WO2016202063A1 - 一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器的参数整定方法 - Google Patents

一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器的参数整定方法 Download PDF

Info

Publication number
WO2016202063A1
WO2016202063A1 PCT/CN2016/078929 CN2016078929W WO2016202063A1 WO 2016202063 A1 WO2016202063 A1 WO 2016202063A1 CN 2016078929 W CN2016078929 W CN 2016078929W WO 2016202063 A1 WO2016202063 A1 WO 2016202063A1
Authority
WO
WIPO (PCT)
Prior art keywords
bdf
frequency
value
generator
damping
Prior art date
Application number
PCT/CN2016/078929
Other languages
English (en)
French (fr)
Inventor
徐政
王世佳
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US15/523,135 priority Critical patent/US10374427B2/en
Publication of WO2016202063A1 publication Critical patent/WO2016202063A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/005Emergency protective circuit arrangements for limiting excess current or voltage without disconnection avoiding undesired transient conditions
    • H02H9/007Emergency protective circuit arrangements for limiting excess current or voltage without disconnection avoiding undesired transient conditions avoiding or damping oscillations, e.g. fenoresonance or travelling waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/08Limitation or suppression of earth fault currents, e.g. Petersen coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • H03J3/22Continuous tuning of single resonant circuit by varying inductance and capacitance simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • H04B15/02Reducing interference from electric apparatus by means located at or near the interfering apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • H04B15/005Reducing noise, e.g. humm, from the supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • the invention belongs to the technical field of power system control, and particularly relates to a parameter setting method of a bypass damping filter in a power generation system capable of suppressing subsynchronous resonance.
  • series compensation capacitors in long-distance transmission lines is an effective method to improve the transmission capacity and transient stability of power systems. It is widely used in the transmission lines of large-capacity power plants in China, such as Tuoketuo Power Plant in Inner Mongolia and Jinjie Power Plant in Shaanxi Province. And the Yimin Power Plant in the Northeast.
  • the use of series compensation capacitors may cause the generator shaft to be torsional, causing subsynchronous resonance, which seriously jeopardizes the safety of the generator.
  • a filtering device such as a blocking filter
  • the thyristor-based flexible AC transmission control device can slow down the occurrence of subsynchronous resonance as long as the control is properly set, but the parameter design method of the above device is relatively complicated, and its effect is sensitive to changes in system operation.
  • the flexible AC transmission device (FACTS) mentioned above will inject a certain amount of harmonics into the system due to the control of the thyristor. At the same time, since the thyristor is switched once per cycle, the transient response time is still relatively slow.
  • the Bypass Damping Filter is a filtering device that suppresses the subsynchronous oscillation of the power system. It is usually connected in parallel at both ends of the series compensation capacitor. The structure is shown in the dotted line in Figure 1. At the power frequency, the capacitance and inductance of the BDF are tuned to parallel resonance with a large impedance, so the current flowing through the BDF is small at steady state and does not affect the steady state operation of the system. In the transient state, the parallel structure formed by the capacitance and inductance of the BDF has a significant drop in the impedance in the subsynchronous frequency range, and the subsynchronous current is bypassed via the BDF. In this process, the damping resistance of the BDF has an inhibitory effect on the subsynchronous current.
  • the meaning of subsynchronous resonance usually includes three aspects, namely Induction Generator Effect, Torsional Interaction and Transient Torque Magnification (Transient). Torque Amplification).
  • BDF is generally considered to have an effect only on the induction generator effect because the synchronous generator can be treated as an induction generator in the subsynchronous frequency range with a certain negative resistance, and the damping resistance of the BDF can compensate for the negative resistance. But so far, the suppression effect of BDF on torsional interaction and transient torque amplification has not been fully understood. There is no corresponding method to adjust the parameters of BDF, which has the ability to suppress torsional interaction and transient torque amplification. .
  • the present invention provides a parameter tuning method for a bypass damper filter in a power generation system capable of suppressing subsynchronous resonance, which can suppress the torsional interaction in addition to suppressing the effect of the induction generator. And transient torque amplification, thereby improving the suppression effect of the bypass damping filter on the subsynchronous resonance.
  • a parameter tuning method for a bypass damper filter in a power generation system capable of suppressing subsynchronous resonance includes the following steps:
  • X L is the inductive reactance standard value of the system under power frequency (including generator secondary transient reactance, transformer leakage reactance, transmission line reactance and receiving end equivalent reactance), X C is series capacitor in power frequency The tolerance value of the standard;
  • the minimum value is determined by adjusting the damping resistance in the BDF Within a reasonable range, the actual physical parameters of the damping resistor are determined.
  • the frequency standard value It is set to the standard value corresponding to the middle frequency in the lowest characteristic frequency range from 2Hz to torsional mode; it can better avoid the low frequency oscillation mode and torsional vibration mode of the motor.
  • the actual physical parameters of the capacitance and the inductance in the BDF are calculated by the following formula:
  • f 0 is the power frequency
  • Z B is the impedance reference of the system
  • C BDF is the capacitance of the capacitor in BDF
  • L BDF is the inductance of the inductance in BDF.
  • the minimum value of the electrical negative damping of the generator when the BDF is not configured is calculated by the following formula
  • ⁇ 0 is the air gap flux linkage value of the generator (1.0 pu can be used for simplified calculation), and R is the resistance value of the system.
  • the minimum value of the electrical negative damping of the generator after configuring the BDF is calculated by the following formula
  • ⁇ 0 is the air gap flux linkage value of the generator
  • R is the resistance value of the system
  • R BDF is the resistance value of the damping resistor in BDF.
  • the minimum value is adjusted by adjusting the damping resistance in the BDF.
  • the parameter setting method of the invention can avoid the frequency of the electrical negative damping minimum value of the system after the BDF is configured, avoiding the torsional vibration frequency and the low frequency oscillation frequency of the shaft system, and ensuring that the amplitude of the minimum value is within a suitable range, thereby achieving The effect of suppressing the torsional interaction.
  • the damping resistance of the BDF can significantly consume the energy of the transient next synchronous current, that is, the energy of the oscillation in the subsynchronous frequency range, so the parameter tuning method of the present invention further suppresses the amplification of the transient torque.
  • the BDF configuration using the parameter tuning method of the present invention can suppress the torsional interaction and transient torque amplification.
  • the method of the present invention improves the BDF pair subsynchronous resonance. The inhibitory effect.
  • FIG. 1 is a schematic structural view of a bypass damper filter.
  • X′′ d is the generator secondary transient reactance
  • X T is the transformer leakage reactance
  • X Line is the transmission line reactance
  • R is the transmission line resistance
  • X C is the series capacitance of the line
  • X S is the equivalent reactance of the receiving system.
  • Figure 3 is a schematic diagram showing the comparison of electrical negative damping under the condition of BDF and BDF unconfigured under 40% string compensation.
  • Fig. 4(a) is a diagram showing the torque response of the shafting LPB-GEN section (low-pressure cylinder B-generator section) under fault when BDF is not configured under 40% of the series compensation.
  • Fig. 4(b) is a schematic diagram showing the torque response of the LPB-GEN section of the shafting system after failure of the BDF configuration under 40% of the series compensation.
  • Figure 2 shows the first standard model of IEEE subsynchronous oscillation (with rated frequency 60 Hz) configured with BDF.
  • the specific configuration of the BDF is shown in Figure 1.
  • the turbo generator shaft has a total of five torsional modes, and the characteristic frequencies are 15.71 Hz, 20.21 Hz, 25.55 Hz, 32.28 Hz, and 47.46 Hz from low to high.
  • the rate ranges from 0 to 2 Hz.
  • the frequency of the electrical negative damping minimum value after BDF configuration is between the low frequency oscillation mode (2 Hz) and the torsional vibration mode (15.71 Hz) with the lowest characteristic frequency, ie 8.5 Hz (0.1417 pu).
  • the method for selecting the target frequency at which the electrical negative damping minimum value occurs includes, but is not limited to, the method selected in this embodiment.
  • the reactance value (X BDF ) at the power frequency can be calculated according to the following formula:
  • the minimum value of the electrical negative damping after the BDF is configured Minimum value of electrical negative damping relative to unconfigured BDF The following relationship should be met:
  • the time domain simulation of the system is carried out to better illustrate the suppression of the shafting torsional interaction and transient torque amplification by the BDF parameter tuning method of the present invention.
  • a three-phase short-circuit fault is applied at bus B of Figure 2, and the fault clearing time is 0.1 s.
  • the torque response of the transient lower shaft train LPB-GEN is shown in Fig. 4.
  • Fig. 4(a) shows the torque response of the unconfigured BDF
  • Fig. 4(b) shows the torque response of the BDF.
  • Figure 4(a) shows that in the absence of BDF, the torsional interaction of the shafting LPB-GEN segment is significantly excited and the torque is rapidly diverging, which would be detrimental to the stable operation of the shafting;
  • Figure 4(b) shows that When the BDF is configured in accordance with an embodiment, the torque of the shafting LPB-GEN section converges quickly, which represents that the torsional interaction of the shaft section is significantly suppressed.
  • the torque in the transient state of the shafting system after the BDF configuration is significantly reduced, which indicates that the BDF configured according to the parameter tuning method of the present invention can suppress the shafting.
  • the torsional interaction also significantly suppresses shafting transient torque amplification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器(BDF)的参数整定方法,通过确定BDF的电容和电感参数,使目标发电机电气负阻尼达到极小值的频率避开低频振荡模式的频率和机组轴系各扭振模式的特征频率;通过确定BDF的阻尼电阻值使电气负阻尼的极小值在合理范围内。该方法可达到抑制扭转相互作用的效果。此外,BDF的阻尼电阻能够显著消耗暂态下次同步电流的能量,即消耗次同步频率范围内振荡的能量,因此抑制了暂态扭矩的放大。

Description

一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器的参数整定方法 技术领域
本发明属于电力系统控制技术领域,具体涉及一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器的参数整定方法。
背景技术
在远距离输电线路中使用串联补偿电容,是提高电力系统输电容量和暂态稳定性的有效方法,在我国大容量电厂的送出线路中得到广泛应用,如内蒙古托克托电厂、陕西锦界电厂和东北的伊敏电厂等。但是串联补偿电容的使用可能导致发电机轴系扭振,引起次同步谐振,从而严重危害发电机的安全。
为了解决这一问题,学术界和工程界做了许多工作来研究对策和解决方法。如对发电机励磁系统添加用于抑制次同步振荡的附加控制信号,在系统中加装滤波装置(如阻塞滤波器)等。基于晶闸管的柔性交流输电控制装置只要控制整定得当,也能够减缓次同步谐振的发生,但是以上装置的参数设计方法比较复杂,且其效果对系统运行情况变化较为敏感。此外,以上提到的柔性交流输电装置(FACTS)由于采用晶闸管的控制,会向系统注入一定量的谐波;同时由于晶闸管每个周波投切一次,其暂态响应时间仍比较慢。
旁路阻尼滤波器(Bypass Damping Filter,BDF)是一种抑制电力系统次同步振荡的滤波装置,通常并联在串联补偿电容器的两端,其结构如图1中虚线框所示。在工频下,BDF的电容和电感被调谐成并联谐振,具有很大的阻抗,因此在稳态下BDF流过的电流为很小,不影响系统的稳态运行。在暂态下,由于BDF的电容和电感所形成的并联结构在次同步频率范围内的阻抗显著下降,次同步电流经由BDF而被旁路。在这一过程中,BDF的阻尼电阻对次同步电流具有抑制作用。
次同步谐振的含义通常包括三个方面,即感应发电机效应(Induction Generator Effect)、扭转相互作用(Torsional Interaction)和暂态扭矩放大(Transient  Torque Amplification)。BDF通常被认为仅对感应发电机效应有作用,原因在于次同步频率范围内同步发电机可当作感应发电机处理,具有一定的负电阻,而BDF的阻尼电阻能够对该负电阻进行补偿。但到目前为止,BDF对于扭转相互作用和暂态扭矩放大作用的抑制效果并未得到充分认识,尚未有相应方法对BDF的参数进行整定,使之具有抑制扭转相互作用和暂态扭矩放大的能力。
发明内容
针对现有技术所存在的上述问题,本发明提供了一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器的参数整定方法,除能抑制感应发电机效应外,还能够抑制扭转相互作用和暂态扭矩放大,从而提高了旁路阻尼滤波器对次同步谐振的抑制效果。
一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器的参数整定方法,包括如下步骤:
(1)根据系统中发电机的轴系参数计算出轴系各扭振模式的特征频率,并取发电机低频振荡模式的频率范围为0~2Hz;
(2)设定配置BDF后发电机电气负阻尼达到极小值对应的频率标幺值
Figure PCTCN2016078929-appb-000001
并使其避开上述低频振荡模式的频率范围以及各扭振模式的特征频率;
(3)根据所述的频率标幺值
Figure PCTCN2016078929-appb-000002
通过以下公式计算BDF中电容及电感在工频下的阻抗标幺值XBDF
Figure PCTCN2016078929-appb-000003
Figure PCTCN2016078929-appb-000004
其中,XL为系统在工频下的感抗标幺值(包括发电机次暂态电抗、变压器漏抗、输电线路电抗和受端等值电抗),XC为串补电容器在工频下的容抗标幺值;
(4)根据所述的阻抗标幺值XBDF计算BDF中电容和电感的实际物理参数;
(5)计算未配置BDF时发电机电气负阻尼的极小值
Figure PCTCN2016078929-appb-000005
(6)根据所述的频率标幺值
Figure PCTCN2016078929-appb-000006
和阻抗标幺值XBDF,计算配置BDF后发电机电气负阻尼的极小值
Figure PCTCN2016078929-appb-000007
(7)通过调节BDF中的阻尼电阻使所述的极小值
Figure PCTCN2016078929-appb-000008
处于合理范围内, 从而确定出该阻尼电阻的实际物理参数。
优选地,所述的频率标幺值
Figure PCTCN2016078929-appb-000009
设定为2Hz至扭振模式最低特征频率区间内正中间频率对应的标幺值;能够更好的避开发电机的低频振荡模式和扭振模式。
进一步地,所述的步骤(4)中通过以下公式计算BDF中电容和电感的实际物理参数:
Figure PCTCN2016078929-appb-000010
Figure PCTCN2016078929-appb-000011
其中:f0为工频频率,ZB为系统的阻抗基准值,CBDF为BDF中电容的容值,LBDF为BDF中电感的感值。
进一步地,所述的步骤(5)中通过以下公式计算未配置BDF时发电机电气负阻尼的极小值
Figure PCTCN2016078929-appb-000012
Figure PCTCN2016078929-appb-000013
Figure PCTCN2016078929-appb-000014
其中:ψ0为发电机的气隙磁链标幺值(简化计算时可取1.0pu),R为系统的电阻标幺值。
进一步地,所述的步骤(6)中通过以下公式计算配置BDF后发电机电气负阻尼的极小值
Figure PCTCN2016078929-appb-000015
Figure PCTCN2016078929-appb-000016
Figure PCTCN2016078929-appb-000017
其中:
Figure PCTCN2016078929-appb-000018
ψ0为发电机的气隙磁链标幺值,R为系统的电阻标幺值,RBDF为BDF中阻尼电阻的阻值。
进一步地,所述的步骤(7)中通过调节BDF中的阻尼电阻使极小值
Figure PCTCN2016078929-appb-000019
处于以下合理范围内:
Figure PCTCN2016078929-appb-000020
本发明参数整定方法可使配置BDF后系统电气负阻尼极小值出现的频率避开轴系各扭振频率和低频振荡频率,同时保证该极小值的幅值处在合适范围内,从而达到抑制扭转相互作用的效果。此外,BDF的阻尼电阻能够显著消耗暂态下次同步电流的能量,即消耗次同步频率范围内振荡的能量,故本发明参数整定方法进而抑制了暂态扭矩的放大。
综上,使用本发明参数整定方法对BDF进行配置,能够抑制扭转相互作用和暂态扭矩放大,相比于传统上认为BDF仅能抑制感应发电机效应,本发明方法提高了BDF对次同步谐振的抑制效果。
附图说明
图1为旁路阻尼滤波器的配置结构示意图。
图2为配置了BDF的发电系统次同步振荡的标准模型示意图;图中,X″d为发电机次暂态电抗,XT为变压器漏抗,XLine为传输线路电抗,R为传输线路电阻,XC为线路的串补电容容抗,XS为受端系统等值电抗。
图3为串补度40%工况下配置BDF和未配置BDF条件下电气负阻尼对比示意图。
图4(a)为串补度40%工况下未配置BDF时轴系LPB-GEN段(低压缸B-发电机段)在故障下的扭矩响应示意图。
图4(b)为串补度40%工况下配置BDF后轴系LPB-GEN段在故障下的扭矩响应示意图。
具体实施方式
为了更为具体地描述本发明,下面结合附图及具体实施方式对本发明的技术方案进行详细说明。
图2所示的为配置了BDF的IEEE次同步振荡第一标准模型(额定频率60Hz),串补度设置为40%(XC=0.20pu),其余电气参数均已标示在图上(系统阻抗基准值ZB为325.55Ω)。BDF的具体配置结构如图1所示。
本实施方式中汽轮发电机组轴系共有5个扭振模式,特征频率由低到高依次为15.71Hz、20.21Hz、25.55Hz、32.28Hz和47.46Hz。考虑低频振荡模式的频 率范围为0~2Hz,取配置BDF后电气负阻尼极小值出现的频率介于低频振荡模式(2Hz)至具有最低特征频率的扭振模式(15.71Hz)之间,即8.5Hz(0.1417pu)。需要说明的是,电气负阻尼极小值出现的目标频率的选取方法包括但不局限于本实施例所选取的方法。
根据本发明BDF电容和电感的配置方法,其在工频下的电抗值(XBDF)可按如下公式进行计算:
Figure PCTCN2016078929-appb-000021
式中,
Figure PCTCN2016078929-appb-000022
XL为系统工频下的感抗标幺值,包括发电机次暂态电抗、变压器漏抗、输电线路电抗和等值系统电抗,即XL=0.869pu;XC为串补电容在工频下的容抗标幺值,即XC=0.20pu。XBDF的计算结果及相应的电容电感参数如表1所示:
表1
串补度 40%
XBDF/pu 0.1039
电感/mH 89.754
电容/uF 78.394
根据本发明BDF阻尼电阻配置方法,配置BDF后电气负阻尼极小值
Figure PCTCN2016078929-appb-000023
相对于未配置BDF时电气负阻尼极小值
Figure PCTCN2016078929-appb-000024
应满足如下关系:
Figure PCTCN2016078929-appb-000025
未配置BDF时电气负阻尼极小值
Figure PCTCN2016078929-appb-000026
按照如下公式进行计算,其中发电机气隙磁链标幺值ψ0取1.17pu;
Figure PCTCN2016078929-appb-000027
Figure PCTCN2016078929-appb-000028
故配置BDF后电气负阻尼的极小值
Figure PCTCN2016078929-appb-000029
应满足
Figure PCTCN2016078929-appb-000030
Figure PCTCN2016078929-appb-000031
事实上,可取BDF阻尼电阻RBDF=15Ω(0.0461pu),则
Figure PCTCN2016078929-appb-000032
可按如下公式进行计算:
Figure PCTCN2016078929-appb-000033
Figure PCTCN2016078929-appb-000034
Figure PCTCN2016078929-appb-000035
Figure PCTCN2016078929-appb-000036
配置BDF后电气负阻尼极小值
Figure PCTCN2016078929-appb-000037
满足上述关系。
对于上述串补度40%所对应的工况,分别测试其在配置BDF和未配置BDF条件下的电气负阻尼,如图3所示,需要说明的是图3右下角的子图为配置BDF后电气负阻尼在5~12Hz范围内的局部放大。图3的结果显示,在未配置BDF的条件下,电气负阻尼集中在25~35Hz之间,较容易激发特征频率为25.55Hz和32.28Hz的扭振模式;在按照本实施方式配置BDF后,电气负阻尼均移动到了8.5Hz附近,避开了机组轴系所有的扭振模式和低频振荡模式,从而能够对轴系扭转相互作用进行抑制;同时需注意到配置BDF后电气负阻尼的极小值大约为未配置BDF时电气负阻尼极小值的一半。
对系统进行时域仿真,以便更好说明本发明BDF参数整定方法对轴系扭转相互作用和暂态扭矩放大的抑制作用。在图2母线B处施加三相短路故障,故障清除时间0.1s。暂态下轴系LPB-GEN段的扭矩响应如图4所示,其中图4(a)为未配置BDF的扭矩响应情况,图4(b)为配置了BDF的扭矩响应情况。
图4(a)表明,在未配置BDF情况下,轴系LPB-GEN段的扭转相互作用被显著激发,扭矩快速发散,这将不利于轴系的稳定运行;图4(b)表明,在按照实施方式配置BDF后,轴系LPB-GEN段的扭矩收敛很快,这代表该轴段的扭转相互作用被显著抑制。此外,图4(a)和图4(b)对比可看出,配置BDF后轴系暂态下的扭矩显著减小,这说明按照本发明参数整定方法配置的BDF,不但能够抑制轴系的扭转相互作用,还能够显著抑制轴系暂态扭矩放大。
上述的对实施例的描述是为便于本技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对上述实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (6)

  1. 一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器的参数整定方法,包括如下步骤:
    (1)根据系统中发电机的轴系参数计算出轴系各扭振模式的特征频率,并取发电机低频振荡模式的频率范围为0~2Hz;
    (2)设定配置BDF后发电机电气负阻尼达到极小值对应的频率标幺值
    Figure PCTCN2016078929-appb-100001
    并使其避开上述低频振荡模式的频率范围以及各扭振模式的特征频率;
    (3)根据所述的频率标幺值
    Figure PCTCN2016078929-appb-100002
    通过以下公式计算BDF中电容及电感在工频下的阻抗标幺值XBDF
    Figure PCTCN2016078929-appb-100003
    Figure PCTCN2016078929-appb-100004
    其中,XL为系统在工频下的感抗标幺值,XC为串补电容器在工频下的容抗标幺值;
    (4)根据所述的阻抗标幺值XBDF计算BDF中电容和电感的实际物理参数;
    (5)计算未配置BDF时发电机电气负阻尼的极小值
    Figure PCTCN2016078929-appb-100005
    (6)根据所述的频率标幺值
    Figure PCTCN2016078929-appb-100006
    和阻抗标幺值XBDF,计算配置BDF后发电机电气负阻尼的极小值
    Figure PCTCN2016078929-appb-100007
    (7)通过调节BDF中的阻尼电阻使所述的极小值
    Figure PCTCN2016078929-appb-100008
    处于合理范围内,从而确定出该阻尼电阻的实际物理参数。
  2. 根据权利要求1所述的参数整定方法,其特征在于:所述的频率标幺值
    Figure PCTCN2016078929-appb-100009
    设定为2Hz至扭振模式最低特征频率区间内正中间频率对应的标幺值。
  3. 根据权利要求1所述的参数整定方法,其特征在于:所述的步骤(4)中通过以下公式计算BDF中电容和电感的实际物理参数:
    Figure PCTCN2016078929-appb-100010
    Figure PCTCN2016078929-appb-100011
    其中:f0为工频频率,ZB为系统的阻抗基准值,CBDF为BDF中电容的容值,LBDF为BDF中电感的感值。
  4. 根据权利要求1所述的参数整定方法,其特征在于:所述的步骤(5)中通过以下公式计算未配置BDF时发电机电气负阻尼的极小值
    Figure PCTCN2016078929-appb-100012
    Figure PCTCN2016078929-appb-100013
    Figure PCTCN2016078929-appb-100014
    其中:ψ0为发电机的气隙磁链标幺值,R为系统的电阻标幺值。
  5. 根据权利要求1所述的参数整定方法,其特征在于:所述的步骤(6)中通过以下公式计算配置BDF后发电机电气负阻尼的极小值
    Figure PCTCN2016078929-appb-100015
    Figure PCTCN2016078929-appb-100016
    Figure PCTCN2016078929-appb-100017
    其中:
    Figure PCTCN2016078929-appb-100018
    ψ0为发电机的气隙磁链标幺值,R为系统的电阻标幺值,RBDF为BDF中阻尼电阻的阻值。
  6. 根据权利要求1所述的参数整定方法,其特征在于:所述的步骤(7)中通过调节BDF中的阻尼电阻使极小值
    Figure PCTCN2016078929-appb-100019
    处于以下合理范围内:
    Figure PCTCN2016078929-appb-100020
PCT/CN2016/078929 2015-06-19 2016-04-11 一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器的参数整定方法 WO2016202063A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/523,135 US10374427B2 (en) 2015-06-19 2016-04-11 Parameter tuning approach for bypass damping filter to suppress subsynchronous resonance in power systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510350906.0A CN105098769B (zh) 2015-06-19 2015-06-19 一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器的参数整定方法
CN201510350906.0 2015-06-19

Publications (1)

Publication Number Publication Date
WO2016202063A1 true WO2016202063A1 (zh) 2016-12-22

Family

ID=54578637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078929 WO2016202063A1 (zh) 2015-06-19 2016-04-11 一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器的参数整定方法

Country Status (3)

Country Link
US (1) US10374427B2 (zh)
CN (1) CN105098769B (zh)
WO (1) WO2016202063A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098769B (zh) * 2015-06-19 2017-06-13 浙江大学 一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器的参数整定方法
CN106571638A (zh) * 2016-11-10 2017-04-19 南京南瑞集团公司 一种低频振荡类型的判别方法
CN109546663B (zh) * 2017-09-21 2021-12-10 南京南瑞继保电气有限公司 一种次同步振荡抑制系统阻尼控制信号调整方法
CN108270236B (zh) * 2018-01-11 2019-10-15 浙江大学 一种能够抑制多发电机系统次同步谐振的旁路阻尼滤波器参数整定方法
CN108443022B (zh) * 2018-03-01 2019-08-09 南京航空航天大学 变旋翼转速飞行器发动机扭振抑制方法及装置
CN108448615B (zh) * 2018-04-02 2021-09-21 湖南大学 新能源多机接入弱电网的两带阻滤波器高频振荡抑制方法
CN110445109B (zh) * 2018-05-04 2022-03-29 南京南瑞继保电气有限公司 一种电压互感器铁磁谐振的快速消除方法及装置
EP3581791A1 (en) * 2018-06-13 2019-12-18 Vestas Wind Systems A/S A control system for wind turbines for reducing disturbances in an electrical grid
CN110134908B (zh) * 2019-05-20 2023-04-11 云南电网有限责任公司 一种电力系统稳定器pss增益计算方法以及计算装置
CN110212553B (zh) * 2019-06-11 2020-12-18 国家能源投资集团有限责任公司 次同步谐振的抑制方法、装置、存储介质及处理器
CN112310976A (zh) * 2020-10-28 2021-02-02 西安布伦帕电力无功补偿技术有限公司 矿热炉串联补偿电路
CN113193576A (zh) * 2021-06-10 2021-07-30 荣信汇科电气股份有限公司 一种用于抑制发电机组次同步暂态振荡的方法
CN113258592B (zh) * 2021-06-25 2022-06-28 广东电网有限责任公司 海上风电次同步和超同步振荡的附加阻尼抑制系统及方法
CN115296263B (zh) * 2022-08-19 2023-05-16 云南电网有限责任公司曲靖供电局 Pid调节的主动匹配电阻的电压互感器铁磁谐振消谐方法
CN116565862B (zh) * 2023-07-10 2023-09-15 华北电力科学研究院有限责任公司 次同步振荡抑制装置的控制方法及装置
CN116663435B (zh) * 2023-08-01 2023-10-20 华中科技大学 一种阻尼母线结构参数优化方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340841A (en) * 1976-09-25 1978-04-13 Mitsubishi Electric Corp Improving stability for power system by series compensating circuit
US4724333A (en) * 1985-04-10 1988-02-09 Electric Power Research Institute Method and means for damping supersynchronous oscillations in an ac power system
CN101895117A (zh) * 2010-07-27 2010-11-24 南方电网技术研究中心 一种次同步谐振的评估方法和装置
CN105098769A (zh) * 2015-06-19 2015-11-25 浙江大学 一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器的参数整定方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH651975A5 (de) * 1979-01-10 1985-10-15 Bbc Brown Boveri & Cie Schutzeinrichtung an einer turbogruppe gegen subsynchrone resonanzen.
CN101630844B (zh) * 2009-08-06 2011-08-17 中国电力科学研究院 一种次同步振荡阻尼控制器
CA3048106C (en) * 2009-09-15 2021-09-28 Rajiv Kumar Varma Utilization of distributed generator inverters as statcom
CN101834448B (zh) * 2010-03-23 2012-03-28 浙江大学 一种基于静止同步串联补偿器的抑制电力系统次同步振荡的方法
WO2013037846A1 (en) * 2011-09-12 2013-03-21 Alstom Technology Ltd Sub-synchronous oscillation damping by shunt facts apparatus
CN102983801B (zh) * 2012-11-29 2015-02-25 浙江大学 一种具有自抑制次同步振荡能力的发电机
CN104969436B (zh) * 2013-02-07 2018-05-22 维斯塔斯风力系统集团公司 用于提供电网辅助服务的发电厂和能量存储系统
CN103825293B (zh) * 2014-03-04 2015-09-23 浙江大学 一种提高电力系统惯性水平的风电场-柔性直流输电系统的协同控制方法
US9467112B2 (en) * 2014-07-25 2016-10-11 Ge Energy Power Conversion Technology Ltd Hybrid thyristor-controlled series capacitor and passive damping filter for series capacitors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340841A (en) * 1976-09-25 1978-04-13 Mitsubishi Electric Corp Improving stability for power system by series compensating circuit
US4724333A (en) * 1985-04-10 1988-02-09 Electric Power Research Institute Method and means for damping supersynchronous oscillations in an ac power system
CN101895117A (zh) * 2010-07-27 2010-11-24 南方电网技术研究中心 一种次同步谐振的评估方法和装置
CN105098769A (zh) * 2015-06-19 2015-11-25 浙江大学 一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器的参数整定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, HAIFENG ET AL.: "Analysis on Subsynchronous Resonance Caused By Series Compensation in AC System Based on Frequency-Scanning and Eigenvalue.", POWER SYSTEM TECHNOLOGY, vol. 36, no. 5, 31 May 2012 (2012-05-31), pages 108, ISSN: 1000-3673 *

Also Published As

Publication number Publication date
US20170331289A1 (en) 2017-11-16
CN105098769A (zh) 2015-11-25
US10374427B2 (en) 2019-08-06
CN105098769B (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2016202063A1 (zh) 一种能够抑制次同步谐振的发电系统中旁路阻尼滤波器的参数整定方法
CN108631338B (zh) 一种用于抑制双馈风电场并网次同步振荡的方法
CN101183791B (zh) 一种静止无功补偿器和有源电力滤波器联合运行系统及其控制方法
WO2017088510A1 (zh) 一种额定参数可调整的串联补偿装置确定方法
CN109873451A (zh) 基于机网无功协调控制的双馈风电机组次同步振荡抑制方法
CN110266229A (zh) 无电解电容永磁同步电机空调驱动系统的谐振抑制方法
JP6759972B2 (ja) 共振抑制装置
CN115189361A (zh) 一种阻尼性能提升的柔性直流输电系统交流电压前馈方法
CN111490539B (zh) 一种基于有源谐波电导法的光伏逆变器集群谐振抑制方法
CN104158415B (zh) 一种基于改进型llcl滤波器的并网逆变电路及其滤波方法
CN106849084B (zh) 网侧基波有功正序电流前馈apf直流电压波动抑制方法
Xin-li et al. LCL output filter design and the influence to the D-STATCOM compensation characteristic
CN109449955B (zh) 一种双馈风机与静止无功发生器控制方法、控制器及装置
Cheng et al. An rl-type active damper for stabilizing wide band oscillations in grid-tied inverter systems
Nasiri et al. Parallel and series harmonic resonance prevention by anti-resonance hybrid capacitor system for power factor correction
Fan et al. Study of current control strategy of STATCOM based on LCL filter under distorted grid conditions
CN102983801B (zh) 一种具有自抑制次同步振荡能力的发电机
Mboving et al. Application of C-type filter to DC adjustable speed drive
Zhou et al. A high frequency hybrid active filter based on SiC MOSFET
Chavan et al. Design of Active Power Filter for Grid Connected WECS
CN114899865B (zh) 一种大规模新能源并网系统无功补偿方法
CN206742858U (zh) 一种制浆造纸生产线电力系统的谐波矫正装置
Chingale et al. Harmonic filter design for line start permanent magnet synchronous motor
CN108832633B (zh) 一种apf开关频率的设置方法
CN107437807B (zh) 基于性能评价体系的感应调控滤波系统虚拟阻抗控制策略

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16810804

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15523135

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16810804

Country of ref document: EP

Kind code of ref document: A1