WO2016200239A1 - 3-하이드록시프로피온산에 의해 발현이 유도되는 프로모터 시스템 및 이를 이용한 3-하이드록시프로피온산의 생물학적 생산방법 - Google Patents

3-하이드록시프로피온산에 의해 발현이 유도되는 프로모터 시스템 및 이를 이용한 3-하이드록시프로피온산의 생물학적 생산방법 Download PDF

Info

Publication number
WO2016200239A1
WO2016200239A1 PCT/KR2016/006261 KR2016006261W WO2016200239A1 WO 2016200239 A1 WO2016200239 A1 WO 2016200239A1 KR 2016006261 W KR2016006261 W KR 2016006261W WO 2016200239 A1 WO2016200239 A1 WO 2016200239A1
Authority
WO
WIPO (PCT)
Prior art keywords
lysr
protein
analog
pseudomonas
seq
Prior art date
Application number
PCT/KR2016/006261
Other languages
English (en)
French (fr)
Inventor
박성훈
저우성팡
아속소마순다
설은희
아이날라사티쉬쿠마
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to EP16807879.8A priority Critical patent/EP3321364B1/en
Priority to JP2018517111A priority patent/JP2018518199A/ja
Priority to MYPI2017704707A priority patent/MY194187A/en
Priority to SG11201802922QA priority patent/SG11201802922QA/en
Priority to CN201680047316.3A priority patent/CN108291231B/zh
Priority to US15/735,585 priority patent/US10808255B2/en
Priority claimed from KR1020160073091A external-priority patent/KR101877303B1/ko
Publication of WO2016200239A1 publication Critical patent/WO2016200239A1/ko
Priority to US17/017,717 priority patent/US10961539B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/78Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Pseudomonas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids

Definitions

  • the present invention relates to a promoter system in which expression is induced by 3-hydroxypropionic acid and a method for biological production of 3-hydroxypropionic acid using the same.
  • 3-hydroxypropionic acid (3-HP) is an important synthetic intermediate used in many chemical processes and is used as a raw material to produce acrylic acid, acrylamide, 1,3-propanediol, and malonic acid. It is also used to synthesize biodegradable polymers.
  • Biological production of 3-HP using glycerol has been successful by genetic manipulation of key enzymes required for the 3-HP production pathway in various bacteria. Specifically, bacteria such as Escherichia coli , Klebsiella pneumoniae , Pseudomonas denitrificans , etc., are coenzyme B 12 dependent enzymes, glycerol dehydratase and glycerol dihydrase, through genetic manipulation.
  • 3-HP production was confirmed by (over) expression of hydratase reactivation enzyme DhaB reactivase and NAD + dependent enzyme aldehyde dehydrazinase.
  • Some recombinant strains such as E. coli and DUBGK, were able to produce more than 40 g / L of 3-HP for 48 hours, but there was difficulty in increasing 3-HP production.
  • problems such as destabilization or loss of activity of enzymes such as glycerol dehydratase and aldehyde dehydrazinase have been observed.
  • One important cause of loss of glycerol dehydratase activity is due to a mechanism called suicidal inactivation.
  • the second reason is the toxicity of 3-HPA, a highly reactive intermediate.
  • Glycerol dehydratase or aldehyde dihydrazinase when present with 3-HPA, decreases its activity with a concentration of 3-HPA.
  • Aldehydes are known to react with amino acid residues such as ⁇ -amino groups (NH3 + ), sulfhydryl groups (-C-SH), imidazole groups present in lysine, cysteine and histidine, respectively. Efforts have been made to improve the stability of many enzymes in the presence of aldehyde using site-specific and random mutation induction, but with limited success.
  • Another object of the present invention is a lysR gene encoding a LysR protein responsive to 3-hydroxypropionic acid (3-HP) or an analog thereof, a promoter comprising a binding site with the LysR protein, and an expression target protein.
  • 3-HP or an analogue reactive recombinant gene expression cassette comprising a gene encoding the.
  • the present invention provides a 3-HP or an analog inducible promoter comprising a binding site with LysR protein in response to 3-hydroxypropionic acid (3-HP) or an analog thereof. to provide.
  • the present invention also provides a recombinant expression vector comprising the 3-HP or an analog inducible promoter thereof, a recombinant recombinant microorganism transformed with the recombinant expression vector, and a 3-HP production method comprising culturing the recombinant microorganism. do.
  • the present invention provides a lysR gene encoding a LysR protein responsive to 3-hydroxypropionic acid (3-HP) or an analog thereof, a promoter comprising a binding site with the LysR protein, and an expression target protein.
  • a 3-HP or analog thereof reactive recombinant gene expression cassette comprising a gene encoding.
  • the present invention is a recombinant expression vector comprising the 3-HP or an analogue reactive recombinant gene expression cassette thereof, a recombinant microorganism transformed with the recombinant expression vector, 3-HP or an analogue reactive recombinant gene expression cassette thereof is a host cell It provides a recombinant microorganism inserted in the chromosome and the expression protein production method comprising the step of culturing the recombinant microorganism.
  • the present invention relates to a promoter system in which expression is induced by 3-hydroxypropionic acid and a biological production method of 3-hydroxypropionic acid using the same, and to improve 3-HP production biologically, new enzymes having enzymatic activity are continuously added.
  • FIG. 1 shows 3-HP assimilation (A) in proliferating cells and 3-HP digestion (B) in resting cells.
  • A 3-HP assimilation
  • B 3-HP digestion
  • the strains were cultured in M9 medium feeding 25 ⁇ 2 mmol / L of 3-HP as the sole carbon and energy source.
  • Pseudomonas cells were prepared by culturing in M9 medium containing 25 ⁇ 2 mmol / L of 3-HP. The standard deviation for 3-HP concentration measurements was calculated to be less than 10%. Symbol: closed circle, 3-HP; semi-circle left, cell mass; cross, pH.
  • 3-HPDH 3-hydroxypropionate dehydrogenase
  • 3-HIBDH 3-hydroxyisobutyrate dehydrogenase
  • MMSADH methylmalonate semialdehyde dehydrogenase
  • HPCS 3-hydroxypropionyl-CoA synthetase
  • Figure 3 shows the relative mRNA levels (A) and increased fold (B) for the 3-hydroxypropinate catabolism in P. denitrificans ATCC13867.
  • Pseudomonas denitriphycans P. denitrificans
  • A Pseudomonas denitriphycans
  • B results when incubated in M9 medium without 3-HP feed
  • B The difference in mRNA levels with 3-HP feed is shown in increasing folds (grey bars). Standard deviations for mRNA level measurements were calculated to be less than 10%. mRNA levels were compared using the rpoD gene as a reference gene.
  • 3 hpdH gene shows the expression of the 3 hpdH gene.
  • 3-hydroxyisobutyrate (3-HIB) 3-hydroxybutyrate (3-HB)
  • L-valine L-valine
  • FIG. 6 shows promoter system gene sequences and structures induced by 3-HP in P. denitrificans .
  • FIG. A mmsadh and 3hibdh genes and LysR protein (C4-LysR) gene placement that regulates transcription of this gene.
  • B Placement of the 3hpdh gene and LysR protein (C3-LysR) gene that regulates this gene transcription.
  • FIG. 7 shows the analysis results for the C4 LysR induction promoter.
  • the O1 and O2 operators present between the C4-LysR (denoted mmsR) mmsadh (denoted mmsA) genes were present at the -58 and -9 positions relative to the mmsadh transcription start site, respectively, and were inverted repeat. ) Had a sequence.
  • T A CGT GT A A sequence was preserved.
  • FIG. 11 shows the results of SDS- and Native-PAGE analysis of purified C4-LysR protein.
  • A Purification by denaturing SDS-PAGE. Lane 1 wild-type, crude; lane 2, (-) IPTG; Lanes 3, 4, 5 and 7 show cell-free, soluble, insoluble and purified fractions, respectively. Lane 6 is protein marker
  • B Native PAGE analysis. Lanes 8, 10, and 12 are protein markers; Lanes 9, 11 and 13 were loaded with purified C4-LysR proteins at concentrations of 65, 220 and 550 nM, respectively.
  • Figure 16 shows pUCPK '/ PC3-gdrAB-dhaB, PC4-KGSADH plasmids developed for the expression of glycerol dehydratase and KGSADH in P. denitrificans .
  • Figure 18 shows the dehydrogenase KS with cell lysate and the time-depleted enzyme using Pd ⁇ 3hpdh ⁇ 3hibdhIV ⁇ 3hibdhI (pUCPK '/ PC3-dhaB-gdrAB, PC4-KGSADH) and Pd ⁇ 3hpdh ⁇ 3hibdhIV ⁇ 3hibdhI (pUCPK' / PC3-gdrAB-dhaB, PC4-KGSADH) Inactive comparison results are shown.
  • the present inventors have found a unique gene transcription promoter system in various microorganisms and expressed their genetic and biochemical characteristics in order to efficiently maintain expression of 3-HP synthase. Investigate.
  • This promoter system is a unique system that has never been reported in the literature and consists of a transcriptional promoter protein that binds 3-HP and a DNA sequence that binds specifically to the protein.
  • the present inventors have developed a recombinant strain capable of producing high concentration of 3-hydroxypropionic acid from glycerol by overexpressing DhaB, GdrAB and KGSADH using this promoter system and completed the present invention.
  • the present invention provides a 3-HP or analogue inducible promoter thereof comprising a binding site with LysR protein responsive to 3-hydroxypropionic acid (3-HP) or an analog thereof.
  • the present invention also provides a recombinant expression vector comprising 3-HP or an analog inducible promoter thereof.
  • the gene may further comprise a gene encoding a foreign protein operably linked to the 3-HP or an analog inducible promoter thereof.
  • the foreign protein is glycerol dehydratase (DhaB), glycerol dehydratase reactivase (DhaB reactivase (GdrAB) or ⁇ -ketoglutaric semialdehyde dehydrazinase ( ⁇ ) -ketoglutaric semialdehyde dehydrogenase (KGSADH), but is not limited thereto.
  • the present invention also provides a recombinant microorganism transformed with the recombinant expression vector.
  • the microorganism may be a microorganism having a 3-HP production capacity, more preferably the microorganism is Pseudomonas Pseudomonas denitrificans ), and even more preferably the microorganism is 3 hpdh , 3 hibdh involved in 3-HP degradation in Pseudomonas denitrificans strains.
  • P. denitrificans ⁇ 3hpdh ⁇ 3hibdhIV ⁇ 3hibdhI strain from which the mmsadh gene is deleted, but is not limited thereto.
  • the present invention also provides a 3-HP production method comprising culturing the recombinant microorganism.
  • the present invention provides a lysR gene encoding a LysR protein responsive to 3-hydroxypropionic acid (3-HP) or an analog thereof, a promoter comprising a binding site with the LysR protein, and an expression target protein.
  • a 3-HP or analog thereof reactive recombinant gene expression cassette comprising a gene encoding.
  • the present invention also provides a recombinant expression vector comprising the 3-HP or an analogue reactive recombinant gene expression cassette thereof and a recombinant microorganism transformed with the recombinant vector.
  • the present invention also provides a recombinant microorganism in which the 3-HP or an analogue reactive recombinant gene expression cassette thereof is inserted into a chromosome of a host cell. It will be apparent to those skilled in the art that the recombinant gene expression cassette has the same effect as when the recombinant vector is introduced into the host cell even when the recombinant gene expression cassette is inserted into the genomic chromosome of the host cell.
  • a method for inserting the recombinant gene expression cassette on the chromosome of a host cell may be a commonly known gene manipulation method.
  • a retroviral vector for example, a retroviral vector, an adenovirus vector, an adeno-associated virus vector, and herpes simplex.
  • a method using a rex virus vector, a poxvirus vector, a lentiviral vector or a nonviral vector may be a commonly known gene manipulation method.
  • the present invention provides a method for producing a protein of interest comprising the step of culturing the recombinant microorganism.
  • the step of culturing the recombinant microorganism may further comprise the step of adding 3-HP.
  • the LysR protein or the promoter may be derived from a microorganism having 3-HP resolution, and more preferably, Acromobacter denistypicanthus ( Achromobacter denitrificans ) , Ashidoborax Abene ( Acidovorax avenae ) subsp., Ashidoborax ( Acidovorax sp . ) , Acinetobacter Baumannni Acinetobacter baumannii ) , Aeromonas hydrophilia ( Aeromonas hydrophilia ) , Agrobacterium Agrobacterium sp .
  • Acromobacter denistypicanthus Achromobacter denitrificans
  • Ashidoborax Abene Acidovorax avenae
  • Ashidoborax Acidovorax sp .
  • Acinetobacter Baumannni Acinetobacter baumannii Aeromonas hydrophilia
  • Aeromonas hydrophilia Aeromonas
  • Alkali ness facalis Alcaligenes faecalis
  • Arkannivorax Hongdengensis Alcanivorax hongdengensis
  • Alicycline's Denitriphycans Alicycliphilus denitrificans
  • Alteromonas Marina Alteromonas marina Alteromonas marina
  • Amikoratopsis Amycolatopsis sp .
  • Inromyxobacter dihalogenans Anaeromyxobacter dehalogenans
  • Azospirilum Brasilens Azospirillum brasilense
  • Azotobacter vinerandi Azotobacter vinelandii Baiyerinkia Indica ( Beijerinckia indica ), Bordetella Avium ( Bordetella avium ), Brady Lazium Japonicum Bradyrhizobium japonicum ), Berkholderia Ambiparia ( Burkholderia ambifaria ), Catenulis Fora Ashdiphylia ( Catenulispora acidiphilia ), Kaulobacter ( Caulobacter sp .
  • Methyloscistis Methylocystis sp.
  • Novosphingobium Novosphingobium sp .
  • Oceanis Mons Smirnoby Oceanimonas smirnovii
  • Paracaucus Paracoccus sp .
  • the LysR protein consists of a helix-turn-helix structure consisting of an N-terminal domain that binds to DNA, a C-terminal domain that binds to 3-HP, or an analog thereof, and a LysR protein dimer stabilization.
  • the N-terminal domain consisting of the helix-turn-helix structure and binding to the DNA may include an amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2, wherein The C-terminal domain that binds -HP or an analog thereof may comprise an amino acid sequence represented by SEQ ID NO: 3, and the C-terminal domain that contributes to stabilizing the LysR protein dimer comprises an amino acid sequence represented by SEQ ID NO: 4 It may be, but is not limited thereto.
  • the LysR protein may be a LysR protein having a Genebank ID shown in Tables 4 and 5, but is not limited thereto.
  • the binding site with the LysR protein may bind two LysR protein dimers, and may include a nucleotide sequence represented by any one selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO: 43,
  • the Inverted Repeat sequence consisting of a nucleotide sequence represented by any one selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO: 43 and an inverted repeat paired thereto may be repeated twice, but is not limited thereto.
  • the binding site with the LysR protein may consist of a nucleotide sequence represented by SEQ ID NO: 44 or SEQ ID NO: 45.
  • N described in SEQ ID NO: 5 to SEQ ID NO: 43 is not a specific base, it means that any base may be included.
  • SEQ ID NO: 44 or SEQ ID NO: 45 is a promoter base sequence derived from Pseudomonas denitrificans ATCC13867.
  • the analog may be 3-hydroxyisobutyrate (3HIB) or 3-hydroxybutyrate (3-HB), but is not limited thereto.
  • vector refers to a DNA molecule that replicates itself that is used to carry a clone gene (or another piece of clone DNA).
  • expression vector refers to a recombinant DNA molecule comprising a coding sequence of interest and a suitable nucleic acid sequence necessary for expressing the coding sequence operably linked in a particular host organism.
  • the expression vector may preferably comprise one or more selectable markers.
  • the marker is typically a nucleic acid sequence having properties that can be selected by a chemical method, which corresponds to all genes that can distinguish transformed cells from non-transformed cells. Examples include, but are not limited to, antibiotic resistance genes such as ampicilin, kanamycin, G418, bleomycin, hygromycin, and chloramphenicol, but are not limited thereto. It can select suitably.
  • a number of strains including Achromobacter denitrificans and Acinetobacter baumannii, were obtained from KCCM.
  • Achromobacter denitrificans and Acinetobacter baumannii were obtained from KCCM.
  • Acidovorax avenae subsp. Agrobacterium sp. Purchased from Korea Microbial Resources Center KCTC.
  • a number of strains including Alicycliphilus denitrificans and Anaeromyxobacter dehalogenans car, were obtained from DSM in Germany.
  • 3-HP was purchased from Tokyo Kasei Kogyo (TCI America, Portland, OR) in Japan.
  • Yeast extract (Cat. 212750) and trypton (Cat. 211705) were purchased from Difco (Becton Dickinson; Franklin Lakes, NJ). All chemicals and enzymes not mentioned were purchased from Sigma Aldrich (St. Louis, MO).
  • composition of the improved M9 medium used to culture the strains was 100 mM phosphate buffer (pH 7.0), MgSO 4 .7H 2 O 0.25 g / L, NaCl 1.0 g / L, NH 4 Cl 1.0 g / L, 3-HP It was set to 25 mM.
  • Precipitated cells were washed with 100 mM phosphate buffer (pH 7.0), and then resuspended in 3-HP 25 ⁇ 2 mmol / L in the same buffer. The aforementioned cell acquisition, washing and resuspension procedures were performed prior to the 3-HP digestion experiment. Samples were taken periodically to examine 3-HP concentrations.
  • Nutrient medium 30 °C Aerobic KCTC 43 Parvibaculum lavamentivorans Peptone 10.0 g / L; NaCl 5.0 g / L; CaCl 2 H 2 O 0.1 g / L; Tween 80 10.0 g / L 30 °C Aerobic KCTC 44 Phenylobacterium kunshanensis R2A medium 30 °C Aerobic KCTC 45 Photobacterium gaetbuleda Nutrient medium 30 °C Aerobic KCTC 46 Polynucleobacter necessarius asymbioticus R2A medium 28 °C Aerobic DSM 47 Pseudoalteromonas carrageenovora Sea water yeast peptone broth 20 °C Aerobic KCCM 48 P
  • M9 medium was used to culture P. denitrificans ATCC 13567 strain, and the nutrient medium specified for each strain was used to culture other microorganisms shown in Table 1.
  • 25 mM 3-HP was added to the media shown. All strains were cultured under aerobic conditions at a temperature of 37 ° C. and a stirring speed of 200 rpm in a shaker incubator, and cells were obtained when the cultured cells reached exponential growth. Cells were harvested to be approximately 5 ⁇ 10 8 and centrifuged at 5000 g for 10 minutes. The precipitated cells were immediately resuspended in 500 ⁇ l of RNA later solution (Ambion, UK).
  • Reverse transcriptase polymerase chain reaction was performed on a One Real Time PCR system (Applied Biosystems, USA) using SYBR green step.
  • 20 ⁇ L of the reaction solution for reverse transcriptase chain reaction included 300 ng cDNA, 10 ⁇ L 2 ⁇ Power SYBR Green PCR Master Mix (Applied Biosystems, UK), 5 pmol of forward and reverse primers, and DEPC treated water.
  • Conditions for reverse transcription polymerase chain reaction were determined as follows: denaturation, 1 cycle of 95 ° C. for 30 s; amplification, 40 cycles of 95 ° C for 15 s, 62 ° C for 30 s, and 72 ° C for 30 s.
  • the primer efficiency used in the experiment was determined by PCR to determine the exact mRNA level before the reverse transcription polymerase chain reaction. The relative quantification of the mRNA level was calculated using the ⁇ CT method.
  • C3 system 3HPDH
  • C4 system 3HIBDH-IV
  • LysR LysR which regulates their transcription.
  • Proteins, C3-LysR and C4-LysR were present. Of these, protein production was attempted for C4-LysR.
  • E. coli BL21 (DE3) was used as a host, and E. coli Top10 was used for plasmid cloning and maintenance.
  • the C4 LysR gene was amplified by PCR in the P. denitrificans genome, cloned into pET30b (+) prasmid, and placed in E.
  • LysR protein in an active soluble form, it was co-expressed with several chaperone plasmids such as pG-KJE8, pGRO7, pG-TF2, and pTF-16.
  • LB medium containing kanamycin, chloramphenicol, L-arabinose, and the like was used as a medium, and cultured under aerobic conditions. When the cell concentration reached 0.6 OD, 0.1 mM IPTG was added to induce the production of LysR protein.
  • Various culture conditions were examined for water-soluble expression of the protein, and finally cultured at 25 ° C.
  • Cultured cells were obtained by centrifugation, washed with 100 mM (pH 7) phosphate buffer, resuspended in binding buffer and disrupted with French Press. After centrifugation again to remove solids and unbroken cells, and the solution portion was purified using a Ni-affinity column. Then stored at 80 °C in 20% glycerol (glycerol) solution.
  • Electrophoretic Mobility Shift Assay for the investigation of protein-DNA binding under in vitro conditions
  • a DNA fragment of the promoter site was synthesized (FIG. 7). Three kinds of fragments were synthesized. First, the whole DNA fragment between the C4-LysR gene and the mmsadh gene contained both O1 and O2 operators that are expected to bind transcriptional regulatory proteins ( F12), second, a fragment containing only the O1 operator portion (named F12M); third, a fragment containing only the O2 operator portion (named F1M2). EMSA experiments were performed using a Molecular Probes Fluorescence-based Mobility Shift Assay kit (fluorescence-EMSA) from Invitrogen.
  • fluorescence-EMSA Fluorescence-based Mobility Shift Assay kit
  • the promoter DNA fragment was purified by a glass fiber column, and then mixed with LysR protein purified from a binding buffer and reacted at room temperature for 30 minutes. After loading on 6% non-denaturing polyacrylamide gel (load) was developed for 30 minutes in a TBE buffer (buffer) of pH 8 at 220 V. After fixing the gel, the DNA band was stained with SYBR Green EMSA to confirm the DNA band, and the band intensity was quantified by gel documentation system (Bio-Rad). When observing proteins, DNA-protein bands were stained with SYPRO Ruby EMSA solution.
  • 3-Hydroxypropionic acid is a carbon compound which hardly exists in the natural environment, and there are few reports on its use as a carbon substrate or biological degradation.
  • P. denitrificans rapidly degrades 3-HP in both growth and nongrowth conditions.
  • P. denitrificans could use 3-HP as the sole carbon and energy source (FIG. 1A).
  • P. denitrificans showed the ability to degrade 3-HP in the presence of oxygen while cells were not growing (FIG. 1B).
  • Biologically, degradation of 3-HP is known to use a reductive pathway or an oxidative pathway (FIG. 2).
  • LysR-type transcriptional regulators are known as transcriptional activators that regulate catabolism, such as the degradation pathway of aromatic compounds.
  • genes encoding LTTRs are present at the front of the gene family involved in the degradation of aromatic compounds and regulate compound degradation.
  • 3-HP degradation pathway gene structure analysis of operons related to 3HPDH and 3HIBDH-IV of P. denitrificans was performed. As a result, it was confirmed that LTTRs were located in a similar gene sequence in front of 3-HP degradation genes (FIG. 6). This indicates that the expression of 3-HP degradation genes in P. denitrificans is related to LysR protein.
  • C3-LysR Characterized by the LysR gene and LysR protein (hereinafter referred to as C3-LysR, LysR that binds the C4 compound 3-hydroxyisobutyrate dehydrogenase gene to C4-LysR and the C3 compound 3-HP dehydrogenase gene)
  • Transcription-regulated genes (mmsadh, 3hibdh4, 3hpdh) were located in opposite orientations, with regulatory binding sites (RS) with two specific binding sites, the conservative T-N11-A motif.
  • An activation binding site (AS) near the RNA polymerase binding site (-35 RNA polymerase binding site) was identified (FIG. 6).
  • these RS and AS were confirmed to overlap with each other, 10, -35 region of the gene coding for LysR protein. This suggests that expression of the lysR gene is suppressed by the product LysR.
  • the C4 LysR inducible promoter present in P. denitrificans was analyzed in more detail.
  • the O1 and O2 operators between the LysR gene and the mmsadh gene were present at the -58 and -9 positions relative to the mmsadh transcription start site, respectively, and had an inverted repeat sequence (FIG. 7).
  • Inverted repeat sequences or palindromic structures often appear at the operator site of prokaryotic cells and are known to be binding sites for transcriptional regulatory proteins. Since the distance between the O1 and O2 sites is about 50 bp and corresponds to 5 laps of spiral DNA, the LysR protein may be bound in the same direction when binding to the O1 and O2 sites.
  • the pair of O1 sites consisted of 9 bases at a distance of 15 bp, with only one mismatch, indicating that it is highly symmetrical.
  • the inverted repeat sequence of the O2 site was also composed of 9 bp repeats, with a short interval of 11 bp. The symmetry was weak enough that 6 out of 9 were mismatches.
  • the homology of the four palindromic fragments present in the O1 and O2 operators showed T A CGT GT A A.
  • the bases (bold letters) at positions 3, 4 and 5 were conserved in all fragments.
  • the base at position 8 (underlined) was conserved in three fragments, suggesting that these bases play an important role in binding to the C4 LysR protein.
  • the effects of O1 and O2 operators on mmsadh gene expression were investigated in a similar manner. That is, the plasmid was prepared so that the C4-LysR protein is constitutively expressed and GFP is located behind the promoters having the O1 and O2 promoters. At this time, the O1 or O2 operator was mutated to randomize the symmetrical dyad of the O1 or O2 site. As a result, when the O1 or O2 region was mutated, the transcription was not upregulated by 3-HP. That is, both O1 and O2 operators are essential sites for upregulation of expression by 3-HP. This proved that the promoter is a promoter that requires the presence of O1 and O2 operators.
  • GFP was used as the 1 reporter protein. That is, a plasmid in which the GFP gene was inserted at the C4-LysR or mmsadh position was used.
  • C4-LysR was a weak but constitutively expressed promoter.
  • LTTRs protein is known to be composed of N-terminal, DNA binding domain (heslix-turn-gelix motif), C-terminal, substrate binding domain, and linkers linking them.
  • LysR proteins form homodimers that bind to RS and AS, respectively, and the effector molecule (3-HP in the present invention) binds between two LTTR dimers when each LysR protein binds. Protein interactions cause LTTR to form tetramers, resulting in structural changes in the DNA bound to LysR.
  • Derivatives that specifically bind to LTTR tetramers are known to cause structural changes in the LysR protein and subsequently alter the structure of the promoter region DNA, ultimately helping the RNA polymerase to bind to the promoter (FIG. 8). ).
  • Asp-159, Thr-160, Pro-237, and Phe-239 are important amino acids for binding to 3-HP, and Ala-60, Gly-91, and Arg-94 are important amino acids for dimer formation.
  • Pro-118, Glu-137 and the like are important amino acids that play an important role in the formation of dimers.
  • LysR protein is a transcriptional regulator
  • genes encoding C3 and C4 LysR proteins were removed from the P. denitrficans chromosome and examined for transcription induction of genes whose transcription is regulated (mmsadh, 3hibdhIV, 3hpdh).
  • mmsadh, 3hibdhIV, 3hpdh genes encoding C3 and C4 LysR proteins were removed from the P. denitrficans chromosome and examined for transcription induction of genes whose transcription is regulated (mmsadh, 3hibdhIV, 3hpdh).
  • C3 LysR or C4 LysrR gene when the C3 LysR or C4 LysrR gene was removed, these genes were re-expressed using a plasmid (complementation experiment), and the expression amplification by 3-HP was restored to the same level as the wild strain. .
  • the C3 LysR and C4 LysR proteins are transcription regulator proteins that control the expression of mmsadh, 3hibdhIV and 3hpdh genes in cells, respectively.
  • C4-LysR protein having a histidine tag at the C-terminus was produced and purified in E. coli.
  • the His tag was attached to the C terminal and the N terminal, and the above-described compensation experiment was performed.
  • both cases showed the same performance as the wildtype LysR having no His tag. Therefore, biochemical experiments were performed on only C-His tag LysR among two recombinant LysRs.
  • Recombinant LysR was expressed mostly in insoluble form in E. coli.
  • Detailed optimization experiments were performed on the expression conditions (temperature, pH, media composition, IPTG concentration). The effects of various chaperon proteins were also investigated. As a result, E.
  • F12 (135 bp) is the entire promoter region between the C4-Lys and mmsadh genes, a DNA fragment containing both O1 and O2 operators
  • F12M (135 bp) is a DNA fragment containing only an O1 operator region
  • F1M2 (135 bp) was a DNA fragment containing only an O2 operator region.
  • One fragment was synthesized and used as a control, and they had the same size as F12, but the fragments were made so that the O1 and O2 regions were all randomized to have no palindrome structure. It was.
  • the electrophoresis of the C4-LysR protein with the DNA fragments showed that the mobility of the DNA fragments was reduced (FIG. 12).
  • the binding of C4-LysR to DNA fragments means that the DNA sequence, more precisely O1, O2 operator sequence, is possible.
  • F12 had the highest affinity with respect to LysR protein, followed by F12M and F1M2.
  • EMASA experiments were repeated in the presence of 3-HP. The presence of 3-HP changed the affinity. Affinity was improved for F12, with little change for F1, while F2 showed rather reduced affinity.
  • F12 has a higher affinity than F12M or F1M2 fragments
  • the binding of LysR protein to the high affinity O1 site promotes O2 site binding.
  • EMSA results showed that F12 always showed lower mobility compared to F12M or F1M2 fragments.
  • At low LysR concentrations only one shifted band was shown. This means that more LysR protein is always bound to the F12 fragment. That is, when LysR protein binds to F12 fragment, it always binds to both O1 and O2 sites.
  • LysR proteins can bind to promoters regardless of whether they bind to inducer molecules, but the improvement in transcriptional efficiency is only manifested by LysR proteins bound to inducer molecules and inducers molecule), in addition to 3-HP, 3-HIB, 3-HB, etc., which are structurally similar to 3-HP, may be used.
  • the promoter provides a site to which two LysR protein dimers bind and the binding is cooperative with each other.
  • the promoter provides a structure that can interact with the LysR protein when the RNA polymerase binds.
  • a total of more than 150 microorganisms have been identified for the 3-HP inducible gene expression system, which can be divided into 16 groups according to the presence or absence of C3-LysR and C4-LysR and the gene sequence characteristics.
  • Nine of these groups had both C4 and C3 systems, and seven had only C4 systems. No group with only the C3 system was found.
  • both the gene encoding LysR protein and the gene whose expression is regulated by LysR protein have opposite transcription directions.
  • the genes regulated by the LysR protein which are regulated by the LysR protein, were characterized by opposite transcription directions, but in the microorganisms belonging to Group 15 and Group 16, the directions were the same.
  • 3-HP-LysR protein has low sequence similarity between different genuses and high sequence similarity within the same genera. Thus, it is logically incorrect that operator region DNA sequences that bind LysR proteins differ between different genuses. Transcription factors (-10 and -35 regions) were predicted using BPROM and BDGP tools.
  • Genus Repressive Binding Site (TN 11/12 -A motif) # Representatives Achromobacter CAcAcATct 4 Acidovorax TcGCAcAcC 3 Acinetobacter GTcaAaGAT 7 Advenella TTGCAaATT 4 Aeromonas GGGcAaaCA 2 Alcaligenes CAcAcATct 5 Alcanivorax AgCAGCATG 2 Alicycliphilus TGCaAAGcc 2 Anaeromyxobacter GGGaCGacG 3 Azospirillum gTGCCcGCG 4 Azotobacter gTatcGAGC 4 Beijerinckia ATTgcCgTG 3 Bordetella gTTtCGTtG 6 Bradyrhizobium AtATATcaG 3 Brucella AaaAAtGCa 3 Burkholderia GCCtACacT 16 Corynebacterium CACCTtTgC 6 Cupriavidus AGTtCAgcG 3 Delftia GCAAA
  • #Representitives The number of species identified as having the same Repressive Binding Site (RBS) in Genus.
  • LysR protein The same analysis was performed for LysR protein. As a result of BLAST search for C4 LysR and C3 LysR sequences from non-redundant NCBI® database, 126 and 132 sequences with homology with DNA binding Helix-turn-Helix region were found. 14 and 15 show multiple sequence alignments for these sequences. Sequence alignment confirmed that a large portion of the LysR sequence was highly conserved, and that the LysR sequence was also highly conserved in other microorganisms used in this analysis. This indicates that most microorganisms use LysR in cells.
  • the active site of 3-HP binding in C4-LysR and C3-LysR was predicted using COACH. Valid models and predicted active site residues were used to perform docking experiments in the Maestro program at SCHRODINGERTM.
  • Target proteins C4-LysR, C3-LysR
  • ligand 3-HP
  • Receptor Grid Generation tool was used to generate the grid box, and ligand docking was performed using SP (Standard Precision) and XP (eXtra Precision) docking settings in the generated grid box.
  • C4-LysR and C3-LysR have been identified as having interactions between 3-HP and various molecules.
  • amino acid residues of C4-LysR Asp-159, Thr-160, Pro-237 and Phe-239 are hydrogen-bonded with 3-HP, and ARG24 is hydrophobic with 3-HP (Fig. 9).
  • amino acid residues of C3-LysR LEU74, THR190, and THR28 form hydrogen bonds and hydrophobic interactions with THR73, VAL150, PRO167, PHE127, and PHE169.
  • amino acids that play an important role in the formation of dimers are located on the protein surface except for Pro-118. This suggests that when 3-HP directly affects LysR, which causes dimerization of LysR, the dimerization of LysR binds to DNA and results in high levels of transcription of 3-HP degradation genes located underneath the LysR gene. To adjust.
  • 3-HP degradation pathway is present in various microorganisms.
  • cells were suspended in 100 mM phosphate solution containing 25 mmol / L of 3-HP and allowed to degrade 3-HP for 24 hours (Table 6).
  • the degradation rate of 3-HP was different according to the microorganisms, but all of them were effectively degraded 3-HP.
  • Transcription levels of 3-HP degradation genes (3 hpdh , 3 hibdh , mmsadh ) were assessed according to the presence or absence of 3-HP (Table 7).
  • 3-HP enhanced the expression of 3 hpdh , 3 hibdh , mmsadh genes in these microorganisms by 6, 14 and 16 times higher, respectively.
  • This result means that 3-HP inducible system is commonly present in various microorganisms.
  • P. denitrificans P. denitrificans the rate of increase of transcription is relatively low by about 10 times, which may be due to the difference in culture conditions.
  • microorganisms were cultured in a medium containing a large amount of complex nitrogen sources to improve growth. This is because the product activates transcription of 3 hpdh , 3 hibdh , and mmsadh , even in the absence of 3-HP, thereby maintaining a high amount of transcription in the absence of 3-HP.
  • E. coli was distributed at the Korea Microbial Resources Center (KCTC) and Pseudomonas denitrificans ( P. denitrificans ) strain at ATCC.
  • E. coli XL1-Blue was used for plasmid replication and maintenance.
  • Genome DNA isolation kits and pGEM-T vectors from Promega (Madison, WI, USA), high-performance pfx polymerase from Invitrogen (Seoul, Korea), DNA-modifying enzymes from New England Bio-Labs (Beverly, MA, USA) , Miniprep and DNA gel extraction kits were purchased from Qiagen (Mannheim, Germany).
  • the primer is Cosmogenetech Co. Ltd. (Seoul, Korea), Bacto Tryptone and yeast extract were purchased from Difco (Becton Dickinson; Franklin Lakes, NJ, USA) and other chemicals and enzymes from Sigma-Aldrich (St. Louis, MO, USA).
  • 3hibdhI was removed from the chromosome of P. denitrificans ⁇ 3hpdh ⁇ 3hibdhIV to understand the role of the 3-HP degradation gene.
  • the gene of interest was deleted based on the sacB negative counter-selection system.
  • the pQSAK plasmid was made by introducing the sacB-Km cassette into the NdeI and XbaI restriction sites of the pQE-80L vector, which was used to remove the target gene.
  • P. denitrificans genomic DNA DNA fragments containing ⁇ 700 bp of top and bottom of the target gene were obtained by PCR, which was cloned into pGEM-T vector after DNA sequence identification.
  • the genes encoding glycerol dehydratase and reactivase were amplified using the pUCPK '/ PC3-dhaB-gdrAB and PC4-KGSADH plasmids, and the expression cassettes were C3 promoter and C3 at 5' and 3 'sides of the gdrAB and dhab123 gene ends. It was developed by cloning each terminator. This expression cassette was cloned at the XbaI and SacI restriction sites of the pUCPK '/ PC3-dhaB-gdrAB, PC4-KGSADH plasmid and named pUCPK' / PC3-gdrAB-dhaB, PC4-KGSADH.
  • the plasmids pUCPK '/ PC3-gdrAB-dhaB and PC4-KGSADH thus developed were transformed into P. denitrificans ⁇ 3hpdh ⁇ 3hibdhIV ⁇ 3hibdhI and finally Pd ⁇ 3hpdh ⁇ 3hibdhIV ⁇ 3hibdhI (pUCPK' / PC3-gdrAB-dhaB, PC4-KGSADH) (FIG. 16).
  • DhaB activity can be measured by measuring KGSADH enzyme activity.
  • One unit of DhaB activity is defined as the amount of enzyme required to reduce 1 ⁇ mol of NAD + to NADH for 1 minute.
  • 20 ⁇ l of 26 U / mg NAD + -dependent KGSADH was added to 50 mM potassium phosphate (pH 8.0) buffer (1 mL total volume) containing 1 mM DTT, 15 uM coenzyme B12, 3 mM MgCl 2 , 1.5 mM ATP. Incubate at 37 ° C. for 5 minutes.
  • KGSADH contains 25% glycerol.
  • the reaction was initiated by adding the appropriate amount of cell extract, including 1.5 mM NAD + and DhaB preheated at 37 ° C., and observed through changes in absorbance of NADH.
  • KGSADH activity was found by measuring the reduction of NAD + to NADH at 340 nm using the method reported by Dr. Raj.
  • the reaction mixture containing 50 mM potassium phosphate buffer (pH 8.0), 1 mM DTT, and an appropriate amount of enzyme extract was incubated at 37 ° C. for 5 minutes and the reaction was started by adding 2.0 mM 3-HPA and 2.0 mM NAD +.
  • the amount of NADH was determined using a molar extinction coefficient ( ⁇ 340) of 6.22 ⁇ 10 3 M ⁇ 1 cm ⁇ 1 .
  • One unit activity of KGSADH was defined according to the amount of enzyme required to reduce 1 ⁇ mol of NAD + to NADH per minute. All enzymatic activity was measured with raw cell extracts.
  • Shaking cultures were performed at 200 rpm, 30 ° C using 250 mL non-baffled Erlenmeyer flasks containing 20 mL of culture unless otherwise specified.
  • MgSO 4 0.25 g per liter; NaCl, 1.0 g; NH 4 Cl, 1.0 g; yeast extract, 1 g; glycerol, 100 mmol; L-glutamate, 5 g; tryptone, 2 g; M9 culture medium containing 2.5 g of glucose was used.
  • the medium contained 100 mM potassium phosphate buffer (pH 7.0).
  • An additional 12 ⁇ mol / L coenzyme B12 was injected as needed and the flask was closed with an oxygen permeable sponge plug.
  • M9 culture medium for bioreactor experiments 0.25 g MgSO 4 .H 2 O per liter; NaCl, 1.0 g; NH 4 Cl, 1.0 g; yeast extract, 1 g; L-glutamate, 5 g; tryptone, 2 g; casamino acids, 2 g; It contains 2.5 g of glucose, trace element solution, 10 mL / L and 100 mM potassium phosphate buffer (pH 7.0). Cultivation was performed with periodic injection of concentrated glycerol (10 M) and 7 mM glucose in a 30 ° C. fed-batch culture mode. pH was maintained at 7.0 ⁇ 0.1 using 5 N NaOH and 2.5 N HCl.
  • the concentration of glycerol, 3-HP and other metabolites was measured by HPLC, the supernatant obtained by centrifugation of the culture sample at 10,000 ⁇ g for 10 minutes was filtered by Tuffryn-membrane (Acrodisc, Pall Life Sciences) and 300 mm Elution is carried out using a 2.5 mM H 2 SO 4 as mobile phase at 65 ° C. by a 7.8 mm Aminex HPX-87H (Bio-Rad, USA) column.
  • Pd ⁇ 3hpdh ⁇ 3hibdhIV ⁇ 3hibdhI (pUCPK '/ PC3-dhaB-gdrAB, PC4-KGSADH) was used as a control.
  • S1-S3 of FIG. 17 shows the production of 3-HP from glycerol by recombinant Pd ⁇ 3hpdh ⁇ 3hibdhIV ⁇ 3hibdhI (pUCPK '/ PC3-gdrAB-dhaB, PC4-KGSADH), and O1-O3 of FIG.
  • FIG. 17 shows recombinant Pd ⁇ 3hpdh ⁇ 3hibdhIV Production of 3-HP from glycerol by ⁇ 3hibdhI (pUCPK '/ PC3-dhaB-gdrAB, PC4-KGSADH).
  • S1 and O1 of FIG. 17 show results when there is no glycerol supply, and FIG. 17 shows results when S2 and O2 do not have a supply of coenzyme B12.
  • S3 and O3 in Figure 17 is the result of the supply of coenzyme B12. There was no significant difference in cell growth between the two strains.
  • Glycerol and Glucose Eluents were run on the glycerol run of the Glycerol and Glucose Eluents.
  • glucose and glycerol concentrations were kept below 10 and 150 mM, respectively. Every 6 hours glutamate was supplied for cell growth. Similar cell growth was observed in both bioreactors. In both cultures, growth decreased after 9 hours and cell growth continued until the end of the reaction.
  • Bioreactor A the strain Pd ⁇ 3hpdh ⁇ 3hibdhIV ⁇ 3hibdhI (pUCPK ′ / PC3-dhaB-gdrAB, PC4-KGSADH) was used (FIG. 19).
  • 3-HP production was generally increased up to 36 hours, yielding a 3-HP yield of at least 0.9 mol / mol from 58 ⁇ 2 g / L, yield 1.2 g / L / h, glycerol.
  • 3-HP production rate decreased after 36 hours. Between 36h and 48h, they stayed at only 2 ⁇ 0.5 g / L of 3-HP production.

Abstract

본 발명은 3-하이드록시프로피온산에 의해 발현이 유도되는 프로모터 시스템 및 이를 이용한 3-하이드록시프로피온산의 생물학적 생산방법에 관한 것으로서, 생물학적으로 3-HP 생산을 향상시키려면 효소활성을 가지는 새로운 효소들을 계속적으로 생산해내는 것이 필요한데, 슈도모나스 데니트리피칸스(P. denitrificans)를 비롯한 여러 미생물에서 3-HP에 반응하는 전사 조절자들과 프로모터들을 스크리닝한 결과, LysR 단백질과 이 단백질에 결합하는 특정 유전자 염기서열로 이루어져 있음을 밝혀냈다. 따라서, 본 발명에 따른 3-HP 유도성 시스템은 3-HP 대사 경로를 조절하는데 효과적으로 사용될 수 있을 것으로 기대된다.

Description

3-하이드록시프로피온산에 의해 발현이 유도되는 프로모터 시스템 및 이를 이용한 3-하이드록시프로피온산의 생물학적 생산방법
본 발명은 3-하이드록시프로피온산에 의해 발현이 유도되는 프로모터 시스템 및 이를 이용한 3-하이드록시프로피온산의 생물학적 생산방법에 관한 것이다.
3-하이드록시프로피온산(3-hydroxypropionic acid, 3-HP)은 여러 화학공정에 사용되는 중요한 합성 중간체로, 아크릴산, 아크릴아마이드, 1,3-프로판디올, 말로닉산 등을 생산하는데 원료로 사용된다. 또한 생분해성 고분자 합성에도 사용된다. 글리세롤을 이용한 3-HP의 생물학적 생산은 여러 가지 박테리아에 3-HP 생산 경로에 필요한 주요 효소들의 유전자 조작을 통해 성공적으로 이루어졌다. 구체적으로 대장균(Escherichia coli), 크렙시엘라 뉴모니애(Klebsiella pneumoniae), 슈도모나스 데니트리피칸스(Pseudomonas denitrificans) 등의 박테리아에 유전자 조작을 통한 코엔자임 B12 의존성 효소인 글리세롤 디하이드라테이즈, 글리세롤 디하이드라테이즈 재활성화 효소인 DhaB reactivase 및 NAD+ 의존성 효소인 알데하이드 디하이드라지네이즈 등의 (과)발현을 통해 3-HP 생산이 확인되었다. E. coli W DUBGK와 같은 몇몇 재조합 균주의 경우 48시간 동안 40g/L 이상의 3-HP를 생산할 수 있었으나, 그 이상으로 3-HP 생산량을 증가시키는 데에 어려움이 있었다. 특히, 3-HP 생산을 위한 발효 시간이 지속됨에 따라 글리세롤 디하이드라테이즈, 알데하이드 디하이드라지네이즈와 같은 효소들이 불안정해지거나 활성을 잃어버리는 문제점들이 관찰되었다. 글리세롤 디하이드라테이즈의 활성이 소실되는 한 가지 중요한 원인은 자살 비활성화(suicidal inactivation)라는 메커니즘 때문이다. 이는 글리세롤에서 3-하이드록시프로피온알데하이드(3-HPA)로의 탈수화 반응 동안 글리세롤 디하이드라테이즈의 조효소인 코엔자임 B12가 비가역적으로 손상되는 것으로, 이와 같은 비활성화 반응은 산소가 존재할 때 촉진된다. 최근에는 이 메커니즘에 기반한 비활성화를 완화하기 위해 부위특이적돌연변이 (site-directed mutagenesis)를 이용하여 돌연변이 글리세롤 디하이드라테이즈를 개발하였다. 몇몇 돌연변이 효소들이 향상된 효소 안정성을 가지는 것으로 확인되었으나 기존의 효소와 비교하였을 때 효소 활성이 상당히 감소되는 것으로 관찰되었다.
두 번째 원인은 반응성이 높은 중간체인 3-HPA의 독성 때문이다. 글리세롤 디하이드라테이즈 혹은 알데하이드 디하이드라지네이즈는 3-HPA와 함께 존재할 때 3-HPA의 농도에 따라 그 활성이 감소한다. 알데하이드는 라이신, 시스테인, 히스티딘에 각각 존재하는 ε-아미노기 (NH3+), 설프히드릴기 (-C-SH), 이미다졸기와 같은 아미노산 잔기들과 반응하는 것으로 알려져 있다. 부위특이적돌연변이 및 임의돌연변이 유발를 이용하여 알데하이드의 존재하에 많은 효소들의 안정성을 향상시키기 위한 노력이 이루어졌으나, 제한적인 성공에 그쳤다.
이와 같은 효소 불안정성 문제를 해결하기 위한 흥미로운 대안은 세포 배양이 이루어지는 전기간 동안 활성을 가지는 새로운 효소를 계속적으로 합성하는 것이다. 비활성화되는 효소의 양만큼 새로운 효소를 공급할 수 있다면 이론적으로 세포 내 이들 효소 활성은 일정하게 유지할 수 있다. 특히 발효 후반 세포의 성장이 느려지거나 정체되고 3-HP의 농도가 높아서 세포의 전체적 대사 활성이 저하된 시점에서 이들 효소를 지속적으로 발현시키는 것이 필요하다.
본 발명의 목적은 3-하이드록시프로피온산(3-hydroxypropionic acid, 3-HP) 또는 이의 유사체에 반응하는 LysR 단백질과의 결합 부위를 포함하는 3-HP 또는 이의 유사체 유도성 프로모터를 제공하는 데에 있다.
본 발명의 다른 목적은 3-하이드록시프로피온산(3-hydroxypropionic acid, 3-HP) 또는 이의 유사체에 반응하는 LysR 단백질을 코딩하는 lysR 유전자, 상기 LysR 단백질과의 결합 부위를 포함하는 프로모터 및 발현 목적 단백질을 코딩하는 유전자를 포함하는 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트를 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 3-하이드록시프로피온산(3-hydroxypropionic acid, 3-HP) 또는 이의 유사체에 반응하는 LysR 단백질과의 결합 부위를 포함하는 3-HP 또는 이의 유사체 유도성 프로모터를 제공한다.
또한, 본 발명은 상기 3-HP 또는 이의 유사체 유도성 프로모터를 포함하는 재조합 발현벡터, 상기 재조합 발현벡터로 형질전환된 재조합 미생물 및 상기 재조합 미생물을 배양하는 단계를 포함하는 3-HP 생산방법을 제공한다.
또한, 본 발명은 3-하이드록시프로피온산(3-hydroxypropionic acid, 3-HP) 또는 이의 유사체에 반응하는 LysR 단백질을 코딩하는 lysR 유전자, 상기 LysR 단백질과의 결합 부위를 포함하는 프로모터 및 발현 목적 단백질을 코딩하는 유전자를 포함하는 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트를 제공한다.
또한, 본 발명은 상기 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트를 포함하는 재조합 발현벡터, 상기 재조합 발현벡터로 형질전환된 재조합 미생물, 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트가 숙주세포의 염색체 내에 삽입되어 있는 재조합 미생물 및 상기 재조합 미생물을 배양하는 단계를 포함하는 발현 목적 단백질 생산방법을 제공한다.
본 발명은 3-하이드록시프로피온산에 의해 발현이 유도되는 프로모터 시스템 및 이를 이용한 3-하이드록시프로피온산의 생물학적 생산방법에 관한 것으로서, 생물학적으로 3-HP 생산을 향상시키려면 효소활성을 가지는 새로운 효소들을 계속적으로 생산해내는 것이 필요한데, 슈도모나스 데니트리피칸스(P. denitrificans)를 비롯한 여러 미생물에서 3-HP에 반응하는 전사 조절자들과 프로모터들을 스크리닝한 결과, LysR 단백질과 이 단백질에 결합하는 특정 유전자 염기서열로 이루어져 있음을 밝혀냈다. 따라서, 본 발명에 따른 3-HP 유도성 시스템은 3-HP 대사 경로를 조절하는데 효과적으로 사용될 수 있을 것으로 기대된다.
도 1은 증식세포에서의 3-HP 동화(A)와 휴지세포에서의 3-HP 분해(B)를 나타낸다. 슈도모나스 데니트리피칸스(P. denitrificans)의 3-HP 동화 실험을 위해 균주는 25±2 mmol/L의 3-HP를 단독 탄소원 및 에너지원으로 공급하는 M9 배지에서 배양되었다. 슈도모나스 데니트리피칸스(P. denitrificans)의 3-HP 분해 실험을 위해 휴지세포는 25±2 mmol/L의 3-HP를 포함하는 M9 배지에서 배양하여 준비되었다. 3-HP농도 측정에 대한 표준편차는 10% 이하로 계산되었다. 기호: closed circle, 3-HP; semi-circle left, cell mass; cross, pH.
도 2는 3-HP의 두 가지 대사경로를 나타낸다(산화 및 환원 경로). 약어: 3-HPDH, 3-하이드록시프로피오네이트 디하이드로게나아제(3-hydroxypropionate dehydrogenase); 3-HIBDH, 3-하이드록시이소부티레이트 디하이드로게나아제(3-hydroxyisobutyrate dehydrogenase); MMSADH, 메틸말로네이트 세미알데히드 디하이드로게나아제(methylmalonate semialdehyde dehydrogenase); HPCS, 3-하이드록시프로피오닐-CoA 합성효소(3-hydroxypropionyl-CoA synthetase).
도 3은 슈도모나스 데니트리피칸스(P. denitrificans) ATCC13867에서 3-하이드록시프로피네이트 이화 유전자에 대한 상대적인 mRNA 수준(A) 및 증가 배수(B)를 나타낸다. (A) 슈도모나스 데니트리피칸스(P. denitrificans)를 25 mmol/L 3-HP가 공급된 M9 배지에서 배양하였을 때 결과(grey bar) 및 3-HP 공급 없이 M9 배지에서 배양하였을 때 결과(black bar)를 나타낸다. (B) 3-HP 공급에 따른 mRNA 수준의 차이를 증가 배수로 나타낸 결과(grey bar)를 나타낸다. mRNA 수준 측정에 대한 표준 편차는 10%이하로 계산되었다. mRNA 수준은 rpoD 유전자를 참조 유전자로 사용하여 비교되었다.
도 4는 mmsadh (검정) 및 3hibdhIV (회색) 유전자의 발현을 나타낸다. 3-HP 이외 3-하이드록시이소뷰티레이트(3-hydroxyisobutyrate; 3HIB), 3-하이드록시뷰티레이트(3-hydroxybutyrate; 3-HB), L-발린(L-valine) 등도 유도체(inducer)로 작용하였다.
도 5는 3hpdH 유전자의 발현을 나타낸다. 3-HP 이외 3-하이드록시이소뷰티레이트(3-hydroxyisobutyrate; 3HIB), 3-하이드록시뷰티레이트(3-hydroxybutyrate; 3-HB), L-발린(L-valine) 등도 유도체(inducer)로 작용하였다.
도 6은 슈도모나스 데니트리피칸스(P. denitrificans)에서 3-HP에 의해 유도되는 프로모터 시스템 유전자 서열 및 구조를 나타낸다. A. mmsadh 및 3hibdh 유전자 그리고 이 유전자의 전사를 조절하는 LysR 단백질 (C4-LysR) 유전자 배치. B. 3hpdh 유전자와 이 유전자 전사를 조절하는 LysR 단백질 (C3-LysR) 유전자의 배치.
도 7은 C4 LysR 유도 프로모터에 대한 분석 결과이다. C4-LysR (mmsR로 표기) mmsadh (mmsA로 표기) 유전자 사이에 존재하는 O1 및 O2 operator는 각각 mmsadh 전사 개시 사이트(transcription start site) 기준으로 -58 및 -9 위치에 존재하였고 역반복(inverted repeat) 서열을 가지고 있었다. O1, O2를 구성하는 역반복(inverted repeat)에 대한 분석결과 TA CGTGTAA 서열이 보존되어 있었다.
도 8은 LysR 패밀리 전사 조절자의 조절기작을 나타낸다.
도 9는 LysR 단백질에 높게 보존된 아미노산 서열을 나타낸다. 아미노산 위치는 C4-LysR을 중심으로 매겨졌다. 그러나 DNA 결합 도메인(DNA binding domain)이나 기질 결합 도메인(substrate binding domain)에서 보존된 아미노산 서열은 본 발명에서 사용된 균주 유래 모든 LysR 단백질에 동일하게 나타났다.
도 10은 C-his tag C4-LysR의 용해도(solubility) 분석을 위한 SDS-PAGE 결과를 나타낸다. 샤페론 플라스미드(Chaperon plasmid) pG - KJE8 (A), pGro7 (B), pKJE7 (C), pG - Tf2 (D), pTf16 (E)을 사용하였다. 유전자 재조합 E. coli BL21 균주는 LB 배지, 25℃에서 배양되었고 0.1 mM IPTG로 유도(induction)한 후 4시간 혹은 12시간째 수확(harvest)하였다. 푸른색 화살표는 C4-LysR 단백질로 34.4 kDa의 크기를 보여준다.
도 11은 정제된 C4-LysR 단백질의 SDS- 및 Native-PAGE 분석결과를 나타낸다. (A) denaturing SDS-PAGE를 통한 정제과정. Lane 1 야생형(wild-type, crude); lane 2, (-)IPTG; lane 3, 4, 5, 7 은 각각 무-세포(cell-free), 수용성(soluble), 불용성(insoluble) 및 정제 분획(purified fraction)을 보여준다. Lane 6은 단백질 마커(marker) (B) Native PAGE 분석. Lane 8, 10, 12은 단백질 마커(marker); Lane 9, 11, 13 은 정제 C4-LysR 단백질로 각각 65, 220, 550 nM 농도로 로딩(loading) 되었다.
도 12는 C4-LysR 농도 및 3-HP가 C4-LysR 단백질과 프로모터 부위의 DNA 단편(fragment) 간 결합에 미치는 영향을 나타낸다. (A) 실험에 사용된 프로모터 부위의 DNA 단편 서열. F12는 O1, O2를 모두 포함하는 단편(fragment) 이고 F12M은 O1 operator, 그리고 F1M2는 O2 operator만 포함하는 단편(fragment)이다. 또한 F1M2M은 O1, O2가 모두 제거된 단편이다. 실험에 사용된 DNA 단편의 길이는 모두 135 bp로 동일하였다. (B) C4-LysR 단백질과 프로모터 부위 DNA 단편간의 결합을 in vitro에서 조사한 전기영동 이동거리 변화분석 (Electromobility Shift Assay, EMSA) 결과. 상단 패널(upper panel)은 3-HP가 없는 조건에서, 그리고 하단 패널(lower panel)은 25 mM의 3-HP가 존재하는 조건에서 전기영동이 진행되었다. Lane 1-9: C4-LysR 단백질의 농도를 점차 증가시켰다(0, 0.36, 0.73, 1.45, 2.9, 5.8, 11.6, 14.5, 24.2 nM). Lane 10-15: C4-LysR 단백질의 농도를 다음과 같이 점차 증가시켰다 (0, 2.9, 5.8, 11.6, 14.5, 24.2 nM). Lane 16-21: C4-LysR 단백질의 농도를 다음과 같이 점차 증가시켰다 (0, 2.9, 11.6, 24.2, 72.7 nM). (C) C4-LysR 단백질과 프로모터 부위 DNA 단편간의 결합 affinity 분석의 정량적 결과. Affinity는 분리상수 (dissociation constant, KD), 즉 절반의 DNA 단편이 C4-LysR 단백질과 결합하는데 필요한 단백질의 농도로 표시하였다.
도 13은 슈도모나스 데니트리피칸스(P. denitrificans) ATCC13861과 다양한 미생물들 사이의 3-HP 분해 경로에 포함된 유전자 집단의 구조 비교 결과를 나타낸다.
도 14 및 도 15는 LysR 영역에 포함된 N-terminal HTH의 다중서열배치를 나타낸다. C4-LysR(도 14), C3-LysR(도 15).
도 16은 슈도모나스 데니트리피칸스(P. denitrificans)에 글리세롤 탈수효소 및 KGSADH를 발현을 위해 개발된 pUCPK'/PC3-gdrAB-dhaB, PC4-KGSADH 플라스미드를 나타낸다.
도 17은 Pd Δ3hpdhΔ3hibdhIVΔ3hibdhI(pUCPK’/PC3-dhaB-gdrAB, PC4-KGSADH) 균주 (O1, O2 & O3)와 Pd Δ3hpdhΔ3hibdhIVΔ3hibdhI(pUCPK’/ PC3-gdrAB-dhaB, PC4-KGSADH) 균주(S1, S2 & S3)에 의한 글루코스와 글리세롤 소모, 세포성장, 3-HP 생산, pH 변화 비교 결과를 나타낸다(O1 & S1), 글리세롤 없음; (O2 & S2), 25mg/L CoCl2·6H2O가 배양 배지에 추가됨; (O3 & S3), 12 μmol/L 코엔자임 B12가 배양배지로 추가됨. 3h에 100mM의 글리세롤이 추가됨.
도 18은 Pd Δ3hpdhΔ3hibdhIVΔ3hibdhI(pUCPK’/PC3-dhaB-gdrAB, PC4-KGSADH)와 Pd Δ3hpdhΔ3hibdhIVΔ3hibdhI(pUCPK’/ PC3- gdrAB-dhaB, PC4-KGSADH)의 세포 파쇄액을 이용한 시간에 따른 글리세롤 탈수효소 및 KGSADH의 비활성 비교 결과를 나타낸다.
도 19는 유가식 바이오리액터 운전에 있어 글리세롤, 글루코스의 소모, 바이오매스 및 3-HP 생산의 시간에 따른 변화 결과를 나타낸다. (A) 재조합 Pd Δ3hpdhΔ3hibdhIVΔ3hibdhI (pUCPK’/PC3-dhaB-gdrAB, PC4-KGSADH) (B) Pd Δ3hpdhΔ3hibdhIVΔ3hibdhI (pUCPK’/PC3-gdrAB-dhaB, PC4-KGSADH).
이에, 본 발명자들은 3-HP 생산효소의 발현을 효율적으로 유지하기 위하여 3-HP 에 의해 발현이 유도(induction)되는 특이한 유전자 전사 프로모터 시스템을 다양한 미생물에서 발견하고 이들의 유전적, 생화학적 특징을 조사하였다. 이 프로모터 시스템은 아직 문헌에 한 번도 보고된 적이 없는 특이한 시스템으로 3-HP와 결합하는 전사촉진 단백질과 이 단백질이 특이적으로 결합하는 DNA 서열로 이루어져 있었다. 본 발명자들은 이 프로모터 시스템을 사용하여 DhaB, GdrAB 및 KGSADH를 과발현함으로써 글리세롤로부터 3-하이드록시프로피온산을 고농도로 생산할 수 있는 재조합 균주로 개발하고 본 발명을 완성하였다.
본 발명은 3-하이드록시프로피온산(3-hydroxypropionic acid, 3-HP) 또는 이의 유사체에 반응하는 LysR 단백질과의 결합 부위를 포함하는 3-HP 또는 이의 유사체 유도성 프로모터를 제공한다.
또한, 본 발명은 3-HP 또는 이의 유사체 유도성 프로모터를 포함하는 재조합 발현벡터를 제공한다. 바람직하게는, 상기 3-HP 또는 이의 유사체 유도성 프로모터에 작동가능하게 연결된 외래 단백질을 코딩하는 유전자를 더 포함할 수도 있다. 보다 바람직하게는, 상기 외래 단백질은 글리세롤 디하이드라테이즈(glycerol dehydratase; DhaB), 글리세롤 디하이드라테이즈 재활성화 효소(DhaB reactivase; GdrAB) 또는 α-케토글루타릭 세미알데하이드 디하이드라지네이즈(α-ketoglutaric semialdehyde dehydrogenase; KGSADH)일 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명은 상기 재조합 발현벡터로 형질전환된 재조합 미생물을 제공한다. 바람직하게는 상기 미생물은 3-HP 생산능을 가진 미생물일 수 있고, 보다 바람직하게는 상기 미생물은 슈도모나스 데니트리피칸스(Pseudomonas denitrificans)일 수 있으며, 보다 더 바람직하게는 미생물은 슈도모나스 데니트리피칸스(Pseudomonas denitrificans) 균주에서 3-HP 분해에 관련된 3hpdh, 3hibdh mmsadh 유전자가 결실된 슈도모나스 데니트리피칸스(P. denitrificans) Δ3hpdhΔ3hibdhIV△3hibdhI 균주일 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명은 상기 재조합 미생물을 배양하는 단계를 포함하는 3-HP 생산방법을 제공한다.
또한, 본 발명은 3-하이드록시프로피온산(3-hydroxypropionic acid, 3-HP) 또는 이의 유사체에 반응하는 LysR 단백질을 코딩하는 lysR 유전자, 상기 LysR 단백질과의 결합 부위를 포함하는 프로모터 및 발현 목적 단백질을 코딩하는 유전자를 포함하는 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트를 제공한다.
또한, 본 발명은 상기 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트를 포함하는 재조합 발현벡터 및 상기 재조합 벡터로 형질전환된 재조합 미생물을 제공한다.
또한, 본 발명은 상기 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트가 숙주세포의 염색체 내에 삽입되어 있는 재조합 미생물을 제공한다. 본 발명이 속하는 기술분야의 당업자에게 있어 상기 재조합 유전자 발현 카세트를 숙주세포의 게놈 염색체에 삽입하여서도 상기와 같이 재조합 벡터를 숙주세포에 도입한 경우와 동일한 효과를 가질 것은 자명하다 할 것이다.
본 발명에서 상기 재조합 유전자 발현 카세트를 숙주세포의 염색체상에 삽입하는 방법으로는 통상적으로 알려진 유전자조작방법을 사용할 수 있으며, 일 예로는 레트로바이러스 벡터, 아데노바이러스 벡터, 아데노-연관 바이러스 벡터, 헤르페스 심플렉스 바이러스 벡터, 폭스바이러스 벡터, 렌티바이러스 벡터 또는 비바이러스성 벡터를 이용하는 방법을 들 수 있다.
또한, 본 발명은 상기 재조합 미생물을 배양하는 단계를 포함하는 발현 목적 단백질 생산방법을 제공한다. 바람직하게는, 상기 재조합 미생물을 배양하는 단계는 3-HP를 첨가하는 단계를 더 포함할 수 있다.
바람직하게는, 상기 LysR 단백질 또는 상기 프로모터는 3-HP 분해능을 가진 미생물로부터 유래한 것일 수 있으며, 보다 바람직하게는, 아크로모박터 데니트리피칸스(Achromobacter denitrificans), 아시도보락스 아베네(Acidovorax avenae) subsp., 아시도보락스(Acidovorax sp .), 아시네토박터 바우만니(Acinetobacter baumannii), 에로모나스 하이드로필리아(Aeromonas hydrophilia), 아그로박테리움(Agrobacterium sp .), 알칼리제네스 패칼리스(Alcaligenes faecalis), 알칸니보락스 홍덴젠시스(Alcanivorax hongdengensis), 알리시클리필러스 데니트리피칸스(Alicycliphilus denitrificans), 알테로모나스 마리나(Alteromonas marina), 아미코라톱시스(Amycolatopsis sp .), 안에로믹소박터 디할로제난스(Anaeromyxobacter dehalogenans), 아조스피릴럼 브라질렌스(Azospirillum brasilense), 아조토박터 비네란디(Azotobacter vinelandii), 바이예린키아 인디카(Beijerinckia indica), 보르데텔라 아비움(Bordetella avium), 브라디라조비움 자포니컴(Bradyrhizobium japonicum), 버크홀데리아 암비파리아(Burkholderia ambifaria), 카테눌리스포라 애시디필리아(Catenulispora acidiphilia), 카울로박터(Caulobacter sp .), 카스텔라니엘라 디프라그란스(Castellaniella defragrans), 크로모박테리움 비오라세움(Chromobacterium violaceum), 콜리모나스 아레네(Collimonas arenae), 코마모나스 테스토스테로니(Comamonas testosteroni), 코리네박테리움 비타에러미니스(Corynebacterium vitaeruminis), 쿠프리아비더스 네카터(Cupriavidus necator), 커비박터 그라실러스(Curvibacter gracilus), 델프티아 액시도보란스(Delftia acidovorans), 페리모나스 바레아리카(Ferrimonas balearica), 글라시에코라 니트라티레듀센스(Glaciecola nitratireducens), 고르도니아 브론치알리스(Gordonia bronchialis), 하헬라 치유엔시스(Hahella chijuensis), 할로모나스 에롱가타(Halomonas elongata), 히르치아 리토레아(Hirschia litorea), 이디오마리나(Idiomarina sp.), 잔티노박테리움 리비덤(Janthinobacterium lividum), 키타사토스포라 세타에(Kitasatospora setae), 쿠츠네리아 알비다(Kutzneria albida), 메틸로박테리움(Methylobacterium sp .), 메틸로시스티스(Methylocystis sp.), 노보스핑고비움(Novosphingobium sp.), 오셔니모나스 스미르노비(Oceanimonas smirnovii), 파라코커스(Paracoccus sp .), 파비바큘럼 라바멘티보란스(Parvibaculum lavamentivorans), 페닐로박테리움 쿤샤넨시스(Phenylobacterium kunshanensis), 포토박테리움 가에트불레다(Photobacterium gaetbuleda), 폴리뉴클레오박터 네세사리어스 아심비오티커스(Polynucleobacter necessarius asymbioticus), 슈도알테로모나스 카라지노보라(Pseudoalteromonas carrageenovora), 슈도굴벤키아니아(Pseudogulbenkiania sp.), 슈도모나스 데니트리피칸스(Pseudomonas denitrificans) ATCC13867, 슈도모나스 크낵뮤시(Pseudomonas knackmussii), 슈도모나스 프로테젠스(Pseudomonas protegens), 슈도모나스 플루오레센스(Pseudomonas fluorescens), 슈도잔토모나스 스파딕스(Pseudoxanthomonas spadix), 사이크로박스 페닐피루비커스(Psychrobacter phenylpyruvicus), 랄스토니아 옥살라티카(Ralstonia oxalatica), 로도마이크로비움 반니엘리(Rhodomicrobium vannielli), 세그닐리파러스 로턴더스(Segniliparus rotundus), 세와넬라 원이덴시스(Shewanella oneidensis), 시미두이아 아가로보란스(Simiduia agarovorans), 시노리조비움 멜리로티(Sinorhizobium meliloti), 스핑고비움 클로로페놀리컴(Sphingobium chlorophenolicum), 스핑고모나스 위티치(Sphingomonas wittichii), 스핑고픽시스 알라스켄시스(Sphingopyxis alaskensis), 스테노트로포모나스 말토필리아(Stenotrophomonas maltophilia), 스트렙토마이시스 노도서스(Streptomyces nodosus), 타틀록키아 믹다데이(Tatlockia micdadei), 타라소스피라 시아메넨시스(Thalassospira xiamenensis), 배리오보락스 파라독서스(Variovorax paradoxus), 버미네프로박터 에이세니에( Verminephrobacter eiseniae), 비브리오 퍼니시(Vibrio furnissii), 잔토박터 오토트로피커스(Xanthobacter autotrophicus), 잔토모나스 캄페스트리(Xanthomonas campestri) 및 잔토모나스 오리재(Xanthomonas oryzae)일 수 있으나, 이에 제한되는 것은 아니다.
바람직하게는, 상기 LysR 단백질은 헬릭스-턴-헬릭스(helix-turn-helix) 구조로 이루어져 DNA와 결합하는 N-말단 도메인, 3-HP 또는 이의 유사체와 결합하는 C-말단 도메인 및 LysR 단백질 이합체 안정화에 기여하는 C-말단 도메인을 포함할 수 있으나, 이에 제한되는 것은 아니다.
보다 바람직하게는, 상기 헬릭스-턴-헬릭스(helix-turn-helix) 구조로 이루어져 DNA와 결합하는 N-말단 도메인은 서열번호 1 또는 서열번호 2로 표시되는 아미노산 서열을 포함할 수 있고, 상기 3-HP 또는 이의 유사체와 결합하는 C-말단 도메인은 서열번호 3으로 표시되는 아미노산 서열을 포함할 수 있으며, 상기 LysR 단백질 이합체 안정화에 기여하는 C-말단 도메인은 서열번호 4로 표시되는 아미노산 서열을 포함할 수 있으나, 이에 제한되는 것은 아니다.
상기 서열번호 1 내지 서열번호 4에 기재된 "X" 또는 "Xaa"는 특정 아미노산이 아니라, 어떠한 아미노산도 포함될 수 있음을 의미한다. 보다 더 바람직하게는, 상기 LysR 단백질은 표 4 및 표 5에 기재된 Genebank ID를 가진 LysR 단백질일 수 있으나, 이에 제한되는 것은 아니다.
바람직하게는, 상기 LysR 단백질과의 결합 부위는 LysR 단백질 이량체(dimer)가 2개 결합할 수 있으며, 서열번호 5 내지 서열번호 43으로 이루어진 군에 선택된 어느 하나로 표시된 염기서열을 포함할 수 있고, 상기 서열번호 5 내지 서열번호 43으로 이루어진 군에 선택된 어느 하나로 표시된 염기서열로 이루어진 역반복(Inverted Repeat) 서열 및 이와 쌍을 이루는 역반복 서열이 2번 반복될 수 있으나, 이에 제한되는 것은 아니다.
보다 바람직하게는, 상기 LysR 단백질과의 결합 부위는 서열번호 44 또는 서열번호 45로 표시되는 염기서열로 이루어질 수 있다.
상기 서열번호 5 내지 서열번호 43에 기재된 "n"은 특정 염기가 아니라, 어떠한 염기도 포함될 수 있음을 의미한다.
상기 서열번호 44 또는 서열번호 45는 슈도모나스 데니트리피칸스(Pseudomonas denitrificans) ATCC13867에서 유래한 프로모터 염기 서열이다.
바람직하게는, 상기 유사체는 3-하이드록시이소뷰티레이트(3-hydroxyisobutyrate; 3HIB) 또는 3-하이드록시뷰티레이트(3-hydroxybutyrate; 3-HB) 일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, "벡터"는 클론유전자(또는 클론 DNA의 다른 조각)를 운반하는데 사용되는 스스로 복제되는 DNA분자를 의미한다.
본 발명에서 있어서, "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동 가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 수 있다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질 전환된 세포를 비 형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 앰피실린(ampicilin), 카나마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol) 과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니며, 당업자에 의해 적절히 선택 가능하다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<실시예 1> 3-하이드록시프로피온산에 의한 유전자 발현 시스템 규명
1. 재료
아크로모박터 데니트리피칸스(Achromobacter denitrificans), 아시네토박터 바우만니(Acinetobacter baumannii)을 포함한 다수의 균주는 한국미생물보존센터 KCCM으로부터 획득하였다. 아시도보락스 아베네(Acidovorax avenae) subsp., 아그로박테리움(Agrobacterium sp.)을 포함한 다수 균주에 대해서는 한국 미생물 자원센터 KCTC에서 구매하였다. 알리시클리필러스 데니트리피칸스(Alicycliphilus denitrificans), 안에로믹소박터 디할로제난스(Anaeromyxobacter dehalogenans)카를 포함한 다수의 균주는 독일의 DSM에서 획득하였다. 에어로모나스 하이드로필리아(Aeromonas hydrophilia), 슈도모나스 데니트리피칸스(Pseudomonas denitrificans) ATCC13867를 포함한 다수의 균주는 미국의 ATCC에서 구매하였다. 프라이머는 코스모진텍(서울, 한국)에서 합성하였다. 3-HP는 일본에 도쿄 카세이 코교 (TCI America, Portland, OR)에서 구입하였다. 효모추출물 (Cat. 212750), 트립톤 (Cat. 211705)은 Difco에서 구입하였다 (Becton Dickinson; Franklin Lakes, NJ). 언급하지 않은 모든 화학물질 및 효소는 시그마 알드리치에서 구입하였다 (St. Louis, MO).
2. 증식세포에서의 3-HP 동화 및 휴지세포에서의 3-HP 분해
Shake flask 실험은 250mL non-baffled 삼각플라스크에 30mL의 부피로 진탕배양기에서 온도 37℃, 교반속도 200rpm 조건으로 수행하였다. 슈도모나스 데니트리피칸스(P. denitrificans)에 의한 3-HP 동화에 대한 실험은 250mL non-baffled 삼각플라스크에 30mL의 부피로 개량된 M9 배지를 넣고 진탕배양기에서 온도 37℃, 교반속도 200rpm 조건으로 수행하였다. 균주를 배양하기 위해 사용한 개량된 M9 배지의 조성은 100mM 인산염 완충용액 (pH 7.0), MgSO4·7H2O 0.25 g/L, NaCl 1.0 g/L, NH4Cl 1.0 g/L, 3-HP 25 mM 으로 하였다.
휴지세포 실험은 슈도모나스 데니트리피칸스(P. denitrificans)를 포함 총 69종의 미생물에서 3-HP 분해에 대해 알아보기 위해 수행되었으며, 이 실험에 사용된 박테리아들은 표 1에 나타내었다. 활성 세포를 준비하기 위해 각 균주에 따라 명시된 영양강화 배지에 3-HP를 포함하여 250mL non-baffled 삼각플라스크에 50mL의 부피로 배양하였다. 균주 배양은 37℃에서 이루어졌으며, 세포의 OD600가 1-1.5 정도 되었을 때 5000rpm에서 10분 동안 원심분리하여 세포를 수득하였다. 침전된 세포는 100mM 인산염 완충용액 (pH 7.0)을 이용하여 세척한 후, 동일한 완충용액 안에 3-HP 25±2 mmol/L를 넣고 재현탁하였다. 앞서 언급한 세포 수득, 세척 및 재현탁 과정은 3-HP 분해 실험 전에 이루어졌다. 시료는 3-HP 농도를 조사하기 위해 주기적으로 채취되었다.
본 발명에 사용된 균주
Genus No. 균주 배지 배양 온도 호기 조건 구입처
1 Achromobacter denitrificans Nutrient medium 26℃ Aerobic KCCM
2 Acidovorax avenaesubsp. Nutrient medium 25℃ Aerobic KCTC
Acidovorax sp Tryptone soya broth 28℃ Aerobic DSM
3 Acinetobacter baumannii Nutrient medium 30℃ Aerobic KCCM
4 Aeromonas hydrophilia Nutrient medium 30℃ Aerobic ATCC
5 Agrobacterium sp. Nutrient medium 30℃ Aerobic KCTC
6 Alcaligenes faecalis Nutrient medium 30℃ Aerobic KCCM
7 Alcanivorax hongdengensis Nutrient medium 26℃ Aerobic KCTC
8 Alicycliphilus denitrificans Nutrient medium 26℃ Aerobic DSM
9 Alteromonas marina Marine broth 2216 (DIFCO 0791) 30℃ Aerobic KCCM
10 Amycolatopsis sp . Nutrient medium 30℃ Aerobic KCTC
11 Anaeromyxobacter dehalogenans R2A medium 28℃ Microaerobic DSM
12 Azospirillum brasilense Azospirillum medium 30℃ Aerobic KCCM
13 Azotobacter vinelandii Azotobacter medium 30℃ Aerobic KCCM
14 Beijerinckia indica Beijerinckia medium 30℃ Aerobic KCTC
15 Bordetella avium Trypticase soy broth 37℃ Aerobic KCCM
16 Bradyrhizobium japonicum Rhizobium medium 26℃ Aerobic KCCM
17 Burkholderia ambifaria Trypticase soy broth 28℃ Aerobic KCCM
18 Catenulispora acidiphilia Nutrient medium 30℃ Aerobic KCTC
19 Caulobacter sp . Nutrient medium 30℃ Aerobic KCTC
20 Castellaniella defragrans Nutrient medium 30℃ Aerobic KCTC
21 Chromobacterium violaceum Nutrient medium 26℃ Aerobic ATCC
22 Collimonas arenae Nutrient medium with 5g/L NaCl 28℃ Aerobic DSM
23 Comamonas testosteroni Nutrient medium 30℃ Aerobic KCCM
24 Corynebacterium vitaeruminis Corynebacterium broth 30℃ Aerobic KCCM
25 Cupriavidus necator Nutrient medium 26℃ Aerobic KCCM
26 Curvibacter gracilus Peptone, yeast extract with magnesium sulfate 30℃ Aerobic ATCC
27 Delftia acidovorans Nutrient medium 30℃ Aerobic KCTC
28 Ferrimonas balearica Triple-sugar-iron medium(Difco) 28℃ Aerobic KCTC
29 Glaciecola nitratireducens Broth Medium Marine Broth 2216 (BD 279110) 25℃ Aerobic KCTC
30 Gordonia bronchialis Trypticase soy broth 28℃ Aerobic KCCM
31 Hahella chijuensis Nutrient medium 30℃ Aerobic KCTC
32 Halomonas elongata Halomonas medium 30℃ Aerobic KCCM
33 Hirschia litorea Nutrient medium 30℃ Aerobic KCTC
34 Idiomarina sp . Bactomarine broth(Difco 2216) 30℃ Aerobic KCTC
35 Janthinobacterium lividum Nutrient medium 25℃ Aerobic KCTC
36 Kitasatospora setae Nutrient medium 30℃ Aerobic KCTC
37 Kutzneria albida Nutrient medium 30℃ Aerobic KCTC
38 Methylobacterium sp . Nutrient medium 30℃ Aerobic KCTC
39 Methylocystis sp . NMS medium for Methanotrophs with 20% methane(v/v) in the air head space 28℃ Aerobic ATCC
40 Novosphingobium sp . Nutrient medium 30℃ Aerobic KCTC
41 Oceanimonas smirnovii Marine Broth 2216 (BD 279110) 23℃ Aerobic ATCC
42 Paracoccus sp . Nutrient medium 30℃ Aerobic KCTC
43 Parvibaculum lavamentivorans Peptone 10.0 g /L; NaCl 5.0 g/L; CaCl2H2O 0.1 g/L; Tween 80 10.0 g/L 30℃ Aerobic KCTC
44 Phenylobacterium kunshanensis R2A medium 30℃ Aerobic KCTC
45 Photobacterium gaetbuleda Nutrient medium 30℃ Aerobic KCTC
46 Polynucleobacter necessarius asymbioticus R2A medium 28℃ Aerobic DSM
47 Pseudoalteromonas carrageenovora Sea water yeast peptone broth 20℃ Aerobic KCCM
48 Pseudogulbenkiania sp . Nutrient medium 37℃ Aerobic DSM
49 Pseudomonas denitrificans ATCC13867 Minimal medium 37℃ Aerobic ATCC
Pseudomonas knackmussii Nutrient medium 30℃ Aerobic DSM
Pseudomonas protegens Nutrient medium 28℃ Aerobic DSM
Pseudomonas fluorescens 1213 King medium B 28℃ Aerobic ATCC
50 Pseudoxanthomonas spadix R2A medium 35℃ Microaerobic KCTC
51 Psychrobacter phenylpyruvicus Trypticase soy broth 30℃ Aerobic ATCC
52 Ralstonia oxalatica Nutrient medium 30℃ Aerobic KCCM
53 Rhodomicrobium vannielli Nutrient medium 30℃ Aerobic KCTC
54 Segniliparus rotundus Bacto Middle brook7H10 medium(Difco 262710) 28℃ Aerobic DSM
55 Shewanella oneidensis Trypticase soy broth 30℃ Aerobic ATCC
56 Simiduia agarovorans Nutrient medium 30℃ Aerobic KCTC
57 Sinorhizobium meliloti Rhizobium medium 26℃ Aerobic KCCM
58 Sphingobium chlorophenolicum Nutrient medium 30℃ Aerobic KCTC
59 Sphingomonas wittichii Nutrient medium 30℃ Aerobic KCTC
60 Sphingopyxis alaskensis Nutrient medium 30℃ Aerobic KCTC
61 Stenotrophomonas maltophilia Nutrient medium 30℃ Aerobic KCCM
62 Streptomyces nodosus Nutrient medium 30℃ Aerobic KCTC
63 Tatlockia micdadei BCYE (Buffered Charcoal Yeast Extract) medium 37℃ Microaerophilic DSM
64 Thalassospira xiamenensis Nutrient medium 30℃ Aerobic KCTC
65 Variovorax paradoxus Nutrient medium 30℃ Aerobic KCTC
66 Verminephrobacter eiseniae R2A medium 28℃ Aerobic DSM
67 Vibrio furnissii Bactomarine broth(Difco 2216) 28℃ Aerobic KCCM
68 Xanthobacter autotrophicus Nutrient medium 30℃ Aerobic KCCM
69 Xanthomonas campestri Nutrient medium 26℃ Aerobic KCCM
Xanthomonas oryzae IFO medium 802 30℃ Aerobic KCCM
3. RNA 추출 및 역전사 중합효소 연쇄반응
슈도모나스 데니트리피칸스(P. denitrificans) ATCC 13567 균주 배양에는 M9 배지가 사용되었으며, 표 1에 나타낸 다른 미생물들의 배양에는 각 균주에 따라 명시된 영양 배지가 사용되었다. 3-HP에 따른 영향을 조사할 때는 제시된 배지 안에 25mM의 3-HP가 첨가되었다. 모든 균주는 진탕배양기에서 온도 37℃, 교반속도 200rpm으로 호기성 조건이 되도록 하여 배양되었으며, 배양세포가 지수성장기에 도달하였을 때 세포를 수득하였다. 세포의 양이 대략 5×108이 되도록 채취한 뒤 5000g에서 10분 동안 원심분리를 수행하였다. 침전된 세포에 즉시 RNA later 용액 (Ambion,, UK) 500 μl넣고 재현탁하였다. RNA는 total RNA isolation kit (Macherey-Nagel, Germany)로 추출하였다. 20 μl first-strand cDNA 합성을 위해 1 μg의 total RNA가 사용되었으며, cDNA 합성을 위해 Invitrogen에서 제공하는 SuperScript Ⅲ first-strand synthesis system이 이용되었다.
역전사 중합효소 연쇄 반응은 SYBR green step를 이용하여 One Real Time PCR system (Applied Biosystems, USA) 장비로 수행되었다. 역전사 중합효소 연쇄반응을 위한 반응액 20μL에는 300ng cDNA, 10μL 2×Power SYBR Green PCR Master Mix (Applied Biosystems, UK), 5pmol of forward and reverse primers, DEPC treated water가 포함되었다. 역전사 중합효소 연쇄반응을 위한 조건은 다음과 같이 결정하였다: denaturation, 1 cycle of 95℃ for 30 s; amplification, 40 cycles of 95℃ for 15 s, 62℃ for 30 s, and 72℃ for 30 s. 역전사 중합효소 연쇄 반응을 수행하기 전 정확한 mRNA 수준 측정을 위해 실험에 사용된 프라이머 효율 확인은 PCR을 통해 이루어졌으며, mRNA 수준에 대한 relative quantification은 ΔΔCT 방법을 사용해 계산되었다.
4. LysR 단백질의 유전자 클로닝, 단백질 생산, 분리 정제
슈도모나스 데니트리피칸스(P. denitrificans)의 경우 3-HP를 분해하는데 관여하는 2개의 operon, 즉 3HPDH (이하 C3 시스템) 및 3HIBDH-IV (이하 C4 시스템)이 존재하였고 이들의 전사를 조절하는 LysR 단백질, C3-LysR 과 C4-LysR이 존재하였다. 이 중 C4-LysR에 대하여 단백질 생산을 시도하였다. E. coli BL21 (DE3)를 숙주(host)로 그리고 플라스미드 클로닝, 유지 등을 위해서는 E. coli Top10을 사용하였다. C4 LysR 유전자를 P. denitrificans genome 에서 PCR로 증폭하여 pET30b(+) 프라스미드에 클로닝한 후 E. coli Top10에 넣어 염기서열(sequence)을 확인하고 E. coli BL21 (DE3)에 넣어주었다. 단백질 정제를 위해 C-말단(C-terminus) 부위에 His tag을 붙여주었다. LysR 단백질을 활성이 있는 수용성(soluble) 형태로 발현하기 위해 pG-KJE8, pGRO7, pG-TF2, pTF-16 등 여러 샤페론 플라스미드(chaperone plasmid)와 함께 co-expression 시켰다. 배지로는 카나마이신(kanamycin), 클로람페니콜(chloramphenicol), L-아라비노오스(L-arabinose) 등이 적절히 포함된 LB 배지를 사용하였고 호기적 조건에서 배양하였다. 세포농도가 0.6 OD에 이르렀을 때 0.1 mM의 IPTG를 추가하여 LysR 단백질의 생산을 유도하였다. 단백질의 수용성 발현을 위해 여러 배양 조건을 검토한 후 최종적으로 25℃, 150 rpm 에서 10시간 배양하였다. 배양된 세포는 원심분리하여 얻고 100 mM (pH 7) 인산 완충액(buffer)으로로 세척한 후 결합 완충액(binding bufffer)에 재현탁시키고 French Press로 파쇄하였다. 이후 다시 원심분리하여 고형분과 미파쇄 세포를 제거하고 용액부분을 Ni-affinity column을 이용하여 정제하였다. 이후 20% 글리세롤(glycerol) 용액에서 80℃에 보관하였다.
5. in vitro 조건에서 단백질-DNA 결합 조사를 위한 전기영동 이동거리 변화 측정(Electrophoretic Mobility Shift Assay; EMSA)
분리한 C4-LysR 과 프로모터 부위의 결합을 in vitro 에서 연구하기 위하여 프로모터 부위의 DNA 단편(fragment)를 합성하였다(도 7). 3 가지 종류의 단편(fragment)을 합성하였는데 첫째, C4-LysR 유전자와 mmsadh 유전자 사이 전체 DNA 단편(fragment)으로 전사조절 단백질이 결합(binding) 한다고 예상되는 O1 및 O2 operator 2개가 모두 포함된 것 (F12로 명명), 둘째, O1 operator 부분만 포함하는 단편(fragment) (F12M으로 명명), 셋째, O2 operator 부분만 포함하는 단편(fragment) (F1M2로 명명) 등이었다. EMSA 실험은 Invitrogen 사의 Molecular Probes Fluorescence-based Mobility Shift Assay kit (fluorescence-EMSA)를 사용하여 진행되었다. 먼저 프로모터 부위 DNA 단편(fragment)을 glass fiber column 으로 정제한 후 결합 완충액(binding buffer)에서 정제한 LysR 단백질과 혼합하여 30분간 상온에서 반응시켰다. 이후 6% non-denaturing polyacrylamide gel에 로딩(loading) 한 후 30분간 220 V에서 pH 8의 TBE 완충액(buffer)에서 전개하였다. 이 후 gel을 fixing 한 후 DNA band를 확인하기 위해 SYBR Green EMSA로 염색(staining) 하고 gel documentation system (Bio-Rad)로 band intensity를 정량하였다. 단백질을 관찰할 경우 DNA-protein band를 SYPRO Ruby EMSA 용액으로 염색(staining) 하였다.
6. 분석 방법
세포 농도는 10mm 길이를 가지는 큐벳을 이용하여 양선 분광광도계 (Lambda 20, Perkin-Elmer, Norwalk, CT)로 측정하였다. 3-HP 농도는 고성능액체크로마토그래피 (HPLC)를 사용하여 측정하였다(Raj et al, 2008). HPLC 분석을 위해 채취한 시료는 10,000×g로 10분 동안 원심분리를 통해 세포 침전물을 제거하고, tuffryn 멤브레인 필터 (Acrodisc; Pall Life Sciences, Port Washington, NY)를 사용하여 시료 안에 남아 있는 세포를 제거하여 준비되었다. HPLC 분석에 사용된 컬럼은 300 mm × 7.8 mm Aminex HPX-87H (Bio-Rad, USA)로 65℃에서 2.5mmol/L의 H2SO4를 이동상으로 사용하였다.
7. 결과
(1) 슈도모나스 데니트리피칸스( P. denitrificans )에서 3-HP 유도성 프로모터의 스크리닝
3-하이드록시프로피온산은 자연환경에서 거의 존재하지 않는 탄소 화합물로, 탄소기질로서의 사용이나 생물학적 분해에 관한 보고가 거의 없다. 최근, 본 발명자들은 슈도모나스 데니트리피칸스(P. denitrificans)가 성장 및 비성장 상태에서 3-HP를 빠르게 분해하는 것을 발견하였다. 세포 성장 동안 슈도모나스 데니트리피칸스(P. denitrificans)는 3-HP를 단독 탄소원 및 에너지원으로 사용할 수 있었다 (도 1A). 세포가 성장하지 않는 동안에도 슈도모나스 데니트리피칸스(P. denitrificans)는 3-HP를 산소 존재 하에 분해하는 특성을 보여주었다(도 1B). 생물학적으로 3-HP의 분해는 환원성 경로 혹은 산화성 경로를 이용한다고 알려져 있다(도 2). 유전체 분석과 기체 크로마토그래피-질량분석법에 의한 대사체 분석을 통해 슈도모나스 데니트리피칸스(P. denitrificans)에서 3-HP의 분해는 산화경로를 이용하는 것으로 추정되었다. 이 경로에 따르면 3-하이드록시프로피오네이티드 디하이드로지네이즈(3HPDH)와 (메틸) 말로네이트-세미알데하이드 디하이드로지네이즈 (MMSADH)로 추정되는 두 효소가 연속적으로 3-HP를 메틸말로네이트 세미알데하이드로, 그리고 메틸 말로네이트 세미알데하이드를 아세틸-CoA로 전환시킨다(도 2). 3HPDH 외에도 3-HP 및 비슷한 3-하이드록시산을 분해할 수 있는 것으로 추정되는 여러 가지 3-하이드록시부틸레이트 디하이드로지네이즈가 슈도모나스 데니트리피칸스(P. denitrificans)에서 확인되었다. 3-HP에 대해 활성을 가지는 여러 가지 효소들의 발현이 3-HP로 인해 유도되어 질 수 있을 가능성이 있었다. 3-HP 이화 작용 유전자들로 추정된 세 가지 유전자 (3hpdh, 3hibdhIV, mmsadh)의 mRNA 수준을 RT-PCR을 통하여 비교하였다(도 3). 이때 시그마 인자 70을 암호화하며 항존 유전자로 알려진 rpoD를 참조 유전자로 사용하였다. 그 결과 흥미롭게도 3-HP 분해에 관련한다고 추정된 이들 유전자들의 발현이 3-HP에 의하여 상당히 증가하는 것으로 관찰되었다. 세포가 3-HP에 노출되었을 때 3hpdh의 경우 46배 증가하였으며, 3hibdhIV는 146배, mmsadh는 137배까지 증가하였다. 이와 같은 유전자들의 상향 조절은 3-HP에 의해 유전자들의 프로모터가 유도되는 성질로 설명될 수 있다.
3hpdh, 3hibdhIV, mmsadh 유전자의 발현이 3-HP와 비슷한 크기를 갖는 그러나 구조적으로 다른 화합물에 의해 증폭될 가능성에 대하여 조사하였다(도 4 및 도 5). 이들 유전자는 모두 3-HP, 3-하이드록시이소뷰티레이트(3-hydroxyisobutyrate; 3HIB), 3-하이드록시뷰티레이트(3-hydroxybutyrate; 3-HB)에 의해 증폭이 유도되었다. 그러나 젖산(lactic acid), 아세트산(acetic acid), 프로피온산(propionic acid), 1,3-프로판디올(1,3-propanediol), 2,3-부탄디올(2,3-butandiol) 등에 의해서는 증폭이 유도되지 않았다. 특이하게도 L-발린(L-valine)에 의해 증폭이 유도되었는데 이는 L-발린(L-valine)이 대사되는 과정에 3-HIB로 전환되기 때문인 것으로 추정되었다. 이로 미루어 전사 조절 단백질은 3-HP, 3-HIB, 3-HB 등에 특이적으로 반응하는 것으로 판단되었다.
(2) 3-HP 유도성 유전자 발현 시스템 분석
LysR 패밀리 전사조절자(LysR-type transcriptional regulators; LTTRs)는 방향족 화합물의 분해 경로와 같은 이화 과정을 조절하는 전사 활성인자로 알려져 있다. 일반적으로 LTTRs를 암호화하는 유전자는 방향족 화합물 분해에 관련된 유전자 집단의 앞부분에 존재하면서 화합물 분해 작용을 조절한다. 3-HP 분해 경로를 규명하기 위해서 슈도모나스 데니트리피칸스(P. denitrificans)의 3HPDH 및 3HIBDH-IV에 관련된 오페론의 유전자 구조 분석이 이루어졌다. 그 결과 3-HP 분해 유전자들의 앞쪽 부분에 LTTRs가 비슷한 유전자 배열로 위치하고 있음을 확인하였다(도 6). 이는 슈도모나스 데니트리피칸스(P. denitrificans)에서 3-HP 분해 유전자들의 발현이 LysR 단백질에 관련되어 있을 가능성을 나타낸다. 특징적으로 lysR 유전자와 LysR 단백질(이하, C4 화합물인 3-hydroxyisobutyrate dehydrogenase 유전자와 결합하는 LysR을 C4-LysR, 그리고 C3 화합물인 3-HP dehydrogenase의 유전자와 결합하는 LysR을 C3-LysR 이라고 칭함)에 의해 전사가 조절되는 유전자 (mmsadh, 3hibdh4, 3hpdh) 는 서로 반대되는 orientation으로 위치하였고, 두 가지 특정 결합 부위 즉, 보존적 T-N11-A 모티프를 가지는 조절결합위치(regulatory binding site; RS)와 35 RNA 중합효소 결합 위치 (-35 RNA polymerase binding site) 근처에 있는 활성결합위치 (activation binding site; AS)가 확인되었다 (도 6). 또한 이들 RS 및 AS는 LysR 단백질을 coding 하는 유전자의 10, -35 부위와 서로 overlap 되는 것이 확인되었다. 이로 미루어 lysR 유전자의 발현은 산물인 LysR에 의해 억제(repression) 되는 것으로 추정되었다.
P. denitrificans에 존재하는 C4 LysR 유도 프로모터에 대하여 보다 자세한 분석을 실시하였다. LysR 유전자와 mmsadh 유전자 사이에 존재하는 O1 및 O2 operator는 각각 mmsadh 전사 개시 사이트(transcription start site) 기준으로 -58 및 -9 위치에 존재하였고 역반복(inverted repeat) 서열을 가지고 있었다(도 7). 역반복(inverted repeat) 서열 혹은 palindromic 구조는 원핵세포의 operator 부위에 종종 나타나며 전사조절 단백질의 결합부위가 된다고 알려져 있다. O1 및 O2 site의 거리는 약 50 bp 정도이며 나선형 DNA 5바퀴에 해당하므로 LysR 단백질이 O1, O2 부위에 결합할 때 같은 방향에서 결합할 수 있을 것으로 추정되었다. O1 site의 한 쌍(dyad)은 15 bp 거리를 두고 9개의 염기로 구성되는데 단지 1개의 mismatch 만이 있어서 고도로 대칭적(symmetrical)이라는 것을 알 수 있었다. 반면 O2 site의 역반복(inverted repeat) 서열은 역시 9 bp 씩 반복되어 구성되었고 그 사이 간격은 11 bp로 다소 짧았다. 9개 중 6개가 mismatch 일 정도로 대칭(symmetry) 정도는 약하였다. 한편 O1, O2 operator에 존재하는 4개의 palindromic fragment의 상동성을 조사한 결과 TA CGTGTAA 로 나타났으며 3, 4, 5번 위치의 염기(굵은 글씨)는 모든 fragment 에서 보존되어 있었고 2, 8 번 위치의 염기(밑줄)는 3개의 fragment에서 보존되어 있어서 이들 염기가 C4 LysR 단백질과의 결합에 중요한 역할을 하는 것으로 추정되었다.
O1, O2 operator가 C4-LysR 단백질 생합성과 mmsadh 발현에 미치는 영향을 녹색형광단백질(green fluorescent Protein; GFP)를 리포터(reporter)로 사용하여 조사하였다(표 2). 표 2에서는 C4-LysR 단백질 및 O1, O2 operator가 C4-LysR 및 mmsadh 발현에 미치는 영향을 나타냈다. GFP의 상대적 크기를 3-HP 부재시 야생형(wildtype)과 비교하여 표시하였다. C4-LysR 단백질은 아예 존재하지 않거나 항시적 프로모터(constitutive promoter)에 의하여 생산되도록 하였고 GFP의 발현은 O1, O2 operator를 갖는 원래의 프로모터(promoter)에 의해 조절되도록 플라스미드(plasmid)를 만들고 이 플라스미드(plasmid)를 C4-LysR과 mmsadh 사이의 유전자가 결실된 P. denitrificans 숙주에 삽입하여 실험을 진행하였다. GFP의 발현은 C4-LysR 단백질 자신에 의해 억제되었다. 즉 C4-LysR이 발현될 때 GFP 발현은 10배 이상 감소되었다. 또한 이 발현 조절은 3-HP의 존재 유무와 관계없이 일정하게 나타났다. 이를 통하여 C4-LysR mRNA의 전사는 C4-LysR 단백질에 의해 음성적으로(negative) 조절된다는 것을 알 수 있었다. 이 실험은 O1, O2 operator를 임의추출(randomize) 하여 대칭 쌍(symmetrical dyad)이 없어지도록 한 프로모터(promoter)를 이용하여 반복되었다. 그 결과 O1이나 O2 operator 부위가 임의추출(randomize) 되었을 경우 GFP의 발현이 C4-LysR 단백질에 의해 조절되지 않는 것으로 나타났다. 이 결과는 P. denitrficans 균주 내에서 C4-LysR 단백질은 자기 자신에 의해 음성적으로(negative) 제어된다는 것을 보여준다.
한편 mmsadh 유전자 발현에 미치는 O1, O2 operator의 영향을 비슷한 방법으로 조사하였다. 즉 C4-LysR 단백질은 항시적으로(constitutive) 발현되도록 하고 O1, O2 프로모터를 갖는 프로모터 뒤에 GFP가 위치하도록 플라스미드를 제작하였다. 그리고 이때 O1 혹은 O2 site의 대칭 쌍(symmetrical dyad)이 임의추출(randomize) 되도록 O1 혹은 O2 operator를 돌연변이(mutation) 시켰다. 그 결과 O1, 혹은 O2 부위가 돌연변이(mutation)된 경우 3-HP에 의해 전사(transcription)가 상향조절(upregulation) 되는 현상이 없어졌다. 즉 O1, O2 operator 모두 3-HP에 의해 발현이 상향조절(upregulation) 되도록 하는데 필수적인 부위라는 뜻이다. 이로써 본 프로모터(promoter)는 O1, O2 operator 존재가 반드시 필요한 프로모터(promoter) 라는 것이 밝혀졌다.
Genes tested1 3-HP addition2 wildtype ΔC4-LysR O1 mutation3 O2 mutation3 O1 & O2 mutation3
C4-LysR w/o 3-HP 1 10 10 1 10
w 3-HP 1 10 10 1 10
mmsadh w/o 3-HP 1 3 3 3 3
w 3-HP 55 3 3 3 3
1리포터 단백질로 GFP가 사용되었다. 즉 C4-LysR 이나 mmsadh 위치에 GFP 유전자를 삽입한 플라스미드를 사용하였다.
23-HP는 25 mM 농도로 넣어 주었다.
3O1, O2를 임의추출(randomize)한 경우 C4-LysR은 약하지만 항시적으로(constitutive) 발현되는 프로모터를 사용하였다.
한편 LTTRs 단백질은 DNA 결합 도메인 (heslix-turn-gelix motif)인 N-terminal, 기질 결합 도메인인 C-terminal, 그리고 이들을 연결하는 링커(linker)로 이루어져 있는 것으로 알려져 있다. LysR 단백질은 homodimer를 형성하여 각각 RS와 AS에 결합하며, 작동 분자(effector molecule) (본 발명의 경우 3-HP)이 각각의 LysR 단백질이 결합할 경우 두 개의 LTTR 이합체 (dimer) 사이에 단백질-단백질 상호 작용에 의해 LTTR이 사합체 (tetramer)를 형성하게 되고 이 때 LysR과 결합한 DNA에 구조적 변화를 일으킨다. LTTR 사합체에 특정적으로 결합하는 유도체는 LysR 단백질의 구조적 변화를 야기시키고 이어 promoter region DNA의 구조를 변화시켜 궁극적으로 RNA 중합효소가 프로모터(promoter)에 결합하는 것을 돕는다고 알려지고 있다(도 8).
본 발명에서 중점적으로 다루어지고 있는 C4-LysR 단백질에 대해 구조를 조사한 결과 역시 DNA 결합 도메인 (helix-turn-helix motif)인 N-말단(terminal), 기질 결합 도메인인 C-말단(terminal), 그리고 이들을 연결하는 링커(linker)를 확인할 수 있었다(도 9). DNA 결합 도메인에는 Thr-31, Arg-34, Glu-40, 그리고 Leu-47 등 4개의 아미노산이 핵심적인 역할을 하는 것으로 파악되었고, 기질 결합 도메인(substrate binding domain)에서는 3-HP와 결합하는데 중요한 아미노산과 이합체 형성 등에 중요한 역할을 하는 아미노산 등이 확인되었다. 이중 3-HP와 결합하는데 중요한 역할을 하는 아미노산은 Asp-159, Thr-160, Pro-237 그리고 Phe-239 등이었고 이합체 형성 등에 중요한 역할을 하는 아미노산은 Ala-60, Gly-91, Arg-94, Pro-118, Glu-137 등이었다. 특히 이합체 형성 등에 중요한 역할을 하는 아미노산들은 Pro-118을 제외하고 모두 단백질 표면에 위치하였다.
LysR 단백질이 전사조절 인자인지 확인하기 위해 C3 및 C4 LysR 단백질을 암호화하는 유전자를 P. denitrficans 염색체에서 제거하고 전사가 조절되는 유전자 (mmsadh, 3hibdhIV, 3hpdh)의 전사 유도 여부를 조사하였다. 먼저 C4 LysR 유전자가 제거되었을 경우 3-HP의 존재 여부에 관계없이 mmsadh, 3hibdhIV 유전자의 발현은 낮았고 3-HP를 넣어주어도 발현이 증대되지 않았다. 또한 C3 LysR 유전자가 제거되었을 경우 3hpdh 유전자의 발현이 3-HP의 첨가에 의해 증폭되지 않았다. 반면 C3 LysR 혹은 C4 LysrR 유전자가 제거된 균주에 이들 유전자를 플라스미드를 이용하여 다시 발현시켜주었을 때(보상 실험; complementation experiment), 야생균주와 같은 수준으로 3-HP에 의한 발현 증폭 현상이 다시 회복되었다. 이를 통해 C3 LysR 및 C4 LysR 단백질이 세포내에서 각각 mmsadh, 3hibdhIV 및 3hpdh 유전자의 발현을 제어하는 전사조절 단백질임을 확인할 수 있었다.
(3) C4- LysR 단백질과 O1, O2 operator 부위의 결합특성에 대한 in vitro 조사
C4-LysR 단백질의 in vitro 특성 조사를 위해 C 말단에 히스티딘 태그(histidine tag)를 갖는 C4-LysR 단백질을 대장균에서 생산하고 정제하였다. 먼저 C 말단과 N 말단에 His Tag을 달고 앞서 언급한 보상(complementation) 실험을 진행하였다. 그 결과 두 경우 모두 His tag을 갖지 않는 야생형(wildtype) LysR 과 동일한 성능을 보여주었다. 따라서 두 가지 재조합(recombinant) LysR 중에서 C-His tag LysR 만을 대상으로 생화학적(biochemical) 실험을 진행하게 되었다. 재조합(recombinant) LysR은 대장균 내에서 대부분 불용성(insoluble) 형태로 발현되었다. 발현조건(온도, pH, 배지 조성, IPTG 농도)에 대하여 세밀한 최적화(optimization) 실험이 진행되었다. 또한 각종 샤페론 단백질(chaperon protein)의 영향도 조사되었다. 그 결과 비교적 낮은 온도인 25℃, 그리고 0.1 M IPTG, LB 배지, GroEL-ES 샤페론(chaperon) 공동 발현 조건에서 실험에 필요한 정도의 수용성(soluble) C4-LysR을 대장균으로부터 생산할 수 있었다(도 10). 순수 분리된 단백질을 SDS-PAGE를 통해 확인하였다. C4-LysR의 크기는 약 33 kDa 으로 추정되었고 이는 유전자 크기로부터 예측된 크기와 잘 일치하는 것이었다. 한편 native gel electrophoresis를 실시한 결과 단백질의 농도가 높을 때 완충용액 내에서 이량체(dimer)를 형성하는 것을 알 수 있었다(도 11).
유전자 재조합 C4-LysR과 프로모터 DNA의 결합을 EMSA 실험을 통하여 조사하였다(도 12). 이를 위하여 3가지 DNA 단편(fragment)을 합성하였다. F12 (135 bp) 는 C4-Lys와 mmsadh 유전자 사이 전체 프로모터 부위(promoter region)로 O1, O2 operator를 모두 포함하는 DNA 단편(fragment); F12M (135 bp) 은 O1 operator 부위(region)만 포함하는 DNA 단편(fragment); 그리고 F1M2 (135 bp)는 O2 operator 부위(region)만 포함하는 DNA 단편(fragment)이었다. 대조군(control)으로 1개의 단편(fragment)을 합성하여 사용하였는데 이들은 F12와 동일한 크기를 가지고 있으나 O1, O2 부위(region)가 모두 임의추출(randomize) 되어 palindrome 구조를 갖지 않도록 제작된 단편(fragment) 이었다. C4-LysR 단백질을 DNA 단편(fragment) (F12, F12M, F1M2)와 반응시켜 전기영동을 실시한 결과 DNA 단편(fragment)의 이동성(mobility)이 감소하는 것이 관찰되었다(도 12). 이는 C4-LysR 단백질이 in vitro 조건에서 이들 DNA 단편(fragment)과 결합한다는 뜻이다. 이러한 이동성(mobility)의 감소는 대조군 단편(control fragment)에서는 관찰되지 않았다. 즉 C4-LysR 과 DNA 단편(fragment)과의 결합은 DNA 단편(fragment)의 염기서열, 보다 정확하게는 O1, O2 operator 서열(sequence)이 있어야 가능하다는 뜻이다. 3종류 단편(fragment) 중에서 F12가 가장 LysR 단백질에 대하여 친화도(affinity)가 높았고, 다음이 F12M, F1M2 순이었다. EMASA 실험을 3-HP가 존재하는 조건에서 반복하였다. 3-HP의 존재는 친화도(affinity)를 변화시켰다. F12에 대해서는 친화도(affinity)를 향상시켰고, F1의 경우에는 거의 변화가 없었고, 반면 F2는 친화도(affinity)가 오히려 다소 감소하는 것으로 나타났다.
F12가 F12M 혹은 F1M2 단편(fragment)에 비해 높은 친화도(affinity)를 갖는다는 것은 LsyR 단백질의 O1, O2 결합이 서로 상호 협조적(cooperative)이라는 것을 의미한다. 즉, 친화도(affinity)가 높은 O1 site에 LysR 단백질이 결합하면 O2 site 결합을 촉진한다는 뜻이다. EMSA실험 결과 F12는 F12M 혹은 F1M2 단편(fragment)에 비해 항상 낮은 이동성(mobility)을 보여주었다. 그리고 낮은 LysR 농도에서도 단지 한 개의 shift 된 band만을 보여 주었다. 이는 F12 단편(fragment)에 항상 더 많은 LysR 단백질이 결합되어 있음을 의미한다. 즉 LysR 단백질이 F12 단편(fragment)에 결합할 때는 항상 O1, O2 site 두 개 모두에 결합한다는 뜻이다. F12 단편(fragment)이 F12M 혹은 F1M2 보다 높은 친화도(affinity)를 갖고 또한 F12M이나 F1M2 보다 낮은 이동성(mobility)을 갖는다는 것은 F12 단편(fragment) 내 O1, O2 site에 대한 LysR 단백질의 결합이 상호협조적(cooperative)이다는 사실을 보여준다. 이러한 EMSA 실험 결과로부터 3-HP 유도성 프로모터의 중요한 성질을 다음과 정리할 수 있었다. (i) 프로모터는 각각 9개의 염기로 이루어지는 역반복(Inverted Repeat) 서열 쌍을 2개 혹은 그 이상 갖는 것을 특징으로 하고 LysR 단백질의 결합부위를 제공한다. (ii) LysR 단백질은 유도성 분자(inducer molecule)와의 결합 여부에 관계없이 프로모터에 결합할 수 있으나, 전사효율의 향상은 유도성 분자(inducer molecule)와 결합한 LysR 단백질에 의해서만 나타나며 유도성 분자(inducer molecule)로는 3-HP 외에도 3-HP와 구조적으로 유사한 3-HIB, 3-HB 등이 사용될 수 있다. (iii) 프로모터는 LysR 단백질 이량체가 2개 결합하는 부위를 제공하며 이 결합은 서로 상호협동적(cooperative)이다. (iv) 프로모터는 RNA 중합효소가 결합할 경우 LysR 단백질과 상호작용(interaction) 할 수 있는 구조를 제공한다. (v) 프로모터에는 O1, O2 operator가 존재하며 각각의 operator는 9개의 염기로 이루어지는 역반복(Inverted Repeat) 내 염기서열이 잘 보존되어 있다.
(4) 3-HP 유도성 유전자 발현 시스템의 가상 탐색 및 발현 시스템의 특성 분석
새로운 3-HP 유도성 유전자 발현 시스템을 찾기 위해 슈도모나스 데니트리피칸스(P. denitrificans) 유전자 상동성에 기초하여 추정적 LysR 조절 유전자 및 mmsadh, 3hipdh, 3hpdh 등을 여러 미생물에서 스크리닝하였다. BlastP 유사성 조사결과 다른 여러 미생물들에서도 비슷한 3-HP 유도성 유전자 발현 시스템이 존재하는 것으로 나타났으며, 잘 알려진 미생물들 중에서 3HIBDH(C4 시스템)와 3HPDH(C3 시스템)으로 추정되는 유전자 집단이 있는 것으로 밝혀졌다(도 13, 표 4 및 표 5). 유전자들의 구조 분석 및 비교 결과 미생물들 마다 다양한 유전적 구조를 가지는 것으로 확인되었다.
총 150여 종 이상의 미생물에서 3-HP 유도성 유전자 발현 시스템이 발견되었고 이들은 C3-LysR 과 C4-LysR의 존재 유무와 유전자 배열 특징에 따라 총 16개의 그룹으로 나눌 수 있었다. 이 중 9개의 그룹은 C4 및 C3 시스템을 모두 가지고 있었고 7개의 그룹은 C4 시스템만 가지고 있었다. C3 시스템만 가지는 그룹은 전혀 발견되지 않았다. 또한 C3 시스템의 경우 LysR 단백질을 암호화하는 유전자와 LysR 단백질에 의해 발현이 조절되는 유전자는 모두 전사 방향이 반대라는 특징이 있었다. C4 시스템의 경우에도 LysR 단백질을 암호화하는 유전자 LysR 단백질에 의해 발현이 조절되는 유전자는 대부분 전사 방향이 반대라는 특징이 있었으나 Group 15과 Group 16에 속하는 미생물에서는 이 방향이 서로 동일하였다.
C3 및 C4 LysR 단백질에 반응하는 프로모터 시퀀스 특징을 분석하였다. P. denitrificans의 경우와 마찬가지로 두 개의 tandem operator sites (O1 및 O2로 명명)가 모두 존재하였다. 두 개의 operator 는 한 쌍의 대칭(dyad symmetry) 구조를 가지고 있었고 각각의 역반복(inverted repeat) 서열은 9개의 염기로 구성되어 있었다. 한 쌍의 대칭(dyad symmetry) 중심 간의 거리는 50개 염기거리를 가지고 있어서 LysR 단백질이 O1 및 O2 operator site에 결합할 때 동일한 방향에서 결합하도록 간격을 유지하였다. 또한 역반복(inverted repeat) 서열 내 9개 염기는 많은 미생물에서 잘 보존되어 있었다.
3-HP에 반응하는 LysR과의 결합 부위(Palindromic)는 다양한 미생물에서 보존되어 있었는데, 각각의 종에 따라서, O1 operator 즉 1차/억제 결합 사이트(Primary/Repression Binding Site; PBS/RBS)만이 보존되어 있었다(표 3). 또한, 모든 종에 있어서, 보존된 T-N11/12-A motif를 포함하는 높은 친화도를 보이는 PBS는 전사 개시 사이트(transcription start site; TSS)로부터 -65 내지 -75 부위 근처에 존재하였다. O2 operator 즉 2차/활성 결합 사이트(Secondary/Activation Binding Site; SBS/ABS) motif에서는 서열 보존성이 낮기 때문에, ABS motif의 in silico 예측은 복잡하고 어렵다. RBS 및 ABS 사이트는 각각 자가-억제 및 활성화에 있어 핵심적인 역할을 담당하는 것으로 보고되고 있다. 3-HP에 반응하는 단백질들로서 공통적인 기능을 갖는데도 불구하고, 3-HP-LysR 단백질은 다른 속(genus) 간에는 낮은 서열 유사성을 갖고, 동일 속 내에서는 높은 서열 유사성을 갖는다. 따라서, LysR 단백질과 결합하는 operator 부위 DNA 시퀀스가 다른 속(genus) 간에 서로 다르다는 것이 논리적으로 틀리지 않는 것으로 판단된다. 전사 인자(Promoters; -10 and -35 regions)는 BPROM 및 BDGP tools을 사용하여 예측하였다.
아래 표 3에 기재한 9개의 염기서열은 각각의 종(genus)에서 3-HP에 반응하는 LysR과의 결합 부위에 해당하는 보존 영역으로서, 대문자는 확인 대상 모두에서 보존된 것으로 나타나는 염기이다.
Genus Repressive Binding Site(T-N11/12-A motif) # Representatives
Achromobacter CAcAcATct 4
Acidovorax TcGCAcAcC 3
Acinetobacter GTcaAaGAT 7
Advenella TTGCAaATT 4
Aeromonas GGGcAaaCA 2
Alcaligenes CAcAcATct 5
Alcanivorax AgCAGCATG 2
Alicycliphilus TGCaAAGcc 2
Anaeromyxobacter GGGaCGacG 3
Azospirillum gTGCCcGCG 4
Azotobacter gTatcGAGC 4
Beijerinckia ATTgcCgTG 3
Bordetella gTTtCGTtG 6
Bradyrhizobium AtATATcaG 3
Brucella AaaAAtGCa 3
Burkholderia GCCtACacT 16
Corynebacterium CACCTtTgC 6
Cupriavidus AGTtCAgcG 3
Delftia GCAAAAAcg 3
Ferrimonas GCGGTTTTa 2
Glaciecola TgAaTtGAC 3
Gordonia GAaaCCGGC 2
Halomonas tACACacAA 3
Janthinobacterium TtCGcATTa 3
Marinobacter CAgaAgGcT 2
Methylocystis CGAtCgACC 2
Phenylobaculum GTcCCGCtC 2
Pseudomonas TTGCAcatC 24
Ralstonia GCCtACacT 5
Shewanella gTTcGcgTA 6
Sinorhizobium TcGgAAaTT 2
Sphingobium CgcACaAcC 2
Stenotrophomonas GgcCaGATT 2
Tistrella CCGGcgGcG 3
Variovorax gTcTATTgT 2
Verminephrobacter CgTGgcCGA 2
Vibrio TGcaCcgTT 6
Xanthobacter CTgtGCACa 2
Xanthomonas GcgGTGGgC 6
#Representitives: Genus 내에서 동일한 Repressive Binding Site (RBS)를 가지는 것으로 확인된 종의 숫자.
C4-LysR, MMSADH, 3HIBDH에 대한 효소 단백질 서열 상동성 비교
Enzyme Source C4-LysR MMSADH 3HIBDH Genbank ID
Size(AA) Identity (%) Size (AA) Identity (%) Size (AA) Identity (%) C4-LysRMMSADH3HIBDH
Achromobacter sp. 306 47 497 67 296 56 WP_013392250.1 WP_020924676.1WP_046807163.1
Acidovorax avenae subsp. 295 59 507 82 299 54 WP_019701544.1WP_019701545.1WP_019701549.1
Acidovorax sp. 301 60 507 82 296 55 WP_005799303.1WP_008905850.1WP_026437393.1
Acinetobacter baumannii 293 49 505 70 296 59 WP_005014261.1WP_039237888.1WP_005025914.1
Aeromonas hydrophilia 304 36 503 58 306 55 WP_029302009.1WP_042863805.1WP_017784754.1
Agrobacterium sp. 293 37 518 47 294 45 NA
Alcaligenes faecalis 297 45 497 60 298 55 WP_026483089.1WP_045930222.1WP_026483274.1
Alcanivorax hongdengensis 302 39 498 56 287 48 WP_008927645.1WP_008929937.1WP_040297229.1
Alicycliphilus denitrificans 304 58 505 81 298 53 WP_013519376.1WP_013519377.1WP_013519381.1
Alteromonas marina 294 35 496 48 291 62 WP_039223538.1WP_039216373.1WP_039223543.1
Anaeromyxobacter dehalogenans 313 31 491 53 293 29 WP_012631783.1ABC82015.1WP_011419642.1
Azospirillum brasilensse 291 33 499 51 296 53 EZQ04117.1WP_014241748.1WP_035679372.1
Azotobacter vinelandii 296 72 501 92 297 79 WP_012699721.1WP_012699726.1WP_012699724.1
Beijerinckia indica 301 43 509 50 295 52 WP_012383627.1WP_012383190.1WP_012383623.1
Bordetella avium 307 48 497 66 294 58 WP_012416822.1WP_012416824.1WP_012417430.1
Bradyrhizobium japonicum 302 42 498 49 296 50 WP_024338218.1WP_024338217.1WP_028153398.1
Burkholderia ambifaria 319 47 509 74 300 65 WP_012365776.1WP_012366631.1WP_006761413.1
Catenulispora acidiphila 296 35 504 42 301 41 NA
Caulobacter sp . 295 31 498 45 295 43 NA
Castellaniella defragrans 303 46 497 64 297 59 WP_043685951.1 WP_043680927.1 WP_043682533.1
Chromobacterium violaceum 305 41 500 79 296 58 WP_043617011.1WP_045051895.1WP_043613761.1
Collimonas arenae 319 47 502 67 297 54 AIY40998.1 WP_038487725.1WP_038487728.1
Comamonas testosteroni 300 54 507 83 298 52 WP_034389635.1WP_003075837.1WP_043003783.1
Corynebacterium vitaeruminis 304 28 504 51 291 42 WP_025251982.1WP_025251535.1 WP_025251536.1
Cupriavidus necator 308 40 507 73 296 66 WP_042881289.1WP_042878263.1WP_042878261.1
Carvibacter gracilus 296 60 505 82 294 54 WP_027474562.1WP_027474565.1WP_027474567.1
Delftia acidovorans 300 54 507 82 298 53 WP_034393435.1WP_012205523.1WP_016453478.1
Ferrimonas balearica 284 25 497 55 296 51 ADN76259.1WP_013344534.1WP_013344538.1
Glaciecola nitratireducens 281 28 496 56 295 47 WP_014109619.1WP_014108982.1WP_014108979.1
Gordonia bronchialis 298 32 513 48 289 46 WP_041920477.1WP_012835581.1WP_012835579.1
Hahella chejuensis 302 28 498 51 296 51 NA
Halomonas elongata 315 44 499 67 300 53 WP_013331269.1WP_013331270.1WP_013332181.1
Hirschia sp . 294 37 498 43 293 45 NA
Idiomarina sp . 312 28 499 57 297 52 WP_007420015.1WP_034729012.1WP_007419652.1
Janthinobacterium lividum 305 46 502 75 297 53 WP_034757572.1WP_034778805.1WP_034757584.1
Kitasatospora setae 304 31 508 43 298 40 NA
Kutzneria albida 300 35 501 45 284 44 NA
Methylobacterium sp. 302 41 499 47 297 47 NA
Methylocystis sp . 294 30 498 48 295 46 WP_036241816.1WP_036286001.1WP_036289118.1
Novosphingobium sp . 316 39 499 45 289 45 NA
Oceanimonas smirnovii 288 28 497 58 297 47 WP_019933245.1WP_019933168.1WP_019933171.1
Paracoccus sp . 297 38 533 46 302 45 NA
Parvibaculum lavamentivorans 304 30 500 52 296 57 WP_041536697.1WP_041536463.1WP_012111823.1
Phenylobacterium koreense 282 32 498 52 298 49 WP_041374440.1WP_012520768.1WP_012522231.1
Photobacterium gaetbuleda 303 26 502 53 303 44 NA
Polynucleobacter necessarius asymbioticus 291 49 500 79 298 66 ABP34774.1ABP34773.1ABP34771.1
Pseudoalteromonas carrageenovora 299 29 496 55 299 52 WP_009840151.1WP_010381506.1WP_033103466.1
Pseudogulbenkiania sp. 320 46 500 79 298 59 WP_008953966.1WP_008954515.1WP_014086932.1
Pseudomonas denitrificans ATCC13867 298 100 501 100 291 100 WP_015477414.1WP_015477415.1WP_015477416.1
Pseudomonas knackmussii 298 95% 504 93 291 92 WP_043252263.1WP_043252261.1WP_043252259.1
Pseudomonas protegens 316 45 508 73 295 62 WP_041751937.1WP_011059111.1WP_015634046.1
Pseudomonas fluorescens 315 45 505 73 295 60 WP_034128788.1WP_046055588.1WP_034128786.1
Pseudoxanthomonas spadix 297 27 501 79 297 57 WP_014159583.1WP_014159749.1WP_014159753.1
Psychrobacter phenylpyruvicus 302 27 495 71 314 52 WP_028859590.1WP_028859166.1WP_028859170.1
Ralstonia oxalatica 298 30 515 73 301 65 NA
Rhodomicrobium vannielli 296 30 496 48 296 48 NA
Segniliparus rotundus 300 25 509 51 300 46 WP_013137524.1WP_013137611.1WP_013137610.1
Shewanella oneidensis 291 24 499 55 300 51 WP_011072126.1WP_011071828.1WP_011071832.1
Simiduia agarivorans 297 29 505 55 296 47 NA
Sinorhizobium meliloti 315 40 498 50 298 52 WP_018099720.1WP_027990465.1 WP_027991426.1
Sphingobium chlorophenolicum 292 43 499 49 294 48 WP_037446180.1WP_037456635.1WP_037446174.1
Sphingomonas wittichi 325 43 503 44 296 46 NA
Sphingopyxis alaskensis 310 36 497 45 291 44 NA
Stenotrophomonas maltophilia 289 32 501 80 296 57 WP_044569661.1WP_019185504.1WP_005407687.1
Tatlockia micdadei 293 22 499 45 295 47 WP_045099921.1WP_045098082.1WP_045098081.1
Thalassospira xiamenensis 295 38 499 45 296 48 NA
Variovorax paradoxus 298 60 507 82 300 55 WP_018905631.1WP_012748355.1WP_012748351.1
Verminephrobacter eiseniae 298 26 507 78 299 51 WP_011807819.1WP_011811243.1WP_011811250.1
Vibrio furnissii 304 25 520 57 300 49 WP_014257826.1 WP_041943477.1WP_004727845.1
Xanthobacter autotrophicus 307 44 498 50 299 51 WP_012114222.1WP_012114221.1WP_041575420.1
Xanthomonas campestri 301 29 501 77 295 58 WP_044099340.1WP_003488244.1 WP_003488236.1
Xanthomonas oryzae 304 27 501 77 300 57 WP_024711534.1WP_044750113.1 WP_024744051.1
C3-LysR, 3HPDH에 대한 효소 단백질 서열 상동성 비교
Enzyme Source C3-LysR 3HPDH Genbank accession no
Size(AA) Identity (%) Size (AA) Identity (%) C3-LysR3HPDH
Achromobacter sp. 306 45 547 65 WP_006223849.1WP_006225226.1
Acidovorax avenae 295 45 564 59 WP_013595009.1WP_013592873.1
Acidovorax sp. 301 44 556 61 WP_020229646.1WP_020229941.1
Acinetobacter baumannii 293 40 534 39 WP_000861803.1WP_032868291.1
Alcaligenes faecalis 297 42 555 64 WP_026483089.1ADT64694.1
Alcanivorax hongdengensis 290 27 531 42 WP_008929468.1WP_008927596.1
Alicycliphilus denitrificans 304 44 560 60 WP_013519376.1WP_013721241.1
Alteromonas marina 294 36 550 43 WP_039223538.1WP_039222748.1
Azospirillum brasilense 391 35 537 36 WP_040137273.1WP_035676856.1
Bordetella avium 307 45 540 66 WP_012416822.1WP_012415815.1
Bradyrhizobium japonicum 302 41 539 57 WP_024338218.1WP_028143201.1
Burkholderia ambifaria 323 38 567 60 WP_006754369.1WP_011659279.1
Castellaniella defragrans 303 42 537 63 WP_043685951.1WP_043679553.1
Chromobacterium violaceum 305 54 556 68 WP_043617011.1WP_043617013.1
Collimonas arenae 319 44 541 61 AIY40998.1WP_038494339.1
Comamonas testosteroni 300 39 555 69 WP_043003771.1WP_012836757.1
Cupriavidus necator 308 38 554 61 WP_042881289.1WP_042883575.1
Carvibacter gracilus 296 45 575 57 WP_027474562.1WP_027477384.1
Delftia acidovorans 300 41 575 59 WP_034393435.1WP_043780341.1
Glaciecola nitratireducens 310 23 533 41 WP_014110217.1WP_014110368.1
Gordonia bronchialis 298 24 443 42 WP_041920477.1WP_012835455.1
Halomonas elongata 315 42 551 61 WP_013331269.1WP_013332997.1
Idiomarina sp . 303 25 564 37 WP_008487425.1WP_034821838.1
Janthinobacterium lividum 305 44 541 62 WP_034788899.1WP_010393822.1
Parvibaculum lavamentivorans 304 28 548 40 WP_041536697.1WP_041536013.1
Polynucleobacter necessarius asymbioticus 291 41 539 58 ABP34774.1ABP33573.1
Pseudogulbenkiania sp . 320 42 547 42 WP_014086927.1WP_014087291.1
Pseudomonas denitrificans ATCC13867 304 100 554 100 WP_015478424.1WP_015478425.1
Pseudomonas knackmussii 301 89 552 85 WP_043249755.1WP_043249752.1
Pseudomonas protegens 297 71 548 75 WP_041117574.1WP_011060785.1
Pseudomonas fluorescens 294 72 548 76 WP_046048946.1WP_038984218.1
Pseudoxanthomonas spadix 307 28 545 43 WP_043290476.1WP_014160845.1
Psychrobacter phenylpyruvicus 302 25 565 40 WP_028859810.1WP_028859590.1
Segniliparus rotundus 300 26 516 37 WP_013139368.1WP_013137524.1
Sinorhizobium meliloti 315 37 531 77 WP_018094277.1WP_010970328.1
Sphingobium chlorophenolicum 292 38 544 40 WP_037446180.1WP_037446228.1
Stenotrophomonas maltophilia 289 29 534 44 WP_037590748.1WP_044569661.1
Variovorax paradoxus 298 44 544 61 WP_018905631.1WP_042580440.1
Verminephrobacter eiseniae 306 28 556 59 WP_011812258.1 WP_011808703.1
Vibrio furnissii 295 27 573 39 WP_004729245.1WP_004724290.1
Xanthobacter autotrophicus 307 43 556 56 ABS68474.1WP_012114222.1
Xanthomonas campestris 304 30 556 53 WP_033484874.1WP_011038502.1
LysR 단백질에 대한 분석도 동일하게 실시하였다. non-redundant NCBI 데이터베이스로부터 C4 LysR과 C3 LysR 시퀀스에 대해 BLAST 검색 결과, DNA 결합 Helix-turn-Helix 영역과 상동성을 갖는 시퀀스가 각각 126개, 132개로 존재하는 것을 확인하였다. 도 14 및 도 15에 이 시퀀스들에 대한 다중서열배치(multiple sequence alignment)를 나타내었다. 시퀀스 얼라이먼트(sequence alignment) 결과 LysR 시퀀스의 상당 부분이 높게 보존되어 있는 것으로 확인되었으며, 이 분석에 사용된 다른 미생물들에서도 LysR 시퀀스가 높은 수준으로 보존되어 있는 것으로 나타났다. 이는 대부분의 미생물들이 세포 내에서 LysR을 이용하고 있음을 말해준다. 또한 모든 C4 LysR과 C3 LysR 시퀀스에서 프로모터 3-HP 발현 프로모터 내 operator 부위(region)의 역반복 서열(Inverted Repeat sequence)과 강하게 결합하는 것으로 추정되는 Helix-turn-Helix 영역이 발견되었고 이 영역에서는 Thr-31, Arg-34, Glu-40, 그리고 Leu-47 등 4개의 잔기들이 잘 보존되어 있었다. 보존된 아미노산 잔기들은 LysR 단백질이 DNA와 결합할 때 강하게 상호작용하는데 중요한 부분일 것으로 생각된다(도 9).
LysR과 3-HP간의 상호 작용 (protein-ligand interaction)을 좀 더 자세히 알아보기 위해서 homology model과 docking 실험을 수행하였다. 먼저, PDB 데이터베이스에서 이용가능 한 구조를 이용하여 슈도모나스 데니트리피칸스(P. denitrificans)에서의 C4-LysR과 C3-LysR의 시퀀스 유사성을 비교한 결과 35% 이하의 낮은 유사성을 보였다 (PDB ID: 3SZP, 24 % identical). 따라서 C4-LysR과 C3-LysR의 모델링은 MUSTER과 LOMET server를 이용한 threading 방법으로 수행하였다. 그 결과 예측된 C4-LysR과 C3-LysR의 모델을 RAMPAGE를 이용하여 정제 및 검증하고, 이 모델의 아미노산 잔기 98%가 적합한 영역에 있음을 Ramachandran plot을 통해 확인하였다. C4-LysR과 C3-LysR에서 3-HP가 결합하는 활성부위가 COACH를 이용하여 예측되었다. 유효한 모델과 예측된 활성부위 잔기들은 SCHRODINGERTM에 있는 Maestro 프로그램에서 docking 실험을 수행하는데 사용되었다. 목표 단백질 (C4-LysR, C3-LysR)과 리간드 (3-HP)는 각각 Protein Preparation Wizard와 LigPrep Wizard를 사용하여 조사되었다. Grid box를 생성하기 위해 Receptor Grid Generation툴을 사용하였으며, 생성된 grid box안에서 SP (Standard Precision) 및 XP (eXtra Precision) docking setting을 이용하여 리간드 docking을 수행하였다. docking 결과, C4-LysR에 대해서는 5.01, C3-LysR에 대해서는 3.74의 docking 점수를 가질 때 가장 우수한 docking pose를 보여주었다. C4-LysR 및 C3-LysR이 3-HP와 여러 가지 분자 간의 상호작용을 가지는 것으로 확인되었다. C4-LysR의 아미노산 잔기들 중 Asp-159, Thr-160, Pro-237 및 Phe-239 등은 3-HP와 수소결합을 이루며, ARG24은 3-HP와 소수성 상호작용을 이루는 것으로 조사되었다(도 9). C3-LysR의 아미노산 잔기들 중 LEU74, THR190, THR28은 수소 결합을 이루며, THR73, VAL150, PRO167, PHE127, PHE169의 경우 소수성 상호작용을 이루는 것으로 조사되었다. 3-HP와 LysR 간의 상호작용이 없을 것이라는 예측과 달리, docking 결과 흥미롭게 3-HP가 C4-LysR에 존재하는 기질 결합 도메인(substrate binding domain) (ARG94, LYS96, GLU137)과 helix-turn-helix domain (ARG24) 사이에서 강한 상호작용하는 것을 보여주었다. 이와 비슷하게 C3-LysR의 THR28 (helix-turn-helix domain)이 3-HP와 강하게 상호작용하는 것으로 밝혀졌다. 특히 기질 결합 도메인(substrate binding domain)에서는 3-HP와 결합 외에도 이합체 형성 등에 중요한 역할을 하는 아미노산이 확인되었다. 이들은 아미노산은 Ala-60, Gly-91, Arg-94, Pro-118, Glu-137 등이었다. 특히 이합체 형성 등에 중요한 역할을 하는 아미노산들은 Pro-118을 제외하고 모두 단백질 표면에 위치하였다. 이로 미루어, 3-HP가 LysR에 직접적으로 영향을 미쳐 LysR을 이합체화반응이 일어나도록 하면, 이합체반응이 일어난 LysR은 DNA와 결합하여 LysR 유전자 아래쪽에 위치하는 3-HP 분해 유전자들의 전사를 높은 수준으로 조절하는 것이다.
(5) 3-HP 유도성 유전자를 갖는 미생물에 의한 3-HP 분해 및 3-HP 유도성 유전자의 발현
유전자 구조 분석에서 3-HP 분해 경로가 다양한 미생물에서 존재하는 것으로 밝혀졌다. 다양한 미생물들의 3-HP 분해 능력을 평가하기 위해서 25mmol/L의 3-HP가 포함된 100mM 인산염 용액에 세포를 현탁하였고 24시간 동안 3-HP가 분해되도록 하였다(표 6). 그 결과 미생물에 따라 3-HP 분해 속도는 차이가 있었으나 모두 효과적으로 3-HP를 분해하는 것으로 나타났다. 3-HP 분해 유전자 (3hpdh, 3hibdh, mmsadh)의 전사수준을 3-HP 존재 유무에 따라 평가하였다(표 7). 표 7에서 보는 바와 같이, 3-HP는 이들 미생물에서 3hpdh, 3hibdh, mmsadh 유전자의 발현을 각각 6배, 14배, 16배 이상으로 높게 향상시켰다. 이 결과는 다양한 미생물 내에 3-HP 유도성 시스템이 공통적으로 존재한다는 것을 의미한다. 한편 슈도모나스 데니트리피칸스(P. denitrificans)와 비교하여 다른 미생물에서는 전사 증가 비율이 10배 정도 상대적으로 낮은데 이는 배양 조건의 차이에 기인하는 것으로 판단된다. 즉 슈도모나스 데니트리피칸스(P. denitrificans)를 제외하고 다른 미생물에서는 성장을 좋게 하기 위하여 복합 질소원이 다량 함유된 배지에서 미생물을 배양하였는데 이 경우 3-HP 이외에 복합 질소원에 포함된 아미노산이나 이들 아미노산 분해 산물이 3-HP 가 존재하지 않는 조건에서도 일정 부분 3hpdh, 3hibdh, mmsadh 의 전사를 활성화시켜 3-HP 가 존재하지 않는 조건에서 전사량을 높게 유지시켰기 때문이다.
휴지기 세포의 3-HP 분해
Genus No. Strains 3-HP degraded (mM)a
1 Achromobacter denitrificans 18.40
2 Acidovorax avenae subsp. 20.43
Acidovorax sp. 16.60
3 Acinetobacter baumannii 18.76
4 Aeromonas hydrophilia 17.88
5 Agrobacterium sp. 20.54
6 Alcaligenes faecalis 19.32
7 Alcanivorax hongdengensis 24.51
8 Alicycliphilus denitrificans 20.62
9 Alteromonas marina 20.42
10 Amycolatopsis sp. 21.13
11 Anaeromyxobacter dehalogenans 23.14
12 Azospirillum brasilensse 17.96
13 Azotobacter vinelandii 19.44
14 Beijerinckia indica 23.13
15 Bordetella avium 23.87
16 Bradyrhizobium japonicum 21.67
17 Burkholderia ambifaria 18.33
18 Catenulispora acidiphilia 19.45
19 Caulobacter sp. 22.34
20 Castellaniella defragrans 13.97
21 Chromobacterium violaceum 14.56
22 Collimonas arenae 16.11
23 Comamonas testosteroni 15.96
24 Corynebacterium vitaeruminis 17.35
25 Cupriavidus necator 18.46
26 Curvibacter gracilus 19.12
27 Delftia acidovorans 15.89
28 Ferrimonas balearica 17.32
29 Glaciecola nitratireducens 16.57
30 Gordonia bronchialis 18.41
31 Hahella chijuensis 17.59
32 Halomonas elongata 19.14
33 Hirschia litorea 18.47
34 Idiomarina sp. 17.86
35 Janthinobacterium lividum 18.02
36 Kitasatospora setae 19.05
37 Kutzneria albida 21.14
38 Methylobacterium sp . 23.04
39 Methylocystis sp . 16.97
40 Novosphingobium sp . 15.87
41 Oceanimonas smirnovii 15.91
42 Paracoccus sp . 17.96
43 Parvibaculum lavamentivorans 18.02
44 Phenylobacterium kunshanensis 17.56
45 Photobacterium gaetbuleda 19.04
46 Polynucleobacter necessarius asymbioticus 16.97
47 Pseudoalteromonas carrageenovora 19.03
48 Pseudogulbenkiania sp . 7.36
49 Pseudomonas denitrificans ATCC13867 20.53
Pseudomonas knackmussii 7.42
Pseudomonas protegens 25.24
Pseudomonas fluorescens 24.41
50 Pseudoxanthomonas spadix 23.01
51 Psychrobacter phenylpyruvicus 20.17
52 Ralstonia oxalatica 18.09
53 Rhodomicrobium vannielli 19.42
54 Segniliparus rotundus 8.96
55 Shewanella oneidensis 10.14
56 Simiduia agarovorans 23.78
57 Sinorhizobium meliloti 13.87
58 Sphingobium chlorophenolicum 14.76
59 Sphingomonas wittichii 21.04
60 Sphingopyxis alaskensis 23.56
61 Stenotrophomonas maltophilia 15.34
62 Streptomyces nodosus 21.13
63 Tatlockia micdadei 17.81
64 Thalassospira xiamenensis 18.88
65 Variovorax paradoxus 19.34
66 Verminephrobacter eiseniae 17.04
67 Vibrio furnissii 16.98
68 Xanthobacter autotrophicus 15.92
69 Xanthomonas campestri 14.37
Xanthomonas oryzae 13.88
a The amount of 3-HP degraded was calculated between 0 and 24h.
3-HP 분해 유전자들의 상대적 mRNA 수준
Genus No. Strains 3hpdh 3hibdh mmsadh
- 3-HP + 3-HP - 3-HP + 3-HP - 3-HP + 3-HP
1 Achromobacter denitrificans 0.04 0.24 0.31 6.40 0.24 6.34
2 Acidovorax avenae subsp. 0.05 0.28 0.34 5.97 0.21 5.98
Acidovorax sp. 0.02 0.31 0.33 6.76 0.36 6.04
3 Acinetobacter baumannii 0.01 0.19 0.35 6.02 0.27 5.76
4 Aeromonas hydrophilia - - 0.37 6.17 0.32 6.14
5 Agrobacterium sp. 0.01 0.27 0.36 6.27 0.41 6.56
6 Alcaligenes faecalis 0.04 0.26 0.39 5.87 0.28 5.73
7 Alcanivorax hongdengensis 0.03 0.27 0.33 6.74 0.37 6.58
8 Alicycliphilus denitrificans 0.07 0.30 0.31 7.01 0.25 6.01
9 Alteromonas marina 0.06 0.34 0.34 6.09 0.22 5.73
10 Amycolatopsis sp. - - 0.32 5.96 0.24 6.05
11 Anaeromyxobacter dehalogenans - - 0.37 6.43 0.28 5.44
12 Azospirillum brasilensse 0.05 0.41 0.36 6.54 0.33 6.05
13 Azotobacter vinelandii - - 0.38 6.73 0.31 5.87
14 Beijerinckia indica - - 0.34 6.59 0.29 5.01
15 Bordetella avium 0.08 0.45 0.31 6.04 0.24 4.98
16 Bradyrhizobium japonicum 0.07 0.52 0.41 7.21 0.34 5.49
17 Burkholderia ambifaria 0.03 0.31 0.29 5.94 0.21 5.13
18 Catenulispora acidiphilia 0.05 0.41 0.32 5.84 0.25 5.24
19 Caulobacter sp . 0.04 0.45 0.35 5.96 0.24 5.96
20 Castellaniella defragrans - - 0.45 7.43 0.37 5.98
21 Chromobacterium violaceum 0.02 0.25 0.38 7.02 0.32 6.31
22 Collimonas arenae - - 0.37 7.20 0.30 5.87
23 Comamonas testosteroni 0.04 0.24 0.28 5.88 0.21 4.96
24 Corynebacterium vitaeruminis 0.03 0.28 0.47 6.99 0.34 5.89
25 Cupriavidus necator 0.02 0.21 0.42 6.84 0.33 6.05
26 Curvibacter gracilus - - 0.29 5.76 0.19 3.99
27 Delftia acidovorans - - 0.33 6.34 0.26 4.03
28 Ferrimonas balearica - - 0.41 7.04 0.34 5.17
29 Glaciecola nitratireducens 0.05 0.30 0.36 7.11 0.29 4.81
30 Gordonia bronchialis 0.04 0.29 0.45 6.99 0.33 5.21
31 Hahella chijuensis 0.03 0.28 0.42 6.81 0.34 5.97
32 Halomonas elongata 0.06 0.32 0.27 5.41 0.19 4.34
33 Hirschia litorea 0.05 0.34 0.29 6.19 0.18 4.56
34 Idiomarina sp . 0.08 0.42 0.47 7.21 0.32 5.43
35 Janthinobacterium lividum 0.03 0.33 0.41 6.98 0.29 5.01
36 Kitasatospora setae 0.04 0.36 0.39 6.46 0.25 5.25
37 Kutzneria albida 0.03 0.41 0.35 5.96 0.24 5.61
38 Methylobacterium sp . 0.05 0.45 0.33 6.02 0.23 598
39 Methylocystis sp . - - 0.32 6.51 0.21 4.91
40 Novosphingobium sp . 0.04 0.39 0.29 5.98 0.25 6.04
41 Oceanimonas smirnovii 0.02 0.24 0.36 6.44 0.28 4.88
42 Paracoccus sp . 0.03 0.25 0.34 6.32 0.27 4.96
43 Parvibaculum lavamentivorans 0.04 0.28 0.46 7.31 0.32 4.99
44 Phenylobacterium kunshanensis 0.06 0.33 0.41 7.43 0.33 5.02
45 Photobacterium gaetbuleda - - 0.36 7.02 0.29 5.06
46 Polynucleobacter necessarius asymbioticus 0.09 0.45 0.39 6.99 0.27 5.37
47 Pseudoalteromonas carrgeenovora - - 0.29 5.76 0.21 5.03
48 Pseudogulbenkiania sp . 0.04 0.26 0.32 5.98 0.23 5.36
49 Pseudomonas denitrificans ATCC13867 0.03 0.23 0.39 6.20 0.26 5.43
Pseudomonas knackmussii 0.03 0.25 0.41 6.81 0.35 5.96
Pseudomonas protegens 0.02 0.19 0.28 5.62 0.21 5.01
Pseudomonas fluorescens 0.04 0.27 0.26 5.81 0.18 4.70
50 Pseudoxanthomonas spadix - - 0.31 5.99 0.27 4.96
51 Psychrobacter phenylpyruvicus 0.08 0.37 0.43 7.04 0.31 5.03
52 Ralstonia oxalatica - - 0.40 7.21 0.34 5.21
53 Rhodomicrobium vannielli 0.05 0.41 0.39 7.01 0.32 6.02
54 Segniliparus rotundus 0.07 0.27 0.25 5.81 0.19 4.32
55 Shewanella oneidensis 0.05 0.28 0.25 5.81 0.19 4.07
56 Simiduia agarovorans 0.03 0.29 0.23 5.76 0.21 4.87
57 Sinorhizobium meliloti - - 0.24 5.79 0.16 4.07
58 Sphingobium chlorophenolicum 0.06 0.33 0.33 5.99 0.23 4.86
59 Sphingomonas wittichii 0.03 0.45 0.31 7.02 0.32 6.42
60 Sphingopyxis alaskensis - - 0.35 7.00 0.35 6.94
61 Stenotrophomonas maltophilia 0.04 0.31 0.29 6.02 0.24 5.21
62 Streptomyces nodosus 0.07 0.39 0.43 6.72 0.34 5.14
63 Tatlockia micdadei - - 0.47 6.61 0.36 5.65
64 Thalassospira xiamenensis - - 0.32 7.02 0.33 6.10
65 Variovorax paradoxus - - 0.38 6.59 0.28 4.97
66 Verminephrobacter eiseniae 0.08 0.43 0.42 6.43 0.30 5.14
67 Vibrio furnissii 0.05 0.39 0.39 6.03 0.27 4.91
68 Xanthobacter autotrophicus 0.04 0.27 0.27 6.23 0.21 5.41
69 Xanthomonas campestri 0.03 0.25 0.24 5.81 0.18 5.09
Xanthomonas oryzae 0.02 0.19 0.45 6.43 0.34 5.19
이들 미생물에서 3-HP 유도성 프로모터에 대한 분석을 실시하였다. 앞서 P. denitrificans의 경우와 마찬가지로 모든 프로모터는 O1, O2 operator sequence를 가지고 있었다. 이 서열의 존재는 각각 9개의 염기로 이루어진 palindromic structure로 확인되었다. 이들 서열에 대한 추가적인 연구가 진행되지는 않았지만 이들 모두 P. denitrificans의 경우와 같이 LysR 단백질과 결합할 것으로 예상되었다.
결론적으로, 생물학적으로 3-HP 생산을 향상시키려면 효소활성을 가지는 새로운 효소들을 계속적으로 생산해내는 것이 필요하다. 본 발명에서는 슈도모나스 데니트리피칸스(P. denitrificans)를 비롯한 여러 미생물에서 3-HP에 반응하는 전사 조절자들과 프로모터들을 스크리닝하였다. 이들은 LysR 단백질과 이 단백질에 결합하는 특정 유전자 염기서열로 이루어져 있었다. 또한 LysR family transcriptional regulator는 3-HP가 존재할 때 해당 유전자의 발현을 상향조절하는 것으로 확인되었다. 분자 모델링과 docking 실험은 C4-LysR (ARG94, LYS96, GLU137, ARG24)과 C3-LysR(LEU74, THR190, THR28, THR73, VAL150, PRO167, PHE127, PHE169)에 중요한 잔기들이 존재함을 보여주었다. 3-HP 유도성 시스템은 3-HP 대사 경로를 조절하는데 효과적으로 사용될 수 있을 것으로 기대된다.
< 실시예 2> 슈도모나스 데니트리피칸스( P. denitrificans )에서 3- 하이드록시프로피온산 생산 경로의 최적화
1. 균주, 플라스미드 및 실험 재료
이 연구에서 사용된 박테리아 종과 플라스미드는 표 8과 같다. 대장균(E. coli)은 한국미생물자원센터(KCTC)에서, 슈도모나스 데니트리피칸스(P. denitrificans) 균주는 ATCC에서 분양받았다. E. coli XL1-Blue 는 플라스미드 복제와 유지에 사용되었다. 게놈의 DNA 분리 키트와 pGEM-T 벡터는 Promega (Madison, WI, USA)에서, 고성능 pfx polymerase는 Invitrogen (서울, 대한민국)에서, DNA 변형 효소는 New England Bio-Labs (Beverly, MA, USA)에서, Miniprep과 DNA gel 추출 키트는 Qiagen (Mannheim, Germany)에서 구입하였다. 그리고 프라이머는 Cosmogenetech Co. Ltd.(서울, 대한민국), Bacto Tryptone과 yeast extract는 Difco (Becton Dickinson; Franklin Lakes, NJ, USA)에서 기타 화학물질과 효소들은 Sigma-Aldrich (St. Louis, MO, USA)에서 구입하였다.
본 발명에서 사용된 박테리아 균주 및 플라스미드
분석내용 출처
Strains
E. coliDH5α Cloning host KCTC, Korea
P. denitrificanswt P. denitrificans ATCC13867; Source for 3hibdhIV and 3hpdh promoters and terminators ATCC, America
Δ3hpdhΔ3hibdhIV P. dentirificans ATCC13867 Δ3hpdhΔ3hibdhIV double mutant strain Zhou et al. 2014
Δ3hpdhΔ3hibdhIVΔ3hibdhI P. dentirificans ATCC13867 Δ3hpdhΔ3hibdhIVΔ3hibdhI triple mutant strain This study
Plasmids
pGEM-T lacZa; cloning vector; pGEM 5zf(+) derivative; 3T-overhang; Ampr Promega
pUCP19 ColE1-ori;pRO1614-ori;broad-host-range cloning vector; Ampr West et al. 1994
pUCPK/ PC3-dhaB-gdrAB, PC4-KGSADH KGSADH gene amplified from pQKS1 were overlapped with 3hibdhIV promoter and terminator and cloned in pUCPK/PC3-dhaB-gdrAB; Kmr This study
pUCPK/ PC3-gdrAB-dhaB, PC4-KGSADH gdrAB and dhaB gene order were switched and cloned in pUCPK/PC4-KGSADH, ; Kmr This study
2. 슈도모나스 데니트리피칸스 ( P. denitrificans ) △ 3hpdh 3hibdhIV △3hibdhI 결실 돌연변이 균주의 개발
3-HP 분해 유전자의 역할을 파악하기 위해 3hibdhI가 슈도모나스 데니트리피칸스(P. denitrificans) △3hpdh△3hibdhIV의 염색체로부터 제거되었다. 목적 유전자는 sacB negative counter-selection 시스템에 기초하여 결실되었다. pQE-80L 벡터의 NdeI과 XbaI 제한부위에 sacB-Km 카세트를 도입하여 pQSAK 플라스미드가 만들어졌으며, 이는 목적 유전자의 제거에 사용되었다. 슈도모나스 데니트리피칸스(P. denitrificans) 게놈 DNA를 사용하여 목적 유전자의 ~700 bp 상부와 하부를 포함하는 DNA 단편이 PCR를 통해 얻어졌으며 이 부분은 DNA 시퀀스 확인 후 pGEM-T 벡터로 클로닝되었다. 그 후 pQSAK 플라스미드 안으로 다시 sub-cloning 되었으며 두 번의 재조합을 통해 슈도모나스 데니트리피칸스(P. denitrificans) 돌연변이주가 개발되었다. 이러한 돌연변이 균주들은 PCR 및 시퀀스 확인을 통해 재확인되었다. 그렇게 확보된 돌연변이 균주를 슈도모나스 데니트리피칸스(P. denitrificans) △3hpdh△3hibdhIV△3hibdhI라고 명명하였다.
3. 플라스미드의 개발
글리세롤 탈수효소와 재활성화효소를 암호화하는 유전자는 pUCPK'/PC3-dhaB-gdrAB, PC4-KGSADH 플라스미드를 이용하여 증폭되었고 발현카세트는 gdrAB와 dhab123 유전자 끝 측면의 5' 과 3'에 C3 프로모터와 C3 터미네이터를 각각 클로닝하면서 개발되었다. 이 발현카세트는 pUCPK'/PC3-dhaB-gdrAB, PC4-KGSADH 플라스미드의 XbaI와 SacI 제한부위에서 복제되었고 pUCPK'/PC3-gdrAB-dhaB, PC4-KGSADH라고 명명되었다. 이렇게 개발된 플라스미드 pUCPK'/PC3-gdrAB-dhaB, PC4-KGSADH는 슈도모나스 데니트리피칸스(P. denitrificans) △3hpdh△3hibdhIV△3hibdhI에 형질전환되었고, 최종적으로 Pd △3hpdh△3hibdhIV△3hibdhI (pUCPK'/PC3-gdrAB-dhaB, PC4-KGSADH)이 개발되었다(도 16).
4. 효소 활성의 결정
DhaB 활성은 KGSADH 효소의 활성 측정을 통해 측정이 가능하다. 1 Unit의 DhaB 활성은 1분 동안 1μmol의 NAD+를 NADH로 환원하는데 필요한 효소의 양으로 정의된다. 요약하건대, 우선 1mM DTT, 15uM coenzyme B12, 3mM MgCl2, 1.5mM ATP를 포함하고 있는 50 mM potassium phosphate (pH 8.0) 완충용액 (총 부피 1 mL)에 20ul의 26 U/mg NAD+-dependent KGSADH를 37℃에서 5분간 배양한다. 이때 KGSADH는 25% 글리세롤을 함유하고 있다. 반응은 1.5mM NAD+와 37℃에서 예열된 DhaB를 포함하는 적절한 양의 세포 추출물을 추가함으로써 시작되었고, NADH의 흡광도 변화를 통해 관찰되었다. KGSADH 활성은 Raj 박사에 의해 보고된 방법을 사용하여 340nm에서 NAD+가 NADH로 환원되는 것을 측정하여 밝혀졌다. 50 mM potassium phosphate 완충용액(pH 8.0), 1 mM DTT, 적당량의 효소 추출물을 포함한 반응 혼합물이 37℃에서 5분간 배양되었고, 2.0 mM 3-HPA와 2.0 mM NAD+를 추가함으로써 반응이 시작되었다. NADH의 양은 6.22×103 M-1cm-1의 molar extinction coefficient (△ε340)를 사용하여 결정되었다. KGSADH의 1 Unit 활성은 1분에 1 μmol의 NAD+를 NADH로 환원시키는데 필요한 효소의 필요량에 따라 정의되었다. 모든 효소 활성은 원료 세포 추출물로 측정되었다.
5. 배양 배지와 배양 조건
따로 명시되지 않는 한 진탕배양은 20 mL의 배양액을 포함한 250 mL non-baffled Erlenmeyer 플라스크를 이용하여 200 rpm, 30℃에서 진행되었다. 리터당 MgSO4, 0.25 g; NaCl, 1.0 g; NH4Cl, 1.0 g; yeast extract, 1 g; glycerol, 100 mmol; L-glutamate, 5 g; tryptone, 2 g; glucose 2.5 g을 포함하는 M9 배양 배지가 사용되었다. 배지는 100 mM potassium phosphate 완충용액(pH 7.0)이 포함되었다. 필요시 12 μmol/L의 코엔자임 B12가 추가로 주입되었으며, 산소투과 스펀지 플러그로 플라스크를 막았다. 세포량, 잔류 기질, 대사산물의 측정을 위해 정기적으로 샘플링 되었으며 모든 진탕배양 실험은 3회 반복되었고 바이오매스와 대사산물의 표준편차는 10% 미만이었다. 바이오리액터 실험은 1.5-L 용량 Biotron-LiFlus GM 바이오리액터(Biotron, 서울, 대한민국)에서 1L 작업량으로 수행되었다.
바이오리액터 실험을 위한 M9 배양배지는 리터당 MgSO4·H2O, 0.25 g; NaCl, 1.0 g; NH4Cl, 1.0 g; yeast extract, 1 g; L-glutamate, 5 g; tryptone, 2 g; casamino acids, 2g; glucose 2.5 g, trace element solution, 10 mL/L를 포함하고 있으며 100 mM의 potassium phosphate 완충용액 (pH 7.0)을 포함한다. 배양은 30℃ 유가식 배양 모드로 농축된 글리세롤(10 M)과 7 mM 글루코스를 주기적으로 주입하면서 수행되었다. pH는 5 N NaOH와 2.5 N HCl을 사용하여 7.0±0.1로 유지되었다. 공기는 agitation 속도 650 rpm에 1 vvm으로 계속해서 공급되었다. 배양 중에는 Tryptone, 2 g/L; casamino acids, 2 g/L; L-glutamate, 5.0 g/L; yeast extract, 1 g/L를 포함하는 배지가 6시간마다 바이오리액터에 추가되었다. 샘플은 세포량, 잔류기질, 대사산물의 측정을 위해 정기적으로 분석되었다.
6. 분석방법
세포 농도는 분광광도계(Lambda 20, Perkin Elmer; Norwalk, CT, USA)를 사용하여 10-mm 길이의 큐벳으로 측정되었다. 600 nm (OD600) 흡광도의 1 unit은 리터당 0.3g의 건조 세포량과 일치한다. 단백질 농도는 소혈청알부민을 기준으로 하여 Bradford 방법으로 마이크로티터 플레이트 리더(1420, Wallac Victor 2; Perkin Elmer)에 의하여 분석되었다. 글리세롤, 3-HP 및 다른 대사산물의 농도는 HPLC에 의해 측정되었는데, 10분간 10,000×g로 배양 샘플의 원심분리에 의해 얻어진 상등액을 Tuffryn-membrane (Acrodisc, Pall Life Sciences)에 의해 여과하고 300 mm × 7.8 mm Aminex HPX-87H (Bio-Rad, USA) column에 의해 65℃에서 2.5 mM H2SO4를 이동상으로 사용하여 용출된다.
7. 결과
(1) 재조합 Pd Δ3hpdhΔ3hibdhIV 3hibdhI ( pUCPK ’/PC3- gdrAB - dhaB , PC4-KGSADH)의 진탕 플라스크 배양
본 발명자들은 이전 연구에서 글리세롤 전환이 일어날 때 DhaB에 의한 자멸적인 촉매 반응으로 인해 DhaB 활성이 매우 감소되는 것을 관찰하였다. 이는 DhaB를 재활성화시키는 GdrAB의 발현정도가 낮았을 가능성이 있다. 또 PC3 프로모터 바로 밑에 GdrAB와 DhaB를 순서대로 배열함으로써 GdrAB의 발현이 향상될 것으로 예상했다. 이러한 가설을 바탕으로, 플라스미드 pUCPK’/PC3-gdrAB-dhaB, PC4-KGSADH이 개발되었고, 플라스미드는 다시 슈도모나스 데니트리피칸스(P. denitrificans, 이후 Pd로 표기함) Δ3hpdhΔ3hibdhIV△3hibdhI 균주에 도입된 후 3-HP 생산에 사용되었다. 글리세롤로부터 3-HP 생산에 대한 GdrAB과 DhaB의 배열순서 변경에 대한 효과는 Pd Δ3hpdhΔ3hibdhIV△3hibdhI (pUCPK’/PC3-gdrAB-dhaB, PC4-KGSADH)에서 측정되었다. 코엔자임 B12의 공급 효과는 0h에 12μM를 공급함으로써 조사되었다. Pd Δ3hpdhΔ3hibdhIV△3hibdhI (pUCPK’/PC3-dhaB-gdrAB, PC4-KGSADH)는 대조군으로 사용되었다. 도 17의 S1~S3는 재조합 Pd Δ3hpdhΔ3hibdhIV△3hibdhI (pUCPK’/PC3-gdrAB-dhaB, PC4-KGSADH)에 의한 글리세롤로부터 3-HP의 생산을 보여주고 있으며, 도 17의 O1~O3는 재조합 Pd Δ3hpdhΔ3hibdhIV△3hibdhI (pUCPK’/ PC3-dhaB-gdrAB, PC4-KGSADH)에 의한 글리세롤로부터 3-HP의 생산을 나타낸다. 도 17의 S1과 O1는 글리세롤 공급이 없는 경우의 결과를 보여주고 있으며, 도 17이 S2과 O2는 코엔자임 B12의 공급이 없는 경우의 결과를 보여준다. 반면, 도 17의 S3과 O3는 코엔자임 B12가 공급된 결과이다. 두 균주 사이에 세포성장에는 큰 차이가 없었다. 그러나 코발트(cobalt)와 코엔자임 B12가 공급된 Pd Δ3hpdhΔ3hibdhIV△3hibdhI (pUCPK’/PC3-gdrAB-dhaB, PC4-KGSADH) 균주에 의한 3-HP 생산은 12h 후 각각 41%, 29%로 증가하였다. 이러한 결과는 DhaB 반응 속도가 코엔자임 혹은 코발트 양에 영향을 받는다는 것을 의미한다.
코발트(cobalt)의 추가 시 12h에 3-HPA과 1,3-PDO가 생산되는 것을 관찰하였지만 대조 균주에서는 3-HPA가 (코발트 있음) 축적되지 않는 것을 알 수 있었다(표 9). 글리세롤로부터 3-HP 생산 수율은 ~1이었으며, 이는 공급된 글리세롤이 완전히 3-HP 생산에 사용되었고 또한 생산된 3-HP는 다시 분해되지 않았음을 의미한다.
재조합 슈도모나스 데니트리피칸스(P. denitrificans) Δ3hpdhΔ3hibdhIV△3hibdhI의 12-h 배양에서 탄소분포
S2 S3 O2 O3
substrates
Glucose (mM) 0.58 0.91 0.67 0.88
Glycerol (mM) 64.13 52.15 44.92 37.45
Biomass (g/L) 1.51 1.36 1.66 1.17
Metabolites
3-HP (mM) 64.83 49.51 45.93 38.24
3-HPA (mM) 0.78 0.52 0 0.39
1,3-PDO (mM) 3.55 4.95 1.37 1.42
Growth rate (μ max, h-1) 0.56 0.54 0.54 0.53
3-HP yield on glycerol (mol/mol) 1.01 0.95 1.02 1.02
Glycerol carbon recovery (%) 1.08 1.05 1.05 1.07
(2) 효소 활성
시간에 따른 DhaB와 KGSADH의 in vitro 효소활성이 측정되었다(도 18). DhaB 효소활성은 KGSADH 효소의 활성을 이용해 조사되었고, KGSADH 효소 활성은 프로피온알데히드를 기질로 사용하여 측정되었다. DhaB 와 GdrAB 유전자 순서가 바뀔 때 DhaB 활성이 낮아지는 것으로 관찰되었다. 한편 글리세롤, 코발트 또는 코엔자임 B12의 추가는 오히려 DhaB 효소의 심각한 활성 저하를 일으키는 것으로 관찰되었다. 3-HPA의 축적에 따른 효과인지 혹은 다른 요인에 의한 것이지 추가적인 실험이 필요하다. 그러나 한 가지 분명한 사실은 gdrAB와 DhaB 순서를 바꾸는 것만으로는 DhaB의 효소활성을 충분히 향상시키지 못한다는 것이다. 현재 사용한 재조합 균주에서 gdrB 발현이 향상되었는지 그 여부는 확실하지 않다. gdrB translation에 크렙시엘라 뉴모니애(Klebsiella pneumoniae)의 RBS가 사용되었고 추후 이 부분에 대한 검증이 필요하다.
(3) GdrAB , DhaB , KGSADH 과발현 재조합 Pd Δ3hpdhΔ3hibdhIVΔ3hibdhI (pUCPK’/ PC3- gdrAB-dhaB, PC4-KGSADH)의 바이오리액터 배양
Pd Δ3hpdhΔ3hibdhIVΔ3hibdhI (pUCPK’/PC3-gdrAB-dhaB, PC4-KGSADH)과 Pd Δ3hpdhΔ3hibdhIVΔ3hibdhI (pUCPK’/PC3-dhaB-gdrAB, PC4-KGSADH) 균주를 이용한 글리세롤과 글루코스 유가식 바이오리액터 운전이 수행되었다. 바이오리액터 실험에서 글루코스와 글리세롤 농도는 각각 10, 150mM 보다 낮게 유지되었다. 6시간마다 글루타메이트(glutamate)가 세포성장을 위해 공급되었다. 배양결과 두 바이오리액터 모두에서 비슷한 세포성장이 관찰되었다. 두 배양 모두 성장이 9시간 후 감소하였고 그 후 세포성장은 반응 끝까지 지속되었다. 바이오리액터 A에서는 Pd Δ3hpdhΔ3hibdhIVΔ3hibdhI (pUCPK’/PC3-dhaB-gdrAB, PC4-KGSADH) 균주가 사용되었다 (도 19). 3-HP 생산은 36시간까지 대체로 증가하여 58 ± 2 g/L 이상, 생산율 1.2 g/L/h, 글리세롤로부터 0.9 mol/mol 이상의 3-HP 수율이 얻어졌다. 3-HP 생산속도는 36시간 후 감소하였다. 36h 부터 48h 사이에서는 단지 2 ± 0.5 g/L의 3-HP 생산에 머물렀다. 전체적으로 48h 동안 1.0 g/L/h의 생산성, 글리세롤로부터 3-HP 수율 0.93 mol/mol로 60 ± 2 g/L의 3-HP가 생산되었다. 이전 실험, 즉 3hibdhI가 결실되지 않은 균주의 발효실험과 비교할 때 3-HP 생산수율이 크게 향상되었는데, 이는 3hibdhI가 3-HP의 분해에 중요한 역할을 하고 있음을 확인시켜 준다. 3hibdhI의 영향은 발효시간이 짧은 플라스크 실험에서는 전혀 관찰되지 않았다.
바이오리액터 B에서 유전자(dhaB과 gdrAB) 순서가 바뀐 균주를 이용하였고, 그 결과 3-HP 생산이 발효 후반에 보다 향상되었다. 1.3 g/L/h의 생산성, 글리세롤로부터 3-HP 수율 0.95 mol/mol로 약 63 ± 2 g/L의 3-HP가 생산되었다. 바이오리액터 A에 비하여 3-HP 생산이 5% 증가하였다. 비록 효소활성 분석이나 플라스크 실험에서는 그 결과가 나타나지 않았으나 GdrAB 발현 정도가 3-HP 생산에서 매우 중요하다는 것을 의미한다.
결론적으로, 3-HP 생산 경로 효소인 DhaB, GdrAB와 KGSADH가 발현될 때 슈도모나스 데니트리피칸스(P. denitrificans)는 글리세롤로부터 3-HP를 생산할 수 있었다. 재조합 플라스미드는 PC3와 PC4라는 두 개의 강력한 유도 프로모터를 사용하여 개발되었고, 3개의 유전자가 결실된 Pd Δ3hpdhΔ3hibdhIVΔ3hibdhI가 숙주로 사용되었다. DhaB의 불활성화정도를 완화시켜주기 위해 gdrAB를 dhaB 앞에 위치하도록 하였고 이로 인해 gdrAB의 발현이 강화될 수 있었다. 효소 활성 분석과 SDS-PAGE를 통한 단백질 발현 분석은 이러한 위치변화를 통해 DhaB의 활성이 낮아지는 것을 보여주었다. 하지만 감소한 DhaB의 활성에도 불구하고 3-HP 생산은 향상되었다. 또 새로운 재조합 균주를 이용한 유가식 바이오리액터의 운전 결과, 더 높은 농도, 생산성 및 수율이 얻어졌다.

Claims (36)

  1. 3-하이드록시프로피온산(3-hydroxypropionic acid, 3-HP) 또는 이의 유사체에 반응하는 LysR 단백질과의 결합 부위를 포함하는 3-HP 또는 이의 유사체 유도성 프로모터.
  2. 제1항에 있어서, 상기 프로모터는 3-HP 분해능을 가진 미생물로부터 유래한 것을 특징으로 하는 3-HP 또는 이의 유사체 유도성 프로모터.
  3. 제2항에 있어서, 상기 3-HP 분해능을 가진 미생물은 아크로모박터 데니트리피칸스(Achromobacter denitrificans), 아시도보락스 아베네(Acidovorax avenae) subsp., 아시도보락스(Acidovorax sp .), 아시네토박터 바우만니(Acinetobacter baumannii), 에로모나스 하이드로필리아(Aeromonas hydrophilia), 아그로박테리움(Agrobacterium sp .), 알칼리제네스 패칼리스(Alcaligenes faecalis), 알칸니보락스 홍덴젠시스(Alcanivorax hongdengensis), 알리시클리필러스 데니트리피칸스(Alicycliphilus denitrificans), 알테로모나스 마리나(Alteromonas marina), 아미코라톱시스(Amycolatopsis sp .), 안에로믹소박터 디할로제난스(Anaeromyxobacter dehalogenans), 아조스피릴럼 브라질렌스(Azospirillum brasilense), 아조토박터 비네란디(Azotobacter vinelandii), 바이예린키아 인디카(Beijerinckia indica), 보르데텔라 아비움(Bordetella avium), 브라디라조비움 자포니컴(Bradyrhizobium japonicum), 버크홀데리아 암비파리아(Burkholderia ambifaria), 카테눌리스포라 애시디필리아(Catenulispora acidiphilia), 카울로박터(Caulobacter sp .), 카스텔라니엘라 디프라그란스(Castellaniella defragrans), 크로모박테리움 비오라세움(Chromobacterium violaceum), 콜리모나스 아레네(Collimonas arenae), 코마모나스 테스토스테로니(Comamonas testosteroni), 코리네박테리움 비타에러미니스(Corynebacterium vitaeruminis), 쿠프리아비더스 네카터(Cupriavidus necator), 커비박터 그라실러스(Curvibacter gracilus), 델프티아 액시도보란스(Delftia acidovorans), 페리모나스 바레아리카(Ferrimonas balearica), 글라시에코라 니트라티레듀센스(Glaciecola nitratireducens), 고르도니아 브론치알리스(Gordonia bronchialis), 하헬라 치유엔시스(Hahella chijuensis), 할로모나스 에롱가타(Halomonas elongata), 히르치아 리토레아(Hirschia litorea), 이디오마리나(Idiomarina sp.), 잔티노박테리움 리비덤(Janthinobacterium lividum), 키타사토스포라 세타에(Kitasatospora setae), 쿠츠네리아 알비다(Kutzneria albida), 메틸로박테리움(Methylobacterium sp .), 메틸로시스티스(Methylocystis sp.), 노보스핑고비움(Novosphingobium sp.), 오셔니모나스 스미르노비(Oceanimonas smirnovii), 파라코커스(Paracoccus sp .), 파비바큘럼 라바멘티보란스(Parvibaculum lavamentivorans), 페닐로박테리움 쿤샤넨시스(Phenylobacterium kunshanensis), 포토박테리움 가에트불레다(Photobacterium gaetbuleda), 폴리뉴클레오박터 네세사리어스 아심비오티커스(Polynucleobacter necessarius asymbioticus), 슈도알테로모나스 카라지노보라(Pseudoalteromonas carrageenovora), 슈도굴벤키아니아(Pseudogulbenkiania sp.), 슈도모나스 데니트리피칸스(Pseudomonas denitrificans) ATCC13867, 슈도모나스 크낵뮤시(Pseudomonas knackmussii), 슈도모나스 프로테젠스(Pseudomonas protegens), 슈도모나스 플루오레센스(Pseudomonas fluorescens), 슈도잔토모나스 스파딕스(Pseudoxanthomonas spadix), 사이크로박스 페닐피루비커스(Psychrobacter phenylpyruvicus), 랄스토니아 옥살라티카(Ralstonia oxalatica), 로도마이크로비움 반니엘리(Rhodomicrobium vannielli), 세그닐리파러스 로턴더스(Segniliparus rotundus), 세와넬라 원이덴시스(Shewanella oneidensis), 시미두이아 아가로보란스(Simiduia agarovorans), 시노리조비움 멜리로티(Sinorhizobium meliloti), 스핑고비움 클로로페놀리컴(Sphingobium chlorophenolicum), 스핑고모나스 위티치(Sphingomonas wittichii), 스핑고픽시스 알라스켄시스(Sphingopyxis alaskensis), 스테노트로포모나스 말토필리아(Stenotrophomonas maltophilia), 스트렙토마이시스 노도서스(Streptomyces nodosus), 타틀록키아 믹다데이(Tatlockia micdadei), 타라소스피라 시아메넨시스(Thalassospira xiamenensis), 배리오보락스 파라독서스(Variovorax paradoxus), 버미네프로박터 에이세니에( Verminephrobacter eiseniae), 비브리오 퍼니시(Vibrio furnissii), 잔토박터 오토트로피커스(Xanthobacter autotrophicus), 잔토모나스 캄페스트리(Xanthomonas campestri) 및 잔토모나스 오리재(Xanthomonas oryzae)로 이루어진 군에서 선택된 어느 하나의 미생물인 것을 특징으로 하는 3-HP 또는 이의 유사체 유도성 프로모터.
  4. 제1항에 있어서, 상기 LysR 단백질은 헬릭스-턴-헬릭스(helix-turn-helix) 구조로 이루어져 DNA와 결합하는 N-말단 도메인, 3-HP 또는 이의 유사체와 결합하는 C-말단 도메인 및 LysR 단백질 이합체 안정화에 기여하는 C-말단 도메인을 포함하는 것을 특징으로 하는 3-HP 또는 이의 유사체 유도성 프로모터.
  5. 제4항에 있어서, 상기 헬릭스-턴-헬릭스(helix-turn-helix) 구조로 이루어져 DNA와 결합하는 N-말단 도메인은 서열번호 1 또는 서열번호 2로 표시되는 아미노산 서열을 포함하는 것을 특징으로 하는 3-HP 또는 이의 유사체 유도성 프로모터.
  6. 제4항에 있어서, 상기 3-HP 또는 이의 유사체와 결합하는 C-말단 도메인은 서열번호 3으로 표시되는 아미노산 서열을 포함하는 것을 특징으로 하는 3-HP 또는 이의 유사체 유도성 프로모터.
  7. 제4항에 있어서, 상기 LysR 단백질 이합체 안정화에 기여하는 C-말단 도메인은 서열번호 4로 표시되는 아미노산 서열을 포함하는 것을 특징으로 하는 3-HP 또는 이의 유사체 유도성 프로모터.
  8. 제1항에 있어서, 상기 LysR 단백질과의 결합 부위는 LysR 단백질 이량체(dimer)가 2개 결합하는 것을 특징으로 하는 3-HP 또는 이의 유사체 유도성 프로모터.
  9. 제1항에 있어서, 상기 LysR 단백질과의 결합 부위는 서열번호 5 내지 서열번호 43으로 이루어진 군에 선택된 어느 하나로 표시된 염기서열을 포함하는 것을 특징으로 하는 3-HP 또는 이의 유사체 유도성 프로모터.
  10. 제9항에 있어서, 상기 LysR 단백질과의 결합 부위는 상기 서열번호 5 내지 서열번호 43으로 이루어진 군에 선택된 어느 하나로 표시된 염기서열로 이루어진 역반복(Inverted Repeat) 서열 및 이와 쌍을 이루는 역반복 서열이 2번 반복되는 것을 특징으로 하는 3-HP 또는 이의 유사체 유도성 프로모터.
  11. 제10항에 있어서, 상기 LysR 단백질과의 결합 부위는 서열번호 44 또는 서열번호 45로 표시되는 염기서열로 이루어진 것을 특징으로 하는 3-HP 또는 이의 유사체 유도성 프로모터.
  12. 제1항에 있어서, 상기 유사체는 3-하이드록시이소뷰티레이트(3-hydroxyisobutyrate; 3HIB) 또는 3-하이드록시뷰티레이트(3-hydroxybutyrate; 3-HB)인 것을 특징으로 하는 3-HP 또는 이의 유사체 유도성 프로모터.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 3-HP 또는 이의 유사체 유도성 프로모터를 포함하는 재조합 발현벡터.
  14. 제13항에 있어서, 상기 3-HP 또는 이의 유사체 유도성 프로모터에 작동가능하게 연결된 외래 단백질을 코딩하는 유전자를 더 포함하는 것을 특징으로 하는 재조합 발현벡터.
  15. 제14항에 있어서, 상기 외래 단백질은 글리세롤 디하이드라테이즈(glycerol dehydratase; DhaB), 글리세롤 디하이드라테이즈 재활성화 효소(DhaB reactivase; GdrAB) 및 α-케토글루타릭 세미알데하이드 디하이드라지네이즈(α-ketoglutaric semialdehyde dehydrogenase; KGSADH)인 것을 특징으로 하는 재조합 발현벡터.
  16. 제13항에 따른 재조합 발현벡터로 형질전환된 재조합 미생물.
  17. 제16항에 있어서, 상기 미생물은 3-HP 생산능을 가진 것을 특징으로 하는 재조합 미생물.
  18. 제17항에 있어서, 상기 미생물은 슈도모나스 데니트리피칸스(Pseudomonas denitrificans)인 것을 특징으로 하는 재조합 미생물.
  19. 제17항에 있어서, 상기 미생물은 슈도모나스 데니트리피칸스(Pseudomonas denitrificans) 균주에서 3-HP 분해에 관련된 3hpdh, 3hibdh mmsadh 유전자가 결실된 슈도모나스 데니트리피칸스(P. denitrificans) Δ3hpdhΔ3hibdhIV△3hibdhI 균주인 것을 특징으로 하는 재조합 미생물.
  20. 제16항에 따른 재조합 미생물을 배양하는 단계를 포함하는 3-HP 생산방법.
  21. 3-하이드록시프로피온산(3-hydroxypropionic acid, 3-HP) 또는 이의 유사체에 반응하는 LysR 단백질을 코딩하는 lysR 유전자, 상기 LysR 단백질과의 결합 부위를 포함하는 프로모터 및 발현 목적 단백질을 코딩하는 유전자를 포함하는 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트.
  22. 제21항에 있어서, 상기 LysR 단백질 또는 상기 프로모터는 3-HP 분해능을 가진 미생물로부터 유래한 것을 특징으로 하는 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트.
  23. 제22항에 있어서, 상기 3-HP 분해능을 가진 미생물은 아크로모박터 데니트리피칸스(Achromobacter denitrificans), 아시도보락스 아베네(Acidovorax avenae) subsp., 아시도보락스(Acidovorax sp .), 아시네토박터 바우만니(Acinetobacter baumannii), 에로모나스 하이드로필리아(Aeromonas hydrophilia), 아그로박테리움(Agrobacterium sp .), 알칼리제네스 패칼리스(Alcaligenes faecalis), 알칸니보락스 홍덴젠시스(Alcanivorax hongdengensis), 알리시클리필러스 데니트리피칸스(Alicycliphilus denitrificans), 알테로모나스 마리나(Alteromonas marina), 아미코라톱시스(Amycolatopsis sp .), 안에로믹소박터 디할로제난스(Anaeromyxobacter dehalogenans), 아조스피릴럼 브라질렌스(Azospirillum brasilense), 아조토박터 비네란디(Azotobacter vinelandii), 바이예린키아 인디카(Beijerinckia indica), 보르데텔라 아비움(Bordetella avium), 브라디라조비움 자포니컴(Bradyrhizobium japonicum), 버크홀데리아 암비파리아(Burkholderia ambifaria), 카테눌리스포라 애시디필리아(Catenulispora acidiphilia), 카울로박터(Caulobacter sp .), 카스텔라니엘라 디프라그란스(Castellaniella defragrans), 크로모박테리움 비오라세움(Chromobacterium violaceum), 콜리모나스 아레네(Collimonas arenae), 코마모나스 테스토스테로니(Comamonas testosteroni), 코리네박테리움 비타에러미니스(Corynebacterium vitaeruminis), 쿠프리아비더스 네카터(Cupriavidus necator), 커비박터 그라실러스(Curvibacter gracilus), 델프티아 액시도보란스(Delftia acidovorans), 페리모나스 바레아리카(Ferrimonas balearica), 글라시에코라 니트라티레듀센스(Glaciecola nitratireducens), 고르도니아 브론치알리스(Gordonia bronchialis), 하헬라 치유엔시스(Hahella chijuensis), 할로모나스 에롱가타(Halomonas elongata), 히르치아 리토레아(Hirschia litorea), 이디오마리나(Idiomarina sp.), 잔티노박테리움 리비덤(Janthinobacterium lividum), 키타사토스포라 세타에(Kitasatospora setae), 쿠츠네리아 알비다(Kutzneria albida), 메틸로박테리움(Methylobacterium sp .), 메틸로시스티스(Methylocystis sp.), 노보스핑고비움(Novosphingobium sp.), 오셔니모나스 스미르노비(Oceanimonas smirnovii), 파라코커스(Paracoccus sp .), 파비바큘럼 라바멘티보란스(Parvibaculum lavamentivorans), 페닐로박테리움 쿤샤넨시스(Phenylobacterium kunshanensis), 포토박테리움 가에트불레다(Photobacterium gaetbuleda), 폴리뉴클레오박터 네세사리어스 아심비오티커스(Polynucleobacter necessarius asymbioticus), 슈도알테로모나스 카라지노보라(Pseudoalteromonas carrageenovora), 슈도굴벤키아니아(Pseudogulbenkiania sp.), 슈도모나스 데니트리피칸스(Pseudomonas denitrificans) ATCC13867, 슈도모나스 크낵뮤시(Pseudomonas knackmussii), 슈도모나스 프로테젠스(Pseudomonas protegens), 슈도모나스 플루오레센스(Pseudomonas fluorescens), 슈도잔토모나스 스파딕스(Pseudoxanthomonas spadix), 사이크로박스 페닐피루비커스(Psychrobacter phenylpyruvicus), 랄스토니아 옥살라티카(Ralstonia oxalatica), 로도마이크로비움 반니엘리(Rhodomicrobium vannielli), 세그닐리파러스 로턴더스(Segniliparus rotundus), 세와넬라 원이덴시스(Shewanella oneidensis), 시미두이아 아가로보란스(Simiduia agarovorans), 시노리조비움 멜리로티(Sinorhizobium meliloti), 스핑고비움 클로로페놀리컴(Sphingobium chlorophenolicum), 스핑고모나스 위티치(Sphingomonas wittichii), 스핑고픽시스 알라스켄시스(Sphingopyxis alaskensis), 스테노트로포모나스 말토필리아(Stenotrophomonas maltophilia), 스트렙토마이시스 노도서스(Streptomyces nodosus), 타틀록키아 믹다데이(Tatlockia micdadei), 타라소스피라 시아메넨시스(Thalassospira xiamenensis), 배리오보락스 파라독서스(Variovorax paradoxus), 버미네프로박터 에이세니에( Verminephrobacter eiseniae), 비브리오 퍼니시(Vibrio furnissii), 잔토박터 오토트로피커스(Xanthobacter autotrophicus), 잔토모나스 캄페스트리(Xanthomonas campestri) 및 잔토모나스 오리재(Xanthomonas oryzae)로 이루어진 군에서 선택된 어느 하나의 미생물인 것을 특징으로 하는 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트.
  24. 제21항에 있어서, 상기 LysR 단백질은 헬릭스-턴-헬릭스(helix-turn-helix) 구조로 이루어져 DNA와 결합하는 N-말단 도메인, 3-HP 또는 이의 유사체와 결합하는 C-말단 도메인 및 LysR 단백질 이합체 안정화에 기여하는 C-말단 도메인을 포함하는 것을 특징으로 하는 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트.
  25. 제24항에 있어서, 상기 헬릭스-턴-헬릭스(helix-turn-helix) 구조로 이루어져 DNA와 결합하는 N-말단 도메인은 서열번호 1 또는 서열번호 2로 표시되는 아미노산 서열을 포함하는 것을 특징으로 하는 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트.
  26. 제24항에 있어서, 상기 3-HP 또는 이의 유사체와 결합하는 C-말단 도메인은 서열번호 3으로 표시되는 아미노산 서열을 포함하는 것을 특징으로 하는 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트.
  27. 제24항에 있어서, 상기 LysR 단백질 이합체 안정화에 기여하는 C-말단 도메인은 서열번호 4로 표시되는 아미노산 서열을 포함하는 것을 특징으로 하는 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트.
  28. 제21항에 있어서, 상기 LysR 단백질과의 결합 부위는 서열번호 5 내지 서열번호 43으로 이루어진 군에 선택된 어느 하나로 표시된 염기서열을 포함하는 것을 특징으로 하는 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트.
  29. 제28항에 있어서, 상기 LysR 단백질과의 결합 부위는 상기 서열번호 5 내지 서열번호 43으로 이루어진 군에 선택된 어느 하나로 표시된 염기서열로 이루어진 역반복(Inverted Repeat) 서열 및 이와 쌍을 이루는 역반복 서열이 2번 반복되는 것을 특징으로 하는 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트.
  30. 제29항에 있어서, 상기 LysR 단백질과의 결합 부위는 서열번호 44 또는 서열번호 45로 표시되는 염기서열로 이루어진 것을 특징으로 하는 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트.
  31. 제21항에 있어서, 상기 유사체는 3-하이드록시이소뷰티레이트(3-hydroxyisobutyrate; 3HIB) 또는 3-하이드록시뷰티레이트(3-hydroxybutyrate; 3-HB)인 것을 특징으로 하는 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트.
  32. 제21항 내지 제31항 중 어느 한 항에 따른 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트를 포함하는 재조합 발현벡터.
  33. 제32항에 따른 재조합 발현벡터로 형질전환된 재조합 미생물.
  34. 제21항 내지 제31항 중 어느 한 항에 따른 3-HP 또는 이의 유사체 반응성 재조합 유전자 발현 카세트가 숙주세포의 염색체 내에 삽입되어 있는 재조합 미생물.
  35. 제33항에 따른 재조합 미생물을 배양하는 단계를 포함하는 발현 목적 단백질 생산방법.
  36. 제35항에 있어서, 상기 재조합 미생물을 배양하는 단계는 3-HP를 첨가하는 단계를 더 포함하는 것을 특징으로 하는 발현 목적 단백질 생산방법.
PCT/KR2016/006261 2015-06-11 2016-06-13 3-하이드록시프로피온산에 의해 발현이 유도되는 프로모터 시스템 및 이를 이용한 3-하이드록시프로피온산의 생물학적 생산방법 WO2016200239A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16807879.8A EP3321364B1 (en) 2015-06-11 2016-06-13 Promoter system inducing expression by 3-hydroxypropionic acid and method for biological production of 3-hydroxypropionic acid using same
JP2018517111A JP2018518199A (ja) 2015-06-11 2016-06-13 3−ヒドロキシプロピオン酸によって発現が誘導されるプロモーターシステム及びそれを用いた3−ヒドロキシプロピオン酸の生物学的生産方法
MYPI2017704707A MY194187A (en) 2015-06-11 2016-06-13 Promoter system inducing expression by 3-hydroxypropionic acid and method for biological production of 3-hydroxypropionic acid using same
SG11201802922QA SG11201802922QA (en) 2015-06-11 2016-06-13 Promoter system inducing expression by 3-hydroxypropionic acid and method for biological production of 3-hydroxypropionic acid using same
CN201680047316.3A CN108291231B (zh) 2015-06-11 2016-06-13 由3-羟基丙酸诱导表达的启动子系统及用其生物生产3-羟基丙酸的方法
US15/735,585 US10808255B2 (en) 2015-06-11 2016-06-13 Promoter system inducing expression by 3-hydroxypropionic acid and method for biological production of 3-hydroxypropionic acid using same
US17/017,717 US10961539B2 (en) 2015-06-11 2020-09-11 Promoter system inducing expression by 3-hydroxypropionic acid and method for biological production of 3-hydroxypropionic acid using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0082593 2015-06-11
KR20150082593 2015-06-11
KR10-2016-0073091 2016-06-13
KR1020160073091A KR101877303B1 (ko) 2015-06-11 2016-06-13 3-하이드록시프로피온산에 의해 발현이 유도되는 프로모터 시스템 및 이를 이용한 3-하이드록시프로피온산의 생물학적 생산방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/735,585 A-371-Of-International US10808255B2 (en) 2015-06-11 2016-06-13 Promoter system inducing expression by 3-hydroxypropionic acid and method for biological production of 3-hydroxypropionic acid using same
US17/017,717 Division US10961539B2 (en) 2015-06-11 2020-09-11 Promoter system inducing expression by 3-hydroxypropionic acid and method for biological production of 3-hydroxypropionic acid using same

Publications (1)

Publication Number Publication Date
WO2016200239A1 true WO2016200239A1 (ko) 2016-12-15

Family

ID=57503962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006261 WO2016200239A1 (ko) 2015-06-11 2016-06-13 3-하이드록시프로피온산에 의해 발현이 유도되는 프로모터 시스템 및 이를 이용한 3-하이드록시프로피온산의 생물학적 생산방법

Country Status (1)

Country Link
WO (1) WO2016200239A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082129A1 (en) * 2017-10-26 2019-05-02 Noroo Holdings Co., Ltd PRODUCTION AND SEPARATION OF 3-HYDROXYPROPIONIC ACID
JP7129484B2 (ja) 2018-01-16 2022-09-01 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー 1,3-プロパンジオール生成能を有する変異微生物及びこれを用いた1,3-pdoの製造方法
US11566250B2 (en) 2017-10-26 2023-01-31 Noroo Ic Co., Ltd. Production and separation of 3-hydroxypropionic acid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542747A (ja) * 2010-11-22 2013-11-28 ノボザイムス,インコーポレイティド 3‐ヒドロキシプロピオン酸生産用の組成物及び方法
KR101437042B1 (ko) * 2012-12-28 2014-09-02 삼성전자 주식회사 포도당 및 글리세롤을 이용한 3-히드록시프로피온산의 생산방법
US8883464B2 (en) * 2009-09-27 2014-11-11 Opx Biotechnologies, Inc. Methods for producing 3-hydroxypropionic acid and other products

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883464B2 (en) * 2009-09-27 2014-11-11 Opx Biotechnologies, Inc. Methods for producing 3-hydroxypropionic acid and other products
JP2013542747A (ja) * 2010-11-22 2013-11-28 ノボザイムス,インコーポレイティド 3‐ヒドロキシプロピオン酸生産用の組成物及び方法
KR101437042B1 (ko) * 2012-12-28 2014-09-02 삼성전자 주식회사 포도당 및 글리세롤을 이용한 3-히드록시프로피온산의 생산방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
See also references of EP3321364A4 *
ZHOU, SHENGFANG ET AL.: "Cloning, Expression and Characterization of 3-Hydroxyi sobutyrate Dehydrogenase from Pseudomonas Denitrificans ATCC 13867", PLOS ONE, vol. 8, no. 5, 2013, pages 1 - 11, XP055335516 *
ZHOU, SHENGFANG ET AL.: "Development of a Deletion Mutant of Pseudomonas Denitrificans that does not degrade 3-Hydroxypropionic Acid", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 98, no. 10, 2014, pages 4389 - 4398, XP035318182 *
ZHOU, SHENGFANG ET AL.: "Inducible Gene Expression System by 3-Hydroxypropionic Acid", BIOTECHNOLOGY FOR BIOFUELS, vol. 8, no. 1, January 2015 (2015-01-01), pages 1 - 8, XP021230389 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082129A1 (en) * 2017-10-26 2019-05-02 Noroo Holdings Co., Ltd PRODUCTION AND SEPARATION OF 3-HYDROXYPROPIONIC ACID
CN112368384A (zh) * 2017-10-26 2021-02-12 诺鲁Ic有限公司 3-羟基丙酸的生产与分离
EP3701035A4 (en) * 2017-10-26 2021-05-26 Noroo IC Co., Ltd. PREPARATION AND SEPARATION OF 3-HYDROXYPROPIONIC ACID
US11059769B2 (en) 2017-10-26 2021-07-13 Noroo Ic Co., Ltd. Production and separation of 3-hydroxypropionic acid
US11566250B2 (en) 2017-10-26 2023-01-31 Noroo Ic Co., Ltd. Production and separation of 3-hydroxypropionic acid
US11584706B2 (en) 2017-10-26 2023-02-21 Noroo Ic Co., Ltd. Production and separation of 3-hydroxypropionic acid
JP7129484B2 (ja) 2018-01-16 2022-09-01 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー 1,3-プロパンジオール生成能を有する変異微生物及びこれを用いた1,3-pdoの製造方法
US11898188B2 (en) 2018-01-16 2024-02-13 Hanwha Solutions Corporation Mutant microorganism having ability to produce 1,3-propanediol, and method for preparing 1,3-PDO by using same

Similar Documents

Publication Publication Date Title
US10961539B2 (en) Promoter system inducing expression by 3-hydroxypropionic acid and method for biological production of 3-hydroxypropionic acid using same
Laemmli et al. Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134 (pJP4)
Nordin et al. Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6
Shen et al. Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum
Hofer et al. Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation
Masai et al. Characterization of Sphingomonas paucimobilis SYK-6 genes involved in degradation of lignin-related compounds
Kahnert et al. The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313
Armengaud et al. A functional 4-hydroxysalicylate/hydroxyquinol degradative pathway gene cluster is linked to the initial dibenzo-p-dioxin pathway genes in Sphingomonas sp. strain RW1
Van Beilen et al. Cloning of Baeyer‐Villiger monooxygenases from Comamonas, Xanthobacter and Rhodococcus using polymerase chain reaction with highly degenerate primers
Montersino et al. Functional annotation and characterization of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1
Liu et al. Functional characterization of a gene cluster involved in gentisate catabolism in Rhodococcus sp. strain NCIMB 12038
WO2016200239A1 (ko) 3-하이드록시프로피온산에 의해 발현이 유도되는 프로모터 시스템 및 이를 이용한 3-하이드록시프로피온산의 생물학적 생산방법
Veselý et al. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis
Grimm et al. Regulation of dsr genes encoding proteins responsible for the oxidation of stored sulfur in Allochromatium vinosum
Junca et al. Difference in kinetic behaviour of catechol 2, 3-dioxygenase variants from a polluted environment
Lee et al. Gentisate 1, 2-dioxygenase, in the third naphthalene catabolic gene cluster of Polaromonas naphthalenivorans CJ2, has a role in naphthalene degradation
Porter et al. Cloning, expression and characterisation of P450-Hal1 (CYP116B62) from Halomonas sp. NCIMB 172: a self-sufficient P450 with high expression and diverse substrate scope
Reimmann et al. PchC thioesterase optimizes nonribosomal biosynthesis of the peptide siderophore pyochelin in Pseudomonas aeruginosa
Mukerjee-Dhar et al. bph genes of the thermophilic PCB degrader, Bacillus sp. JF8: characterization of the divergent ring-hydroxylating dioxygenase and hydrolase genes upstream of the Mn-dependent BphC
Liu et al. Functional identification of the gene locus (ncg 12319 and characterization of catechol 1, 2-dioxygenase in Corynebacterium glutamicum
Chen et al. Transcriptional control of the phenol hydroxylase gene phe of Corynebacterium glutamicum by the AraC-type regulator PheR
Takeda et al. Biphenyl-inducible promoters in a polychlorinated biphenyl-degrading bacterium, Rhodococcus sp. RHA1
Hudson et al. Dual diaminopimelate biosynthesis pathways in Bacteroides fragilis and Clostridium thermocellum
Kunze et al. Degradation of chloroaromatics by Pseudomonas putida GJ31: assembled route for chlorobenzene degradation encoded by clusters on plasmid pKW1 and the chromosome
Habe et al. The fluorene catabolic linear plasmid in Terrabacter sp. strain DBF63 carries the β-ketoadipate pathway genes, pcaRHGBDCFIJ, also found in proteobacteria

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018517111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016807879

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11201802922Q

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 15735585

Country of ref document: US