WO2016199977A1 - Combustor - Google Patents

Combustor Download PDF

Info

Publication number
WO2016199977A1
WO2016199977A1 PCT/KR2015/008000 KR2015008000W WO2016199977A1 WO 2016199977 A1 WO2016199977 A1 WO 2016199977A1 KR 2015008000 W KR2015008000 W KR 2015008000W WO 2016199977 A1 WO2016199977 A1 WO 2016199977A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
clinker
air
combustion chamber
grate
Prior art date
Application number
PCT/KR2015/008000
Other languages
French (fr)
Korean (ko)
Inventor
나상권
유영봉
최영준
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201580080807.3A priority Critical patent/CN107690556B/en
Priority to CA2987567A priority patent/CA2987567A1/en
Priority to BR112017025992A priority patent/BR112017025992A2/en
Priority to US15/578,611 priority patent/US20180163961A1/en
Priority to EP15895045.1A priority patent/EP3306191A4/en
Priority to JP2017563340A priority patent/JP6574495B2/en
Priority to AU2015398367A priority patent/AU2015398367B2/en
Publication of WO2016199977A1 publication Critical patent/WO2016199977A1/en
Priority to PH12017502227A priority patent/PH12017502227A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B30/00Combustion apparatus with driven means for agitating the burning fuel; Combustion apparatus with driven means for advancing the burning fuel through the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B1/00Combustion apparatus using only lump fuel
    • F23B1/30Combustion apparatus using only lump fuel characterised by the form of combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B1/00Combustion apparatus using only lump fuel
    • F23B1/30Combustion apparatus using only lump fuel characterised by the form of combustion chamber
    • F23B1/32Combustion apparatus using only lump fuel characterised by the form of combustion chamber rotating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B40/00Combustion apparatus with driven means for feeding fuel into the combustion chamber
    • F23B40/04Combustion apparatus with driven means for feeding fuel into the combustion chamber the fuel being fed from below through an opening in the fuel-supporting surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B7/00Combustion techniques; Other solid-fuel combustion apparatus
    • F23B7/002Combustion techniques; Other solid-fuel combustion apparatus characterised by gas flow arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B80/00Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel
    • F23B80/02Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel by means for returning flue gases to the combustion chamber or to the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • F23J1/02Apparatus for removing ash, clinker, or slag from ash-pits, e.g. by employing trucks or conveyors, by employing suction devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/06Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air into the fire bed

Definitions

  • the present invention relates to a combustor for recovering combustion heat generated by burning solid fuel in a combustion chamber for use as energy.
  • the clinker generated by the combustion is collected in the clinker collection unit connected to the lower side of the combustion chamber and removed from the combustion chamber.
  • the clinker is collected in the clinker collecting unit along the flowing combustion air, and since the combustion air does not flow smoothly from the combustion space to the clinker collecting unit, the clinker removal efficiency of the combustion space is lowered.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a combustor that improves the clinker removal efficiency of the combustion space by smoothly flowing combustion air from the combustion space to the clinker collection unit.
  • a combustor includes a combustion chamber in which a grate is built and a combustion space is formed on the grate; A fuel supply unit connected downward to a central portion of the grate to supply fuel to an upper portion of the grate; An air supply unit connected to the side of the combustion chamber inclined in a horizontal plane so that combustion air is pivoted in the combustion space; A clinker collecting part which is in downward communication with a gap formed between the inner wall of the combustion chamber and the grate and collects the clinker generated by the combustion of fuel in the combustion space through the gap; And a reflow channel passing through the grate from the clinker collector to the combustion space so that combustion air flowing out from the combustion space to the clinker collector through the gap is reintroduced into the combustion space.
  • the size of the cross-sectional area may be smaller from the lower portion of the combustion chamber toward the center side.
  • a plurality of reflow channels are formed, and the number of the reflow channels may decrease from the lower side of the combustion chamber toward the center side.
  • the present invention may further include a flow control member for controlling the flow structure of the combustion air in the clinker collector to limit the clinker in the clinker collector is re-introduced into the combustion space with the combustion air. have.
  • the flow control member may be formed to extend downward from the lower portion of the combustion chamber into the clinker collecting portion.
  • the flow control member may be extended downwardly inclined toward the central side of the combustion chamber.
  • the present invention is the air supply passage and the clinker collecting in the gap so that the clinker is collected in the clinker collecting through the gap when the combustion air provided by the lower air supply is supplied into the combustion chamber through the gap. It may further include a partition formed to separate the passage.
  • the present invention may further include a check member provided inside the clinker collection unit and having a passing hole narrowed up and down to prevent the clinker passed downward from passing upward.
  • water may be accommodated in the lower portion of the clinker collection unit so that the clinker is deposited.
  • the air supply unit may be connected to an outer wall of the combustion chamber that is spaced apart from the inner wall and surrounds the inner wall so that combustion air may turn along the inner wall outer surface of the combustion chamber and then flow into the combustion space through the inlet.
  • the air supply unit may include: an upper air supply unit connected to an upper side of the combustion chamber to supply combustion air such that combustion air pivots downward in the combustion space; And a lower air supply unit connected to a lower side of the combustion chamber and configured to supply combustion air so that combustion air rises along the center of the combustion chamber after the combustion air contacts and combusts the fuel above the grate.
  • the present invention guides the combustion air so that the combustion air is turned downward along the inner wall of the combustion chamber in the combustion space, the guide which is opened downward while the combustion air protrudes into the combustion space at the inlet inlet into the combustion space. It may further include a member.
  • the grate may be rotationally driven around the fuel supply unit.
  • the fuel supply part may protrude to the combustion space through the grate and may be configured in a screw manner to continuously supply fuel.
  • the fuel supply portion protrudes toward the combustion space through the grate, and the combustion space side end portion may be equipped with a downwardly downward blocking member to disperse to the side while blocking the upward movement of the fuel.
  • combustion chamber may have a truncated cone shape as a phase narrow light type.
  • the inflow channel passing through the grate from the clinker collector to the combustion space is configured such that the combustion air flowing out from the combustion space to the clinker collector through the gap is re-introduced into the combustion space.
  • the combustion air flows out smoothly into the collecting part it has an effect of increasing the clinker removal efficiency of the combustion space.
  • FIG. 1 is a view showing the inside of a combustor according to an embodiment of the present invention.
  • FIG. 2 is a view showing the inside of the combustor according to another embodiment of the present invention.
  • FIG. 3 is a plan view showing a lower grate in the combustor of FIGS. 1 and 2.
  • FIG. 4 is a view showing another embodiment of the grate of FIG.
  • FIG. 5 is a view showing another embodiment of the grate of FIG.
  • FIG. 6 (a) is a view showing the flow structure of the combustion air when the flow control member is not installed in the clinker collector in the combustor of Figs. 1 and 2
  • Figure 6 (b) is a combustor of Figs.
  • Figure 2 shows the flow structure of the combustion air when the flow control member is installed in the clinker collector.
  • FIG. 7 is a view showing that the check member is installed in the clinker collecting portion in the combustor of FIGS. 1 and 2.
  • FIG. 1 is a view showing the inside of a combustor according to an embodiment of the present invention
  • Figure 2 is a view showing the inside of a combustor according to another embodiment of the present invention.
  • the combustor of the present invention is a combustion chamber 100 in which solid fuel F is combusted, a fuel supply unit 200 supplying fuel F to the combustion chamber 100, and the combustion chamber 100.
  • Clinker collecting unit 520 and the clinker collecting unit (C) which includes an air supply unit for supplying combustion air (A) and collects clinker generated by the combustion of fuel (F) in the combustion space (100a) as a main constituent feature.
  • the clinker includes ash as the material remaining after the fuel is burned.
  • the combustion chamber 100 has a combustion space (100a) is formed therein, the grate 130 is installed in the lower portion of the combustion space (100a), the discharge port (100c) is formed at the top.
  • the grate 130 is a configuration in which the fuel (F) is seated on the upper portion is connected to the fuel supply unit 200 in the central portion.
  • the combustion chamber 100 has a truncated cone shape as an upper and lower light beam type, which is stable in terms of durability including the downward swing flow of the combustion air A supplied into the combustion chamber 100 to be described later. It can be adopted as a structure. In addition, this structure is an efficient structure by removing the unnecessary inner corner space in the square cross section in terms of gas flow path.
  • the grate 130 is rotationally driven around the fuel supply unit 200.
  • the grate 130 may be directly connected to the driving member to be rotated, and as another example, the turntable (140 of FIG. 2). Is installed on the upper surface of the drive member to rotate the drive turntable 140 can be rotated in conjunction with this.
  • the direct connection structure of the drive member to the grate and the connection structure through the turntable 140 can be used any structure of course.
  • the fuel supply unit 200 may be connected downward to the center of the grate 130 to take a structure for supplying the fuel (F) to the top of the grate (130).
  • the fuel supply unit 200 may protrude to the combustion space 100a through the grate 130 and may be configured in a screw manner to continuously supply the fuel F by the screw 210.
  • the fuel supply unit 200 may be installed at the end of the combustion space (100a) side of the combustion space (100a) may be mounted downward blocking member 220 to be distributed to the side while blocking the upward movement of the fuel (F).
  • the air supply unit is connected to the side of the combustion chamber 100 to supply the combustion air (A) into the combustion chamber 100, specifically, may be composed of the upper air supply unit 310 and the lower air supply unit 320. have.
  • the upper air supply unit 310 and the lower air supply unit 320 is determined by a position difference relative to each other, and thus is not limited to a specific connection position connected to the side of the combustion chamber 100.
  • the upper air supply unit 310 and the lower air supply unit 320 may be configured to take a structure to supply the combustion air (A) to turn along the inner wall 110 of the combustion chamber 100, as an example As shown in FIG. 3, the upper air supply unit 310 may form a connection structure connected to the side of the combustion chamber 100 to be inclined in a horizontal plane. Combustion air A supplied through the upper air supply unit 310 descends while turning along the inner wall 110 of the combustion chamber 100 in the combustion space 100a to the fuel F on the grate 130. As it is preheated before reaching, the combustion efficiency can be increased, and the inner wall 110 of the combustion chamber 100 is blocked by blocking the inner wall 110 from the high temperature distribution site extended upward from the central portion of the combustion chamber 100 toward the outlet 100c. You can drop the temperature.
  • the lower air supply unit 320 is connected to the lower side of the combustion chamber 100, the combustion air to rise along the center of the combustion chamber (100) after burning in contact with the fuel (F) above the grate 130 A) serves to supply.
  • the upper air supply unit 310 of the air supply unit so that the combustion air (A) is rotated along the outer surface of the inner wall 110 of the combustion chamber 100 and then introduced into the combustion space (100a) through the inlet (100b),
  • the inner wall 110 may be connected to the outer wall 120 of the combustion chamber 100 that surrounds the inner wall 110.
  • the combustion air A supplied through the upper air supply unit 310 may cool the inner wall 110 while turning upward along the outer surface of the inner wall 110 of the combustion chamber 100, and then the inlet 100b. Through the flow into the combustion space (100a) can be preheated while turning down.
  • the combustion air A supplied through the lower air supply unit 320 is introduced into the lower side of the combustion space 100a before the lower inner wall 110 of the combustion chamber 100.
  • the lower inner wall 110 may be cooled while turning downward along the outer surface.
  • the combustion air (A) supplied by the air supply unit is guided downward in the combustion chamber (100). It may further include a guide member 400 to.
  • the upper air supply unit 310 is inclined in a horizontal plane on the side of the combustion chamber 100, the combustion air (A) through the inlet (100b) combustion space (100a) When it enters inside, it has a turning force. Specifically, the combustion air A passes through the inner wall 110 and the outer wall 120 of the combustion chamber 100 and then flows into the combustion space 100a through the inlet 100b. Of course, it maintains its turning force even when flowing into 100a).
  • combustion air A which maintains its turning force even in the combustion space 100a, is pushed by subsequent continuous air which is subsequently introduced.
  • the combustion air A is rotated while descending, but the fuel F ) And the remaining combustion air (A) is drawn by the high temperature combustion gas flowing upward to the discharge port (100c) side is moved to the center side or the upper side of the combustion chamber (100).
  • the combustion air A which maintains the turning force, does not move to the center side or the upper side of the combustion chamber 100, but moves downward through the inner wall 110 of the combustion chamber 100 in the combustion space 100a.
  • the guide member 400 guides the combustion air (A).
  • the guide member 400 has a structure which is opened downward while protruding into the combustion space (100a) in the inlet (100b) in which the combustion air (A) is introduced into the combustion space (100a), specifically, the combustion chamber
  • An upper guide plate 410 extending from the structure above the inlet 100b to the inside of the combustion chamber 100a at 100 and extending downwardly from the upper guide plate 410 and spaced apart from the inner wall 110 of the combustion chamber 100.
  • Side guide plate 411 may be provided.
  • the side guide plate 411 forms an arrangement structure spaced apart from the inner wall 110 of the combustion chamber 100
  • the upper guide plate 410 is preferably the inlet (combustion space 100a) in the combustion chamber (100) 100b) has a structure extending from the upper end of the position to the side guide plate 411.
  • the flange structure On the upper side of the inner wall 110 of the combustion chamber 100, and there is an inlet (100b) of the combustion space 100a between the structure and the inner wall 110, the flange structure The structure of will function as the upper guide plate 412.
  • the present invention provides more combustion than the lower air supply unit 320 to the upper air supply unit 310 that supplies the combustion air A above the combustion chamber 100 so that the combustion air A is turned downward as described above. It may further comprise a branch configured to provide an air quantity. By increasing the amount of combustion air provided to the upper air supply unit 310 by such a branch, it is possible to increase the preheating of the combustion air A and the cooling effect of the inner wall 110 of the combustion chamber 100.
  • the branch part has a branch wall 341 for branched flow of combustion air (A) inside the air supply line 330 connected to the upper air supply part 310 and the lower air supply part 320 as one flow path.
  • a rotation bar 342 may be mounted to adjust the amount of combustion air flowing into each of the upper air supply part 310 and the lower air supply part 320.
  • the pivoting bar 342 is not shown in the drawing, it takes a structure linked to a driving unit that provides a driving force to the pivoting bar 342 to pivot the pivoting bar 342.
  • the clinker collecting unit 520 in which the clinker generated by the combustion of the fuel F in the combustion space 100a is collected through the gap 510 and the clinker in the combustion space 100a are provided.
  • a reflow channel 530 is provided such that the combustion air A flowing out from the combustion space 100a to the clinker collector 520 through the gap 510 is re-introduced into the combustion space 100a. do.
  • the clinker collector 520 communicates downwardly with the gap 510 formed between the inner wall 110 of the combustion chamber 100 and the grate 130, so as to burn the fuel F in the combustion space 100a. It collects the generated clinker through the gap 510.
  • the clinker which is the remaining material of the fuel F, is moved by the combustion air A which swings downward in the combustion space 100a, thereby being located at the lower edge of the combustion space 100a, that is, the combustion chamber 100.
  • the reflow channel 530 has a structure passing through the grate 130 from the clinker collector 520 to the combustion space 100a, and thus the clinker collector through the gap 510 from the combustion space 100a. Combustion air (A) leaked to 520 serves to re-introduced into the combustion space (100a).
  • the gap 510 is the combustion air (A) entering and exiting the clinker collecting portion (520)
  • the combustion air (A) is flowed back into the combustion space (100a) through the gap 510 when the combustion air (A) flows out from the combustion space (100a) to the clinker collecting portion 520 through the gap (510) ( By colliding with A), the outflow flow to the clinker collector 520 is not smoothly performed, so that the clinker is not collected efficiently in the clinker collector 520.
  • the combustion air (A) is a combustion space so that the combustion air (A) flows smoothly from the combustion space (100a) to the clinker collecting portion 520 in order to increase the clinker removal efficiency of the combustion space (100a)
  • a reflow channel 530 is configured to reflow into 100a.
  • the reflow channel 530 takes a structure that passes through the grate 130 from the clinker collector 520 to the combustion space (100a), in the lower portion of the combustion chamber 100 as a separate passage from the gap 510. It is only to be formed to pass through the grate 130, the specific structure thereof is of course not limited by the present invention.
  • At least one or more reflow channels 530 may be formed around the central portion of the combustion chamber 100.
  • the combustion air (A) is re-introduced into the combustion space (100a) through the re-inlet channel 530, but during this re-introduction process, some of the clinker is also returned to the combustion space (100a) with the combustion air (A). Inflow.
  • the distance from the combustion air flow structure within the clinker collecting part 520 to the combustion space 100a through the reflow channel 530 is greater from the lower portion of the combustion chamber 100 toward the central side. The flow rate is faster, the faster the flow rate, the more easily the clinker is moved back into the combustion space (100a) by the combustion air (A).
  • the reflow channel 530 is reflowed into the combustion space 100a by taking a structure in which the size of the cross-sectional area decreases from the lower portion of the combustion chamber 100 toward the center.
  • the size of the cross-sectional area is relatively reduced, and in the portion where the flow rate is re-flowed into the combustion space 100a is relatively large, the size of the cross-sectional area is relatively large. This can reduce the amount of clinker reflowed.
  • the cross-sectional area of the reflow channel 530 refers to the cross-sectional area of the angle at which the flow rate is adjusted when the size changes, and refers to the cross-sectional area in the drawing as an example.
  • the reflow channel 530 is formed as shown in Figure 3, although not shown in the figure may be formed narrower toward the center from the lower portion of the combustion chamber (100).
  • the reflow channel 530 has a structure in which the number decreases from the lower portion of the combustion chamber 100 toward the center side, whereby the flow velocity of the reflow channel 530 is fast.
  • the number of clinkers to be re-introduced back into the combustion space (100a) through the reflow channel 530 as the number is relatively reduced, and the number of the flow rate is re-introduced into the combustion space (100a) is a relatively large number. Can be reduced.
  • the reflow channel 530 of FIGS. 3 to 5 described above may have a proper size as the size of the fuel F on the grate 130 does not fall through.
  • the flow control member is configured to limit the clinker in the clinker collector 520 is re-introduced into the combustion space (100a) with the combustion air (A) 540 may further include.
  • the flow control member 540 is configured to control the combustion air flow structure in the clinker collector 520, so that the clinker in the clinker collector 520 together with combustion air A into the combustion space 100a. Re-introduction can be limited.
  • the flow control member 540 may have a structure formed to extend downward from the lower portion of the combustion chamber 100 into the clinker collecting portion 520, as shown in Figure 6 (b), and also the combustion chamber 100 It may take a structure extending inclined downward to the center side of the).
  • FIG. 6 (a) shows the combustion air when the flow control member 540 is not installed.
  • 6 (b) is a view showing a combustion air flow structure when the flow control member 540 is installed.
  • the combustion air A rises at a high speed in the clinker collector 520 at a high speed and is not flowed to the reflow channel 530 by the flow control member 540.
  • the flow velocity is slowed and the flow length is also increased, and as the vortex intensity is reduced instead of increasing the flow diameter rotating below the gap 510 in the vertical direction, the combustion air A is along the combustion air A. It is possible to more effectively implement the separated clinker from the combustion air (A) by the own weight, thereby increasing the clinker collection efficiency of the clinker collector 520.
  • the present invention when the combustion air (A) provided by the lower air supply unit 320 is supplied into the combustion chamber 100 through the gap 510, the air supply passage (510a) and the clinker collecting passage (510b) It may further include a partition wall 600 formed in the gap 510 to separate.
  • the lower air supply unit 320 is connected to the lower side of the combustion chamber 100, so that the combustion air A burns in contact with the fuel F of the upper part of the grate 130 and then rises along the center of the combustion chamber 100.
  • Combustion air (A) is supplied so that the gap 510 may be utilized as a passage flowing into the combustion space (100a) as shown in FIG.
  • the partition wall 600 may be installed in the gap 510.
  • the partition 600 separates the air supply passage 510a and the clinker collecting passage 510b from the gap 510 so that the clinker may be collected by the clinker collecting portion 520 through the gap 510. It takes a structure, as an example can be arranged in a longitudinal arrangement arranged as shown in the figure, not limited to this, if the air supply passage 510a and the clinker collecting passage 510b is separated from the gap 510 Of course, any arrangement may be taken to correspond to adjacent structures.
  • the present invention may further include a check member 700 provided inside the clinker collector 520 as shown in FIG.
  • the check member 700 serves to block the downwardly passed clinker from upward pass.
  • the check member 700 may have a structure in which a plurality of upper and lower pass holes 700a are preferably formed.
  • the clinker collection efficiency of the clinker collection unit 520 can be increased by the check member 700 configured as described above.
  • water may be accommodated so that the clinker is deposited on the lower portion of the clinker collection part 520.
  • the clinker is not easily separated by the attraction force of the water. If the clinker is deposited in the water, the flow of the combustion air A is not affected at all, thereby further increasing the clinker collection efficiency of the clinker collection unit 520.
  • the present invention as described above, the clinker collecting unit (C) so that the combustion air (A) flowing out from the combustion space (100a) to the clinker collecting unit 520 through the gap 510 is re-introduced into the combustion space (100a).
  • the reflow channel 530 configured to pass through the grate 130 from the 520 to the combustion space 100a is configured to smoothly flow the combustion air A from the combustion space 100a to the clinker collection part 520.
  • the clinker removal efficiency of the combustion space 100a may be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Fuel Combustion (AREA)
  • Air Supply (AREA)

Abstract

A combustor according to the present invention comprises: a combustion chamber having a grate embedded therein and a combustion space formed above the grate; a fuel supply part downwardly connected to the center part of the grate so as to supply fuel to the upper part of the grate; an air supply part connected to the side part of the combustion chamber to be inclined on a horizontal plane, so as to supply combustion air such that the combustion air swirls in the combustion space; a clinker collection part downwardly communicating with the gap, which is formed between the inner wall of the combustion chamber and the grate, so as to collect, through the gap, the clinker generated by the combustion of the fuel in the combustion space; and a re-inflow channel passing through the grate from the clinker collection part to the combustion space such that the combustion air, having flowed out from the combustion space to the clinker collection part through the gap, re-inflows into the combustion space.

Description

연소기burner
본 발명은 연소기로서, 연소실 내에서 고형연료를 연소시켜 발생하는 연소열을 회수하여 에너지로 사용하기 위한 연소기에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustor for recovering combustion heat generated by burning solid fuel in a combustion chamber for use as energy.
일반적으로 산업용 온수, 스팀 또는 고온의 가스를 필요로 하는 산업시설에서는 열에너지를 얻기 위해 연소실 내부에서 연료를 점화, 연소시켜 열에너지를 발생시키는 연소기가 활용되고 있으며, 이러한 연소기에서 사용되는 연료로서 생활폐기물을 연료화한 고형연료 등이 경제성 및 자원재활용 측면에 있어서 많이 이용되고 있다.In general, industrial facilities that require industrial hot water, steam, or high-temperature gas are used to generate thermal energy by igniting and burning fuel in a combustion chamber to obtain thermal energy. Fueled solid fuels are widely used in terms of economic efficiency and resource recycling.
이러한 연소기는 고형연료를 연소시키는 과정에 있어서, 연소로 인하여 발생하는 클링커(clinker)가 연소실에 하단 측부에 연통된 클링커수집부에 수집되어 연소실로부터 제거된다.In the combustor, the clinker generated by the combustion is collected in the clinker collection unit connected to the lower side of the combustion chamber and removed from the combustion chamber.
그런데, 클링커는 유동하는 연소공기를 따라 클링커수집부에 수집되는데, 연소공간으로부터 클링커수집부로 연소공기가 원활하게 유출되지 않음으로써, 연소공간의 클링커 제거효율이 떨어지는 한계점이 있다.However, the clinker is collected in the clinker collecting unit along the flowing combustion air, and since the combustion air does not flow smoothly from the combustion space to the clinker collecting unit, the clinker removal efficiency of the combustion space is lowered.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 연소공간으로부터 클링커수집부로 연소공기가 원활하게 유출됨으로써 연소공간의 클링커 제거효율을 높이는 연소기를 제공하는 데에 그 목적이 있다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a combustor that improves the clinker removal efficiency of the combustion space by smoothly flowing combustion air from the combustion space to the clinker collection unit.
상기와 같은 목적을 달성하기 위하여 본 발명의 일 실시예에 따른 연소기는, 화격자가 내장되고 상기 화격자 상에 연소공간이 형성되는 연소실; 상기 화격자의 중앙부에 하방연결되어 상기 화격자의 상부로 연료를 공급하는 연료공급부; 연소공기가 상기 연소공간에서 선회되게 연소공기를 공급하도록, 상기 연소실의 측부에 수평면상 경사지게 연결된 공기공급부; 상기 연소실의 내벽과 상기 화격자 사이에 형성된 간극과 하방연통되어, 상기 연소공간에서 연료의 연소로 생성된 클링커가 상기 간극을 통해 수집되는 클링커수집부; 및 상기 연소공간으로부터 상기 간극을 통해 상기 클링커수집부로 유출된 연소공기가 상기 연소공간으로 재유입되도록, 상기 클링커수집부로부터 상기 연소공간으로 상기 화격자를 통과하는 재유입채널;을 포함한다.In order to achieve the above object, a combustor according to an embodiment of the present invention includes a combustion chamber in which a grate is built and a combustion space is formed on the grate; A fuel supply unit connected downward to a central portion of the grate to supply fuel to an upper portion of the grate; An air supply unit connected to the side of the combustion chamber inclined in a horizontal plane so that combustion air is pivoted in the combustion space; A clinker collecting part which is in downward communication with a gap formed between the inner wall of the combustion chamber and the grate and collects the clinker generated by the combustion of fuel in the combustion space through the gap; And a reflow channel passing through the grate from the clinker collector to the combustion space so that combustion air flowing out from the combustion space to the clinker collector through the gap is reintroduced into the combustion space.
여기에서, 상기 재유입채널은 복수 개가 형성되며, 상기 연소실 하부에서 중앙 측으로 갈수록 단면적의 크기가 작아질 수 있다.Here, a plurality of the re-introduction channel is formed, the size of the cross-sectional area may be smaller from the lower portion of the combustion chamber toward the center side.
또한, 상기 재유입채널은 복수 개가 형성되며, 상기 연소실 하부에서 중앙 측으로 갈수록 수가 줄어들 수 있다.In addition, a plurality of reflow channels are formed, and the number of the reflow channels may decrease from the lower side of the combustion chamber toward the center side.
나아가, 본 발명은 상기 클링커수집부 내의 클링커가 연소공기와 함께 상기 연소공간으로 재유입되는 것을 제한하도록, 상기 클링커수집부 내에서의 연소공기 유동구조를 제어하는 유동제어부재;를 더 포함할 수 있다.Further, the present invention may further include a flow control member for controlling the flow structure of the combustion air in the clinker collector to limit the clinker in the clinker collector is re-introduced into the combustion space with the combustion air. have.
여기에서, 상기 유동제어부재는 상기 연소실의 하부로부터 상기 클링커수집부 내부로 하방연장되게 형성될 수 있다.Here, the flow control member may be formed to extend downward from the lower portion of the combustion chamber into the clinker collecting portion.
이때, 상기 유동제어부재는 상기 연소실의 중앙 측으로 하방경사지게 연장형성될 수 있다.In this case, the flow control member may be extended downwardly inclined toward the central side of the combustion chamber.
한편, 본 발명은 상기 하측 공기공급부에 의해 제공되는 연소공기가 상기 간극을 통해 상기 연소실 내부로 공급 시, 상기 간극을 통해 상기 클링커가 상기 클링커수집부에 수집되게 상기 간극에서 공기공급통로와 클링커수집통로를 분리하도록 형성된 격벽;을 더 포함할 수 있다.On the other hand, the present invention is the air supply passage and the clinker collecting in the gap so that the clinker is collected in the clinker collecting through the gap when the combustion air provided by the lower air supply is supplied into the combustion chamber through the gap. It may further include a partition formed to separate the passage.
그리고, 본 발명은 상기 클링커수집부 내부에 제공되며, 하방 통과된 클링커가 상방 역통과하는 것을 차단하도록 상광하협된 통과홀을 가진 체크부재;를 더 포함할 수 있다.The present invention may further include a check member provided inside the clinker collection unit and having a passing hole narrowed up and down to prevent the clinker passed downward from passing upward.
나아가, 상기 클링커수집부의 하부에는 클링커가 침적되도록 물이 수용될 수 있다.Furthermore, water may be accommodated in the lower portion of the clinker collection unit so that the clinker is deposited.
한편, 상기 공기공급부는, 연소공기가 상기 연소실의 내벽 외면을 따라 선회한 후 상기 유입구를 통해 상기 연소공간으로 유입되도록, 상기 내벽으로부터 이격되어 상기 내벽을 감싸는 상기 연소실의 외벽에 연결될 수 있다.The air supply unit may be connected to an outer wall of the combustion chamber that is spaced apart from the inner wall and surrounds the inner wall so that combustion air may turn along the inner wall outer surface of the combustion chamber and then flow into the combustion space through the inlet.
그리고, 상기 공기공급부는, 상기 연소실의 상측 측부에 연결되어, 연소공기가 상기 연소공간에서 하방선회하도록 연소공기를 공급하는 상측 공기공급부; 및 상기 연소실의 하측 측부에 연결되어, 연소공기가 상기 화격자 상부의 연료와 접촉하여 연소한 후 상기 연소실의 중앙을 따라 상승하도록 연소공기를 공급하는 하측 공기공급부;를 구비할 수 있다.The air supply unit may include: an upper air supply unit connected to an upper side of the combustion chamber to supply combustion air such that combustion air pivots downward in the combustion space; And a lower air supply unit connected to a lower side of the combustion chamber and configured to supply combustion air so that combustion air rises along the center of the combustion chamber after the combustion air contacts and combusts the fuel above the grate.
나아가, 본 발명은 연소공기가 상기 연소공간에서 상기 연소실의 내벽을 따라 하방선회되게 연소공기를 가이드하도록, 연소공기가 상기 연소공간으로 유입되는 유입구에서 상기 연소공간 내측으로 돌출배치되면서 하방개구된 가이드부재;를 더 포함할 수 있다.Further, the present invention guides the combustion air so that the combustion air is turned downward along the inner wall of the combustion chamber in the combustion space, the guide which is opened downward while the combustion air protrudes into the combustion space at the inlet inlet into the combustion space. It may further include a member.
또한, 상기 화격자는 상기 연료공급부를 중심으로 회전구동될 수 있다.In addition, the grate may be rotationally driven around the fuel supply unit.
그리고, 상기 연료공급부는 상기 화격자를 통과하여 상기 연소공간 측으로 돌출형성되며, 연료를 연속적으로 공급하도록 스크류 방식으로 구성될 수 있다.The fuel supply part may protrude to the combustion space through the grate and may be configured in a screw manner to continuously supply fuel.
여기에서, 상기 연료공급부는 상기 화격자를 통과하여 상기 연소공간 측으로 돌출형성되며, 상기 연소공간 측 단부에는 연료의 상측 이동을 차단하면서 측방으로 분산시키도록 하방 확경된 차단부재가 장착될 수 있다.Here, the fuel supply portion protrudes toward the combustion space through the grate, and the combustion space side end portion may be equipped with a downwardly downward blocking member to disperse to the side while blocking the upward movement of the fuel.
나아가, 상기 연소실은 상협하광형으로서 절두원뿔형상을 지닐 수 있다.Furthermore, the combustion chamber may have a truncated cone shape as a phase narrow light type.
본 발명에 따른 연소기는, 연소공간으로부터 간극을 통해 클링커수집부로 유출된 연소공기가 연소공간으로 재유입되도록, 클링커수집부로부터 연소공간으로 화격자를 통과하는 재유입채널이 구성됨으로써, 연소공간으로부터 클링커수집부로 연소공기가 원활하게 유출됨에 따라, 연소공간의 클링커 제거효율을 높일 수 있는 효과를 가진다.In the combustor according to the present invention, the inflow channel passing through the grate from the clinker collector to the combustion space is configured such that the combustion air flowing out from the combustion space to the clinker collector through the gap is re-introduced into the combustion space. As the combustion air flows out smoothly into the collecting part, it has an effect of increasing the clinker removal efficiency of the combustion space.
도 1은 본 발명의 일 실시예에 따른 연소기의 내부를 나타낸 도면이다.1 is a view showing the inside of a combustor according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 연소기의 내부를 나타낸 도면이다.2 is a view showing the inside of the combustor according to another embodiment of the present invention.
도 3은 도 1 및 도 2의 연소기에서 하부의 화격자를 나타낸 평면도이다.3 is a plan view showing a lower grate in the combustor of FIGS. 1 and 2.
도 4는 도 3의 화격자의 다른 실시예를 나타낸 도면이다.4 is a view showing another embodiment of the grate of FIG.
도 5는 도 3의 화격자의 또 다른 실시예를 나타낸 도면이다.5 is a view showing another embodiment of the grate of FIG.
도 6(a)은 도 1 및 도 2의 연소기에서 클링커수집부에 유동제어부재가 설치되지 않은 경우에 연소공기의 유동구조를 나타낸 도면이고, 도 6(b)는 도 1 및 도 2의 연소기에서 클링커수집부에 유동제어부재가 설치된 경우에 연소공기의 유동구조를 나타낸 도면이다.6 (a) is a view showing the flow structure of the combustion air when the flow control member is not installed in the clinker collector in the combustor of Figs. 1 and 2, Figure 6 (b) is a combustor of Figs. Figure 2 shows the flow structure of the combustion air when the flow control member is installed in the clinker collector.
도 7은 도 1 및 도 2의 연소기에서 클링커수집부에 체크부재가 설치된 것을 나타낸 도면이다.7 is a view showing that the check member is installed in the clinker collecting portion in the combustor of FIGS. 1 and 2.
이하, 본 발명의 예시적인 도면을 통해 상세하게 설명하기로 한다. 각 도면의 구성요소들에 도면부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail. In the reference numerals to the components of each drawing, it is noted that the same reference numerals are assigned to the same components as much as possible even though they are displayed on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 1은 본 발명의 일 실시예에 따른 연소기의 내부를 나타낸 도면이고, 도 2는 본 발명의 다른 실시예에 따른 연소기의 내부를 나타낸 도면이다.1 is a view showing the inside of a combustor according to an embodiment of the present invention, Figure 2 is a view showing the inside of a combustor according to another embodiment of the present invention.
도면을 참조하면, 본 발명의 연소기는 고형의 연료(F)가 연소되는 연소실(100)과, 상기 연소실(100)에 연료(F)를 공급하는 연료공급부(200), 상기 연소실(100)에 연소공기(A)를 공급하는 공기공급부를 포함하며, 주요 구성적 특징으로서 연소공간(100a)에서 연료(F)의 연소로 생성된 클링커가 수집되는 클링커수집부(520) 및 상기 클링커수집부(520)로부터 연소공간(100a)으로 화격자(130)를 통과하는 재유입채널(530)을 포함한다. 참고로, 상기 클링커(clinker)는 연료가 연소되고 남은 물질로서 재를 포함한다.Referring to the drawings, the combustor of the present invention is a combustion chamber 100 in which solid fuel F is combusted, a fuel supply unit 200 supplying fuel F to the combustion chamber 100, and the combustion chamber 100. Clinker collecting unit 520 and the clinker collecting unit (C), which includes an air supply unit for supplying combustion air (A) and collects clinker generated by the combustion of fuel (F) in the combustion space (100a) as a main constituent feature. The reflow channel 530 passing through the grate 130 from the 520 to the combustion space (100a). For reference, the clinker includes ash as the material remaining after the fuel is burned.
여기에서, 상기 연소실(100)은 내부에 연소공간(100a)이 형성되고 이러한 연소공간(100a)의 하부에는 화격자(130)가 설치되며, 상부에는 배출구(100c)가 형성된다. 이때, 상기 화격자(130)는 상부에 연료(F)가 안착되는 구성으로서 중앙부에 연료공급부(200)가 하방연결된다.Here, the combustion chamber 100 has a combustion space (100a) is formed therein, the grate 130 is installed in the lower portion of the combustion space (100a), the discharge port (100c) is formed at the top. At this time, the grate 130 is a configuration in which the fuel (F) is seated on the upper portion is connected to the fuel supply unit 200 in the central portion.
참고로, 상기 연소실(100)은 상협하광형으로서 절두원뿔형상을 지닌 것이 바람직한데, 후술되는 연소실(100) 내부에 공급된 연소공기(A)의 하방선회유동을 포함한 내구적인 측면에 있어서의 안정적인 구조로서 채택될 수 있다. 아울러, 이러한 구조는 가스유로관점에 있어서 각형단면에서의 불필요한 내측코너공간을 제거한 효율적인 구조이다.For reference, it is preferable that the combustion chamber 100 has a truncated cone shape as an upper and lower light beam type, which is stable in terms of durability including the downward swing flow of the combustion air A supplied into the combustion chamber 100 to be described later. It can be adopted as a structure. In addition, this structure is an efficient structure by removing the unnecessary inner corner space in the square cross section in terms of gas flow path.
그리고, 상기 화격자(130)는 연료공급부(200)를 중심으로 회전구동되는데, 일례로서 이러한 화격자(130)는 구동부재에 직접연결되어 회전구동할 수 있으며, 다른 일례로서 턴테이블(도 2의 140)의 상면에 설치되어 구동부재가 턴테이블(140)을 회전구동시키면 이에 연동되어 회전될 수 있다. 이때, 상기 화격자에 대한 구동부재의 직접연결구조 및 턴테이블(140)을 통한 연결구조는 종래의 어떠한 구조도 활용될 수 있음은 물론이다.In addition, the grate 130 is rotationally driven around the fuel supply unit 200. As an example, the grate 130 may be directly connected to the driving member to be rotated, and as another example, the turntable (140 of FIG. 2). Is installed on the upper surface of the drive member to rotate the drive turntable 140 can be rotated in conjunction with this. At this time, the direct connection structure of the drive member to the grate and the connection structure through the turntable 140 can be used any structure of course.
또한, 상기 연료공급부(200)는 화격자(130)의 중앙부에 하방연결되어 화격자(130)의 상부로 연료(F)를 공급하는 구조를 취할 수 있다. 일례로서, 상기 연료공급부(200)는 화격자(130)를 통과하여 연소공간(100a) 측으로 돌출형성되며, 연료(F)를 스크류(210)에 의해 연속적으로 공급하도록 스크류 방식으로 구성될 수 있다.In addition, the fuel supply unit 200 may be connected downward to the center of the grate 130 to take a structure for supplying the fuel (F) to the top of the grate (130). As an example, the fuel supply unit 200 may protrude to the combustion space 100a through the grate 130 and may be configured in a screw manner to continuously supply the fuel F by the screw 210.
아울러, 상기 연료공급부(200)에서 연소공간(100a) 측 단부에는 연료(F)의 상측 이동을 차단하면서 측방으로 분산시키도록 하방 확경된 차단부재(220)가 장착될 수 있다.In addition, the fuel supply unit 200 may be installed at the end of the combustion space (100a) side of the combustion space (100a) may be mounted downward blocking member 220 to be distributed to the side while blocking the upward movement of the fuel (F).
*한편, 공기공급부는 연소실(100)의 내부로 연소공기(A)를 공급하도록 연소실(100)의 측부에 연결되는데, 구체적으로 상측 공기공급부(310)와 하측 공기공급부(320)로 구성될 수 있다. 이러한 상측 공기공급부(310)와 하측 공기공급부(320)는 서로 상대적인 위치차이에 의해 정해지며, 이에 따라 연소실(100)의 측부에 연결된 구체적인 연결위치에 대해서는 한정되지 않는다.On the other hand, the air supply unit is connected to the side of the combustion chamber 100 to supply the combustion air (A) into the combustion chamber 100, specifically, may be composed of the upper air supply unit 310 and the lower air supply unit 320. have. The upper air supply unit 310 and the lower air supply unit 320 is determined by a position difference relative to each other, and thus is not limited to a specific connection position connected to the side of the combustion chamber 100.
이때, 상기 상측 공기공급부(310)와 하측 공기공급부(320)는 연소공기(A)가 연소실(100)의 내벽(110)을 따라 선회하도록 공급하는 구조를 취할 수 있도록 구성될 수 있는데, 일례로서 도 3에 도시된 바와 같이 상측 공기공급부(310)는 연소실(100)의 측부에 수평면상 경사지게 연결된 연결구조를 이룰 수 있다. 이러한 상측 공기공급부(310)를 통해 공급되는 연소공기(A)는 연소공간(100a) 내에서 연소실(100)의 내벽(110)을 따라 선회하면서 하강함으로써, 화격자(130) 상의 연료(F)에 도달하기 전에 예열됨에 따라 연소효율을 증대시킬 수 있고, 연소실(100)의 중앙부에서 배출구(100c) 측으로 상방연장된 고열분포부위로부터 내벽(110)을 차단함에 따라 연소실(100)의 내벽(110) 온도를 떨어뜨릴 수 있다.In this case, the upper air supply unit 310 and the lower air supply unit 320 may be configured to take a structure to supply the combustion air (A) to turn along the inner wall 110 of the combustion chamber 100, as an example As shown in FIG. 3, the upper air supply unit 310 may form a connection structure connected to the side of the combustion chamber 100 to be inclined in a horizontal plane. Combustion air A supplied through the upper air supply unit 310 descends while turning along the inner wall 110 of the combustion chamber 100 in the combustion space 100a to the fuel F on the grate 130. As it is preheated before reaching, the combustion efficiency can be increased, and the inner wall 110 of the combustion chamber 100 is blocked by blocking the inner wall 110 from the high temperature distribution site extended upward from the central portion of the combustion chamber 100 toward the outlet 100c. You can drop the temperature.
그리고, 상기 하측 공기공급부(320)는 연소실(100)의 하측 측부에 연결되어, 화격자(130) 상부의 연료(F)와 접촉하여 연소한 후 연소실(100)의 중앙을 따라 상승하도록 연소공기(A)를 공급하는 역할을 수행한다.In addition, the lower air supply unit 320 is connected to the lower side of the combustion chamber 100, the combustion air to rise along the center of the combustion chamber (100) after burning in contact with the fuel (F) above the grate 130 A) serves to supply.
또한, 상기 공기공급부 중 상측 공기공급부(310)는 연소공기(A)가 연소실(100)의 내벽(110) 외면을 따라 선회한 후 유입구(100b)를 통해 상기 연소공간(100a)으로 유입되도록, 내벽(110)으로부터 이격되어 내벽(110)을 감싸는 상기 연소실(100)의 외벽(120)에 연결될 수 있다.In addition, the upper air supply unit 310 of the air supply unit so that the combustion air (A) is rotated along the outer surface of the inner wall 110 of the combustion chamber 100 and then introduced into the combustion space (100a) through the inlet (100b), The inner wall 110 may be connected to the outer wall 120 of the combustion chamber 100 that surrounds the inner wall 110.
이에 따라, 상측 공기공급부(310)를 통해 공급된 연소공기(A)는 연소실(100)의 내벽(110) 외면을 따라 상방선회하면서 내벽(110)을 냉각시킬 수 있고, 이후 유입구(100b)를 통해 연소공간(100a)에 유입되어 하방선회하면서 예열될 수 있다.Accordingly, the combustion air A supplied through the upper air supply unit 310 may cool the inner wall 110 while turning upward along the outer surface of the inner wall 110 of the combustion chamber 100, and then the inlet 100b. Through the flow into the combustion space (100a) can be preheated while turning down.
아울러, 일례로서 도 2에 도시된 바와 같이 하측 공기공급부(320)를 통해 공급된 연소공기(A)는 연소공간(100a)의 측부 하측으로 유입되기 전에, 연소실(100)의 하측 내벽(110) 외면을 따라 하방선회하면서 하측 내벽(110)을 냉각시킬 수 있다.In addition, as an example, as shown in FIG. 2, the combustion air A supplied through the lower air supply unit 320 is introduced into the lower side of the combustion space 100a before the lower inner wall 110 of the combustion chamber 100. The lower inner wall 110 may be cooled while turning downward along the outer surface.
그리고, 본 발명은 연소공기(A)의 예열과 함께 연소실(100) 내벽(110)의 냉각을 이루기 위해, 공기공급부에 의해 공급되는 연소공기(A)가 연소실(100) 내부에서 하방선회되게 가이드하는 가이드부재(400)를 더 포함할 수 있다.And, in order to achieve the cooling of the inner wall 110 of the combustion chamber 100 with the preheating of the combustion air (A), the combustion air (A) supplied by the air supply unit is guided downward in the combustion chamber (100). It may further include a guide member 400 to.
여기에서, 도면에 도시된 바와 같이 상기 공기공급부 중 상측 공기공급부(310)를 통해 연소공간(100a) 내로 공급되는 연소공기(A)의 선회유동구조를 구체적으로 살펴보기로 한다.Here, a swirl flow structure of the combustion air A supplied into the combustion space 100a through the upper air supply 310 of the air supply unit will be described in detail as shown in the drawing.
구체적으로, 상측 공기공급부(310)를 일례로서 살펴보면 상측 공기공급부(310)가 연소실(100)의 측부에 수평면상 경사지게 연결됨으로써, 연소공기(A)가 유입구(100b)를 통해 연소공간(100a) 내부로 유입 시 선회력을 가지게 된다. 구체적으로, 연소공기(A)가 연소실(100)의 내벽(110)과 외벽(120)을 통과한 후 유입구(100b)를 통해 연소공간(100a)으로 유입하게 되는데, 이렇게 유동한 후 연소공간(100a)으로 유입시에도 선회력을 유지하고 있음은 물론이다.Specifically, referring to the upper air supply unit 310 as an example, the upper air supply unit 310 is inclined in a horizontal plane on the side of the combustion chamber 100, the combustion air (A) through the inlet (100b) combustion space (100a) When it enters inside, it has a turning force. Specifically, the combustion air A passes through the inner wall 110 and the outer wall 120 of the combustion chamber 100 and then flows into the combustion space 100a through the inlet 100b. Of course, it maintains its turning force even when flowing into 100a).
이와 같이 연소공간(100a) 내에서도 선회력을 유지한 연소공기(A)는 연이어 유입되는 후속 연속공기에 의해 밀리게 되는데, 이 중 일정 정도의 연소공기(A)는 하강하면서 선회하게 되지만, 연료(F)와 반응연소되어 배출구(100c) 측으로 상방유동하는 고온의 연소가스에 의해 나머지 연소공기(A)는 이끌려서 연소실(100)의 중앙 측 또는 상측으로 이동하게 된다.In this way, the combustion air A, which maintains its turning force even in the combustion space 100a, is pushed by subsequent continuous air which is subsequently introduced. Among these, the combustion air A is rotated while descending, but the fuel F ) And the remaining combustion air (A) is drawn by the high temperature combustion gas flowing upward to the discharge port (100c) side is moved to the center side or the upper side of the combustion chamber (100).
이에 따라, 본 발명은 선회력을 유지한 연소공기(A)가 연소실(100)의 중앙 측 또는 상측으로 이동하지 않고, 연소공간(100a)에서 연소실(100)의 내벽(110)을 타고 하방선회하도록, 가이드부재(400)에 의해 연소공기(A)를 가이드하게 된다.Accordingly, in the present invention, the combustion air A, which maintains the turning force, does not move to the center side or the upper side of the combustion chamber 100, but moves downward through the inner wall 110 of the combustion chamber 100 in the combustion space 100a. The guide member 400 guides the combustion air (A).
이때, 상기 가이드부재(400)는 연소공기(A)가 연소공간(100a)으로 유입되는 유입구(100b)에서 연소공간(100a) 내측으로 돌출배치되면서 하방개구된 구조를 취하는데, 구체적으로 상기 연소실(100)에서 유입구(100b) 상측의 구조물로부터 연소실(100a)의 내측으로 연장된 상부가이드판(410)과, 상부가이드판(410)으로부터 하방연장되고 연소실(100)의 내벽(110)으로부터 이격된 측부가이드판(411)을 구비할 수 있다. 이때, 상기 측부가이드판(411)은 연소실(100)의 내벽(110)으로부터 적정 간격 이격된 배치구조를 이루며, 상부가이드판(410)은 바람직하게 연소실(100)에서 연소공간(100a) 유입구(100b) 위치의 상단부로부터 측부가이드판(411)으로 연장된 구조를 지니게 된다. 물론, 도면에 도시된 바와 같이 연소실(100)의 내벽(110) 상측에 플랜지 구조의 구조물이 있고 이러한 구조물과 내벽(110) 사이에 연소공간(100a)의 유입구(100b)가 있다면, 상기 플랜지 구조의 구조물이 상부가이드판(412)으로서 기능하게 된다.In this case, the guide member 400 has a structure which is opened downward while protruding into the combustion space (100a) in the inlet (100b) in which the combustion air (A) is introduced into the combustion space (100a), specifically, the combustion chamber An upper guide plate 410 extending from the structure above the inlet 100b to the inside of the combustion chamber 100a at 100 and extending downwardly from the upper guide plate 410 and spaced apart from the inner wall 110 of the combustion chamber 100. Side guide plate 411 may be provided. At this time, the side guide plate 411 forms an arrangement structure spaced apart from the inner wall 110 of the combustion chamber 100, the upper guide plate 410 is preferably the inlet (combustion space 100a) in the combustion chamber (100) 100b) has a structure extending from the upper end of the position to the side guide plate 411. Of course, if there is a structure of the flange structure on the upper side of the inner wall 110 of the combustion chamber 100, and there is an inlet (100b) of the combustion space 100a between the structure and the inner wall 110, the flange structure The structure of will function as the upper guide plate 412.
이에 더하여, 본 발명은 상술된 바와 같이 연소공기(A)가 하방선회되도록 연소실(100) 상측에 연소공기(A)를 공급하는 상측 공기공급부(310)에, 하측 공기공급부(320)보다 많은 연소공기량을 제공하도록 구성되는 분기부를 더 포함할 수 있다. 이러한 분기부에 의해 상측 공기공급부(310)에 제공하는 연소공기량을 늘임으로써 연소공기(A)의 예열 및 연소실(100)의 내벽(110) 냉각효과를 증대시킬 수 있다.In addition, the present invention provides more combustion than the lower air supply unit 320 to the upper air supply unit 310 that supplies the combustion air A above the combustion chamber 100 so that the combustion air A is turned downward as described above. It may further comprise a branch configured to provide an air quantity. By increasing the amount of combustion air provided to the upper air supply unit 310 by such a branch, it is possible to increase the preheating of the combustion air A and the cooling effect of the inner wall 110 of the combustion chamber 100.
구체적으로, 상기 분기부는 상측 공기공급부(310)와 하측 공기공급부(320)에 하나의 유로로서 연결된 공기공급라인(330) 내부에 연소공기(A) 분기유동을 위한 분기벽(341)이 배치되고, 상기 분기벽(341)의 단부에는 상측 공기공급부(310), 하측 공기공급부(320) 각각으로 유동하는 연소공기량조절을 위해 회동바(342)가 장착될 수 있다. 이러한 회동바(342)는 비록 도면에 도시되지는 않았지만 회동바(342)를 회동시키도록 회동바(342)에 구동력을 제공하는 구동부에 연동된 구조를 취함은 물론이다.In detail, the branch part has a branch wall 341 for branched flow of combustion air (A) inside the air supply line 330 connected to the upper air supply part 310 and the lower air supply part 320 as one flow path. At the end of the branch wall 341, a rotation bar 342 may be mounted to adjust the amount of combustion air flowing into each of the upper air supply part 310 and the lower air supply part 320. Although the pivoting bar 342 is not shown in the drawing, it takes a structure linked to a driving unit that provides a driving force to the pivoting bar 342 to pivot the pivoting bar 342.
한편, 본 발명은 주요 구성적 특징으로서 연소공간(100a)에서 연료(F)의 연소로 생성된 클링커가 간극(510)을 통해 수집되는 클링커수집부(520)와, 연소공간(100a) 내의 클링커 제거효율을 높이기 위해, 연소공간(100a)으로부터 간극(510)을 통해 클링커수집부(520)로 유출된 연소공기(A)가 연소공간(100a)으로 재유입되도록 재유입채널(530)을 포함한다.On the other hand, according to the present invention, the clinker collecting unit 520 in which the clinker generated by the combustion of the fuel F in the combustion space 100a is collected through the gap 510 and the clinker in the combustion space 100a are provided. In order to increase the removal efficiency, a reflow channel 530 is provided such that the combustion air A flowing out from the combustion space 100a to the clinker collector 520 through the gap 510 is re-introduced into the combustion space 100a. do.
구체적으로, 상기 클링커수집부(520)는 연소실(100)의 내벽(110)과 화격자(130) 사이에 형성된 간극(510)과 하방연통되어, 연소공간(100a)에서 연료(F)의 연소로 생성된 클링커를 간극(510)을 통해 수집하는 역할을 수행한다.Specifically, the clinker collector 520 communicates downwardly with the gap 510 formed between the inner wall 110 of the combustion chamber 100 and the grate 130, so as to burn the fuel F in the combustion space 100a. It collects the generated clinker through the gap 510.
다시 말해, 연료(F)가 타고 남은 물질인 클링커는 연소공간(100a) 내에서 하방선회하는 연소공기(A)에 의해 이동함으로써, 연소공간(100a)의 하단 테두리에 위치하는 즉, 연소실(100)의 내벽(110)과 화격자(130) 사이에 형성되는 간극(510)을 통해 연소공간(100a)으로부터 유출되어 클링커수집부(520) 내부에 수집된다.In other words, the clinker, which is the remaining material of the fuel F, is moved by the combustion air A which swings downward in the combustion space 100a, thereby being located at the lower edge of the combustion space 100a, that is, the combustion chamber 100. Outflow from the combustion space (100a) through the gap 510 formed between the inner wall 110 and the grate 130 of the) is collected in the clinker collector 520.
그리고, 상기 재유입채널(530)은 클링커수집부(520)로부터 연소공간(100a)으로 화격자(130)를 통과하는 구조를 취함으로써, 연소공간(100a)으로부터 간극(510)을 통해 클링커수집부(520)로 유출된 연소공기(A)가 연소공간(100a)으로 재유입되도록 하는 기능을 수행한다.In addition, the reflow channel 530 has a structure passing through the grate 130 from the clinker collector 520 to the combustion space 100a, and thus the clinker collector through the gap 510 from the combustion space 100a. Combustion air (A) leaked to 520 serves to re-introduced into the combustion space (100a).
여기에서, 연소공간(100a)과 클링커수집부(520)에 대한 연소공기(A)의 유동구조를 구체적으로 살펴보면, 간극(510)만이 연소공기(A)가 클링커수집부(520)를 출입하는 통로인 경우에는, 연소공기(A)가 연소공간(100a)으로부터 클링커수집부(520)로 간극(510)을 통해 유출 시 간극(510)을 통해 연소공간(100a)으로 재유입되는 연소공기(A)와 충돌함으로써, 클링커수집부(520)로의 유출유동이 원활하게 이루어지지 않음에 따라, 클링커수집부(520)에 클링커가 효율적으로 수집되지 않게 된다.Here, looking specifically at the flow structure of the combustion air (A) with respect to the combustion space (100a) and the clinker collecting portion 520, only the gap 510 is the combustion air (A) entering and exiting the clinker collecting portion (520) In the case of the passage, the combustion air (A) is flowed back into the combustion space (100a) through the gap 510 when the combustion air (A) flows out from the combustion space (100a) to the clinker collecting portion 520 through the gap (510) ( By colliding with A), the outflow flow to the clinker collector 520 is not smoothly performed, so that the clinker is not collected efficiently in the clinker collector 520.
이에 따라, 본 발명은 연소공간(100a)의 클링커 제거효율을 높이기 위해 연소공간(100a)으로부터 클링커수집부(520)로 연소공기(A)가 원활하게 유출되도록, 연소공기(A)를 연소공간(100a)으로 재유입시키는 재유입채널(530)이 구성된다.Accordingly, in the present invention, the combustion air (A) is a combustion space so that the combustion air (A) flows smoothly from the combustion space (100a) to the clinker collecting portion 520 in order to increase the clinker removal efficiency of the combustion space (100a) A reflow channel 530 is configured to reflow into 100a.
이때, 상기 재유입채널(530)은 클링커수집부(520)로부터 연소공간(100a)으로 화격자(130)를 통과하는 구조를 취하는데, 간극(510)과 별도의 통로로서 연소실(100) 하부에서 화격자(130)를 통과하도록 형성되면 될 뿐 이에 대한 구체적인 구조는 본 발명에 의해 한정되지 않음은 물론이다.At this time, the reflow channel 530 takes a structure that passes through the grate 130 from the clinker collector 520 to the combustion space (100a), in the lower portion of the combustion chamber 100 as a separate passage from the gap 510. It is only to be formed to pass through the grate 130, the specific structure thereof is of course not limited by the present invention.
이러한 재유입채널(530)은 도면에 도시된 바와 같이, 연소실(100)의 하부에 적어도 하나 이상 바람직하게 복수 개가 중앙부 둘레에 형성될 수 있다.As shown in the figure, at least one or more reflow channels 530 may be formed around the central portion of the combustion chamber 100.
한편, 연소공기(A)가 재유입채널(530)을 통해 연소공간(100a)으로 재유입하게 되지만, 이와 같은 재유입과정에서 일부 클링커도 연소공기(A)와 함께 연소공간(100a)으로 재유입하게 된다. 구체적으로, 클링커수집부(520) 내에서 연소공기 유동구조상 간극(510)과 멀어질수록 즉, 연소실(100)의 하부에서 중앙 측으로 갈수록 재유입채널(530)을 통해 연소공간(100a)으로 재유입되는 유속이 빠르게 되고, 유속이 빠를수록 클링커도 쉽게 연소공기(A)에 의해 다시 연소공간(100a) 내로 이동하게 된다.On the other hand, the combustion air (A) is re-introduced into the combustion space (100a) through the re-inlet channel 530, but during this re-introduction process, some of the clinker is also returned to the combustion space (100a) with the combustion air (A). Inflow. In detail, the distance from the combustion air flow structure within the clinker collecting part 520 to the combustion space 100a through the reflow channel 530 is greater from the lower portion of the combustion chamber 100 toward the central side. The flow rate is faster, the faster the flow rate, the more easily the clinker is moved back into the combustion space (100a) by the combustion air (A).
이에 따라, 상기 재유입채널(530)은 일례로서 도 4에 도시된 바와 같이, 연소실(100) 하부에서 중앙으로 갈수록 단면적의 크기가 작아지는 구조를 취함으로써, 연소공간(100a)으로 재유입되는 유속이 빠른 부분에서는 단면적의 크기를 상대적으로 줄이고, 연소공간(100a)으로 재유입되는 유속이 느린 부분에서는 단면적의 크기를 상대적으로 크게 함에 따라, 재유입채널(530)을 통해 연소공간(100a)으로 다시 재유입되는 클링커의 양을 줄일 수 있다. 참고로, 상기 재유입채널(530)의 단면적은 크기변화 시 유량이 조절되는 각도의 단면적을 지칭하며, 일례로서 도면상으로는 횡단면적을 지칭한다.Accordingly, as shown in FIG. 4, the reflow channel 530 is reflowed into the combustion space 100a by taking a structure in which the size of the cross-sectional area decreases from the lower portion of the combustion chamber 100 toward the center. In the portion having a high flow rate, the size of the cross-sectional area is relatively reduced, and in the portion where the flow rate is re-flowed into the combustion space 100a is relatively large, the size of the cross-sectional area is relatively large. This can reduce the amount of clinker reflowed. For reference, the cross-sectional area of the reflow channel 530 refers to the cross-sectional area of the angle at which the flow rate is adjusted when the size changes, and refers to the cross-sectional area in the drawing as an example.
나아가, 상기 재유입채널(530)이 도 3과 같이 형성된다면, 비록 도면에 도시되지는 않았지만 연소실(100) 하부에서 중앙으로 갈수록 좁아지게 형성될 수 있다.In addition, if the reflow channel 530 is formed as shown in Figure 3, although not shown in the figure may be formed narrower toward the center from the lower portion of the combustion chamber (100).
또한, 상기 재유입채널(530)은 다른 일례로서 도 5에 도시된 바와 같이, 연소실(100) 하부에서 중앙 측으로 갈수록 수가 줄어드는 구조를 취함으로써, 연소공간(100a)으로 재유입되는 유속이 빠른 부분에서는 수를 상대적으로 줄이고, 연소공간(100a)으로 재유입되는 유속이 느린 부분에서는 수를 상대적으로 많게 함에 따라, 재유입채널(530)을 통해 연소공간(100a)으로 다시 재유입되는 클링커의 양을 줄일 수 있다.As another example, as shown in FIG. 5, the reflow channel 530 has a structure in which the number decreases from the lower portion of the combustion chamber 100 toward the center side, whereby the flow velocity of the reflow channel 530 is fast. The number of clinkers to be re-introduced back into the combustion space (100a) through the reflow channel 530 as the number is relatively reduced, and the number of the flow rate is re-introduced into the combustion space (100a) is a relatively large number. Can be reduced.
참고로, 상술된 도 3 내지 도 5의 재유입채널(530)은 화격자(130) 상의 연료(F)가 통과하여 떨어지지 않는 크기로서 적정 크기를 가짐은 물론이다.For reference, the reflow channel 530 of FIGS. 3 to 5 described above may have a proper size as the size of the fuel F on the grate 130 does not fall through.
그리고, 본 발명은 도 6(b)에 도시된 바와 같이, 클링커수집부(520) 내의 클링커가 연소공기(A)와 함께 상기 연소공간(100a)으로 재유입되는 것을 제한하도록 구성되는 유동제어부재(540)를 더 포함할 수 있다.And, as shown in Figure 6 (b), the flow control member is configured to limit the clinker in the clinker collector 520 is re-introduced into the combustion space (100a) with the combustion air (A) 540 may further include.
이러한 유동제어부재(540)는 클링커수집부(520) 내에서의 연소공기 유동구조를 제어하도록 구성됨으로써, 클링커수집부(520) 내의 클링커가 연소공기(A)와 함께 상기 연소공간(100a)으로 재유입되는 것을 제한할 수 있다.The flow control member 540 is configured to control the combustion air flow structure in the clinker collector 520, so that the clinker in the clinker collector 520 together with combustion air A into the combustion space 100a. Re-introduction can be limited.
구체적으로, 상기 유동제어부재(540)는 도 6(b)에 도시된 바와 같이 연소실(100)의 하부로부터 클링커수집부(520) 내부로 하방연장되게 형성된 구조를 취할 수 있으며, 아울러 연소실(100)의 중앙 측으로 하방경사지게 연장형성된 구조를 취할 수 있다.Specifically, the flow control member 540 may have a structure formed to extend downward from the lower portion of the combustion chamber 100 into the clinker collecting portion 520, as shown in Figure 6 (b), and also the combustion chamber 100 It may take a structure extending inclined downward to the center side of the).
여기에서, 클링커수집부(520) 내에서의 연소공기 유동구조를 도 6을 참조하여 살펴보기로 할 때, 먼저 도 6(a)는 유동제어부재(540)가 설치되지 않는 경우에서의 연소공기 유동구조를 나타낸 도면이고, 도 6(b)는 유동제어부재(540)가 설치된 경우에서의 연소공기 유동구조를 나타낸 도면이다.Here, when the flow structure of the combustion air in the clinker collector 520 will be described with reference to FIG. 6, first, FIG. 6 (a) shows the combustion air when the flow control member 540 is not installed. 6 (b) is a view showing a combustion air flow structure when the flow control member 540 is installed.
이때, 간극(510)을 통해 연소공간(100a)으로부터 클링커수집부(520)로 유출된 연소공기(A)는, 도 6(a)에서는 클링커수집부(520)의 내면을 타고 방향전환된 후 바로 재유입채널(530)를 통해 연소공간(100a) 내로 재유입하게 되지만, 도 6(b)에서는 클링커수집부(520)의 내면과 부딪히면서 방향전환된 후 재유입채널(530) 측으로 이동하는 과정에서 유동제어부재(540)에 의해 가이드되어 연소실(100)의 중앙 측으로 수평방향 일정 정도 이동한 후 재유입채널(530)을 통해 연소공간(100a) 내로 재유입하게 된다.At this time, the combustion air (A) flowed out from the combustion space (100a) to the clinker collector 520 through the gap 510 is converted to the inner surface of the clinker collector 520 in FIG. Immediately re-introduced into the combustion space (100a) through the re-introduction channel 530, but in Figure 6 (b) is a process of moving to the re-introduction channel 530 after the direction change while hitting the inner surface of the clinker collector 520 Is guided by the flow control member 540 in the horizontal direction to the central side of the combustion chamber 100, and then re-introduced into the combustion space (100a) through the re-inlet channel 530.
이와 같이 연소공기(A)가 도 6(b)에 도시된 바와 같이 클링커수집부(520) 내에서 빠른 속도로 곧바로 상승하여 재유입채널(530) 측으로 유동하지 않고 유동제어부재(540)에 의해 수평방향으로 방향전환됨으로써, 유속도 느려지게 되고 아울러 유동길이도 길어지게 되며 나아가 간극(510) 하측에서 회전하는 유동직경을 상하방향 늘이는 대신에 와류강도를 줄임에 따라, 연소공기(A)를 따라 유동하는 클링커가 자중에 의해 연소공기(A)로부터 분리되는 것을 보다 효과적으로 구현할 수 있으며, 이에 의해 클링커수집부(520)의 클링커 수집효율을 증대시킬 수 있다.As shown in FIG. 6 (b), the combustion air A rises at a high speed in the clinker collector 520 at a high speed and is not flowed to the reflow channel 530 by the flow control member 540. By switching in the horizontal direction, the flow velocity is slowed and the flow length is also increased, and as the vortex intensity is reduced instead of increasing the flow diameter rotating below the gap 510 in the vertical direction, the combustion air A is along the combustion air A. It is possible to more effectively implement the separated clinker from the combustion air (A) by the own weight, thereby increasing the clinker collection efficiency of the clinker collector 520.
한편, 본 발명은 하측 공기공급부(320)에 의해 제공되는 연소공기(A)가 간극(510)을 통해 연소실(100) 내부로 공급 시, 공기공급통로(510a)와 클링커수집통로(510b)를 분리하도록 간극(510)에 형성된 격벽(600)을 더 포함할 수 있다.On the other hand, the present invention, when the combustion air (A) provided by the lower air supply unit 320 is supplied into the combustion chamber 100 through the gap 510, the air supply passage (510a) and the clinker collecting passage (510b) It may further include a partition wall 600 formed in the gap 510 to separate.
상기 하측 공기공급부(320)는 연소실(100)의 하측 측부에 연결되어, 연소공기(A)가 화격자(130) 상부의 연료(F)와 접촉하여 연소한 후 연소실(100)의 중앙을 따라 상승하도록 연소공기(A)를 공급하는데, 이때 도 1에 도시된 바와 같이 연소공간(100a) 내로 유입되는 통로로서 간극(510)이 활용될 수 있다.The lower air supply unit 320 is connected to the lower side of the combustion chamber 100, so that the combustion air A burns in contact with the fuel F of the upper part of the grate 130 and then rises along the center of the combustion chamber 100. Combustion air (A) is supplied so that the gap 510 may be utilized as a passage flowing into the combustion space (100a) as shown in FIG.
이러한 경우 간극(510)에서는 연소공간(100a)으로부터 클링커수집부(520)로 유출되는 연소공기(A)와, 하측 공기공급부(320)로부터 연소공간(100a)으로 공급되는 연소공기(A)의 유동이 서로 간섭됨으로써, 클링커수집부(520)의 클링커 수집효율이 떨어지게 되는데 이를 방지하기 위해 간극(510)에 격벽(600)이 설치될 수 있다.In this case, in the gap 510, the combustion air A flowing out from the combustion space 100a to the clinker collecting unit 520 and the combustion air A supplied from the lower air supply unit 320 to the combustion space 100a. As the flows interfere with each other, the clinker collection efficiency of the clinker collection unit 520 is lowered. In order to prevent this, the partition wall 600 may be installed in the gap 510.
구체적으로, 상기 격벽(600)은 간극(510)을 통해 클링커가 클링커수집부(520)에 수집될 수 있도록, 간극(510)에서 공기공급통로(510a)와 클링커수집통로(510b)를 분리하는 구조를 취하는데, 일례로서 도면에 도시된 바와 같이 상하방향 길게 배치된 배치구조를 이룰 수 있으며, 이에 한정되지 않고 간극(510)에서 공기공급통로(510a)와 클링커수집통로(510b)를 분리하면 될 뿐, 인접한 구조물에 대응되게 어떠한 배치구조도 취할 수 있음은 물론이다.In detail, the partition 600 separates the air supply passage 510a and the clinker collecting passage 510b from the gap 510 so that the clinker may be collected by the clinker collecting portion 520 through the gap 510. It takes a structure, as an example can be arranged in a longitudinal arrangement arranged as shown in the figure, not limited to this, if the air supply passage 510a and the clinker collecting passage 510b is separated from the gap 510 Of course, any arrangement may be taken to correspond to adjacent structures.
이에 더하여, 본 발명은 도 7에 도시된 바와 같이 클링커수집부(520) 내부에 제공되는 체크부재(700)를 더 포함할 수 있다.In addition, the present invention may further include a check member 700 provided inside the clinker collector 520 as shown in FIG.
상기 체크부재(700)는 하방 통과된 클링커가 상방 역통과하는 것을 차단하는 역할을 수행하는데, 구체적으로 상광하협된 통과홀(700a)이 바람직하게 복수 개가 형성된 구조를 취할 수 있다.The check member 700 serves to block the downwardly passed clinker from upward pass. Specifically, the check member 700 may have a structure in which a plurality of upper and lower pass holes 700a are preferably formed.
상기 체크부재(700)의 통과홀(700a)에서 상광하협된 구조에 있어서 상대적으로 크기가 큰 상측개구부를 통해 클링커가 쉽게 유입됨에 따라 통과홀(700a)의 하방통과는 원활하게 이루어지지만, 역방향으로 통과홀(700a)을 상방통과하는 경우에는 상대적으로 크기가 작은 하측개구부를 통해서는 클링커가 쉽게 통과할 수 없게 됨에 따라 통과홀(700a)의 상방통과는 거의 이루어지지 않게 된다.As the clinker is easily introduced through the relatively large upper opening in the passage hole 700a of the check member 700, the downward passage of the passage hole 700a is smoothly made, but in the reverse direction. In the case where the passage hole 700a passes upward, the clinker cannot easily pass through the relatively small lower opening so that the passage of the passage hole 700a does not almost pass upward.
이와 같이 구성되는 체크부재(700)에 의해 클링커수집부(520)의 클링커 수집효율을 증대시킬 수 있다.The clinker collection efficiency of the clinker collection unit 520 can be increased by the check member 700 configured as described above.
이에 더하여, 비록 도면에 도시되지는 않았지만 상기 클링커수집부(520)의 하부에 클링커가 침적되도록 물이 수용될 수 있는데, 이러한 물에 클링커가 안착되면 물의 인력에 의해 클링커가 쉽게 분리되지 않고, 나아가 물 내부에 클링커가 침적되면 연소공기(A)의 유동에 전혀 영향을 받지 않게 됨으로써, 클링커수집부(520)의 클링커 수집효율을 더욱더 높일 수 있다.In addition, although not shown in the drawings, water may be accommodated so that the clinker is deposited on the lower portion of the clinker collection part 520. When the clinker is seated on the water, the clinker is not easily separated by the attraction force of the water. If the clinker is deposited in the water, the flow of the combustion air A is not affected at all, thereby further increasing the clinker collection efficiency of the clinker collection unit 520.
결과적으로, 상기와 같이 본 발명은 연소공간(100a)으로부터 간극(510)을 통해 클링커수집부(520)로 유출된 연소공기(A)가 연소공간(100a)으로 재유입되도록, 클링커수집부(520)로부터 연소공간(100a)으로 화격자(130)를 통과하는 재유입채널(530)이 구성됨으로써, 연소공간(100a)으로부터 클링커수집부(520)로 연소공기(A)가 원활하게 유출됨에 따라, 연소공간(100a)의 클링커 제거효율을 높일 수 있다.As a result, the present invention as described above, the clinker collecting unit (C) so that the combustion air (A) flowing out from the combustion space (100a) to the clinker collecting unit 520 through the gap 510 is re-introduced into the combustion space (100a). The reflow channel 530 configured to pass through the grate 130 from the 520 to the combustion space 100a is configured to smoothly flow the combustion air A from the combustion space 100a to the clinker collection part 520. In addition, the clinker removal efficiency of the combustion space 100a may be increased.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of the claims to be described.

Claims (16)

  1. 화격자가 내장되고 상기 화격자 상에 연소공간이 형성되는 연소실;A combustion chamber in which a grate is built and a combustion space is formed on the grate;
    상기 화격자의 중앙부에 하방연결되어 상기 화격자의 상부로 연료를 공급하는 연료공급부;A fuel supply unit connected downward to a central portion of the grate to supply fuel to an upper portion of the grate;
    연소공기가 상기 연소공간에서 선회되게 연소공기를 공급하도록, 상기 연소실의 측부에 수평면상 경사지게 연결된 공기공급부;An air supply unit connected to the side of the combustion chamber inclined in a horizontal plane so that combustion air is pivoted in the combustion space;
    상기 연소실의 내벽과 상기 화격자 사이에 형성된 간극과 하방연통되어, 상기 연소공간에서 연료의 연소로 생성된 클링커가 상기 간극을 통해 수집되는 클링커수집부; 및A clinker collecting part which is in downward communication with a gap formed between the inner wall of the combustion chamber and the grate and collects the clinker generated by the combustion of fuel in the combustion space through the gap; And
    상기 연소공간으로부터 상기 간극을 통해 상기 클링커수집부로 유출된 연소공기가 상기 연소공간으로 재유입되도록, 상기 클링커수집부로부터 상기 연소공간으로 상기 화격자를 통과하는 재유입채널;A reflow channel passing through the grate from the clinker collector to the combustion space such that combustion air flowing out from the combustion space to the clinker collector through the gap is reintroduced into the combustion space;
    을 포함하는 연소기.Combustor comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 재유입채널은 복수 개가 형성되며, 상기 연소실 하부에서 중앙 측으로 갈수록 단면적의 크기가 작아지는 것을 특징으로 하는 연소기.And a plurality of reflow channels are formed, and the size of the cross-sectional area decreases from the lower side of the combustion chamber toward the center side.
  3. 제1항에 있어서,The method of claim 1,
    상기 재유입채널은 복수 개가 형성되며, 상기 연소실 하부에서 중앙 측으로 갈수록 수가 줄어드는 것을 특징으로 하는 연소기.And a plurality of reflow channels are formed, and the number of reflow channels decreases from the lower side of the combustion chamber toward the center side.
  4. 제1항에 있어서,The method of claim 1,
    상기 클링커수집부 내의 클링커가 연소공기와 함께 상기 연소공간으로 재유입되는 것을 제한하도록, 상기 클링커수집부 내에서의 연소공기 유동구조를 제어하는 유동제어부재;A flow control member for controlling the combustion air flow structure in the clinker collection portion to limit the clinker in the clinker collection portion to be reintroduced into the combustion space together with combustion air;
    를 더 포함하는 것을 특징으로 하는 연소기.Combustor characterized in that it further comprises.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 유동제어부재는 상기 연소실의 하부로부터 상기 클링커수집부 내부로 하방연장되게 형성된 것을 특징으로 하는 연소기.And the flow control member is extended downward from the lower portion of the combustion chamber into the clinker collecting portion.
  6. 제5항에 있어서,The method of claim 5,
    상기 유동제어부재는 상기 연소실의 중앙 측으로 하방경사지게 연장형성된 것을 특징으로 하는 연소기.The flow control member is a combustor, characterized in that extending downwardly inclined toward the center of the combustion chamber.
  7. 제1항에 있어서,The method of claim 1,
    상기 하측 공기공급부에 의해 제공되는 연소공기가 상기 간극을 통해 상기 연소실 내부로 공급 시, 상기 간극을 통해 상기 클링커가 상기 클링커수집부에 수집되게 상기 간극에서 공기공급통로와 클링커수집통로를 분리하도록 형성된 격벽;When the combustion air provided by the lower air supply unit is supplied into the combustion chamber through the gap, it is formed to separate the air supply passage and the clinker collecting passage in the gap such that the clinker is collected in the clinker collecting through the gap. septum;
    을 더 포함하는 것을 특징으로 하는 연소기.Combustor characterized in that it further comprises.
  8. 제1항에 있어서,The method of claim 1,
    상기 클링커수집부 내부에 제공되며, 하방 통과된 클링커가 상방 역통과하는 것을 차단하도록 상광하협된 통과홀을 가진 체크부재;A check member provided inside the clinker collecting portion and having a passing hole which is vertically narrowed to prevent the clinker passed downward from passing upward;
    를 더 포함하는 것을 특징으로 하는 연소기.Combustor characterized in that it further comprises.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 8,
    상기 클링커수집부의 하부에는 클링커가 침적되도록 물이 수용되는 것을 특징으로 하는 연소기.Combustor, characterized in that the water is accommodated so that the clinker is deposited in the lower portion of the clinker collection.
  10. 제1항에 있어서,The method of claim 1,
    상기 공기공급부는,The air supply unit,
    연소공기가 상기 연소실의 내벽 외면을 따라 선회한 후 상기 유입구를 통해 상기 연소공간으로 유입되도록, 상기 내벽으로부터 이격되어 상기 내벽을 감싸는 상기 연소실의 외벽에 연결된 것을 특징으로 하는 연소기.And a combustion air spaced apart from the inner wall and connected to an outer wall of the combustion chamber surrounding the inner wall such that the combustion air rotates along the inner wall outer surface of the combustion chamber and then enters the combustion space through the inlet.
  11. 제1항에 있어서,The method of claim 1,
    상기 공기공급부는,The air supply unit,
    상기 연소실의 상측 측부에 연결되어, 연소공기가 상기 연소공간에서 하방선회하도록 연소공기를 공급하는 상측 공기공급부; 및An upper air supply unit connected to an upper side of the combustion chamber to supply combustion air so that combustion air pivots downward in the combustion space; And
    상기 연소실의 하측 측부에 연결되어, 연소공기가 상기 화격자 상부의 연료와 접촉하여 연소한 후 상기 연소실의 중앙을 따라 상승하도록 연소공기를 공급하는 하측 공기공급부;A lower air supply unit connected to a lower side of the combustion chamber and supplying combustion air such that combustion air rises along the center of the combustion chamber after combustion air contacts and combusts the fuel above the grate;
    를 구비하는 것을 특징으로 하는 연소기.Combustor comprising a.
  12. 제1항에 있어서,The method of claim 1,
    연소공기가 상기 연소공간에서 상기 연소실의 내벽을 따라 하방선회되게 연소공기를 가이드하도록, 연소공기가 상기 연소공간으로 유입되는 유입구에서 상기 연소공간 내측으로 돌출배치되면서 하방개구된 가이드부재;A guide member which is opened downward while projecting the combustion air into the combustion space at an inlet through which combustion air flows into the combustion space so that combustion air is guided downward along the inner wall of the combustion chamber in the combustion space;
    를 더 포함하는 것을 특징으로 하는 연소기.Combustor characterized in that it further comprises.
  13. 제1항에 있어서,The method of claim 1,
    상기 화격자는 상기 연료공급부를 중심으로 회전구동되는 것을 특징으로 하는 연소기.The grate is a combustor, characterized in that the rotation driven around the fuel supply.
  14. 제1항에 있어서,The method of claim 1,
    상기 연료공급부는 상기 화격자를 통과하여 상기 연소공간 측으로 돌출형성되며, 연료를 연속적으로 공급하도록 스크류 방식으로 구성되는 것을 특징으로 하는 연소기.And the fuel supply part protrudes toward the combustion space through the grate, and is configured in a screw manner to continuously supply fuel.
  15. 제1항에 있어서,The method of claim 1,
    상기 연료공급부는 상기 화격자를 통과하여 상기 연소공간 측으로 돌출형성되며, 상기 연소공간 측 단부에는 연료의 상측 이동을 차단하면서 측방으로 분산시키도록 하방 확경된 차단부재가 장착된 것을 특징으로 하는 연소기.And the fuel supply part protrudes toward the combustion space through the grate, and an end portion of the combustion space having a downwardly expanded blocking member mounted on the combustion space side end to disperse the fuel in an upward direction.
  16. 제1항에 있어서,The method of claim 1,
    상기 연소실은 상협하광형으로서 절두원뿔형상을 지닌 것을 특징으로 하는 연소기.The combustion chamber is characterized by having a truncated cone shape as a phase narrow light type.
PCT/KR2015/008000 2015-06-08 2015-07-30 Combustor WO2016199977A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201580080807.3A CN107690556B (en) 2015-06-08 2015-07-30 Burner
CA2987567A CA2987567A1 (en) 2015-06-08 2015-07-30 A combustion chamber for solid fuel
BR112017025992A BR112017025992A2 (en) 2015-06-08 2015-07-30 combustor
US15/578,611 US20180163961A1 (en) 2015-06-08 2015-07-30 Combustor
EP15895045.1A EP3306191A4 (en) 2015-06-08 2015-07-30 Combustor
JP2017563340A JP6574495B2 (en) 2015-06-08 2015-07-30 Combustor
AU2015398367A AU2015398367B2 (en) 2015-06-08 2015-07-30 Combustor
PH12017502227A PH12017502227A1 (en) 2015-06-08 2017-12-07 Combustor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0080629 2015-06-08
KR1020150080629A KR101726047B1 (en) 2015-06-08 2015-06-08 Combustor

Publications (1)

Publication Number Publication Date
WO2016199977A1 true WO2016199977A1 (en) 2016-12-15

Family

ID=57503934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008000 WO2016199977A1 (en) 2015-06-08 2015-07-30 Combustor

Country Status (10)

Country Link
US (1) US20180163961A1 (en)
EP (1) EP3306191A4 (en)
JP (1) JP6574495B2 (en)
KR (1) KR101726047B1 (en)
CN (1) CN107690556B (en)
AU (1) AU2015398367B2 (en)
BR (1) BR112017025992A2 (en)
CA (1) CA2987567A1 (en)
PH (1) PH12017502227A1 (en)
WO (1) WO2016199977A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879089B1 (en) * 2016-12-22 2018-07-16 주식회사 포스코 Combustor
KR101895069B1 (en) * 2017-04-25 2018-09-04 주식회사 포스코 Fuel feeding apparatus for combustor and fuel feeding method using the same
KR101949052B1 (en) 2017-12-21 2019-02-15 주식회사 포스코 Combustor
KR102020403B1 (en) * 2017-12-21 2019-09-10 주식회사 포스코 Fuel supply unit and combustor having thereof
KR102020408B1 (en) * 2017-12-21 2019-09-10 주식회사 포스코 Fuel supply unit and combustor having thereof
CN110173897A (en) * 2019-07-04 2019-08-27 广东省众骋热能科技有限公司 A kind of combustion heat-exchange device with multiple-stage adiabatic structure
WO2022185392A1 (en) * 2021-03-01 2022-09-09 株式会社イクロス Solid fuel combustion device
CN115638431B (en) * 2022-10-10 2023-06-02 嘉善东都节能技术有限公司 Flue gas waste heat recovery structure and method applied to biomass boiler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100890682B1 (en) * 2008-06-09 2009-03-26 김정길 Combustion apparatus for recovering heat using solid fuel
KR100907269B1 (en) * 2008-11-18 2009-07-14 김지원 Continuous combustion apparatus with divided combustion space by the centrifugal force and the combustion method thereof
KR20100032461A (en) * 2008-09-18 2010-03-26 일도바이오테크주식회사 Apparatus for removing complete combustion and combustion material of small-size solid fuel combustor
KR20120016967A (en) * 2010-08-17 2012-02-27 김상권 Combustion apparatus with improved combustion efficiency
KR20130064409A (en) * 2011-12-08 2013-06-18 김홍규 Water tube steam boiler using wood pellet

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1957583A (en) * 1931-08-07 1934-05-08 Westinghouse Electric & Mfg Co Combustion apparatus
JPS53955Y2 (en) * 1973-01-23 1978-01-12
JPS5066068A (en) * 1973-10-18 1975-06-04
JPS5896912A (en) * 1981-12-03 1983-06-09 Obanaya Sangyo:Kk Rotary hearth in excrement gas generating furnace
JPH0379021U (en) * 1989-11-27 1991-08-12
CN2601125Y (en) * 2003-02-25 2004-01-28 盛国祝 Flue dust remover
KR100821124B1 (en) * 2007-11-16 2008-04-14 에너원 주식회사 Combustion apparatus for recovering heat
JP2011226691A (en) * 2010-04-19 2011-11-10 Tabata Sangyo:Kk Solid fuel combustion device and boiler device
TR201005272A2 (en) * 2010-06-29 2011-10-21 Fai̇k Özyaman Şenol A solid fuel unit capable of burning solid fuels with volatile gases.
JP5261467B2 (en) * 2010-07-22 2013-08-14 相權 金 Combustion device with improved thermal efficiency
CN102345850B (en) * 2010-07-22 2014-02-26 创意能源控股有限公司 Thermal recovery system with improved thermal efficiency and thermoelectric combined production system equipped with the thermal recovery system
JP5774879B2 (en) * 2011-03-07 2015-09-09 株式会社御池鐵工所 Hearth structure and combustion furnace
CN204141565U (en) * 2014-08-06 2015-02-04 成都王安产业有限公司 A kind of downdraf combustion-type heat energy machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100890682B1 (en) * 2008-06-09 2009-03-26 김정길 Combustion apparatus for recovering heat using solid fuel
KR20100032461A (en) * 2008-09-18 2010-03-26 일도바이오테크주식회사 Apparatus for removing complete combustion and combustion material of small-size solid fuel combustor
KR100907269B1 (en) * 2008-11-18 2009-07-14 김지원 Continuous combustion apparatus with divided combustion space by the centrifugal force and the combustion method thereof
KR20120016967A (en) * 2010-08-17 2012-02-27 김상권 Combustion apparatus with improved combustion efficiency
KR20130064409A (en) * 2011-12-08 2013-06-18 김홍규 Water tube steam boiler using wood pellet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3306191A4 *

Also Published As

Publication number Publication date
BR112017025992A2 (en) 2018-08-14
EP3306191A4 (en) 2018-06-20
US20180163961A1 (en) 2018-06-14
AU2015398367B2 (en) 2019-04-18
PH12017502227A1 (en) 2018-06-25
EP3306191A1 (en) 2018-04-11
CN107690556A (en) 2018-02-13
CN107690556B (en) 2019-07-05
AU2015398367A1 (en) 2018-01-25
KR101726047B1 (en) 2017-04-27
KR20160144543A (en) 2016-12-19
CA2987567A1 (en) 2016-12-15
JP6574495B2 (en) 2019-09-11
JP2018517112A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
WO2016199977A1 (en) Combustor
KR101331215B1 (en) An ultra-high temperature incinerator using cyclone-pattern air flow
WO2014077574A1 (en) Device for centrifugal combustion by area using flow of combustion air
WO2021182922A1 (en) Firewood for camping
WO2012053713A1 (en) Combustion device having pre-heating device for supplied air and structure for waste gas circulation
WO2013025022A2 (en) Combustion device enabled with separation of heat exchanger
WO2011071222A1 (en) Incinerating device
WO2013147543A1 (en) Integrated combustion boiler apparatus for pyrolyzing and gasifying solid fuel products
WO2014182100A1 (en) Multipurpose centrifugal dust collector
RU2286512C2 (en) Heat-recovery boiler furnace and secondary-air supply unit
WO2015108370A1 (en) Cooling screw, and cooling method for cooling screw using same
KR101767785B1 (en) Combustor
WO2017010598A1 (en) Combustor
WO2016190510A1 (en) Combustor liners with rotatable air guiding caps
WO2020067747A1 (en) Internally recirculating pressurized oxy-fuel combustor
WO2015093702A1 (en) Pure oxygen direct combustion system using liquid metal
WO2018101530A1 (en) Facility for manufacturing sintered ores
WO2014112725A1 (en) High-temperature fgr ultra-low nox combustor using coanda effect
WO2021112570A1 (en) Gas furnace
WO2019168211A1 (en) Flow rate control unit and control method for controlling solid flow between fluidized bed furnace and cyclone, and circulating fluidized bed boiler including flow rate control unit and operating method therefor
WO2018111047A1 (en) Off-gas mixture supply unit and coke oven comprising same
WO2012020908A2 (en) Latent heat exchanger having pre-heating device for supplied air
CN101806453B (en) Vertical air-cooled pulverized coal burner capable of realizing continuous slag tapping
WO2012144766A2 (en) Cooling device of combustion chamber and combustion device having cooling structure of combustion chamber
CN110793037B (en) Flue gas diversion secondary combustion chamber structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2987567

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15578611

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017563340

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12017502227

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015895045

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015398367

Country of ref document: AU

Date of ref document: 20150730

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017025992

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017025992

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171201