limited thereto.
  • the coloring layer 195 can be provided between the crystalline substrate 951 and the electrode 181.
  • the structure of the transistor 165 illustrated in FIG. 13 is similar to that of FIG.
  • FIG. 14 is a cross-sectional view of the scanning line driver circuit 150 and the pixel portion 160 which are different from those in FIG.
  • the 14 illustrates the crystalline substrate 102, the insulating film 111, the transistor 152n, the transistor 152p, the transistor 155, the transistor 156, the light-emitting element 180, the flexible substrate 191, the adhesive layer 196, and the like.
  • an SOI substrate may be used.
  • FIG. 14 illustrates an example in which a p-type transistor 152p and an n-type transistor 152n are provided over the crystalline substrate 102 with an insulating film 111 interposed therebetween in the scan line driver circuit 150.
  • FIG. 14 illustrates an example in which an n-type transistor 155 and a transistor 156 are provided over the crystalline substrate 102 with the insulating film 111 interposed therebetween in the pixel portion 160.
  • the transistor 152p is a p-type transistor.
  • the transistor 152p includes a semiconductor film 131 (including a p-type impurity region 113p and an LDD region 114p in part), a gate insulating film 115, a gate 116a, a sidewall 117, an insulating film 122, a conductive film 123a, a conductive film 123b, and a conductive film.
  • a film 124a and a conductive film 124b are included.
  • One of the p-type impurity regions 113p included in the transistor 152p is electrically connected to the conductive film 124a over the insulating film 122 through the conductive film 123a, and the other is connected to the insulating film 122 through the conductive film 123b. It is electrically connected to the upper conductive film 124b.
  • the transistor 152n is an n-type transistor.
  • the transistor 152n includes a semiconductor film 131 (including an n-type impurity region 113n and an LDD region 114n in part), a gate insulating film 115, a gate 116b, a sidewall 117, an insulating film 122, a conductive film 123c, a conductive film 123d, and a conductive film.
  • a film 124c and a conductive film 124d are included.
  • One of n-type impurity regions 113n included in the transistor 152n is electrically connected to the conductive film 124c over the insulating film 122 through the conductive film 123c, and the other is connected to the insulating film 122 through the conductive film 123d. It is electrically connected to the upper conductive film 124d.
  • the transistor 155 is an n-type transistor.
  • the transistor 155 includes a semiconductor film 131 (including an n-type impurity region 113n and an LDD region 114n in part), a gate insulating film 115, a gate 116c, a sidewall 117, an insulating film 122, a conductive film 123e, a conductive film 123f, and a conductive film.
  • a film 124e and a conductive film 124f are included.
  • One of n-type impurity regions 113n included in the transistor 155 is electrically connected to the conductive film 124e over the insulating film 122 through the conductive film 123e, and the other is connected to the insulating film 122 through the conductive film 123f. It is electrically connected to the upper conductive film 124f.
  • the transistor 156 is an n-type transistor.
  • the transistor 156 includes a semiconductor film 131 (including an n-type impurity region 113n and an LDD region 114n in part), a gate insulating film 115, a gate 116d, a sidewall 117, an insulating film 122, a conductive film 123g, a conductive film 123h, and a conductive film.
  • a film 124g and a conductive film 124h are included.
  • One of n-type impurity regions 113n included in the transistor 156 is electrically connected to the conductive film 124g over the insulating film 122 through the conductive film 123g, and the other is connected to the insulating film 122 through the conductive film 123h. It is electrically connected to the upper conductive film 124h.
  • a gate 116 c of the transistor 155 is electrically connected to a source or a drain of the transistor 156. Specifically, the gate 116c is electrically connected to the conductive film 124g through the conductive film 123i. The conductive film 124g is electrically connected to the n-type impurity region 113n through the conductive film 123g.
  • the gate insulating film 115 is located between the semiconductor film 131 and the gate of each transistor.
  • the gate of each transistor overlaps with the channel formation region of the semiconductor film 131 with the gate insulating film 115 interposed therebetween.
  • the light-emitting element 180 includes an electrode 181, an EL layer 183, and an electrode 185.
  • the light emitting element 180 emits light to the flexible substrate 191 side.
  • a source or a drain of the transistor 155 is electrically connected to the electrode 181 over the insulating film 125 through the conductive film 127.
  • the electrode 181 functions as a pixel electrode and is provided for each light emitting element 180. Two adjacent electrodes 181 are electrically insulated by an insulating film 128.
  • the EL layer 183 is separately applied between sub-pixels of different colors.
  • the electrode 185 functions as a common electrode and is provided over the plurality of light emitting elements 180. Furthermore, it is preferable to provide an insulating film functioning as a sealing layer over the light-emitting element 180 because the reliability of the light-emitting element 180 is improved.
  • ⁇ Cross-section configuration example 10> 15 is a cross-sectional view of the scanning line driver circuit 150 and the pixel portion 160 which are different from those in FIG.
  • the cross-sectional configuration example 10 is different from the configuration in FIG. 10 in that it does not have the crystalline substrate 102 and the insulating film 111 but has a flexible substrate 901, an adhesive layer 903, and an insulating film 105.
  • a layer 195, an adhesive layer 196, and the like are shown.
  • the crystalline substrate may be peeled off and another element may be attached to the element layer.
  • the separation layer 103 is formed over the crystalline substrate 102.
  • the insulating film 105 is formed over the separation layer 103.
  • the transistors 153, 165, and 166, the insulating films 121, 122, and 125, the light-emitting element 180, and the like are formed over the insulating film 105.
  • the material that can be used for the peeling layer 103 is similar to the material that can be used for the peeling layer 992.
  • the material that can be used for the insulating film 105 is similar to the material that can be used for the insulating film 193.
  • a separation layer 992 is formed over the manufacturing substrate 911.
  • an insulating film 193 is formed over the separation layer 992.
  • a light-blocking layer 194 and a colored layer 195 are formed over the insulating film 193.
  • the crystalline substrate 102 and the manufacturing substrate 911 are attached to each other using the adhesive layer 196, and the adhesive layer 196 is cured.
  • the manufacturing substrate 911 and the crystalline substrate 102 are each separated from the element layer.
  • the manufacturing substrate 911 and the crystalline substrate 102 may be separated from either substrate.
  • the case where the crystalline substrate 102 is peeled first will be described as an example.
  • a starting point of peeling is formed using a laser beam or a sharp blade.
  • a separation starting point for separating the crystalline substrate 102 can be formed.
  • part of the film included in the insulating film 105 can be dissolved, evaporated, or thermally destroyed by laser light irradiation.
  • the insulating film 105 and the crystalline substrate 102 are separated by a physical force from the starting point of the separation.
  • a separation layer 103 and a crystalline substrate 102 separated from the insulating film 105 are shown in the lower part of FIG.
  • the exposed insulating film 105 and the flexible substrate 901 are attached to each other using the adhesive layer 903 (FIG. 18).
  • a peeling start point for peeling the manufacturing substrate 911 is formed by cracking the peeling layer 912.
  • the insulating film 193 and the manufacturing substrate 911 are separated from each other by a physical force from the starting point of the separation.
  • a separation layer 912 and a manufacturing substrate 911 separated from the insulating film 193 are shown.
  • the exposed insulating film 193 and the flexible substrate 191 are bonded using the adhesive layer 192 (FIG. 18).
  • the flexible substrate Since the functional elements and the like included in the display device are formed over the crystalline substrate 102 and the manufacturing substrate 911, the flexible substrate has high alignment accuracy even when a high-definition display device is manufactured. Not required. Therefore, a flexible substrate can be easily attached.
  • the conductive film 189 is covered with an adhesive layer 196, an insulating film 193, and the like.
  • the adhesive layer 196, the insulating film 193, and the like over the conductive film 189 can be removed by laser light irradiation, cutting, or the like.
  • a functional film with low adhesion to the conductive film 189 is formed over the conductive film 189, or two or more layers with low adhesion to each other are formed over the conductive film 189.
  • a laminated film may be formed. In this manner, by forming a film over the conductive film 189, only the region connected to the external input terminal is not the interface between the insulating film 193 and the separation layer 912, but the interface between the conductive film 189 and the functional film, or the conductive film 189. It can be separated at the interface of the upper laminated film with low adhesion. In this case, since the conductive film 189 can be exposed in the step of peeling the manufacturing substrate 911, the number of steps can be reduced.
  • the film remaining on the conductive film 189 is removed by dry treatment (a method of spraying dry ice powder or the like) or a wet treatment (a method of wiping with an organic solvent, water, hydrogen peroxide solution, or the like). Is preferred.
  • a display device with extremely high definition can be manufactured by forming a transistor and a light-emitting element over a crystalline substrate.
  • a highly reliable display device can be manufactured by forming an insulating film over a manufacturing substrate at a high temperature.
  • the display substrate can be thinned, reduced in weight, and flexible by peeling off the manufacturing substrate and the crystalline substrate and attaching a flexible substrate.
  • FIG. 19 is a cross-sectional view of a pixel portion different from that in FIG.
  • a highly integrated display device can be realized by using a multilayer wiring structure including a stacked structure of an insulating film and a conductive film.
  • a conductive film 124e included in the transistor 161 is electrically connected to the electrode 181 of the light-emitting element 180 through a plurality of conductive films.
  • the conductive film 124 e and the conductive film 141 over the insulating film 125 are electrically connected by the conductive film 149.
  • the conductive film 141 on the insulating film 125 and the conductive film 141 on the insulating film 143 are electrically connected by another conductive film 149.
  • the insulating films 143 are stacked in four layers, and conductive films 141 are provided on the three insulating films 143 except for the uppermost one, and all the conductive films 141 are electrically connected by the conductive films 149. It is connected.
  • An electrode 181 is provided on the uppermost insulating film 143 among the four layers. Of the four layers, the uppermost conductive film 141 and the electrode 181 are electrically connected by a conductive film 149.
  • the structure of the transistor 161 illustrated in FIG. 19 is similar to that of FIG.
  • FIG. 20 is a circuit diagram illustrating an example of a pixel circuit.
  • FIG. 21 is a cross-sectional view of a pixel portion different from that in FIG.
  • the 20 includes a light-emitting element 180, a transistor 3200, a transistor 3300, and a capacitor 3400.
  • the transistor 3200 functions as a driving transistor.
  • the transistor 3300 functions as a selection transistor.
  • the first electrode of the light emitting element 180 is electrically connected to the first wiring 3001.
  • the second electrode of the light-emitting element 180 is electrically connected to the first electrode of the transistor 3200.
  • a second electrode of the transistor 3200 is electrically connected to the second wiring 3002.
  • a gate of the transistor 3200 is electrically connected to the first electrode of the transistor 3300 and the first electrode of the capacitor 3400.
  • a second electrode of the transistor 3300 is electrically connected to the third wiring 3003.
  • a gate of the transistor 3300 is electrically connected to the fourth wiring 3004.
  • the second electrode of the capacitor 3400 is electrically connected to the fifth wiring 3005.
  • 21 corresponds to a cross-sectional view of a display device including the light-emitting element 180, the transistor 3200, the transistor 3300, and the capacitor 3400 which are illustrated in FIG.
  • the transistor 3300 is disposed above the transistor 3200
  • the capacitor 3400 is disposed above the transistor 3300
  • the light-emitting element 180 is disposed above the capacitor 3400.
  • a display device in which two or more transistors are stacked can be realized.
  • transistors 3200 and 3300 are not limited to the structure illustrated in FIGS.
  • the transistor 3200 is a transistor using the crystalline semiconductor substrate 101.
  • the transistor 3200 includes impurity regions 474 a and 474 b in the crystalline semiconductor substrate 101, a gate insulating film 462, and a gate 454.
  • the impurity regions 474a and 474b function as a source region and a drain region.
  • the resistance of the channel formation region can be controlled by a potential applied to the gate 454. That is, conduction / non-conduction between the impurity region 474a and the impurity region 474b can be controlled by a potential applied to the gate 454.
  • the transistor 3200 is separated from adjacent transistors by an element isolation region 460 or the like.
  • the element isolation region 460 is a region having an insulating property.
  • the transistor 3300 is a transistor including the oxide semiconductor film 406b.
  • an oxide containing one or more elements other than oxygen included in the oxide semiconductor film 406b is preferably used.
  • the impurity region 474a is electrically connected to the conductive film 489a through a plurality of conductive films. Specifically, the impurity region 474a is electrically connected to the conductive film 478a over the insulating film 464 through the conductive film 480a. The conductive film 478a is electrically connected to the conductive film 479a over the insulating film 468 through the conductive film 476a. The conductive film 479a is electrically connected to the conductive film 484a over the insulating film 472 through the conductive film 477a. The conductive film 484a is electrically connected to the conductive film 485a over the insulating film 428 through the conductive film 483a.
  • the conductive film 485a is electrically connected to the conductive film 488a over the insulating film 465 through the conductive film 487a.
  • the conductive film 488a is electrically connected to the conductive film 489a over the insulating film 467 through the conductive film 490a.
  • the impurity region 474b is electrically connected to the electrode 181 of the light-emitting element 180 through a plurality of conductive films. Specifically, the impurity region 474b is electrically connected to the conductive film 478b over the insulating film 464 through the conductive film 480b. The conductive film 478b is electrically connected to the conductive film 479b over the insulating film 468 through the conductive film 476b. The conductive film 479b is electrically connected to the conductive film 484b over the insulating film 472 through the conductive film 477b. The conductive film 484b is electrically connected to the conductive film 485b over the insulating film 428 through the conductive film 483b.
  • the conductive film 485b is electrically connected to the conductive film 488b over the insulating film 465 through the conductive film 487b.
  • the conductive film 488b is electrically connected to the conductive film 489b over the insulating film 467 through the conductive film 490b.
  • the conductive film 489b is electrically connected to the electrode 181 over the insulating film 469 through the conductive film 491.
  • a gate 454 of the transistor 3200 is electrically connected to the conductive film 404b of the transistor 3300 through a plurality of conductive films.
  • the gate 454 of the transistor 3200 is electrically connected to the conductive film 494 of the capacitor 3400 through a plurality of conductive films.
  • the gate 454 is electrically connected to the conductive film 478c over the insulating film 464 through the conductive film 480c.
  • the conductive film 478c is electrically connected to the conductive film 479c over the insulating film 468 through the conductive film 476c.
  • the conductive film 479c is electrically connected to the conductive film 484c over the insulating film 472 through the conductive film 477c.
  • the conductive film 484c is electrically connected to the conductive film 485c over the insulating film 428 through the conductive film 483c.
  • the conductive film 485c is electrically connected to the conductive film 404b through the conductive film 483f.
  • the conductive film 485c is electrically connected to the conductive film 488c over the insulating film 465 through the conductive film 487c.
  • the conductive film 488c is electrically connected to the conductive film 494.
  • a gate 401 of the transistor 3300 is electrically connected to the conductive film 485d through a conductive film 483d.
  • the conductive film 404a of the transistor 3300 is electrically connected to the conductive film 485e through the conductive film 483e.
  • An insulating film 464 is provided over the transistor 3200.
  • An insulating film 466 is disposed over the insulating film 464.
  • An insulating film 468 is disposed over the insulating film 466.
  • An insulating film 470 is disposed over the insulating film 468.
  • An insulating film 472 is disposed over the insulating film 470.
  • An insulating film 475 is disposed over the insulating film 472.
  • An insulating film 402 is provided over the insulating film 475.
  • An insulating film 418 is disposed over the gate 401 and the insulating film 410.
  • An insulating film 408 is disposed over the insulating film 418.
  • An insulating film 428 is disposed over the insulating film 408.
  • An insulating film 465 is disposed over the insulating film 428.
  • An insulating film 467 is disposed over the insulating film 465.
  • An insulating film 469 is provided over the insulating film 467 and the capacitor 3400.
  • an insulating film having a function of blocking impurities such as hydrogen and oxygen is preferably used for the insulating film 408 and the insulating film 472, respectively.
  • each of the insulating film 408 and the insulating film 472 includes metal oxide such as aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, or tantalum oxide, and nitride. Silicon oxide, silicon nitride, or the like can be used. Note that the insulating film 408 and the insulating film 472 preferably include aluminum oxide.
  • a display device on which a touch sensor is mounted (hereinafter also referred to as a touch panel) can be manufactured.
  • a detection element also referred to as a sensor element
  • Various sensors that can detect the proximity or contact of a detection target such as a finger or a stylus can be used as the detection element.
  • various methods such as a capacitance method, a resistance film method, a surface acoustic wave method, an infrared method, an optical method, and a pressure-sensitive method can be used as a sensor method.
  • a touch panel having a capacitive detection element will be described as an example.
  • Examples of the electrostatic capacity method include a surface electrostatic capacity method and a projection electrostatic capacity method.
  • examples of the projected capacitance method include a self-capacitance method and a mutual capacitance method. Use of the mutual capacitance method is preferable because simultaneous multipoint detection is possible.
  • the touch panel of one embodiment of the present invention includes a structure in which a separately manufactured display panel and a detection element are attached, a structure in which an electrode or the like that forms the detection element is provided on one or both of the substrate that supports the display element and the counter substrate, and the like Various configurations can be applied.
  • FIG. 22A illustrates a structure in which the display panel of the cross-sectional structure example 2 (FIG. 6A) and the detection element are bonded to each other.
  • the structure between the crystalline semiconductor substrate 101 and the flexible substrate 191 in FIG. 22A is similar to that in FIG.
  • FIG. 22A illustrates a flexible substrate 171, a conductive film 173, an insulating film 174, a conductive film 175, an adhesive layer 176, a conductive film 177, and the like.
  • the detection element or the like is bonded to the flexible substrate 191 with an adhesive layer 176.
  • the conductive film 173, the conductive film 175, and the conductive film 177 can each be formed using a conductive material that transmits visible light.
  • the conductive film 173 is electrically connected to the FPC 179 through the connection body 178.
  • FIG. 22B illustrates a structure in which a detection element is provided on the counter substrate (flexible substrate 191) side of the display panel of the cross-sectional structure example 2 (FIG. 6A).
  • the structure between the crystalline semiconductor substrate 101 and the adhesive layer 196 in FIG. 22B is similar to that in FIG.
  • a flexible substrate 191 an adhesive layer 192, an insulating film 193, a light shielding layer 194, a colored layer 195, an insulating film 172, a conductive film 173, an insulating film 174, a conductive film 175, a conductive film 177, and the like. Is shown.
  • FIG. 1 An example of a method for manufacturing a display device for including a detection element on the counter substrate side of the display panel as illustrated in FIG.
  • a separation layer is formed over a manufacturing substrate.
  • an insulating film 193 is formed over the separation layer.
  • a conductive film 173 and a conductive film 177 are formed over the insulating film 193, and an insulating film 174 is further formed.
  • a conductive film 175 is formed over the insulating film 174, and an insulating film 172 is further formed.
  • a light shielding layer 194 and a colored layer 195 are formed over the insulating film 172.
  • the crystalline semiconductor substrate 101 and the manufacturing substrate are attached to each other with the use of an adhesive layer 196.
  • the manufacturing substrate and the insulating film 193 are separated, and the exposed insulating film 193 and the flexible substrate 191 are attached to each other using the adhesive layer 192.
  • two substrates (the crystalline semiconductor substrate 101 and the flexible substrate 191) can be used; thus, further reduction in thickness and weight can be achieved.
  • FIG. 23A illustrates a structure in which a detection element is attached to a display panel to which a separate coating method is applied.
  • the structure between the flexible substrate 171 and the flexible substrate 191 in FIG. 23A is similar to that in FIG. In FIG. 22A, the flexible substrate 171 is located outside the display device; however, as shown in FIG. 23A, the flexible substrate 171 may be located inside the display device. For example, it is preferable to select one that facilitates connection of the FPC 179 to the conductive film 173.
  • a sealing layer over the light-emitting element 180 is provided. It does not have to be.
  • the sealing layer the insulating film 128 illustrated in FIG. 8 or the like may be formed over the light-emitting element 180, and the insulating film 197 and the flexible substrate 171 may be bonded to each other with the adhesive layer 196.
  • the structures of the transistor 163 and the transistor 164 illustrated in FIG. 23A are similar to those in FIG.
  • a single-color display device can be manufactured.
  • the display device for monochromatic display can be used for, for example, a projector described in Embodiment 2.
  • one embodiment of the present invention is not limited to a display device, and may be applied to a lighting device or the like that emits monochromatic light.
  • an EL layer 183 is provided over a plurality of pixels.
  • light emitted from the light emitting element 180 is extracted outside the display device without passing through a color filter or the like.
  • the structures of the transistors 163 and 164 illustrated in FIG. 23B are similar to those in FIG.
  • a crystalline substrate is used as a supporting substrate for forming a transistor or a light-emitting element.
  • the counter substrate and the sealing substrate are not limited to crystalline substrates, and the following materials can also be used. Alternatively, the following materials can also be used when the element layer and another substrate are bonded to each other after the crystalline substrate is peeled off.
  • a substrate that extracts light from the light-emitting element is formed using a material that transmits the light.
  • a flexible substrate for example, an organic resin or glass, metal, or alloy having a thickness enough to be flexible can be used.
  • the thickness of the flexible substrate is preferably 1 ⁇ m to 200 ⁇ m, more preferably 1 ⁇ m to 100 ⁇ m, further preferably 1 ⁇ m to 50 ⁇ m, further preferably 1 ⁇ m to 25 ⁇ m, and particularly preferably 1 ⁇ m to 10 ⁇ m.
  • an organic resin Since the specific gravity of an organic resin is smaller than that of glass, it is preferable to use an organic resin as the flexible substrate because the display device can be reduced in weight compared to the case of using glass.
  • a material having high toughness for the substrate it is possible to realize a display device that is excellent in impact resistance and is not easily damaged. For example, by using an organic resin substrate, or a thin metal substrate or alloy substrate, a display device that is lighter and less likely to be damaged than a glass substrate can be realized.
  • Metal materials and alloy materials are preferable because they have high thermal conductivity and can easily conduct heat to the entire substrate, which can suppress a local temperature increase of the display device.
  • the thickness of the substrate using a metal material or an alloy material is preferably 10 ⁇ m or more and 200 ⁇ m or less, and more preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • a material which comprises a metal substrate or an alloy substrate For example, aluminum, copper, nickel, metal alloys, such as an aluminum alloy or stainless steel, etc. can be used suitably.
  • the material constituting the semiconductor substrate include silicon.
  • the substrate may have a stacked structure of a metal substrate and a layer having a high thermal emissivity (for example, a metal oxide or a ceramic material can be used).
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resin, polyimide resin, polymethyl methacrylate resin, polycarbonate (PC) resin
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PAS polyamide resin
  • PTFE polytetrafluoroethylene
  • a material having a low linear expansion coefficient is preferably used.
  • polyamideimide resin polyimide resin
  • polyamide resin polyamide resin
  • PET PET
  • a substrate in which an inorganic filler is mixed with an organic resin to reduce the linear expansion coefficient can be used.
  • a layer using the above-described material is a hard coat layer (for example, a silicon nitride layer) that protects the surface of the device from scratches, or a layer of a material that can disperse pressure (for example, an aramid resin) Layer etc.) may be laminated.
  • a hard coat layer for example, a silicon nitride layer
  • a layer of a material that can disperse pressure for example, an aramid resin
  • the flexible substrate can be used by stacking a plurality of layers.
  • the barrier property against water or oxygen can be improved and a highly reliable display device can be obtained.
  • a flexible substrate in which a glass layer, an adhesive layer, and an organic resin layer are stacked from the side close to the light-emitting element can be used.
  • the thickness of the glass layer is 20 ⁇ m or more and 200 ⁇ m or less, preferably 25 ⁇ m or more and 100 ⁇ m or less.
  • the glass layer having such a thickness can simultaneously realize a high barrier property and flexibility against water or oxygen.
  • the thickness of the organic resin layer is 10 ⁇ m or more and 200 ⁇ m or less, preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • various curable adhesives such as an ultraviolet curable photocurable adhesive, a reactive curable adhesive, a thermosetting adhesive, and an anaerobic adhesive can be used.
  • an adhesive sheet or the like may be used.
  • a resin such as polyurethane, an acrylic resin, an epoxy resin, or a resin having a siloxane bond can be used.
  • the adhesive layer may contain a desiccant.
  • a substance that adsorbs moisture by chemical adsorption such as an alkaline earth metal oxide (such as calcium oxide or barium oxide)
  • an alkaline earth metal oxide such as calcium oxide or barium oxide
  • a substance that adsorbs moisture by physical adsorption such as zeolite or silica gel
  • the inclusion of a desiccant is preferable because impurities such as moisture can be prevented from entering the functional element and the reliability of the display device is improved.
  • the light extraction efficiency from a light emitting element can be improved by including a high refractive index filler or a light-scattering member in an adhesive layer.
  • a high refractive index filler for example, titanium oxide, barium oxide, zeolite, zirconium, or the like can be used.
  • an organic insulating material or an inorganic insulating material can be used, respectively.
  • the resin include acrylic resin, epoxy resin, polyimide resin, polyamide resin, polyimide amide resin, siloxane resin, benzocyclobutene resin, and phenol resin.
  • inorganic insulating films include silicon oxide films, silicon oxynitride films, silicon nitride oxide films, silicon nitride films, aluminum oxide films, hafnium oxide films, yttrium oxide films, zirconium oxide films, gallium oxide films, tantalum oxide films, magnesium oxide Examples thereof include a film, a lanthanum oxide film, a cerium oxide film, and a neodymium oxide film.
  • each of the insulating film 193, the insulating film 197, and the insulating film 105 preferably has a function of preventing diffusion of impurities into the light-emitting element.
  • a film containing nitrogen and silicon such as a silicon nitride film or a silicon nitride oxide film, or a film containing nitrogen and aluminum such as an aluminum nitride film can be given.
  • a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or the like may be used.
  • the structure of the transistor included in the display device There is no particular limitation on the structure of the transistor included in the display device. For example, a planar transistor, a staggered transistor, or an inverted staggered transistor may be used. Further, a top-gate or bottom-gate transistor structure may be employed. Alternatively, a vertical transistor (SGT: Surrounding Gate Transistor) having a structure in which a source and a drain are provided above and below the transistor may be used.
  • a semiconductor material used for the transistor is not particularly limited, and examples thereof include silicon, germanium, and an organic semiconductor. Alternatively, an oxide semiconductor containing at least one of indium, gallium, and zinc, such as an In—Ga—Zn-based metal oxide, may be used.
  • crystallinity of a semiconductor material used for the transistor there is no particular limitation on the crystallinity of a semiconductor material used for the transistor, and any of an amorphous semiconductor and a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partially including a crystal region) is used. May be used. It is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
  • a transistor having a channel formation region in a single crystal semiconductor substrate is preferably used.
  • a transistor having a channel formation region in a single crystal silicon substrate can be used.
  • CAAC-OS C Axis Crystalline Oxide Semiconductor
  • the CAAC-OS has few defect levels and can improve the reliability of the transistor.
  • the CAAC-OS has a feature that a crystal grain boundary is not confirmed, a stable and uniform film can be formed over a large area, and the stress caused by bending a flexible display device can be Cracks are unlikely to occur in the CAAC-OS film.
  • a CAAC-OS is a crystalline oxide semiconductor in which the c-axis of crystals is approximately perpendicular to the film surface.
  • As the crystal structure of an oxide semiconductor it has been confirmed that there are various other structures different from a single crystal, such as a nanocrystal (nc: nanocrystal) which is a nanoscale microcrystal aggregate.
  • the CAAC-OS has lower crystallinity than a single crystal and higher crystallinity than nc.
  • the CAAC-OS has c-axis alignment and has a crystal structure in which a plurality of pellets (nanocrystals) are connected in the ab plane direction to have distortion. Therefore, the CAAC-OS can also be referred to as an oxide semiconductor having CAA crystal (c-axis-aligned ab-plane-anchored crystal).
  • a base film In order to stabilize the characteristics of the transistor, it is preferable to provide a base film.
  • an inorganic insulating film such as a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a silicon nitride oxide film can be used, which can be formed as a single layer or a stacked layer.
  • the base film is formed by sputtering, CVD (Chemical Vapor Deposition) (plasma CVD, thermal CVD, MOCVD (Metal Organic CVD), etc.), ALD (Atomic Layer Deposition), coating, printing, etc. it can. Note that the base film is not necessarily provided if not necessary.
  • the light-emitting element an element capable of self-emission can be used, and an element whose luminance is controlled by current or voltage is included in its category.
  • a light emitting diode (LED), an organic EL element, an inorganic EL element, or the like can be used.
  • the light emitting element may be any of a top emission type, a bottom emission type, and a dual emission type.
  • a conductive film that transmits visible light is used for the electrode from which light is extracted.
  • a conductive film that reflects visible light is preferably used for the electrode from which light is not extracted.
  • the conductive film that transmits visible light is formed using, for example, indium oxide, indium tin oxide (ITO), indium zinc oxide, zinc oxide (ZnO), zinc oxide to which gallium is added, or the like. Can do.
  • a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, or titanium, an alloy including these metal materials, or a nitride of these metal materials (for example, Titanium nitride) can also be used by forming it thin enough to have translucency.
  • a stacked film of the above materials can be used as the conductive film. For example, it is preferable to use a laminated film of silver and magnesium alloy and ITO because the conductivity can be increased. Further, graphene or the like may be used.
  • Al-Ni-La aluminum, nickel, and lanthanum
  • An alloy, an alloy of silver, palladium, and copper (also referred to as Ag-Pd-Cu, APC), or an alloy containing silver such as an alloy of silver and magnesium can be used.
  • An alloy containing silver and copper is preferable because of its high heat resistance.
  • the oxidation of the aluminum alloy film can be suppressed by stacking the metal film or the metal oxide film in contact with the aluminum alloy film.
  • the material for the metal film and metal oxide film include titanium and titanium oxide.
  • the conductive film that transmits visible light and a film made of a metal material may be stacked.
  • a laminated film of silver and ITO, a laminated film of an alloy of silver and magnesium and ITO, or the like can be used.
  • Each of the electrodes can be formed using a vapor deposition method or a sputtering method. In addition, it can be formed using a discharge method such as an inkjet method, a printing method such as a screen printing method, or a plating method.
  • the EL layer 183 includes at least a light-emitting layer.
  • the EL layer 183 may include a plurality of light-emitting layers.
  • the EL layer 183 is a layer other than the light-emitting layer and is a substance having a high hole-injecting property, a substance having a high hole-transporting property, a hole blocking material, a substance having a high electron-transporting property, a substance having a high electron-injecting property, or a bipolar property
  • a layer containing a substance (a substance having a high electron transporting property and a high hole transporting property) or the like may be further included.
  • the EL layer 183 can be formed using either a low molecular compound or a high molecular compound, and may contain an inorganic compound.
  • the layers constituting the EL layer 183 can be formed by a method such as a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an ink jet method, or a coating method.
  • the light emitting element 180 may contain two or more kinds of light emitting substances.
  • a white light emitting element can be realized.
  • white light emission can be obtained by selecting a light emitting material so that light emission of each of two or more types of light emitting materials has a complementary color relationship.
  • a light-emitting substance that emits light such as R (red), G (green), B (blue), Y (yellow), or O (orange), or spectral components of two or more colors of R, G, and B
  • a light-emitting substance that emits light containing can be used.
  • a light-emitting substance that emits blue light and a light-emitting substance that emits yellow light may be used.
  • the emission spectrum of the luminescent material that emits yellow light preferably includes green and red spectral components.
  • the emission spectrum of the light-emitting element 180 preferably has two or more peaks in the visible wavelength range (for example, 350 nm to 750 nm, or 400 nm to 800 nm).
  • the light-emitting element 180 may be a single element having one EL layer or a tandem element having a plurality of EL layers stacked with a charge generation layer interposed therebetween.
  • a light-emitting element using an inorganic compound such as a quantum dot may be used.
  • the quantum dot material include a colloidal quantum dot material, an alloy type quantum dot material, a core / shell type quantum dot material, and a core type quantum dot material.
  • a colloidal quantum dot material for example, cadmium (Cd), selenium (Se), zinc (Zn), sulfur (S), phosphorus (P), indium (In), tellurium (Te), lead (Pb), gallium (Ga), arsenic (As ), Aluminum (Al) or the like.
  • the light-emitting element is preferably provided between a pair of insulating films with high gas barrier properties. Accordingly, impurities such as moisture can be prevented from entering the light emitting element, and a decrease in reliability of the display device can be suppressed.
  • a metal such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, or tungsten, or an alloy mainly containing this metal is used as a single layer structure or a stacked structure.
  • the conductive film includes indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, and indium zinc oxide.
  • a light-transmitting conductive material such as indium tin oxide to which silicon oxide is added may be used.
  • polycrystalline silicon containing an impurity element, a semiconductor typified by an oxide semiconductor, or silicide such as nickel silicide may be used.
  • the colored layer is a colored layer that transmits light in a specific wavelength band.
  • a color filter that transmits light in a red, green, blue, or yellow wavelength band can be used.
  • materials that can be used for the colored layer include metal materials, resin materials, resin materials containing pigments or dyes, and the like.
  • one embodiment of the present invention is not limited to the color filter method, and a color separation method, a color conversion method, a quantum dot method, or the like may be applied.
  • the light shielding layer is provided between the adjacent colored layers.
  • the light shielding layer shields light from adjacent light emitting elements and suppresses color mixing between adjacent light emitting elements.
  • light leakage can be suppressed by providing the end portion of the colored layer so as to overlap the light shielding layer.
  • a material that blocks light emitted from the light emitting element can be used.
  • a black matrix can be formed using a metal material or a resin material containing a pigment or a dye. Note that it is preferable that the light-blocking layer be provided in a region other than the pixel portion such as a driver circuit because unintended light leakage due to guided light or the like can be suppressed.
  • the overcoat can prevent diffusion of impurities contained in the colored layer into the light emitting element.
  • the overcoat is made of a material that transmits light emitted from the light emitting element.
  • an inorganic insulating film such as a silicon nitride film or a silicon oxide film, or an organic insulating film such as an acrylic film or a polyimide film can be used.
  • a laminated structure of a film and an inorganic insulating film may be used.
  • the adhesive layer material when the adhesive layer material is applied on the colored layer and the light shielding layer, it is preferable to use a material having high wettability with respect to the adhesive layer material as the overcoat material.
  • a material having high wettability with respect to the adhesive layer material for example, an oxide conductive film such as an ITO film or a metal film such as an Ag film that is thin enough to have a light-transmitting property is preferably used.
  • the material of the adhesive layer can be uniformly applied. Thereby, when a pair of board
  • connection body various anisotropic conductive films (ACF: Anisotropic Conductive Film), anisotropic conductive pastes (ACP: Anisotropic Conductive Paste), or the like can be used.
  • ACF Anisotropic Conductive Film
  • ACP Anisotropic Conductive Paste
  • the display device of one embodiment of the present invention is manufactured using a crystalline substrate with little thermal contraction, high definition can be achieved. Further, by polishing the crystalline substrate to have a very thin thickness, a display device with high definition and flexibility can be manufactured.
  • an electronic device with high definition, high resolution, or high display quality and having a curved surface or flexibility can be manufactured.
  • Electronic devices include, for example, television sets, projectors, projection televisions (rear projectors), goggles type displays (head mounted displays), monitors for computers, digital cameras, digital video cameras, digital photo frames, mobile phones, mobile phones, etc.
  • Type game machines portable information terminals, sound reproduction devices, and large game machines such as pachinko machines.
  • the electronic device of one embodiment of the present invention has flexibility, it can be incorporated along an inner wall or an outer wall of a house or a building, or a curved surface of an interior or exterior of an automobile.
  • the electronic device of one embodiment of the present invention may include a secondary battery, and it is preferable that the secondary battery can be charged using non-contact power transmission.
  • Secondary batteries include, for example, lithium ion secondary batteries such as lithium polymer batteries (lithium ion polymer batteries) using gel electrolyte, nickel metal hydride batteries, nickel-cadmium batteries, organic radical batteries, lead storage batteries, air secondary batteries, nickel A zinc battery, a silver zinc battery, etc. are mentioned.
  • lithium ion secondary batteries such as lithium polymer batteries (lithium ion polymer batteries) using gel electrolyte, nickel metal hydride batteries, nickel-cadmium batteries, organic radical batteries, lead storage batteries, air secondary batteries, nickel A zinc battery, a silver zinc battery, etc. are mentioned.
  • the electronic device of one embodiment of the present invention may include an antenna.
  • the display unit can display video or information.
  • the antenna may be used for non-contact power transmission.
  • FIG. 24A and 24B are perspective views of the head mounted display 7900.
  • FIG. FIG. 24C is a schematic view of a surface of the head mounted display 7900 that is in contact with the user's face.
  • the head mounted display 7900 includes a main body 7902 and a mounting portion 7903, and a display device 7901 and a lens 7904 are attached to the main body 7902. The user can visually recognize the display on the display device 7901 through the lens 7904.
  • the length of the mounting portion 7903 and the position of the lens 7904 are specifications that can be appropriately changed by the user.
  • the head mounted display 7900 preferably has a line-of-sight tracking device such as a head tracking device.
  • visual_axis can be tracked and a realistic feeling can be heightened by performing the display suitable for the eyes
  • the head mounted display 7900 preferably includes one or more of an antenna, a battery, a camera, a speaker, headphones, earphones, a microphone, and operation buttons.
  • the head mounted display may include a unit including a processor that performs video processing or audio processing, a unit including a battery that supplies power to the main body, and the like, separately from the main body (display unit) worn by the user. .
  • Each unit can be connected by wire or wirelessly.
  • an immersive head-mounted display is illustrated, but the display device of one embodiment of the present invention may be applied to a transmissive head-mounted display.
  • the head mounted display is used by being worn on the head by the user, it is desired that the head mounted display be lightweight so as not to get tired even if used for a long time. Since the display device of one embodiment of the present invention can be easily reduced in size and thickness, the display device can be reduced in weight and can be favorably used for a head-mounted display.
  • the display device of one embodiment of the present invention has high definition, the user can add a stereoscopic effect to an image without using a complicated configuration (for example, an image including binocular parallax or stereoscopic glasses). Obtainable. Therefore, a high immersive feeling in the display contents of the head mounted display can be obtained.
  • the display device of one embodiment of the present invention has flexibility.
  • the display surface can be curved and display can be performed along the curved display surface. Since the head mounted display 7900 has a curved display surface, it is possible to increase the stereoscopic effect of the image obtained by the user, or the immersive feeling of the display content, as compared with the case where the head mounted display 7900 has a flat display surface.
  • the curvature of the display device 7901 may be changed manually or automatically. Thereby, regardless of individual differences or display contents, the user can obtain a strong three-dimensional feeling or depth feeling in the image.
  • the image may appear distorted.
  • distortion of an image visually recognized by the user can be reduced by using a lens with little distortion or by correcting and displaying an image in consideration of the distortion.
  • lenses with less distortion are expensive and often cost more.
  • the resolution may be lowered.
  • display is performed in which it is difficult for a user to visually recognize image distortion. As a result, the image is distorted and difficult to see for the user without requiring a complicated configuration and without greatly reducing the resolution.
  • FIG. 25A to 25C are perspective views of the head mounted display 7920.
  • FIG. The head mounted display 7920 is different from the head mounted display 7900 in that it has two display devices.
  • the description of the head mounted display 7900 can be referred to as appropriate.
  • the head mounted display 7920 includes a main body 7922 and a mounting portion 7923, and a display device 7921L, a display device 7921R, and a lens 7924 are attached to the main body 7922.
  • the user can visually check the display on the display device 7921L and the display device 7921R through the lens 7924.
  • the lens 7924 and the like are not shown in order to show the shapes and arrangement examples of the two display devices.
  • at least one of the lens and the display device may be detachable.
  • each of the display device 7921L for the left eye and the display device 7921R for the right eye has a curved display surface, so that the user can obtain a stereoscopic effect or display content. Immersion can be enhanced. Further, it may be possible to change the curvature of the display device 7921L and the display device 7921R manually or automatically independently of each other. Alternatively, the curvature of the display devices 7921L and 7921R may be uniformly changed.
  • the projector 7910 includes a display device 7911 and an optical system 7912.
  • the display device 7911 includes an organic EL element as a display element. By using a self-luminous display element, it is not necessary to separately provide a light source for the projector 7910. Therefore, the projector 7910 can be light and small.
  • FIG. 26A illustrates a three-plate projector, which includes three display devices 7911.
  • Each display device 7911 has a concave curved display surface.
  • FIG. 26B illustrates a single-plate projector, which includes one display device 7911.
  • the display device 7911 has a convex curved display surface.
  • FIG. 26C shows an ultra-short focus projector. Since it can be arranged near a screen or a wall to be projected, it is effective for use in a narrow space or a limited space.
  • the optical system 7912 preferably includes at least one of a mirror, a prism, a retardation plate, a lens, a film having a polarization function, a film for adjusting a retardation, and an IR film. For example, light emitted from the display device 7911 is projected onto a screen through a zoom lens.
  • the display device 7911 is provided with a curved display surface, and can perform display along the curved display surface. Note that the display device 7911 may have a flexible portion.
  • the display device 7911 is manufactured using the display device of one embodiment of the present invention.
  • the image may appear distorted.
  • the distortion of the image can be reduced by using a lens with little distortion or by correcting and displaying the image in consideration of the distortion.
  • lenses with less distortion are expensive and often cost more.
  • the resolution may decrease.
  • image distortion is reduced by changing the shape of the display device 7911. As a result, image distortion can be reduced without requiring a complicated configuration and without greatly reducing the resolution.
  • the display device 7911 may have a convex curved surface, a concave curved surface, or both a convex curved surface and a concave curved surface.
  • the display surface of the display device 7911 may be a flat surface.
  • the shape of the display surface of each display device 7911 may be different or the same.
  • FIGS. 27A, 27B, 27C, 21D, and 21E each show an example of an electronic device having a curved display portion 7000.
  • FIGS. The display portion 7000 is provided with a curved display surface, and can perform display along the curved display surface. Note that the display portion 7000 may have flexibility.
  • the display portion 7000 is manufactured using the display device of one embodiment of the present invention.
  • an electronic device including a curved display portion with high definition can be provided.
  • FIG. 27A illustrates an example of a mobile phone.
  • a cellular phone 7100 includes a housing 7101, a display portion 7000, operation buttons 7103, an external connection port 7104, a speaker 7105, a microphone 7106, and the like.
  • a mobile phone 7100 illustrated in FIG. 27A includes a touch sensor in the display portion 7000. All operations such as making a call or inputting characters can be performed by touching the display portion 7000 with a finger or a stylus.
  • the operation button 7103 by operating the operation button 7103, the power ON / OFF operation and the type of image displayed on the display portion 7000 can be switched.
  • the mail creation screen can be switched to the main menu screen.
  • FIG. 27B illustrates an example of a television device.
  • a display portion 7000 is incorporated in a housing 7201.
  • a structure in which the housing 7201 is supported by a stand 7203 is shown.
  • Operation of the television device 7200 illustrated in FIG. 27B can be performed with an operation switch included in the housing 7201 and a separate remote controller 7211.
  • the display unit 7000 may be provided with a touch sensor, and may be operated by touching the display unit 7000 with a finger or the like.
  • the remote controller 7211 may include a display unit that displays information output from the remote controller 7211. Channels and volume can be operated with an operation key or a touch panel included in the remote controller 7211, and an image displayed on the display portion 7000 can be operated.
  • the television device 7200 is provided with a receiver, a modem, and the like.
  • a general television broadcast can be received by the receiver.
  • information communication is performed in one direction (from the sender to the receiver) or in two directions (between the sender and the receiver or between the receivers). It is also possible.
  • FIGS. 27C1, 27C, 27D, and 27E show examples of portable information terminals.
  • Each portable information terminal includes a housing 7301 and a display portion 7000. Furthermore, an operation button, an external connection port, a speaker, a microphone, an antenna, a battery, or the like may be included.
  • the display unit 7000 includes a touch sensor. The portable information terminal can be operated by touching the display portion 7000 with a finger or a stylus.
  • FIG. 27C1 is a perspective view of the portable information terminal 7300
  • FIG. 27C2 is a top view of the portable information terminal 7300
  • FIG. FIG. 27D is a perspective view of a portable information terminal 7310.
  • FIG. 27E is a perspective view of a portable information terminal 7320.
  • the portable information terminal exemplified in this embodiment has one or a plurality of functions selected from, for example, a telephone, a notebook, an information browsing device, or the like. Specifically, each can be used as a smartphone.
  • the portable information terminal exemplified in this embodiment can execute various applications such as mobile phone, e-mail, text browsing and creation, music playback, Internet communication, and computer games.
  • the portable information terminal 7300, the portable information terminal 7310, and the portable information terminal 7320 can display text or image information on a plurality of surfaces thereof.
  • three operation buttons 7302 can be displayed on one surface, and information 7303 indicated by a rectangle can be displayed on the other surface.
  • 27C1 and 27C2 illustrate examples in which information is displayed on the upper side of the portable information terminal
  • FIG. 27D illustrates an example in which information is displayed on the side of the portable information terminal.
  • information may be displayed on three or more surfaces of the portable information terminal.
  • FIG. 27E illustrates an example in which information 7304, information 7305, and information 7306 are displayed on different surfaces.
  • Examples of information include SNS (social networking service) notifications, displays that notify incoming calls such as e-mails or telephone calls, titles or sender names such as e-mails, date and time, time, battery level, antenna There is the strength of reception.
  • SNS social networking service
  • displays that notify incoming calls such as e-mails or telephone calls, titles or sender names such as e-mails, date and time, time, battery level, antenna There is the strength of reception.
  • an operation button, an icon, or the like may be displayed instead of the information at a position where the information is displayed.
  • the user of the portable information terminal 7300 can check the display (information 7303 in this case) in a state where the portable information terminal 7300 is stored in the chest pocket of clothes.
  • the telephone number or name of the caller of the incoming call is displayed at a position where the mobile information terminal 7300 can be observed from above.
  • the user can check the display and determine whether to receive a call without taking out the portable information terminal 7300 from the pocket.
  • FIGS. 27F to 27H show an example of a lighting device having a curved light emitting portion.
  • the light-emitting portion included in each lighting device illustrated in FIGS. 27F to 27H is manufactured using the light-emitting device of one embodiment of the present invention.
  • a highly reliable lighting device including a curved light-emitting portion can be provided.
  • a lighting device 7400 illustrated in FIG. 27F includes a light-emitting portion 7402 having a wavy light-emitting surface. Therefore, the lighting device has high design.
  • a light emitting portion 7412 included in the lighting device 7410 illustrated in FIG. 27G has a structure in which two light emitting portions curved in a convex shape are arranged symmetrically. Therefore, all directions can be illuminated around the lighting device 7410.
  • a lighting device 7420 illustrated in FIG. 27H includes a light-emitting portion 7422 curved in a concave shape. Therefore, the light emitted from the light emitting unit 7422 is condensed on the front surface of the lighting device 7420, which is suitable for brightly illuminating a specific range. In addition, with such a configuration, there is an effect that it is difficult to make a shadow.
  • each light emitting unit included in the lighting device 7400, the lighting device 7410, and the lighting device 7420 may have flexibility.
  • the light emitting portion may be fixed by a member such as a plastic member or a movable frame, and the light emitting surface of the light emitting portion may be freely curved according to the application.
  • Each of the lighting device 7400, the lighting device 7410, and the lighting device 7420 includes a base portion 7401 including an operation switch 7403 and a light emitting portion supported by the base portion 7401.
  • a housing including the light emitting unit can be fixed to the ceiling or can be used to hang from the ceiling. Since the light emitting surface can be curved and used, the light emitting surface can be curved concavely to illuminate a specific area, or the light emitting surface can be curved convexly to illuminate the entire room.
  • FIGS. 28A1, 28A2 and 28B-I each show an example of a portable information terminal having a flexible display portion 7001.
  • FIG. 28A1, 28A2 and 28B-I each show an example of a portable information terminal having a flexible display portion 7001.
  • the display portion 7001 is manufactured using the display device of one embodiment of the present invention. For example, a display device that can be bent with a curvature radius of 0.01 mm to 150 mm can be applied.
  • the display portion 7001 may include a touch sensor, and the portable information terminal can be operated by touching the display portion 7001 with a finger or the like.
  • an electronic device including a display portion with high definition and flexibility can be provided.
  • FIG. 28A1 is a perspective view illustrating an example of a portable information terminal
  • FIG. 28A2 is a side view illustrating an example of a portable information terminal.
  • a portable information terminal 7500 includes a housing 7501, a display portion 7001, a drawer member 7502, operation buttons 7503, and the like.
  • a portable information terminal 7500 includes a flexible display portion 7001 wound in a roll shape in a housing 7501.
  • the portable information terminal 7500 can receive a video signal by a built-in control unit, and can display the received video on the display unit 7001.
  • the portable information terminal 7500 has a built-in battery.
  • a terminal portion for connecting a connector to the housing 7501 may be provided, and a video signal or power may be directly supplied from the outside by wire.
  • operation buttons 7503 can be used to perform power ON / OFF operations, switching of images to be displayed, and the like.
  • 28A1, 28 ⁇ / b> A ⁇ b> 2, and 28 ⁇ / b> B illustrate an example in which the operation button 7503 is disposed on the side surface of the portable information terminal 7500, the present invention is not limited thereto, and the same surface as the display surface of the portable information terminal 7500 is used. It may be arranged on the (front surface) or the back surface.
  • FIG. 28B illustrates the portable information terminal 7500 in a state where the display portion 7001 is pulled out by a pull-out member 7502. In this state, an image can be displayed on the display portion 7001. Further, the portable information terminal 7500 displays differently between the state of FIG. 28A1 in which part of the display portion 7001 is wound in a roll shape and the state of FIG. 28B in which the display portion 7001 is pulled out by the pullout member 7502. It is good also as composition which performs. For example, in the state of FIG. 28A1, power consumption of the portable information terminal 7500 can be reduced by hiding a portion of the display portion 7001 wound in a roll shape.
  • a reinforcing frame may be provided on a side portion of the display portion 7001 in order to fix the display surface of the display portion 7001 so that the display surface becomes flat when the display portion 7001 is pulled out.
  • a speaker may be provided in the housing, and audio may be output by an audio signal received together with the video signal.
  • FIGS. 28C to 28E show examples of portable information terminals that can be folded.
  • the mobile information terminal is in the expanded state
  • FIG. 28D the expanded state or the folded state in the middle of changing from one to the other
  • FIG. 28E the folded portable information terminal. 7600 is shown.
  • the portable information terminal 7600 is excellent in portability in the folded state, and in the expanded state, the portable information terminal 7600 is excellent in listability due to a seamless wide display area.
  • the display portion 7001 is supported by three housings 7601 connected by a hinge 7602. By bending between the two housings 7601 through the hinge 7602, the portable information terminal 7600 can be reversibly deformed from a developed state to a folded state.
  • FIGS. 28F and 28G illustrate examples of portable information terminals that can be folded.
  • FIG. 28F illustrates the portable information terminal 7650 in a state where the display portion 7001 is folded so as to be on the inside
  • FIG. 28G illustrates a portable information terminal 7650 in a state where the display portion 7001 is folded on the outside.
  • the portable information terminal 7650 includes a display portion 7001 and a non-display portion 7651.
  • the display portion 7001 can be folded so that the display portion 7001 is on the inner side, whereby the display portion 7001 can be prevented from being stained and damaged.
  • FIG. 28H illustrates an example of a flexible portable information terminal.
  • a portable information terminal 7700 includes a housing 7701 and a display portion 7001. Further, buttons 7703a and 7703b as input means, speakers 7704a and 7704b as sound output means, an external connection port 7705, a microphone 7706, and the like may be provided.
  • the portable information terminal 7700 can be equipped with a flexible battery 7709. The battery 7709 may be disposed so as to overlap with the display portion 7001, for example.
  • the housing 7701, the display portion 7001, and the battery 7709 have flexibility. Therefore, it is easy to curve the portable information terminal 7700 into a desired shape or to twist the portable information terminal 7700.
  • the portable information terminal 7700 can be used by being folded so that the display portion 7001 is inside or outside.
  • the portable information terminal 7700 can be used in a rolled state. In this manner, since the housing 7701 and the display portion 7001 can be freely deformed, the portable information terminal 7700 is hardly damaged even when it is dropped or an unintended external force is applied. There are advantages.
  • the portable information terminal 7700 is lightweight, it can be used by holding the top of the housing 7701 with a clip or the like and hanging it, or by fixing the housing 7701 to a wall surface with a magnet or the like. Can be used conveniently.
  • FIG. 28I illustrates an example of a wristwatch-type portable information terminal.
  • a portable information terminal 7800 includes a band 7801, a display portion 7001, input / output terminals 7802, operation buttons 7803, and the like.
  • the band 7801 has a function as a housing.
  • the portable information terminal 7800 can be equipped with a flexible battery 7805.
  • the battery 7805 may be placed over the display portion 7001 or the band 7801, for example.
  • the band 7801, the display portion 7001, and the battery 7805 are flexible. Therefore, it is easy to curve the portable information terminal 7800 into a desired shape.
  • the operation button 7803 can have various functions such as time setting, power on / off operation, wireless communication on / off operation, manner mode execution and release, and power saving mode execution and release. .
  • the function of the operation button 7803 can be freely set by an operating system incorporated in the portable information terminal 7800.
  • an application can be started by touching an icon 7804 displayed on the display portion 7001 with a finger or the like.
  • the portable information terminal 7800 can perform short-range wireless communication with a communication standard. For example, it is possible to talk hands-free by communicating with a headset capable of wireless communication.
  • the portable information terminal 7800 may include an input / output terminal 7802.
  • data can be directly exchanged with another information terminal via a connector.
  • Charging can also be performed through the input / output terminal 7802. Note that the charging operation of the portable information terminal exemplified in this embodiment may be performed by non-contact power transmission without using an input / output terminal.
  • FIGS. 29A to 29C show an example of a foldable wristwatch-type portable information terminal.
  • a portable information terminal 7850 includes a display portion 7851, a housing 7852, a housing 7853, a band 7854, operation buttons 7855, and the like.
  • the housing 7852 illustrated in FIG. 29A is stacked on the housing 7853 and the display portion 7851 illustrated in FIG. 29C is expanded from one to the other. Can be reversibly deformed.
  • the state of FIG. 29A can be changed to the state of FIG. 29C by lifting the housing 7852 (FIG. 29B). Therefore, the portable information terminal 7850 can be used both in a state where the display portion 7851 is folded and in a state where the display area is expanded by expanding the display portion 7851.
  • the display portion 7851 has a function as a touch panel.
  • the portable information terminal 7850 can be operated by touching the display portion 7851. Further, the portable information terminal 7850 can be operated by pressing, rotating, or shifting the operation button 7855 in the up / down direction, the front direction, or the depth direction.
  • a lock mechanism is provided to prevent the housing 7852 and the housing 7853 from being unintentionally separated in a state where the housing 7852 and the housing 7853 overlap with each other.
  • the lock state be released by an operation such as pressing an operation button 7855, for example.
  • a mechanism that automatically deforms from the state shown in FIG. 29A to the state shown in FIG. 29C may be provided.
  • a relative position between the housing 7852 and the housing 7853 may be fixed using a magnet instead of the lock mechanism. By using a magnet, the housing 7852 and the housing 7853 can be easily detached.
  • 29A to 29C show a configuration in which the display portion 7851 can be developed in a direction substantially perpendicular to the bending direction of the band 7854, but as shown in FIGS. 29D and 29E, The display portion 7851 may be developed in a direction substantially parallel to the direction in which the band 7854 is bent. Further, the display portion 7851 may be curved so as to be wound around the band 7854.
  • FIG. 30A shows the appearance of an automobile 9700.
  • FIG. FIG. 30B illustrates a driver seat of the automobile 9700.
  • the automobile 9700 includes a vehicle body 9701, wheels 9702, a dashboard 9703, lights 9704, and the like.
  • the display device of one embodiment of the present invention can be used for a display portion of an automobile 9700 or the like.
  • the display device of one embodiment of the present invention can be provided in the display portion 9710 to the display portion 9715 illustrated in FIG.
  • a display portion 9710 and a display portion 9711 are display devices provided on the windshield of the automobile.
  • the display device of one embodiment of the present invention when the electrode and the wiring are formed using a light-transmitting conductive material, a so-called see-through state in which the opposite side can be seen can be obtained. If the display portion 9710 and the display portion 9711 are in a see-through state, the visibility is not hindered even when the automobile 9700 is driven. Therefore, the display device of one embodiment of the present invention can be provided on the windshield of the automobile 9700. Note that in the case where a transistor for driving a display device or the like is provided, a light-transmitting transistor such as an organic transistor using an organic semiconductor material or a transistor using an oxide semiconductor is preferably used.
  • a display portion 9712 is a display device provided in the pillar portion.
  • the field of view blocked by the pillar can be complemented by displaying an image from the imaging means provided on the vehicle body on the display portion 9712.
  • a display portion 9713 is a display device provided in the dashboard portion.
  • the view blocked by the dashboard can be complemented. That is, by projecting an image from the imaging means provided outside the automobile, the blind spot can be compensated and safety can be improved. Also, by displaying a video that complements the invisible part, it is possible to confirm the safety more naturally and without a sense of incongruity.
  • FIG. 30C shows the interior of an automobile in which bench seats are used for the driver seat and the passenger seat.
  • the display portion 9721 is a display device provided in the door portion.
  • the field of view blocked by the door can be complemented by displaying an image from an imaging unit provided on the vehicle body on the display portion 9721.
  • the display portion 9722 is a display device provided on the handle.
  • the display unit 9723 is a display device provided at the center of the seat surface of the bench seat. Note that a display device can be installed on a seating surface or a backrest portion, and the display device can be used as a seat heater using heat generated by the display device as a heat source.
  • the display portion 9714, the display portion 9715, or the display portion 9722 can provide various other information such as navigation information, a speedometer, a tachometer, a travel distance, an oil supply amount, a gear state, and an air conditioner setting.
  • display items and layouts displayed on the display unit can be appropriately changed according to the user's preference.
  • the above information can also be displayed on the display portion 9710 to the display portion 9713, the display portion 9721, and the display portion 9723.
  • the display portions 9710 to 9715 and the display portions 9721 to 9723 can also be used as lighting devices.
  • the display portions 9710 to 9715 and the display portions 9721 to 9723 can also be used as heating devices.
  • the display portion to which the display device of one embodiment of the present invention is applied may be a flat surface.
  • the display device according to one embodiment of the present invention may have a curved surface and no flexibility.
  • a portable game machine shown in FIG. 30D includes a housing 9801, a housing 9802, a display portion 9803, a display portion 9804, a microphone 9805, a speaker 9806, operation keys 9807, a stylus 9808, and the like.
  • a portable game machine shown in FIG. 30D includes two display portions (a display portion 9803 and a display portion 9804). Note that the number of display portions included in the electronic device of one embodiment of the present invention is not limited to two, and may be one or three or more. In the case where the electronic device includes a plurality of display portions, at least one display portion includes the display device of one embodiment of the present invention.
  • FIG. 30E illustrates a laptop personal computer, which includes a housing 9821, a display portion 9822, a keyboard 9823, a pointing device 9824, and the like.
  • L / S (Line & Space) is the width of the wiring and the distance between adjacent wirings. L indicates a line, and S indicates a space.
  • a conductor, an insulator, and a semiconductor are formed by sputtering, CVD, molecular beam epitaxy (MBE), or pulsed laser deposition (PLD), respectively.
  • An ALD method, a thermal oxidation method, a plasma oxidation method, or the like can be used.
  • the CVD method can be classified into a plasma CVD method using plasma, a thermal CVD method using heat, a photo CVD method using light, and the like. Furthermore, it can be divided into metal CVD method and MOCVD method depending on the source gas used.
  • the thermal CVD method is a film formation method that can reduce plasma damage to an object to be processed because plasma is not used.
  • a wiring, an electrode, an element (a transistor, a capacitor, or the like) included in the display device may be charged up by receiving electric charge from plasma.
  • a wiring, an electrode, an element, or the like included in the display device may be destroyed by the accumulated charge.
  • plasma damage during film formation does not occur, so that a film with few defects can be obtained.
  • the ALD method is also a film forming method that can reduce plasma damage to an object to be processed. By using the ALD method, a film with few defects can be obtained.
  • the CVD method and the ALD method are film forming methods in which a film is formed by reaction on the surface of an object to be processed, unlike a film forming method in which particles emitted from a target or the like are deposited. Therefore, it is a film forming method that is not easily affected by the shape of the object to be processed and has good step coverage.
  • the ALD method has excellent step coverage and excellent thickness uniformity, and thus is suitable for covering the surface of an opening having a high aspect ratio.
  • the ALD method since the ALD method has a relatively low film formation rate, it may be preferable to use it in combination with another film formation method such as a CVD method with a high film formation rate.
  • the composition of the obtained film can be controlled by the flow rate ratio of the source gases.
  • a film having an arbitrary composition can be formed depending on the flow rate ratio of the source gases.
  • a film whose composition is continuously changed can be formed by changing the flow rate ratio of the source gas while forming the film.
  • the conductor 310 is formed over the substrate 305.
  • the conductor 310 include boron, nitrogen, oxygen, fluorine, silicon, phosphorus, aluminum, titanium, chromium, manganese, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, molybdenum, ruthenium, platinum, silver,
  • a conductor containing one or more of indium, tin, tantalum, and tungsten can be formed as a single layer or a stacked layer.
  • the conductor 310 may be an alloy film or a compound film, for example, a conductor containing aluminum, a conductor containing copper and titanium, a conductor containing copper and manganese, a conductor containing indium, tin and oxygen, Alternatively, a conductor containing titanium and nitrogen may be used.
  • the conductor 320 is formed over the conductor 310.
  • a material that can be used for the conductor 310 can be used.
  • an insulator may be formed instead of the conductor.
  • a multilayer film may be formed by stacking an insulator and a conductor.
  • a resist mask 340 is formed over the conductor 320 by a lithography method (FIG. 31A).
  • the resist mask is formed with the smallest L / S dimension that can be used by the exposure apparatus used in the lithography method.
  • an unnecessary portion of the conductor 320 is etched using the resist mask 340 as an etching mask, so that the conductor 325 is formed. It is preferable to use a dry etching method for etching the conductor 320 because microfabrication is facilitated. Further, part of the resist mask 340 is etched and reduced during etching of the conductor 320, whereby the line width of the conductor 325 can be reduced more than the line width of the resist mask. Further, in order to reduce the line width of the conductor 325, it is preferable to increase the etching time of the conductor 320 (FIG. 31B).
  • the resist mask 340 is removed.
  • the resist mask can be removed by performing plasma treatment containing oxygen.
  • the resist mask may be removed by performing a wet process using a chemical solution.
  • the resist mask may be removed by performing wet treatment using a chemical solution after performing plasma treatment containing oxygen.
  • the insulator 350 is formed so as to cover the conductor 310 and the conductor 325.
  • the insulator 350 for example, an insulator containing boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium, or tantalum Can be formed in a single layer or a stack.
  • the insulator 350 preferably includes silicon oxide, silicon nitride, silicon nitride oxide, or silicon oxynitride.
  • the insulator 350 is etched until reaching the top surface of the conductor 325 and until reaching the top surface of the conductor 310, whereby the insulator 355 is formed on the side surface of the conductor 325 (FIG. 32B).
  • the insulator 350 is preferably etched by a dry etching method.
  • anisotropic etching is more preferable in which the etching progress direction is a vertical direction with respect to a plane parallel to the bottom surface of the substrate 305.
  • the conductor 325 is removed.
  • a dry etching method or a wet etching method can be used, and it is preferable to use a wet etching method.
  • a wet etching method the ratio of the etching rates of the insulator 355 and the conductor 325 can be increased. Specifically, when the etching rate of the insulator 355 is 1, the etching rate of the conductor 325 can be 20 or more.
  • the wet etching method since etching proceeds isotropically, for example, a portion of the conductor 325 that is a shadow of the insulator 355 can be etched.
  • the wet etching method is preferable because the film thickness of the insulator 355 can be reduced, the insulator 355 can be prevented from being deformed, and the remaining film of the conductor 325 can be prevented.
  • a hard mask having the insulator 355 can be formed (FIG. 33A).
  • the coverage of the insulator 350 on the conductor 325 determines the line width of the insulator 355.
  • the thickness of the insulator 350 on the top surface of the conductor 325 is A
  • the thickness of the insulator 350 on the side surface of the conductor 325 is B
  • the coverage of the insulator 350 is C
  • the coverage C is B / A.
  • the film thickness B of the insulator 350 on the side surface of the conductor 325 is 800 nm. Therefore, the film thickness of the insulator 355, that is, the line width of the insulator 355 is 800 nm.
  • the necessary line width of the insulator 355 can be formed by adjusting the film thickness of the insulator 355.
  • the covering property C of the insulator 350 is 0.3 to 1.0, preferably 0.5 to 1.0.
  • the conductor 315 is formed by etching part of the conductor 310 using the insulator 355 as an etching mask.
  • a dry etching method is preferably used (FIG. 33B).
  • the insulator 355 is removed.
  • a dry etching method or a wet etching can be used.
  • the conductor 315 having an L / S dimension finer than the resolution limit of the exposure apparatus can be manufactured (FIG. 33C).
  • a display device with high definition can be manufactured.

Abstract

One purpose of the present invention is to provide a flexible display device with extremely high definition. Another purpose of the present invention is to provide a curved display device having extremely high definition. Yet another purpose of the present invention is to fabricate a display device having high definition, using a substrate having minimal heat shrinkage. In concrete terms, a display element is fabricated on a crystalline substrate such as a single crystal silicon substrate. A transistor having a channel-forming region on the crystalline substrate may be formed as a transistor for driving the display element; it is also possible to form an insulating film on the crystalline substrate and form the transistor on the insulating film. Moreover, the flexibility of the display device is improved by grinding the crystalline substrate.

Description

表示装置の作製方法、表示装置、電子機器、プロジェクター、及びヘッドマウントディスプレイDisplay device manufacturing method, display device, electronic device, projector, and head mounted display
本発明の一態様は、表示装置と、その作製方法に関する。または、本発明の一態様は、ヘッドマウントディスプレイ及びプロジェクター等の電子機器に関する。 One embodiment of the present invention relates to a display device and a manufacturing method thereof. Another embodiment of the present invention relates to an electronic device such as a head-mounted display or a projector.
なお、本発明の一態様は、上記の技術分野に限定されない。より具体的に本明細書等で開示する発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入出力装置(例えば、タッチパネルなど)、それらの駆動方法、又は、それらの製造方法、を一例として挙げることができる。 Note that one embodiment of the present invention is not limited to the above technical field. More specifically, the technical field of one embodiment of the invention disclosed in this specification and the like includes a semiconductor device, a display device, a light-emitting device, a power storage device, a memory device, an electronic device, a lighting device, an input / output device (eg, a touch panel) ), A driving method thereof, or a manufacturing method thereof can be given as an example.
近年、解像度の高い表示装置が求められている。例えば、フルハイビジョン(画素数1920×1080)、4K(画素数3840×2160もしくは4096×2160等)、さらには8K(画素数7680×4320もしくは8192×4320等)といった画素数の多いテレビジョン装置(テレビ、又はテレビジョン受信機ともいう)が盛んに開発されている。 In recent years, display devices with high resolution have been demanded. For example, a television device having a large number of pixels such as full high-definition (pixel count 1920 × 1080), 4K (pixel count 3840 × 2160 or 4096 × 2160, etc.), and further 8K (pixel count 7680 × 4320 or 8192 × 4320 etc.). TVs or television receivers) have been actively developed.
他にも、スマートフォンなどの携帯電話機(携帯電話、携帯電話装置ともいう)、タブレット端末などの携帯情報端末、デジタルカメラのビューファインダー、ヘッドマウントディスプレイなどのウェアラブルディスプレイ、プロジェクター等において、高解像度の表示装置が求められている。 In addition, high-resolution display on mobile phones such as smartphones (also referred to as mobile phones and mobile phone devices), portable information terminals such as tablet terminals, digital camera viewfinders, wearable displays such as head mounted displays, projectors, etc. A device is sought.
また、携帯用途の電子機器又はウェアラブルディスプレイに用いる表示装置には、薄型であること、軽量であること、破損しにくいこと、可撓性を有すること等が求められている。 In addition, display devices used for portable electronic devices or wearable displays are required to be thin, lightweight, resistant to breakage, flexibility, and the like.
エレクトロルミネッセンス(Electroluminescence、以下ELとも記す)現象を利用した発光素子(EL素子とも記す)は、薄型軽量化が容易である、入力信号に対し高速に応答可能である、直流低電圧電源を用いて駆動可能である等の特徴を有し、表示装置への応用が検討されている。 A light-emitting element (also referred to as an EL element) utilizing an electroluminescence (hereinafter also referred to as EL) phenomenon is thin and lightweight, can respond to an input signal at high speed, and uses a DC low-voltage power supply. It has features such as being drivable, and its application to display devices is being studied.
例えば、特許文献1に、有機EL素子が適用された可撓性を有する発光装置が開示されている。 For example, Patent Document 1 discloses a flexible light-emitting device to which an organic EL element is applied.
特開2014−197522号公報JP 2014-197522 A
携帯用途の電子機器又はウェアラブルディスプレイに用いる表示装置は、テレビジョン装置に用いる表示装置に比べて、表示領域の面積が極めて小さいため、解像度を高めるためには、精細度を極めて高くする必要がある。また、携帯用途の電子機器又はウェアラブルディスプレイは、軽量であることが求められるため、薄型で軽量な表示装置を用いることが望ましい。 A display device used for a portable electronic device or a wearable display has an extremely small display area as compared with a display device used for a television device. Therefore, in order to increase the resolution, the definition needs to be extremely high. . In addition, since electronic devices or wearable displays for portable use are required to be lightweight, it is desirable to use a thin and lightweight display device.
本発明の一態様は、精細度が極めて高く、可撓性を有する表示装置を提供することを課題の一とする。本発明の一態様は、精細度が極めて高く、曲面を有する表示装置を提供することを課題の一とする。 An object of one embodiment of the present invention is to provide a display device with extremely high definition and flexibility. An object of one embodiment of the present invention is to provide a display device with extremely high definition and a curved surface.
本発明の一態様は、小型であり、可撓性を有する表示装置を提供することを課題の一とする。本発明の一態様は、小型であり、曲面を有する表示装置を提供することを課題の一とする。 An object of one embodiment of the present invention is to provide a display device that is small and flexible. An object of one embodiment of the present invention is to provide a display device that is small in size and has a curved surface.
本発明の一態様は、精細度又は解像度の高い表示装置を提供することを課題の一とする。本発明の一態様は、小型又は軽量な表示装置を提供することを課題の一とする。本発明の一態様は、厚さが薄い表示装置を提供することを課題の一とする。本発明の一態様は、可撓性を有する、又は曲面を有する表示装置を提供することを課題の一とする。本発明の一態様は、使用者が二次元画像に強い立体感もしくは奥行き感を得ることを課題の一とする。本発明の一態様は、破損しにくい表示装置を提供することを課題の一とする。本発明の一態様は、消費電力が低い表示装置を提供することを課題の一とする。本発明の一態様は、信頼性の高い表示装置を提供することを課題の一とする。 An object of one embodiment of the present invention is to provide a display device with high definition or high resolution. An object of one embodiment of the present invention is to provide a small or lightweight display device. An object of one embodiment of the present invention is to provide a thin display device. An object of one embodiment of the present invention is to provide a display device having flexibility or a curved surface. An object of one embodiment of the present invention is to provide a user with a strong stereoscopic feeling or depth feeling in a two-dimensional image. An object of one embodiment of the present invention is to provide a display device that is not easily damaged. An object of one embodiment of the present invention is to provide a display device with low power consumption. An object of one embodiment of the present invention is to provide a highly reliable display device.
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。 Note that the description of these problems does not disturb the existence of other problems. Note that one embodiment of the present invention does not have to solve all of these problems. It should be noted that other issues can be extracted from the description, drawings, and claims.
本発明の一態様は、チャネル形成領域を結晶性半導体基板に有するトランジスタを形成する工程と、結晶性半導体基板上にトランジスタと電気的に接続される表示素子を形成する工程と、結晶性半導体基板を研磨し、結晶性半導体基板に厚さ1μm以上100μm以下の部分を形成する工程と、を有する、表示装置の作製方法である。 One embodiment of the present invention includes a step of forming a transistor having a channel formation region in a crystalline semiconductor substrate, a step of forming a display element electrically connected to the transistor over the crystalline semiconductor substrate, and a crystalline semiconductor substrate. And a step of forming a portion having a thickness of 1 μm to 100 μm on the crystalline semiconductor substrate.
本発明の一態様は、チャネル形成領域を結晶性半導体基板に有するトランジスタを形成する工程と、結晶性半導体基板上にトランジスタと電気的に接続される表示素子を形成する工程と、結晶性半導体基板の一部が残るように結晶性半導体基板を研磨する工程と、を有する、表示装置の作製方法である。結晶性半導体基板を研磨した後の表示装置は可撓性を有する。 One embodiment of the present invention includes a step of forming a transistor having a channel formation region in a crystalline semiconductor substrate, a step of forming a display element electrically connected to the transistor over the crystalline semiconductor substrate, and a crystalline semiconductor substrate. And a step of polishing the crystalline semiconductor substrate so that a part thereof remains. The display device after polishing the crystalline semiconductor substrate has flexibility.
上記各作製方法において、表示素子を形成する工程では、発光素子を形成してもよい。このとき、結晶性半導体基板を研磨する工程の前に、発光素子上に絶縁膜を形成する工程と、絶縁膜上に着色層を形成する工程と、を有する。当該絶縁膜は、発光素子が発する光を透過する機能を有する。当該発光素子は、着色層側に光を射出する機能を有する。 In each of the above manufacturing methods, a light emitting element may be formed in the step of forming the display element. At this time, before the step of polishing the crystalline semiconductor substrate, a step of forming an insulating film over the light-emitting element and a step of forming a colored layer over the insulating film are included. The insulating film has a function of transmitting light emitted from the light-emitting element. The light-emitting element has a function of emitting light to the colored layer side.
または、上記各作製方法において、表示素子を形成する工程で発光素子を形成する場合、結晶性半導体基板を研磨する工程の前に、作製基板上に剥離層を形成する工程と、剥離層上に絶縁膜を形成する工程と、絶縁膜上に着色層を形成する工程と、発光素子と着色層とが互いに向き合うように、結晶性半導体基板と作製基板とを、第1の接着層を用いて貼り合わせる工程と、作製基板と絶縁膜とを分離する工程と、絶縁膜とフィルムとを、第2の接着層を用いて貼り合わせる工程と、を有してもよい。当該絶縁膜及び当該フィルムは、発光素子が発する光を透過する機能を有する。当該発光素子は、着色層側に光を射出する機能を有する。 Alternatively, in each of the above manufacturing methods, in the case where a light-emitting element is formed in a step of forming a display element, a step of forming a separation layer over the formation substrate and a step of polishing the crystalline semiconductor substrate The crystalline semiconductor substrate and the manufacturing substrate are formed using the first adhesive layer so that the step of forming the insulating film, the step of forming the colored layer over the insulating film, and the light-emitting element and the colored layer face each other. You may have the process of bonding, the process of isolate | separating a production substrate and an insulating film, and the process of bonding an insulating film and a film using a 2nd contact bonding layer. The insulating film and the film have a function of transmitting light emitted from the light-emitting element. The light-emitting element has a function of emitting light to the colored layer side.
上記各作製方法において、結晶性半導体基板は、単結晶半導体基板であることが好ましく、単結晶シリコンを有することがより好ましい。 In each of the above manufacturing methods, the crystalline semiconductor substrate is preferably a single crystal semiconductor substrate, and more preferably includes single crystal silicon.
本発明の一態様は、結晶性基板上にトランジスタを形成する工程と、結晶性基板上にトランジスタと電気的に接続される表示素子を形成する工程と、結晶性基板を研磨し、結晶性半導体基板に厚さ1μm以上100μm以下の部分を形成する工程と、を有する、表示装置の作製方法である。 One embodiment of the present invention includes a step of forming a transistor over a crystalline substrate, a step of forming a display element electrically connected to the transistor over the crystalline substrate, polishing the crystalline substrate, and a crystalline semiconductor Forming a portion having a thickness of 1 μm or more and 100 μm or less on a substrate.
本発明の一態様は、結晶性基板上にトランジスタを形成する工程と、結晶性基板上にトランジスタと電気的に接続される表示素子を形成する工程と、結晶性基板の一部が残るように結晶性基板を研磨する工程と、を有する表示装置の作製方法である。結晶性基板を研磨した後の表示装置は可撓性を有する。 In one embodiment of the present invention, a step of forming a transistor over a crystalline substrate, a step of forming a display element electrically connected to the transistor over the crystalline substrate, and a part of the crystalline substrate remain And a step of polishing the crystalline substrate. The display device after polishing the crystalline substrate has flexibility.
トップエミッション構造の表示装置の場合、結晶性基板は、単結晶シリコンを有することが好ましい。ボトムエミッション構造の表示装置の場合、結晶性基板は、石英ガラス又はサファイアを有することが好ましい。 In the case of a display device having a top emission structure, the crystalline substrate preferably includes single crystal silicon. In the case of a bottom emission display device, the crystalline substrate preferably includes quartz glass or sapphire.
本発明の一態様は、上記の表示装置の作製方法のいずれかを用いて作製された、表示装置である。 One embodiment of the present invention is a display device manufactured using any of the above methods for manufacturing a display device.
本発明の一態様は、結晶性半導体基板と、チャネル形成領域を結晶性半導体基板に有するトランジスタと、トランジスタと電気的に接続された表示素子と、を有し、結晶性半導体基板は、1μm以上100μm以下の厚さの部分を有する、表示装置である。 One embodiment of the present invention includes a crystalline semiconductor substrate, a transistor having a channel formation region in the crystalline semiconductor substrate, and a display element electrically connected to the transistor, and the crystalline semiconductor substrate has a thickness of 1 μm or more. A display device having a thickness of 100 μm or less.
本発明の一態様は、少なくとも一部が可撓性を有する表示装置であり、結晶性半導体基板と、チャネル形成領域を結晶性半導体基板に有するトランジスタと、トランジスタと電気的に接続された表示素子と、を有する、表示装置である。 One embodiment of the present invention is a display device in which at least part is flexible, a crystalline semiconductor substrate, a transistor having a channel formation region in the crystalline semiconductor substrate, and a display element electrically connected to the transistor And a display device.
本発明の一態様は、少なくとも一部に曲面を有する表示装置であり、結晶性半導体基板と、チャネル形成領域を結晶性半導体基板に有するトランジスタと、トランジスタと電気的に接続された表示素子と、を有する、表示装置である。 One embodiment of the present invention is a display device having at least a curved surface, a crystalline semiconductor substrate, a transistor having a channel formation region in the crystalline semiconductor substrate, a display element electrically connected to the transistor, It is a display apparatus which has.
上記各表示装置において、表示素子は、発光素子であってもよい。このとき、表示装置は、表示素子上の封止層と、封止層上の着色層と、を有していてもよい。着色層は、発光素子と重なる部分を有する。封止層は、発光素子が発する光を透過する機能を有する。発光素子は、着色層側に光を射出する機能を有する。さらに、着色層上の絶縁膜と、絶縁膜上の接着層と、接着層上の可撓性を有する基板と、を有していてもよい。 In each of the above display devices, the display element may be a light emitting element. At this time, the display device may include a sealing layer on the display element and a colored layer on the sealing layer. The colored layer has a portion overlapping with the light emitting element. The sealing layer has a function of transmitting light emitted from the light emitting element. The light-emitting element has a function of emitting light to the colored layer side. Further, an insulating film over the colored layer, an adhesive layer over the insulating film, and a flexible substrate over the adhesive layer may be included.
上記各表示装置において、結晶性半導体基板は、単結晶半導体基板であることが好ましく、単結晶シリコンを有することがより好ましい。 In each of the display devices, the crystalline semiconductor substrate is preferably a single crystal semiconductor substrate, and more preferably includes single crystal silicon.
上記各表示装置において、結晶性半導体基板と可撓性を有する基板との間に位置するタッチセンサを有していてもよい。 Each display device may include a touch sensor positioned between the crystalline semiconductor substrate and the flexible substrate.
本発明の一態様は、結晶性基板と、結晶性基板上のトランジスタと、トランジスタと電気的に接続された表示素子と、を有し、結晶性基板は、1μm以上100μm以下の厚さの部分を有する、表示装置である。 One embodiment of the present invention includes a crystalline substrate, a transistor over the crystalline substrate, and a display element electrically connected to the transistor, and the crystalline substrate is a portion having a thickness of 1 μm to 100 μm It is a display apparatus which has.
本発明の一態様は、少なくとも一部が可撓性を有する表示装置であり、結晶性基板と、結晶性基板上のトランジスタと、トランジスタと電気的に接続された表示素子と、を有する、表示装置である。 One embodiment of the present invention is a display device in which at least a part is flexible, and includes a crystalline substrate, a transistor over the crystalline substrate, and a display element electrically connected to the transistor. Device.
本発明の一態様は、少なくとも一部に曲面を有する表示装置であり、結晶性基板と、結晶性基板上のトランジスタと、トランジスタと電気的に接続された表示素子と、を有する、表示装置である。 One embodiment of the present invention is a display device having a curved surface at least in part, the display device including a crystalline substrate, a transistor over the crystalline substrate, and a display element electrically connected to the transistor. is there.
上記結晶性基板を有する各表示装置は、表示素子上の封止層と、封止層上の着色層と、を有していてもよい。表示素子は、発光素子であってもよい。このとき、着色層は、発光素子と重なる部分を有する。封止層は、発光素子が発する光を透過する機能を有する。発光素子は、着色層側に光を射出する機能を有する。さらに、表示装置は、着色層上の絶縁膜と、絶縁膜上の接着層と、接着層上の可撓性を有する基板と、を有していてもよい。 Each display device having the crystalline substrate may have a sealing layer on the display element and a colored layer on the sealing layer. The display element may be a light emitting element. At this time, the colored layer has a portion overlapping with the light emitting element. The sealing layer has a function of transmitting light emitted from the light emitting element. The light-emitting element has a function of emitting light to the colored layer side. Further, the display device may include an insulating film over the colored layer, an adhesive layer over the insulating film, and a flexible substrate over the adhesive layer.
上記結晶性基板を有する各表示装置において、表示素子が発光素子である場合、結晶性基板と発光素子の間に位置する着色層を有していてもよい。結晶性基板は、発光素子が発する光を透過する機能を有する。発光素子は、着色層側に光を射出する機能を有する。 In each display device including the crystalline substrate, in the case where the display element is a light-emitting element, the display element may include a colored layer positioned between the crystalline substrate and the light-emitting element. The crystalline substrate has a function of transmitting light emitted from the light-emitting element. The light-emitting element has a function of emitting light to the colored layer side.
トップエミッション構造の表示装置の場合、結晶性基板は、単結晶シリコンを有することが好ましい。ボトムエミッション構造の表示装置の場合、結晶性基板は、石英又はサファイアを有することが好ましい。 In the case of a display device having a top emission structure, the crystalline substrate preferably includes single crystal silicon. In the case of a display device having a bottom emission structure, the crystalline substrate preferably includes quartz or sapphire.
上記各表示装置の精細度は、400ppi以上4000ppi以下であることが好ましい。 The definition of each display device is preferably 400 ppi or more and 4000 ppi or less.
本発明の一態様は、上記のいずれかの構成の表示装置を有し、FPC(Flexible printed circuit)もしくはTCP(Tape Carrier Package)などのコネクタが取り付けられたモジュール、又はCOG(Chip On Glass)方式、COF(Chip On Film)方式等によりICが実装されたモジュール等のモジュールである。 One embodiment of the present invention includes a display device having any one of the above-described structures, a module to which a connector such as an FPC (Flexible printed circuit) or TCP (Tape Carrier Package) is attached, or a COG (Chip On Glass) method. A module such as a module in which an IC is mounted by a COF (Chip On Film) method or the like.
本発明の一態様では、上記のいずれかの構成又は作製方法が、表示装置でなく、発光装置又は入出力装置(タッチパネルなど)に適用されていてもよい。 In one embodiment of the present invention, any of the above structures or manufacturing methods may be applied to a light-emitting device or an input / output device (such as a touch panel) instead of a display device.
本発明の一態様は、上記のいずれかの構成の表示装置と、アンテナ、バッテリ、筐体、カメラ、スピーカ、マイク、又は操作ボタンの少なくともいずれか一と、を有する電子機器である。 One embodiment of the present invention is an electronic device including the display device having any one of the above structures and at least one of an antenna, a battery, a housing, a camera, a speaker, a microphone, and an operation button.
本発明の一態様は、上記のいずれかの構成の表示装置と、アンテナ、バッテリ、カメラ、スピーカ、ヘッドホン、イヤホン、マイク、又は操作ボタンの少なくともいずれか一と、を有する、ヘッドマウントディスプレイである。 One embodiment of the present invention is a head-mounted display including the display device having any one of the above structures and at least one of an antenna, a battery, a camera, a speaker, a headphone, an earphone, a microphone, and an operation button. .
本発明の一態様は、左目用の表示部と、右目用の表示部と、アンテナ、バッテリ、カメラ、スピーカ、ヘッドホン、イヤホン、マイク、又は操作ボタンの少なくともいずれか一と、を有し、左目用の表示部及び右目用の表示部は、それぞれ、上記のいずれかの構成の表示装置を有する、ヘッドマウントディスプレイである。 One embodiment of the present invention includes a left-eye display portion, a right-eye display portion, and at least one of an antenna, a battery, a camera, a speaker, a headphone, an earphone, a microphone, and an operation button. Each of the display unit for the right eye and the display unit for the right eye is a head mounted display having the display device having any one of the above configurations.
本発明の一態様は、上記のいずれかの構成の表示装置と、レンズ、ミラー、プリズム、アンテナ、又は操作ボタンの少なくともいずれか一と、を有する、プロジェクターである。 One embodiment of the present invention is a projector including the display device having any one of the above structures and at least one of a lens, a mirror, a prism, an antenna, and an operation button.
本発明の一態様により、精細度が極めて高く、可撓性を有する表示装置を提供できる。本発明の一態様により、精細度が極めて高く、曲面を有する表示装置を提供できる。 According to one embodiment of the present invention, a display device with extremely high definition and flexibility can be provided. According to one embodiment of the present invention, a display device with extremely high definition and a curved surface can be provided.
本発明の一態様により、小型であり、可撓性を有する表示装置を提供できる。本発明の一態様により、小型であり、曲面を有する表示装置を提供できる。 According to one embodiment of the present invention, a display device that is small and flexible can be provided. According to one embodiment of the present invention, a small display device having a curved surface can be provided.
本発明の一態様により、精細度又は解像度の高い表示装置を提供できる。本発明の一態様により、小型又は軽量な表示装置を提供できる。本発明の一態様により、厚さが薄い表示装置を提供できる。本発明の一態様により、可撓性を有する、又は曲面を有する表示装置を提供できる。本発明の一態様により、使用者は、二次元画像に強い立体感もしくは奥行き感を得ることができる。本発明の一態様により、破損しにくい表示装置を提供できる。本発明の一態様により、消費電力が低い表示装置を提供できる。本発明の一態様により、信頼性の高い表示装置を提供できる。 According to one embodiment of the present invention, a display device with high definition or high resolution can be provided. According to one embodiment of the present invention, a small or lightweight display device can be provided. According to one embodiment of the present invention, a display device with a small thickness can be provided. According to one embodiment of the present invention, a display device having flexibility or a curved surface can be provided. According to one embodiment of the present invention, a user can obtain a strong stereoscopic feeling or depth feeling in a two-dimensional image. According to one embodiment of the present invention, a display device that is not easily damaged can be provided. According to one embodiment of the present invention, a display device with low power consumption can be provided. According to one embodiment of the present invention, a highly reliable display device can be provided.
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。 Note that the description of these effects does not disturb the existence of other effects. Note that one embodiment of the present invention does not necessarily have all of these effects. It should be noted that other effects can be extracted from the description, drawings, and claims.
表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す上面図と表示装置を曲げる例を説明する側面図。The top view which shows an example of a display apparatus, and the side view explaining the example which bends a display apparatus. 表示装置の作製方法の一例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. 表示装置の作製方法の一例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. 表示装置の作製方法の一例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図とトランジスタの一例を示す上面図。FIG. 10 is a cross-sectional view illustrating an example of a display device and a top view illustrating an example of a transistor. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の作製方法の一例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. 表示装置の作製方法の一例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. 表示装置の作製方法の一例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 画素回路の一例を示す回路図。FIG. 6 is a circuit diagram illustrating an example of a pixel circuit. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 電子機器の一例を示す図。FIG. 14 illustrates an example of an electronic device. 電子機器の一例を示す図。FIG. 14 illustrates an example of an electronic device. 電子機器の一例を示す図。FIG. 14 illustrates an example of an electronic device. 電子機器及び照明装置の一例を示す図。FIG. 6 illustrates an example of an electronic device and a lighting device. 電子機器の一例を示す図。FIG. 14 illustrates an example of an electronic device. 電子機器の一例を示す図。FIG. 14 illustrates an example of an electronic device. 電子機器の一例を示す図。FIG. 14 illustrates an example of an electronic device. 配線又は電極の加工方法の一例を示す断面図。Sectional drawing which shows an example of the processing method of wiring or an electrode. 配線又は電極の加工方法の一例を示す断面図。Sectional drawing which shows an example of the processing method of wiring or an electrode. 配線又は電極の加工方法の一例を示す断面図。Sectional drawing which shows an example of the processing method of wiring or an electrode.
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。 Embodiments will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。 Note that in structures of the invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and description thereof is not repeated. In addition, in the case where the same function is indicated, the hatch pattern is the same, and there is a case where no reference numeral is given.
また、図面において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。 In addition, the position, size, range, and the like of each component illustrated in the drawings may not represent the actual position, size, range, or the like for easy understanding. Therefore, the disclosed invention is not necessarily limited to the position, size, range, or the like disclosed in the drawings.
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電膜」という用語を、「導電層」という用語に変更することが可能である。または、例えば、「絶縁層」という用語を、「絶縁膜」という用語に変更することが可能である。 Note that the terms “film” and “layer” can be interchanged with each other depending on circumstances or circumstances. For example, the term “conductive film” can be changed to the term “conductive layer”. Alternatively, for example, the term “insulating layer” can be changed to the term “insulating film”.
なお、本明細書中において、「基板」は、機能回路、機能素子、及び機能膜等のうち少なくとも一つを支持する機能を有することが好ましい。なお、「基板」は、これらを支持する機能を有していなくてもよく、例えば、装置の表面を保護する機能、又は、機能回路、機能素子、及び機能膜等のうち少なくとも一つを封止する機能等を有していてもよい。 Note that in this specification, the “substrate” preferably has a function of supporting at least one of a functional circuit, a functional element, a functional film, and the like. Note that the “substrate” may not have a function of supporting these, and for example, at least one of a function for protecting the surface of the device or a functional circuit, a functional element, a functional film, and the like is sealed. It may have a function to stop.
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置とその作製方法について図1~図23を用いて説明する。
(Embodiment 1)
In this embodiment, a display device of one embodiment of the present invention and a manufacturing method thereof will be described with reference to FIGS.
表示装置の基板には、ガラス基板が用いられることが多い。しかし、表示装置の作製における加熱工程によって、ガラスは収縮する場合がある。ガラスの熱収縮は、熱処理によるガラスの構造緩和に由来する。具体的には、ガラスを加熱することによって、ガラスの構造がより安定な状態に緩和して高密度化する(つまり収縮する)。 A glass substrate is often used as the substrate of the display device. However, the glass may shrink due to a heating process in manufacturing the display device. The thermal shrinkage of glass is derived from the relaxation of the glass structure caused by heat treatment. Specifically, by heating the glass, the glass structure is relaxed to a more stable state and densified (that is, contracted).
精細度の高い表示装置の作製には、微細な加工が必要となるため、加熱工程により基板が収縮すると、パターンにずれが生じ、トランジスタもしくは表示素子の特性の劣化、又は作製工程の歩留まりの低下につながる。 For manufacturing a display device with high definition, fine processing is required. Therefore, when the substrate shrinks due to the heating process, a pattern shifts, which deteriorates the characteristics of the transistor or the display element, or decreases the yield of the manufacturing process. Leads to.
例えば、低温ポリシリコンを用いたトランジスタを作製する場合、作製工程の最高温度が600℃程度となることもあるため、ガラス基板の熱収縮の問題が顕著となる。 For example, when a transistor using low-temperature polysilicon is manufactured, the maximum temperature in the manufacturing process may be about 600 ° C., so that the problem of thermal shrinkage of the glass substrate becomes significant.
そこで、本発明の一態様では、熱収縮の少ない基板を用いる。例えば、チャネル形成領域を熱収縮の少ない基板に有するトランジスタを形成する。または、熱収縮の少ない基板上に、トランジスタ及び表示素子を形成する。 Thus, in one embodiment of the present invention, a substrate with less heat shrinkage is used. For example, a transistor having a channel formation region over a substrate with little thermal contraction is formed. Alternatively, a transistor and a display element are formed over a substrate with little heat shrinkage.
本発明の一態様では、熱収縮の少ない基板として、結晶性基板を用いる。結晶性基板を用いることで、基板の熱収縮が原因でパターンにずれが生じることを抑制できる。これにより、トランジスタもしくは表示素子の特性の劣化、又は作製工程の歩留まりの低下を抑制できる。本発明の一態様を適用することで、精細度が極めて高い表示装置を作製することができる。具体的には、本発明の一態様を適用することで、400ppi以上4000ppi以下、又は4000ppi以上の精細度の表示装置を作製することができる。 In one embodiment of the present invention, a crystalline substrate is used as the substrate with less heat shrinkage. By using a crystalline substrate, it is possible to prevent the pattern from being shifted due to thermal contraction of the substrate. Accordingly, deterioration in characteristics of the transistor or the display element or a reduction in yield in the manufacturing process can be suppressed. By applying one embodiment of the present invention, a display device with extremely high definition can be manufactured. Specifically, by applying one embodiment of the present invention, a display device having a definition of 400 ppi to 4000 ppi or 4000 ppi can be manufactured.
表示装置の精細度が高いと、使用者は、二次元画像に立体感を得ることができる。本発明の一態様の表示装置は、高い精細度を有するため、複雑な構成(例えば、両眼視差を含む画像、又は立体視用のメガネ)を用いなくとも、使用者が画像に立体感を得ることができる。 When the definition of the display device is high, the user can obtain a stereoscopic effect on the two-dimensional image. Since the display device of one embodiment of the present invention has high definition, the user can add a stereoscopic effect to an image without using a complicated configuration (for example, an image including binocular parallax or stereoscopic glasses). Obtainable.
また、表示装置は、画素数が多いことが好ましく、例えば、フルハイビジョン、4K、又は8Kの表示を行えることが好ましい。 The display device preferably has a large number of pixels. For example, it is preferable that full high-definition, 4K, or 8K display can be performed.
本発明の一態様の表示装置には、様々な表示素子を用いることができる。例えば、EL素子(有機EL素子及び無機EL素子)等の発光素子、液晶素子、電気泳動素子、MEMS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子等が挙げられる。 Various display elements can be used for the display device of one embodiment of the present invention. For example, light emitting elements such as EL elements (organic EL elements and inorganic EL elements), liquid crystal elements, electrophoretic elements, display elements using MEMS (micro electro mechanical systems), and the like can be given.
特に、液晶素子及び有機EL素子は、高精細化が容易であるため、好ましい。さらに、有機EL素子を用いると、液晶素子を用いる場合に比べて、表示装置の使用者が、画像に、強い立体感又は奥行き感を得ることができるため、好ましい。また、有機EL素子は、液晶素子に比べて、フレキシブル化が容易であるため、好ましい。 In particular, a liquid crystal element and an organic EL element are preferable because high definition is easy. Furthermore, it is preferable to use an organic EL element because a user of the display device can obtain a strong three-dimensional feeling or a depth feeling in an image as compared with the case where a liquid crystal element is used. In addition, the organic EL element is preferable because it can be easily flexible as compared with the liquid crystal element.
結晶性基板としては、例えば、単結晶基板、多結晶基板、化合物基板、及び酸化物基板等を用いることができる。具体的には、シリコン(Si)、ゲルマニウム(Ge)、シリコンゲルマニウム(SiGe)、SiC、SiO、GaAs、InAs、InP、GaSb、InSb、GaN、AlN、GaP、GaInAsP、Al(サファイア)、CdSe、CdS、ZnSe、ZnTe、ZnS、MgO、SrTiO、又はZnO等を有する結晶性基板を用いることができる。 As the crystalline substrate, for example, a single crystal substrate, a polycrystalline substrate, a compound substrate, an oxide substrate, or the like can be used. Specifically, silicon (Si), germanium (Ge), silicon germanium (SiGe), SiC, SiO 2 , GaAs, InAs, InP, GaSb, InSb, GaN, AlN, GaP, GaInAsP, Al 2 O 3 ( sapphire ), A crystalline substrate containing CdSe, CdS, ZnSe, ZnTe, ZnS, MgO, SrTiO 3 , ZnO, or the like can be used.
特に、シリコンウェハは、ガラスよりも平坦でうねりが少ないため、好ましい。 In particular, a silicon wafer is preferable because it is flatter and less swelled than glass.
結晶性基板の熱収縮率は、0ppm/℃より大きく10ppm/℃以下であることが好ましく、0ppm/℃より大きく5ppm/℃以下であることがより好ましく、0ppm/℃より大きく3ppm/℃以下であることがさらに好ましい。 The thermal shrinkage rate of the crystalline substrate is preferably greater than 0 ppm / ° C. and not greater than 10 ppm / ° C., more preferably greater than 0 ppm / ° C. and not greater than 5 ppm / ° C., and greater than 0 ppm / ° C. and not greater than 3 ppm / ° C. More preferably it is.
結晶性基板としては、特に、単結晶基板を用いることが好ましい。例えば、単結晶半導体基板、単結晶金属基板、人工水晶(石英の単結晶)基板等を用いることができる。 As the crystalline substrate, it is particularly preferable to use a single crystal substrate. For example, a single crystal semiconductor substrate, a single crystal metal substrate, an artificial crystal (quartz single crystal) substrate, or the like can be used.
なお、トランジスタのチャネル形成領域を結晶性基板に形成する場合は、結晶性半導体基板を用いる。結晶性半導体基板の材料としては、例えば、Si、Ge、SiGe、SiC等を好適に用いることができる。特に、単結晶半導体基板を用いることが好ましく、単結晶シリコン基板を用いることがより好ましい。 Note that in the case where a channel formation region of a transistor is formed over a crystalline substrate, a crystalline semiconductor substrate is used. As a material of the crystalline semiconductor substrate, for example, Si, Ge, SiGe, SiC, or the like can be suitably used. In particular, a single crystal semiconductor substrate is preferably used, and a single crystal silicon substrate is more preferably used.
さらに、本発明の一態様では、トランジスタ及び表示素子等を作製した後に、結晶性基板を研磨する。例えば、表示装置が可撓性を有する程度に、又は、結晶性基板が1μm以上100μm以下の厚さの部分を有するように、結晶性基板を研磨する。 Further, in one embodiment of the present invention, after manufacturing a transistor, a display element, and the like, the crystalline substrate is polished. For example, the crystalline substrate is polished so that the display device has flexibility or the crystalline substrate has a portion with a thickness of 1 μm to 100 μm.
これにより、精細度が極めて高い表示装置の小型化、軽量化、薄型化、又はフレキシブル化が可能となる。本発明の一態様を適用して作製された表示装置は、使用者が繰り返し曲げることができてもよい。または、該表示装置は、1度曲げられることで、その曲がった状態(曲面を有する状態)を維持することができてもよい。または、該表示装置は、曲がらなくてもよい。 Thereby, a display device with extremely high definition can be reduced in size, weight, thickness, or flexibility. A display device manufactured using one embodiment of the present invention may be bent repeatedly by a user. Alternatively, the display device may be able to maintain the bent state (the state having a curved surface) by being bent once. Alternatively, the display device may not be bent.
なお、本発明の一態様では、可撓性を有する結晶性基板上に、トランジスタ及び表示素子等を作製してもよい。この場合、トランジスタ及び表示素子等を作製した後に、結晶性基板を研磨しなくてもよい。または、可撓性を有する結晶性基板を研磨し、さらに薄型化、軽量化、又はフレキシブル化を図ってもよい。なお、表示装置の作製工程及び搬送を容易とするため、トランジスタ及び表示素子等を作製する時点では、結晶性基板は十分な厚さを有していることが好ましく、素子の形成工程後に、該結晶性基板を研磨する等によって、厚さを薄くすることが好ましい。 Note that in one embodiment of the present invention, a transistor, a display element, or the like may be manufactured over a flexible crystalline substrate. In this case, the crystalline substrate may not be polished after the transistor, the display element, and the like are manufactured. Alternatively, a crystalline substrate having flexibility may be polished to further reduce the thickness, weight, or flexibility. Note that the crystalline substrate preferably has a sufficient thickness at the time of manufacturing the transistor, the display element, and the like in order to facilitate the manufacturing process and the transport of the display device. It is preferable to reduce the thickness by polishing the crystalline substrate.
本発明の一態様の表示装置は、小型及び薄型にすることが容易であるため、軽量化が可能であり、携帯用途の電子機器やウェアラブルディスプレイに好適に用いることができる。 Since the display device of one embodiment of the present invention can be easily reduced in size and thickness, the display device can be reduced in weight and can be favorably used for portable electronic devices and wearable displays.
以下では、本発明の一態様の表示装置の構成例を説明する。 The structure example of the display device of one embodiment of the present invention is described below.
まず、図2(A)~(C)に、本発明の一態様の表示装置の上面図をそれぞれ示す。 First, FIGS. 2A to 2C are top views of a display device of one embodiment of the present invention.
図2(A)では、結晶性半導体基板101上に画素部160が設けられている。画素部160は、結晶性半導体基板101と接着層196と可撓性基板191とによって封止されている。図2(A)では、結晶性半導体基板101上の接着層196と可撓性基板191とによって封止されている領域とは異なる領域に、信号線駆動回路4003及び走査線駆動回路4004が実装されている。信号線駆動回路4003及び走査線駆動回路4004は、それぞれ、別途用意された基板上に単結晶半導体又は多結晶半導体を用いて形成されている。また、信号線駆動回路4003、走査線駆動回路4004、又は画素部160に与えられる各種信号及び電位は、FPC4018a、FPC4018bから供給されている。なお、本明細書中では、可撓性を有する基板を、可撓性基板とも記す。 In FIG. 2A, the pixel portion 160 is provided over the crystalline semiconductor substrate 101. The pixel portion 160 is sealed with the crystalline semiconductor substrate 101, the adhesive layer 196, and the flexible substrate 191. In FIG. 2A, the signal line driver circuit 4003 and the scan line driver circuit 4004 are mounted in a region different from the region sealed with the adhesive layer 196 and the flexible substrate 191 over the crystalline semiconductor substrate 101. Has been. The signal line driver circuit 4003 and the scan line driver circuit 4004 are each formed using a single crystal semiconductor or a polycrystalline semiconductor over a separately prepared substrate. In addition, a variety of signals and potentials are supplied to the signal line driver circuit 4003, the scan line driver circuit 4004, or the pixel portion 160 from an FPC 4018a and an FPC 4018b. Note that in this specification, a flexible substrate is also referred to as a flexible substrate.
図2(B)、(C)では、結晶性半導体基板101上に画素部160と、走査線駆動回路150とが設けられている。画素部160と、走査線駆動回路150とは、結晶性半導体基板101と接着層196と可撓性基板191とによって封止されている。図2(B)、(C)では、結晶性半導体基板101上の接着層196と可撓性基板191とによって封止されている領域とは異なる領域に、信号線駆動回路4003が実装されている。信号線駆動回路4003は、別途用意された基板上に単結晶半導体又は多結晶半導体を用いて形成されている。図2(B)、(C)では、信号線駆動回路4003、走査線駆動回路4004、又は画素部160に与えられる各種信号及び電位は、FPC4018から供給されている。 2B and 2C, the pixel portion 160 and the scan line driver circuit 150 are provided over the crystalline semiconductor substrate 101. In FIG. The pixel portion 160 and the scan line driver circuit 150 are sealed with the crystalline semiconductor substrate 101, the adhesive layer 196, and the flexible substrate 191. 2B and 2C, the signal line driver circuit 4003 is mounted in a region different from the region sealed by the adhesive layer 196 and the flexible substrate 191 over the crystalline semiconductor substrate 101. Yes. The signal line driver circuit 4003 is formed using a single crystal semiconductor or a polycrystalline semiconductor over a separately prepared substrate. 2B and 2C, various signals and potentials supplied to the signal line driver circuit 4003, the scan line driver circuit 4004, or the pixel portion 160 are supplied from an FPC 4018.
図2(B)、(C)では、信号線駆動回路4003を別途形成し、結晶性半導体基板101に実装している例を示しているが、この構成に限定されない。走査線駆動回路を別途形成して実装してもよいし、信号線駆動回路の一部又は走査線駆動回路の一部のみを別途形成して実装してもよい。 2B and 2C illustrate an example in which the signal line driver circuit 4003 is separately formed and mounted on the crystalline semiconductor substrate 101; however, the present invention is not limited to this structure. The scan line driver circuit may be separately formed and mounted, or only part of the signal line driver circuit or part of the scan line driver circuit may be separately formed and mounted.
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、ワイヤボンディング、COG、TCP、COF等を用いることができる。図2(A)は、COGにより信号線駆動回路4003及び走査線駆動回路4004を実装する例であり、図2(B)は、COGにより信号線駆動回路4003を実装する例であり、図2(C)は、TCPにより信号線駆動回路4003を実装する例である。 Note that a connection method of a driver circuit which is separately formed is not particularly limited, and wire bonding, COG, TCP, COF, or the like can be used. 2A is an example in which the signal line driver circuit 4003 and the scanning line driver circuit 4004 are mounted by COG, and FIG. 2B is an example in which the signal line driver circuit 4003 is mounted by COG. (C) is an example in which the signal line driver circuit 4003 is mounted by TCP.
結晶性半導体基板101上に設けられた画素部160及び走査線駆動回路150は、トランジスタを複数有する。 The pixel portion 160 and the scan line driver circuit 150 provided over the crystalline semiconductor substrate 101 include a plurality of transistors.
図2(D)~(F)を用いて、本発明の一態様の表示装置を曲げる例について説明する。 An example in which the display device of one embodiment of the present invention is bent will be described with reference to FIGS.
図2(D)に示すように、本発明の一態様が適用された表示装置110は、可逆的に曲げることができる。 As shown in FIG. 2D, the display device 110 to which one embodiment of the present invention is applied can be bent reversibly.
表示装置110を曲げた状態で保持するために、表示装置110を他の部材で固定してもよい。部材には、ガラス、プラスチック、金属、合金、木材、及び石材等を用いることができる。部材は、単層構造又は積層構造とすることができ、例えば、板、又はフィルム等を積層してもよい。部材を表示装置110の表示面側に重ねて配置する場合、部材は可視光を透過するものとする。部材が可視光を透過しない場合、該部材は、表示装置110の表示面側に重ならないよう、配置する。 In order to hold the display device 110 in a bent state, the display device 110 may be fixed by another member. For the member, glass, plastic, metal, alloy, wood, stone, or the like can be used. The member may have a single layer structure or a laminated structure, and for example, a plate or a film may be laminated. When a member is arranged so as to overlap the display surface side of the display device 110, the member shall transmit visible light. When the member does not transmit visible light, the member is disposed so as not to overlap the display surface side of the display device 110.
図2(E)に示すように、表示装置110を部材210の曲面に沿って曲げた状態で、部材210に固定してもよい。表示装置110は、着脱可能に固定してもよいし、接着剤などで部材210の曲面に貼り付けてもよい。 As shown in FIG. 2E, the display device 110 may be fixed to the member 210 while being bent along the curved surface of the member 210. The display device 110 may be detachably fixed, or may be attached to the curved surface of the member 210 with an adhesive or the like.
図2(F)に示すように、表示装置110を部材215a、215bの間に挟持して、表示装置110を曲げた状態で固定してもよい。部材215aと部材215bは接着剤などで互いに貼り付けられていてもよい。または、部材215aと部材215bは留め具などにより着脱可能に固定されていてもよい。 As shown in FIG. 2F, the display device 110 may be sandwiched between the members 215a and 215b, and the display device 110 may be fixed in a bent state. The members 215a and 215b may be attached to each other with an adhesive or the like. Alternatively, the member 215a and the member 215b may be detachably fixed by a fastener or the like.
次に、本発明の一態様の表示装置の断面構成例と、作製方法について説明する。 Next, an example of a cross-sectional structure of a display device of one embodiment of the present invention and a manufacturing method thereof will be described.
<断面構成例1>
図1に、図2(B)における走査線駆動回路150及び画素部160の断面図を示す。
<Cross-section configuration example 1>
FIG. 1 is a cross-sectional view of the scan line driver circuit 150 and the pixel portion 160 in FIG.
図1では、結晶性半導体基板101、トランジスタ151n、トランジスタ151p、トランジスタ161、トランジスタ162、素子分離領域118、発光素子180、可撓性基板191、接着層192、絶縁膜193、遮光層194、着色層195、接着層196等を示している。 In FIG. 1, the crystalline semiconductor substrate 101, the transistor 151n, the transistor 151p, the transistor 161, the transistor 162, the element isolation region 118, the light emitting element 180, the flexible substrate 191, the adhesive layer 192, the insulating film 193, the light shielding layer 194, and the coloring A layer 195, an adhesive layer 196, and the like are shown.
結晶性半導体基板101にトランジスタのチャネル形成領域を設けることができる。表示装置の作製における加熱工程によって、結晶性半導体基板101は収縮しにくいため、トランジスタもしくは表示素子の特性の劣化、又は作製工程の歩留まりの低下を抑制し、精細度の高い表示装置を作製できる。 A channel formation region of a transistor can be provided in the crystalline semiconductor substrate 101. Since the crystalline semiconductor substrate 101 is hardly contracted by a heating step in manufacturing the display device, deterioration in characteristics of the transistor or the display element or a decrease in yield in the manufacturing process can be suppressed, so that a display device with high definition can be manufactured.
結晶性半導体基板101は、可撓性を有することが好ましい。例えば、結晶性半導体基板101の厚さは、1μm以上100μm以下が好ましく、1μm以上50μm以下がより好ましい。 The crystalline semiconductor substrate 101 preferably has flexibility. For example, the thickness of the crystalline semiconductor substrate 101 is preferably 1 μm to 100 μm, and more preferably 1 μm to 50 μm.
走査線駆動回路150及び画素部160は、それぞれ、p型のトランジスタのみを有していてもよく、n型のトランジスタのみを有していてもよく、p型のトランジスタとn型のトランジスタの両方を有していてもよい。図1では、走査線駆動回路150において、結晶性半導体基板101上にp型のトランジスタ151pとn型のトランジスタ151nとが設けられている例を示す。また、図1では、画素部160において、結晶性半導体基板101上にそれぞれn型の、トランジスタ161及びトランジスタ162が設けられている例を示す。 Each of the scan line driver circuit 150 and the pixel portion 160 may include only a p-type transistor or may include only an n-type transistor. Both the p-type transistor and the n-type transistor may be included. You may have. FIG. 1 shows an example in which a p-type transistor 151 p and an n-type transistor 151 n are provided over the crystalline semiconductor substrate 101 in the scan line driver circuit 150. FIG. 1 illustrates an example in which n- type transistors 161 and 162 are provided over the crystalline semiconductor substrate 101 in the pixel portion 160.
トランジスタ151pは、p型のトランジスタである。トランジスタ151pは、nウェル112n、p型不純物領域113p、LDD(Lightly Doped Drain)領域114p、ゲート絶縁膜115、ゲート116a、サイドウォール117、絶縁膜121、絶縁膜122、導電膜123a、導電膜123b、導電膜124a、及び導電膜124bを有する。 The transistor 151p is a p-type transistor. The transistor 151p includes an n-well 112n, a p-type impurity region 113p, an LDD (Lightly Doped Drain) region 114p, a gate insulating film 115, a gate 116a, a sidewall 117, an insulating film 121, an insulating film 122, a conductive film 123a, and a conductive film 123b. , A conductive film 124a, and a conductive film 124b.
トランジスタ151pが有するp型不純物領域113pの一方は、導電膜123aを介して、絶縁膜122上の導電膜124aと電気的に接続されており、他方は、導電膜123bを介して、絶縁膜122上の導電膜124bと電気的に接続されている。 One of the p-type impurity regions 113p included in the transistor 151p is electrically connected to the conductive film 124a over the insulating film 122 through the conductive film 123a, and the other is connected to the insulating film 122 through the conductive film 123b. It is electrically connected to the upper conductive film 124b.
トランジスタ151nは、n型のトランジスタである。トランジスタ151nは、pウェル112p、n型不純物領域113n、LDD領域114n、ゲート絶縁膜115、ゲート116b、サイドウォール117、絶縁膜121、絶縁膜122、導電膜123c、導電膜123d、導電膜124c、及び導電膜124dを有する。 The transistor 151n is an n-type transistor. The transistor 151n includes a p-well 112p, an n-type impurity region 113n, an LDD region 114n, a gate insulating film 115, a gate 116b, a sidewall 117, an insulating film 121, an insulating film 122, a conductive film 123c, a conductive film 123d, a conductive film 124c, And a conductive film 124d.
トランジスタ151nが有するn型不純物領域113nの一方は、導電膜123cを介して、絶縁膜122上の導電膜124cと電気的に接続されており、他方は、導電膜123dを介して、絶縁膜122上の導電膜124dと電気的に接続されている。 One of n-type impurity regions 113n included in the transistor 151n is electrically connected to the conductive film 124c over the insulating film 122 through the conductive film 123c, and the other is connected to the insulating film 122 through the conductive film 123d. It is electrically connected to the upper conductive film 124d.
トランジスタ161は、n型のトランジスタである。トランジスタ161は、pウェル112p、n型不純物領域113n、LDD領域114n、ゲート絶縁膜115、ゲート116c、サイドウォール117、絶縁膜121、絶縁膜122、導電膜123e、導電膜123f、導電膜124e、及び導電膜124fを有する。 The transistor 161 is an n-type transistor. The transistor 161 includes a p-well 112p, an n-type impurity region 113n, an LDD region 114n, a gate insulating film 115, a gate 116c, a sidewall 117, an insulating film 121, an insulating film 122, a conductive film 123e, a conductive film 123f, a conductive film 124e, And a conductive film 124f.
トランジスタ161が有するn型不純物領域113nの一方は、導電膜123eを介して、絶縁膜122上の導電膜124eと電気的に接続されており、他方は、導電膜123fを介して、絶縁膜122上の導電膜124fと電気的に接続されている。 One of n-type impurity regions 113n included in the transistor 161 is electrically connected to the conductive film 124e over the insulating film 122 through the conductive film 123e, and the other is connected to the insulating film 122 through the conductive film 123f. It is electrically connected to the upper conductive film 124f.
トランジスタ162は、n型のトランジスタである。トランジスタ162は、pウェル112p、n型不純物領域113n、LDD領域114n、ゲート絶縁膜115、ゲート116d、サイドウォール117、絶縁膜121、絶縁膜122、導電膜123g、導電膜123h、導電膜124g、及び導電膜124hを有する。 The transistor 162 is an n-type transistor. The transistor 162 includes a p-well 112p, an n-type impurity region 113n, an LDD region 114n, a gate insulating film 115, a gate 116d, a sidewall 117, an insulating film 121, an insulating film 122, a conductive film 123g, a conductive film 123h, a conductive film 124g, And a conductive film 124h.
トランジスタ162が有するn型不純物領域113nの一方は、導電膜123gを介して、絶縁膜122上の導電膜124gと電気的に接続されており、他方は、導電膜123hを介して、絶縁膜122上の導電膜124hと電気的に接続されている。 One of n-type impurity regions 113n included in the transistor 162 is electrically connected to the conductive film 124g over the insulating film 122 through the conductive film 123g, and the other is connected to the insulating film 122 through the conductive film 123h. It is electrically connected to the upper conductive film 124h.
トランジスタ161のゲート116cは、トランジスタ162のソース又はドレインと電気的に接続されている。具体的には、ゲート116cは、導電膜123iを介して、導電膜124gと電気的に接続されている。そして、導電膜124gは、導電膜123gを介して、n型不純物領域113nと電気的に接続されている。 A gate 116 c of the transistor 161 is electrically connected to a source or a drain of the transistor 162. Specifically, the gate 116c is electrically connected to the conductive film 124g through the conductive film 123i. The conductive film 124g is electrically connected to the n-type impurity region 113n through the conductive film 123g.
図1に示すように、同一基板上にp型のトランジスタとn型のトランジスタを形成する場合、結晶性半導体基板101の一部にnウェル112n及びpウェル112pのうち少なくとも一方を形成してもよい。例えば、n型の結晶性半導体基板を用いた場合、結晶性半導体基板101にp型の導電性を付与するホウ素などの不純物元素を添加してpウェル112pを形成してもよい。同様に、例えば、p型の結晶性半導体基板を用いた場合、結晶性半導体基板101にn型の導電性を付与するリンなどの不純物元素を添加してnウェル112nを形成してもよい。 As shown in FIG. 1, when a p-type transistor and an n-type transistor are formed on the same substrate, at least one of an n-well 112n and a p-well 112p may be formed on part of the crystalline semiconductor substrate 101. Good. For example, when an n-type crystalline semiconductor substrate is used, an impurity element such as boron imparting p-type conductivity may be added to the crystalline semiconductor substrate 101 to form the p-well 112p. Similarly, for example, when a p-type crystalline semiconductor substrate is used, an n-well 112n may be formed by adding an impurity element such as phosphorus imparting n-type conductivity to the crystalline semiconductor substrate 101.
各トランジスタは一対のn型不純物領域113n又は一対のp型不純物領域113pを有する。一対の不純物領域の一方は、ソース領域として機能し、他方は、ドレイン領域として機能する。n型不純物領域113nには、n型の導電性を付与するリンなどの不純物元素が含まれる。p型不純物領域113pには、p型の導電性を付与するホウ素などの不純物元素が含まれる。 Each transistor has a pair of n-type impurity regions 113n or a pair of p-type impurity regions 113p. One of the pair of impurity regions functions as a source region, and the other functions as a drain region. The n-type impurity region 113n contains an impurity element such as phosphorus which imparts n-type conductivity. The p-type impurity region 113p contains an impurity element such as boron that imparts p-type conductivity.
各トランジスタは、低濃度不純物領域を有していてもよい。n型のトランジスタのLDD領域114nには、n型の導電性を付与するリンなどの不純物元素が含まれる。p型のトランジスタのLDD領域114pには、p型の導電性を付与するホウ素などの不純物元素が含まれる。 Each transistor may have a low concentration impurity region. The LDD region 114n of the n-type transistor contains an impurity element such as phosphorus that imparts n-type conductivity. The LDD region 114p of the p-type transistor contains an impurity element such as boron that imparts p-type conductivity.
ゲート絶縁膜115は、結晶性半導体基板101と各トランジスタのゲートの間に位置する。各トランジスタのゲートは、ゲート絶縁膜115を挟んで、結晶性半導体基板101のチャネル形成領域と重なる。 The gate insulating film 115 is located between the crystalline semiconductor substrate 101 and the gate of each transistor. The gate of each transistor overlaps with the channel formation region of the crystalline semiconductor substrate 101 with the gate insulating film 115 interposed therebetween.
各トランジスタは、素子分離領域118により電気的に分離されている。素子分離領域118は、LOCOS(Local Oxidation of Silicon)法、又はSTI(Shallow Trench Isolation)法等を用いて形成することができる。 Each transistor is electrically isolated by an element isolation region 118. The element isolation region 118 can be formed using a LOCOS (Local Oxidation of Silicon) method, an STI (Shallow Trench Isolation) method, or the like.
発光素子180は、電極181、EL層183、及び電極185を有する。発光素子180は、着色層195側に光を射出する。 The light-emitting element 180 includes an electrode 181, an EL layer 183, and an electrode 185. The light emitting element 180 emits light to the colored layer 195 side.
電極181及び電極185のうち、一方は、陽極として機能し、他方は、陰極として機能する。電極181及び電極185の間に、発光素子180の閾値電圧より高い電圧を印加すると、EL層183に陽極側から正孔が注入され、陰極側から電子が注入される。注入された電子と正孔はEL層183において再結合し、EL層183に含まれる発光物質が発光する。 One of the electrode 181 and the electrode 185 functions as an anode, and the other functions as a cathode. When a voltage higher than the threshold voltage of the light emitting element 180 is applied between the electrode 181 and the electrode 185, holes are injected into the EL layer 183 from the anode side and electrons are injected from the cathode side. The injected electrons and holes are recombined in the EL layer 183, and the light-emitting substance contained in the EL layer 183 emits light.
 トランジスタ161のソース又はドレインは、導電膜127を介して、絶縁膜125上の電極181と電気的に接続されている。 The source or drain of the transistor 161 is electrically connected to the electrode 181 over the insulating film 125 through the conductive film 127.
絶縁膜122及び絶縁膜125等の上面には、必要に応じてCMP(Chemical Mechanical Polishing)法等で平坦化処理を行うことが好ましい。 Planarization treatment is preferably performed on the top surfaces of the insulating film 122, the insulating film 125, and the like as necessary by a CMP (Chemical Mechanical Polishing) method or the like.
電極181は画素電極として機能し、発光素子180ごとに設けられている。隣り合う2つの電極181は、絶縁膜128によって電気的に絶縁されている。電極185は、共通電極として機能し、複数の発光素子180にわたって設けられている。 The electrode 181 functions as a pixel electrode and is provided for each light emitting element 180. Two adjacent electrodes 181 are electrically insulated by an insulating film 128. The electrode 185 functions as a common electrode and is provided over the plurality of light emitting elements 180.
図1では、絶縁膜128が無機絶縁膜である例を示すが、絶縁膜128は有機絶縁膜であってもよい。 Although FIG. 1 shows an example in which the insulating film 128 is an inorganic insulating film, the insulating film 128 may be an organic insulating film.
結晶性半導体基板101とは異なる基板上で作製された、絶縁膜193、遮光層194、及び着色層195は、接着層196によって、結晶性半導体基板101と貼り合わされている。トランジスタ等に比べて微細な加工が必要とされない機能素子又は機能膜のみを基板上に作製する場合は、基板の熱収縮の影響を受けにくいこともある。そのため、絶縁膜193、遮光層194、及び着色層195等は、結晶性基板上に作製しなくても構わない。なお、作製において微細な加工が必要な場合は、絶縁膜193、遮光層194、及び着色層195等も、結晶性基板上に作製することが好ましい。 The insulating film 193, the light-blocking layer 194, and the coloring layer 195 manufactured over a substrate different from the crystalline semiconductor substrate 101 are attached to the crystalline semiconductor substrate 101 with an adhesive layer 196. In the case where only a functional element or a functional film that does not require fine processing as compared with a transistor or the like is formed over a substrate, it may be difficult to be affected by thermal contraction of the substrate. Therefore, the insulating film 193, the light-blocking layer 194, the coloring layer 195, and the like are not necessarily formed over the crystalline substrate. Note that in the case where fine processing is required for manufacturing, the insulating film 193, the light-blocking layer 194, the coloring layer 195, and the like are also preferably formed over the crystalline substrate.
例えば、可撓性基板191上に、絶縁膜193、遮光層194、及び着色層195を直接形成してもよい。なお、発光素子又はトランジスタが、水分等の不純物により劣化しやすい場合、可撓性基板191のガスバリア性が低いと、表示装置の信頼性が不十分となる場合がある。可撓性基板191にガスバリア性が低い材料(有機樹脂など)を用いる場合には、絶縁膜193のガスバリア性が高いことが好ましい。図1に示す構成は、例えば、作製基板上で作製した絶縁膜193、遮光層194、及び着色層195を接着層196で結晶性半導体基板101上に転置した後、作製基板を剥離し、絶縁膜193と可撓性基板191とを接着層192で貼り合わせることで作製できる。耐熱性の高い作製基板上で高温をかけて絶縁膜193を形成することで、絶縁膜193のガスバリア性を高めることができる。 For example, the insulating film 193, the light shielding layer 194, and the coloring layer 195 may be directly formed over the flexible substrate 191. Note that in the case where the light-emitting element or the transistor is easily deteriorated by an impurity such as moisture, the reliability of the display device may be insufficient if the gas barrier property of the flexible substrate 191 is low. In the case where a material having a low gas barrier property (such as an organic resin) is used for the flexible substrate 191, the insulating film 193 preferably has a high gas barrier property. In the structure illustrated in FIG. 1, for example, the insulating film 193, the light-shielding layer 194, and the coloring layer 195 manufactured over the manufacturing substrate are transferred onto the crystalline semiconductor substrate 101 with the adhesive layer 196, and then the manufacturing substrate is peeled off to be insulated. The film 193 and the flexible substrate 191 can be manufactured by bonding with an adhesive layer 192. By forming the insulating film 193 by applying high temperature over a manufacturing substrate with high heat resistance, the gas barrier property of the insulating film 193 can be improved.
発光素子180は、接着層196を介して着色層195と重なる。絶縁膜128は、接着層196を介して遮光層194と重なる。 The light emitting element 180 overlaps the colored layer 195 with the adhesive layer 196 interposed therebetween. The insulating film 128 overlaps the light shielding layer 194 with the adhesive layer 196 interposed therebetween.
<断面構成例1の作製方法>
図3~図5を用いて、断面構成例1(図1)の作製方法の一例を説明する。
<Method for Manufacturing Cross-Sectional Configuration Example 1>
An example of a manufacturing method of the cross-sectional configuration example 1 (FIG. 1) will be described with reference to FIGS.
まず、図3(A)に示すように、結晶性半導体基板101上に、トランジスタ151p、151n、161、162、絶縁膜125、及び発光素子180等を作製する。 First, as illustrated in FIG. 3A, transistors 151p, 151n, 161, and 162, an insulating film 125, a light-emitting element 180, and the like are formed over the crystalline semiconductor substrate 101.
また、図3(B)に示すように、作製基板911上に、剥離層992を形成する。次に、剥離層992上に絶縁膜193を形成する。次に、絶縁膜193上に遮光層194及び着色層195を形成する。 In addition, as illustrated in FIG. 3B, a separation layer 992 is formed over the manufacturing substrate 911. Next, an insulating film 193 is formed over the separation layer 992. Next, a light-blocking layer 194 and a colored layer 195 are formed over the insulating film 193.
作製基板911には、少なくとも作製工程中の処理温度に耐えうる耐熱性を有する基板を用いる。作製基板911としては、例えばガラス基板、石英基板、サファイア基板、半導体基板、セラミック基板、金属基板、樹脂基板、プラスチック基板などを用いることができる。 As the manufacturing substrate 911, a substrate having heat resistance that can withstand at least a processing temperature in the manufacturing process is used. As the manufacturing substrate 911, for example, a glass substrate, a quartz substrate, a sapphire substrate, a semiconductor substrate, a ceramic substrate, a metal substrate, a resin substrate, a plastic substrate, or the like can be used.
なお、量産性を向上させるため、作製基板911として大型のガラス基板を用いることが好ましい。例えば、第3世代(550mm×650mm)以上第10世代(2950mm×3400mm)以下のガラス基板、又はこれよりも大型のガラス基板を用いることが好ましい。 Note that a large glass substrate is preferably used as the formation substrate 911 in order to improve mass productivity. For example, it is preferable to use a glass substrate of the third generation (550 mm × 650 mm) or more and the tenth generation (2950 mm × 3400 mm) or a glass substrate larger than this.
作製基板911にガラス基板を用いる場合、作製基板911と剥離層992との間に、下地膜として、酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜、又は窒化酸化シリコン膜等の絶縁膜を形成すると、ガラス基板からの汚染を防止でき、好ましい。 In the case where a glass substrate is used as the manufacturing substrate 911, an insulating film such as a silicon oxide film, a silicon oxynitride film, a silicon nitride film, or a silicon nitride oxide film is formed as a base film between the manufacturing substrate 911 and the separation layer 992. Then, contamination from the glass substrate can be prevented, which is preferable.
剥離層992は、タングステン、モリブデン、チタン、タンタル、ニオブ、ニッケル、コバルト、ジルコニウム、亜鉛、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、シリコンから選択された元素、該元素を含む合金材料、又は該元素を含む化合物材料等を用いて形成できる。シリコンを含む層の結晶構造は、非晶質、微結晶、多結晶のいずれでもよい。また、酸化アルミニウム、酸化ガリウム、酸化亜鉛、二酸化チタン、酸化インジウム、インジウムスズ酸化物、インジウム亜鉛酸化物、In−Ga−Zn酸化物等の金属酸化物を用いてもよい。剥離層992に、タングステン、チタン、モリブデンなどの高融点金属材料を用いると、被剥離層の形成工程の自由度が高まるため好ましい。 The separation layer 992 is formed using an element selected from tungsten, molybdenum, titanium, tantalum, niobium, nickel, cobalt, zirconium, zinc, ruthenium, rhodium, palladium, osmium, iridium, silicon, an alloy material containing the element, or the element It can form using the compound material etc. which contain. The crystal structure of the layer containing silicon may be any of amorphous, microcrystalline, and polycrystalline. Alternatively, a metal oxide such as aluminum oxide, gallium oxide, zinc oxide, titanium dioxide, indium oxide, indium tin oxide, indium zinc oxide, or In—Ga—Zn oxide may be used. It is preferable to use a refractory metal material such as tungsten, titanium, or molybdenum for the separation layer 992 because the degree of freedom in the formation process of the layer to be separated is increased.
剥離層992は、例えばスパッタリング法、プラズマCVD法、塗布法(スピンコーティング法、液滴吐出法、ディスペンス法等を含む)、印刷法等により形成できる。剥離層992の厚さは例えば1nm以上200nm以下、好ましくは10nm以上100nm以下とする。 The release layer 992 can be formed by, for example, a sputtering method, a plasma CVD method, a coating method (including a spin coating method, a droplet discharge method, a dispensing method, or the like), a printing method, or the like. The thickness of the release layer 992 is, for example, 1 nm to 200 nm, preferably 10 nm to 100 nm.
剥離層992が単層構造の場合、タングステン層、モリブデン層、又はタングステンとモリブデンの混合物を含む層を形成することが好ましい。また、タングステンの酸化物もしくは酸化窒化物を含む層、モリブデンの酸化物もしくは酸化窒化物を含む層、又はタングステンとモリブデンの混合物の酸化物もしくは酸化窒化物を含む層を形成してもよい。なお、タングステンとモリブデンの混合物とは、例えば、タングステンとモリブデンの合金に相当する。 In the case where the separation layer 992 has a single-layer structure, a tungsten layer, a molybdenum layer, or a layer containing a mixture of tungsten and molybdenum is preferably formed. Alternatively, a layer containing tungsten oxide or oxynitride, a layer containing molybdenum oxide or oxynitride, or a layer containing an oxide or oxynitride of a mixture of tungsten and molybdenum may be formed. Note that the mixture of tungsten and molybdenum corresponds to, for example, an alloy of tungsten and molybdenum.
また、剥離層992として、タングステンを含む層とタングステンの酸化物を含む層の積層構造を形成する場合、タングステンを含む層を形成し、その上層に酸化物で形成される絶縁膜を形成することで、タングステン層と絶縁膜との界面に、タングステンの酸化物を含む層が形成されることを活用してもよい。また、タングステンを含む層の表面を、熱酸化処理、酸素プラズマ処理、亜酸化窒素(NO)プラズマ処理、オゾン水等の酸化力の強い溶液での処理等を行ってタングステンの酸化物を含む層を形成してもよい。またプラズマ処理又は加熱処理は、酸素、窒素、亜酸化窒素単独、あるいは該ガスとその他のガスとの混合気体雰囲気下で行ってもよい。上記プラズマ処理又は加熱処理により、剥離層992の表面状態を変えることで、剥離層992と後に形成される絶縁膜との密着性を制御することが可能である。 In the case where a stacked layer structure including a layer containing tungsten and a layer containing tungsten oxide is formed as the separation layer 992, a layer containing tungsten is formed, and an insulating film formed using an oxide is formed thereover. Thus, the fact that a layer containing an oxide of tungsten is formed at the interface between the tungsten layer and the insulating film may be utilized. Further, the surface of the layer containing tungsten is subjected to thermal oxidation treatment, oxygen plasma treatment, nitrous oxide (N 2 O) plasma treatment, treatment with a solution having strong oxidizing power such as ozone water, and the like to form tungsten oxide. An included layer may be formed. Further, the plasma treatment or the heat treatment may be performed in oxygen, nitrogen, nitrous oxide alone, or a mixed gas atmosphere of the gas and another gas. By changing the surface state of the separation layer 992 by the plasma treatment or the heat treatment, adhesion between the separation layer 992 and an insulating film to be formed later can be controlled.
なお、作製基板と被剥離層の界面で剥離が可能な場合には、剥離層を設けなくてもよい。例えば、作製基板としてガラスを用い、ガラスに接してポリイミド、ポリエステル、ポリオレフィン、ポリアミド、ポリカーボネート、アクリル等の有機樹脂を形成する。次に、レーザ照射又は加熱処理を行うことで、作製基板と有機樹脂の密着性を向上させる。そして、有機樹脂上にトランジスタ等を形成する。その後、先のレーザ照射よりも高いエネルギー密度でレーザ照射を行う、又は、先の加熱処理よりも高い温度で加熱処理を行うことで、作製基板と有機樹脂の界面で剥離することができる。また、剥離の際には、作製基板と有機樹脂の界面に液体を浸透させて分離してもよい。 Note that in the case where peeling is possible at the interface between the manufacturing substrate and the layer to be peeled, the peeling layer is not necessarily provided. For example, glass is used as a manufacturing substrate, and an organic resin such as polyimide, polyester, polyolefin, polyamide, polycarbonate, or acrylic is formed in contact with the glass. Next, the adhesion between the manufacturing substrate and the organic resin is improved by performing laser irradiation or heat treatment. Then, a transistor or the like is formed over the organic resin. Then, laser irradiation can be performed at an energy density higher than that of the previous laser irradiation, or heat treatment can be performed at a temperature higher than that of the previous heat treatment, so that separation can be performed at the interface between the formation substrate and the organic resin. Further, at the time of peeling, the liquid may penetrate into the interface between the manufacturing substrate and the organic resin to be separated.
なお、該有機樹脂を、装置を構成する基板として用いてもよいし、該有機樹脂を除去し、被剥離層の露出した面に接着剤を用いて別の基板を貼り合わせてもよい。 Note that the organic resin may be used as a substrate included in the device, or the organic resin may be removed and another substrate may be bonded to the exposed surface of the layer to be peeled using an adhesive.
または、作製基板と有機樹脂の間に金属層を設け、該金属層に電流を流すことで該金属層を加熱し、金属層と有機樹脂の界面で剥離を行ってもよい。 Alternatively, a metal layer may be provided between the manufacturing substrate and the organic resin, and current may be supplied to the metal layer to heat the metal layer, and separation may be performed at the interface between the metal layer and the organic resin.
被剥離層として形成する層に特に限定は無い。本実施の形態では、被剥離層として、剥離層992上に接する絶縁膜193と、遮光層194と、着色層195と、を作製する。 There is no particular limitation on the layer formed as the layer to be peeled. In this embodiment, as the layer to be peeled, an insulating film 193 in contact with the peeling layer 992, a light-blocking layer 194, and a coloring layer 195 are manufactured.
絶縁膜193は、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、又は窒化酸化シリコン膜等を用いて、単層又は多層で形成することが好ましい。 The insulating film 193 is preferably formed as a single layer or a multilayer using a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon nitride oxide film, or the like.
絶縁膜193は、スパッタリング法、プラズマCVD法、塗布法、印刷法等を用いて形成することが可能であり、例えば、プラズマCVD法によって成膜温度を250℃以上400℃以下として形成することで、緻密で非常にガスバリア性の高い膜とすることができる。なお、絶縁膜193の厚さは10nm以上3000nm以下、さらには200nm以上1500nm以下が好ましい。 The insulating film 193 can be formed by a sputtering method, a plasma CVD method, a coating method, a printing method, or the like. For example, the insulating film 193 is formed at a film formation temperature of 250 ° C. or more and 400 ° C. or less by a plasma CVD method. , A dense film having a very high gas barrier property can be obtained. Note that the thickness of the insulating film 193 is preferably 10 nm to 3000 nm, and more preferably 200 nm to 1500 nm.
次に、図4に示すように、結晶性半導体基板101と作製基板911とを、接着層196を用いて貼り合わせる。 Next, as illustrated in FIG. 4, the crystalline semiconductor substrate 101 and the formation substrate 911 are attached to each other using an adhesive layer 196.
次に、レーザ光又は鋭利な刃物等を用いて、剥離の起点を形成する。剥離層992にクラックを入れる(膜割れ又はひびを生じさせる)ことで、剥離の起点を形成できる。例えば、レーザ光の照射によって、絶縁膜193に含まれる膜の一部を溶解、蒸発、又は熱的に破壊することができる。 Next, the starting point of peeling is formed using a laser beam or a sharp blade. By providing a crack in the release layer 992 (causing a film crack or a crack), a starting point of the release can be formed. For example, part of the film included in the insulating film 193 can be dissolved, evaporated, or thermally destroyed by laser light irradiation.
そして、形成した剥離の起点から、物理的な力(人間の手もしくは治具で引き剥がす処理、又は、基板に密着させたローラーを回転させることで分離する処理等)によって絶縁膜193と作製基板911とを分離する。図5の上部に、絶縁膜193から分離された剥離層992と作製基板911を示す。その後、露出した絶縁膜193と、可撓性基板191とを、接着層192を用いて貼り合わせる(図5)。 Then, the insulating film 193 and the manufacturing substrate are formed from the starting point of the separation by a physical force (a process of peeling with a human hand or a jig, or a process of separating by rotating a roller in close contact with the substrate). 911 is separated. In the upper part of FIG. 5, a separation layer 992 separated from the insulating film 193 and a manufacturing substrate 911 are shown. After that, the exposed insulating film 193 and the flexible substrate 191 are bonded using the adhesive layer 192 (FIG. 5).
最後に、結晶性半導体基板101を研磨又は研削し、厚さを薄くする。図5では、研磨する前の結晶性半導体基板101の厚さを点線で示している。 Finally, the crystalline semiconductor substrate 101 is polished or ground to reduce the thickness. In FIG. 5, the thickness of the crystalline semiconductor substrate 101 before polishing is shown by a dotted line.
以上のように、本発明の一態様の表示装置の作製方法では、結晶性基板を用いるため、加熱処理を施しても基板の熱収縮の影響を受けにくく、精細度が極めて高い表示装置を歩留まりよく作製することができる。また、作製基板上で高温をかけて絶縁膜を形成することで、信頼性の高い表示装置を作製することができる。さらに、作製基板を剥離し、可撓性基板を貼ること、及び結晶性基板を研磨することにより、表示装置の薄型化、軽量化、フレキシブル化が可能となる。 As described above, in the method for manufacturing a display device of one embodiment of the present invention, since a crystalline substrate is used, a yield of a display device with high definition that is hardly affected by thermal contraction of the substrate even when heat treatment is performed. Can be made well. In addition, a highly reliable display device can be manufactured by forming an insulating film over a manufacturing substrate at a high temperature. Further, by peeling the manufacturing substrate, attaching a flexible substrate, and polishing the crystalline substrate, the display device can be reduced in thickness, weight, and flexibility.
以下に、断面構成例1とは異なる断面構成例を示す。なお、断面構成例1と同様の部分については、詳細な説明を省略する場合がある。 A cross-sectional configuration example different from the cross-sectional configuration example 1 is shown below. Note that detailed description of the same parts as those in the cross-sectional configuration example 1 may be omitted.
<断面構成例2>
図6(A)、(B)に、図1とは異なる画素部の断面図を示す。断面構成例2は、トランジスタ163、164を有する点で、図1の構成と異なる。
<Cross-section configuration example 2>
6A and 6B are cross-sectional views of a pixel portion different from that in FIG. Cross-sectional configuration example 2 is different from the configuration in FIG. 1 in that transistors 163 and 164 are included.
図6(A)は、トランジスタ163のチャネル長方向の断面図であり、図6(B)は、トランジスタ163のチャネル幅方向の断面図である。 6A is a cross-sectional view of the transistor 163 in the channel length direction, and FIG. 6B is a cross-sectional view of the transistor 163 in the channel width direction.
図6(A)では、結晶性半導体基板101、トランジスタ163、トランジスタ164、素子分離領域118、発光素子180、可撓性基板191、接着層192、絶縁膜193、遮光層194、着色層195、接着層196等を示している。 6A, the crystalline semiconductor substrate 101, the transistor 163, the transistor 164, the element isolation region 118, the light emitting element 180, the flexible substrate 191, the adhesive layer 192, the insulating film 193, the light shielding layer 194, the coloring layer 195, An adhesive layer 196 and the like are shown.
表示装置には、トランジスタ163及びトランジスタ164のようなFin型のトランジスタを用いてもよい。トランジスタをFin型とすることにより、実効上のチャネル幅が増大し、トランジスタのオン特性を向上させることができる。また、ゲートの電界の寄与を高くすることができるため、トランジスタのオフ特性を向上させることができる。 A Fin-type transistor such as the transistor 163 and the transistor 164 may be used for the display device. By using a Fin type transistor, the effective channel width can be increased and the on-state characteristics of the transistor can be improved. In addition, since the contribution of the electric field of the gate can be increased, off characteristics of the transistor can be improved.
図6(B)に示すトランジスタ163では、結晶性半導体基板101の一部が凸形状を有し、その側面及び上面に沿ってゲート絶縁膜115及びゲート116cが設けられている。このように、Fin型のトランジスタでは、チャネル形成領域における凸部の側部及び上部と、ゲートとがゲート絶縁膜を間に挟んで重なることで、チャネル形成領域の側部と上部を含めた広い範囲においてキャリアが流れる。そのため、トランジスタの結晶性基板上における占有面積を小さく抑えつつ、トランジスタにおけるキャリアの移動量を増加させることができる。その結果、トランジスタは、オン電流が大きくなると共に、電界効果移動度が高められる。 In the transistor 163 illustrated in FIG. 6B, part of the crystalline semiconductor substrate 101 has a convex shape, and a gate insulating film 115 and a gate 116c are provided along a side surface and an upper surface thereof. As described above, in the Fin-type transistor, the side and upper portions of the protrusions in the channel formation region and the gate overlap with the gate insulating film interposed therebetween, so that a wide area including the side and upper portions of the channel formation region is obtained. Carrier flows in range. Therefore, the amount of carrier movement in the transistor can be increased while suppressing the occupied area of the transistor on the crystalline substrate. As a result, the transistor has an increased on-current and increased field effect mobility.
本構成例では、半導体基板の一部を加工して凸部を形成する場合を示したが、SOI(Silicon on Insulator)基板を加工して凸形状を有する半導体膜を形成してもよい。 In this structural example, the case where a part of the semiconductor substrate is processed to form a convex portion is shown, but a semiconductor film having a convex shape may be formed by processing an SOI (Silicon on Insulator) substrate.
トランジスタ163は、n型のトランジスタである。トランジスタ163は、n型不純物領域113n、LDD領域114n、ゲート絶縁膜115、ゲート116c、サイドウォール117、絶縁膜121、絶縁膜122、導電膜123e、導電膜123f、導電膜124e、導電膜124f、導電膜129e、及び導電膜129fを有する。 The transistor 163 is an n-type transistor. The transistor 163 includes an n-type impurity region 113n, an LDD region 114n, a gate insulating film 115, a gate 116c, a sidewall 117, an insulating film 121, an insulating film 122, a conductive film 123e, a conductive film 123f, a conductive film 124e, a conductive film 124f, A conductive film 129e and a conductive film 129f are included.
トランジスタ163が有するn型不純物領域113nの一方は、導電膜123e及び導電膜129eを介して、絶縁膜122上の導電膜124eと電気的に接続されており、他方は、導電膜123f及び導電膜129fを介して、絶縁膜122上の導電膜124fと電気的に接続されている。 One of n-type impurity regions 113n included in the transistor 163 is electrically connected to the conductive film 124e over the insulating film 122 through the conductive film 123e and the conductive film 129e, and the other is connected to the conductive film 123f and the conductive film. It is electrically connected to the conductive film 124f over the insulating film 122 through 129f.
トランジスタ164は、n型のトランジスタである。トランジスタ164は、n型不純物領域113n、LDD領域114n、ゲート絶縁膜115、ゲート116d、サイドウォール117、絶縁膜121、絶縁膜122、導電膜123g、導電膜123h、導電膜124g、導電膜124h、導電膜129g、及び導電膜129hを有する。 The transistor 164 is an n-type transistor. The transistor 164 includes an n-type impurity region 113n, an LDD region 114n, a gate insulating film 115, a gate 116d, a sidewall 117, an insulating film 121, an insulating film 122, a conductive film 123g, a conductive film 123h, a conductive film 124g, a conductive film 124h, A conductive film 129g and a conductive film 129h are included.
トランジスタ164が有するn型不純物領域113nの一方は、導電膜123g及び導電膜129gを介して、絶縁膜122上の導電膜124gと電気的に接続されており、他方は、導電膜123h及び導電膜129hを介して、絶縁膜122上の導電膜124hと電気的に接続されている。 One of n-type impurity regions 113n included in the transistor 164 is electrically connected to the conductive film 124g over the insulating film 122 through the conductive film 123g and the conductive film 129g, and the other is connected to the conductive film 123h and the conductive film. It is electrically connected to the conductive film 124h on the insulating film 122 through 129h.
図6(A)に示すように、トランジスタ163のゲート116cは、トランジスタ164のソース又はドレインと電気的に接続されている。具体的には、図6(A)、(B)に示すように、ゲート116cは、導電膜123i及び導電膜129iを介して、導電膜124gと電気的に接続されている。そして、図6(A)に示すように、導電膜124gは、導電膜123g及び導電膜129gを介して、n型不純物領域113nと電気的に接続されている。 As shown in FIG. 6A, the gate 116c of the transistor 163 is electrically connected to the source or the drain of the transistor 164. Specifically, as illustrated in FIGS. 6A and 6B, the gate 116c is electrically connected to the conductive film 124g through the conductive film 123i and the conductive film 129i. As shown in FIG. 6A, the conductive film 124g is electrically connected to the n-type impurity region 113n through the conductive film 123g and the conductive film 129g.
トランジスタ163のソース又はドレインは、導電膜126及び導電膜127を介して、絶縁膜125上の電極181と電気的に接続されている。 The source or drain of the transistor 163 is electrically connected to the electrode 181 over the insulating film 125 through the conductive film 126 and the conductive film 127.
図6(A)では、絶縁膜128が有機絶縁膜である例を示す。 FIG. 6A illustrates an example in which the insulating film 128 is an organic insulating film.
<断面構成例3>
図7に、図1とは異なる画素部の断面図を示す。
<Cross-section configuration example 3>
FIG. 7 is a cross-sectional view of a pixel portion different from that in FIG.
図7は、発光素子上に絶縁膜197を有し、絶縁膜197上に着色層を有する点で、図1と異なる。 FIG. 7 is different from FIG. 1 in that an insulating film 197 is provided over the light-emitting element and a colored layer is provided over the insulating film 197.
図7では、結晶性半導体基板101、トランジスタ161、トランジスタ162、素子分離領域118、発光素子180G、発光素子180R、着色層195R、着色層195G、絶縁膜197等を示している。 7 illustrates the crystalline semiconductor substrate 101, the transistor 161, the transistor 162, the element isolation region 118, the light emitting element 180G, the light emitting element 180R, the colored layer 195R, the colored layer 195G, the insulating film 197, and the like.
図7では、隣り合う赤色の副画素と緑色の副画素の断面図を示すが、画素を構成する副画素の色及び配列に限定はない。 Although FIG. 7 shows a cross-sectional view of the adjacent red subpixel and green subpixel, the color and arrangement of the subpixels constituting the pixel are not limited.
赤色の副画素は、発光素子180Rを有する。緑色の副画素は発光素子180Gを有する。発光素子180Rと発光素子180Gは、EL層183を構成する少なくとも1層(例えば発光層)の材料が異なる、又は、それぞれマイクロキャビティ構造が適用されている、等によって、互いに異なる色を呈する光を射出することができてもよい。発光素子180Rから射出された光が着色層195Rを通ることで、赤色の副画素からは赤色を呈する光が取り出される。同様に、発光素子180Gから射出された光が着色層195Gを通ることで、緑色の副画素からは緑色を呈する光が取り出される。 The red subpixel includes a light emitting element 180R. The green subpixel includes a light emitting element 180G. The light-emitting element 180R and the light-emitting element 180G emit light having different colors depending on whether the material of at least one layer (for example, the light-emitting layer) included in the EL layer 183 is different or a microcavity structure is applied. It may be possible to inject. The light emitted from the light emitting element 180R passes through the colored layer 195R, so that red light is extracted from the red subpixel. Similarly, light emitted from the light emitting element 180G passes through the colored layer 195G, so that green light is extracted from the green subpixel.
または、発光素子180Rと発光素子180Gは、同一の構成であってもよい。例えば、発光素子180Rと発光素子180Gは、いずれも白色を呈する光を射出する構成であってもよい。発光素子180Rから射出された白色を呈する光が着色層195Rを通ることで、赤色の副画素からは赤色を呈する光が取り出される。同様に、発光素子180Gから射出された白色を呈する光が着色層195Gを通ることで、緑色の副画素からは緑色を呈する光が取り出される。 Alternatively, the light emitting element 180R and the light emitting element 180G may have the same configuration. For example, each of the light emitting element 180R and the light emitting element 180G may be configured to emit white light. The white light emitted from the light emitting element 180R passes through the colored layer 195R, so that the red light is extracted from the red subpixel. Similarly, white light emitted from the light emitting element 180G passes through the colored layer 195G, so that green light is extracted from the green subpixel.
発光素子180R上及び発光素子180G上には、絶縁膜197が設けられている。発光素子180R上には、絶縁膜197を介して、着色層195Rが設けられている。発光素子180G上には、絶縁膜197を介して、着色層195Gが設けられている。 An insulating film 197 is provided over the light-emitting element 180R and the light-emitting element 180G. A colored layer 195R is provided over the light-emitting element 180R with an insulating film 197 interposed therebetween. A colored layer 195G is provided over the light-emitting element 180G with an insulating film 197 interposed therebetween.
図7に示すように、発光素子上に、ガスバリア性の高い絶縁膜197を形成し、絶縁膜197上に着色層を形成してもよい。絶縁膜197は、発光素子の封止層として機能する。封止層を設けることで、封止のための基板を別途設ける必要がなくなるため、表示装置の薄型化、軽量化、又はフレキシブル化等が容易となる。また、着色層を発光素子とは異なる基板に形成した場合、表示装置の精細度が高いほど、発光素子と着色層の位置を合わせるために、基板の貼り合わせの精度を高める必要がある。一方、図7の構成では、発光素子上に絶縁膜197を介して着色層を直接形成できるため、高精度で基板を貼り合わせる技術が不要であり、所望の領域に着色層を形成することが容易となる。 As illustrated in FIG. 7, an insulating film 197 having a high gas barrier property may be formed over the light-emitting element, and a coloring layer may be formed over the insulating film 197. The insulating film 197 functions as a sealing layer of the light emitting element. By providing the sealing layer, it is not necessary to separately provide a substrate for sealing, so that it is easy to make the display device thinner, lighter, flexible, or the like. Further, in the case where the colored layer is formed over a substrate different from the light-emitting element, the higher the definition of the display device, the higher the accuracy of bonding of the substrates to align the position of the light-emitting element and the colored layer. On the other hand, in the structure of FIG. 7, since the colored layer can be directly formed on the light emitting element through the insulating film 197, a technique for attaching the substrate with high accuracy is unnecessary, and the colored layer can be formed in a desired region. It becomes easy.
なお、封止性能を高めるため、発光素子上に封止層を設け、さらに、接着層を用いて封止のための可撓性基板を貼り合わせてもよい。つまり、図1等において、発光素子180と接着層196との間に封止層を設けてもよい。 Note that in order to improve sealing performance, a sealing layer may be provided over the light-emitting element, and a flexible substrate for sealing may be attached using an adhesive layer. That is, a sealing layer may be provided between the light emitting element 180 and the adhesive layer 196 in FIG.
図7に示すトランジスタ161及びトランジスタ162の構成は、図1と同様である。 The structures of the transistor 161 and the transistor 162 illustrated in FIG. 7 are similar to those in FIG.
<断面構成例4>
図8に、図1とは異なる走査線駆動回路150及び画素部160の断面図を示す。
<Cross-section configuration example 4>
FIG. 8 is a cross-sectional view of the scanning line driver circuit 150 and the pixel portion 160 which are different from those in FIG.
図8は、カラーフィルタ方式でなく、塗り分け方式が適用されている点で、図1と異なる。 FIG. 8 is different from FIG. 1 in that the color separation method is applied instead of the color filter method.
図8では、結晶性半導体基板101、トランジスタ151n、トランジスタ151p、トランジスタ161、トランジスタ162、素子分離領域118、発光素子180、絶縁膜197等を示している。 8 illustrates the crystalline semiconductor substrate 101, the transistor 151n, the transistor 151p, the transistor 161, the transistor 162, the element isolation region 118, the light emitting element 180, the insulating film 197, and the like.
図8では、EL層183全体が異なる色の副画素間で塗り分けられている例を示すが、本発明の一態様はこれに限られない。本発明の一態様では、EL層183を構成する少なくとも1層(例えば発光層)が、異なる色の副画素間で塗り分けられる。塗り分け方式を用いることで、カラーフィルタ等の着色層を設ける必要がなく、作製工程の簡略化、コストの削減などが可能となる。 FIG. 8 illustrates an example in which the entire EL layer 183 is separately applied between sub-pixels of different colors, but one embodiment of the present invention is not limited thereto. In one embodiment of the present invention, at least one layer (e.g., a light-emitting layer) included in the EL layer 183 is separately applied between sub-pixels having different colors. By using the separate coating method, it is not necessary to provide a colored layer such as a color filter, and the manufacturing process can be simplified and the cost can be reduced.
発光素子180上には、絶縁膜197が設けられている。発光素子上に封止層として機能する絶縁膜を設けることで、封止のための基板を別途設ける必要がなくなるため、表示装置の薄型化、軽量化、又はフレキシブル化等が容易となる。発光素子180は、絶縁膜197側に光を射出する。 An insulating film 197 is provided over the light emitting element 180. By providing the insulating film functioning as a sealing layer over the light-emitting element, it is not necessary to separately provide a substrate for sealing, so that the display device can be easily reduced in thickness, weight, flexibility, and the like. The light emitting element 180 emits light to the insulating film 197 side.
図8に示すトランジスタ151n、トランジスタ151p、トランジスタ161、及びトランジスタ162の構成は、図1と同様である。 The structures of the transistor 151n, the transistor 151p, the transistor 161, and the transistor 162 illustrated in FIG. 8 are similar to those in FIG.
<断面構成例5>
図9(A)に、図1とは異なる画素部160の断面図を示す。
<Cross-section configuration example 5>
FIG. 9A is a cross-sectional view of a pixel portion 160 which is different from that in FIG.
図9(A)は、表示素子として、液晶素子を有する点で、図1と異なる。 FIG. 9A is different from FIG. 1 in that a liquid crystal element is used as a display element.
図9(A)では、結晶性半導体基板101、トランジスタ161、トランジスタ162、素子分離領域118、液晶素子250、絶縁膜253、遮光層194、着色層195、オーバーコート255、可撓性基板191等を示している。 9A, the crystalline semiconductor substrate 101, the transistor 161, the transistor 162, the element isolation region 118, the liquid crystal element 250, the insulating film 253, the light shielding layer 194, the coloring layer 195, the overcoat 255, the flexible substrate 191 and the like. Is shown.
液晶素子250には、FFS(Fringe Field Switching)モードが適用されている。液晶素子250は、導電膜251、導電膜252、及び液晶254を有する。導電膜251と導電膜252との間に生じる電界により、液晶254の配向を制御することができる。導電膜251は、画素電極として機能することができる。導電膜252は、共通電極として機能することができる。 The liquid crystal element 250 is applied with an FFS (Fringe Field Switching) mode. The liquid crystal element 250 includes a conductive film 251, a conductive film 252, and a liquid crystal 254. The alignment of the liquid crystal 254 can be controlled by an electric field generated between the conductive films 251 and 252. The conductive film 251 can function as a pixel electrode. The conductive film 252 can function as a common electrode.
導電膜251に、可視光を反射する導電性材料を用い、導電膜252に可視光を透過する導電性材料を用いることで、本発明の一態様の表示装置を、反射型の液晶表示装置として機能させることができる。また、結晶性基板が可視光を透過する場合、導電膜251及び導電膜252に、可視光を透過する導電性材料を用いることで、本発明の一態様の表示装置を、透過型の液晶表示装置として機能させることができる。 By using a conductive material that reflects visible light for the conductive film 251 and a conductive material that transmits visible light for the conductive film 252, the display device of one embodiment of the present invention can be used as a reflective liquid crystal display device. Can function. In the case where the crystalline substrate transmits visible light, a conductive material that transmits visible light is used for the conductive films 251 and 252, so that the display device of one embodiment of the present invention can be a transmissive liquid crystal display. It can function as a device.
可視光を透過する導電性材料としては、例えば、インジウム(In)、亜鉛(Zn)、錫(Sn)の中から選ばれた一種を含む材料を用いるとよい。具体的には、酸化インジウム、インジウム錫酸化物(ITO:Indium Tin Oxide)、インジウム亜鉛酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、酸化ケイ素を含むインジウム錫酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などが挙げられる。なお、グラフェンを含む膜を用いることもできる。グラフェンを含む膜は、例えば膜状に形成された酸化グラフェンを含む膜を還元して形成することができる。また、不純物元素を含有させた酸化物半導体等の半導体を用いてもよい。 As the conductive material that transmits visible light, for example, a material containing one kind selected from indium (In), zinc (Zn), and tin (Sn) may be used. Specifically, indium oxide, indium tin oxide (ITO: Indium Tin Oxide), indium zinc oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, Examples thereof include indium tin oxide containing titanium oxide, indium tin oxide containing silicon oxide, zinc oxide, and zinc oxide containing gallium. Note that a film containing graphene can also be used. The film containing graphene can be formed, for example, by reducing a film containing graphene oxide formed in a film shape. Alternatively, a semiconductor such as an oxide semiconductor containing an impurity element may be used.
可視光を反射する導電性材料としては、例えば、アルミニウム、銀、又はこれらの金属材料を含む合金等が挙げられる。 Examples of the conductive material that reflects visible light include aluminum, silver, and alloys containing these metal materials.
画素電極として機能する導電膜251は、トランジスタ161のソース又はドレインと電気的に接続される。図9(A)では、導電膜251は、導電膜127を介して、導電膜124eと電気的に接続されている。 The conductive film 251 functioning as a pixel electrode is electrically connected to the source or drain of the transistor 161. In FIG. 9A, the conductive film 251 is electrically connected to the conductive film 124e through the conductive film 127.
導電膜252は、櫛歯状の上面形状(平面形状ともいう)、又はスリットが設けられた上面形状を有する。導電膜251と導電膜252の間には、絶縁膜253が設けられている。導電膜251は、絶縁膜253を介して導電膜252と重なる部分を有する。また、導電膜251と着色層195とが重なる領域において、導電膜251上に導電膜252が配置されていない部分を有する。 The conductive film 252 has a comb-like upper surface shape (also referred to as a planar shape) or an upper surface shape provided with a slit. An insulating film 253 is provided between the conductive films 251 and 252. The conductive film 251 has a portion overlapping with the conductive film 252 with the insulating film 253 provided therebetween. In addition, in a region where the conductive film 251 and the coloring layer 195 overlap with each other, the conductive film 252 has a portion where the conductive film 252 is not provided.
可撓性基板191には、遮光層194、着色層195、オーバーコート255が設けられている。着色層195は、液晶素子250と重なる部分を有する。 The flexible substrate 191 is provided with a light shielding layer 194, a colored layer 195, and an overcoat 255. The colored layer 195 has a portion overlapping with the liquid crystal element 250.
オーバーコート255は、着色層195や遮光層194等に含まれる不純物が液晶254に拡散することを防ぐ機能を有することが好ましい。オーバーコート255は設けなくてもよい。 The overcoat 255 preferably has a function of preventing impurities included in the colored layer 195, the light-shielding layer 194, and the like from diffusing into the liquid crystal 254. The overcoat 255 may not be provided.
なお、液晶254と接する配向膜が設けられていてもよい。配向膜は、液晶254の配向を制御することができる。 Note that an alignment film in contact with the liquid crystal 254 may be provided. The alignment film can control the alignment of the liquid crystal 254.
また、表示装置は、スペーサ256を有する。スペーサ256は、結晶性半導体基板101と可撓性基板191との距離が一定以上近づくことを防ぐ機能を有する。 In addition, the display device includes a spacer 256. The spacer 256 has a function of preventing the distance between the crystalline semiconductor substrate 101 and the flexible substrate 191 from approaching a certain distance.
図9(A)では、スペーサ256は、オーバーコート255上に設けられている例を示すが、本発明の一態様はこれに限られない。スペーサ256は、結晶性半導体基板101側に設けられていてもよいし、可撓性基板191側に設けられていてもよい。図9(A)では、スペーサ256が、絶縁膜253及びオーバーコート255と接する例を示すが、結晶性半導体基板101側又は可撓性基板191側のいずれかに設けられた構造物と接していなくてもよい。 FIG. 9A illustrates an example in which the spacer 256 is provided over the overcoat 255; however, one embodiment of the present invention is not limited thereto. The spacer 256 may be provided on the crystalline semiconductor substrate 101 side, or may be provided on the flexible substrate 191 side. FIG. 9A illustrates an example in which the spacer 256 is in contact with the insulating film 253 and the overcoat 255; however, the spacer 256 is in contact with a structure provided on either the crystalline semiconductor substrate 101 side or the flexible substrate 191 side. It does not have to be.
スペーサ256として粒状のスペーサを用いてもよい。粒状のスペーサとしては、シリカなどの材料を用いることができる。粒状のスペーサとして、樹脂又はゴムなどの弾性を有する材料を用いることが好ましい。このとき、粒状のスペーサは上下方向に潰れた形状となる場合がある。 A granular spacer may be used as the spacer 256. As the granular spacer, a material such as silica can be used. As the granular spacer, it is preferable to use an elastic material such as resin or rubber. At this time, the granular spacer may be crushed in the vertical direction.
なお、本発明の一態様の表示装置を、透過型の液晶表示装置として機能させる場合、偏光板を、表示部を挟むように2つ配置する。偏光板よりも外側に配置されたバックライトからの光は偏光板を介して入射される。このとき、導電膜251と導電膜252の間に与える電圧によって液晶254の配向を制御し、光の光学変調を制御することができる。すなわち、偏光板を介して射出される光の強度を制御することができる。また、入射光は着色層195によって特定の波長領域以外の光が吸収されるため、射出される光は例えば赤色、青色、又は緑色を呈する光となる。 Note that in the case where the display device of one embodiment of the present invention functions as a transmissive liquid crystal display device, two polarizing plates are provided so as to sandwich the display portion. Light from a backlight disposed outside the polarizing plate is incident through the polarizing plate. At this time, the orientation of the liquid crystal 254 can be controlled by the voltage applied between the conductive film 251 and the conductive film 252, and the optical modulation of light can be controlled. That is, the intensity of light emitted through the polarizing plate can be controlled. In addition, since the incident light is absorbed by the colored layer 195 outside the specific wavelength region, the emitted light is, for example, light exhibiting red, blue, or green.
また、偏光板に加えて、例えば円偏光板を用いることができる。円偏光板としては、例えば直線偏光板と1/4波長位相差板を積層したものを用いることができる。円偏光板により、表示装置の表示の視野角依存を低減することができる。 In addition to the polarizing plate, for example, a circular polarizing plate can be used. As a circularly-polarizing plate, what laminated | stacked the linearly-polarizing plate and the quarter wavelength phase difference plate, for example can be used. The circularly polarizing plate can reduce the viewing angle dependency of display of the display device.
なお、ここでは液晶素子250としてFFSモードが適用された素子を用いたが、これに限られず様々なモードが適用された液晶素子を用いることができる。例えば、VA(Vertical Alignment)モード、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optically Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モード等が適用された液晶素子を用いることができる。 Note that although an element to which the FFS mode is applied is used as the liquid crystal element 250 here, liquid crystal elements to which various modes are applied can be used without being limited thereto. For example, VA (Vertical Alignment) mode, TN (Twisted Nematic) mode, IPS (In-Plane-Switching) mode, ASM (Axially Symmetrical Aligned Micro-cell) mode, OCB (Optical BLC). ) Mode, an AFLC (Antiferroelectric Liquid Crystal) mode, or the like can be used.
また、本発明の一態様では、ノーマリーブラック型の液晶表示装置、例えば垂直配向(VA)モードを採用した透過型の液晶表示装置を適用してもよい。垂直配向モードとしては、MVA(Multi−Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASVモードなどを用いることができる。 In one embodiment of the present invention, a normally black liquid crystal display device such as a transmissive liquid crystal display device using a vertical alignment (VA) mode may be used. As the vertical alignment mode, an MVA (Multi-Domain Vertical Alignment) mode, a PVA (Patterned Vertical Alignment) mode, an ASV mode, or the like can be used.
なお、液晶素子は、液晶の光学変調作用によって光の透過又は非透過を制御する素子である。なお、液晶の光学的変調作用は、液晶にかかる電界(横方向の電界、縦方向の電界又は斜め方向の電界を含む)によって制御される。なお、液晶素子に用いる液晶としては、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。 Note that the liquid crystal element is an element that controls transmission or non-transmission of light by an optical modulation action of liquid crystal. Note that the optical modulation action of the liquid crystal is controlled by an electric field applied to the liquid crystal (including a horizontal electric field, a vertical electric field, or an oblique electric field). As the liquid crystal used in the liquid crystal element, a thermotropic liquid crystal, a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal (PDLC), a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like is used. Can do. These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
また、液晶材料としては、ポジ型の液晶及びネガ型の液晶の中から、適用するモード及び設計等に応じて最適な液晶材料を用いることができる。 As the liquid crystal material, an optimal liquid crystal material can be used from positive liquid crystals and negative liquid crystals depending on the mode and design to be applied.
また、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために5重量%以上のカイラル剤を混合させた液晶組成物を液晶254に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が短く、光学的等方性である。また、ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、配向処理が不要であり、視野角依存性が小さい。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良又は破損を軽減することができる。 In the case of employing a horizontal electric field method, a liquid crystal exhibiting a blue phase for which an alignment film is unnecessary may be used. The blue phase is one of the liquid crystal phases. When the temperature of the cholesteric liquid crystal is increased, the blue phase appears immediately before the transition from the cholesteric phase to the isotropic phase. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition mixed with 5% by weight or more of a chiral agent is used for the liquid crystal 254 in order to improve the temperature range. A liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed and is optically isotropic. In addition, a liquid crystal composition including a liquid crystal exhibiting a blue phase and a chiral agent does not require alignment treatment and has a small viewing angle dependency. In addition, since it is not necessary to provide an alignment film, a rubbing process is unnecessary, so that electrostatic breakdown caused by the rubbing process can be prevented, and defects or breakage of the liquid crystal display device during the manufacturing process can be reduced. .
ここで、可撓性基板191よりも上部に、指又はスタイラスなどの被検知体が直接触れる基板を設けてもよい。またこのとき、可撓性基板191と当該基板との間に偏光板又は円偏光板を設けることが好ましい。その場合、当該基板上に保護層(セラミックコート等)を設けることが好ましい。保護層は、例えば酸化シリコン、酸化アルミニウム、酸化イットリウム、イットリア安定化ジルコニア(YSZ)などの無機絶縁材料を用いることができる。また、当該基板に強化ガラスを用いてもよい。強化ガラスは、イオン交換法もしくは風冷強化法等により、物理的又は化学的な処理が施され、その表面に圧縮応力を加えたものを用いることができる。 Here, a substrate that is directly touched by a detection object such as a finger or a stylus may be provided above the flexible substrate 191. At this time, a polarizing plate or a circularly polarizing plate is preferably provided between the flexible substrate 191 and the substrate. In that case, it is preferable to provide a protective layer (ceramic coating or the like) on the substrate. For the protective layer, for example, an inorganic insulating material such as silicon oxide, aluminum oxide, yttrium oxide, and yttria-stabilized zirconia (YSZ) can be used. Further, tempered glass may be used for the substrate. As the tempered glass, a glass to which a physical or chemical treatment is applied by an ion exchange method or an air cooling tempering method and a compressive stress is applied to the surface can be used.
図9(A)に示すトランジスタ161及びトランジスタ162の構成は、図1と同様である。 The structures of the transistors 161 and 162 illustrated in FIG. 9A are similar to those in FIG.
また、液晶素子の他の構成例について、図9(B)~(E)に示す。 Further, other structural examples of the liquid crystal element are illustrated in FIGS.
図9(B)~(D)に示すように、導電膜251及び導電膜252の双方が、櫛歯状の上面形状(平面形状ともいう)、又はスリットが設けられた上面形状を有していてもよい。 As shown in FIGS. 9B to 9D, both the conductive film 251 and the conductive film 252 have a comb-like upper surface shape (also referred to as a planar shape) or an upper surface shape provided with slits. May be.
例えば、上面から見て、一方の導電膜のスリットの端部と、他方の導電膜のスリットの端部が重なる形状であってもよい。この場合の断面図を図9(B)に示す。 For example, when viewed from above, the end of the slit of one conductive film may overlap with the end of the slit of the other conductive film. A cross-sectional view in this case is shown in FIG.
または、上面から見て、導電膜251及び導電膜252の双方が設けられていない部分を有していてもよい。この場合の断面図を図9(C)に示す。 Alternatively, when viewed from above, the conductive film 251 and the conductive film 252 may have a portion where both are not provided. A cross-sectional view in this case is shown in FIG.
または、上面から見て、導電膜251及び導電膜252が互いに重なる部分を有していてもよい。この場合の断面図を図9(D)に示す。 Alternatively, the conductive film 251 and the conductive film 252 may have a portion where they overlap each other when viewed from above. A cross-sectional view in this case is shown in FIG.
図9(E)に示すように、導電膜251は、液晶254を介して導電膜252と重なっていてもよい。つまり、導電膜251が、液晶254よりも結晶性半導体基板101側に設けられ、導電膜252が液晶254よりも可撓性基板191側に設けられていてもよい。また、液晶254中に、樹脂等からなるポリマー壁257を設けてもよい。液晶254と接する一対の層の間(図9(E)では、導電膜251と導電膜252との間)にポリマー壁257を設けることで、可撓性を有する液晶表示装置を曲げた場合でも、一対の基板間の距離を一定に保つことができる。 As shown in FIG. 9E, the conductive film 251 may overlap with the conductive film 252 with the liquid crystal 254 interposed therebetween. That is, the conductive film 251 may be provided on the crystalline semiconductor substrate 101 side with respect to the liquid crystal 254, and the conductive film 252 may be provided on the flexible substrate 191 side with respect to the liquid crystal 254. Further, a polymer wall 257 made of resin or the like may be provided in the liquid crystal 254. Even when a flexible liquid crystal display device is bent by providing a polymer wall 257 between a pair of layers in contact with the liquid crystal 254 (between the conductive film 251 and the conductive film 252 in FIG. 9E), The distance between the pair of substrates can be kept constant.
また、図9(E)に示すように、液晶254と導電膜251との間に、配向膜258を有していてもよい。同様に、液晶254と導電膜252との間に、配向膜259を有していてもよい。 In addition, as illustrated in FIG. 9E, an alignment film 258 may be provided between the liquid crystal 254 and the conductive film 251. Similarly, an alignment film 259 may be provided between the liquid crystal 254 and the conductive film 252.
断面構成例1~5では、結晶性半導体基板101にトランジスタのチャネル形成領域を設ける例を示したが、本発明の一態様はこれに限られない。以降の断面構成例6~11では、結晶性基板102上に、別途、半導体膜を形成する例を示す。例えば、多結晶シリコン等のシリコン、又はインジウム、ガリウム、亜鉛のうち少なくとも一つを含む酸化物半導体等を半導体材料として用いることができる。 In the cross-sectional configuration examples 1 to 5, an example in which a channel formation region of a transistor is provided in the crystalline semiconductor substrate 101 is described; however, one embodiment of the present invention is not limited thereto. In the following cross-sectional configuration examples 6 to 11, an example in which a semiconductor film is separately formed on the crystalline substrate 102 is shown. For example, silicon such as polycrystalline silicon, or an oxide semiconductor containing at least one of indium, gallium, and zinc can be used as a semiconductor material.
<断面構成例6>
図10に、図1とは異なる走査線駆動回路150及び画素部160の断面図を示す。さらに、図10では、表示装置におけるFPC4018の接続部の断面図も示す。
<Section configuration example 6>
FIG. 10 is a cross-sectional view of the scanning line driver circuit 150 and the pixel portion 160 which are different from those in FIG. Further, FIG. 10 also shows a cross-sectional view of a connection portion of the FPC 4018 in the display device.
図10では、結晶性基板102、トランジスタ153、トランジスタ165、トランジスタ166、発光素子180、可撓性基板191、接着層192、絶縁膜193、遮光層194、着色層195、接着層196等を示している。 In FIG. 10, the crystalline substrate 102, the transistor 153, the transistor 165, the transistor 166, the light emitting element 180, the flexible substrate 191, the adhesive layer 192, the insulating film 193, the light shielding layer 194, the coloring layer 195, the adhesive layer 196, and the like are shown. ing.
図10に示す結晶性基板102は、導電性基板、半導体基板、及び絶縁性基板のいずれでもよい。表示装置の作製における加熱工程によって、結晶性基板102は収縮しにくいため、トランジスタもしくは表示素子の特性の劣化、又は作製工程の歩留まりの低下を抑制し、精細度の高い表示装置を作製できる。 The crystalline substrate 102 illustrated in FIG. 10 may be any of a conductive substrate, a semiconductor substrate, and an insulating substrate. Since the crystalline substrate 102 is hardly contracted by a heating process in manufacturing the display device, deterioration in characteristics of the transistor or the display element or a decrease in yield in the manufacturing process can be suppressed, so that a display device with high definition can be manufactured.
結晶性基板102は、可撓性を有することが好ましい。例えば、結晶性基板102の厚さは、1μm以上100μm以下が好ましく、1μm以上50μm以下がより好ましい。 The crystalline substrate 102 preferably has flexibility. For example, the thickness of the crystalline substrate 102 is preferably 1 μm to 100 μm, and more preferably 1 μm to 50 μm.
走査線駆動回路150において、結晶性基板102上に、絶縁膜111を介して、トランジスタ153が設けられている。画素部160において、結晶性基板102上に、絶縁膜111を介して、トランジスタ165及びトランジスタ166が設けられている。絶縁膜111は下地膜として機能する。絶縁膜111は設けなくてもよい。 In the scan line driver circuit 150, a transistor 153 is provided over the crystalline substrate 102 with an insulating film 111 interposed therebetween. In the pixel portion 160, a transistor 165 and a transistor 166 are provided over the crystalline substrate 102 with an insulating film 111 interposed therebetween. The insulating film 111 functions as a base film. The insulating film 111 is not necessarily provided.
トランジスタ153、165、166は、いずれも同一の構造であるが、いずれかが異なる構造のトランジスタであってもよい。 The transistors 153, 165, and 166 have the same structure, but any of the transistors may have a different structure.
トランジスタのチャネル形成領域には、様々な半導体を用いることができる。例えば、酸化物半導体、又は、多結晶シリコン、もしくは単結晶シリコン基板等から転置された単結晶シリコン等のシリコンなどが挙げられる。また、トランジスタの構造は限定されない。 Various semiconductors can be used for a channel formation region of the transistor. For example, silicon such as an oxide semiconductor, polycrystalline silicon, single crystal silicon transferred from a single crystal silicon substrate, or the like can be given. Further, the structure of the transistor is not limited.
図10に示す各トランジスタは、ゲート116、ゲート絶縁膜115、半導体膜131、及び2つの導電膜123を有する、ボトムゲート型のトランジスタである。2つの導電膜123の一方はソースとして機能し、他方はドレインとして機能する。また、各トランジスタは絶縁膜121に覆われている。 Each transistor illustrated in FIG. 10 is a bottom-gate transistor including a gate 116, a gate insulating film 115, a semiconductor film 131, and two conductive films 123. One of the two conductive films 123 functions as a source, and the other functions as a drain. Each transistor is covered with an insulating film 121.
発光素子180は、電極181、EL層183、及び電極185を有する。発光素子180は、着色層195側に光を射出する。 The light-emitting element 180 includes an electrode 181, an EL layer 183, and an electrode 185. The light emitting element 180 emits light to the colored layer 195 side.
トランジスタ165のソース又はドレインは、絶縁膜122上の導電膜124を介して、絶縁膜125上の電極181と電気的に接続されている。 A source or a drain of the transistor 165 is electrically connected to an electrode 181 over the insulating film 125 through a conductive film 124 over the insulating film 122.
電極181は画素電極として機能し、発光素子180ごとに設けられている。隣り合う2つの電極181は、絶縁膜128によって電気的に絶縁されている。電極185は、共通電極として機能し、複数の発光素子180にわたって設けられている。 The electrode 181 functions as a pixel electrode and is provided for each light emitting element 180. Two adjacent electrodes 181 are electrically insulated by an insulating film 128. The electrode 185 functions as a common electrode and is provided over the plurality of light emitting elements 180.
また、ゲート絶縁膜115上の導電膜187は、外部からの信号(ビデオ信号、クロック信号、スタート信号、又はリセット信号等)や電位を伝達する外部入力端子を接続するための引き出し配線として機能する。ここでは、外部入力端子としてFPC4018を設ける例を示している。FPC4018と導電膜187は、導電膜189及び接続体199を介して電気的に接続されている。引き出し配線として機能する導電膜は、トランジスタ又は表示素子を構成する電極又は他の配線の少なくとも一つと同一の材料及び同一の工程で作製すると、工程の増加を抑制できるため好ましい。ここでは、導電膜187をトランジスタのソース及びドレインと同一の材料及び同一の工程で作製し、導電膜189を発光素子180の電極181と同一の材料及び同一の工程で作製する例を示す。 In addition, the conductive film 187 over the gate insulating film 115 functions as a lead wiring for connecting an external input terminal that transmits an external signal (such as a video signal, a clock signal, a start signal, or a reset signal) or a potential. . Here, an example in which an FPC 4018 is provided as an external input terminal is shown. The FPC 4018 and the conductive film 187 are electrically connected through the conductive film 189 and the connection body 199. A conductive film functioning as a lead-out wiring is preferably formed using the same material and the same process as at least one of an electrode or another wiring constituting a transistor or a display element because an increase in the number of processes can be suppressed. Here, an example is shown in which the conductive film 187 is manufactured using the same material and the same process as the source and drain of the transistor, and the conductive film 189 is manufactured using the same material and the same process as the electrode 181 of the light-emitting element 180.
結晶性基板102とは異なる基板上で作製された、絶縁膜193、遮光層194、及び着色層195は、接着層196によって、結晶性基板102と貼り合わされている。 The insulating film 193, the light-blocking layer 194, and the coloring layer 195 which are manufactured over a substrate different from the crystalline substrate 102 are attached to the crystalline substrate 102 with an adhesive layer 196.
発光素子180は、接着層196を介して着色層195と重なる。絶縁膜128は、接着層196を介して遮光層194と重なる。 The light emitting element 180 overlaps the colored layer 195 with the adhesive layer 196 interposed therebetween. The insulating film 128 overlaps the light shielding layer 194 with the adhesive layer 196 interposed therebetween.
本発明の一態様では、結晶性基板上にトランジスタ及び表示素子を形成するため、加熱処理を施しても基板の熱収縮の影響を受けにくく、精細度が極めて高い表示装置を歩留まりよく作製することができる。また、作製基板上で高温をかけて絶縁膜を形成することで、信頼性の高い表示装置を作製することができる。さらに、作製基板を剥離し、可撓性基板を貼ること、及び結晶性基板を研磨又は研削することにより、表示装置の薄型化、軽量化、フレキシブル化が可能となる。 In one embodiment of the present invention, a transistor and a display element are formed over a crystalline substrate; therefore, a display device which is hardly affected by thermal contraction of the substrate even when heat treatment is performed and has extremely high definition is manufactured with high yield. Can do. In addition, a highly reliable display device can be manufactured by forming an insulating film over a manufacturing substrate at a high temperature. Further, the display device can be reduced in thickness, weight, and flexibility by peeling the manufacturing substrate, attaching a flexible substrate, and polishing or grinding the crystalline substrate.
<断面構成例7>
図11に、図10とは異なる走査線駆動回路150及び画素部160の断面図を示す。断面構成例7は、トランジスタ154、167、168を有する点で、図10の構成と異なる。
<Section configuration example 7>
FIG. 11 is a cross-sectional view of the scanning line driver circuit 150 and the pixel portion 160 which are different from those in FIG. Cross-sectional configuration example 7 is different from the configuration of FIG.
図11では、結晶性基板102、絶縁膜111、トランジスタ154、トランジスタ167、トランジスタ168、発光素子180、可撓性基板191、接着層192、絶縁膜193、遮光層194、着色層195、接着層196等を示している。 In FIG. 11, the crystalline substrate 102, the insulating film 111, the transistor 154, the transistor 167, the transistor 168, the light emitting element 180, the flexible substrate 191, the adhesive layer 192, the insulating film 193, the light shielding layer 194, the colored layer 195, and the adhesive layer. 196 etc. are shown.
図11に示す各トランジスタは、ゲート116、ゲート絶縁膜115、半導体膜(チャネル形成領域119a及び低抵抗領域119bを含む)、並びに2つの導電膜123を有する、トップゲート型のトランジスタである。2つの導電膜123の一方はソースとして機能し、他方はドレインとして機能する。 Each transistor illustrated in FIG. 11 is a top-gate transistor including a gate 116, a gate insulating film 115, a semiconductor film (including a channel formation region 119a and a low-resistance region 119b), and two conductive films 123. One of the two conductive films 123 functions as a source, and the other functions as a drain.
トランジスタ167のソース又はドレインは、絶縁膜122上の導電膜124を介して、絶縁膜125上の電極181と電気的に接続されている。 A source or a drain of the transistor 167 is electrically connected to an electrode 181 over the insulating film 125 through a conductive film 124 over the insulating film 122.
または、本発明の一態様の表示装置には、図12(A)に示すトランジスタ169を適用することもできる。 Alternatively, the transistor 169 illustrated in FIG. 12A can be applied to the display device of one embodiment of the present invention.
図12(A)に、トランジスタ169の上面図を示す。図12(B)は、本発明の一態様の表示装置の、トランジスタ169のチャネル長方向の断面図である。図12(B)に示すトランジスタ169は、図12(A)における一点鎖線X1−X2間の断面に相当する。図12(C)は、本発明の一態様の表示装置の、トランジスタ169のチャネル幅方向の断面図である。図12(C)に示すトランジスタ169は、図12(A)における一点鎖線Y1−Y2間の断面に相当する。 FIG. 12A shows a top view of the transistor 169. FIG. FIG. 12B is a cross-sectional view in the channel length direction of the transistor 169 in the display device of one embodiment of the present invention. A transistor 169 illustrated in FIG. 12B corresponds to a cross section along the dashed-dotted line X1-X2 in FIG. FIG. 12C is a cross-sectional view in the channel width direction of the transistor 169 in the display device of one embodiment of the present invention. A transistor 169 illustrated in FIG. 12C corresponds to a cross section taken along dashed-dotted line Y1-Y2 in FIG.
トランジスタ169はバックゲートを有するトップゲート型のトランジスタの一種である。 The transistor 169 is a kind of top-gate transistor having a back gate.
トランジスタ169では、絶縁膜135に設けた凸部上に半導体膜119が形成されている。絶縁膜135に設けた凸部上に半導体膜119を設けることによって、半導体膜119の側面もゲート116で覆うことができる。すなわち、トランジスタ169は、ゲート116の電界によって、半導体膜119を電気的に取り囲むことができる構造を有している。このように、導電膜の電界によって、チャネルが形成される半導体膜を電気的に取り囲むトランジスタの構造を、surrounded channel(s−channel)構造とよぶ。また、s−channel構造を有するトランジスタを、「s−channel型トランジスタ」もしくは「s−channelトランジスタ」ともいう。 In the transistor 169, the semiconductor film 119 is formed over the protrusion provided in the insulating film 135. By providing the semiconductor film 119 over the protrusion provided in the insulating film 135, the side surface of the semiconductor film 119 can be covered with the gate 116. In other words, the transistor 169 has a structure in which the semiconductor film 119 can be electrically surrounded by the electric field of the gate 116. In this manner, the structure of a transistor that electrically surrounds a semiconductor film in which a channel is formed by an electric field of a conductive film is referred to as a surrounded channel (s-channel) structure. A transistor having an s-channel structure is also referred to as an “s-channel transistor” or an “s-channel transistor”.
s−channel構造では、半導体膜119の全体(バルク)にチャネルを形成することもできる。s−channel構造では、トランジスタのドレイン電流を大きくすることができ、さらに大きいオン電流を得ることができる。また、ゲート116の電界によって、半導体膜119に形成されるチャネル形成領域の全領域を空乏化することができる。したがって、s−channel構造では、トランジスタのオフ電流をさらに小さくすることができる。 In the s-channel structure, a channel can be formed in the entire semiconductor film 119 (bulk). In the s-channel structure, the drain current of the transistor can be increased and a larger on-current can be obtained. Further, the entire region of the channel formation region formed in the semiconductor film 119 can be depleted by the electric field of the gate 116. Therefore, in the s-channel structure, the off-state current of the transistor can be further reduced.
バックゲート136は結晶性基板102上に絶縁膜111を介して設けられている。 The back gate 136 is provided on the crystalline substrate 102 with an insulating film 111 interposed therebetween.
絶縁膜122上に設けられた導電膜123xは、ゲート絶縁膜115、絶縁膜121x、絶縁膜121y、及び絶縁膜122に設けられた開口747xにおいて、半導体膜119と電気的に接続されている。また、絶縁膜122上に設けられた導電膜123yは、ゲート絶縁膜115、絶縁膜121x、絶縁膜121y、及び絶縁膜122に設けられた開口747yにおいて、半導体膜119と電気的に接続されている。 The conductive film 123x provided over the insulating film 122 is electrically connected to the semiconductor film 119 through the gate insulating film 115, the insulating film 121x, the insulating film 121y, and the opening 747x provided in the insulating film 122. The conductive film 123y provided over the insulating film 122 is electrically connected to the semiconductor film 119 through the gate insulating film 115, the insulating film 121x, the insulating film 121y, and the opening 747y provided in the insulating film 122. Yes.
ゲート絶縁膜115上に設けられたゲート116は、ゲート絶縁膜115及び絶縁膜135に設けられた開口748x及び開口748yにおいて、バックゲート136と電気的に接続されている。よって、ゲート116とバックゲート136には、同じ電位が供給される。また、開口748x及び開口748yは、どちらか一方を設けなくてもよい。また、開口748x及び開口748yの両方を設けなくてもよい。開口748x及び開口748yの両方を設けない場合は、バックゲート136とゲート116に異なる電位を供給することができる。 The gate 116 provided over the gate insulating film 115 is electrically connected to the back gate 136 through an opening 748 x and an opening 748 y provided in the gate insulating film 115 and the insulating film 135. Therefore, the same potential is supplied to the gate 116 and the back gate 136. One of the opening 748x and the opening 748y may not be provided. Further, both the opening 748x and the opening 748y may not be provided. In the case where both the opening 748x and the opening 748y are not provided, different potentials can be supplied to the back gate 136 and the gate 116.
なお、s−channel構造を有するトランジスタに用いる半導体としては、酸化物半導体、又は、多結晶シリコン、もしくは単結晶シリコン基板等から転置された単結晶シリコン等のシリコンなどが挙げられる。 Note that as a semiconductor used for a transistor having an s-channel structure, an oxide semiconductor, silicon such as polycrystalline silicon, single crystal silicon transferred from a single crystal silicon substrate, or the like can be given.
導電膜123xは、絶縁膜125上の電極181と電気的に接続されている。 The conductive film 123x is electrically connected to the electrode 181 over the insulating film 125.
<断面構成例8>
図13に、図10とは異なる画素部160の断面図を示す。
<Cross-section configuration example 8>
FIG. 13 is a cross-sectional view of a pixel portion 160 different from that in FIG.
図13では、結晶性基板951、トランジスタ165、着色層195、発光素子180、可撓性基板191、接着層196等を示している。 In FIG. 13, a crystalline substrate 951, a transistor 165, a coloring layer 195, a light-emitting element 180, a flexible substrate 191, an adhesive layer 196, and the like are illustrated.
図13に示す結晶性基板951には、可視光を透過する結晶性基板を用いる。可視光を透過する結晶性基板を用いることで、結晶性基板951を表示装置の表示面側の基板とすることができる。図13では、ボトムエミッション構造の表示装置を例示している。また、表示装置の作製における加熱工程によって、結晶性基板951が収縮しにくいため、トランジスタもしくは表示素子の特性の劣化、又は作製工程の歩留まりの低下を抑制し、精細度の高い表示装置を作製できる。 As the crystalline substrate 951 shown in FIG. 13, a crystalline substrate that transmits visible light is used. By using a crystalline substrate that transmits visible light, the crystalline substrate 951 can be a substrate on the display surface side of the display device. FIG. 13 illustrates a display device having a bottom emission structure. In addition, since the crystalline substrate 951 is hardly contracted by a heating step in manufacturing the display device, deterioration in characteristics of the transistor or the display element or reduction in yield in the manufacturing process can be suppressed, so that a display device with high definition can be manufactured. .
結晶性基板951は、可撓性を有することが好ましい。例えば、結晶性基板951の厚さは、1μm以上100μm以下が好ましく、1μm以上50μm以下がより好ましい。 The crystalline substrate 951 preferably has flexibility. For example, the thickness of the crystalline substrate 951 is preferably 1 μm to 100 μm, and more preferably 1 μm to 50 μm.
画素部160において、結晶性基板951上に、トランジスタ165が設けられている。結晶性基板951とトランジスタ165の間に、下地膜として機能する絶縁膜111を有していてもよい。 In the pixel portion 160, a transistor 165 is provided over the crystalline substrate 951. An insulating film 111 functioning as a base film may be provided between the crystalline substrate 951 and the transistor 165.
発光素子180は、電極181、EL層183、及び電極185を有する。発光素子180は、着色層195側に光を射出する。 The light-emitting element 180 includes an electrode 181, an EL layer 183, and an electrode 185. The light emitting element 180 emits light to the colored layer 195 side.
図13では、絶縁膜121上に着色層195を有する例を示すが、本発明の一態様はこれに限られない。着色層195は、結晶性基板951と電極181の間に設けることができる。 FIG. 13 illustrates an example in which the coloring layer 195 is provided over the insulating film 121; however, one embodiment of the present invention is not limited thereto. The coloring layer 195 can be provided between the crystalline substrate 951 and the electrode 181.
図13に示すトランジスタ165の構成は、図10と同様である。 The structure of the transistor 165 illustrated in FIG. 13 is similar to that of FIG.
<断面構成例9>
図14に、図10とは異なる走査線駆動回路150及び画素部160の断面図を示す。
<Cross-section configuration example 9>
FIG. 14 is a cross-sectional view of the scanning line driver circuit 150 and the pixel portion 160 which are different from those in FIG.
図14では、結晶性基板102、絶縁膜111、トランジスタ152n、トランジスタ152p、トランジスタ155、トランジスタ156、発光素子180、可撓性基板191、接着層196等を示している。 14 illustrates the crystalline substrate 102, the insulating film 111, the transistor 152n, the transistor 152p, the transistor 155, the transistor 156, the light-emitting element 180, the flexible substrate 191, the adhesive layer 196, and the like.
本発明の一態様では、例えば、SOI基板を用いてもよい。 In one embodiment of the present invention, for example, an SOI substrate may be used.
図14では、走査線駆動回路150において、結晶性基板102上に、絶縁膜111を介して、p型のトランジスタ152pとn型のトランジスタ152nとが設けられている例を示す。また、図14では、画素部160において、結晶性基板102上に、絶縁膜111を介して、それぞれn型の、トランジスタ155及びトランジスタ156が設けられている例を示す。 FIG. 14 illustrates an example in which a p-type transistor 152p and an n-type transistor 152n are provided over the crystalline substrate 102 with an insulating film 111 interposed therebetween in the scan line driver circuit 150. FIG. 14 illustrates an example in which an n-type transistor 155 and a transistor 156 are provided over the crystalline substrate 102 with the insulating film 111 interposed therebetween in the pixel portion 160.
トランジスタ152pは、p型のトランジスタである。トランジスタ152pは、半導体膜131(一部に、p型不純物領域113p及びLDD領域114pを含む)、ゲート絶縁膜115、ゲート116a、サイドウォール117、絶縁膜122、導電膜123a、導電膜123b、導電膜124a、及び導電膜124bを有する。 The transistor 152p is a p-type transistor. The transistor 152p includes a semiconductor film 131 (including a p-type impurity region 113p and an LDD region 114p in part), a gate insulating film 115, a gate 116a, a sidewall 117, an insulating film 122, a conductive film 123a, a conductive film 123b, and a conductive film. A film 124a and a conductive film 124b are included.
トランジスタ152pが有するp型不純物領域113pの一方は、導電膜123aを介して、絶縁膜122上の導電膜124aと電気的に接続されており、他方は、導電膜123bを介して、絶縁膜122上の導電膜124bと電気的に接続されている。 One of the p-type impurity regions 113p included in the transistor 152p is electrically connected to the conductive film 124a over the insulating film 122 through the conductive film 123a, and the other is connected to the insulating film 122 through the conductive film 123b. It is electrically connected to the upper conductive film 124b.
トランジスタ152nは、n型のトランジスタである。トランジスタ152nは、半導体膜131(一部に、n型不純物領域113n及びLDD領域114nを含む)、ゲート絶縁膜115、ゲート116b、サイドウォール117、絶縁膜122、導電膜123c、導電膜123d、導電膜124c、及び導電膜124dを有する。 The transistor 152n is an n-type transistor. The transistor 152n includes a semiconductor film 131 (including an n-type impurity region 113n and an LDD region 114n in part), a gate insulating film 115, a gate 116b, a sidewall 117, an insulating film 122, a conductive film 123c, a conductive film 123d, and a conductive film. A film 124c and a conductive film 124d are included.
トランジスタ152nが有するn型不純物領域113nの一方は、導電膜123cを介して、絶縁膜122上の導電膜124cと電気的に接続されており、他方は、導電膜123dを介して、絶縁膜122上の導電膜124dと電気的に接続されている。 One of n-type impurity regions 113n included in the transistor 152n is electrically connected to the conductive film 124c over the insulating film 122 through the conductive film 123c, and the other is connected to the insulating film 122 through the conductive film 123d. It is electrically connected to the upper conductive film 124d.
トランジスタ155は、n型のトランジスタである。トランジスタ155は、半導体膜131(一部に、n型不純物領域113n及びLDD領域114nを含む)、ゲート絶縁膜115、ゲート116c、サイドウォール117、絶縁膜122、導電膜123e、導電膜123f、導電膜124e、及び導電膜124fを有する。 The transistor 155 is an n-type transistor. The transistor 155 includes a semiconductor film 131 (including an n-type impurity region 113n and an LDD region 114n in part), a gate insulating film 115, a gate 116c, a sidewall 117, an insulating film 122, a conductive film 123e, a conductive film 123f, and a conductive film. A film 124e and a conductive film 124f are included.
トランジスタ155が有するn型不純物領域113nの一方は、導電膜123eを介して、絶縁膜122上の導電膜124eと電気的に接続されており、他方は、導電膜123fを介して、絶縁膜122上の導電膜124fと電気的に接続されている。 One of n-type impurity regions 113n included in the transistor 155 is electrically connected to the conductive film 124e over the insulating film 122 through the conductive film 123e, and the other is connected to the insulating film 122 through the conductive film 123f. It is electrically connected to the upper conductive film 124f.
トランジスタ156は、n型のトランジスタである。トランジスタ156は、半導体膜131(一部に、n型不純物領域113n及びLDD領域114nを含む)、ゲート絶縁膜115、ゲート116d、サイドウォール117、絶縁膜122、導電膜123g、導電膜123h、導電膜124g、及び導電膜124hを有する。 The transistor 156 is an n-type transistor. The transistor 156 includes a semiconductor film 131 (including an n-type impurity region 113n and an LDD region 114n in part), a gate insulating film 115, a gate 116d, a sidewall 117, an insulating film 122, a conductive film 123g, a conductive film 123h, and a conductive film. A film 124g and a conductive film 124h are included.
トランジスタ156が有するn型不純物領域113nの一方は、導電膜123gを介して、絶縁膜122上の導電膜124gと電気的に接続されており、他方は、導電膜123hを介して、絶縁膜122上の導電膜124hと電気的に接続されている。 One of n-type impurity regions 113n included in the transistor 156 is electrically connected to the conductive film 124g over the insulating film 122 through the conductive film 123g, and the other is connected to the insulating film 122 through the conductive film 123h. It is electrically connected to the upper conductive film 124h.
トランジスタ155のゲート116cは、トランジスタ156のソース又はドレインと電気的に接続されている。具体的には、ゲート116cは、導電膜123iを介して、導電膜124gと電気的に接続されている。そして、導電膜124gは、導電膜123gを介して、n型不純物領域113nと電気的に接続されている。 A gate 116 c of the transistor 155 is electrically connected to a source or a drain of the transistor 156. Specifically, the gate 116c is electrically connected to the conductive film 124g through the conductive film 123i. The conductive film 124g is electrically connected to the n-type impurity region 113n through the conductive film 123g.
ゲート絶縁膜115は、半導体膜131と各トランジスタのゲートの間に位置する。各トランジスタのゲートは、ゲート絶縁膜115を挟んで、半導体膜131のチャネル形成領域と重なる。 The gate insulating film 115 is located between the semiconductor film 131 and the gate of each transistor. The gate of each transistor overlaps with the channel formation region of the semiconductor film 131 with the gate insulating film 115 interposed therebetween.
発光素子180は、電極181、EL層183、及び電極185を有する。発光素子180は、可撓性基板191側に光を射出する。 The light-emitting element 180 includes an electrode 181, an EL layer 183, and an electrode 185. The light emitting element 180 emits light to the flexible substrate 191 side.
トランジスタ155のソース又はドレインは、導電膜127を介して、絶縁膜125上の電極181と電気的に接続されている。 A source or a drain of the transistor 155 is electrically connected to the electrode 181 over the insulating film 125 through the conductive film 127.
電極181は画素電極として機能し、発光素子180ごとに設けられている。隣り合う2つの電極181は、絶縁膜128によって電気的に絶縁されている。EL層183は、異なる色の副画素間で塗り分けられている。電極185は、共通電極として機能し、複数の発光素子180にわたって設けられている。さらに、発光素子180上に封止層として機能する絶縁膜を設けると、発光素子180の信頼性が高めるため好ましい。 The electrode 181 functions as a pixel electrode and is provided for each light emitting element 180. Two adjacent electrodes 181 are electrically insulated by an insulating film 128. The EL layer 183 is separately applied between sub-pixels of different colors. The electrode 185 functions as a common electrode and is provided over the plurality of light emitting elements 180. Furthermore, it is preferable to provide an insulating film functioning as a sealing layer over the light-emitting element 180 because the reliability of the light-emitting element 180 is improved.
<断面構成例10>
図15に、図10とは異なる走査線駆動回路150及び画素部160の断面図を示す。断面構成例10は、結晶性基板102及び絶縁膜111を有さず、可撓性基板901、接着層903、及び絶縁膜105を有する点で、図10の構成と異なる。
<Cross-section configuration example 10>
15 is a cross-sectional view of the scanning line driver circuit 150 and the pixel portion 160 which are different from those in FIG. The cross-sectional configuration example 10 is different from the configuration in FIG. 10 in that it does not have the crystalline substrate 102 and the insulating film 111 but has a flexible substrate 901, an adhesive layer 903, and an insulating film 105.
図15では、可撓性基板901、接着層903、絶縁膜105、トランジスタ153、トランジスタ165、トランジスタ166、発光素子180、可撓性基板191、接着層192、絶縁膜193、遮光層194、着色層195、接着層196等を示している。 In FIG. 15, a flexible substrate 901, an adhesive layer 903, an insulating film 105, a transistor 153, a transistor 165, a transistor 166, a light-emitting element 180, a flexible substrate 191, an adhesive layer 192, an insulating film 193, a light-shielding layer 194, and coloring. A layer 195, an adhesive layer 196, and the like are shown.
本発明の一態様では、結晶性基板上にトランジスタ及び発光素子等を含む素子層を形成した後、該結晶性基板を剥離し、他の基板と該素子層とを貼り合わせてもよい。 In one embodiment of the present invention, after an element layer including a transistor, a light-emitting element, and the like is formed over a crystalline substrate, the crystalline substrate may be peeled off and another element may be attached to the element layer.
<断面構成例10の作製方法>
図16~図18を用いて、断面構成例10の作製方法の一例を説明する。なお、断面構成例1の作製方法と同様の部分については、説明を省略する場合がある。
<Method for Producing Cross-Section Example 10>
An example of a manufacturing method of the cross-sectional configuration example 10 will be described with reference to FIGS. Note that description of portions similar to those of the manufacturing method of the cross-sectional configuration example 1 may be omitted.
まず、図16(A)に示すように、結晶性基板102上に、剥離層103を形成する。次に、剥離層103上に絶縁膜105を形成する。次に、絶縁膜105上にトランジスタ153、165、166、絶縁膜121、122、125、及び発光素子180等を作製する。 First, as illustrated in FIG. 16A, the separation layer 103 is formed over the crystalline substrate 102. Next, the insulating film 105 is formed over the separation layer 103. Next, the transistors 153, 165, and 166, the insulating films 121, 122, and 125, the light-emitting element 180, and the like are formed over the insulating film 105.
剥離層103に用いることができる材料は、剥離層992に用いることができる材料と同様である。絶縁膜105に用いることができる材料は、絶縁膜193に用いることができる材料と同様である。 The material that can be used for the peeling layer 103 is similar to the material that can be used for the peeling layer 992. The material that can be used for the insulating film 105 is similar to the material that can be used for the insulating film 193.
また、図16(B)に示すように、作製基板911上に、剥離層992を形成する。次に、剥離層992上に絶縁膜193を形成する。次に、絶縁膜193上に遮光層194及び着色層195を形成する。 In addition, as illustrated in FIG. 16B, a separation layer 992 is formed over the manufacturing substrate 911. Next, an insulating film 193 is formed over the separation layer 992. Next, a light-blocking layer 194 and a colored layer 195 are formed over the insulating film 193.
次に、図17に示すように、結晶性基板102と作製基板911とを、接着層196を用いて貼り合わせ、接着層196を硬化させる。 Next, as illustrated in FIG. 17, the crystalline substrate 102 and the manufacturing substrate 911 are attached to each other using the adhesive layer 196, and the adhesive layer 196 is cured.
次に、作製基板911と、結晶性基板102と、をそれぞれ素子層から剥離する。作製基板911と結晶性基板102は、どちらの基板から剥離しても構わない。本実施の形態では、結晶性基板102を先に剥離する場合を例に説明する。 Next, the manufacturing substrate 911 and the crystalline substrate 102 are each separated from the element layer. The manufacturing substrate 911 and the crystalline substrate 102 may be separated from either substrate. In this embodiment, the case where the crystalline substrate 102 is peeled first will be described as an example.
まず、レーザ光又は鋭利な刃物等を用いて、剥離の起点を形成する。剥離層103にクラックを入れることで、結晶性基板102を剥離するための剥離の起点を形成できる。例えば、レーザ光の照射によって、絶縁膜105に含まれる膜の一部を溶解、蒸発、又は熱的に破壊することができる。 First, a starting point of peeling is formed using a laser beam or a sharp blade. By providing a crack in the separation layer 103, a separation starting point for separating the crystalline substrate 102 can be formed. For example, part of the film included in the insulating film 105 can be dissolved, evaporated, or thermally destroyed by laser light irradiation.
そして、形成した剥離の起点から、物理的な力によって絶縁膜105と結晶性基板102とを分離する。図18の下部に、絶縁膜105から分離された剥離層103と結晶性基板102を示す。その後、露出した絶縁膜105と、可撓性基板901とを、接着層903を用いて貼り合わせる(図18)。 Then, the insulating film 105 and the crystalline substrate 102 are separated by a physical force from the starting point of the separation. A separation layer 103 and a crystalline substrate 102 separated from the insulating film 105 are shown in the lower part of FIG. After that, the exposed insulating film 105 and the flexible substrate 901 are attached to each other using the adhesive layer 903 (FIG. 18).
次に、剥離層912にクラックを入れることで、作製基板911を剥離するための剥離の起点を形成する。 Next, a peeling start point for peeling the manufacturing substrate 911 is formed by cracking the peeling layer 912.
そして、形成した剥離の起点から、物理的な力によって絶縁膜193と作製基板911とを分離する。図18の上部に、絶縁膜193から分離された剥離層912と作製基板911を示す。その後、露出した絶縁膜193と、可撓性基板191とを、接着層192を用いて貼り合わせる(図18)。 Then, the insulating film 193 and the manufacturing substrate 911 are separated from each other by a physical force from the starting point of the separation. In the upper part of FIG. 18, a separation layer 912 and a manufacturing substrate 911 separated from the insulating film 193 are shown. After that, the exposed insulating film 193 and the flexible substrate 191 are bonded using the adhesive layer 192 (FIG. 18).
表示装置を構成する機能素子等は、全て結晶性基板102及び作製基板911上で形成するため、精細度の高い表示装置を作製する場合においても、可撓性基板には、高い位置合わせ精度が要求されない。よって、簡便に可撓性基板を貼り付けることができる。 Since the functional elements and the like included in the display device are formed over the crystalline substrate 102 and the manufacturing substrate 911, the flexible substrate has high alignment accuracy even when a high-definition display device is manufactured. Not required. Therefore, a flexible substrate can be easily attached.
なお、図18では、導電膜189が接着層196及び絶縁膜193等で覆われている。外部入力端子と電気的に接続させるために、導電膜189を露出させる必要がある。例えば、導電膜189上の接着層196及び絶縁膜193等を、レーザ光の照射又は切削加工等により除去することができる。 In FIG. 18, the conductive film 189 is covered with an adhesive layer 196, an insulating film 193, and the like. In order to be electrically connected to the external input terminal, the conductive film 189 needs to be exposed. For example, the adhesive layer 196, the insulating film 193, and the like over the conductive film 189 can be removed by laser light irradiation, cutting, or the like.
または、図16(A)に示す段階で、導電膜189上に、導電膜189との密着性が低い機能膜を形成する、又は、導電膜189上に、互いに密着性の低い2層以上の積層膜を形成してもよい。このように、導電膜189上に膜を形成することで、外部入力端子と接続させる領域のみ、絶縁膜193と剥離層912の界面でなく、導電膜189と機能膜の界面、又は導電膜189上の密着性の低い積層膜の界面で分離することができる。この場合、作製基板911を剥離する工程で、導電膜189の露出が可能となるため、工程数の削減が可能となる。なお、導電膜189上に、他の膜が一部残る場合もある。そのときは、ドライ処理(ドライアイスの粉を吹き付ける方法など)又はウエット処理(有機溶媒、水、又は過酸化水素水等で拭き取る方法など)により、導電膜189上に残存した膜を除去することが好ましい。 16A, a functional film with low adhesion to the conductive film 189 is formed over the conductive film 189, or two or more layers with low adhesion to each other are formed over the conductive film 189. A laminated film may be formed. In this manner, by forming a film over the conductive film 189, only the region connected to the external input terminal is not the interface between the insulating film 193 and the separation layer 912, but the interface between the conductive film 189 and the functional film, or the conductive film 189. It can be separated at the interface of the upper laminated film with low adhesion. In this case, since the conductive film 189 can be exposed in the step of peeling the manufacturing substrate 911, the number of steps can be reduced. Note that some other films may remain over the conductive film 189. In that case, the film remaining on the conductive film 189 is removed by dry treatment (a method of spraying dry ice powder or the like) or a wet treatment (a method of wiping with an organic solvent, water, hydrogen peroxide solution, or the like). Is preferred.
以上のように、本発明の一態様の表示装置の作製方法では、結晶性基板上にトランジスタ及び発光素子を形成することで精細度が極めて高い表示装置を作製することができる。また、作製基板上で高温をかけて絶縁膜を形成することで、信頼性の高い表示装置を作製することができる。さらに、作製基板及び結晶性基板をそれぞれ剥離し、可撓性基板を貼ることにより、表示装置の薄型化、軽量化、フレキシブル化が可能となる。 As described above, in the method for manufacturing a display device of one embodiment of the present invention, a display device with extremely high definition can be manufactured by forming a transistor and a light-emitting element over a crystalline substrate. In addition, a highly reliable display device can be manufactured by forming an insulating film over a manufacturing substrate at a high temperature. Furthermore, the display substrate can be thinned, reduced in weight, and flexible by peeling off the manufacturing substrate and the crystalline substrate and attaching a flexible substrate.
<断面構成例11>
図19に、図1とは異なる画素部の断面図を示す。
<Cross sectional configuration example 11>
FIG. 19 is a cross-sectional view of a pixel portion different from that in FIG.
図19に示すように、本発明の一態様では、絶縁膜及び導電膜の積層構造でなる多層配線構造を採用して、高度に集積化した表示装置を実現することも可能である。 As shown in FIG. 19, in one embodiment of the present invention, a highly integrated display device can be realized by using a multilayer wiring structure including a stacked structure of an insulating film and a conductive film.
図19では、結晶性半導体基板101、トランジスタ161、複数の容量素子170、発光素子180、可撓性基板191、接着層192、絶縁膜193、遮光層194、着色層195、接着層196等を示している。 In FIG. 19, a crystalline semiconductor substrate 101, a transistor 161, a plurality of capacitors 170, a light emitting element 180, a flexible substrate 191, an adhesive layer 192, an insulating film 193, a light shielding layer 194, a colored layer 195, an adhesive layer 196, and the like. Show.
トランジスタ161が有する導電膜124eは、複数の導電膜を介して、発光素子180の電極181と電気的に接続されている。導電膜124eと、絶縁膜125上の導電膜141と、は、導電膜149によって電気的に接続されている。絶縁膜125上の導電膜141と、絶縁膜143上の導電膜141と、は、別の導電膜149によって電気的に接続されている。絶縁膜143は4層積層されており、一番上の1つを除いた3つの絶縁膜143上に、それぞれ導電膜141が設けられ、全ての導電膜141が、導電膜149によって電気的に接続されている。4層のうち一番上の絶縁膜143上には、電極181が設けられている。4層のうち一番上の導電膜141と、電極181とは、導電膜149によって電気的に接続されている。 A conductive film 124e included in the transistor 161 is electrically connected to the electrode 181 of the light-emitting element 180 through a plurality of conductive films. The conductive film 124 e and the conductive film 141 over the insulating film 125 are electrically connected by the conductive film 149. The conductive film 141 on the insulating film 125 and the conductive film 141 on the insulating film 143 are electrically connected by another conductive film 149. The insulating films 143 are stacked in four layers, and conductive films 141 are provided on the three insulating films 143 except for the uppermost one, and all the conductive films 141 are electrically connected by the conductive films 149. It is connected. An electrode 181 is provided on the uppermost insulating film 143 among the four layers. Of the four layers, the uppermost conductive film 141 and the electrode 181 are electrically connected by a conductive film 149.
また、多層配線構造の少なくとも一部に、容量素子170を有していてもよい。容量素子170は、一対の導電膜(導電膜141及び導電膜148)と、その間に設けられた絶縁膜142と、を有する。また、上下に重なる2つの容量素子170において、下側の容量素子170が有する導電膜148と、上側の容量素子170が有する導電膜141とは、1以上の導電膜149によって、電気的に接続されている。 Further, the capacitor 170 may be provided in at least a part of the multilayer wiring structure. The capacitor 170 includes a pair of conductive films (a conductive film 141 and a conductive film 148) and an insulating film 142 provided therebetween. In addition, in the two capacitor elements 170 that overlap one above the other, the conductive film 148 included in the lower capacitor element 170 and the conductive film 141 included in the upper capacitor element 170 are electrically connected by one or more conductive films 149. Has been.
図19に示すトランジスタ161の構成は、図1と同様である。 The structure of the transistor 161 illustrated in FIG. 19 is similar to that of FIG.
<断面構成例12>
図20に、画素回路の一例を示す回路図を示す。また、図21に図1とは異なる画素部の断面図を示す。
<Cross-sectional configuration example 12>
FIG. 20 is a circuit diagram illustrating an example of a pixel circuit. FIG. 21 is a cross-sectional view of a pixel portion different from that in FIG.
図20に示す画素回路は、発光素子180、トランジスタ3200、トランジスタ3300、及び容量素子3400を有する。トランジスタ3200は、駆動トランジスタとして機能する。トランジスタ3300は、選択トランジスタとして機能する。 20 includes a light-emitting element 180, a transistor 3200, a transistor 3300, and a capacitor 3400. The transistor 3200 functions as a driving transistor. The transistor 3300 functions as a selection transistor.
発光素子180の第1の電極は、第1の配線3001と電気的に接続されている。発光素子180の第2の電極は、トランジスタ3200の第1の電極と電気的に接続されている。トランジスタ3200の第2の電極は、第2の配線3002と電気的に接続されている。トランジスタ3200のゲートは、トランジスタ3300の第1の電極及び容量素子3400の第1の電極と電気的に接続されている。トランジスタ3300の第2の電極は、第3の配線3003と電気的に接続されている。トランジスタ3300のゲートは、第4の配線3004と電気的に接続されている。容量素子3400の第2の電極は、第5の配線3005と電気的に接続されている。 The first electrode of the light emitting element 180 is electrically connected to the first wiring 3001. The second electrode of the light-emitting element 180 is electrically connected to the first electrode of the transistor 3200. A second electrode of the transistor 3200 is electrically connected to the second wiring 3002. A gate of the transistor 3200 is electrically connected to the first electrode of the transistor 3300 and the first electrode of the capacitor 3400. A second electrode of the transistor 3300 is electrically connected to the third wiring 3003. A gate of the transistor 3300 is electrically connected to the fourth wiring 3004. The second electrode of the capacitor 3400 is electrically connected to the fifth wiring 3005.
図20に示す画素回路において、トランジスタ3300は、トランジスタ3200とは異なる半導体を用いて形成されている。具体的には、トランジスタ3200は、シリコンを用いたトランジスタであり、トランジスタ3300は、酸化物半導体を用いたトランジスタである。 In the pixel circuit illustrated in FIG. 20, the transistor 3300 is formed using a semiconductor different from the transistor 3200. Specifically, the transistor 3200 is a transistor using silicon, and the transistor 3300 is a transistor using an oxide semiconductor.
図21は、図20に示す発光素子180、トランジスタ3200、トランジスタ3300、及び容量素子3400を含む、表示装置の断面図に相当する。 21 corresponds to a cross-sectional view of a display device including the light-emitting element 180, the transistor 3200, the transistor 3300, and the capacitor 3400 which are illustrated in FIG.
図21では、トランジスタ3200の上方にトランジスタ3300が配置され、トランジスタ3300の上方に容量素子3400が配置され、容量素子3400の上方に発光素子180が配置されている。 In FIG. 21, the transistor 3300 is disposed above the transistor 3200, the capacitor 3400 is disposed above the transistor 3300, and the light-emitting element 180 is disposed above the capacitor 3400.
図21に示すように、本発明の一態様では、2つ以上のトランジスタを積層した表示装置を実現することも可能である。 As shown in FIG. 21, in one embodiment of the present invention, a display device in which two or more transistors are stacked can be realized.
なお、トランジスタ3200、3300は、図21に示す構成に限定されず、上述した様々な構造を適用することができる。 Note that the transistors 3200 and 3300 are not limited to the structure illustrated in FIGS.
トランジスタ3200は、結晶性半導体基板101を用いたトランジスタである。 The transistor 3200 is a transistor using the crystalline semiconductor substrate 101.
トランジスタ3200は、結晶性半導体基板101中の不純物領域474a及び不純物領域474bと、ゲート絶縁膜462と、ゲート454と、を有する。 The transistor 3200 includes impurity regions 474 a and 474 b in the crystalline semiconductor substrate 101, a gate insulating film 462, and a gate 454.
トランジスタ3200において、不純物領域474a及び不純物領域474bは、ソース領域及びドレイン領域として機能する。ゲート454に印加する電位によって、チャネル形成領域の抵抗を制御することができる。即ち、ゲート454に印加する電位によって、不純物領域474aと不純物領域474bとの間の導通・非導通を制御することができる。 In the transistor 3200, the impurity regions 474a and 474b function as a source region and a drain region. The resistance of the channel formation region can be controlled by a potential applied to the gate 454. That is, conduction / non-conduction between the impurity region 474a and the impurity region 474b can be controlled by a potential applied to the gate 454.
なお、トランジスタ3200は、素子分離領域460などによって隣接するトランジスタと分離される。素子分離領域460は、絶縁性を有する領域である。 Note that the transistor 3200 is separated from adjacent transistors by an element isolation region 460 or the like. The element isolation region 460 is a region having an insulating property.
トランジスタ3300は、酸化物半導体膜406bを用いたトランジスタである。 The transistor 3300 is a transistor including the oxide semiconductor film 406b.
トランジスタ3300は、ゲート401、ゲート絶縁膜403、酸化物膜406a、酸化物半導体膜406b、酸化物膜406c、導電膜404a、及び導電膜404bを有する。 The transistor 3300 includes a gate 401, a gate insulating film 403, an oxide film 406a, an oxide semiconductor film 406b, an oxide film 406c, a conductive film 404a, and a conductive film 404b.
酸化物膜406a及び酸化物膜406cには、それぞれ、酸化物半導体膜406bを構成する酸素以外の元素一種以上を有する酸化物を用いることが望ましい。 For the oxide film 406a and the oxide film 406c, an oxide containing one or more elements other than oxygen included in the oxide semiconductor film 406b is preferably used.
絶縁膜475の開口部には、導電膜484dが埋め込まれている。導電膜484dに一定の電位を印加することで、トランジスタ3300のしきい値電圧などの電気特性を制御しても構わない。または、例えば、導電膜484dとゲート401とを電気的に接続しても構わない。こうすることで、トランジスタ3300のオン電流を大きくすることができる。また、パンチスルー現象を抑制することができるため、トランジスタ3300の飽和領域における電気特性を安定にすることができる。また、導電膜484dは、トランジスタ3300のボトムゲート電極としての機能を有しても構わない。このとき、ゲート401は、バックゲート電極として機能することができる。 A conductive film 484 d is embedded in the opening of the insulating film 475. Electric characteristics such as a threshold voltage of the transistor 3300 may be controlled by applying a certain potential to the conductive film 484d. Alternatively, for example, the conductive film 484d and the gate 401 may be electrically connected. Thus, the on-state current of the transistor 3300 can be increased. In addition, since the punch-through phenomenon can be suppressed, electrical characteristics in the saturation region of the transistor 3300 can be stabilized. The conductive film 484d may function as the bottom gate electrode of the transistor 3300. At this time, the gate 401 can function as a back gate electrode.
容量素子3400は、導電膜494、絶縁膜498、及び導電膜496を有する。容量素子3400を、トランジスタ3300の上方又は下方に形成することで、表示装置の大きさを縮小することができ、好ましい。 The capacitor 3400 includes a conductive film 494, an insulating film 498, and a conductive film 496. The capacitor 3400 is formed above or below the transistor 3300, which is preferable because the size of the display device can be reduced.
不純物領域474aは、複数の導電膜を介して、導電膜489aと電気的に接続されている。具体的には、不純物領域474aは、導電膜480aを介して、絶縁膜464上の導電膜478aと電気的に接続されている。導電膜478aは、導電膜476aを介して、絶縁膜468上の導電膜479aと電気的に接続されている。導電膜479aは、導電膜477aを介して、絶縁膜472上の導電膜484aと電気的に接続されている。導電膜484aは、導電膜483aを介して、絶縁膜428上の導電膜485aと電気的に接続されている。導電膜485aは、導電膜487aを介して、絶縁膜465上の導電膜488aと電気的に接続されている。導電膜488aは、導電膜490aを介して、絶縁膜467上の導電膜489aと電気的に接続されている。 The impurity region 474a is electrically connected to the conductive film 489a through a plurality of conductive films. Specifically, the impurity region 474a is electrically connected to the conductive film 478a over the insulating film 464 through the conductive film 480a. The conductive film 478a is electrically connected to the conductive film 479a over the insulating film 468 through the conductive film 476a. The conductive film 479a is electrically connected to the conductive film 484a over the insulating film 472 through the conductive film 477a. The conductive film 484a is electrically connected to the conductive film 485a over the insulating film 428 through the conductive film 483a. The conductive film 485a is electrically connected to the conductive film 488a over the insulating film 465 through the conductive film 487a. The conductive film 488a is electrically connected to the conductive film 489a over the insulating film 467 through the conductive film 490a.
不純物領域474bは、複数の導電膜を介して、発光素子180の電極181と電気的に接続されている。具体的には、不純物領域474bは、導電膜480bを介して、絶縁膜464上の導電膜478bと電気的に接続されている。導電膜478bは、導電膜476bを介して、絶縁膜468上の導電膜479bと電気的に接続されている。導電膜479bは、導電膜477bを介して、絶縁膜472上の導電膜484bと電気的に接続されている。導電膜484bは、導電膜483bを介して、絶縁膜428上の導電膜485bと電気的に接続されている。導電膜485bは、導電膜487bを介して、絶縁膜465上の導電膜488bと電気的に接続されている。導電膜488bは、導電膜490bを介して、絶縁膜467上の導電膜489bと電気的に接続されている。導電膜489bは、導電膜491を介して、絶縁膜469上の電極181と電気的に接続されている。 The impurity region 474b is electrically connected to the electrode 181 of the light-emitting element 180 through a plurality of conductive films. Specifically, the impurity region 474b is electrically connected to the conductive film 478b over the insulating film 464 through the conductive film 480b. The conductive film 478b is electrically connected to the conductive film 479b over the insulating film 468 through the conductive film 476b. The conductive film 479b is electrically connected to the conductive film 484b over the insulating film 472 through the conductive film 477b. The conductive film 484b is electrically connected to the conductive film 485b over the insulating film 428 through the conductive film 483b. The conductive film 485b is electrically connected to the conductive film 488b over the insulating film 465 through the conductive film 487b. The conductive film 488b is electrically connected to the conductive film 489b over the insulating film 467 through the conductive film 490b. The conductive film 489b is electrically connected to the electrode 181 over the insulating film 469 through the conductive film 491.
トランジスタ3200のゲート454は、複数の導電膜を介して、トランジスタ3300の導電膜404bと電気的に接続されている。また、トランジスタ3200のゲート454は、複数の導電膜を介して、容量素子3400の導電膜494と電気的に接続されている。具体的には、ゲート454は、導電膜480cを介して、絶縁膜464上の導電膜478cと電気的に接続されている。導電膜478cは、導電膜476cを介して、絶縁膜468上の導電膜479cと電気的に接続されている。導電膜479cは、導電膜477cを介して、絶縁膜472上の導電膜484cと電気的に接続されている。導電膜484cは、導電膜483cを介して、絶縁膜428上の導電膜485cと電気的に接続されている。導電膜485cは、導電膜483fを介して、導電膜404bと電気的に接続されている。導電膜485cは、導電膜487cを介して、絶縁膜465上の導電膜488cと電気的に接続されている。導電膜488cは、導電膜494と電気的に接続されている。 A gate 454 of the transistor 3200 is electrically connected to the conductive film 404b of the transistor 3300 through a plurality of conductive films. In addition, the gate 454 of the transistor 3200 is electrically connected to the conductive film 494 of the capacitor 3400 through a plurality of conductive films. Specifically, the gate 454 is electrically connected to the conductive film 478c over the insulating film 464 through the conductive film 480c. The conductive film 478c is electrically connected to the conductive film 479c over the insulating film 468 through the conductive film 476c. The conductive film 479c is electrically connected to the conductive film 484c over the insulating film 472 through the conductive film 477c. The conductive film 484c is electrically connected to the conductive film 485c over the insulating film 428 through the conductive film 483c. The conductive film 485c is electrically connected to the conductive film 404b through the conductive film 483f. The conductive film 485c is electrically connected to the conductive film 488c over the insulating film 465 through the conductive film 487c. The conductive film 488c is electrically connected to the conductive film 494.
トランジスタ3300のゲート401は、導電膜483dを介して導電膜485dと電気的に接続されている。トランジスタ3300の導電膜404aは、導電膜483eを介して導電膜485eと電気的に接続されている。 A gate 401 of the transistor 3300 is electrically connected to the conductive film 485d through a conductive film 483d. The conductive film 404a of the transistor 3300 is electrically connected to the conductive film 485e through the conductive film 483e.
トランジスタ3200上には、絶縁膜464が配置されている。絶縁膜464上には、絶縁膜466が配置されている。絶縁膜466上には、絶縁膜468が配置されている。絶縁膜468上には、絶縁膜470が配置されている。絶縁膜470上には、絶縁膜472が配置されている。絶縁膜472上には、絶縁膜475が配置されている。絶縁膜475上には、絶縁膜402が配置されている。 An insulating film 464 is provided over the transistor 3200. An insulating film 466 is disposed over the insulating film 464. An insulating film 468 is disposed over the insulating film 466. An insulating film 470 is disposed over the insulating film 468. An insulating film 472 is disposed over the insulating film 470. An insulating film 475 is disposed over the insulating film 472. An insulating film 402 is provided over the insulating film 475.
ゲート401及び絶縁膜410上には、絶縁膜418が配置されている。絶縁膜418上には、絶縁膜408が配置されている。絶縁膜408上には、絶縁膜428が配置されている。絶縁膜428上には、絶縁膜465が配置されている。絶縁膜465上には、絶縁膜467が配置されている。絶縁膜467及び容量素子3400上には、絶縁膜469が配置されている。 An insulating film 418 is disposed over the gate 401 and the insulating film 410. An insulating film 408 is disposed over the insulating film 418. An insulating film 428 is disposed over the insulating film 408. An insulating film 465 is disposed over the insulating film 428. An insulating film 467 is disposed over the insulating film 465. An insulating film 469 is provided over the insulating film 467 and the capacitor 3400.
なお、トランジスタ3300を、水素などの不純物及び酸素をブロックする機能を有する絶縁膜で囲うことによって、トランジスタ3300の電気特性を安定にすることができる。例えば絶縁膜408及び絶縁膜472に、それぞれ、水素などの不純物及び酸素をブロックする機能を有する絶縁膜を用いることが好ましい。 Note that by surrounding the transistor 3300 with an insulating film having a function of blocking impurities such as hydrogen and oxygen, the electrical characteristics of the transistor 3300 can be stabilized. For example, an insulating film having a function of blocking impurities such as hydrogen and oxygen is preferably used for the insulating film 408 and the insulating film 472, respectively.
例えば、絶縁膜408及び絶縁膜472には、それぞれ、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム又は酸化タンタルなどの金属酸化物、窒化酸化シリコン又は窒化シリコンなどを用いることができる。なお、絶縁膜408及び絶縁膜472は、酸化アルミニウムを有することが好ましい。 For example, each of the insulating film 408 and the insulating film 472 includes metal oxide such as aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, or tantalum oxide, and nitride. Silicon oxide, silicon nitride, or the like can be used. Note that the insulating film 408 and the insulating film 472 preferably include aluminum oxide.
図21における発光素子180と可撓性基板191の間の構成は、図19と同様である。 The configuration between the light emitting element 180 and the flexible substrate 191 in FIG. 21 is the same as that in FIG.
<応用例>
本発明の一態様では、タッチセンサが搭載された表示装置(以下、タッチパネルとも記す)を作製することができる。
<Application example>
In one embodiment of the present invention, a display device on which a touch sensor is mounted (hereinafter also referred to as a touch panel) can be manufactured.
本発明の一態様のタッチパネルが有する検知素子(センサ素子ともいう)に限定は無い。指もしくはスタイラスなどの被検知体の近接又は接触を検知することのできる様々なセンサを、検知素子として適用することができる。 There is no limitation on a detection element (also referred to as a sensor element) included in the touch panel of one embodiment of the present invention. Various sensors that can detect the proximity or contact of a detection target such as a finger or a stylus can be used as the detection element.
例えばセンサの方式としては、静電容量方式、抵抗膜方式、表面弾性波方式、赤外線方式、光学方式、感圧方式など様々な方式を用いることができる。 For example, various methods such as a capacitance method, a resistance film method, a surface acoustic wave method, an infrared method, an optical method, and a pressure-sensitive method can be used as a sensor method.
本実施の形態では、静電容量方式の検知素子を有するタッチパネルを例に挙げて説明する。 In this embodiment, a touch panel having a capacitive detection element will be described as an example.
静電容量方式としては、表面型静電容量方式、投影型静電容量方式等がある。また、投影型静電容量方式としては、自己容量方式、相互容量方式等がある。相互容量方式を用いると、同時多点検出が可能となるため好ましい。 Examples of the electrostatic capacity method include a surface electrostatic capacity method and a projection electrostatic capacity method. In addition, examples of the projected capacitance method include a self-capacitance method and a mutual capacitance method. Use of the mutual capacitance method is preferable because simultaneous multipoint detection is possible.
本発明の一態様のタッチパネルは、別々に作製された表示パネルと検知素子とを貼り合わせる構成、表示素子を支持する基板及び対向基板の一方又は双方に検知素子を構成する電極等を設ける構成等、様々な構成を適用することができる。 The touch panel of one embodiment of the present invention includes a structure in which a separately manufactured display panel and a detection element are attached, a structure in which an electrode or the like that forms the detection element is provided on one or both of the substrate that supports the display element and the counter substrate, and the like Various configurations can be applied.
図22(A)に、断面構成例2(図6(A))の表示パネルと検知素子とを貼り合わせた構成を示す。 FIG. 22A illustrates a structure in which the display panel of the cross-sectional structure example 2 (FIG. 6A) and the detection element are bonded to each other.
図22(A)における結晶性半導体基板101と可撓性基板191の間の構成は、図6(A)と同様である。 The structure between the crystalline semiconductor substrate 101 and the flexible substrate 191 in FIG. 22A is similar to that in FIG.
図22(A)では、可撓性基板171、導電膜173、絶縁膜174、導電膜175、接着層176、及び導電膜177等を示している。 FIG. 22A illustrates a flexible substrate 171, a conductive film 173, an insulating film 174, a conductive film 175, an adhesive layer 176, a conductive film 177, and the like.
検知素子等は、接着層176によって、可撓性基板191に貼り合わされている。 The detection element or the like is bonded to the flexible substrate 191 with an adhesive layer 176.
なお、可撓性基板171の代わりに、可撓性を有していない基板を用いてもよい。 Note that a substrate that does not have flexibility may be used instead of the flexible substrate 171.
導電膜173、導電膜175、及び導電膜177は、それぞれ、可視光を透過する導電性材料を用いて形成することができる。 The conductive film 173, the conductive film 175, and the conductive film 177 can each be formed using a conductive material that transmits visible light.
導電膜173は、接続体178を介してFPC179と電気的に接続されている。 The conductive film 173 is electrically connected to the FPC 179 through the connection body 178.
図22(B)に、断面構成例2(図6(A))の表示パネルの対向基板(可撓性基板191)側に検知素子を設けた構成を示す。 FIG. 22B illustrates a structure in which a detection element is provided on the counter substrate (flexible substrate 191) side of the display panel of the cross-sectional structure example 2 (FIG. 6A).
図22(B)における結晶性半導体基板101と接着層196の間の構成は、図6(A)と同様である。 The structure between the crystalline semiconductor substrate 101 and the adhesive layer 196 in FIG. 22B is similar to that in FIG.
図22(B)では、可撓性基板191、接着層192、絶縁膜193、遮光層194、着色層195、絶縁膜172、導電膜173、絶縁膜174、導電膜175、及び導電膜177等を示している。 In FIG. 22B, a flexible substrate 191, an adhesive layer 192, an insulating film 193, a light shielding layer 194, a colored layer 195, an insulating film 172, a conductive film 173, an insulating film 174, a conductive film 175, a conductive film 177, and the like. Is shown.
図22(B)に示すような表示パネルの対向基板側に検知素子を有する構成とするための表示装置の作製方法の一例を説明する。 An example of a method for manufacturing a display device for including a detection element on the counter substrate side of the display panel as illustrated in FIG.
まず、作製基板上に、剥離層を形成する。次に、剥離層上に絶縁膜193を形成する。次に、絶縁膜193上に導電膜173及び導電膜177を形成し、さらに、絶縁膜174を形成する。次に、絶縁膜174上に、導電膜175を形成し、さらに、絶縁膜172を形成する。そして、絶縁膜172上に遮光層194及び着色層195を形成する。 First, a separation layer is formed over a manufacturing substrate. Next, an insulating film 193 is formed over the separation layer. Next, a conductive film 173 and a conductive film 177 are formed over the insulating film 193, and an insulating film 174 is further formed. Next, a conductive film 175 is formed over the insulating film 174, and an insulating film 172 is further formed. Then, a light shielding layer 194 and a colored layer 195 are formed over the insulating film 172.
次に、結晶性半導体基板101と作製基板とを、接着層196を用いて貼り合わせる。そして、作製基板と絶縁膜193とを分離し、露出した絶縁膜193と可撓性基板191とを接着層192を用いて貼り合わせる。 Next, the crystalline semiconductor substrate 101 and the manufacturing substrate are attached to each other with the use of an adhesive layer 196. Then, the manufacturing substrate and the insulating film 193 are separated, and the exposed insulating film 193 and the flexible substrate 191 are attached to each other using the adhesive layer 192.
図22(B)に示す表示装置は、基板を2枚(結晶性半導体基板101及び可撓性基板191)とすることができるため、より一層の薄型化及び軽量化を図ることができる。 In the display device illustrated in FIG. 22B, two substrates (the crystalline semiconductor substrate 101 and the flexible substrate 191) can be used; thus, further reduction in thickness and weight can be achieved.
図23(A)に、塗り分け方式を適用した表示パネル上に、検知素子を貼り合わせた構成を示す。 FIG. 23A illustrates a structure in which a detection element is attached to a display panel to which a separate coating method is applied.
図23(A)における可撓性基板171と可撓性基板191の間の構成は、図22(A)と同様である。図22(A)では、可撓性基板171が表示装置の外側に位置するが、図23(A)に示すように、可撓性基板171が表示装置の内側に位置してもよい。例えば、FPC179を導電膜173に接続させやすくなる方を選択することが好ましい。 The structure between the flexible substrate 171 and the flexible substrate 191 in FIG. 23A is similar to that in FIG. In FIG. 22A, the flexible substrate 171 is located outside the display device; however, as shown in FIG. 23A, the flexible substrate 171 may be located inside the display device. For example, it is preferable to select one that facilitates connection of the FPC 179 to the conductive film 173.
なお、接着層196のガスバリア性が高い場合、又は可撓性基板171と可撓性基板191の間に、ガスバリア性が高い膜を有する場合などには、発光素子180上の封止層を設けなくてもよい。または、封止層として、発光素子180上に、図8等で示した絶縁膜128を形成し、絶縁膜197と可撓性基板171とを接着層196で貼り合わせてもよい。 Note that in the case where the adhesive layer 196 has a high gas barrier property, or a film having a high gas barrier property is provided between the flexible substrate 171 and the flexible substrate 191, a sealing layer over the light-emitting element 180 is provided. It does not have to be. Alternatively, as the sealing layer, the insulating film 128 illustrated in FIG. 8 or the like may be formed over the light-emitting element 180, and the insulating film 197 and the flexible substrate 171 may be bonded to each other with the adhesive layer 196.
図23(A)に示すトランジスタ163及びトランジスタ164の構成は、図6(A)と同様である。 The structures of the transistor 163 and the transistor 164 illustrated in FIG. 23A are similar to those in FIG.
<変形例>
本発明の一態様では、単色表示の表示装置を作製することができる。単色表示の表示装置は、例えば、実施の形態2で説明するプロジェクター等に用いることができる。なお、本発明の一態様は表示装置に限られず、単色発光の照明装置等に適用してもよい。
<Modification>
In one embodiment of the present invention, a single-color display device can be manufactured. The display device for monochromatic display can be used for, for example, a projector described in Embodiment 2. Note that one embodiment of the present invention is not limited to a display device, and may be applied to a lighting device or the like that emits monochromatic light.
図23(B)に示す発光素子180は、複数の画素にわたって、EL層183が設けられている。また、発光素子180が発する光は、カラーフィルタ等を介することなく、表示装置の外に取り出される。自発光が可能な発光素子を用いることで、カラーフィルタ等を用いる必要がなく、表示装置を少ない積層数で作製することができる。これにより、コスト削減、又は表示装置の薄型化もしくは軽量化が可能となる。 In the light-emitting element 180 illustrated in FIG. 23B, an EL layer 183 is provided over a plurality of pixels. In addition, light emitted from the light emitting element 180 is extracted outside the display device without passing through a color filter or the like. By using a light-emitting element that can emit light by itself, it is not necessary to use a color filter or the like, and a display device can be manufactured with a small number of stacked layers. As a result, the cost can be reduced or the display device can be made thinner or lighter.
図23(B)に示すトランジスタ163及びトランジスタ164の構成は、図6と同様である。 The structures of the transistors 163 and 164 illustrated in FIG. 23B are similar to those in FIG.
<材料の一例>
次に、本実施の形態の表示装置に用いることができる材料等を説明する。なお、本明細書中で先に説明した構成については説明を省略する場合がある。
<Example of material>
Next, materials and the like that can be used for the display device of this embodiment will be described. In addition, description may be abbreviate | omitted about the structure demonstrated previously in this specification.
本発明の一態様では、トランジスタや発光素子を形成する際の支持基板に、結晶性基板を用いる。なお、対向基板や封止基板は結晶性基板に限定されず、以下の材料も用いることができる。または、結晶性基板を剥離した後、素子層と別の基板を貼り合わせる場合にも、以下の材料を用いることができる。 In one embodiment of the present invention, a crystalline substrate is used as a supporting substrate for forming a transistor or a light-emitting element. Note that the counter substrate and the sealing substrate are not limited to crystalline substrates, and the following materials can also be used. Alternatively, the following materials can also be used when the element layer and another substrate are bonded to each other after the crystalline substrate is peeled off.
基板には、ガラス、石英、有機樹脂、金属、合金、半導体などの材料を用いることができる。発光素子からの光を取り出す側の基板は、該光を透過する材料を用いる。 For the substrate, materials such as glass, quartz, organic resin, metal, alloy, and semiconductor can be used. A substrate that extracts light from the light-emitting element is formed using a material that transmits the light.
特に、可撓性基板を用いることが好ましい。例えば、有機樹脂、又は、可撓性を有する程度の厚さのガラス、金属、合金を用いることができる。例えば、可撓性基板の厚さは、1μm以上200μm以下が好ましく、1μm以上100μm以下がより好ましく、1μm以上50μm以下がさらに好ましく、1μm以上25μm以下がさらに好ましく、1μm以上10μm以下が特に好ましい。 In particular, it is preferable to use a flexible substrate. For example, an organic resin or glass, metal, or alloy having a thickness enough to be flexible can be used. For example, the thickness of the flexible substrate is preferably 1 μm to 200 μm, more preferably 1 μm to 100 μm, further preferably 1 μm to 50 μm, further preferably 1 μm to 25 μm, and particularly preferably 1 μm to 10 μm.
ガラスに比べて有機樹脂は比重が小さいため、可撓性基板として有機樹脂を用いると、ガラスを用いる場合に比べて表示装置を軽量化でき、好ましい。 Since the specific gravity of an organic resin is smaller than that of glass, it is preferable to use an organic resin as the flexible substrate because the display device can be reduced in weight compared to the case of using glass.
基板には、靱性が高い材料を用いることが好ましい。これにより、耐衝撃性に優れ、破損しにくい表示装置を実現できる。例えば、有機樹脂基板、又は、厚さの薄い金属基板もしくは合金基板を用いることで、ガラス基板を用いる場合に比べて、軽量であり、破損しにくい表示装置を実現できる。 It is preferable to use a material having high toughness for the substrate. Thereby, it is possible to realize a display device that is excellent in impact resistance and is not easily damaged. For example, by using an organic resin substrate, or a thin metal substrate or alloy substrate, a display device that is lighter and less likely to be damaged than a glass substrate can be realized.
金属材料及び合金材料は熱伝導性が高く、基板全体に熱を容易に伝導できるため、表示装置の局所的な温度上昇を抑制することができ、好ましい。金属材料又は合金材料を用いた基板の厚さは、10μm以上200μm以下が好ましく、20μm以上50μm以下であることがより好ましい。 Metal materials and alloy materials are preferable because they have high thermal conductivity and can easily conduct heat to the entire substrate, which can suppress a local temperature increase of the display device. The thickness of the substrate using a metal material or an alloy material is preferably 10 μm or more and 200 μm or less, and more preferably 20 μm or more and 50 μm or less.
金属基板又は合金基板を構成する材料としては、特に限定はないが、例えば、アルミニウム、銅、ニッケル、又は、アルミニウム合金もしくはステンレス等の金属の合金などを好適に用いることができる。半導体基板を構成する材料としては、シリコン等が挙げられる。 Although there is no limitation in particular as a material which comprises a metal substrate or an alloy substrate, For example, aluminum, copper, nickel, metal alloys, such as an aluminum alloy or stainless steel, etc. can be used suitably. Examples of the material constituting the semiconductor substrate include silicon.
また、基板に、熱放射率が高い材料を用いると表示装置の表面温度が高くなることを抑制でき、表示装置の破壊や信頼性の低下を抑制できる。例えば、基板を金属基板と熱放射率の高い層(例えば、金属酸化物又はセラミック材料を用いることができる)の積層構造としてもよい。 Further, when a material having a high thermal emissivity is used for the substrate, it is possible to suppress an increase in the surface temperature of the display device, and it is possible to suppress destruction of the display device and a decrease in reliability. For example, the substrate may have a stacked structure of a metal substrate and a layer having a high thermal emissivity (for example, a metal oxide or a ceramic material can be used).
可撓性及び透光性を有する材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリ塩化ビニル樹脂、ポリテトラフルオロエチレン(PTFE)樹脂等が挙げられる。特に、線膨張係数の低い材料を用いることが好ましく、例えば、ポリアミドイミド樹脂、ポリイミド樹脂、ポリアミド樹脂、PET等を好適に用いることができる。また、繊維体に樹脂を含浸した基板(プリプレグともいう)、又は無機フィラーを有機樹脂に混ぜて線膨張係数を下げた基板を使用することもできる。 Examples of the material having flexibility and translucency include, for example, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resin, polyimide resin, polymethyl methacrylate resin, polycarbonate (PC) resin, Examples include polyethersulfone (PES) resin, polyamide resin (nylon, aramid, etc.), cycloolefin resin, polystyrene resin, polyamideimide resin, polyvinyl chloride resin, polytetrafluoroethylene (PTFE) resin, and the like. In particular, a material having a low linear expansion coefficient is preferably used. For example, polyamideimide resin, polyimide resin, polyamide resin, PET, or the like can be suitably used. Alternatively, a substrate in which a fibrous body is impregnated with a resin (also referred to as a prepreg) or a substrate in which an inorganic filler is mixed with an organic resin to reduce the linear expansion coefficient can be used.
可撓性基板としては、上記材料を用いた層が、装置の表面を傷などから保護するハードコート層(例えば、窒化シリコン層など)、又は押圧を分散可能な材質の層(例えば、アラミド樹脂層など)等と積層されて構成されていてもよい。 As a flexible substrate, a layer using the above-described material is a hard coat layer (for example, a silicon nitride layer) that protects the surface of the device from scratches, or a layer of a material that can disperse pressure (for example, an aramid resin) Layer etc.) may be laminated.
可撓性基板は、複数の層を積層して用いることもできる。特に、ガラス層を有する構成とすると、水又は酸素に対するバリア性を向上させ、信頼性の高い表示装置とすることができる。 The flexible substrate can be used by stacking a plurality of layers. In particular, when the glass layer is used, the barrier property against water or oxygen can be improved and a highly reliable display device can be obtained.
例えば、発光素子に近い側からガラス層、接着層、及び有機樹脂層を積層した可撓性基板を用いることができる。当該ガラス層の厚さとしては20μm以上200μm以下、好ましくは25μm以上100μm以下とする。このような厚さのガラス層は、水又は酸素に対する高いバリア性と可撓性を同時に実現できる。また、有機樹脂層の厚さとしては、10μm以上200μm以下、好ましくは20μm以上50μm以下とする。このような有機樹脂層を設けることにより、ガラス層の割れ又はクラックを抑制し、機械的強度を向上させることができる。このようなガラス材料と有機樹脂の複合材料を基板に適用することにより、極めて信頼性が高いフレキシブルな表示装置とすることができる。 For example, a flexible substrate in which a glass layer, an adhesive layer, and an organic resin layer are stacked from the side close to the light-emitting element can be used. The thickness of the glass layer is 20 μm or more and 200 μm or less, preferably 25 μm or more and 100 μm or less. The glass layer having such a thickness can simultaneously realize a high barrier property and flexibility against water or oxygen. The thickness of the organic resin layer is 10 μm or more and 200 μm or less, preferably 20 μm or more and 50 μm or less. By providing such an organic resin layer, cracking or cracking of the glass layer can be suppressed and mechanical strength can be improved. By applying such a composite material of glass material and organic resin to a substrate, a highly reliable flexible display device can be obtained.
接着層には、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。また、接着シート等を用いてもよい。例えば、ポリウレタン、アクリル樹脂、エポキシ樹脂、又はシロキサン結合を有する樹脂などの樹脂を用いることができる。 For the adhesive layer, various curable adhesives such as an ultraviolet curable photocurable adhesive, a reactive curable adhesive, a thermosetting adhesive, and an anaerobic adhesive can be used. Further, an adhesive sheet or the like may be used. For example, a resin such as polyurethane, an acrylic resin, an epoxy resin, or a resin having a siloxane bond can be used.
また、接着層には乾燥剤を含んでいてもよい。例えば、アルカリ土類金属の酸化物(酸化カルシウム又は酸化バリウム等)のように、化学吸着によって水分を吸着する物質を用いることができる。または、ゼオライト又はシリカゲル等のように、物理吸着によって水分を吸着する物質を用いてもよい。乾燥剤が含まれていると、水分などの不純物が機能素子に侵入することを抑制でき、表示装置の信頼性が向上するため好ましい。 Further, the adhesive layer may contain a desiccant. For example, a substance that adsorbs moisture by chemical adsorption, such as an alkaline earth metal oxide (such as calcium oxide or barium oxide), can be used. Alternatively, a substance that adsorbs moisture by physical adsorption, such as zeolite or silica gel, may be used. The inclusion of a desiccant is preferable because impurities such as moisture can be prevented from entering the functional element and the reliability of the display device is improved.
また、接着層に屈折率の高いフィラー又は光散乱部材を含ませることで、発光素子からの光取り出し効率を向上させることができる。例えば、酸化チタン、酸化バリウム、ゼオライト、ジルコニウム等を用いることができる。 Moreover, the light extraction efficiency from a light emitting element can be improved by including a high refractive index filler or a light-scattering member in an adhesive layer. For example, titanium oxide, barium oxide, zeolite, zirconium, or the like can be used.
絶縁膜及びオーバーコートには、それぞれ、有機絶縁材料又は無機絶縁材料を用いることができる。樹脂としては、例えば、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂等が挙げられる。無機絶縁膜としては、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等が挙げられる。 For the insulating film and the overcoat, an organic insulating material or an inorganic insulating material can be used, respectively. Examples of the resin include acrylic resin, epoxy resin, polyimide resin, polyamide resin, polyimide amide resin, siloxane resin, benzocyclobutene resin, and phenol resin. Examples of inorganic insulating films include silicon oxide films, silicon oxynitride films, silicon nitride oxide films, silicon nitride films, aluminum oxide films, hafnium oxide films, yttrium oxide films, zirconium oxide films, gallium oxide films, tantalum oxide films, magnesium oxide Examples thereof include a film, a lanthanum oxide film, a cerium oxide film, and a neodymium oxide film.
絶縁膜193、絶縁膜197、及び絶縁膜105には、それぞれ、ガスバリア性の高い絶縁膜を用いることが好ましい。または、絶縁膜193、絶縁膜197、及び絶縁膜105は、それぞれ、不純物の発光素子への拡散を防ぐ機能を有していることが好ましい。 As the insulating film 193, the insulating film 197, and the insulating film 105, it is preferable to use insulating films with high gas barrier properties. Alternatively, each of the insulating film 193, the insulating film 197, and the insulating film 105 preferably has a function of preventing diffusion of impurities into the light-emitting element.
ガスバリア性の高い絶縁膜としては、窒化シリコン膜、窒化酸化シリコン膜等の窒素と珪素を含む膜、又は窒化アルミニウム膜等の窒素とアルミニウムを含む膜等が挙げられる。また、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜等を用いてもよい。 As the insulating film having a high gas barrier property, a film containing nitrogen and silicon such as a silicon nitride film or a silicon nitride oxide film, or a film containing nitrogen and aluminum such as an aluminum nitride film can be given. Alternatively, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or the like may be used.
例えば、ガスバリア性の高い絶縁膜の水蒸気透過量は、1×10−5[g/(m・day)]以下、好ましくは1×10−6[g/(m・day)]以下、より好ましくは1×10−7[g/(m・day)]以下、さらに好ましくは1×10−8[g/(m・day)]以下とする。 For example, the water vapor permeation amount of an insulating film having a high gas barrier property is 1 × 10 −5 [g / (m 2 · day)] or less, preferably 1 × 10 −6 [g / (m 2 · day)] or less, More preferably, it is 1 × 10 −7 [g / (m 2 · day)] or less, and further preferably 1 × 10 −8 [g / (m 2 · day)] or less.
表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナー型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよいし、逆スタガ型のトランジスタとしてもよい。また、トップゲート型又はボトムゲート型のいずれのトランジスタ構造としてもよい。また、ソースとドレインがトランジスタの上下に設けられる構造の縦型トランジスタ(SGT:Surrounding Gate Transistor)としてもよい。トランジスタに用いる半導体材料は特に限定されず、例えば、シリコン、ゲルマニウム、有機半導体等が挙げられる。または、In−Ga−Zn系金属酸化物などの、インジウム、ガリウム、亜鉛のうち少なくとも一つを含む酸化物半導体を用いてもよい。 There is no particular limitation on the structure of the transistor included in the display device. For example, a planar transistor, a staggered transistor, or an inverted staggered transistor may be used. Further, a top-gate or bottom-gate transistor structure may be employed. Alternatively, a vertical transistor (SGT: Surrounding Gate Transistor) having a structure in which a source and a drain are provided above and below the transistor may be used. A semiconductor material used for the transistor is not particularly limited, and examples thereof include silicon, germanium, and an organic semiconductor. Alternatively, an oxide semiconductor containing at least one of indium, gallium, and zinc, such as an In—Ga—Zn-based metal oxide, may be used.
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。 There is no particular limitation on the crystallinity of a semiconductor material used for the transistor, and any of an amorphous semiconductor and a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partially including a crystal region) is used. May be used. It is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
本発明の一態様では、単結晶半導体基板にチャネル形成領域を有するトランジスタを用いることが好ましい。例えば、単結晶シリコン基板にチャネル形成領域を有するトランジスタを用いることができる。 In one embodiment of the present invention, a transistor having a channel formation region in a single crystal semiconductor substrate is preferably used. For example, a transistor having a channel formation region in a single crystal silicon substrate can be used.
または、本発明の一態様では、トランジスタに用いる半導体材料として、CAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)を用いることが好ましい。CAAC−OSは非晶質とは異なり、欠陥準位が少なく、トランジスタの信頼性を高めることができる。また、CAAC−OSは結晶粒界が確認されないという特徴を有するため、大面積に安定で均一な膜を形成することが可能で、また可撓性を有する表示装置を湾曲させたときの応力によってCAAC−OS膜にクラックが生じにくい。 Alternatively, in one embodiment of the present invention, it is preferable to use a CAAC-OS (C Axis Crystalline Oxide Semiconductor) as a semiconductor material used for the transistor. Unlike an amorphous structure, the CAAC-OS has few defect levels and can improve the reliability of the transistor. In addition, since the CAAC-OS has a feature that a crystal grain boundary is not confirmed, a stable and uniform film can be formed over a large area, and the stress caused by bending a flexible display device can be Cracks are unlikely to occur in the CAAC-OS film.
CAAC−OSは、膜面に対して、結晶のc軸が概略垂直配向した結晶性酸化物半導体のことである。酸化物半導体の結晶構造としては他にナノスケールの微結晶集合体であるナノ結晶(nc:nanocrystal)など、単結晶とは異なる多彩な構造が存在することが確認されている。CAAC−OSは、単結晶よりも結晶性が低く、ncに比べて結晶性が高い。 A CAAC-OS is a crystalline oxide semiconductor in which the c-axis of crystals is approximately perpendicular to the film surface. As the crystal structure of an oxide semiconductor, it has been confirmed that there are various other structures different from a single crystal, such as a nanocrystal (nc: nanocrystal) which is a nanoscale microcrystal aggregate. The CAAC-OS has lower crystallinity than a single crystal and higher crystallinity than nc.
また、CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のペレット(ナノ結晶)が連結し、歪みを有した結晶構造となっている。よって、CAAC−OSを、CAA crystal(c−axis−aligned a−b−plane−anchored crystal)を有する酸化物半導体と称することもできる。 The CAAC-OS has c-axis alignment and has a crystal structure in which a plurality of pellets (nanocrystals) are connected in the ab plane direction to have distortion. Therefore, the CAAC-OS can also be referred to as an oxide semiconductor having CAA crystal (c-axis-aligned ab-plane-anchored crystal).
トランジスタの特性安定化等のため、下地膜を設けることが好ましい。下地膜としては、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜などの無機絶縁膜を用い、単層で又は積層して作製することができる。下地膜はスパッタリング法、CVD(Chemical Vapor Deposition)法(プラズマCVD法、熱CVD法、MOCVD(Metal Organic CVD)法など)、ALD(Atomic Layer Deposition)法、塗布法、印刷法等を用いて形成できる。なお、下地膜は、必要で無ければ設けなくてもよい。 In order to stabilize the characteristics of the transistor, it is preferable to provide a base film. As the base film, an inorganic insulating film such as a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a silicon nitride oxide film can be used, which can be formed as a single layer or a stacked layer. The base film is formed by sputtering, CVD (Chemical Vapor Deposition) (plasma CVD, thermal CVD, MOCVD (Metal Organic CVD), etc.), ALD (Atomic Layer Deposition), coating, printing, etc. it can. Note that the base film is not necessarily provided if not necessary.
発光素子としては、自発光が可能な素子を用いることができ、電流又は電圧によって輝度が制御される素子をその範疇に含んでいる。例えば、発光ダイオード(LED)、有機EL素子、無機EL素子等を用いることができる。 As the light-emitting element, an element capable of self-emission can be used, and an element whose luminance is controlled by current or voltage is included in its category. For example, a light emitting diode (LED), an organic EL element, an inorganic EL element, or the like can be used.
発光素子は、トップエミッション型、ボトムエミッション型、デュアルエミッション型のいずれであってもよい。光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。 The light emitting element may be any of a top emission type, a bottom emission type, and a dual emission type. A conductive film that transmits visible light is used for the electrode from which light is extracted. In addition, a conductive film that reflects visible light is preferably used for the electrode from which light is not extracted.
可視光を透過する導電膜は、例えば、酸化インジウム、インジウム錫酸化物(ITO:Indium Tin Oxide)、インジウム亜鉛酸化物、酸化亜鉛(ZnO)、ガリウムを添加した酸化亜鉛などを用いて形成することができる。また、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、もしくはチタン等の金属材料、これら金属材料を含む合金、又はこれら金属材料の窒化物(例えば、窒化チタン)等も、透光性を有する程度に薄く形成することで用いることができる。また、上記材料の積層膜を導電膜として用いることができる。例えば、銀とマグネシウムの合金とITOの積層膜などを用いると、導電性を高めることができるため好ましい。また、グラフェン等を用いてもよい。 The conductive film that transmits visible light is formed using, for example, indium oxide, indium tin oxide (ITO), indium zinc oxide, zinc oxide (ZnO), zinc oxide to which gallium is added, or the like. Can do. In addition, a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, or titanium, an alloy including these metal materials, or a nitride of these metal materials (for example, Titanium nitride) can also be used by forming it thin enough to have translucency. In addition, a stacked film of the above materials can be used as the conductive film. For example, it is preferable to use a laminated film of silver and magnesium alloy and ITO because the conductivity can be increased. Further, graphene or the like may be used.
可視光を反射する導電膜は、例えば、アルミニウム、金、白金、銀、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、もしくはパラジウム等の金属材料、又はこれら金属材料を含む合金を用いることができる。また、上記金属材料又は合金に、ランタン、ネオジム、又はゲルマニウム等が添加されていてもよい。また、アルミニウムとチタンの合金、アルミニウムとニッケルの合金、アルミニウムとネオジムの合金、アルミニウム、ニッケル、及びランタンの合金(Al−Ni−La)等のアルミニウムを含む合金(アルミニウム合金)、銀と銅の合金、銀とパラジウムと銅の合金(Ag−Pd−Cu、APCとも記す)、又は銀とマグネシウムの合金等の銀を含む合金を用いて形成することができる。銀と銅を含む合金は、耐熱性が高いため好ましい。さらに、アルミニウム合金膜に接する金属膜又は金属酸化物膜を積層することで、アルミニウム合金膜の酸化を抑制することができる。該金属膜、金属酸化物膜の材料としては、チタン、酸化チタンなどが挙げられる。また、上記可視光を透過する導電膜と金属材料からなる膜とを積層してもよい。例えば、銀とITOの積層膜、銀とマグネシウムの合金とITOの積層膜などを用いることができる。 For the conductive film that reflects visible light, for example, a metal material such as aluminum, gold, platinum, silver, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, or palladium, or an alloy including these metal materials is used. Can do. In addition, lanthanum, neodymium, germanium, or the like may be added to the metal material or alloy. Also, alloys of aluminum and aluminum, alloys of aluminum and nickel, alloys of aluminum and neodymium, alloys of aluminum, such as aluminum, nickel, and lanthanum (Al-Ni-La) (aluminum alloys), silver and copper An alloy, an alloy of silver, palladium, and copper (also referred to as Ag-Pd-Cu, APC), or an alloy containing silver such as an alloy of silver and magnesium can be used. An alloy containing silver and copper is preferable because of its high heat resistance. Furthermore, the oxidation of the aluminum alloy film can be suppressed by stacking the metal film or the metal oxide film in contact with the aluminum alloy film. Examples of the material for the metal film and metal oxide film include titanium and titanium oxide. Alternatively, the conductive film that transmits visible light and a film made of a metal material may be stacked. For example, a laminated film of silver and ITO, a laminated film of an alloy of silver and magnesium and ITO, or the like can be used.
電極は、それぞれ、蒸着法又はスパッタリング法を用いて形成することができる。そのほか、インクジェット法などの吐出法、スクリーン印刷法などの印刷法、又はメッキ法を用いて形成することができる。 Each of the electrodes can be formed using a vapor deposition method or a sputtering method. In addition, it can be formed using a discharge method such as an inkjet method, a printing method such as a screen printing method, or a plating method.
EL層183は少なくとも発光層を有する。EL層183は、複数の発光層を有していてもよい。EL層183は、発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子注入性の高い物質、又はバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質)等を含む層をさらに有していてもよい。 The EL layer 183 includes at least a light-emitting layer. The EL layer 183 may include a plurality of light-emitting layers. The EL layer 183 is a layer other than the light-emitting layer and is a substance having a high hole-injecting property, a substance having a high hole-transporting property, a hole blocking material, a substance having a high electron-transporting property, a substance having a high electron-injecting property, or a bipolar property A layer containing a substance (a substance having a high electron transporting property and a high hole transporting property) or the like may be further included.
EL層183には低分子系化合物及び高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。EL層183を構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。 The EL layer 183 can be formed using either a low molecular compound or a high molecular compound, and may contain an inorganic compound. The layers constituting the EL layer 183 can be formed by a method such as a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an ink jet method, or a coating method.
発光素子180は、2種類以上の発光物質を含んでいてもよい。これにより、例えば、白色発光の発光素子を実現することができる。例えば2種類以上の発光物質の各々の発光が補色の関係となるように、発光物質を選択することにより白色発光を得ることができる。例えば、R(赤)、G(緑)、B(青)、Y(黄)、又はO(橙)等の発光を示す発光物質、又はR、G、Bのうち2以上の色のスペクトル成分を含む発光を示す発光物質を用いることができる。例えば、青の発光を示す発光物質と、黄の発光を示す発光物質を用いてもよい。このとき、黄の発光を示す発光物質の発光スペクトルは、緑及び赤のスペクトル成分を含むことが好ましい。また、発光素子180の発光スペクトルは、可視領域の波長(例えば350nm以上750nm以下、又は400nm以上800nm以下など)の範囲内に2以上のピークを有することが好ましい。 The light emitting element 180 may contain two or more kinds of light emitting substances. Thereby, for example, a white light emitting element can be realized. For example, white light emission can be obtained by selecting a light emitting material so that light emission of each of two or more types of light emitting materials has a complementary color relationship. For example, a light-emitting substance that emits light such as R (red), G (green), B (blue), Y (yellow), or O (orange), or spectral components of two or more colors of R, G, and B A light-emitting substance that emits light containing can be used. For example, a light-emitting substance that emits blue light and a light-emitting substance that emits yellow light may be used. At this time, the emission spectrum of the luminescent material that emits yellow light preferably includes green and red spectral components. In addition, the emission spectrum of the light-emitting element 180 preferably has two or more peaks in the visible wavelength range (for example, 350 nm to 750 nm, or 400 nm to 800 nm).
また、発光素子180は、EL層を1つ有するシングル素子であってもよいし、電荷発生層を介して積層されたEL層を複数有するタンデム素子であってもよい。 The light-emitting element 180 may be a single element having one EL layer or a tandem element having a plurality of EL layers stacked with a charge generation layer interposed therebetween.
また、本発明の一態様では、量子ドットなどの無機化合物を用いた発光素子を適用してもよい。量子ドット材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料、などが挙げられる。例えば、カドミウム(Cd)、セレン(Se)、亜鉛(Zn)、硫黄(S)、リン(P)、インジウム(In)、テルル(Te)、鉛(Pb)、ガリウム(Ga)、ヒ素(As)、アルミニウム(Al)等の元素を有していてもよい。 In one embodiment of the present invention, a light-emitting element using an inorganic compound such as a quantum dot may be used. Examples of the quantum dot material include a colloidal quantum dot material, an alloy type quantum dot material, a core / shell type quantum dot material, and a core type quantum dot material. For example, cadmium (Cd), selenium (Se), zinc (Zn), sulfur (S), phosphorus (P), indium (In), tellurium (Te), lead (Pb), gallium (Ga), arsenic (As ), Aluminum (Al) or the like.
発光素子は、一対のガスバリア性の高い絶縁膜の間に設けられていることが好ましい。これにより、発光素子に水分等の不純物が侵入することを抑制でき、表示装置の信頼性の低下を抑制できる。 The light-emitting element is preferably provided between a pair of insulating films with high gas barrier properties. Accordingly, impurities such as moisture can be prevented from entering the light emitting element, and a decrease in reliability of the display device can be suppressed.
導電膜は、例えば、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、又はタングステンなどの金属、又はこれを主成分とする合金を単層構造又は積層構造として用いることができる。なお、導電膜には、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを添加したインジウム錫酸化物等の透光性を有する導電性材料を用いてもよい。また、不純物元素を含有させた多結晶シリコン、もしくは酸化物半導体に代表される半導体、又はニッケルシリサイドなどのシリサイドを用いてもよい。 For the conductive film, for example, a metal such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, or tungsten, or an alloy mainly containing this metal is used as a single layer structure or a stacked structure. Can do. Note that the conductive film includes indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, and indium zinc oxide. Alternatively, a light-transmitting conductive material such as indium tin oxide to which silicon oxide is added may be used. Alternatively, polycrystalline silicon containing an impurity element, a semiconductor typified by an oxide semiconductor, or silicide such as nickel silicide may be used.
着色層は特定の波長帯域の光を透過する有色層である。例えば、赤色、緑色、青色、又は黄色の波長帯域の光を透過するカラーフィルタなどを用いることができる。着色層に用いることのできる材料としては、金属材料、樹脂材料、顔料又は染料が含まれた樹脂材料などが挙げられる。 The colored layer is a colored layer that transmits light in a specific wavelength band. For example, a color filter that transmits light in a red, green, blue, or yellow wavelength band can be used. Examples of materials that can be used for the colored layer include metal materials, resin materials, resin materials containing pigments or dyes, and the like.
なお、本発明の一態様は、カラーフィルタ方式に限られず、塗り分け方式、色変換方式、又は量子ドット方式等を適用してもよい。 Note that one embodiment of the present invention is not limited to the color filter method, and a color separation method, a color conversion method, a quantum dot method, or the like may be applied.
遮光層は、隣接する着色層の間に設けられている。遮光層は隣接する発光素子からの光を遮光し、隣接する発光素子間における混色を抑制する。ここで、着色層の端部を、遮光層と重なるように設けることにより、光漏れを抑制することができる。遮光層としては、発光素子からの発光を遮る材料を用いることができ、例えば、金属材料、又は、顔料もしくは染料を含む樹脂材料を用いてブラックマトリクスを形成することができる。なお、遮光層は、駆動回路などの画素部以外の領域に設けると、導波光などによる意図しない光漏れを抑制できるため好ましい。 The light shielding layer is provided between the adjacent colored layers. The light shielding layer shields light from adjacent light emitting elements and suppresses color mixing between adjacent light emitting elements. Here, light leakage can be suppressed by providing the end portion of the colored layer so as to overlap the light shielding layer. As the light blocking layer, a material that blocks light emitted from the light emitting element can be used. For example, a black matrix can be formed using a metal material or a resin material containing a pigment or a dye. Note that it is preferable that the light-blocking layer be provided in a region other than the pixel portion such as a driver circuit because unintended light leakage due to guided light or the like can be suppressed.
オーバーコートは、着色層に含有された不純物等の発光素子への拡散を防止することができる。オーバーコートは、発光素子からの発光を透過する材料から構成され、例えば窒化シリコン膜、酸化シリコン膜等の無機絶縁膜、又はアクリル膜、ポリイミド膜等の有機絶縁膜を用いることができ、有機絶縁膜と無機絶縁膜との積層構造としてもよい。 The overcoat can prevent diffusion of impurities contained in the colored layer into the light emitting element. The overcoat is made of a material that transmits light emitted from the light emitting element. For example, an inorganic insulating film such as a silicon nitride film or a silicon oxide film, or an organic insulating film such as an acrylic film or a polyimide film can be used. A laminated structure of a film and an inorganic insulating film may be used.
また、接着層の材料を着色層及び遮光層上に塗布する場合、オーバーコートの材料として接着層の材料に対して濡れ性の高い材料を用いることが好ましい。例えば、オーバーコートとして、ITO膜などの酸化物導電膜、又は透光性を有する程度に薄いAg膜等の金属膜を用いることが好ましい。 Further, when the adhesive layer material is applied on the colored layer and the light shielding layer, it is preferable to use a material having high wettability with respect to the adhesive layer material as the overcoat material. For example, as the overcoat, an oxide conductive film such as an ITO film or a metal film such as an Ag film that is thin enough to have a light-transmitting property is preferably used.
オーバーコートの材料に、接着層の材料に対して濡れ性の高い材料を用いることで、接着層の材料を均一に塗布することができる。これにより、一対の基板を貼り合わせた際に気泡が混入することを抑制でき、表示不良を抑制できることができる。 By using a material having high wettability with respect to the material of the adhesive layer as the overcoat material, the material of the adhesive layer can be uniformly applied. Thereby, when a pair of board | substrates are bonded together, it can suppress that a bubble mixes, and a display defect can be suppressed.
接続体としては、様々な異方性導電フィルム(ACF:Anisotropic Conductive Film)、又は異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。 As the connection body, various anisotropic conductive films (ACF: Anisotropic Conductive Film), anisotropic conductive pastes (ACP: Anisotropic Conductive Paste), or the like can be used.
以上のように、本発明の一態様の表示装置は、熱収縮の少ない結晶性基板を用いて作製されるため、高い精細度を実現することができる。また、結晶性基板を研磨し、非常に薄い厚さとすることで、精細度が高く、可撓性を有する表示装置を作製することができる。 As described above, since the display device of one embodiment of the present invention is manufactured using a crystalline substrate with little thermal contraction, high definition can be achieved. Further, by polishing the crystalline substrate to have a very thin thickness, a display device with high definition and flexibility can be manufactured.
本実施の形態は、他の実施の形態と適宜組み合わせることができる。 This embodiment can be combined with any of the other embodiments as appropriate.
(実施の形態2)
本実施の形態では、本発明の一態様の電子機器及び照明装置について図24~図30を用いて説明する。
(Embodiment 2)
In this embodiment, electronic devices and lighting devices of one embodiment of the present invention will be described with reference to FIGS.
本発明の一態様の表示装置を用いて、高精細、高解像度、又は高表示品位であり、曲面又は可撓性を有する電子機器を作製することができる。 With the display device of one embodiment of the present invention, an electronic device with high definition, high resolution, or high display quality and having a curved surface or flexibility can be manufactured.
電子機器としては、例えば、テレビジョン装置、プロジェクター、プロジェクションテレビ(リアプロジェクター)、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。 Electronic devices include, for example, television sets, projectors, projection televisions (rear projectors), goggles type displays (head mounted displays), monitors for computers, digital cameras, digital video cameras, digital photo frames, mobile phones, mobile phones, etc. Type game machines, portable information terminals, sound reproduction devices, and large game machines such as pachinko machines.
また、本発明の一態様の電子機器は可撓性を有するため、家屋もしくはビルの内壁もしくは外壁、又は、自動車の内装もしくは外装の曲面に沿って組み込むことも可能である。 In addition, since the electronic device of one embodiment of the present invention has flexibility, it can be incorporated along an inner wall or an outer wall of a house or a building, or a curved surface of an interior or exterior of an automobile.
また、本発明の一態様の電子機器は二次電池を有していてもよく、非接触電力伝送を用いて、二次電池を充電することができると好ましい。 The electronic device of one embodiment of the present invention may include a secondary battery, and it is preferable that the secondary battery can be charged using non-contact power transmission.
二次電池としては、例えば、ゲル状電解質を用いるリチウムポリマー電池(リチウムイオンポリマー電池)等のリチウムイオン二次電池、ニッケル水素電池、ニカド電池、有機ラジカル電池、鉛蓄電池、空気二次電池、ニッケル亜鉛電池、銀亜鉛電池などが挙げられる。 Secondary batteries include, for example, lithium ion secondary batteries such as lithium polymer batteries (lithium ion polymer batteries) using gel electrolyte, nickel metal hydride batteries, nickel-cadmium batteries, organic radical batteries, lead storage batteries, air secondary batteries, nickel A zinc battery, a silver zinc battery, etc. are mentioned.
本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像又は情報等の表示を行うことができる。また、電子機器が二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。 The electronic device of one embodiment of the present invention may include an antenna. By receiving the signal with the antenna, the display unit can display video or information. Further, when the electronic device has a secondary battery, the antenna may be used for non-contact power transmission.
図24(A)、(B)に、ヘッドマウントディスプレイ7900の斜視図を示す。図24(C)は、ヘッドマウントディスプレイ7900の使用者の顔に接する面の概略図である。 24A and 24B are perspective views of the head mounted display 7900. FIG. FIG. 24C is a schematic view of a surface of the head mounted display 7900 that is in contact with the user's face.
ヘッドマウントディスプレイ7900は、本体7902及び装着部7903を有し、本体7902には、表示装置7901及びレンズ7904が取り付けられている。使用者は、レンズ7904を通して、表示装置7901の表示を視認することができる。 The head mounted display 7900 includes a main body 7902 and a mounting portion 7903, and a display device 7901 and a lens 7904 are attached to the main body 7902. The user can visually recognize the display on the display device 7901 through the lens 7904.
装着部7903の長さ及びレンズ7904の位置は、使用者によって、適宜変更できる仕様である。 The length of the mounting portion 7903 and the position of the lens 7904 are specifications that can be appropriately changed by the user.
ヘッドマウントディスプレイ7900は、ヘッドトラッキング装置等の視線追従装置を有することが好ましい。これにより、使用者の視線を追跡し、視線に合った表示を行うことで、臨場感を高めることができる。 The head mounted display 7900 preferably has a line-of-sight tracking device such as a head tracking device. Thereby, a user's eyes | visual_axis can be tracked and a realistic feeling can be heightened by performing the display suitable for the eyes | visual_axis.
また、ヘッドマウントディスプレイ7900は、アンテナ、バッテリ、カメラ、スピーカ、ヘッドホン、イヤホン、マイク、及び操作ボタンのうち、一つ以上を有することが好ましい。 The head mounted display 7900 preferably includes one or more of an antenna, a battery, a camera, a speaker, headphones, earphones, a microphone, and operation buttons.
ヘッドマウントディスプレイは、使用者が装着する本体(表示ユニット)とは別に、映像処理又は音声処理等を行うプロセッサを含むユニット、本体に電力を供給するバッテリを含むユニット等を有していてもよい。各ユニットは、有線又は無線により接続することができる。 The head mounted display may include a unit including a processor that performs video processing or audio processing, a unit including a battery that supplies power to the main body, and the like, separately from the main body (display unit) worn by the user. . Each unit can be connected by wire or wirelessly.
本実施の形態では、没入型のヘッドマウントディスプレイを例示したが、本発明の一態様の表示装置は、透過型のヘッドマウントディスプレイに適用されてもよい。 In this embodiment, an immersive head-mounted display is illustrated, but the display device of one embodiment of the present invention may be applied to a transmissive head-mounted display.
ヘッドマウントディスプレイは使用者が頭に装着して用いるため、長時間使用しても疲労しないように、軽量であることが望まれる。本発明の一態様の表示装置は、小型及び薄型にすることが容易であるため、軽量化が可能であり、ヘッドマウントディスプレイに好適に用いることができる。 Since the head mounted display is used by being worn on the head by the user, it is desired that the head mounted display be lightweight so as not to get tired even if used for a long time. Since the display device of one embodiment of the present invention can be easily reduced in size and thickness, the display device can be reduced in weight and can be favorably used for a head-mounted display.
本発明の一態様の表示装置は、高い精細度を有するため、複雑な構成(例えば、両眼視差を含む画像、又は立体視用のメガネ)を用いなくとも、使用者が画像に立体感を得ることができる。そのため、ヘッドマウントディスプレイの表示内容への高い没入感が得られる。 Since the display device of one embodiment of the present invention has high definition, the user can add a stereoscopic effect to an image without using a complicated configuration (for example, an image including binocular parallax or stereoscopic glasses). Obtainable. Therefore, a high immersive feeling in the display contents of the head mounted display can be obtained.
また、本発明の一態様の表示装置は、可撓性を有する。本発明の一態様の表示装置は、その表示面を湾曲し、湾曲した表示面に沿って表示を行うことができる。ヘッドマウントディスプレイ7900は、湾曲した表示面を有することで、平面の表示面を有する場合に比べて、使用者が得られる、画像の立体感、又は表示内容への没入感を高めることができる。 The display device of one embodiment of the present invention has flexibility. In the display device of one embodiment of the present invention, the display surface can be curved and display can be performed along the curved display surface. Since the head mounted display 7900 has a curved display surface, it is possible to increase the stereoscopic effect of the image obtained by the user, or the immersive feeling of the display content, as compared with the case where the head mounted display 7900 has a flat display surface.
また、表示装置7901の湾曲の加減を、手動又は自動で変化させることができてもよい。これにより、個人差や表示内容によらず、使用者が画像に強い立体感又は奥行き感を得ることができる。 Further, the curvature of the display device 7901 may be changed manually or automatically. Thereby, regardless of individual differences or display contents, the user can obtain a strong three-dimensional feeling or depth feeling in the image.
また、使用者は、レンズ7904を通して表示装置7901の表示を視認するため、画像が歪んで見える場合がある。例えば、歪みの少ないレンズを用いる、又は、歪みを考慮して画像を補正して表示することで、使用者が視認する画像の歪みを低減させることができる。しかし、歪みの少ないレンズは高価であり、コストが高くなることが多い。また、使用者が視認する画像の歪みを低減させるために、画像の補正をすると、解像度が低下する場合がある。そこで、本発明の一態様では、表示装置7901の形状を変化させることにより、使用者が画像の歪みを視認しにくい表示を行う。これにより、複雑な構成を必要とせず、かつ、解像度を大きく下げることなく、使用者にとって画像が歪んで見えにくくすることができる。 Further, since the user visually recognizes the display on the display device 7901 through the lens 7904, the image may appear distorted. For example, distortion of an image visually recognized by the user can be reduced by using a lens with little distortion or by correcting and displaying an image in consideration of the distortion. However, lenses with less distortion are expensive and often cost more. In addition, when the image is corrected in order to reduce distortion of the image visually recognized by the user, the resolution may be lowered. In view of this, in one embodiment of the present invention, by changing the shape of the display device 7901, display is performed in which it is difficult for a user to visually recognize image distortion. As a result, the image is distorted and difficult to see for the user without requiring a complicated configuration and without greatly reducing the resolution.
図25(A)~(C)に、ヘッドマウントディスプレイ7920の斜視図を示す。ヘッドマウントディスプレイ7920は、表示装置を2つ有する点で、ヘッドマウントディスプレイ7900と異なる。それ以外の構成については、ヘッドマウントディスプレイ7900の説明を適宜参酌できる。 25A to 25C are perspective views of the head mounted display 7920. FIG. The head mounted display 7920 is different from the head mounted display 7900 in that it has two display devices. For other configurations, the description of the head mounted display 7900 can be referred to as appropriate.
ヘッドマウントディスプレイ7920は、本体7922及び装着部7923を有し、本体7922には、表示装置7921L、表示装置7921R、及びレンズ7924が取り付けられている。使用者は、レンズ7924を通して、表示装置7921L及び表示装置7921Rの表示を視認することができる。図25(C)では、2つの表示装置の形状及び配置例を示すために、レンズ7924等を示していない。ヘッドマウントディスプレイは、レンズ及び表示装置の少なくとも一方が着脱可能であってもよい。 The head mounted display 7920 includes a main body 7922 and a mounting portion 7923, and a display device 7921L, a display device 7921R, and a lens 7924 are attached to the main body 7922. The user can visually check the display on the display device 7921L and the display device 7921R through the lens 7924. In FIG. 25C, the lens 7924 and the like are not shown in order to show the shapes and arrangement examples of the two display devices. In the head mounted display, at least one of the lens and the display device may be detachable.
ヘッドマウントディスプレイ7920では、左目用の表示装置7921Lと、右目用の表示装置7921Rと、のそれぞれが、湾曲した表示面を有するため、使用者が得られる、画像の立体感、又は表示内容への没入感を高めることができる。また、表示装置7921Lと表示装置7921Rの湾曲の加減を、それぞれ独立に、手動又は自動で変化させることができてもよい。または、表示装置7921Lと表示装置7921Rの湾曲の加減を一律で変化させることができてもよい。 In the head mounted display 7920, each of the display device 7921L for the left eye and the display device 7921R for the right eye has a curved display surface, so that the user can obtain a stereoscopic effect or display content. Immersion can be enhanced. Further, it may be possible to change the curvature of the display device 7921L and the display device 7921R manually or automatically independently of each other. Alternatively, the curvature of the display devices 7921L and 7921R may be uniformly changed.
図26(A)~(C)に、プロジェクター7910を示す。プロジェクター7910は、表示装置7911と光学系7912を有する。 26A to 26C show a projector 7910. The projector 7910 includes a display device 7911 and an optical system 7912.
表示装置7911は、表示素子として有機EL素子を有する。自発光の表示素子を用いることで、プロジェクター7910に、別途、光源を設ける必要がない。したがって、プロジェクター7910の軽量、かつ、小型にすることができる。 The display device 7911 includes an organic EL element as a display element. By using a self-luminous display element, it is not necessary to separately provide a light source for the projector 7910. Therefore, the projector 7910 can be light and small.
図26(A)は三板式のプロジェクターであり、3つの表示装置7911を有する。各表示装置7911は、凹曲面の表示面を有する。 FIG. 26A illustrates a three-plate projector, which includes three display devices 7911. Each display device 7911 has a concave curved display surface.
図26(B)は単板式のプロジェクターであり、1つの表示装置7911を有する。表示装置7911は、凸曲面の表示面を有する。 FIG. 26B illustrates a single-plate projector, which includes one display device 7911. The display device 7911 has a convex curved display surface.
図26(C)は超短焦点のプロジェクターである。投射したいスクリーン又は壁等の近くに配置することができるため、狭い場所又は限られた空間での使用に効果的である。 FIG. 26C shows an ultra-short focus projector. Since it can be arranged near a screen or a wall to be projected, it is effective for use in a narrow space or a limited space.
光学系7912は、ミラー、プリズム、位相差板、レンズ、偏光機能を有するフィルム、位相差を調節するためのフィルム、及びIRフィルムのうち、少なくとも一つを有することが好ましい。例えば、表示装置7911から射出された光は、ズームレンズを通してスクリーンに投影される。 The optical system 7912 preferably includes at least one of a mirror, a prism, a retardation plate, a lens, a film having a polarization function, a film for adjusting a retardation, and an IR film. For example, light emitted from the display device 7911 is projected onto a screen through a zoom lens.
表示装置7911は、その表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。なお、表示装置7911は可撓性を有する部分を有していてもよい。表示装置7911は、本発明の一態様の表示装置を用いて作製される。 The display device 7911 is provided with a curved display surface, and can perform display along the curved display surface. Note that the display device 7911 may have a flexible portion. The display device 7911 is manufactured using the display device of one embodiment of the present invention.
表示装置7911の表示は、光学系7912を通してスクリーン7913に投射されるため、画像が歪んで見える場合がある。例えば、歪みの少ないレンズを用いる、又は、歪みを考慮して画像を補正して表示することで、画像の歪みを低減させることができる。しかし、歪みの少ないレンズは高価であり、コストが高くなることが多い。また、画像の歪みを低減させるために、画像の補正をすると、解像度が低下する場合がある。そこで、本発明の一態様では、表示装置7911の形状を変化させることにより、画像の歪みを低減させる。これにより、複雑な構成を必要とせず、かつ、解像度を大きく下げることなく、画像の歪みを低減させることができる。 Since the display of the display device 7911 is projected onto the screen 7913 through the optical system 7912, the image may appear distorted. For example, the distortion of the image can be reduced by using a lens with little distortion or by correcting and displaying the image in consideration of the distortion. However, lenses with less distortion are expensive and often cost more. In addition, when the image is corrected in order to reduce image distortion, the resolution may decrease. Thus, in one embodiment of the present invention, image distortion is reduced by changing the shape of the display device 7911. As a result, image distortion can be reduced without requiring a complicated configuration and without greatly reducing the resolution.
なお、表示装置7911は、表示面が凸曲面であってもよく、凹曲面であってもよく、凸曲面及び凹曲面の双方を有していてもよい。また、表示装置7911の表示面は、平面であってもよい。また、プロジェクターが複数の表示装置7911を有する場合、各表示装置7911の表示面の形状は、異なっていてもよいし、同一であってもよい。 Note that the display device 7911 may have a convex curved surface, a concave curved surface, or both a convex curved surface and a concave curved surface. The display surface of the display device 7911 may be a flat surface. In the case where the projector includes a plurality of display devices 7911, the shape of the display surface of each display device 7911 may be different or the same.
図27(A)、(B)、(C1)、(C2)、(D)、(E)に、湾曲した表示部7000を有する電子機器の一例を示す。表示部7000はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。なお、表示部7000は可撓性を有していてもよい。 FIGS. 27A, 27B, 27C, 21D, and 21E each show an example of an electronic device having a curved display portion 7000. FIGS. The display portion 7000 is provided with a curved display surface, and can perform display along the curved display surface. Note that the display portion 7000 may have flexibility.
表示部7000は、本発明の一態様の表示装置を用いて作製される。 The display portion 7000 is manufactured using the display device of one embodiment of the present invention.
本発明の一態様により、精細度が高く、湾曲した表示部を備えた電子機器を提供できる。 According to one embodiment of the present invention, an electronic device including a curved display portion with high definition can be provided.
図27(A)に携帯電話機の一例を示す。携帯電話機7100は、筐体7101、表示部7000、操作ボタン7103、外部接続ポート7104、スピーカ7105、マイク7106等を有する。 FIG. 27A illustrates an example of a mobile phone. A cellular phone 7100 includes a housing 7101, a display portion 7000, operation buttons 7103, an external connection port 7104, a speaker 7105, a microphone 7106, and the like.
図27(A)に示す携帯電話機7100は、表示部7000にタッチセンサを備える。電話を掛ける、或いは文字を入力するなどのあらゆる操作は、指又はスタイラスなどで表示部7000に触れることで行うことができる。 A mobile phone 7100 illustrated in FIG. 27A includes a touch sensor in the display portion 7000. All operations such as making a call or inputting characters can be performed by touching the display portion 7000 with a finger or a stylus.
また、操作ボタン7103の操作により、電源のON、OFF動作、及び表示部7000に表示される画像の種類を切り替えることができる。例えば、メール作成画面から、メインメニュー画面に切り替えることができる。 Further, by operating the operation button 7103, the power ON / OFF operation and the type of image displayed on the display portion 7000 can be switched. For example, the mail creation screen can be switched to the main menu screen.
図27(B)にテレビジョン装置の一例を示す。テレビジョン装置7200は、筐体7201に表示部7000が組み込まれている。ここでは、スタンド7203により筐体7201を支持した構成を示している。 FIG. 27B illustrates an example of a television device. In the television device 7200, a display portion 7000 is incorporated in a housing 7201. Here, a structure in which the housing 7201 is supported by a stand 7203 is shown.
図27(B)に示すテレビジョン装置7200の操作は、筐体7201が備える操作スイッチ、及び別体のリモコン操作機7211により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることで操作してもよい。リモコン操作機7211は、当該リモコン操作機7211から出力する情報を表示する表示部を有していてもよい。リモコン操作機7211が備える操作キー又はタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。 Operation of the television device 7200 illustrated in FIG. 27B can be performed with an operation switch included in the housing 7201 and a separate remote controller 7211. Alternatively, the display unit 7000 may be provided with a touch sensor, and may be operated by touching the display unit 7000 with a finger or the like. The remote controller 7211 may include a display unit that displays information output from the remote controller 7211. Channels and volume can be operated with an operation key or a touch panel included in the remote controller 7211, and an image displayed on the display portion 7000 can be operated.
なお、テレビジョン装置7200は、受信機又はモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線又は無線による通信ネットワークに接続することにより、一方向(送信者から受信者)又は双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。 Note that the television device 7200 is provided with a receiver, a modem, and the like. A general television broadcast can be received by the receiver. In addition, by connecting to a wired or wireless communication network via a modem, information communication is performed in one direction (from the sender to the receiver) or in two directions (between the sender and the receiver or between the receivers). It is also possible.
図27(C1)、(C2)、(D)、(E)に携帯情報端末の一例を示す。各携帯情報端末は、筐体7301及び表示部7000を有する。さらに、操作ボタン、外部接続ポート、スピーカ、マイク、アンテナ、又はバッテリ等を有していてもよい。表示部7000にはタッチセンサを備える。携帯情報端末の操作は、指又はスタイラスなどで表示部7000に触れることで行うことができる。 FIGS. 27C1, 27C, 27D, and 27E show examples of portable information terminals. Each portable information terminal includes a housing 7301 and a display portion 7000. Furthermore, an operation button, an external connection port, a speaker, a microphone, an antenna, a battery, or the like may be included. The display unit 7000 includes a touch sensor. The portable information terminal can be operated by touching the display portion 7000 with a finger or a stylus.
図27(C1)は、携帯情報端末7300の斜視図であり、図27(C2)は携帯情報端末7300の上面図である。図27(D)は、携帯情報端末7310の斜視図である。図27(E)は、携帯情報端末7320の斜視図である。 27C1 is a perspective view of the portable information terminal 7300, and FIG. 27C2 is a top view of the portable information terminal 7300. FIG. FIG. 27D is a perspective view of a portable information terminal 7310. FIG. 27E is a perspective view of a portable information terminal 7320.
本実施の形態で例示する携帯情報端末は、例えば、電話機、手帳又は情報閲覧装置等から選ばれた一つ又は複数の機能を有する。具体的には、スマートフォンとしてそれぞれ用いることができる。本実施の形態で例示する携帯情報端末は、例えば、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。 The portable information terminal exemplified in this embodiment has one or a plurality of functions selected from, for example, a telephone, a notebook, an information browsing device, or the like. Specifically, each can be used as a smartphone. The portable information terminal exemplified in this embodiment can execute various applications such as mobile phone, e-mail, text browsing and creation, music playback, Internet communication, and computer games.
携帯情報端末7300、携帯情報端末7310及び携帯情報端末7320は、文字又は画像情報をその複数の面に表示することができる。例えば、図27(C1)、(D)に示すように、3つの操作ボタン7302を一の面に表示し、矩形で示す情報7303を他の面に表示することができる。図27(C1)、(C2)では、携帯情報端末の上側に情報が表示される例を示し、図27(D)では、携帯情報端末の横側に情報が表示される例を示す。また、携帯情報端末の3面以上に情報を表示してもよく、図27(E)では、情報7304、情報7305、情報7306がそれぞれ異なる面に表示されている例を示す。 The portable information terminal 7300, the portable information terminal 7310, and the portable information terminal 7320 can display text or image information on a plurality of surfaces thereof. For example, as shown in FIGS. 27C1 and 27D, three operation buttons 7302 can be displayed on one surface, and information 7303 indicated by a rectangle can be displayed on the other surface. 27C1 and 27C2 illustrate examples in which information is displayed on the upper side of the portable information terminal, and FIG. 27D illustrates an example in which information is displayed on the side of the portable information terminal. Further, information may be displayed on three or more surfaces of the portable information terminal. FIG. 27E illustrates an example in which information 7304, information 7305, and information 7306 are displayed on different surfaces.
なお、情報の例としては、SNS(ソーシャル・ネットワーキング・サービス)の通知、電子メール又は電話などの着信を知らせる表示、電子メールなどの題名もしくは送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度などがある。または、情報が表示されている位置に、情報の代わりに、操作ボタン、アイコンなどを表示してもよい。 Examples of information include SNS (social networking service) notifications, displays that notify incoming calls such as e-mails or telephone calls, titles or sender names such as e-mails, date and time, time, battery level, antenna There is the strength of reception. Alternatively, an operation button, an icon, or the like may be displayed instead of the information at a position where the information is displayed.
例えば、携帯情報端末7300の使用者は、洋服の胸ポケットに携帯情報端末7300を収納した状態で、その表示(ここでは情報7303)を確認することができる。 For example, the user of the portable information terminal 7300 can check the display (information 7303 in this case) in a state where the portable information terminal 7300 is stored in the chest pocket of clothes.
具体的には、着信した電話の発信者の電話番号又は氏名等を、携帯情報端末7300の上方から観察できる位置に表示する。使用者は、携帯情報端末7300をポケットから取り出すことなく、表示を確認し、電話を受けるか否かを判断できる。 Specifically, the telephone number or name of the caller of the incoming call is displayed at a position where the mobile information terminal 7300 can be observed from above. The user can check the display and determine whether to receive a call without taking out the portable information terminal 7300 from the pocket.
図27(F)~(H)に、湾曲した発光部を有する照明装置の一例を示している。 FIGS. 27F to 27H show an example of a lighting device having a curved light emitting portion.
図27(F)~(H)に示す各照明装置が有する発光部は、本発明の一態様の発光装置を用いて作製される。 The light-emitting portion included in each lighting device illustrated in FIGS. 27F to 27H is manufactured using the light-emitting device of one embodiment of the present invention.
本発明の一態様により、湾曲した発光部を備え、且つ信頼性の高い照明装置を提供できる。 According to one embodiment of the present invention, a highly reliable lighting device including a curved light-emitting portion can be provided.
図27(F)に示す照明装置7400は、波状の発光面を有する発光部7402を備える。したがってデザイン性の高い照明装置となっている。 A lighting device 7400 illustrated in FIG. 27F includes a light-emitting portion 7402 having a wavy light-emitting surface. Therefore, the lighting device has high design.
図27(G)に示す照明装置7410の備える発光部7412は、凸状に湾曲した2つの発光部が対称的に配置された構成となっている。したがって照明装置7410を中心に全方位を照らすことができる。 A light emitting portion 7412 included in the lighting device 7410 illustrated in FIG. 27G has a structure in which two light emitting portions curved in a convex shape are arranged symmetrically. Therefore, all directions can be illuminated around the lighting device 7410.
図27(H)に示す照明装置7420は、凹状に湾曲した発光部7422を備える。したがって、発光部7422からの発光を、照明装置7420の前面に集光するため、特定の範囲を明るく照らす場合に適している。また、このような形態とすることで、影ができにくいとう効果を奏する。 A lighting device 7420 illustrated in FIG. 27H includes a light-emitting portion 7422 curved in a concave shape. Therefore, the light emitted from the light emitting unit 7422 is condensed on the front surface of the lighting device 7420, which is suitable for brightly illuminating a specific range. In addition, with such a configuration, there is an effect that it is difficult to make a shadow.
また、照明装置7400、照明装置7410及び照明装置7420の備える各々の発光部は可撓性を有していてもよい。発光部を可塑性の部材又は可動なフレームなどの部材で固定し、用途に合わせて発光部の発光面を自在に湾曲可能な構成としてもよい。 In addition, each light emitting unit included in the lighting device 7400, the lighting device 7410, and the lighting device 7420 may have flexibility. The light emitting portion may be fixed by a member such as a plastic member or a movable frame, and the light emitting surface of the light emitting portion may be freely curved according to the application.
照明装置7400、照明装置7410及び照明装置7420は、それぞれ、操作スイッチ7403を備える台部7401と、台部7401に支持される発光部を有する。 Each of the lighting device 7400, the lighting device 7410, and the lighting device 7420 includes a base portion 7401 including an operation switch 7403 and a light emitting portion supported by the base portion 7401.
なおここでは、台部によって発光部が支持された照明装置について例示したが、発光部を備える筐体を天井に固定する、又は天井からつり下げるように用いることもできる。発光面を湾曲させて用いることができるため、発光面を凹状に湾曲させて特定の領域を明るく照らす、又は発光面を凸状に湾曲させて部屋全体を明るく照らすこともできる。 Note that although the lighting device in which the light emitting unit is supported by the base is illustrated here, a housing including the light emitting unit can be fixed to the ceiling or can be used to hang from the ceiling. Since the light emitting surface can be curved and used, the light emitting surface can be curved concavely to illuminate a specific area, or the light emitting surface can be curved convexly to illuminate the entire room.
図28(A1)、(A2)、(B)~(I)に、可撓性を有する表示部7001を有する携帯情報端末の一例を示す。 FIGS. 28A1, 28A2 and 28B-I each show an example of a portable information terminal having a flexible display portion 7001. FIG.
表示部7001は、本発明の一態様の表示装置を用いて作製される。例えば、曲率半径0.01mm以上150mm以下で曲げることができる表示装置等を適用できる。また、表示部7001はタッチセンサを備えていてもよく、指等で表示部7001に触れることで携帯情報端末を操作することができる。 The display portion 7001 is manufactured using the display device of one embodiment of the present invention. For example, a display device that can be bent with a curvature radius of 0.01 mm to 150 mm can be applied. The display portion 7001 may include a touch sensor, and the portable information terminal can be operated by touching the display portion 7001 with a finger or the like.
本発明の一態様により、精細度が高く、可撓性を有する表示部を備えた電子機器を提供できる。 According to one embodiment of the present invention, an electronic device including a display portion with high definition and flexibility can be provided.
図28(A1)は、携帯情報端末の一例を示す斜視図であり、図28(A2)は、携帯情報端末の一例を示す側面図である。携帯情報端末7500は、筐体7501、表示部7001、引き出し部材7502、操作ボタン7503等を有する。 28A1 is a perspective view illustrating an example of a portable information terminal, and FIG. 28A2 is a side view illustrating an example of a portable information terminal. A portable information terminal 7500 includes a housing 7501, a display portion 7001, a drawer member 7502, operation buttons 7503, and the like.
携帯情報端末7500は、筐体7501内にロール状に巻かれた可撓性を有する表示部7001を有する。 A portable information terminal 7500 includes a flexible display portion 7001 wound in a roll shape in a housing 7501.
また、携帯情報端末7500は内蔵された制御部によって映像信号を受信可能で、受信した映像を表示部7001に表示することができる。また、携帯情報端末7500にはバッテリが内蔵されている。また、筐体7501にコネクタを接続する端子部を備え、映像信号又は電力を有線により外部から直接供給する構成としてもよい。 Further, the portable information terminal 7500 can receive a video signal by a built-in control unit, and can display the received video on the display unit 7001. In addition, the portable information terminal 7500 has a built-in battery. Further, a terminal portion for connecting a connector to the housing 7501 may be provided, and a video signal or power may be directly supplied from the outside by wire.
また、操作ボタン7503によって、電源のON、OFF動作、及び表示する映像の切り替え等を行うことができる。なお、図28(A1)、(A2)、(B)では、携帯情報端末7500の側面に操作ボタン7503を配置する例を示すが、これに限られず、携帯情報端末7500の表示面と同じ面(おもて面)又は裏面に配置してもよい。 Further, operation buttons 7503 can be used to perform power ON / OFF operations, switching of images to be displayed, and the like. 28A1, 28 </ b> A <b> 2, and 28 </ b> B illustrate an example in which the operation button 7503 is disposed on the side surface of the portable information terminal 7500, the present invention is not limited thereto, and the same surface as the display surface of the portable information terminal 7500 is used. It may be arranged on the (front surface) or the back surface.
図28(B)には、表示部7001を引き出し部材7502により引き出した状態の携帯情報端末7500を示す。この状態で表示部7001に映像を表示することができる。また、表示部7001の一部がロール状に巻かれた図28(A1)の状態と表示部7001を引き出し部材7502により引き出した図28(B)の状態とで、携帯情報端末7500が異なる表示を行う構成としてもよい。例えば、図28(A1)の状態のときに、表示部7001のロール状に巻かれた部分を非表示とすることで、携帯情報端末7500の消費電力を下げることができる。 FIG. 28B illustrates the portable information terminal 7500 in a state where the display portion 7001 is pulled out by a pull-out member 7502. In this state, an image can be displayed on the display portion 7001. Further, the portable information terminal 7500 displays differently between the state of FIG. 28A1 in which part of the display portion 7001 is wound in a roll shape and the state of FIG. 28B in which the display portion 7001 is pulled out by the pullout member 7502. It is good also as composition which performs. For example, in the state of FIG. 28A1, power consumption of the portable information terminal 7500 can be reduced by hiding a portion of the display portion 7001 wound in a roll shape.
なお、表示部7001を引き出した際に表示部7001の表示面が平面状となるように固定するため、表示部7001の側部に補強のためのフレームを設けていてもよい。 Note that a reinforcing frame may be provided on a side portion of the display portion 7001 in order to fix the display surface of the display portion 7001 so that the display surface becomes flat when the display portion 7001 is pulled out.
なお、この構成以外に、筐体にスピーカを設け、映像信号と共に受信した音声信号によって音声を出力する構成としてもよい。 In addition to this configuration, a speaker may be provided in the housing, and audio may be output by an audio signal received together with the video signal.
図28(C)~(E)に、折りたたみ可能な携帯情報端末の一例を示す。図28(C)では、展開した状態、図28(D)では、展開した状態又は折りたたんだ状態の一方から他方に変化する途中の状態、図28(E)では、折りたたんだ状態の携帯情報端末7600を示す。携帯情報端末7600は、折りたたんだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により一覧性に優れる。 FIGS. 28C to 28E show examples of portable information terminals that can be folded. In FIG. 28C, the mobile information terminal is in the expanded state, in FIG. 28D, the expanded state or the folded state in the middle of changing from one to the other, in FIG. 28E, the folded portable information terminal. 7600 is shown. The portable information terminal 7600 is excellent in portability in the folded state, and in the expanded state, the portable information terminal 7600 is excellent in listability due to a seamless wide display area.
表示部7001はヒンジ7602によって連結された3つの筐体7601に支持されている。ヒンジ7602を介して2つの筐体7601間を屈曲させることにより、携帯情報端末7600を展開した状態から折りたたんだ状態に可逆的に変形させることができる。 The display portion 7001 is supported by three housings 7601 connected by a hinge 7602. By bending between the two housings 7601 through the hinge 7602, the portable information terminal 7600 can be reversibly deformed from a developed state to a folded state.
図28(F)、(G)に、折りたたみ可能な携帯情報端末の一例を示す。図28(F)では、表示部7001が内側になるように折りたたんだ状態、図28(G)では、表示部7001が外側になるように折りたたんだ状態の携帯情報端末7650を示す。携帯情報端末7650は表示部7001及び非表示部7651を有する。携帯情報端末7650を使用しない際に、表示部7001が内側になるように折りたたむことで、表示部7001の汚れ及び傷つきを抑制できる。 FIGS. 28F and 28G illustrate examples of portable information terminals that can be folded. FIG. 28F illustrates the portable information terminal 7650 in a state where the display portion 7001 is folded so as to be on the inside, and FIG. 28G illustrates a portable information terminal 7650 in a state where the display portion 7001 is folded on the outside. The portable information terminal 7650 includes a display portion 7001 and a non-display portion 7651. When the portable information terminal 7650 is not used, the display portion 7001 can be folded so that the display portion 7001 is on the inner side, whereby the display portion 7001 can be prevented from being stained and damaged.
図28(H)に、可撓性を有する携帯情報端末の一例を示す。携帯情報端末7700は、筐体7701及び表示部7001を有する。さらに、入力手段であるボタン7703a、7703b、音声出力手段であるスピーカ7704a、7704b、外部接続ポート7705、マイク7706等を有していてもよい。また、携帯情報端末7700は、可撓性を有するバッテリ7709を搭載することができる。バッテリ7709は例えば表示部7001と重ねて配置してもよい。 FIG. 28H illustrates an example of a flexible portable information terminal. A portable information terminal 7700 includes a housing 7701 and a display portion 7001. Further, buttons 7703a and 7703b as input means, speakers 7704a and 7704b as sound output means, an external connection port 7705, a microphone 7706, and the like may be provided. In addition, the portable information terminal 7700 can be equipped with a flexible battery 7709. The battery 7709 may be disposed so as to overlap with the display portion 7001, for example.
筐体7701、表示部7001、及びバッテリ7709は可撓性を有する。そのため、携帯情報端末7700を所望の形状に湾曲させることや、携帯情報端末7700に捻りを加えることが容易である。例えば、携帯情報端末7700は、表示部7001が内側又は外側になるように折り曲げて使用することができる。または、携帯情報端末7700をロール状に巻いた状態で使用することもできる。このように、筐体7701及び表示部7001を自由に変形することが可能であるため、携帯情報端末7700は、落下した場合、又は意図しない外力が加わった場合であっても、破損しにくいという利点がある。 The housing 7701, the display portion 7001, and the battery 7709 have flexibility. Therefore, it is easy to curve the portable information terminal 7700 into a desired shape or to twist the portable information terminal 7700. For example, the portable information terminal 7700 can be used by being folded so that the display portion 7001 is inside or outside. Alternatively, the portable information terminal 7700 can be used in a rolled state. In this manner, since the housing 7701 and the display portion 7001 can be freely deformed, the portable information terminal 7700 is hardly damaged even when it is dropped or an unintended external force is applied. There are advantages.
また、携帯情報端末7700は軽量であるため、筐体7701の上部をクリップ等で把持してぶら下げて使用する、又は、筐体7701を磁石等で壁面に固定して使用するなど、様々な状況において利便性良く使用することができる。 Further, since the portable information terminal 7700 is lightweight, it can be used by holding the top of the housing 7701 with a clip or the like and hanging it, or by fixing the housing 7701 to a wall surface with a magnet or the like. Can be used conveniently.
図28(I)に腕時計型の携帯情報端末の一例を示す。携帯情報端末7800は、バンド7801、表示部7001、入出力端子7802、操作ボタン7803等を有する。バンド7801は、筐体としての機能を有する。また、携帯情報端末7800は、可撓性を有するバッテリ7805を搭載することができる。バッテリ7805は例えば表示部7001又はバンド7801と重ねて配置してもよい。 FIG. 28I illustrates an example of a wristwatch-type portable information terminal. A portable information terminal 7800 includes a band 7801, a display portion 7001, input / output terminals 7802, operation buttons 7803, and the like. The band 7801 has a function as a housing. Further, the portable information terminal 7800 can be equipped with a flexible battery 7805. The battery 7805 may be placed over the display portion 7001 or the band 7801, for example.
バンド7801、表示部7001、及びバッテリ7805は可撓性を有する。そのため、携帯情報端末7800を所望の形状に湾曲させることが容易である。 The band 7801, the display portion 7001, and the battery 7805 are flexible. Therefore, it is easy to curve the portable information terminal 7800 into a desired shape.
操作ボタン7803は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯情報端末7800に組み込まれたオペレーティングシステムにより、操作ボタン7803の機能を自由に設定することもできる。 The operation button 7803 can have various functions such as time setting, power on / off operation, wireless communication on / off operation, manner mode execution and release, and power saving mode execution and release. . For example, the function of the operation button 7803 can be freely set by an operating system incorporated in the portable information terminal 7800.
また、表示部7001に表示されたアイコン7804に指等で触れることで、アプリケーションを起動することができる。 In addition, an application can be started by touching an icon 7804 displayed on the display portion 7001 with a finger or the like.
また、携帯情報端末7800は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。 In addition, the portable information terminal 7800 can perform short-range wireless communication with a communication standard. For example, it is possible to talk hands-free by communicating with a headset capable of wireless communication.
また、携帯情報端末7800は入出力端子7802を有していてもよい。入出力端子7802を有する場合、他の情報端末とコネクタを介して直接データのやりとりを行うことができる。また入出力端子7802を介して充電を行うこともできる。なお、本実施の形態で例示する携帯情報端末の充電動作は、入出力端子を介さずに非接触電力伝送により行ってもよい。 Further, the portable information terminal 7800 may include an input / output terminal 7802. In the case of having the input / output terminal 7802, data can be directly exchanged with another information terminal via a connector. Charging can also be performed through the input / output terminal 7802. Note that the charging operation of the portable information terminal exemplified in this embodiment may be performed by non-contact power transmission without using an input / output terminal.
図29(A)~(C)に折り畳み可能な腕時計型の携帯情報端末の一例を示す。携帯情報端末7850は、表示部7851、筐体7852、筐体7853、バンド7854、操作ボタン7855等を有する。 FIGS. 29A to 29C show an example of a foldable wristwatch-type portable information terminal. A portable information terminal 7850 includes a display portion 7851, a housing 7852, a housing 7853, a band 7854, operation buttons 7855, and the like.
携帯情報端末7850は、図29(A)に示す筐体7852が筐体7853上に重ねられた状態と、図29(C)に示す表示部7851が展開された状態と、の一方から他方に可逆的に変形できる。例えば、図29(A)の状態から、筐体7852を持ち上げることにより(図29(B))、図29(C)の状態へと変形させることができる。そのため携帯情報端末7850は、表示部7851を折り畳んだ状態と、表示部7851を展開することにより表示領域を広げた状態の双方で、使用することができる。 In the portable information terminal 7850, the housing 7852 illustrated in FIG. 29A is stacked on the housing 7853 and the display portion 7851 illustrated in FIG. 29C is expanded from one to the other. Can be reversibly deformed. For example, the state of FIG. 29A can be changed to the state of FIG. 29C by lifting the housing 7852 (FIG. 29B). Therefore, the portable information terminal 7850 can be used both in a state where the display portion 7851 is folded and in a state where the display area is expanded by expanding the display portion 7851.
表示部7851は、タッチパネルとしての機能を有する。表示部7851に触れることで携帯情報端末7850を操作することができる。また、操作ボタン7855を押す、回す、若しくは上下方向、手前方向、又は奥行方向にずらすなどの操作により、携帯情報端末7850を操作することができる。 The display portion 7851 has a function as a touch panel. The portable information terminal 7850 can be operated by touching the display portion 7851. Further, the portable information terminal 7850 can be operated by pressing, rotating, or shifting the operation button 7855 in the up / down direction, the front direction, or the depth direction.
図29(A)に示すように、筐体7852と筐体7853とが重なった状態で、筐体7852と筐体7853とが意図せずに離れることを抑制するための、ロック機構を有することが好ましい。このとき、例えば操作ボタン7855を押すなどの操作により、ロック状態を解除できる構成とすることが好ましい。また、バネなどの復元力を利用して、ロック状態を解除したときに、図29(A)に示す状態から図29(C)に示す状態に自動的に変形する機構を有していてもよい。または、ロック機構に代えて磁石を用い、筐体7852と筐体7853の相対的な位置を固定してもよい。磁石を用いることで容易に筐体7852と筐体7853とを脱着させることができる。 As shown in FIG. 29A, a lock mechanism is provided to prevent the housing 7852 and the housing 7853 from being unintentionally separated in a state where the housing 7852 and the housing 7853 overlap with each other. Is preferred. At this time, it is preferable that the lock state be released by an operation such as pressing an operation button 7855, for example. In addition, even when the lock state is released using a restoring force such as a spring, a mechanism that automatically deforms from the state shown in FIG. 29A to the state shown in FIG. 29C may be provided. Good. Alternatively, a relative position between the housing 7852 and the housing 7853 may be fixed using a magnet instead of the lock mechanism. By using a magnet, the housing 7852 and the housing 7853 can be easily detached.
図29(A)~(C)では、バンド7854の曲がる向きに対して概略垂直な方向に表示部7851を展開できる構成を示したが、図29(D)、(E)に示すように、バンド7854の曲がる向きに概略平行な方向に表示部7851を展開できる構成としてもよい。また、バンド7854に巻きつけるように、表示部7851を湾曲させて用いてもよい。 29A to 29C show a configuration in which the display portion 7851 can be developed in a direction substantially perpendicular to the bending direction of the band 7854, but as shown in FIGS. 29D and 29E, The display portion 7851 may be developed in a direction substantially parallel to the direction in which the band 7854 is bent. Further, the display portion 7851 may be curved so as to be wound around the band 7854.
図30(A)に自動車9700の外観を示す。図30(B)に自動車9700の運転席を示す。自動車9700は、車体9701、車輪9702、ダッシュボード9703、ライト9704等を有する。本発明の一態様の表示装置は、自動車9700の表示部などに用いることができる。例えば、図30(B)に示す表示部9710乃至表示部9715に本発明の一態様の表示装置を設けることができる。 FIG. 30A shows the appearance of an automobile 9700. FIG. FIG. 30B illustrates a driver seat of the automobile 9700. The automobile 9700 includes a vehicle body 9701, wheels 9702, a dashboard 9703, lights 9704, and the like. The display device of one embodiment of the present invention can be used for a display portion of an automobile 9700 or the like. For example, the display device of one embodiment of the present invention can be provided in the display portion 9710 to the display portion 9715 illustrated in FIG.
表示部9710と表示部9711は、自動車のフロントガラスに設けられた表示装置である。本発明の一態様の表示装置は、電極及び配線を、透光性を有する導電性材料で作製することによって、反対側が透けて見える、いわゆるシースルー状態とすることができる。表示部9710及び表示部9711がシースルー状態であれば、自動車9700の運転時にも視界の妨げになることがない。よって、本発明の一態様の表示装置を自動車9700のフロントガラスに設置することができる。なお、表示装置等を駆動するためのトランジスタなどを設ける場合には、有機半導体材料を用いた有機トランジスタ、又は酸化物半導体を用いたトランジスタなど、透光性を有するトランジスタを用いるとよい。 A display portion 9710 and a display portion 9711 are display devices provided on the windshield of the automobile. In the display device of one embodiment of the present invention, when the electrode and the wiring are formed using a light-transmitting conductive material, a so-called see-through state in which the opposite side can be seen can be obtained. If the display portion 9710 and the display portion 9711 are in a see-through state, the visibility is not hindered even when the automobile 9700 is driven. Therefore, the display device of one embodiment of the present invention can be provided on the windshield of the automobile 9700. Note that in the case where a transistor for driving a display device or the like is provided, a light-transmitting transistor such as an organic transistor using an organic semiconductor material or a transistor using an oxide semiconductor is preferably used.
表示部9712はピラー部分に設けられた表示装置である。例えば、車体に設けられた撮像手段からの映像を表示部9712に映し出すことによって、ピラーで遮られた視界を補完することができる。表示部9713はダッシュボード部分に設けられた表示装置である。例えば、車体に設けられた撮像手段からの映像を表示部9713に映し出すことによって、ダッシュボードで遮られた視界を補完することができる。すなわち、自動車の外側に設けられた撮像手段からの映像を映し出すことによって、死角を補い、安全性を高めることができる。また、見えない部分を補完する映像を映すことによって、より自然に違和感なく安全確認を行うことができる。 A display portion 9712 is a display device provided in the pillar portion. For example, the field of view blocked by the pillar can be complemented by displaying an image from the imaging means provided on the vehicle body on the display portion 9712. A display portion 9713 is a display device provided in the dashboard portion. For example, by displaying an image from an imaging unit provided on the vehicle body on the display portion 9713, the view blocked by the dashboard can be complemented. That is, by projecting an image from the imaging means provided outside the automobile, the blind spot can be compensated and safety can be improved. Also, by displaying a video that complements the invisible part, it is possible to confirm the safety more naturally and without a sense of incongruity.
また、図30(C)は、運転席と助手席にベンチシートを採用した自動車の室内を示している。表示部9721は、ドア部に設けられた表示装置である。例えば、車体に設けられた撮像手段からの映像を表示部9721に映し出すことによって、ドアで遮られた視界を補完することができる。また、表示部9722は、ハンドルに設けられた表示装置である。表示部9723は、ベンチシートの座面の中央部に設けられた表示装置である。なお、表示装置を座面又は背もたれ部分などに設置して、当該表示装置を、当該表示装置の発熱を熱源としたシートヒーターとして利用することもできる。 FIG. 30C shows the interior of an automobile in which bench seats are used for the driver seat and the passenger seat. The display portion 9721 is a display device provided in the door portion. For example, the field of view blocked by the door can be complemented by displaying an image from an imaging unit provided on the vehicle body on the display portion 9721. The display portion 9722 is a display device provided on the handle. The display unit 9723 is a display device provided at the center of the seat surface of the bench seat. Note that a display device can be installed on a seating surface or a backrest portion, and the display device can be used as a seat heater using heat generated by the display device as a heat source.
表示部9714、表示部9715、又は表示部9722はナビゲーション情報、スピードメーター、タコメーター、走行距離、給油量、ギア状態、エアコンの設定など、その他様々な情報を提供することができる。また、表示部に表示される表示項目及びレイアウトなどは、使用者の好みに合わせて適宜変更することができる。なお、上記情報は、表示部9710乃至表示部9713、表示部9721、表示部9723にも表示することができる。また、表示部9710乃至表示部9715、表示部9721乃至表示部9723は照明装置として用いることも可能である。また、表示部9710乃至表示部9715、表示部9721乃至表示部9723は加熱装置として用いることも可能である。 The display portion 9714, the display portion 9715, or the display portion 9722 can provide various other information such as navigation information, a speedometer, a tachometer, a travel distance, an oil supply amount, a gear state, and an air conditioner setting. In addition, display items and layouts displayed on the display unit can be appropriately changed according to the user's preference. Note that the above information can also be displayed on the display portion 9710 to the display portion 9713, the display portion 9721, and the display portion 9723. The display portions 9710 to 9715 and the display portions 9721 to 9723 can also be used as lighting devices. The display portions 9710 to 9715 and the display portions 9721 to 9723 can also be used as heating devices.
本発明の一態様の表示装置が適用される表示部は平面であってもよい。この場合、本発明の一態様の表示装置は、曲面及び可撓性を有さない構成であってもよい。 The display portion to which the display device of one embodiment of the present invention is applied may be a flat surface. In this case, the display device according to one embodiment of the present invention may have a curved surface and no flexibility.
図30(D)に示す携帯型ゲーム機は、筐体9801、筐体9802、表示部9803、表示部9804、マイクロフォン9805、スピーカ9806、操作キー9807、スタイラス9808等を有する。 A portable game machine shown in FIG. 30D includes a housing 9801, a housing 9802, a display portion 9803, a display portion 9804, a microphone 9805, a speaker 9806, operation keys 9807, a stylus 9808, and the like.
図30(D)に示す携帯型ゲーム機は、2つの表示部(表示部9803と表示部9804)を有する。なお、本発明の一態様の電子機器が有する表示部の数は、2つに限定されず1つであっても3つ以上であってもよい。電子機器が複数の表示部を有する場合、少なくとも1つの表示部が本発明の一態様の表示装置を有する。 A portable game machine shown in FIG. 30D includes two display portions (a display portion 9803 and a display portion 9804). Note that the number of display portions included in the electronic device of one embodiment of the present invention is not limited to two, and may be one or three or more. In the case where the electronic device includes a plurality of display portions, at least one display portion includes the display device of one embodiment of the present invention.
図30(E)はノート型パーソナルコンピュータであり、筐体9821、表示部9822、キーボード9823、ポインティングデバイス9824等を有する。 FIG. 30E illustrates a laptop personal computer, which includes a housing 9821, a display portion 9822, a keyboard 9823, a pointing device 9824, and the like.
本実施の形態は、他の実施の形態と適宜組み合わせることができる。 This embodiment can be combined with any of the other embodiments as appropriate.
(実施の形態3)
本実施の形態では、リソグラフィー法で用いる露光装置の性能の一つである解像度の限界よりも微細なL/S(Line & Space)を有する配線又は電極の加工方法の一例について説明する。
(Embodiment 3)
In this embodiment, an example of a method for processing a wiring or an electrode having L / S (Line & Space) finer than the resolution limit, which is one of the performances of an exposure apparatus used in the lithography method, will be described.
L/S(Line & Space)とは、配線の幅と隣り合う配線同士の間隔のことである。Lはライン(Line)を示し、Sはスペース(Space)を示す。 L / S (Line & Space) is the width of the wiring and the distance between adjacent wirings. L indicates a line, and S indicates a space.
本明細書において、導電体、絶縁体、及び半導体の成膜は、それぞれ、スパッタリング法、CVD法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法もしくはパルスレーザ堆積(PLD:Pulsed Laser Deposition)法、ALD法、熱酸化法、又はプラズマ酸化法などを用いて行うことができる。 In this specification, a conductor, an insulator, and a semiconductor are formed by sputtering, CVD, molecular beam epitaxy (MBE), or pulsed laser deposition (PLD), respectively. An ALD method, a thermal oxidation method, a plasma oxidation method, or the like can be used.
なお、CVD法は、プラズマを利用するプラズマCVD法、熱を利用する熱CVD法、光を利用する光CVD法などに分類できる。さらに用いる原料ガスによって金属CVD法、MOCVD法に分けることができる。 The CVD method can be classified into a plasma CVD method using plasma, a thermal CVD method using heat, a photo CVD method using light, and the like. Furthermore, it can be divided into metal CVD method and MOCVD method depending on the source gas used.
プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、表示装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、表示装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、表示装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。 In the plasma CVD method, a high-quality film can be obtained at a relatively low temperature. Further, the thermal CVD method is a film formation method that can reduce plasma damage to an object to be processed because plasma is not used. For example, a wiring, an electrode, an element (a transistor, a capacitor, or the like) included in the display device may be charged up by receiving electric charge from plasma. At this time, a wiring, an electrode, an element, or the like included in the display device may be destroyed by the accumulated charge. On the other hand, in the case of a thermal CVD method that does not use plasma, such plasma damage does not occur, so that the yield of the display device can be increased. In addition, in the thermal CVD method, plasma damage during film formation does not occur, so that a film with few defects can be obtained.
また、ALD法も、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。ALD法を用いることにより、欠陥の少ない膜が得られる。 The ALD method is also a film forming method that can reduce plasma damage to an object to be processed. By using the ALD method, a film with few defects can be obtained.
CVD法及びALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、成膜速度が比較的遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。 The CVD method and the ALD method are film forming methods in which a film is formed by reaction on the surface of an object to be processed, unlike a film forming method in which particles emitted from a target or the like are deposited. Therefore, it is a film forming method that is not easily affected by the shape of the object to be processed and has good step coverage. In particular, the ALD method has excellent step coverage and excellent thickness uniformity, and thus is suitable for covering the surface of an opening having a high aspect ratio. However, since the ALD method has a relatively low film formation rate, it may be preferable to use it in combination with another film formation method such as a CVD method with a high film formation rate.
CVD法及びALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法及びALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法及びALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間の分、成膜に掛かる時間を短くすることができる。したがって、表示装置の生産性を高めることができる場合がある。 In the CVD method and the ALD method, the composition of the obtained film can be controlled by the flow rate ratio of the source gases. For example, in the CVD method and the ALD method, a film having an arbitrary composition can be formed depending on the flow rate ratio of the source gases. Further, for example, in the CVD method and the ALD method, a film whose composition is continuously changed can be formed by changing the flow rate ratio of the source gas while forming the film. When film formation is performed while changing the flow rate ratio of the source gas, the time required for film formation can be shortened by the time required for conveyance and pressure adjustment compared to the case where film formation is performed using a plurality of film formation chambers. it can. Therefore, the productivity of the display device may be increased.
以下では、配線又は電極の加工方法について、図31~図33に示す断面図を用いて説明する。 Hereinafter, a method for processing a wiring or an electrode will be described with reference to cross-sectional views shown in FIGS.
まず、基板305上に導電体310を成膜する。本実施の形態では、導電体310を基板305上に成膜する例を示すが、これに限らず、例えば、絶縁層上又は半導体装置上などに成膜してもよい。導電体310としては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、プラチナ、銀、インジウム、スズ、タンタル、及びタングステンのうち一種以上を含む導電体を、単層で、又は積層で形成することができる。導電体310は、例えば、合金膜又は化合物膜であってもよく、アルミニウムを含む導電体、銅及びチタンを含む導電体、銅及びマンガンを含む導電体、インジウム、スズ及び酸素を含む導電体、又はチタン及び窒素を含む導電体などを用いてもよい。 First, the conductor 310 is formed over the substrate 305. In this embodiment, an example in which the conductor 310 is formed over the substrate 305 is described; however, the present invention is not limited to this. Examples of the conductor 310 include boron, nitrogen, oxygen, fluorine, silicon, phosphorus, aluminum, titanium, chromium, manganese, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, molybdenum, ruthenium, platinum, silver, A conductor containing one or more of indium, tin, tantalum, and tungsten can be formed as a single layer or a stacked layer. The conductor 310 may be an alloy film or a compound film, for example, a conductor containing aluminum, a conductor containing copper and titanium, a conductor containing copper and manganese, a conductor containing indium, tin and oxygen, Alternatively, a conductor containing titanium and nitrogen may be used.
次に、導電体310上に導電体320を成膜する。導電体320には、例えば、導電体310に用いることができる材料を適用できる。 Next, the conductor 320 is formed over the conductor 310. For the conductor 320, for example, a material that can be used for the conductor 310 can be used.
本実施の形態では、導電体310上に導電体320を成膜する例を示すが、導電体ではなく絶縁体を成膜してもよい。または、絶縁体と導電体を積層して多層膜としてもよい。 Although an example in which the conductor 320 is formed over the conductor 310 is described in this embodiment, an insulator may be formed instead of the conductor. Alternatively, a multilayer film may be formed by stacking an insulator and a conductor.
次に、導電体320上に、リソグラフィー法を用いて、レジストマスク340を形成する(図31(A))。ここでは、リソグラフィー法に用いる露光装置が可能な最小のL/Sの寸法でレジストマスクを形成する。 Next, a resist mask 340 is formed over the conductor 320 by a lithography method (FIG. 31A). Here, the resist mask is formed with the smallest L / S dimension that can be used by the exposure apparatus used in the lithography method.
次に、レジストマスク340をエッチングマスクとして、導電体320の不要な部分をエッチングして導電体325を形成する。導電体320のエッチングにドライエッチング法を用いると、微細加工が容易となり好ましい。また、導電体320のエッチング中にレジストマスク340の一部がエッチングされて縮小することで、導電体325のライン幅をレジストマスクのライン幅よりも縮小することができる。さらに、導電体325のライン幅を縮小するためには、導電体320のエッチング時間を長くすることが好ましい(図31(B))。 Next, an unnecessary portion of the conductor 320 is etched using the resist mask 340 as an etching mask, so that the conductor 325 is formed. It is preferable to use a dry etching method for etching the conductor 320 because microfabrication is facilitated. Further, part of the resist mask 340 is etched and reduced during etching of the conductor 320, whereby the line width of the conductor 325 can be reduced more than the line width of the resist mask. Further, in order to reduce the line width of the conductor 325, it is preferable to increase the etching time of the conductor 320 (FIG. 31B).
次に、レジストマスク340を除去する。レジストマスクは、酸素を含むプラズマ処理を行うことにより除去することができる。または、薬液を用いたウエット処理を行ってレジストマスクを除去してもよい。または、酸素を含むプラズマ処理を行った後に薬液を用いたウエット処理を行ってレジストマスクを除去してもよい。 Next, the resist mask 340 is removed. The resist mask can be removed by performing plasma treatment containing oxygen. Alternatively, the resist mask may be removed by performing a wet process using a chemical solution. Alternatively, the resist mask may be removed by performing wet treatment using a chemical solution after performing plasma treatment containing oxygen.
次に、導電体310上及び導電体325を覆うように絶縁体350を成膜する。絶縁体350としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、又はタンタルを含む絶縁体を、単層で、又は積層で形成することができる。例えば、絶縁体350は、酸化シリコン、窒化シリコン、窒化酸化シリコン、又は酸化窒化シリコンを有することが好ましい。 Next, the insulator 350 is formed so as to cover the conductor 310 and the conductor 325. As the insulator 350, for example, an insulator containing boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium, or tantalum Can be formed in a single layer or a stack. For example, the insulator 350 preferably includes silicon oxide, silicon nitride, silicon nitride oxide, or silicon oxynitride.
次に、絶縁体350を導電体325の上面に達するまで、及び導電体310の上面に達するまでエッチングすることで、導電体325の側面に絶縁体355を形成する(図32(B))。絶縁体350のエッチングは、ドライエッチング法を用いることが好ましい。特に、エッチングの進む方向が基板305の底面と平行な面を基準として垂直方向である異方性エッチングであることがより好ましい。 Next, the insulator 350 is etched until reaching the top surface of the conductor 325 and until reaching the top surface of the conductor 310, whereby the insulator 355 is formed on the side surface of the conductor 325 (FIG. 32B). The insulator 350 is preferably etched by a dry etching method. In particular, anisotropic etching is more preferable in which the etching progress direction is a vertical direction with respect to a plane parallel to the bottom surface of the substrate 305.
次に、導電体325を除去する。導電体325の除去には、ドライエッチング法又はウエットエッチング法を用いることができ、ウエットエッチング法を用いることが好ましい。ウエットエッチング法を用いることで、絶縁体355と導電体325とのエッチング速度の比を大きくすることができる。具体的には、絶縁体355のエッチング速度を1とすると導電体325のエッチング速度を20以上とすることができる。ウエットエッチング法は、エッチングが等方的に進むため、例えば絶縁体355の影になる部分の導電体325のエッチングも可能となる。従ってウエットエッチング法を用いることで、絶縁体355の膜減り、絶縁体355の変形、及び導電体325の膜残りを防ぐことができ、好適である。これで、絶縁体355を有するハードマスクを形成することができる(図33(A))。 Next, the conductor 325 is removed. For the removal of the conductor 325, a dry etching method or a wet etching method can be used, and it is preferable to use a wet etching method. By using a wet etching method, the ratio of the etching rates of the insulator 355 and the conductor 325 can be increased. Specifically, when the etching rate of the insulator 355 is 1, the etching rate of the conductor 325 can be 20 or more. In the wet etching method, since etching proceeds isotropically, for example, a portion of the conductor 325 that is a shadow of the insulator 355 can be etched. Therefore, the wet etching method is preferable because the film thickness of the insulator 355 can be reduced, the insulator 355 can be prevented from being deformed, and the remaining film of the conductor 325 can be prevented. Thus, a hard mask having the insulator 355 can be formed (FIG. 33A).
絶縁体350の導電体325への被覆性が絶縁体355のライン幅を決めることになる。導電体325の上面の絶縁体350の膜厚をAとし、導電体325の側面の絶縁体350の膜厚をBとし、絶縁体350の被覆性をCとして、被覆性CをB/Aと定義する。例えば絶縁体350の被覆性Cが0.8である場合、絶縁体350の膜厚Aを1000nmとすると、導電体325の側面の絶縁体350の膜厚Bは800nmとなる。従って、絶縁体355の膜厚すなわち絶縁体355のライン幅は、800nmとなる。あらかじめ絶縁体350の被覆性を測定しておけば、絶縁体355の膜厚を調整することで、必要な絶縁体355のライン幅を形成できる。このように絶縁体355は、リソグラフィー工程を用いることなく形成できるので、リソグラフィーに使用する露光装置の解像度を超える微細なL/Sを形成することができる。絶縁体350の被覆性Cは、0.3以上1.0以下、好ましくは、0.5以上1.0以下とする。 The coverage of the insulator 350 on the conductor 325 determines the line width of the insulator 355. The thickness of the insulator 350 on the top surface of the conductor 325 is A, the thickness of the insulator 350 on the side surface of the conductor 325 is B, the coverage of the insulator 350 is C, and the coverage C is B / A. Define. For example, when the coverage C of the insulator 350 is 0.8 and the film thickness A of the insulator 350 is 1000 nm, the film thickness B of the insulator 350 on the side surface of the conductor 325 is 800 nm. Therefore, the film thickness of the insulator 355, that is, the line width of the insulator 355 is 800 nm. If the coverage of the insulator 350 is measured in advance, the necessary line width of the insulator 355 can be formed by adjusting the film thickness of the insulator 355. Thus, since the insulator 355 can be formed without using a lithography process, a fine L / S exceeding the resolution of an exposure apparatus used for lithography can be formed. The covering property C of the insulator 350 is 0.3 to 1.0, preferably 0.5 to 1.0.
次に、絶縁体355をエッチングマスクとして、導電体310の一部をエッチングすることで、導電体315を形成する。導電体310のエッチングは、ドライエッチング法を用いることが好ましい(図33(B))。 Next, the conductor 315 is formed by etching part of the conductor 310 using the insulator 355 as an etching mask. For the etching of the conductor 310, a dry etching method is preferably used (FIG. 33B).
次に、絶縁体355を除去する。絶縁体355の除去には、ドライエッチング法又はウエットエッチングを用いることができる。以上により、露光装置の解像度の限界よりも微細なL/Sの寸法の導電体315を作製することができる(図33(C))。 Next, the insulator 355 is removed. For the removal of the insulator 355, a dry etching method or a wet etching can be used. As described above, the conductor 315 having an L / S dimension finer than the resolution limit of the exposure apparatus can be manufactured (FIG. 33C).
本実施の形態で説明した、本発明の一態様の配線又は電極の加工方法を適用することで、精細度が高い表示装置を作製することができる。 By applying the wiring or electrode processing method of one embodiment of the present invention described in this embodiment, a display device with high definition can be manufactured.
本実施の形態は、他の実施の形態と適宜組み合わせることができる。 This embodiment can be combined with any of the other embodiments as appropriate.
101  結晶性半導体基板
102  結晶性基板
103  剥離層
105  絶縁膜
110  表示装置
111  絶縁膜
112n  nウェル
112p  pウェル
113n  n型不純物領域
113p  p型不純物領域
114n  LDD領域
114p  LDD領域
115  ゲート絶縁膜
116  ゲート
116a  ゲート
116b  ゲート
116c  ゲート
116d  ゲート
117  サイドウォール
118  素子分離領域
119  半導体膜
119a  チャネル形成領域
119b  低抵抗領域
121  絶縁膜
121x  絶縁膜
121y  絶縁膜
122  絶縁膜
123  導電膜
123a  導電膜
123b  導電膜
123c  導電膜
123d  導電膜
123e  導電膜
123f  導電膜
123g  導電膜
123h  導電膜
123i  導電膜
123x  導電膜
123y  導電膜
124  導電膜
124a  導電膜
124b  導電膜
124c  導電膜
124d  導電膜
124e  導電膜
124f  導電膜
124g  導電膜
124h  導電膜
125  絶縁膜
126  導電膜
127  導電膜
128  絶縁膜
129e  導電膜
129f  導電膜
129g  導電膜
129h  導電膜
129i  導電膜
131  半導体膜
135  絶縁膜
136  バックゲート
141  導電膜
142  絶縁膜
143  絶縁膜
148  導電膜
149  導電膜
150  走査線駆動回路
151n  トランジスタ
151p  トランジスタ
152n  トランジスタ
152p  トランジスタ
153  トランジスタ
154  トランジスタ
155  トランジスタ
156  トランジスタ
160  画素部
161  トランジスタ
162  トランジスタ
163  トランジスタ
164  トランジスタ
165  トランジスタ
166  トランジスタ
167  トランジスタ
168  トランジスタ
169  トランジスタ
170  容量素子
171  可撓性基板
172  絶縁膜
173  導電膜
174  絶縁膜
175  導電膜
176  接着層
177  導電膜
178  接続体
179  FPC
180  発光素子
180G  発光素子
180R  発光素子
181  電極
183  EL層
185  電極
187  導電膜
189  導電膜
191  可撓性基板
192  接着層
193  絶縁膜
194  遮光層
195  着色層
195G  着色層
195R  着色層
196  接着層
197  絶縁膜
199  接続体
210  部材
215a  部材
215b  部材
250  液晶素子
251  導電膜
252  導電膜
253  絶縁膜
254  液晶
255  オーバーコート
256  スペーサ
257  ポリマー壁
258  配向膜
259  配向膜
305  基板
310  導電体
315  導電体
320  導電体
325  導電体
340  レジストマスク
350  絶縁体
355  絶縁体
401  ゲート
402  絶縁膜
403  ゲート絶縁膜
404a  導電膜
404b  導電膜
406a  酸化物膜
406b  酸化物半導体膜
406c  酸化物膜
408  絶縁膜
410  絶縁膜
418  絶縁膜
428  絶縁膜
454  ゲート
460  素子分離領域
462  ゲート絶縁膜
464  絶縁膜
465  絶縁膜
466  絶縁膜
467  絶縁膜
468  絶縁膜
469  絶縁膜
470  絶縁膜
472  絶縁膜
474a  不純物領域
474b  不純物領域
475  絶縁膜
476a  導電膜
476b  導電膜
476c  導電膜
477a  導電膜
477b  導電膜
477c  導電膜
478a  導電膜
478b  導電膜
478c  導電膜
479a  導電膜
479b  導電膜
479c  導電膜
480a  導電膜
480b  導電膜
480c  導電膜
483a  導電膜
483b  導電膜
483c  導電膜
483d  導電膜
483e  導電膜
483f  導電膜
484a  導電膜
484b  導電膜
484c  導電膜
484d  導電膜
485a  導電膜
485b  導電膜
485c  導電膜
485d  導電膜
485e  導電膜
487a  導電膜
487b  導電膜
487c  導電膜
488a  導電膜
488b  導電膜
488c  導電膜
489a  導電膜
489b  導電膜
490a  導電膜
490b  導電膜
491  導電膜
494  導電膜
496  導電膜
498  絶縁膜
747x  開口
747y  開口
748x  開口
748y  開口
901  可撓性基板
903  接着層
911  作製基板
912  剥離層
951  結晶性基板
992  剥離層
3001  第1の配線
3002  第2の配線
3003  第3の配線
3004  第4の配線
3005  第5の配線
3200  トランジスタ
3300  トランジスタ
3400  容量素子
4003  信号線駆動回路
4004  走査線駆動回路
4018  FPC
4018a  FPC
4018b  FPC
7000  表示部
7001  表示部
7100  携帯電話機
7101  筐体
7103  操作ボタン
7104  外部接続ポート
7105  スピーカ
7106  マイク
7200  テレビジョン装置
7201  筐体
7203  スタンド
7211  リモコン操作機
7300  携帯情報端末
7301  筐体
7302  操作ボタン
7303  情報
7304  情報
7305  情報
7306  情報
7310  携帯情報端末
7320  携帯情報端末
7400  照明装置
7401  台部
7402  発光部
7403  操作スイッチ
7410  照明装置
7412  発光部
7420  照明装置
7422  発光部
7500  携帯情報端末
7501  筐体
7502  部材
7503  操作ボタン
7600  携帯情報端末
7601  筐体
7602  ヒンジ
7650  携帯情報端末
7651  非表示部
7700  携帯情報端末
7701  筐体
7703a  ボタン
7703b  ボタン
7704a  スピーカ
7704b  スピーカ
7705  外部接続ポート
7706  マイク
7709  バッテリ
7800  携帯情報端末
7801  バンド
7802  入出力端子
7803  操作ボタン
7804  アイコン
7805  バッテリ
7850  携帯情報端末
7851  表示部
7852  筐体
7853  筐体
7854  バンド
7855  操作ボタン
7900  ヘッドマウントディスプレイ
7901  表示装置
7902  本体
7903  装着部
7904  レンズ
7910  プロジェクター
7911  表示装置
7912  光学系
7913  スクリーン
7920  ヘッドマウントディスプレイ
7921L  表示装置
7921R  表示装置
7922  本体
7923  装着部
7924  レンズ
9700  自動車
9701  車体
9702  車輪
9703  ダッシュボード
9704  ライト
9710  表示部
9711  表示部
9712  表示部
9713  表示部
9714  表示部
9715  表示部
9721  表示部
9722  表示部
9723  表示部
9801  筐体
9802  筐体
9803  表示部
9804  表示部
9805  マイクロフォン
9806  スピーカ
9807  操作キー
9808  スタイラス
9821  筐体
9822  表示部
9823  キーボード
9824  ポインティングデバイス
101 crystalline semiconductor substrate 102 crystalline substrate 103 peeling layer 105 insulating film 110 display device 111 insulating film 112n n well 112p p well 113n n type impurity region 113p p type impurity region 114n LDD region 114p LDD region 115 gate insulating film 116 gate 116a Gate 116b Gate 116c Gate 116d Gate 117 Side wall 118 Element isolation region 119 Semiconductor film 119a Channel formation region 119b Low resistance region 121 Insulating film 121x Insulating film 121y Insulating film 122 Insulating film 123 Conductive film 123a Conductive film 123b Conductive film 123c Conductive film 123d Conductive film 123e conductive film 123f conductive film 123g conductive film 123h conductive film 123i conductive film 123x conductive film 123y conductive film 124 conductive film 1 4a conductive film 124b conductive film 124c conductive film 124d conductive film 124e conductive film 124f conductive film 124g conductive film 124h conductive film 125 insulating film 126 conductive film 127 conductive film 128 insulating film 129e conductive film 129f conductive film 129g conductive film 129h conductive film 129i conductive Film 131 Semiconductor film 135 Insulating film 136 Back gate 141 Conductive film 142 Insulating film 143 Insulating film 148 Conductive film 149 Conductive film 150 Scan line driver circuit 151n Transistor 151p Transistor 152n Transistor 152p Transistor 153 Transistor 154 Transistor 155 Transistor 156 Transistor 160 Pixel portion 161 Transistor 162 Transistor 163 Transistor 164 Transistor 165 Transistor 166 Transistor 167 transistor 168 transistor 169 transistor 170 capacitive element 171 flexible substrate 172 insulating film 173 conductive 174 insulating film 175 conductive 176 adhesive layer 177 conductive film 178 connecting body 179 FPC
180 light emitting element 180G light emitting element 180R light emitting element 181 electrode 183 EL layer 185 electrode 187 conductive film 189 conductive film 191 flexible substrate 192 adhesive layer 193 light shielding layer 195 colored layer 195G colored layer 195R colored layer 196 adhesive layer 197 insulating Film 199 Connector 210 Member 215a Member 215b Member 250 Liquid crystal element 251 Conductive film 252 Conductive film 253 Insulating film 254 Liquid crystal 255 Overcoat 256 Spacer 257 Polymer wall 258 Alignment film 259 Alignment film 305 Substrate 310 Conductor 315 Conductor 320 Conductor 325 Conductor 340 Resist mask 350 Insulator 355 Insulator 401 Gate 402 Insulating film 403 Gate insulating film 404a Conductive film 404b Conductive film 406a Oxide film 406b Oxide semiconductor Film 406c oxide film 408 insulating film 410 insulating film 418 insulating film 428 insulating film 454 gate 460 element isolation region 462 gate insulating film 464 insulating film 465 insulating film 466 insulating film 467 insulating film 468 insulating film 469 insulating film 470 insulating film 472 insulating Film 474a impurity region 474b impurity region 475 insulating film 476a conductive film 476b conductive film 476c conductive film 477a conductive film 477b conductive film 477c conductive film 478a conductive film 478b conductive film 478c conductive film 479a conductive film 479b conductive film 479c conductive film 480a conductive film 480b Conductive film 480c conductive film 483a conductive film 483b conductive film 483c conductive film 483d conductive film 483e conductive film 483f conductive film 484a conductive film 484b conductive film 484c conductive film 484d conductive 485a conductive film 485b conductive film 485c conductive film 485d conductive film 485e conductive film 487a conductive film 487b conductive film 487c conductive film 488a conductive film 488b conductive film 488c conductive film 489a conductive film 489b conductive film 490a conductive film 490b conductive film 491 conductive film 494 conductive Film 496 Conductive film 498 Insulating film 747x Opening 747y Opening 748x Opening 748y Opening 901 Flexible substrate 903 Adhesive layer 911 Fabrication substrate 912 Release layer 951 Crystalline substrate 992 Release layer 3001 First wiring 3002 Second wiring 3003 Third wiring Wiring 3004 Fourth wiring 3005 Fifth wiring 3200 Transistor 3300 Transistor 3400 Capacitance element 4003 Signal line driver circuit 4004 Scan line driver circuit 4018 FPC
4018a FPC
4018b FPC
7000 Display unit 7001 Display unit 7100 Mobile phone 7101 Case 7103 Operation button 7104 External connection port 7105 Speaker 7106 Microphone 7200 Television apparatus 7201 Case 7203 Stand 7211 Remote control device 7300 Mobile information terminal 7301 Case 7302 Operation button 7303 Information 7304 Information 7305 Information 7306 Information 7310 Portable information terminal 7320 Portable information terminal 7400 Lighting device 7401 Stand unit 7402 Light emitting unit 7403 Operation switch 7410 Lighting device 7412 Light emitting unit 7420 Lighting device 7422 Light emitting unit 7500 Portable information terminal 7501 Case 7502 Member 7503 Operation button 7600 Mobile Information terminal 7601 Housing 7602 Hinge 7650 Portable information terminal 7651 Non-display portion 7700 Band information terminal 7701 Case 7703a Button 7703b Button 7704a Speaker 7704b Speaker 7705 External connection port 7706 Microphone 7709 Battery 7800 Portable information terminal 7801 Band 7802 Input / output terminal 7803 Operation button 7804 Icon 7805 Battery 7850 Portable information terminal 7851 Display portion 7852 Case 7853 Case 7854 Band 7855 Operation button 7900 Head mounted display 7901 Display device 7902 Main body 7903 Mounting unit 7904 Lens 7910 Projector 7911 Display device 7912 Optical system 7913 Head mount display 7921L Display device 7921R Display device 7922 Main body 7923 Mounting unit 7924 Lens 9700 Automatic 9701 Car body 9702 Wheel 9703 Dashboard 9704 Light 9710 Display unit 9711 Display unit 9712 Display unit 9713 Display unit 9714 Display unit 9715 Display unit 9721 Display unit 9722 Display unit 9723 Display unit 9801 Housing 9802 Housing 9803 Display unit 9804 Display unit 9805 Microphone 9806 Speaker 9807 Operation key 9808 Stylus 9821 Case 9822 Display portion 9823 Keyboard 9824 Pointing device

Claims (27)

  1.  チャネル形成領域を結晶性半導体基板に有するトランジスタを形成する工程と、
     前記結晶性半導体基板上に前記トランジスタと電気的に接続される表示素子を形成する工程と、
     前記結晶性半導体基板を研磨し、前記結晶性半導体基板に厚さ1μm以上100μm以下の部分を形成する工程と、を有する、表示装置の作製方法。
    Forming a transistor having a channel formation region in a crystalline semiconductor substrate;
    Forming a display element electrically connected to the transistor on the crystalline semiconductor substrate;
    Polishing the crystalline semiconductor substrate, and forming a portion having a thickness of 1 μm to 100 μm in the crystalline semiconductor substrate.
  2.  チャネル形成領域を結晶性半導体基板に有するトランジスタを形成する工程と、
     前記結晶性半導体基板上に前記トランジスタと電気的に接続される表示素子を形成する工程と、
     前記結晶性半導体基板の一部が残るように前記結晶性半導体基板を研磨する工程と、を有する、表示装置の作製方法であり、
     前記結晶性半導体基板を研磨した後の前記表示装置は可撓性を有する、表示装置の作製方法。
    Forming a transistor having a channel formation region in a crystalline semiconductor substrate;
    Forming a display element electrically connected to the transistor on the crystalline semiconductor substrate;
    Polishing the crystalline semiconductor substrate so that a portion of the crystalline semiconductor substrate remains, and a method for manufacturing a display device,
    A method for manufacturing a display device, wherein the display device after polishing the crystalline semiconductor substrate is flexible.
  3.  請求項1又は2において、
     前記表示素子を形成する工程では、発光素子を形成し、
     前記結晶性半導体基板を研磨する工程の前に、前記発光素子上に絶縁膜を形成する工程と、前記絶縁膜上に着色層を形成する工程と、を有し、
     前記絶縁膜は、前記発光素子が発する光を透過する機能を有し、
     前記発光素子は、前記着色層側に光を射出する機能を有する、表示装置の作製方法。
    In claim 1 or 2,
    In the step of forming the display element, a light emitting element is formed,
    Before the step of polishing the crystalline semiconductor substrate, the step of forming an insulating film on the light emitting element, and the step of forming a colored layer on the insulating film,
    The insulating film has a function of transmitting light emitted from the light emitting element,
    The method for manufacturing a display device, wherein the light-emitting element has a function of emitting light to the colored layer side.
  4.  請求項1又は2において、
     前記表示素子を形成する工程では、発光素子を形成し、
     前記結晶性半導体基板を研磨する工程の前に、
     作製基板上に剥離層を形成する工程と、
     前記剥離層上に絶縁膜を形成する工程と、
     前記絶縁膜上に着色層を形成する工程と、
     前記発光素子と前記着色層とが互いに向き合うように、前記結晶性半導体基板と前記作製基板とを、第1の接着層を用いて貼り合わせる工程と、
     前記作製基板と前記絶縁膜とを分離する工程と、
     前記絶縁膜とフィルムとを、第2の接着層を用いて貼り合わせる工程と、を有し、
     前記絶縁膜及び前記フィルムは、前記発光素子が発する光を透過する機能を有し、
     前記発光素子は、前記着色層側に光を射出する機能を有する、表示装置の作製方法。
    In claim 1 or 2,
    In the step of forming the display element, a light emitting element is formed,
    Before the step of polishing the crystalline semiconductor substrate,
    Forming a release layer on a manufacturing substrate;
    Forming an insulating film on the release layer;
    Forming a colored layer on the insulating film;
    Bonding the crystalline semiconductor substrate and the manufacturing substrate using a first adhesive layer so that the light emitting element and the colored layer face each other;
    Separating the manufacturing substrate and the insulating film;
    Bonding the insulating film and the film using a second adhesive layer,
    The insulating film and the film have a function of transmitting light emitted from the light emitting element,
    The method for manufacturing a display device, wherein the light-emitting element has a function of emitting light to the colored layer side.
  5.  請求項1又は2において、
     前記結晶性半導体基板は、単結晶半導体基板である、表示装置の作製方法。
    In claim 1 or 2,
    The method for manufacturing a display device, wherein the crystalline semiconductor substrate is a single crystal semiconductor substrate.
  6.  請求項1又は2において、
     前記結晶性半導体基板は、単結晶シリコンを有する、表示装置の作製方法。
    In claim 1 or 2,
    The method for manufacturing a display device, wherein the crystalline semiconductor substrate includes single crystal silicon.
  7.  結晶性半導体基板と、
     チャネル形成領域を前記結晶性半導体基板に有するトランジスタと、
     前記トランジスタと電気的に接続された表示素子と、を有し、
     前記結晶性半導体基板は、1μm以上100μm以下の厚さの部分を有する、表示装置。
    A crystalline semiconductor substrate;
    A transistor having a channel formation region in the crystalline semiconductor substrate;
    A display element electrically connected to the transistor,
    The display device, wherein the crystalline semiconductor substrate has a portion with a thickness of 1 μm to 100 μm.
  8.  少なくとも一部が可撓性を有する表示装置であり、
     結晶性半導体基板と、
     チャネル形成領域を前記結晶性半導体基板に有するトランジスタと、
     前記トランジスタと電気的に接続された表示素子と、を有する、表示装置。
    A display device having at least a part of flexibility;
    A crystalline semiconductor substrate;
    A transistor having a channel formation region in the crystalline semiconductor substrate;
    A display device comprising: a display element electrically connected to the transistor.
  9.  少なくとも一部に曲面を有する表示装置であり、
     結晶性半導体基板と、
     チャネル形成領域を前記結晶性半導体基板に有するトランジスタと、
     前記トランジスタと電気的に接続された表示素子と、を有する、表示装置。
    A display device having a curved surface at least in part,
    A crystalline semiconductor substrate;
    A transistor having a channel formation region in the crystalline semiconductor substrate;
    A display device comprising: a display element electrically connected to the transistor.
  10.  請求項7乃至9のいずれか一項において、
     前記表示素子は、発光素子であり、
     前記表示素子上の封止層と、
     前記封止層上の着色層を有し、
     前記着色層は、前記発光素子と重なる部分を有し、
     前記封止層は、前記発光素子が発する光を透過する機能を有し、
     前記発光素子は、前記着色層側に光を射出する機能を有する、表示装置。
    In any one of Claims 7 thru | or 9,
    The display element is a light emitting element,
    A sealing layer on the display element;
    Having a colored layer on the sealing layer;
    The colored layer has a portion overlapping the light emitting element,
    The sealing layer has a function of transmitting light emitted from the light emitting element,
    The display device, wherein the light emitting element has a function of emitting light to the colored layer side.
  11.  請求項10において、
     前記着色層上の絶縁膜と、
     前記絶縁膜上の接着層と、
     前記接着層上の可撓性を有する基板と、を有する、表示装置。
    In claim 10,
    An insulating film on the colored layer;
    An adhesive layer on the insulating film;
    And a flexible substrate on the adhesive layer.
  12.  請求項11において、
     前記結晶性半導体基板と前記可撓性を有する基板との間に位置するタッチセンサを有する、表示装置。
    In claim 11,
    A display device comprising a touch sensor positioned between the crystalline semiconductor substrate and the flexible substrate.
  13.  請求項7乃至9のいずれか一項において、
     前記結晶性半導体基板は、単結晶半導体基板である、表示装置。
    In any one of Claims 7 thru | or 9,
    The display device, wherein the crystalline semiconductor substrate is a single crystal semiconductor substrate.
  14.  請求項7乃至9のいずれか一項において、
     前記結晶性半導体基板は、単結晶シリコンを有する、表示装置。
    In any one of Claims 7 thru | or 9,
    The display device, wherein the crystalline semiconductor substrate comprises single crystal silicon.
  15.  請求項7乃至9のいずれか一項において、
     前記表示装置の精細度が400ppi以上4000ppi以下である、表示装置。
    In any one of Claims 7 thru | or 9,
    The display device, wherein the display device has a definition of 400 ppi or more and 4000 ppi or less.
  16.  請求項7乃至9のいずれか一項に記載の表示装置と、
     アンテナ、バッテリ、カメラ、スピーカ、マイク、又は操作ボタンの少なくともいずれか一を有する、電子機器。
    A display device according to any one of claims 7 to 9,
    An electronic device having at least one of an antenna, a battery, a camera, a speaker, a microphone, and an operation button.
  17.  請求項7乃至9のいずれか一項に記載の表示装置と、
     アンテナ、バッテリ、カメラ、スピーカ、ヘッドホン、イヤホン、マイク、又は操作ボタンの少なくともいずれか一と、を有する、ヘッドマウントディスプレイ。
    A display device according to any one of claims 7 to 9,
    A head-mounted display having at least one of an antenna, a battery, a camera, a speaker, a headphone, an earphone, a microphone, and an operation button.
  18.  請求項7乃至9のいずれか一項に記載の表示装置と、
     レンズ、ミラー、プリズム、アンテナ、又は操作ボタンの少なくともいずれか一と、を有する、プロジェクター。
    A display device according to any one of claims 7 to 9,
    A projector having at least one of a lens, a mirror, a prism, an antenna, and an operation button.
  19.  左目用の表示部と、
     右目用の表示部と、
     アンテナ、バッテリ、カメラ、スピーカ、ヘッドホン、イヤホン、マイク、又は操作ボタンの少なくともいずれか一と、を有し、
     前記左目用の表示部及び前記右目用の表示部は、それぞれ表示装置を有し、
     前記表示装置は、結晶性半導体基板と、チャネル形成領域を前記結晶性半導体基板に有するトランジスタと、前記トランジスタと電気的に接続された表示素子と、を有し、
     前記結晶性半導体基板は、1μm以上100μm以下の厚さの部分を有する、ヘッドマウントディスプレイ。
    A display for the left eye,
    A display for the right eye,
    And at least one of an antenna, a battery, a camera, a speaker, a headphone, an earphone, a microphone, and an operation button,
    The display unit for the left eye and the display unit for the right eye each have a display device,
    The display device includes a crystalline semiconductor substrate, a transistor having a channel formation region in the crystalline semiconductor substrate, and a display element electrically connected to the transistor,
    The crystalline semiconductor substrate is a head mounted display having a thickness of 1 μm or more and 100 μm or less.
  20.  左目用の表示部と、
     右目用の表示部と、
     アンテナ、バッテリ、カメラ、スピーカ、ヘッドホン、イヤホン、マイク、又は操作ボタンの少なくともいずれか一と、を有し、
     前記左目用の表示部及び前記右目用の表示部は、それぞれ表示装置を有し、
     前記表示装置は、結晶性半導体基板と、チャネル形成領域を前記結晶性半導体基板に有するトランジスタと、前記トランジスタと電気的に接続された表示素子と、を有し、
     前記表示装置は、少なくとも一部が可撓性を有する、ヘッドマウントディスプレイ。
    A display for the left eye,
    A display for the right eye,
    And at least one of an antenna, a battery, a camera, a speaker, a headphone, an earphone, a microphone, and an operation button,
    The display unit for the left eye and the display unit for the right eye each have a display device,
    The display device includes a crystalline semiconductor substrate, a transistor having a channel formation region in the crystalline semiconductor substrate, and a display element electrically connected to the transistor,
    The display device is a head mounted display, at least a part of which is flexible.
  21.  左目用の表示部と、
     右目用の表示部と、
     アンテナ、バッテリ、カメラ、スピーカ、ヘッドホン、イヤホン、マイク、又は操作ボタンの少なくともいずれか一と、を有し、
     前記左目用の表示部及び前記右目用の表示部は、それぞれ表示装置を有し、
     前記表示装置は、結晶性半導体基板と、チャネル形成領域を前記結晶性半導体基板に有するトランジスタと、前記トランジスタと電気的に接続された表示素子と、を有し、
     前記表示装置は、少なくとも一部に曲面を有する、ヘッドマウントディスプレイ。
    A display for the left eye,
    A display for the right eye,
    And at least one of an antenna, a battery, a camera, a speaker, a headphone, an earphone, a microphone, and an operation button,
    The display unit for the left eye and the display unit for the right eye each have a display device,
    The display device includes a crystalline semiconductor substrate, a transistor having a channel formation region in the crystalline semiconductor substrate, and a display element electrically connected to the transistor,
    The display device is a head mounted display having a curved surface at least partially.
  22.  請求項19乃至21のいずれか一項において、
     前記表示素子は、発光素子であり、
     前記表示装置は、前記表示素子上の封止層と、前記封止層上の着色層と、を有し、
     前記着色層は、前記発光素子と重なる部分を有し、
     前記封止層は、前記発光素子が発する光を透過する機能を有し、
     前記発光素子は、前記着色層側に光を射出する機能を有する、ヘッドマウントディスプレイ。
    In any one of claims 19 to 21,
    The display element is a light emitting element,
    The display device includes a sealing layer on the display element, and a colored layer on the sealing layer,
    The colored layer has a portion overlapping the light emitting element,
    The sealing layer has a function of transmitting light emitted from the light emitting element,
    The light emitting element is a head mounted display having a function of emitting light to the colored layer side.
  23.  請求項22において、
     前記表示装置は、前記着色層上の絶縁膜と、前記絶縁膜上の接着層と、前記接着層上の可撓性を有する基板と、を有する、ヘッドマウントディスプレイ。
    In claim 22,
    The display device is a head mounted display having an insulating film on the colored layer, an adhesive layer on the insulating film, and a flexible substrate on the adhesive layer.
  24.  請求項23において、
     前記表示装置は、前記結晶性半導体基板と前記可撓性を有する基板との間に位置するタッチセンサを有する、ヘッドマウントディスプレイ。
    In claim 23,
    The display device is a head-mounted display having a touch sensor positioned between the crystalline semiconductor substrate and the flexible substrate.
  25.  請求項19乃至21のいずれか一項において、
     前記結晶性半導体基板は、単結晶半導体基板である、ヘッドマウントディスプレイ。
    In any one of claims 19 to 21,
    The crystalline semiconductor substrate is a single crystal semiconductor substrate, a head mounted display.
  26.  請求項19乃至21のいずれか一項において、
     前記結晶性半導体基板は、単結晶シリコンを有する、ヘッドマウントディスプレイ。
    In any one of claims 19 to 21,
    The crystalline semiconductor substrate is a head mounted display having single crystal silicon.
  27.  請求項19乃至21のいずれか一項において、
     前記表示装置の精細度が400ppi以上4000ppi以下である、ヘッドマウントディスプレイ。
    In any one of claims 19 to 21,
    A head mounted display in which the definition of the display device is 400 ppi or more and 4000 ppi or less.
PCT/IB2016/053314 2015-06-19 2016-06-07 Method for fabricating display device, display device, electronic device, projector, and head-mounted display WO2016203340A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017524137A JP6708643B2 (en) 2015-06-19 2016-06-07 Manufacturing method of display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-123825 2015-06-19
JP2015123825 2015-06-19
JP2015-201642 2015-10-12
JP2015201642 2015-10-12

Publications (1)

Publication Number Publication Date
WO2016203340A1 true WO2016203340A1 (en) 2016-12-22

Family

ID=57545079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/053314 WO2016203340A1 (en) 2015-06-19 2016-06-07 Method for fabricating display device, display device, electronic device, projector, and head-mounted display

Country Status (2)

Country Link
JP (2) JP6708643B2 (en)
WO (1) WO2016203340A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10319743B2 (en) 2016-12-16 2019-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display system, and electronic device
JP2019109505A (en) * 2017-12-19 2019-07-04 エルジー ディスプレイ カンパニー リミテッド Display device
JP2019109504A (en) * 2017-12-19 2019-07-04 エルジー ディスプレイ カンパニー リミテッド Display device
JP2021051519A (en) * 2019-09-24 2021-04-01 サン・シールド株式会社 Work support system
JPWO2020049392A1 (en) * 2018-09-05 2021-09-24 株式会社半導体エネルギー研究所 Display devices, display modules, electronic devices, and methods for manufacturing display devices.
JP2023032751A (en) * 2021-08-27 2023-03-09 株式会社Joled Display device
WO2023073478A1 (en) * 2021-10-27 2023-05-04 株式会社半導体エネルギー研究所 Display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005266754A (en) * 2004-02-19 2005-09-29 Seiko Epson Corp Method for manufacturing electrooptical device, electrooptical device and electronic equipment
JP2008311628A (en) * 2007-05-17 2008-12-25 Semiconductor Energy Lab Co Ltd Display device
JP2009260312A (en) * 2008-03-26 2009-11-05 Semiconductor Energy Lab Co Ltd Method for manufacturing soi substrate and method for manufacturing semiconductor device
JP2010232652A (en) * 2009-03-05 2010-10-14 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2013251255A (en) * 2012-05-04 2013-12-12 Semiconductor Energy Lab Co Ltd Method for manufacturing light-emitting device
JP2015056335A (en) * 2013-09-13 2015-03-23 セイコーエプソン株式会社 Electro-optical device, electronic apparatus, and method of manufacturing electro-optical device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798460A (en) * 1992-10-21 1995-04-11 Seiko Instr Inc Semiconductor device and light valve device
US7786496B2 (en) * 2002-04-24 2010-08-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US8013525B2 (en) * 2009-04-09 2011-09-06 Global Oled Technology Llc Flexible OLED display with chiplets
JP2011253733A (en) * 2010-06-02 2011-12-15 Akevono Kohgyo Co Ltd Electroluminescent element and method for manufacturing the same
JP5372112B2 (en) * 2011-11-04 2013-12-18 新光電気工業株式会社 Wiring board manufacturing method and semiconductor package manufacturing method
JP5992006B2 (en) * 2014-03-17 2016-09-14 ルネサスエレクトロニクス株式会社 Semiconductor device
CN103996696A (en) * 2014-05-09 2014-08-20 京东方科技集团股份有限公司 OLED display panel, manufacturing method of OLED display panel and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005266754A (en) * 2004-02-19 2005-09-29 Seiko Epson Corp Method for manufacturing electrooptical device, electrooptical device and electronic equipment
JP2008311628A (en) * 2007-05-17 2008-12-25 Semiconductor Energy Lab Co Ltd Display device
JP2009260312A (en) * 2008-03-26 2009-11-05 Semiconductor Energy Lab Co Ltd Method for manufacturing soi substrate and method for manufacturing semiconductor device
JP2010232652A (en) * 2009-03-05 2010-10-14 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2013251255A (en) * 2012-05-04 2013-12-12 Semiconductor Energy Lab Co Ltd Method for manufacturing light-emitting device
JP2015056335A (en) * 2013-09-13 2015-03-23 セイコーエプソン株式会社 Electro-optical device, electronic apparatus, and method of manufacturing electro-optical device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10319743B2 (en) 2016-12-16 2019-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display system, and electronic device
US11417867B2 (en) 2017-12-19 2022-08-16 Lg Display Co., Ltd. Display device
JP2019109505A (en) * 2017-12-19 2019-07-04 エルジー ディスプレイ カンパニー リミテッド Display device
JP2019109504A (en) * 2017-12-19 2019-07-04 エルジー ディスプレイ カンパニー リミテッド Display device
US10615236B2 (en) 2017-12-19 2020-04-07 Lg Display Co., Ltd. Display device
US10903296B2 (en) 2017-12-19 2021-01-26 Lg Display Co., Ltd. Display device
US11925066B2 (en) 2017-12-19 2024-03-05 Lg Display Co., Ltd. Display device
JPWO2020049392A1 (en) * 2018-09-05 2021-09-24 株式会社半導体エネルギー研究所 Display devices, display modules, electronic devices, and methods for manufacturing display devices.
US11908850B2 (en) 2018-09-05 2024-02-20 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic device, and method for manufacturing display device
JP2021051519A (en) * 2019-09-24 2021-04-01 サン・シールド株式会社 Work support system
JP2023032751A (en) * 2021-08-27 2023-03-09 株式会社Joled Display device
JP7338887B2 (en) 2021-08-27 2023-09-05 株式会社Joled Display device
WO2023073478A1 (en) * 2021-10-27 2023-05-04 株式会社半導体エネルギー研究所 Display device

Also Published As

Publication number Publication date
JPWO2016203340A1 (en) 2018-06-28
JP2020140213A (en) 2020-09-03
JP6708643B2 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
US11800747B2 (en) Display device and electronic device
JP6708643B2 (en) Manufacturing method of display device
JP6768874B2 (en) Display device
US10135037B2 (en) Manufacturing method of light-emitting device, light-emitting device, module, and electronic device
US11791344B2 (en) Display device, display module, and electronic device
US10861917B2 (en) Method for manufacturing a flexible device having transistors
US9843017B2 (en) Display device, manufacturing method thereof, and electronic device
JP2017227891A (en) Display device and method of driving the same
CN107359202B (en) Semiconductor device and display device including the same
WO2022123388A1 (en) Display system
KR20220104165A (en) A display device, a display module, an electronic device, and a manufacturing method of the display device
US20240057402A1 (en) Display device
US20240074240A1 (en) Method for manufacturing display device, display device, display module, and electronic device
US20240107845A1 (en) Display apparatus, fabrication method of the display apparatus, display module, and electronic device
WO2022123390A1 (en) Operation method for display system
US20240065074A1 (en) Method for manufacturing display device, display device, display module, and electronic device
KR20170015205A (en) Method for manufacturing display device and method for manufacturing electronic device
TW202332342A (en) Display device and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524137

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811101

Country of ref document: EP

Kind code of ref document: A1