WO2020067747A1 - Internally recirculating pressurized oxy-fuel combustor - Google Patents

Internally recirculating pressurized oxy-fuel combustor Download PDF

Info

Publication number
WO2020067747A1
WO2020067747A1 PCT/KR2019/012556 KR2019012556W WO2020067747A1 WO 2020067747 A1 WO2020067747 A1 WO 2020067747A1 KR 2019012556 W KR2019012556 W KR 2019012556W WO 2020067747 A1 WO2020067747 A1 WO 2020067747A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
burner
exhaust gas
space
ceramic ball
Prior art date
Application number
PCT/KR2019/012556
Other languages
French (fr)
Korean (ko)
Inventor
이영재
김동희
안형준
이은도
양원
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2020067747A1 publication Critical patent/WO2020067747A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/002Supplying water
    • F23L7/005Evaporated water; Steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a pressurized pure oxygen combustor, and more particularly, to a pressurized pure oxygen combustor with improved efficiency.
  • combustion flue gas from a thermal power plant or a thermal power plant that uses heat for fuel combustion contains about 12 to 17% carbon dioxide, 76 to 78% nitrogen, 4 to 5% oxygen, and other trace amounts of moisture. SO x and NO x compounds. Among them, carbon dioxide is a major cause of global warming, so reducing its emissions has become an international concern.
  • the pure oxygen combustor has an advantage of reducing energy by using oxygen instead of air as an oxidizing agent, while reducing SO x and NO x compounds and generating high concentrations of CO 2 , thereby reducing CO 2 recovery costs.
  • the present invention has been made to solve the problems of the prior art described above and has an object to provide an internal recirculating pressurized oxygen generator.
  • the internal recirculating pressurized oxygen generator for achieving the above object, the outer wall; An inner wall installed inside the outer wall to divide the inner space; A burner installed at a lower portion of the outer wall and located at an inner center of the inner wall to burn fuel and oxidant; An exhaust unit installed at a lower portion of the outer wall, located inside the inner wall, and disposed at the periphery of the burner to discharge exhaust gas to the outside; A heat-transferring medium used as a solid heat-spherical material located between the outer wall and the inner wall to accumulate heat energy of exhaust gas for heat exchange; And a pipe installed between the outer wall and the inner wall to produce steam through heat exchange, wherein the inner wall is open at the top and a through hole through which gas can pass is formed at the bottom, and exhaust generated by combustion of the burner Gas moves upward from the inside of the inner wall, descends along the space between the outer wall and the inner wall, then moves to the inside of the inner wall, and some of the exhaust gas moved to the inside of the inner wall is discharged through the
  • the pressure (P1) at the top of the inner space of the inner wall, the pressure (P2) at the top of the inner space of the outer wall, the pressure (P3) at the bottom of the inner space of the outer wall, and the pressure (P4) at the bottom of the inner space of the inner wall It is preferred that) is a relationship of P1> P2> P3> P4.
  • the inner wall is a material for high temperature of 1300 ° C or higher.
  • the heat transfer medium is a ceramic ball, and further includes an adjustment means capable of adjusting the amount of the ceramic ball located between the outer wall and the inner wall.
  • Adjustment means is connected to the lower side of the outer wall to adjust the amount of the ceramic ball stored in the control space by moving the ceramic ball while moving up and down inside the control space and the control space for storing the ceramic ball It is good to include a regulator.
  • the height adjuster can move up and down inside the adjustment space through a threaded structure.
  • It may further include a device for applying vibration or shock from the outside to facilitate the movement of the ceramic ball.
  • a packing for maintaining pressure is installed at the bottom of the adjustment space.
  • the piping is arranged such that the heat exchange medium therein repeatedly rotates and descends while rotating the inside, so that the piping in the vertical direction is long, so as not to interfere with the movement of the ceramic balls.
  • the present invention configured as described above, by performing preheating in a manner that a portion of the exhaust gas is recirculated inside without using a separate external circulation device or an additional burner, can greatly increase the efficiency of the combustor with a relatively simple configuration. It has an effect.
  • the amount of heat transfer medium is excessively large, thereby preventing the problem of inhibiting heat exchange efficiency.
  • FIG. 1 is a front cross-sectional view showing the structure of an internal recirculating pressurized pure oxygen combustor according to an embodiment of the present invention.
  • FIG. 2 is a view showing a state in which the exhaust gas circulates in the internal recirculation pressurized pure oxygen combustor according to an embodiment of the present invention.
  • FIG 3 is a view showing a state of controlling the amount of the ceramic ball used in the internal recirculating pressurized oxygen generator according to an embodiment of the present invention.
  • FIGS. 4 to 6 are diagrams for explaining the structure of a pipe for generating steam in the internal recirculating pressurized oxygen generator according to an embodiment of the present invention.
  • 7 and 8 are the results of measuring the temperature according to the pressure in the process of operating the internal recirculating pressurized oxygen oxygen burner of the present invention.
  • FIG. 1 is a front cross-sectional view showing the structure of an internal recirculating pressurized pure oxygen combustor according to an embodiment of the present invention.
  • outer wall 100, burner 200, exhaust 300, inner wall 400, ceramic ball 500, control space 600, vibrator 700 and piping (Not shown in FIG. 1).
  • the outer wall 100 is a wall constituting the outer surface of the combustor, the flat end surface is circular, and combustion, heat exchange, and steam generation are performed therein.
  • the burner 200 is configured to form the flame 220 by combustion, and the input pipe 210 into which fuel and oxidant oxygen are introduced is connected.
  • the exhaust part 300 is a part in which exhaust gas generated by combustion of the burner 200 is discharged to the outside of the combustor.
  • both the burner 200 and the exhaust part 300 are located at the lower part of the outer wall 100, the burner 200 is located at the center of the lower part of the outer wall 100, and the exhaust part 300 is the burner ( 200). Since the high-temperature exhaust gas generated from the combustion of the burner 200 moves upward, it is not immediately discharged to the exhaust part 300 but circulates inside the combustor, and the exhaust gas rising from the center of the combustor is a side surface of the outer wall 100 After being descended by riding, it is discharged to the exhaust unit 300. Furthermore, the burner 200 and the exhaust unit 300 are located inside the inner wall 400 to be described later, and the movement of the exhaust gas according to this is described in detail later.
  • the inner wall 400 is formed in the interior of the combustor to divide the space, and the flat cross-section is circular.
  • the inner wall 400 is open at the top, the middle portion 420 is composed of a wall, and the bottom 410 is formed with a through hole to allow exhaust gas to move.
  • the upper part 430 of the inner wall 400 constitutes a streamlined bottleneck having a diameter of a flat cross-section, thereby inducing a pressure distribution according to the position inside the combustor and configuring the flow of exhaust gas to be smooth.
  • the lower portion 410 may be constructed by punching the wall or attaching a mesh.
  • the inner wall 400 is located close to the burner and the hottest initial exhaust gas is generated and moved, it is preferable to use a material for high temperature of 1300 ° C or higher.
  • the ceramic ball 500 functions as a heat storage medium for storing heat for a long time under the heat of exhaust gas and a heat transfer medium for transferring heat to water for steam generation.
  • the ceramic ball 500 is located in the space between the outer wall 100 and the inner wall 400, and does not affect the combustion of the burner 200.
  • the adjustment space 600 is a space located under the outer wall 100 and is configured to store the ceramic ball 500 according to the position of the height adjuster 610.
  • the height adjuster 610 is lowered to store the ceramic ball 500 in the adjustment space 600, the amount of the ceramic ball 500 positioned between the outer wall 100 and the inner wall 400 is reduced. Through this, even when the flame combusted in the burner 200 is small, even when the thermal energy generated is small, it is possible to prevent the energy from being lost by excessively many ceramic balls 500.
  • the vibrator 700 is configured to transmit vibration or shock from the outer wall 100 to the inside, so that the movement can be smoothly performed when the ceramic ball 500 is moved.
  • water for generating steam is circulated therein, is located in the space between the outer wall 100 and the inner wall 400, and is arranged to contact the ceramic ball 500.
  • the specific form of the piping will be described in detail later.
  • FIG. 2 is a view showing a state in which the exhaust gas circulates in the internal recirculation pressurized pure oxygen combustor according to an embodiment of the present invention.
  • the exhaust gas generated by the flame 220 of the burner 200 moves upward, and moves upward while being trapped inside the inner wall 400.
  • the exhaust gas passing through the bottleneck portion of the upper portion 430 of the inner wall 400 and reaching the ceiling of the outer wall 100 descends along the side surface of the outer wall 100. At this time, the exhaust gas descends only through the space between the inner wall 400 and the outer wall 100, and transfers heat to the ceramic balls and pipes located between the inner wall 400 and the outer wall 100.
  • the exhaust gas descending along the side surface of the outer wall 100 moves to the inside of the inner wall 400 through the lower portion 410 of the inner wall 400, and at this time, some are discharged through the exhaust portion 300 formed downward and some are It rises again along the burner 200 and the flame 220.
  • a preheating region for preheating fuel and oxidant injected into the burner 200 in a portion indicated by a dotted line is formed.
  • P1 which is the inner space of the inner wall 400
  • P2 which is the inner space of the outer wall 100
  • P3 which is the inner space lower portion of the outer wall 100, and P3, and the inner wall 400
  • the pressure of P1 is the highest and the internal pressure should be gradually lowered in the order of P2, P3, and P4.
  • the bottleneck section is formed on the upper portion 430 of the inner wall 400 to increase the pressure of P1.
  • the pressure of P4 is made to be the lowest, so that the pressure from P2 to P4 is gradually lowered.
  • the internal recirculating pressurized oxygen oxygen burner according to the embodiment of the present invention does not exhaust all of the exhaust gas and is partially recirculated inside, and the fuel input to the combustor without using a separate external circulation facility or an additional preheating burner.
  • the efficiency can be increased by preheating the oxidizing agent.
  • FIG 3 is a view showing a state of controlling the amount of the ceramic ball used in the internal recirculating pressurized oxygen generator according to an embodiment of the present invention.
  • the internal recirculating pressurized oxygen generator of this embodiment may move the height regulator 610 downward to store the ceramic ball 500 in the regulation space 600. Due to this operation, the amount of the ceramic balls 500 existing between the outer wall 100 and the inner wall 400 is reduced, and it is possible to prevent a problem of heat loss caused by excessive heat transfer between the ceramic balls 500. .
  • the vibration of the ceramic ball 500 by the vibrator 700 is applied to the vibration or impact to be smooth.
  • the height adjuster 610 is configured to be rotatable along the thread so that the movement of the ceramic ball 500 can be performed naturally.
  • the packing portion 620 for maintaining the pressure under the control space 600, so as not to affect the internal pressure of the combustor.
  • FIGS. 4 to 6 are diagrams for explaining the structure of a pipe for generating steam in the internal recirculating pressurized oxygen generator according to an embodiment of the present invention.
  • Fig. 4 is a front sectional view for explaining the arrangement of the pipe
  • Fig. 5 is a flat sectional view seen from the direction AA '
  • Fig. 6 is a view for explaining the arrangement of the pipe.
  • Pipes 800 and 900 for generating steam through heat exchange are installed in the space between the outer wall 100 and the inner wall 400, and the shape of the pipe is not particularly limited and various shapes can be applied.
  • the ceramic ball 500 since the ceramic ball 500 is positioned in the space between the outer wall 100 and the inner wall 400, and the ceramic ball 500 is moved to control the amount of the ceramic ball 500, it includes a moving configuration.
  • the piping (800, 900) was configured so as not to interfere with the movement of the ceramic ball (500).
  • two of the outer pipe 800 and the inner pipe 900 are arranged to increase efficiency.
  • Each pipe (800, 900) is configured to have a long reciprocating structure in the vertical direction to minimize the interference of the pipe when the ceramic ball 500 moves up and down.
  • the piping was configured such that the injected heat transfer medium was repeatedly rotated and raised while rotating the inside of the outer wall 100 once, thereby increasing the length of heat transfer and not disturbing the movement of the ceramic ball 500.
  • the heat transfer area was maximized by minimizing the spacing of.
  • the piping 800 shown in FIG. 6 is wound and arranged between the outer wall 100 and the inner wall 400, and the portion indicated by the dotted line is located between the outer wall 100 and the inner wall 400, so that the injection part ( 810) the water injected into the outer wall 100 and the inner wall 400 is moved up and down along the pipe 800 located between the ceramic ball 500 and the exhaust gas of the surrounding heat to the steam and then exhausted 820.
  • 7 and 8 are the results of measuring the temperature according to the pressure in the process of operating the internal recirculating pressurized oxygen oxygen burner of the present invention.
  • FIG. 7 uses a fuel mixture of 97% CO and 3% H 2
  • FIG. 8 uses a fuel mixture of 70% CO and 30% H 2 , by changing the pressure from 0 bar to 10 bar. The temperature was measured while driving.
  • T avg is the average value of the temperatures measured at various parts inside the combustor, and the ranges of the highest and lowest temperatures among the temperatures measured at various parts are indicated at the top of each result.
  • the temperature inside the combustor decreases as a whole, and the difference between the maximum temperature and the minimum temperature also decreases. From these results, it can be seen that applying the internal recirculating pressurized oxygen burner of the present invention has the effect of reducing the internal temperature gradient.
  • the result indicated by ⁇ T cw is the result of measuring the temperature difference at the inlet and outlet of water used for steam production in the internal recirculating pressurized oxygen generator.
  • the internal recirculating pressurized oxygen generator of the present invention can maintain the steam production efficiency even when the temperature inside the combustor decreases because the operating pressure is high because the heat transfer efficiency is high.
  • the internal recirculating pressurized oxygen-fired combustor of the present invention when applied, it can be confirmed that NO included in exhaust gas decreases as the operating pressure increases.
  • NO 2 is generated according to an increase in pressure, it can be seen that the ratio of nitrogen oxides contained in the exhaust gas is preferably adjusted in consideration of the easier treatment of NO 2 in treating nitrogen oxides.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

The present invention relates to an internally recirculating pressurized oxy-fuel combustor, comprising: an outer wall; an inner wall which is provided inside the outer wall and defines an inner space; a burner which is provided at the lower part of the outer wall and positioned at the inner center of the inner wall and burns fuel and an oxidant; exhaust units which are provided at the lower part of the outer wall and positioned inside the inner wall and in the vicinity of the burner and discharge exhaust gas to the outside; heat transfer media which are solid spherical substances located between the outer wall and the inner wall and store the heat energy of exhaust gas and use same for heat exchange; and pipes which are provided between the outer wall and the inner wall and produce steam by means of heat exchange, wherein the inner wall has an open top and a through-hole, which is at the bottom thereof and via which gases can pass through, so that the exhaust gas generated by the combustion of the burner moves upwards inside the inner wall, then moves down along the space between the outer wall and the inner wall, and then moves to the inside of the inner wall, some of the exhaust gas that has moved to the inside of the inner wall is discharged via the exhaust units, the remainder of same recirculates the inside, and the fuel and oxidant injected into the burner are preheated by means of the recirculating exhaust gas.

Description

내부 재순환 가압순산소 연소기Internal recirculating pressurized oxygen generator
본 발명은 가압순산소 연소기에 관한 것으로, 더욱 자세하게는 효율이 향상된 가압순산소 연소기에 관한 것이다.The present invention relates to a pressurized pure oxygen combustor, and more particularly, to a pressurized pure oxygen combustor with improved efficiency.
일반적으로 연료 연소 시의 열을 사용하는 화력발전소 또는 기력발전소로부터 나오는 연소 배가스는 부피 기준 약 12~17%의 이산화탄소와 76~78%의 질소, 그리고 4~5%의 산소와 그밖에 미량의 수분과 SOx, NOx 화합물을 포함하고 있다. 그 중에서 특히 이산화탄소는 지구 온난화의 주요 원인으로 지목되고 있으므로 이의 배출을 줄이는 것이 국제적인 관심사가 된 상황이다.In general, combustion flue gas from a thermal power plant or a thermal power plant that uses heat for fuel combustion contains about 12 to 17% carbon dioxide, 76 to 78% nitrogen, 4 to 5% oxygen, and other trace amounts of moisture. SO x and NO x compounds. Among them, carbon dioxide is a major cause of global warming, so reducing its emissions has become an international concern.
순산소 연소기는 산화제로서 공기대신 산소를 사용함으로써 에너지 절감 효과를 얻는 동시에, SOx 및 NOx 화합물이 감소하고 고농도의 CO2가 발생되어 CO2 회수비용을 줄일 수 있는 장점이 있다.The pure oxygen combustor has an advantage of reducing energy by using oxygen instead of air as an oxidizing agent, while reducing SO x and NO x compounds and generating high concentrations of CO 2 , thereby reducing CO 2 recovery costs.
순산소 연소기를 사용하는 과정에서 효율을 높이기 위한 방법으로서 배기가스의 폐열을 회수하여 예열을 수행하는 방법이 적용되고 있는데, 배기가스를 외부에서 순환하여 예열을 수행하고 예열을 위한 별도의 버너를 사용하는 점에서 장비가 복잡하고 제작비용이 높아지는 단점이 있다.(대한민국 등록특허 10-1360515)As a method to increase efficiency in the process of using a pure oxygen combustor, a method of recovering waste heat of exhaust gas and performing preheating has been applied. Circulating the exhaust gas from outside to perform preheating and using a separate burner for preheating The disadvantage is that the equipment is complicated and the production cost is high. (Republic of Korea Patent Registration 10-1360515)
또한 열교환 과정에서의 성능을 높이기 위하여 축열매체로서 세라믹 볼(또는 비드)을 사용하는 경우가 많지만, 연소 불꽃의 크기가 작은 경우에는 상대적으로 과도한 세라믹 볼이 효율을 떨어뜨리는 문제가 있다. 이를 위하여 연소량의 차이에 따라서 열교환을 수행하는 배관의 사용범위를 조절하는 기술이 개발되었으나, 과도한 세라믹 볼에 의해서 열 손실을 보는 문제를 해결하지는 못하는 실정이다.(대한민국 등록특허 10-0650602)In addition, ceramic balls (or beads) are often used as a heat storage medium to improve performance in the heat exchange process, but when the size of the combustion flame is small, there is a problem that relatively excessive ceramic balls degrade efficiency. To this end, a technique has been developed to control the range of use of a pipe that performs heat exchange according to the difference in the amount of combustion, but it does not solve the problem of heat loss due to excessive ceramic balls. (Republic of Korea Patent Registration 10-0650602)
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서 내부 재순환 가압순산소 연소기를 제공하는데 그 목적이 있다.The present invention has been made to solve the problems of the prior art described above and has an object to provide an internal recirculating pressurized oxygen generator.
상기 목적을 달성하기 위한 본 발명에 의한 내부 재순환 가압순산소 연소기는, 외벽; 상기 외벽의 내부에 설치되어, 내부 공간을 구분하는 내벽; 상기 외벽의 하부에 설치되고, 상기 내벽의 내측 중심에 위치하며 연료와 산화제를 연소시키는 버너; 상기 외벽의 하부에 설치되고, 상기 내벽의 내측에 위치하며, 상기 버너의 주변에 위치하여 배기가스를 외부로 배출하는 배기부; 상기 외벽과 상기 내벽의 사이에 위치하는 고형상태 구형의 물질로서, 배기가스의 열에너지를 축열하여 열교환에 이용하는 열전달 매체; 및 상기 외벽과 상기 내벽의 사이에 설치되며 열교환을 통해서 스팀을 생산하는 배관을 포함하며, 상기 내벽은 위쪽이 개방되고 아래쪽에는 기체가 지날 수 있는 관통공이 형성되어, 상기 버너의 연소에 의해서 발생한 배기가스가 상기 내벽의 내측에서 위쪽으로 이동하고 외벽과 내벽 사이의 공간을 따라서 하강한 뒤에 내벽의 내측으로 이동하며, 내벽의 내측으로 이동한 배기가스 중에 일부는 배기부를 통해서 배출되고 나머지는 내부를 재순환하며, 재순환되는 배기가스에 의해서 버너에 주입되는 연료와 산화제를 예열시키는 것을 특징으로 한다.The internal recirculating pressurized oxygen generator according to the present invention for achieving the above object, the outer wall; An inner wall installed inside the outer wall to divide the inner space; A burner installed at a lower portion of the outer wall and located at an inner center of the inner wall to burn fuel and oxidant; An exhaust unit installed at a lower portion of the outer wall, located inside the inner wall, and disposed at the periphery of the burner to discharge exhaust gas to the outside; A heat-transferring medium used as a solid heat-spherical material located between the outer wall and the inner wall to accumulate heat energy of exhaust gas for heat exchange; And a pipe installed between the outer wall and the inner wall to produce steam through heat exchange, wherein the inner wall is open at the top and a through hole through which gas can pass is formed at the bottom, and exhaust generated by combustion of the burner Gas moves upward from the inside of the inner wall, descends along the space between the outer wall and the inner wall, then moves to the inside of the inner wall, and some of the exhaust gas moved to the inside of the inner wall is discharged through the exhaust portion and the rest is recirculated inside And, it is characterized by preheating the fuel and oxidant injected into the burner by the recirculated exhaust gas.
상기 내벽의 내측 공간 상부에서의 압력(P1), 상기 외벽의 내측 공간 상부에서의 압력(P2), 상기 외벽의 내측 공간 하부에서의 압력(P3) 및 상기 내벽의 내측 공간 하부에서의 압력(P4)이 P1>P2>P3>P4의 관계인 것이 바람직하다.The pressure (P1) at the top of the inner space of the inner wall, the pressure (P2) at the top of the inner space of the outer wall, the pressure (P3) at the bottom of the inner space of the outer wall, and the pressure (P4) at the bottom of the inner space of the inner wall It is preferred that) is a relationship of P1> P2> P3> P4.
상기 내벽의 상부에 배기가스가 지나는 공간이 좁아지는 병목 구조를 형성한 것이 바람직하다.It is preferable to form a bottleneck structure in which the space through which the exhaust gas passes is narrowed on the upper portion of the inner wall.
상기 내벽이 1300℃ 이상의 고온용 소재인 것이 바람직하다.It is preferable that the inner wall is a material for high temperature of 1300 ° C or higher.
상기 열전달 매체가 세라믹 볼이고, 상기 외벽과 상기 내벽의 사이에 위치하는 세라믹 볼의 양을 조절할 수 있는 조절수단을 더 포함하는 것이 바람직하다.It is preferable that the heat transfer medium is a ceramic ball, and further includes an adjustment means capable of adjusting the amount of the ceramic ball located between the outer wall and the inner wall.
조절수단이, 상기 외벽의 아래쪽에 연결되어 상기 세라믹 볼을 보관할 수 있는 조절공간 및 상기 조절공간 내부에서 상하로 이동하면서 세라믹 볼을 이동시킴으로써 상기 조절공간에 보관되는 세라믹 볼의 양을 조절할 수 있는 높이조절기를 포함하는 것이 좋다.Adjustment means is connected to the lower side of the outer wall to adjust the amount of the ceramic ball stored in the control space by moving the ceramic ball while moving up and down inside the control space and the control space for storing the ceramic ball It is good to include a regulator.
이때, 높이조절기는 나사산 구조를 통해서 상기 조절공간 내부에서 상하로 움직일 수 있는 것이 좋다.At this time, it is preferable that the height adjuster can move up and down inside the adjustment space through a threaded structure.
세라믹 볼의 이동이 용이하도록 외부에서 진동이나 충격을 가하는 장치를 더 포함할 수 있다.It may further include a device for applying vibration or shock from the outside to facilitate the movement of the ceramic ball.
조절공간의 하부에 압력유지를 위한 패킹이 설치된 것이 바람직하다.It is preferable that a packing for maintaining pressure is installed at the bottom of the adjustment space.
배관은 내부의 열교환 매체가 내부를 한 바퀴 회전하는 동안 상승과 하강을 반복하도록 배치하여, 수직방향의 배관을 길게 구성함으로써, 세라믹 볼의 이동을 방해하지 않도록 한 것이 바람직하다. It is preferable that the piping is arranged such that the heat exchange medium therein repeatedly rotates and descends while rotating the inside, so that the piping in the vertical direction is long, so as not to interfere with the movement of the ceramic balls.
상술한 바와 같이 구성된 본 발명은, 별도의 외부 순환 장치나 추가 버너를 사용하지 않고 배기가스의 일부가 내부에서 재순환되도록 하는 방법으로 예열을 수행함으로써, 상대적으로 간단한 구성으로 연소기의 효율을 크게 높일 수 있는 효과가 있다.The present invention configured as described above, by performing preheating in a manner that a portion of the exhaust gas is recirculated inside without using a separate external circulation device or an additional burner, can greatly increase the efficiency of the combustor with a relatively simple configuration. It has an effect.
또한, 내부 순환을 위하여 설치된 내벽과 외벽의 사이에 열전달 매체를 위치시켜 사용함으로써, 열교환 효율이 크게 향상되는 뛰어난 효과가 있다.In addition, by using a heat transfer medium positioned between the inner wall and the outer wall installed for internal circulation, there is an excellent effect that the heat exchange efficiency is greatly improved.
나아가 내벽과 외벽의 사이에 위치하는 열전달 매체의 양을 조절하는 수단을 구비함으로써, 열전달 매체의 양이 과도하게 많아서 열교환 효율을 저해하는 문제를 방지할 수 있는 효과가 있다.Furthermore, by providing a means for adjusting the amount of heat transfer medium located between the inner and outer walls, the amount of heat transfer medium is excessively large, thereby preventing the problem of inhibiting heat exchange efficiency.
최종적으로 연소기 내부의 온도 구배를 최소화하여 열전달 효율이 증가되고, 배가스에 처리가 용이한 성분의 비율이 높아지기 때문에, 고가 소재 및 부대 설비를 최소화할 수 있는 뛰어난 효과가 있다.Finally, since the temperature gradient inside the combustor is minimized, the heat transfer efficiency is increased, and the ratio of easily treatable components to the flue gas is increased, so there is an excellent effect of minimizing expensive materials and auxiliary equipment.
도 1은 본 발명의 실시예에 따른 내부 재순환 가압순산소 연소기의 구조를 도시한 정단면도이다.1 is a front cross-sectional view showing the structure of an internal recirculating pressurized pure oxygen combustor according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 내부 재순환 가압순산소 연소기의 내부에서 배기가스가 순환하는 모습을 도시한 도면이다.2 is a view showing a state in which the exhaust gas circulates in the internal recirculation pressurized pure oxygen combustor according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 내부 재순환 가압순산소 연소기에서 세라믹 볼의 사용량을 조절하는 모습을 도시한 도면이다.3 is a view showing a state of controlling the amount of the ceramic ball used in the internal recirculating pressurized oxygen generator according to an embodiment of the present invention.
도 4 내지 도 6은 본 발명의 실시예에 따른 내부 재순환 가압순산소 연소기에서 스팀 생성을 위한 배관의 구조를 설명하기 위한 도면이다.4 to 6 are diagrams for explaining the structure of a pipe for generating steam in the internal recirculating pressurized oxygen generator according to an embodiment of the present invention.
도 7과 도 8은 본 발명의 내부 재순환 가압순산소 연소기를 운전하는 과정에서 압력에 따른 온도를 측정한 결과이다.7 and 8 are the results of measuring the temperature according to the pressure in the process of operating the internal recirculating pressurized oxygen oxygen burner of the present invention.
도 9는 본 발명의 내부 재순환 가압순산소 연소기의 운전 압력에 따라서 발생된 배기가스에 포함된 질소산화물의 양을 측정한 결과이다.9 is a result of measuring the amount of nitrogen oxides contained in the exhaust gas generated according to the operating pressure of the internal recirculating pressurized oxygen generator of the present invention.
첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. An embodiment according to the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 내부 재순환 가압순산소 연소기의 구조를 도시한 정단면도이다.1 is a front cross-sectional view showing the structure of an internal recirculating pressurized pure oxygen combustor according to an embodiment of the present invention.
본 실시예의 내부 재순환 가압순산소 연소기는, 외벽(100), 버너(200), 배기부(300), 내벽(400), 세라믹 볼(500), 조절공간(600), 진동기(700) 및 배관(도 1에는 미도시)을 포함하여 구성된다.Internal recirculating pressurized oxygen burner in this embodiment, outer wall 100, burner 200, exhaust 300, inner wall 400, ceramic ball 500, control space 600, vibrator 700 and piping (Not shown in FIG. 1).
외벽(100)은 연소기의 외부면을 구성하는 벽체이며, 평단면이 원형이고, 그 내부에서 연소와 열교환 및 스팀 생성이 이루어진다.The outer wall 100 is a wall constituting the outer surface of the combustor, the flat end surface is circular, and combustion, heat exchange, and steam generation are performed therein.
버너(200)는 연소에 의해서 불꽃(220)을 형성하는 구성으로서, 연료와 산화제인 산소가 투입되는 투입관(210)이 연결된다.The burner 200 is configured to form the flame 220 by combustion, and the input pipe 210 into which fuel and oxidant oxygen are introduced is connected.
배기부(300)는 버너(200)의 연소에 의해서 발생한 배기가스가 연소기의 외부로 배출되는 부분이다.The exhaust part 300 is a part in which exhaust gas generated by combustion of the burner 200 is discharged to the outside of the combustor.
본 실시예의 연소기는 버너(200)와 배기부(300)가 모두 외벽(100)의 하부에 위치하며, 버너(200)가 외벽(100) 하부의 중심에 위치하고, 배기부(300)가 버너(200)의 주변을 감싸도록 배치된다. 버너(200)의 연소에서 발생된 고온의 배기가스는 위쪽으로 이동하기 때문에 곧바로 배기부(300)로 배출되지 못하고 연소기의 내부를 순환하며, 연소기의 중심부에서 상승한 배기가스는 외벽(100)의 측면을 타고 하강한 뒤에 배기부(300)로 배출된다. 나아가 버너(200)와 배기부(300)는 이후에 설명할 내벽(400)의 안쪽에 위치하며, 이에 따른 배기가스의 이동은 추후에 구체적으로 설명한다.In the combustor of this embodiment, both the burner 200 and the exhaust part 300 are located at the lower part of the outer wall 100, the burner 200 is located at the center of the lower part of the outer wall 100, and the exhaust part 300 is the burner ( 200). Since the high-temperature exhaust gas generated from the combustion of the burner 200 moves upward, it is not immediately discharged to the exhaust part 300 but circulates inside the combustor, and the exhaust gas rising from the center of the combustor is a side surface of the outer wall 100 After being descended by riding, it is discharged to the exhaust unit 300. Furthermore, the burner 200 and the exhaust unit 300 are located inside the inner wall 400 to be described later, and the movement of the exhaust gas according to this is described in detail later.
내벽(400)은 연소기의 내부에 형성되어 공간을 구분하기 위한 구성으로서, 평단면이 원형이다. 내벽(400)은 위쪽이 개방되어 있고, 중간부(420)는 벽체로 구성되며, 하부(410)는 배기가스가 이동할 수 있도록 관통공이 형성된다. 이때, 내벽(400)의 상부(430)는 평단면인 원의 지름이 작아지는 형태의 유선형 병목을 구성함으로써 연소기 내부의 위치에 따른 압력분포를 유도하고 배기가스의 흐름이 원활하도록 구성한다. 하부(410)는 벽체에 타공하여 구성될 수도 있고 메쉬를 부착할 수도 있다. The inner wall 400 is formed in the interior of the combustor to divide the space, and the flat cross-section is circular. The inner wall 400 is open at the top, the middle portion 420 is composed of a wall, and the bottom 410 is formed with a through hole to allow exhaust gas to move. At this time, the upper part 430 of the inner wall 400 constitutes a streamlined bottleneck having a diameter of a flat cross-section, thereby inducing a pressure distribution according to the position inside the combustor and configuring the flow of exhaust gas to be smooth. The lower portion 410 may be constructed by punching the wall or attaching a mesh.
내벽(400)은 버너에 가깝게 위치하고 가장 뜨거운 초기 배기가스가 생성되어 이동하는 부분이므로 1300℃ 이상의 고온용 소재를 사용하는 것이 바람직하다.Since the inner wall 400 is located close to the burner and the hottest initial exhaust gas is generated and moved, it is preferable to use a material for high temperature of 1300 ° C or higher.
세라믹 볼(500)은 배기가스의 열을 받아서 장시간 보관하기 위한 축열 기능과 스팀 생성을 위한 물에 열을 전달하기 위한 열전달 매체로서 기능한다. 세라믹 볼(500)은 외벽(100)과 내벽(400)의 사이 공간에 위치하여, 버너(200)의 연소에 영향을 미치지 않는다. The ceramic ball 500 functions as a heat storage medium for storing heat for a long time under the heat of exhaust gas and a heat transfer medium for transferring heat to water for steam generation. The ceramic ball 500 is located in the space between the outer wall 100 and the inner wall 400, and does not affect the combustion of the burner 200.
조절공간(600)은 외벽(100)의 하부에 위치하는 공간으로서, 높이조절기(610)의 위치에 따라서 세라믹 볼(500)을 보관할 수 있도록 구성된다. 높이조절기(610)를 낮춰서 조절공간(600)에 세라믹 볼(500)을 보관시키면, 외벽(100)과 내벽(400)의 사이에 위치하는 세라믹 볼(500)의 양이 감소한다. 이를 통해서, 버너(200)에서 연소되는 불꽃이 작아서 발생되는 열에너지가 적은 경우에도 과도하게 많은 세라믹 볼(500)에 의해서 에너지가 손실되는 것을 방지할 수 있다.The adjustment space 600 is a space located under the outer wall 100 and is configured to store the ceramic ball 500 according to the position of the height adjuster 610. When the height adjuster 610 is lowered to store the ceramic ball 500 in the adjustment space 600, the amount of the ceramic ball 500 positioned between the outer wall 100 and the inner wall 400 is reduced. Through this, even when the flame combusted in the burner 200 is small, even when the thermal energy generated is small, it is possible to prevent the energy from being lost by excessively many ceramic balls 500.
진동기(700)는 외벽(100)에서 내측으로 진동이나 충격을 전달하기 위한 구성으로서, 세라믹 볼(500)을 움직일 때에 움직임이 원활하게 수행될 수 있도록 한다.The vibrator 700 is configured to transmit vibration or shock from the outer wall 100 to the inside, so that the movement can be smoothly performed when the ceramic ball 500 is moved.
배관(도 1에서 미도시)은 내부에 스팀을 생성하기 위한 물이 순환되며, 외벽(100)과 내벽(400)의 사이 공간에 위치하고, 세라믹 볼(500)과 접촉하도록 배치된다. 배관의 구체적인 형태는 추후에 자세하게 설명한다.In the pipe (not shown in FIG. 1), water for generating steam is circulated therein, is located in the space between the outer wall 100 and the inner wall 400, and is arranged to contact the ceramic ball 500. The specific form of the piping will be described in detail later.
이하에서는 본 발명의 실시예에 따른 내부 재순환 가압순산소 연소기의 구체적인 동작과 기능에 대해서 설명한다.Hereinafter, a specific operation and function of the internal recirculating pressurized oxygen oxygen burner according to an embodiment of the present invention will be described.
도 2는 본 발명의 실시예에 따른 내부 재순환 가압순산소 연소기의 내부에서 배기가스가 순환하는 모습을 도시한 도면이다.2 is a view showing a state in which the exhaust gas circulates in the internal recirculation pressurized pure oxygen combustor according to an embodiment of the present invention.
버너(200)의 불꽃(220)에 의해서 발생한 배기가스는 위쪽으로 이동하며, 이때 내벽(400)의 내측에 갇힌 상태에서 위쪽으로 이동한다. The exhaust gas generated by the flame 220 of the burner 200 moves upward, and moves upward while being trapped inside the inner wall 400.
내벽(400) 상부(430)의 병목 부분을 지나서 외벽(100)의 천정에 이른 배기가스는 외벽(100)의 측면을 따라서 하강한다. 이때 내벽(400)과 외벽(100)의 사이 공간을 통해서만 배기가스가 하강하며, 내벽(400)과 외벽(100) 사이에 위치하는 세라믹 볼과 배관에 열을 전달한다.The exhaust gas passing through the bottleneck portion of the upper portion 430 of the inner wall 400 and reaching the ceiling of the outer wall 100 descends along the side surface of the outer wall 100. At this time, the exhaust gas descends only through the space between the inner wall 400 and the outer wall 100, and transfers heat to the ceramic balls and pipes located between the inner wall 400 and the outer wall 100.
외벽(100)의 측면을 따라서 하강한 배기가스는 내벽(400) 하부(410)를 통해서 내벽(400)의 내측으로 이동하고, 이때 일부는 아래쪽으로 형성된 배기부(300)를 통해서 배출되고 일부는 버너(200) 및 불꽃(220)을 따라서 다시 상승한다. 이와 같은 배기가스의 분기가 발생하면서, 점선으로 표시된 부분에서 버너(200)로 주입되는 연료와 산화제를 예열시키는 예열영역이 형성된다.The exhaust gas descending along the side surface of the outer wall 100 moves to the inside of the inner wall 400 through the lower portion 410 of the inner wall 400, and at this time, some are discharged through the exhaust portion 300 formed downward and some are It rises again along the burner 200 and the flame 220. As the branching of the exhaust gas is generated, a preheating region for preheating fuel and oxidant injected into the burner 200 in a portion indicated by a dotted line is formed.
이러한 배기가스의 흐름 및 내부 재순환을 위해서는, 내벽(400)의 내측 공간 상부인 P1과 외벽(100)의 내측 공간 상부인 P2와 외벽(100)의 내측 공간 하부인 P3 및 내벽(400)의 내측 공간 하부인 P4에서의 압력 관계의 조절이 필요하다. 구체적으로 P1의 압력이 가장 높고 P2와 P3 및 P4의 순서로 내부 압력이 점차 낮아져야 하며, 본 실시예에서는 내벽(400) 상부(430)에 병목 구간을 형성하여 P1의 압력을 높였다. 또한, 내벽(400)의 내측 공간 하부에는 배기부(300)가 형성되어 배기가스의 일부가 배출되기 때문에 P4의 압력이 가장 낮아지도록 하여, P2에서 P4 까지 압력이 점점 낮아지도록 구성할 수 있었다.For the flow and internal recirculation of the exhaust gas, P1, which is the inner space of the inner wall 400, P2, which is the inner space of the outer wall 100, and P3, which is the inner space lower portion of the outer wall 100, and P3, and the inner wall 400, It is necessary to adjust the pressure relationship at the bottom of the space P4. Specifically, the pressure of P1 is the highest and the internal pressure should be gradually lowered in the order of P2, P3, and P4. In this embodiment, the bottleneck section is formed on the upper portion 430 of the inner wall 400 to increase the pressure of P1. In addition, since the exhaust portion 300 is formed in the lower portion of the inner space of the inner wall 400 to discharge a portion of the exhaust gas, the pressure of P4 is made to be the lowest, so that the pressure from P2 to P4 is gradually lowered.
결국 본 발명의 실시예에 따른 내부 재순환 가압순산소 연소기는, 배기가스가 전부 배출되지 않고 일부가 내부로 재순환되면서, 별도의 외부 순환 설비나 추가적인 예열용 버너를 사용하지 않고도 연소기로 투입되는 연료와 산화제를 예열하여 효율을 높일 수 있다.Eventually, the internal recirculating pressurized oxygen oxygen burner according to the embodiment of the present invention does not exhaust all of the exhaust gas and is partially recirculated inside, and the fuel input to the combustor without using a separate external circulation facility or an additional preheating burner. The efficiency can be increased by preheating the oxidizing agent.
도 3은 본 발명의 실시예에 따른 내부 재순환 가압순산소 연소기에서 세라믹 볼의 사용량을 조절하는 모습을 도시한 도면이다.3 is a view showing a state of controlling the amount of the ceramic ball used in the internal recirculating pressurized oxygen generator according to an embodiment of the present invention.
버너(200)의 불꽃(220)이 작아서 배기가스에 의해서 전달되는 열에너지가 적은 경우에, 세라믹 볼(500)의 양이 너무 많으면, 세라믹 볼(500) 사이의 열전달에 의해서 배관과의 열교환 효율이 낮아지는 문제가 발생한다.When the flame 220 of the burner 200 is small and the heat energy transmitted by the exhaust gas is small, if the amount of the ceramic ball 500 is too large, the heat exchange efficiency with the pipe is caused by heat transfer between the ceramic balls 500. The problem of lowering occurs.
도시된 것과 같이, 본 실시예의 내부 재순환 가압순산소 연소기는 높이조절기(610)를 아래쪽으로 이동하여 조절공간(600)에 세라믹 볼(500)을 보관할 수 있다. 이러한 동작으로 인하여 외벽(100)과 내벽(400) 사이에 존재하는 세라믹 볼(500)의 양이 감소하고, 세라믹 볼(500) 사이의 과도한 열전달에 의해서 열 손실이 발생하는 문제를 방지할 수 있다.As shown, the internal recirculating pressurized oxygen generator of this embodiment may move the height regulator 610 downward to store the ceramic ball 500 in the regulation space 600. Due to this operation, the amount of the ceramic balls 500 existing between the outer wall 100 and the inner wall 400 is reduced, and it is possible to prevent a problem of heat loss caused by excessive heat transfer between the ceramic balls 500. .
앞서 살펴 본 것과 같이, 진동기(700)가 진동이나 충격을 가함으로써 세라믹 볼(500)의 이동이 원활해지도록 한다. As described above, the vibration of the ceramic ball 500 by the vibrator 700 is applied to the vibration or impact to be smooth.
본 실시예에서는, 높이조절기(610)가 나사산을 따라서 회전이동할 수 있는 형태로 구성함으로써 세라믹 볼(500)의 이동이 자연스럽게 수행될 수 있도록 하였다. 또한, 조절공간(600)의 아래쪽에는 압력유지를 위한 패킹부(620)를 위치시킴으로써, 연소기 내부 압력에 영향을 미치지 않도록 하였다.In this embodiment, the height adjuster 610 is configured to be rotatable along the thread so that the movement of the ceramic ball 500 can be performed naturally. In addition, by placing the packing portion 620 for maintaining the pressure under the control space 600, so as not to affect the internal pressure of the combustor.
도 4 내지 도 6은 본 발명의 실시예에 따른 내부 재순환 가압순산소 연소기에서 스팀 생성을 위한 배관의 구조를 설명하기 위한 도면이다.4 to 6 are diagrams for explaining the structure of a pipe for generating steam in the internal recirculating pressurized oxygen generator according to an embodiment of the present invention.
도 4는 배관의 배치 형태를 설명하기 위한 정단면도이고, 도 5는 AA'방향에서 본 평단면이며, 도 6은 배관의 배치를 설명하기 위한 도면이다.Fig. 4 is a front sectional view for explaining the arrangement of the pipe, Fig. 5 is a flat sectional view seen from the direction AA ', and Fig. 6 is a view for explaining the arrangement of the pipe.
열교환을 통해서 스팀을 생성하기 위한 배관(800, 900)이 외벽(100)과 내벽(400)의 사이 공간에 설치되며, 배관의 형태는 특별히 제한되지 않고 다양한 형태가 모두 적용될 수 있다. Pipes 800 and 900 for generating steam through heat exchange are installed in the space between the outer wall 100 and the inner wall 400, and the shape of the pipe is not particularly limited and various shapes can be applied.
본 실시예에서는 외벽(100)과 내벽(400)의 사이 공간에 세라믹 볼(500)을 위치시키고, 이 세라믹 볼(500)의 양을 조절하기 위하여 세라믹 볼(500)이 움직이는 구성을 포함하기 때문에, 배관(800, 900)이 세라믹 볼(500)의 움직임을 방해하지 않도록 구성하였다. In this embodiment, since the ceramic ball 500 is positioned in the space between the outer wall 100 and the inner wall 400, and the ceramic ball 500 is moved to control the amount of the ceramic ball 500, it includes a moving configuration. , The piping (800, 900) was configured so as not to interfere with the movement of the ceramic ball (500).
본 실시예에서는 도 4에 도시된 것과 같이, 외측 배관(800)과 내측 배관(900)의 2개를 배치하여 효율을 높였다.In this embodiment, as shown in FIG. 4, two of the outer pipe 800 and the inner pipe 900 are arranged to increase efficiency.
각 배관(800, 900)은 수직한 방향으로 길게 왕복하는 구조로 구성하여 세라믹 볼(500)이 위아래로 움직일 때에 배관이 방해하는 것을 최소화하였다. 구체적으로 배관은 주입된 열전달 매체가 외벽(100) 내부를 한 바퀴 회전하는 동안 상승과 하강을 반복하도록 배치하여 열전달 길이를 늘이면서도 세라믹 볼(500)의 움직임을 방해하지 않도록 구성하였으며, 또한 배관 사이의 간격을 최소화하여 열전달 면적을 최대화하였다.Each pipe (800, 900) is configured to have a long reciprocating structure in the vertical direction to minimize the interference of the pipe when the ceramic ball 500 moves up and down. Specifically, the piping was configured such that the injected heat transfer medium was repeatedly rotated and raised while rotating the inside of the outer wall 100 once, thereby increasing the length of heat transfer and not disturbing the movement of the ceramic ball 500. The heat transfer area was maximized by minimizing the spacing of.
도 6에 풀어서 도시한 배관(800)이 외벽(100)과 내벽(400)의 사이에 감겨져 배치되며, 점선으로 표시된 부분이 외벽(100)과 내벽(400)의 사이에 위치하여, 주입부(810)로 주입된 물이 외벽(100)과 내벽(400)의 사이에 위치하는 배관(800)을 따라서 상하로 움직이면서 주변의 세라믹 볼(500) 및 배기가스와 열교환을 하여 스팀이 된 뒤에 배출부(820)로 배출된다.The piping 800 shown in FIG. 6 is wound and arranged between the outer wall 100 and the inner wall 400, and the portion indicated by the dotted line is located between the outer wall 100 and the inner wall 400, so that the injection part ( 810) the water injected into the outer wall 100 and the inner wall 400 is moved up and down along the pipe 800 located between the ceramic ball 500 and the exhaust gas of the surrounding heat to the steam and then exhausted 820.
이하에서는 도 1의 구조로 제작된 내부 재순환 가압순산소 연소기의 운전 데이터를 통해서 본 발명의 효과를 확인한다.Hereinafter, the effect of the present invention is confirmed through the operation data of the internal recirculating pressurized pure oxygen combustor manufactured in the structure of FIG. 1.
도 7과 도 8은 본 발명의 내부 재순환 가압순산소 연소기를 운전하는 과정에서 압력에 따른 온도를 측정한 결과이다.7 and 8 are the results of measuring the temperature according to the pressure in the process of operating the internal recirculating pressurized oxygen oxygen burner of the present invention.
도 7은 97%의 CO와 3%의 H2를 혼합한 연료를 사용하였고, 도 8은 70%의 CO와 30%의 H2를 혼합한 연료를 사용하였으며, 0bar에서 10bar까지 압력을 변경하여 운전하면서 온도를 측정하였다.FIG. 7 uses a fuel mixture of 97% CO and 3% H 2 , and FIG. 8 uses a fuel mixture of 70% CO and 30% H 2 , by changing the pressure from 0 bar to 10 bar. The temperature was measured while driving.
Tavg로 표시된 결과는 연소기 내부의 여러 부분에서 측정된 온도의 평균값이며, 여러 부분에서 측정된 온도들 중에서 최고 온도와 최저 온도의 범위를 각 결과의 상부에 표시하였다. 도시된 것과 같이 운전 압력이 높아질수록 연소기 내부의 온도가 전체적으로 낮아지는 것을 확인할 수 있으며, 최대 온도와 최소 온도의 차이도 감소한 것을 확인할 수 있다. 이러한 결과로부터, 본 발명의 내부 재순환 가압순산소 연소기를 적용하면 내부의 온도 구배를 줄이는 효과가 있는 것을 확인할 수 있다.The result indicated by T avg is the average value of the temperatures measured at various parts inside the combustor, and the ranges of the highest and lowest temperatures among the temperatures measured at various parts are indicated at the top of each result. As illustrated, it can be seen that as the operating pressure increases, the temperature inside the combustor decreases as a whole, and the difference between the maximum temperature and the minimum temperature also decreases. From these results, it can be seen that applying the internal recirculating pressurized oxygen burner of the present invention has the effect of reducing the internal temperature gradient.
한편, ΔTcw로 표시된 결과는 본 발명의 내부 재순환 가압순산소 연소기에 스팀 생산을 위하여 사용된 물의 투입구와 배출구에서의 온도 차이를 측정한 결과이다. 앞서 살펴본 것과 같이 압력이 높아질수록 연소기 내부의 평균 온도는 감소하였지만, 투입된 물의 온도 차이는 그대로 유지되는 것을 확인할 수 있으며, 결국 열전달 효율이 향상되었음을 알 수 있다. 이와 같이, 본 발명의 내부 재순환 가압순산소 연소기는, 열전달 효율이 높기 때문에 운전 압력이 높아져서 연소기 내부의 온도가 낮아져도 스팀 생산 효율을 그대로 유지할 수 있다. On the other hand, the result indicated by ΔT cw is the result of measuring the temperature difference at the inlet and outlet of water used for steam production in the internal recirculating pressurized oxygen generator. As described above, as the pressure increases, the average temperature inside the combustor decreases, but it can be seen that the temperature difference of the injected water is maintained, and it can be seen that the heat transfer efficiency is improved. In this way, the internal recirculating pressurized oxygen generator of the present invention can maintain the steam production efficiency even when the temperature inside the combustor decreases because the operating pressure is high because the heat transfer efficiency is high.
최종적으로 연소기 제작과정에서 상대적으로 고온에 견딜 수 있는 고가의 소재를 사용할 필요가 없어져서 연소기 제작 비용을 줄일 수 있는 효과가 있다.Finally, there is no need to use expensive materials that can withstand relatively high temperatures during the combustor manufacturing process, thereby reducing the cost of combustor manufacturing.
도 9는 본 발명의 내부 재순환 가압순산소 연소기의 운전 압력에 따라서 발생된 배기가스에 포함된 질소산화물의 양을 측정한 결과이다.9 is a result of measuring the amount of nitrogen oxides contained in the exhaust gas generated according to the operating pressure of the internal recirculating pressurized oxygen generator of the present invention.
도시된 것과 같이, 본 발명의 내부 재순환 가압순산소 연소기를 적용하면, 운전 압력이 높아질수록 배기가스에 포함된 NO이 감소하는 것을 확인할 수 있다. 반면에 압력의 증가에 따라서 NO2가 발생하고 있지만, 질소산화물을 처리함에 있어서 NO2의 처리가 더욱 용이함을 감안하면 배기가스에 포함된 질소산화물의 비율이 바람직하게 조정된 것임을 알 수 있다. As shown, when the internal recirculating pressurized oxygen-fired combustor of the present invention is applied, it can be confirmed that NO included in exhaust gas decreases as the operating pressure increases. On the other hand, although NO 2 is generated according to an increase in pressure, it can be seen that the ratio of nitrogen oxides contained in the exhaust gas is preferably adjusted in consideration of the easier treatment of NO 2 in treating nitrogen oxides.
결국 NO의 생성량이 감소하고 NO2가 생성됨으로 인하여, 종래에 비하여 질소산화물 처리를 위한 부대 설비를 줄일 수 있는 효과가 있다.As a result, since the amount of NO is reduced and NO 2 is generated, there is an effect of reducing ancillary facilities for nitrogen oxide treatment as compared to the prior art.
이상 본 발명을 바람직한 실시예를 통하여 설명하였는데, 상술한 실시예는 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과하며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화가 가능함은 이 분야에서 통상의 지식을 가진 자라면 이해할 수 있을 것이다. 따라서 본 발명의 보호범위는 특정 실시예가 아니라 특허청구범위에 기재된 사항에 의해 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The present invention has been described through preferred embodiments, but the above-described embodiments are merely illustrative of the technical idea of the present invention, and various changes are possible within the scope of the present invention. Anyone with ordinary knowledge will understand. Therefore, the protection scope of the present invention should be interpreted by the matters described in the claims, not by specific embodiments, and all technical ideas within the equivalent range should be interpreted as being included in the scope of the present invention.

Claims (10)

  1. 외벽;outer wall;
    상기 외벽의 내부에 설치되어, 내부 공간을 구분하는 내벽;An inner wall installed inside the outer wall to divide the inner space;
    상기 외벽의 하부에 설치되고, 상기 내벽의 내측 중심에 위치하며 연료와 산화제를 연소시키는 버너;A burner installed at a lower portion of the outer wall and located at an inner center of the inner wall to burn fuel and oxidant;
    상기 외벽의 하부에 설치되고, 상기 내벽의 내측에 위치하며, 상기 버너의 주변에 위치하여 배기가스를 외부로 배출하는 배기부; An exhaust unit installed at a lower portion of the outer wall, located inside the inner wall, and disposed at the periphery of the burner to discharge exhaust gas to the outside;
    상기 외벽과 상기 내벽의 사이에 위치하는 고형상태 구형의 물질로서, 배기가스의 열에너지를 축열하여 열교환에 이용하는 열전달 매체; 및A heat-transferring medium used as a solid heat-spherical material located between the outer wall and the inner wall to accumulate heat energy of exhaust gas for heat exchange; And
    상기 외벽과 상기 내벽의 사이에 설치되며 열교환을 통해서 스팀을 생산하는 배관을 포함하며,It is installed between the outer wall and the inner wall and includes a pipe for producing steam through heat exchange,
    상기 내벽은 위쪽이 개방되고 아래쪽에는 기체가 지날 수 있는 관통공이 형성되어, 상기 버너의 연소에 의해서 발생한 배기가스가 상기 내벽의 내측에서 위쪽으로 이동하고 외벽과 내벽 사이의 공간을 따라서 하강한 뒤에 내벽의 내측으로 이동하며, 내벽의 내측으로 이동한 배기가스 중에 일부는 배기부를 통해서 배출되고 나머지는 내부를 재순환하며,The inner wall is open at the top and a through hole through which gas can pass is formed at the bottom. Of the exhaust gas moved to the inside of the inner wall, some is discharged through the exhaust portion and the rest is recirculated inside,
    재순환되는 배기가스에 의해서 버너에 주입되는 연료와 산화제를 예열시키는 것을 특징으로 하는 내부 재순환 가압순산소 연소기.An internal recirculating pressurized oxygen burner, characterized by preheating fuel and oxidant injected into the burner by the recirculated exhaust gas.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 내벽의 내측 공간 상부에서의 압력(P1), 상기 외벽의 내측 공간 상부에서의 압력(P2), 상기 외벽의 내측 공간 하부에서의 압력(P3) 및 상기 내벽의 내측 공간 하부에서의 압력(P4)이 P1>P2>P3>P4의 관계인 것을 특징으로 하는 내부 재순환 가압순산소 연소기.The pressure (P1) at the top of the inner space of the inner wall, the pressure (P2) at the top of the inner space of the outer wall, the pressure (P3) at the bottom of the inner space of the outer wall, and the pressure (P4) at the bottom of the inner space of the inner wall ) Is a relationship of P1> P2> P3> P4.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 내벽의 상부에 배기가스가 지나는 공간이 좁아지는 병목 구조를 형성한 것을 특징으로 하는 내부 재순환 가압순산소 연소기. An internal recirculation pressurized pure oxygen combustor, characterized in that a bottleneck structure in which a space through which exhaust gas passes is narrowed is formed on an upper portion of the inner wall.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 내벽이 1300℃ 이상의 고온용 소재인 것을 특징으로 하는 내부 재순환 가압순산소 연소기. An internal recirculation pressurized pure oxygen combustor, wherein the inner wall is a material for high temperature of 1300 ° C or higher.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 열전달 매체가 세라믹 볼이고, 상기 외벽과 상기 내벽의 사이에 위치하는 세라믹 볼의 양을 조절할 수 있는 조절수단을 더 포함하는 것을 특징으로 하는 내부 재순환 가압순산소 연소기. The heat transfer medium is a ceramic ball, the internal recirculation pressurized oxygen oxygen burner further comprising an adjusting means for adjusting the amount of the ceramic ball located between the outer wall and the inner wall.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 조절수단이, 상기 외벽의 아래쪽에 연결되어 상기 세라믹 볼을 보관할 수 있는 조절공간 및 상기 조절공간 내부에서 상하로 이동하면서 세라믹 볼을 이동시킴으로써 상기 조절공간에 보관되는 세라믹 볼의 양을 조절할 수 있는 높이조절기를 포함하는 것을 특징으로 하는 내부 재순환 가압순산소 연소기. The adjustment means is connected to the lower side of the outer wall, the control space for storing the ceramic ball and the amount of ceramic balls stored in the control space can be adjusted by moving the ceramic ball while moving up and down inside the control space. An internal recirculation pressurized pure oxygen combustor comprising a height regulator.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 높이조절기는 나사산 구조를 통해서 상기 조절공간 내부에서 상하로 움직일 수 있는 것을 특징으로 하는 내부 재순환 가압순산소 연소기. The height regulator is an internal recirculating pressurized oxygen burner, characterized in that it can move up and down inside the adjustment space through a threaded structure.
  8. 청구항 6에 있어서,The method according to claim 6,
    세라믹 볼의 이동이 용이하도록 외부에서 진동이나 충격을 가하는 장치를 더 포함하는 것을 특징으로 하는 내부 재순환 가압순산소 연소기.An internal recirculating pressurized oxygen burner further comprising a device that applies vibration or shock from the outside to facilitate movement of the ceramic ball.
  9. 청구항 6에 있어서,The method according to claim 6,
    상기 조절공간의 하부에 압력유지를 위한 패킹부가 설치된 것을 특징으로 하는 내부 재순환 가압순산소 연소기. An internal recirculating pressurized oxygen burner, characterized in that a packing part for maintaining pressure is installed at the bottom of the control space.
  10. 청구항 6에 있어서,The method according to claim 6,
    상기 배관은 내부의 열교환 매체가 내부를 한 바퀴 회전하는 동안 상승과 하강을 반복하도록 배치한 것을 특징으로 하는 내부 재순환 가압순산소 연소기. The piping is an internal recirculating pressurized oxygen burner, characterized in that the heat exchange medium is arranged to repeat the rise and fall while rotating the inside once.
PCT/KR2019/012556 2018-09-28 2019-09-27 Internally recirculating pressurized oxy-fuel combustor WO2020067747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180116316A KR102077710B1 (en) 2018-09-28 2018-09-28 Internal recirculation type oxy-fuel combustor
KR10-2018-0116316 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067747A1 true WO2020067747A1 (en) 2020-04-02

Family

ID=69670452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012556 WO2020067747A1 (en) 2018-09-28 2019-09-27 Internally recirculating pressurized oxy-fuel combustor

Country Status (2)

Country Link
KR (1) KR102077710B1 (en)
WO (1) WO2020067747A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102465873B1 (en) * 2020-09-28 2022-11-11 한국생산기술연구원 Flameless combustion boiler
KR102660572B1 (en) * 2021-11-23 2024-04-26 주식회사 레이크머티리얼즈 Filter module and organometallic compound supply device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356604A (en) * 1991-05-31 1992-12-10 Miura Kenkyusho:Kk Vaporization combustion burner of recirculation type
JPH07208708A (en) * 1994-01-20 1995-08-11 Osaka Gas Co Ltd Recuperative burner
KR0161049B1 (en) * 1994-11-22 1999-01-15 오정무 Combustion apparatus for heating liquid high temperature heat transfer media
JP2007078331A (en) * 2005-09-16 2007-03-29 Petroleum Energy Center Burner, and high-temperature air combustion furnace
US20090120338A1 (en) * 2005-10-28 2009-05-14 L'air Liquide Societe Anonyme Pour L'etude Et L 'exploitation Des Procedes Georges Claude Process and Apparatus for Low-NOx Combustion

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170713A (en) * 1995-12-20 1997-06-30 Tokyo Gas Co Ltd Heat storage combustion device
KR100650602B1 (en) 2005-10-13 2006-11-29 주식회사 포스코 Drain passage variation type regenerator by discharging gas temperature
KR101360515B1 (en) 2012-04-30 2014-02-10 부경대학교 산학협력단 MILD Combustor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356604A (en) * 1991-05-31 1992-12-10 Miura Kenkyusho:Kk Vaporization combustion burner of recirculation type
JPH07208708A (en) * 1994-01-20 1995-08-11 Osaka Gas Co Ltd Recuperative burner
KR0161049B1 (en) * 1994-11-22 1999-01-15 오정무 Combustion apparatus for heating liquid high temperature heat transfer media
JP2007078331A (en) * 2005-09-16 2007-03-29 Petroleum Energy Center Burner, and high-temperature air combustion furnace
US20090120338A1 (en) * 2005-10-28 2009-05-14 L'air Liquide Societe Anonyme Pour L'etude Et L 'exploitation Des Procedes Georges Claude Process and Apparatus for Low-NOx Combustion

Also Published As

Publication number Publication date
KR102077710B1 (en) 2020-02-17

Similar Documents

Publication Publication Date Title
WO2020067747A1 (en) Internally recirculating pressurized oxy-fuel combustor
KR100827869B1 (en) Device and method for feeding fuel
CN101297157B (en) Low-nitrogen oxide combustion technique, device and uses
WO2021182922A1 (en) Firewood for camping
WO2010035992A2 (en) Boiler furnace for a power station
WO2015046902A1 (en) Combustion apparatus
WO2024025289A1 (en) Steam generating device, and fuel cell system including same
WO2017222267A1 (en) Fuel cell system comprising heat exchanger using combustion exhaust gas
WO2015093702A1 (en) Pure oxygen direct combustion system using liquid metal
WO2019107636A1 (en) Hot water storage type boiler having scale generation inhibiting function
KR102457099B1 (en) Stack outlet white smoke abatement system
WO2014112725A1 (en) High-temperature fgr ultra-low nox combustor using coanda effect
WO2021125629A1 (en) Apparatus for calcining secondary battery cathode material
WO2012070746A1 (en) Structure for cooling a combustion chamber using supplied air
WO2019151567A1 (en) Heat exchange device
WO2012144766A2 (en) Cooling device of combustion chamber and combustion device having cooling structure of combustion chamber
WO2019168211A1 (en) Flow rate control unit and control method for controlling solid flow between fluidized bed furnace and cyclone, and circulating fluidized bed boiler including flow rate control unit and operating method therefor
WO2013069922A1 (en) Flame-free catalytic thermal oxidation incineration device
WO2016117862A1 (en) Hot water boiler
CN107858153B (en) Dry quenching furnace and dry quenching circulating system
WO2020122634A2 (en) Coke dry quenching method in cdq equipment
JPS5975981A (en) Dry quenching of coke
WO2021006431A1 (en) Pressurized oxy-fuel combustion boiler
WO2014065478A1 (en) Heat exchanger having water housings
WO2021261795A1 (en) Device for recombination of hydrogen and oxygen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866293

Country of ref document: EP

Kind code of ref document: A1