WO2016199717A1 - Curable resin composition including crosslinkable particles - Google Patents

Curable resin composition including crosslinkable particles Download PDF

Info

Publication number
WO2016199717A1
WO2016199717A1 PCT/JP2016/066754 JP2016066754W WO2016199717A1 WO 2016199717 A1 WO2016199717 A1 WO 2016199717A1 JP 2016066754 W JP2016066754 W JP 2016066754W WO 2016199717 A1 WO2016199717 A1 WO 2016199717A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
particles
monomer
curable resin
Prior art date
Application number
PCT/JP2016/066754
Other languages
French (fr)
Japanese (ja)
Inventor
村田 直樹
康宏 中川
土井 満
大野 工司
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2017523625A priority Critical patent/JP6749325B2/en
Publication of WO2016199717A1 publication Critical patent/WO2016199717A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/26Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/06Unsaturated polyesters having carbon-to-carbon unsaturation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • C09J201/02Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups

Definitions

  • the present invention relates to a curable resin composition containing crosslinkable particles.
  • the crosslinking agent which has a functional group which can react with a carboxy group is used.
  • the functional group include an isocyanato group, a block isocyanato group, an epoxy group, a ⁇ -hydroxyalkylamide group, and a carbodiimide group.
  • Patent Document 1 discloses an acrylic pressure-sensitive adhesive having a composition obtained by blending a base polymer with both a photo-crosslinking agent capable of UV crosslinking and a latent curing agent capable of heat crosslinking.
  • a crosslinking agent having a structure having a double bond is also used in combination.
  • Patent Document 2 discloses composite fine particles capable of constructing a colloidal crystal structure.
  • JP 2006-335840 A International Publication No. 2005/108451
  • An object of the present invention is to provide a curable resin composition excellent in heat resistance and a cured product thereof.
  • a curable resin composition comprising a resin component having an ethylenically unsaturated group and crosslinkable particles in which a polymer graft chain having an ethylenically unsaturated group is bonded to the surface of the base particle.
  • the polymer graft chain is a single molecule having at least one reactive functional group (i) selected from the group consisting of an isocyanato group, a carboxyl group, a hydroxyl group, and an epoxy group, and an ethylenically unsaturated group.
  • Curable resin composition as described in said [1] or [2] containing the monomer unit derived from a monomer (C).
  • the reactive functional group (ii) of the compound (D) having ii) and an ethylenically unsaturated group is chemically bonded to the reactive functional group (i) of the monomer unit derived from the monomer (C).
  • the curable resin composition according to [3] which has a structure.
  • the combination of the reactive functional group (i) in the monomer (C) and the reactive functional group (ii) in the compound (D) is a combination of a hydroxyl group and an isocyanato group, an isocyanato group,
  • the polymer graft chain starts from a polymerization initiating group having a structure derived from the compound (A) in which the compound (A) having an alkoxysilyl group and a halogen group is bonded to the surface of the base particle.
  • the resin component having an ethylenically unsaturated group is selected from the group consisting of an acrylic resin having an ethylenically unsaturated group, a urethane resin having an ethylenically unsaturated group, an unsaturated polyester resin, and an unsaturated polyolefin resin.
  • the curable resin composition according to any one of the above [1] to [9], which contains at least one kind of resin as a main component.
  • the above-mentioned [1] to [10] wherein the base particles have a volume average particle diameter of 10 nm to 1 ⁇ m, which is a 50% volume cumulative diameter (D50) measured using a laser diffraction particle size distribution analyzer.
  • Curable resin composition as described in any one of these.
  • the base particles are organic particles, and the organic particles are any of acrylic resin, polystyrene resin, styrene-acrylic copolymer resin, vinyl acetate resin, urethane resin, melamine resin, silicone resin, or styrene butadiene rubber.
  • a curable resin composition having excellent heat resistance and a cured product thereof can be provided.
  • the resin component having an ethylenically unsaturated group is a polymer or monomer having an ethylenically unsaturated group in the molecule.
  • a monomer constituting the resin may be included in the resin component.
  • the resin component include an acrylic resin having an ethylenically unsaturated group, a urethane resin having an ethylenically unsaturated group, an unsaturated polyester resin, an unsaturated polyolefin resin, and the like.
  • an acrylic resin having an ethylenically unsaturated group and a urethane resin having an ethylenically unsaturated group are preferable.
  • An acrylic resin acrylate is mentioned as an acrylic resin which has an ethylenically unsaturated group.
  • Urethane acrylate is mentioned as a urethane resin which has an ethylenically unsaturated group.
  • acrylic resin having an ethylenically unsaturated group examples include compounds having an isocyanate group and an ethylenically unsaturated group at the hydroxyl group of a copolymer of methyl methacrylate and hydroxyethacrylate, specifically 2-isocyanatoethyl. What reacted with methacrylate etc. is mentioned.
  • monomers having an ethylenically unsaturated group in the molecule include dienes such as butadiene; methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and iso-propyl (meth) acrylate.
  • the resin component having an ethylenically unsaturated group is at least selected from the group consisting of an acrylic resin having an ethylenically unsaturated group, a urethane resin having an ethylenically unsaturated group, an unsaturated polyester resin, and an unsaturated polyolefin resin. It is preferable that one kind of resin is contained as a main component.
  • the acrylic resin is a resin having a monomer unit derived from an acrylic ester or a methacrylic ester as a main component, and may be a copolymer with another monomer.
  • the acrylic resin preferably contains 50 mol% or more, more preferably 80 mol% or more, and more preferably 90 mol% or more of a monomer unit derived from an acrylic ester or methacrylic ester.
  • the urethane resin is a resin having a urethane bond, and may be a copolymer with another monomer.
  • the urethane resin preferably contains 50 mol% or more of monomer units that form urethane bonds, more preferably 80 mol% or more, and even more preferably 90 mol% or more.
  • Consing resin as a main component means containing at least one of the resins in an amount of 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more. More preferably, the content is 90% by mass or more.
  • the resin component has an ethylenically unsaturated group
  • the ethylenically unsaturated group in the resin component and the ethylenically unsaturated group in the polymer graft chain in the crosslinkable particle can be polymerized.
  • Base particles examples include inorganic particles and / or organic particles.
  • inorganic particles examples include silicon oxide particles such as silica particles, noble metal particles such as Au particles, Ag particles, Pt particles, and Pd particles, Ti particles, Zr particles, Ta particles, Sn particles, Zn particles, Cu particles, Transition metal particles such as V particles, Sb particles, In particles, Hf particles, Y particles, Ce particles, Sc particles, La particles, Eu particles, Ni particles, Co particles, Fe particles, oxide particles or nitriding thereof
  • silica particles or metal oxide particles are preferable as the inorganic particles, and colloidal silica particles are most preferable.
  • organic particles examples include acrylic resin, polystyrene resin, styrene-acrylic copolymer resin, vinyl acetate resin, urethane resin, melamine resin, silicone resin, and styrene butadiene rubber (SBR).
  • resin particles such as acrylic resin, polystyrene resin, styrene-acrylic copolymer resin, urethane resin, and vinyl acetate resin can be cited.
  • particles of acrylic resin, styrene-acrylic copolymer resin, or urethane resin are used. preferable.
  • inorganic particles are more preferable.
  • the average particle diameter of the base particles is preferably in a numerical range of 10 nm to 1 ⁇ m, more preferably in a numerical range of 10 nm to 700 nm, from the viewpoint of excellent particle dispersibility and crosslinking efficiency. A numerical range is more preferable, and a numerical range of 10 nm to 80 nm is particularly preferable.
  • the average particle diameter of the base particles is 10 nm or more, the graft chain density is increased when the graft polymerization is performed from the particle surface, so that the density of the graft chain is increased. Is preferable because the film properties such as the hardness of the resin tend to be good.
  • the average particle diameter of the base particles refers to the 50% volume cumulative diameter (D50) measured using a laser diffraction particle size distribution measuring device.
  • the crosslinkable particle in the present invention has a polymer graft chain having an ethylenically unsaturated group on the surface of the base particle.
  • the polymer graft chain is a polymer chain (polymer) and can be formed by extending from the surface of the base particle by a polymerization reaction.
  • the ethylenically unsaturated group in the polymer graft chain has a function of acting as a crosslinking agent by crosslinking the resin components having an ethylenically unsaturated group.
  • the monomer constituting the polymer graft chain is not particularly limited.
  • the chain preferably includes a structure derived from the compound (D) having an ethylenically unsaturated group and a reactive functional group (ii) described later. More preferably, by including a monomer unit derived from the monomer (C) having a reactive functional group (i) capable of reacting with the reactive functional group (ii) of the compound (D) and an ethylenically unsaturated group. is there. More preferably, it includes a monomer unit derived from the monomer (B).
  • the polymer graft chain is obtained by reacting the base particles of the crosslinkable particles in the order of the compound (A), the monomer (B), the monomer (C), and the compound (D).
  • the structure derived from the compound (A), the monomer unit derived from the monomer (B), the monomer unit derived from the monomer (C), and the structure derived from the compound (D) are from the base particle side,
  • the same kind of units or structures may be continuous as long as the order is maintained, and any other structure is added. It may be a thing.
  • the polymer graft chain starts from a polymerization initiating group having a structure derived from the compound (A) in which the compound (A) having an alkoxysilyl group and a halogen group is bonded to the surface of the base particle. It is preferable. In addition, it is preferable that a compound (A) does not have an ethylenically unsaturated group in a molecule
  • the compound (A) is preferably contained in a form in which an alkoxysilyl group is directly bonded to the surface of the base particle.
  • the compound (A) polymerized as a structural unit of the polymer graft chain does not have an ethylenically unsaturated group in the molecule, the compound (A) is directly bonded to the surface of the base particle. Since the space between the particle surface and the ethylenically unsaturated group can be appropriately set, the dispersibility of the crosslinkable particles becomes good, which is preferable.
  • Examples of the compound (A) having an alkoxysilyl group include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropyltriethoxysilane. And a terminal double bond such as 3-acryloxypropyltrimethoxysilane to which a halogen such as bromine, chlorine or iodine is added. Of these, 3-methacryloxypropyltrimethoxysilane is preferable, and bromine is preferable as the halogen.
  • Compound (A) may be used alone or in combination of two or more.
  • a compound represented by the following formula (I) is preferable from the viewpoint that the step of supporting it on inorganic particles is simple.
  • R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 3 carbon atoms, preferably an alkyl group having 1 to 2 carbon atoms.
  • R 4 and R 5 each independently represents an alkyl group having 1 to 3 carbon atoms, preferably an alkyl group having 1 to 2 carbon atoms.
  • X represents a halogen atom, and among them, Br is preferable.
  • n is an integer of 3 to 10.
  • alkyl group means a monovalent group generated by losing one hydrogen atom from an aliphatic hydrocarbon (alkane) such as methane, ethane, or propane, and is generally represented by CnH 2n + 1 —. Where n is a positive integer.
  • alkyl group can be linear or branched. Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • n represents the number of —CH 2 —, n is an integer of 3 to 10, an integer of 4 to 8 is preferable, and 6 is most preferable.
  • the (CH 2 ) n moiety has a role as a spacer.
  • the compound represented by the formula (I) can be synthesized based on general organic chemistry.
  • Examples of the compound represented by the formula (I) include (2-bromo-2-methyl) propionyloxyhexyltriethoxysilane (BHE).
  • the polymer graft chain according to the present invention comprises monomer units derived from a monomer (B) having no isocyanato group, carboxyl group, hydroxyl group, and epoxy group and having an ethylenically unsaturated group. It is preferable to contain.
  • the ethylenically unsaturated group of the monomer (B) is preferably living radically polymerized starting from the halogen terminal of the compound (A) bonded to the surface of the base particle.
  • the monomer (B) does not have any of an isocyanato group, a carboxyl group, a hydroxyl group, and an epoxy group, the distance from the structure derived from the compound (D) described later on the surface of the base particle should be appropriately set. Therefore, the dispersibility of the crosslinkable particles becomes good, which is preferable.
  • the monomer (B) is preferably a monomer having a (meth) acryloyloxy group.
  • the monomer (B) examples include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) It is possible to use acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, acrylonitrile, styrene, styrene derivatives, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride, ethylene, propylene, butylene, isobutylene, etc.
  • the polymer graft chain according to the present invention is a single molecule having at least one reactive functional group (i) selected from the group consisting of an isocyanato group, a carboxyl group, a hydroxyl group, and an epoxy group, and an ethylenically unsaturated group. It is preferable to contain a monomer unit derived from the monomer (C).
  • the monomer unit derived from the monomer (C) is preferably present in the polymer graft chain in a form combined with the monomer unit derived from the monomer (B).
  • the monomer unit derived from the monomer (C) is such that the ethylenically unsaturated group of the monomer (C) is present in the graft chain in a form of polymerizing with the monomer (B).
  • the ethylenically unsaturated group of the monomer (C) is added to the ethylenically unsaturated group of the polymer graft chain whose end is an ethylenically unsaturated group due to the ethylenically unsaturated group of the monomer (B).
  • bonded is mentioned.
  • the polymer graft chain according to the present invention is a reactive functional group (i) capable of reacting with at least one reactive functional group (i) selected from the group consisting of an isocyanato group, a carboxyl group, a hydroxyl group, and an epoxy group.
  • the reactive functional group (ii) of the compound (D) having ii) and an ethylenically unsaturated group is chemically bonded to the reactive functional group (i) of the monomer unit derived from the monomer (C). It preferably has a structure.
  • Compound (D) is a reactive functional group (i) of the polymer graft chain whose terminal is a reactive functional group (i) due to the reactive functional group (i) of the monomer (C).
  • the reactive functional group (ii) of the compound (D) is bonded is preferred.
  • the ethylenically unsaturated group which a compound (D) has may be an ethylenically unsaturated group which a polymer graft chain has.
  • the monomer (C) or compound (D) having an isocyanato group includes 2-isocyanatoethyl (meth) acrylate, 3-isocyanatopropyl (meth) acrylate. These are preferable in that the reaction conditions for bonding the compound (D) and the monomer (C) can be carried out at a low temperature and in a short time.
  • an isocyanato group-containing ethylenically unsaturated monomer only one type or a plurality of types may be included in the polymer graft chain as the monomer (C).
  • only one type of isocyanate group-containing ethylenically unsaturated monomer may be contained in the polymer graft chain as the compound (D), or a plurality of types may be contained.
  • the monomer (C) or compound (D) having a carboxyl group includes acrylic acid, methacrylic acid, crotonic acid, fumaric acid, maleic acid, maleic anhydride, Examples thereof include 2-methylmaleic acid, itaconic acid, phthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, metal salts thereof, and ammonium salts.
  • the monomer (C) and the compound (D) are preferably acrylic acid, methacrylic acid, maleic acid, and maleic anhydride.
  • Such a carboxyl group-containing ethylenically unsaturated monomer may contain only one type or a plurality of types as the monomer (C) in the polymer graft chain. Similarly, only one type of carboxyl group-containing ethylenically unsaturated monomer may be included in the polymer graft chain as the compound (D), or a plurality of types may be included.
  • the hydroxyl group-containing monomer (C) or compound (D) includes hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, polyethylene glycol monoacrylate, polypropylene glycol Monoacrylate, polytetramethylene glycol monoacrylate, polyethylene glycol polytetramethylene glycol monoacrylate, polypropylene glycol polytetramethylene glycol monoacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, polyethylene glycol monomethacrylate, polypropylene glycol monomethacrylate, Polytetramethylene glycol Bruno methacrylate, polyethylene glycol polytetramethylene glycol monomethacrylate, polypropylene glycol polytetramethylene glycol monomethacrylate, and the like.
  • hydroxyethyl acrylate and hydroxyethyl methacrylate are preferable from the viewpoint of polymerization stability.
  • a hydroxyl group-containing ethylenically unsaturated monomer only one type or a plurality of types may be contained in the polymer graft chain as the monomer (C).
  • only one kind of hydroxyl group-containing ethylenically unsaturated monomer may be contained in the polymer graft chain as the compound (D), or a plurality of kinds may be contained.
  • the monomer (C) or compound (D) having an epoxy group includes glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, methyl glycidyl acrylate, methyl glycidyl methacrylate, 3 , 4-epoxycyclohexylmethyl acrylate, 3,4-epoxycyclohexylmethyl methacrylate, and the like.
  • the monomer (C) and the compound (D) are preferably glycidyl methacrylate from the viewpoint of polymerization stability.
  • the combination of “3” carboxyl group / isocyanato group is preferable because the reaction proceeds at a lower temperature and the time required for the reaction is shorter than the combination of “4” isocyanato group / epoxy group.
  • the “2” carboxyl group / epoxy group combination is more preferable because the time required for the reaction is shorter than the “3” carboxyl group / isocyanato group combination.
  • the “1” hydroxyl / isocyanato group combination is most likely to proceed among the “2” to “4” combinations, and the reaction proceeds at a lower temperature than the “2” to “4” combinations.
  • it is particularly preferable in that the time required for the reaction is short and the bonding step is easy.
  • the curable resin composition of the present invention preferably contains the crosslinkable particles in the range of 0.1 to 50% by mass, and in the range of 0.2 to 40% by mass in the curable resin composition.
  • the content is more preferably in the range of 0.5 to 30% by mass, still more preferably in the range of 1 to 10% by mass.
  • the number of moles of ethylenically unsaturated groups of the crosslinkable particles in the curable resin composition is from 0.5 to the number of moles of ethylenically unsaturated groups of the resin component.
  • the molar amount is preferably 50 times, more preferably 1 to 30 times, and even more preferably 2 to 20 times.
  • the polymer graft chain is a polymer containing a monomer unit or structure derived from a compound or monomer of the compound (A), the monomer (B), the monomer (C), and the compound (D)
  • the ratio of each unit or structure in the polymer graft chain to the number of moles X of the compound (A) include the following.
  • the molar amount of the compound (D) is preferably 1 to 1000 times, more preferably 10 to 800 times, and even more preferably 50 to 500 times.
  • Monofunctional monomers used as reactive monomers include (meth) acrylamide, methylol (meth) acrylamide, methoxymethyl (meth) acrylamide, ethoxymethyl (meth) acrylamide, propoxymethyl (meth) acrylamide, butoxymethoxymethyl (meth) Acrylamide, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4- Hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, glycerol mono (Meth) acrylate, tetrahydrofurfuryl (meth) acrylate, glycidyl (meth) acryl
  • acrylate compounds such as tri (meth) acrylate of tris (hydroxyethyl) isocyanurate; aromatic vinyl compounds such as divinylbenzene, diallylphthalate and diallylbenzenephosphonate; dicarboxylic acid ester compounds such as divinyl adipate; Examples include allyl cyanurate, methylene bis (meth) acrylamide, (meth) acrylamide methylene ether, and a condensate of polyhydric alcohol and N-methylol (meth) acrylamide. Moreover, these can be used individually or in combination of 2 or more types.
  • the content of the polymerization initiator in the curable resin composition may be an amount that allows the curable resin composition to be appropriately cured.
  • the content of the polymerization initiator in the curable resin composition is preferably 0.01 to 10% by mass, more preferably 0.02 to 5% by mass, and further preferably 0.1 to 2% by mass. %.
  • the storage stability of curable resin composition may fall or it may color.
  • cured material will advance rapidly, and problems, such as a crack, may generate
  • the curable resin composition of the present invention includes a polymerization inhibitor and a leveling agent as necessary, as long as the viscosity of the composition and the properties of the cured product, such as transparency and heat resistance, are not impaired. , Antioxidants, ultraviolet absorbers, infrared absorbers, light stabilizers, pigments, fillers such as other inorganic fillers, other modifiers, and the like.
  • the curable resin composition of this invention may contain the crosslinking agent which does not have a particle structure as needed other than the said component. The particle structure is the base particle.
  • the solvent normally used for the resin composition can be used.
  • the content of the solvent in the curable resin composition may be appropriately determined in consideration of the viscosity of the curable resin composition.
  • the content of the solvent in the curable resin composition is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and further preferably 30 to 70% by mass.
  • the curable resin composition of the embodiment includes, as an example, a resin component, crosslinkable particles, a polymerization initiator, and a solvent.
  • the curable resin composition contains, for example, the above-described one or more components so that the total content (% by mass) does not exceed 100% by mass.
  • polymerization inhibitor examples include hydroquinone, hydroquinone monomethyl ether, benzoquinone, pt-butylcatechol, 2,6-di-t-butyl-4-methylphenol, and the like. These can be used alone or in combination of two or more.
  • leveling agents include polyether-modified dimethylpolysiloxane copolymer, polyester-modified dimethylpolysiloxane copolymer, polyether-modified methylalkylpolysiloxane copolymer, aralkyl-modified methylalkylpolysiloxane copolymer, and polyether-modified. Examples thereof include methylalkylpolysiloxane copolymer. These can be used alone or in combination of two or more.
  • filler or pigment examples include calcium carbonate, talc, mica, clay, Aerosil (registered trademark), barium sulfate, aluminum hydroxide, zinc stearate, zinc white, bengara, azo pigment, and the like. These can be used alone or in combination of two or more.
  • the crosslinkable particle in which the polymer graft chain according to the present invention is bonded to the surface of the base particle can be produced, for example, through the following steps. a) a step of reacting the base particle with the compound (A) to bond a chain having a terminal halogen group to the surface of the base particle b) a step of living radical polymerization of the terminal halogen and the monomer (B) c ) Step of living polymerizing monomer (C) from the polymerization terminal of radical polymerization of monomer (B) d) Polymer graft having reactive functional group (i) of monomer (C) as terminal A step of reacting a reactive functional group (ii) of the compound (D) with a chain and introducing an ethylenically unsaturated group into the terminal of the polymer graft chain
  • Step a As a method for producing a polymer graft chain, it is preferable that the compound (A) is first bonded to the surface of the base particle so that the terminal is in a halogen state, and then the polymer graft chain is grown from that point.
  • the base particles to be reacted with the compound (A) it is preferable to use a dispersion obtained by dispersing the base particles in an organic solvent.
  • the organic solvent in which the base particles are dispersed include ethanol, benzene, xylene, toluene, and the like.
  • a method of mixing a compound (A) and base particle there is no restriction
  • the method of mixing a compound (A) and base particles at room temperature using mixers, such as a mixer, a ball mill, and 3 rolls, is mentioned.
  • a method may be used in which the compound (A) is placed in a reaction vessel, and base particles are added and mixed while the compound (A) is continuously stirred in the reaction vessel to prepare a dispersion.
  • a catalyst and, if necessary, other components are added to the dispersion and mixed to perform a condensation reaction.
  • the temperature of the mixed solution is preferably 100 ° C. or lower, more preferably 70 ° C. or lower, and further preferably 50 ° C.
  • the temperature of the liquid mixture is preferably 20 ° C. or higher, and more preferably 30 ° C. or higher, in order to perform the step of removing alcohol or water generated by the reaction in a short time.
  • the step of further polymerizing the monomer (C) from the polymerization terminal of the living radical polymerization of the monomer (B) is a base particle in which a graft chain in which the terminal obtained in the step b is a polymerization terminal of radical polymerization is bonded.
  • the monomer (C) is added to and mixed with the liquid containing the monomer, and the monomer (C) is polymerized starting from the polymerization terminal of the radical polymerization.
  • the temperature of the mixed solution is preferably 100 ° C. or lower, more preferably 70 ° C. or lower, and further preferably 50 ° C. or lower in order to allow the reaction to proceed efficiently.
  • the temperature of the mixed solution is preferably 20 ° C. or higher, and more preferably 30 ° C. or higher, in order to remove the solvent in a short time.
  • Step d In the step of reacting the reactive functional group (ii) of the compound (D) with the polymer graft chain having the reactive functional group (i) of the monomer (C), the terminal obtained in the step c is reactive.
  • the reactive functional group (i) and the compound are mixed by adding and mixing the compound (D) and other components as necessary to the liquid containing the base particles to which the chain as the functional group (i) is bonded. (D) is reacted to obtain crosslinkable particles.
  • the temperature of the mixed solution is preferably 100 ° C. or lower, more preferably 70 ° C. or lower, and further preferably 50 ° C. or lower in order to allow the addition reaction to proceed efficiently.
  • the temperature of the mixed solution is preferably 20 ° C. or higher, and more preferably 30 ° C. or higher, in order to remove the solvent in a short time.
  • a curable resin composition can be obtained by mixing the crosslinkable particles obtained in the step d, a resin component having an ethylenically unsaturated group, and, if necessary, other optional components.
  • a filtration method it is preferable to use a pressure filtration method using, for example, a membrane type or cartridge type filter.
  • the curable resin composition of the present invention is obtained through the above steps.
  • the cured product of the present invention is obtained by curing the curable resin composition of the present invention.
  • cured material of this invention has the process of hardening the curable resin composition of this invention.
  • a photopolymerization initiator is added as a polymerization initiator to the composition containing the crosslinkable particles obtained in the above step d.
  • a thermal polymerization initiator is added as a polymerization initiator to the composition containing the crosslinkable particle obtained in said process d.
  • the curable resin composition of the present invention is applied to a substrate such as a glass plate, a plastic plate, a metal plate or a silicon wafer to form a coating film or the like.
  • a substrate such as a glass plate, a plastic plate, a metal plate or a silicon wafer.
  • a method such as injection into a mold or the like can be used.
  • the coating film is obtained by irradiating the coating film with active energy rays and / or heating and curing the coating film.
  • Examples of the application method of the curable resin composition include application by a bar coater, applicator, die coater, spin coater, spray coater, curtain coater or roll coater, application by screen printing, and application by dipping. .
  • the coating amount of the curable resin composition of the present invention on the substrate is not particularly limited and can be appropriately adjusted according to the purpose.
  • the coating amount of the curable resin composition on the substrate is preferably such that the film thickness of the coating film obtained after the curing treatment by irradiation with active energy rays and / or heating is 1 ⁇ m to 10 mm, and 10 to 1000 ⁇ m. The amount is more preferred.
  • the irradiation amount of the active energy ray is appropriately set according to the type of light source, the film thickness of the coating film, and the like. Moreover, after irradiating an active energy ray and hardening a curable resin composition, you may heat-process (annealing) as needed, and may further harden
  • the heating temperature at that time is preferably in the range of 50 to 150 ° C. The heating time is preferably in the range of 5 minutes to 60 minutes.
  • the heating temperature may be set according to the decomposition temperature of the thermal polymerization initiator, but is preferably in the range of 40 to 200 ° C., more preferably It is in the range of 50 to 150 ° C.
  • the heating temperature is lower than the above range, it is necessary to lengthen the heating time, and the economy tends to be lacking. If the heating temperature exceeds the above range, energy costs are required, and further, the heating temperature rise time and the temperature drop time are required.
  • the heating time is appropriately set according to the heating temperature, the film thickness of the coating film, and the like.
  • heat treatment may be performed as necessary to further cure the curable resin composition.
  • the heating temperature at that time is preferably in the range of 50 to 150 ° C.
  • the heating time is preferably in the range of 5 minutes to 60 minutes.
  • the cured product of the present invention is obtained through the above steps.
  • the curable resin composition of this embodiment contains multifunctional crosslinkable particles, the cured product of the curable resin composition of this embodiment has excellent hardness, heat resistance, and water resistance. ing. Therefore, the curable resin composition of this embodiment can be preferably used as, for example, a coating agent such as a film, plastic, or metal, an adhesive, a paper treatment agent, or a fiber treatment agent.
  • the weight average molecular weight and number average molecular weight of the polymer graft chain in the present invention and in the present specification are determined by gel permeation after separating the polymer graft chain from the base particle by treating the crosslinkable particles with hydrogen fluoride. Using a chromatography (Shodex GPC System-11 manufactured by Showa Denko KK), measurement is performed at room temperature under the following conditions, and a standard polystyrene calibration curve can be used.
  • the density of the graft chain in the present invention and the present specification can be measured by the following method.
  • the graft density was measured using a thermogravimetric measuring device TGDTA (manufactured by SII, TG / DTA6200). The measurement was performed by raising the temperature of the crosslinkable particles from 30 ° C. to 700 ° C. at a rate of 20 ° C./min under atmospheric conditions.
  • TGDTA thermogravimetric measuring device
  • reaction solution was stirred at 0 ° C. for 3 hours, and further stirred at room temperature for 10 hours.
  • the reaction solution was filtered, and the filtrate was concentrated.
  • the obtained solution was diluted with chloroform (500 ml), and washed with a 1N hydrochloric acid aqueous solution, a saturated sodium hydrogen carbonate aqueous solution, and pure water in this order.
  • BPH 40 g
  • toluene 500 ml
  • triethoxysilane 500 ml
  • karsted catalyst 450 ml
  • each of the monomers (C) (1 g) shown in Table 2 below was added, degassed by nitrogen substitution, polymerized at 70 ° C. for 24 hours, and each having a different functional group at the polymer terminal. Particles were obtained.
  • air was introduced the compound (D) shown in Table 2 below was added to the intermediate particles, and the reaction was performed under atmospheric conditions, so that crosslinkable particles (1 ) (Solid content concentration 10% by mass).
  • crosslinkable particles (1 ) Solid content concentration 10% by mass.
  • An example of the structural formula of the graft chains of the obtained component parts (B) to (D) is shown below (wherein, l, m and n each represents an arbitrary integer of 1 or more).
  • the weight average molecular weight of the entire polymer graft chain per one of the crosslinkable particles (1) to (6) was about 100,000.
  • a reaction vessel equipped with a stirrer, a thermometer, and a condenser 120 g of GI-1000 (hydrogenated polybutadiene polyol manufactured by Nippon Soda), hydroquinone monomethyl ether (Wako Pure) 0.04 g of Yakuhin Kogyo Co., Ltd. 0.03 g of KS-1260 (dibutyltin dilaurate manufactured by Sakai Chemical Industry), 20 g of Desmodur W (Methylenebis (4-cyclohexylisocyanate) manufactured by Bayer), and 70 g of toluene. While stirring, the temperature was raised to 85 to 90 ° C.
  • the obtained pressure-sensitive adhesive sheet was affixed to a stainless steel plate so that the bonding area was 25 mm ⁇ 25 mm, applied with a load of 1 kg under a predetermined temperature condition, and in accordance with the measuring method for holding force defined in JIS Z 0237. The temperature at which the sample was not dropped for 1 hour or more was defined as the heat resistant holding force.
  • Example 1 Production of coating agent composition and cured product thereof A crosslinkable particle (1) obtained in Production Example 1-1 was added to 100 g of the acrylic resin for coating agent obtained in Production Example 2-1. 12.5 g and 2 g of photopolymerization initiator 2-hydroxy-2-methyl-1-phenyl-propan-1-one (manufactured by Ciba Specialty Chemicals Co., Ltd., DAROCUR (registered trademark) 1173) were added to form a coating agent composition I got a thing. The obtained coating agent composition was coated on a PET film (thickness 25 ⁇ m) so that the thickness after drying was 10 ⁇ m, and then dried at 105 ° C. for 3 minutes. After irradiating with 500 mJ / cm 2 of ultraviolet rays, the obtained coating sheet was measured for physical properties such as adhesion, hot water resistance, and pencil height. The results are shown in Table 4.
  • Examples 2-6, Comparative Examples 1-2> A coating composition and a coating sheet were produced in the same manner as in Example 1 except that the components were changed as shown in Table 4, and physical properties were evaluated. The results are shown in Table 4.
  • Example 7 12.5 g of crosslinkable particles (1) and 2 g of photopolymerization initiator Irgacure were added to 100 g of acrylic resin for adhesives to obtain an adhesive composition. It coated so that the thickness after drying might be set to 10 micrometers on PET film (25 micrometers in thickness), and it dried at 105 degreeC after that for 3 minutes. Next, a release film was bonded to one side and pressure-bonded with a roll to obtain a PET film base material pressure-sensitive adhesive sheet. A release film was bonded to one side and irradiated with ultraviolet rays of 500 mJ / cm 2 , and then physical properties of the initial adhesive strength and heat resistance were measured. The results are shown in Table 5.
  • Crosslinkable particles (7) (solid) were produced in the same manner as Production Example 1-1 except that colloidal silica having an average particle diameter of 15 nm was used. A partial concentration of 10% by mass) was prepared.
  • Crosslinkable particles (8) (solid) were produced in the same manner as in Production Example 1-1 except that colloidal silica having an average particle diameter of 450 nm was used. A partial concentration of 10% by mass) was prepared.
  • Examples 11 and 12 An adhesive composition and a pressure-sensitive adhesive sheet were produced in the same manner as in Example 7 except that the crosslinkable particles were changed as shown in Table 7 below, and the initial pressure-sensitive adhesive force and heat resistant holding force were measured. The results are shown in Table 7.
  • 2-hydroxyethyl methacrylate (0.66 g) was added as monomer (C), degassed by nitrogen substitution, and then polymerized at 70 ° C. for 24 hours to obtain intermediate particles.
  • 2-isocyanatoethyl methacrylate (0.66 g) is added to the intermediate particles and subjected to an addition reaction to obtain crosslinkable particles (11) (solid content concentration 10% by mass) having an ethylenically unsaturated group at the polymer terminal. It was.
  • the weight average molecular weight of the entire polymer graft chain per one particle of the crosslinkable particle (11) was about 10,000.
  • 2-hydroxyethyl methacrylate (1.03 g) was added as a monomer (C), degassed by nitrogen substitution, and polymerized at 70 ° C. for 24 hours to obtain intermediate particles.
  • 2-isocyanatoethyl methacrylate (1.03 g) is added to the intermediate particles and subjected to an addition reaction to obtain crosslinkable particles (12) (solid content concentration 10% by mass) having an ethylenically unsaturated group at the polymer terminal. It was.
  • the weight average molecular weight of the entire polymer graft chain per one particle of the crosslinkable particle (12) was about 300,000.
  • 2-hydroxymethyl methacrylate (1 g) was added as monomer (C), degassed by nitrogen substitution, and polymerized at 70 ° C. for 24 hours to obtain intermediate particles.
  • 2-isocyanatoethyl methacrylate (1 g, compound (D)) is added to the intermediate particles and subjected to an addition reaction to form crosslinkable particles (14) having an ethylenically unsaturated group at the polymer terminal (solid content concentration: 10% by mass) )
  • the weight average molecular weight per crosslinkable particle (14) was about 100,000, and the graft density was 0.2 strands / nm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Adhesive Tapes (AREA)
  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

This curable resin composition includes: a resin component having ethylenically unsaturated groups; and crosslinkable particles obtained by bonding, to surfaces of base particles, polymer graft chains having ethylenically unsaturated groups. It is preferable that the density of the polymer graft chains on the surface of each of the base particles be 0.05-1.2 chains/nm2.

Description

架橋性粒子を含有する硬化性樹脂組成物Curable resin composition containing crosslinkable particles
 本発明は、架橋性粒子を含有する硬化性樹脂組成物に関する。
 本願は、2015年6月12日に、日本に出願された特願2015-119208号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a curable resin composition containing crosslinkable particles.
This application claims priority on June 12, 2015 based on Japanese Patent Application No. 2015-119208 for which it applied to Japan, and uses the content here.
 従来、水酸基、カルボキシル基、イソシアナト基、エポキシ基、シラノール基、カルボニル基、アミノ基、メチロール基等を分子中に有する樹脂は、樹脂の硬度、耐熱性、耐水性、耐溶剤性、耐湿性といった膜物性を向上する目的で、架橋剤を用いて樹脂組成物を硬化させることで、コーティング剤、粘接着剤、繊維処理剤等で使用される場合がある。
 これらの官能基を有する樹脂の架橋剤として、該官能基と反応し得る架橋剤が知られている。例えば、樹脂としてカルボキシ基を有する樹脂を使用する場合は、カルボキシ基と反応しうる官能基を有する架橋剤が用いられる。その官能基は、イソシアナト基、ブロックイソシアナト基、エポキシ基、β-ヒドロキシアルキルアミド基、カルボジイミド基などが挙げられる。
Conventionally, a resin having a hydroxyl group, a carboxyl group, an isocyanato group, an epoxy group, a silanol group, a carbonyl group, an amino group, a methylol group, etc. in the molecule, such as resin hardness, heat resistance, water resistance, solvent resistance, moisture resistance, etc. For the purpose of improving film physical properties, the resin composition may be cured using a crosslinking agent to be used as a coating agent, an adhesive, a fiber treatment agent, or the like.
As a crosslinking agent for resins having these functional groups, crosslinking agents capable of reacting with the functional groups are known. For example, when using resin which has a carboxy group as resin, the crosslinking agent which has a functional group which can react with a carboxy group is used. Examples of the functional group include an isocyanato group, a block isocyanato group, an epoxy group, a β-hydroxyalkylamide group, and a carbodiimide group.
 しかし、膜物性に優れたコーティング剤、粘接着剤、繊維処理剤、成形材料等の提供にあたっては未だ改善の余地がある。これまでにも、反応性官能基を有する樹脂の構造を改良、もしくは架橋剤を多官能化するなどして膜特性の改善することが試みられている。例えば、特許文献1には、紫外線架橋可能な光架橋剤と加熱架橋可能な潜在型硬化剤の両方をベースポリマーに配合してなる組成を特徴とするアクリル系粘着剤が開示されている。
特許文献1では、反応性官能基の加熱架橋だけでは十分に特性が発現できないため、二重結合を有する構造を有する架橋剤も併用している。
 しかしこれらの架橋剤は、未反応な架橋剤が膜中に残存することがあり、その結果、膜物性を低下させるなどの問題が生じることがあり、新規の架橋剤の開発が求められていた。
 一方、特許文献2には、コロイド結晶構造を構築可能な複合微粒子が開示されている。
However, there is still room for improvement in providing coating agents, adhesives, fiber treatment agents, molding materials and the like having excellent film properties. Up to now, attempts have been made to improve film properties by improving the structure of a resin having a reactive functional group or by polyfunctionalizing a crosslinking agent. For example, Patent Document 1 discloses an acrylic pressure-sensitive adhesive having a composition obtained by blending a base polymer with both a photo-crosslinking agent capable of UV crosslinking and a latent curing agent capable of heat crosslinking.
In patent document 1, since a characteristic cannot be fully expressed only by heat crosslinking of a reactive functional group, a crosslinking agent having a structure having a double bond is also used in combination.
However, in these cross-linking agents, unreacted cross-linking agents may remain in the film, and as a result, problems such as deterioration of film physical properties may occur, and development of new cross-linking agents has been demanded. .
On the other hand, Patent Document 2 discloses composite fine particles capable of constructing a colloidal crystal structure.
特開2006-335840号公報JP 2006-335840 A 国際公開第2005/108451号International Publication No. 2005/108451
 本発明は、耐熱性に優れる硬化性樹脂組成物、及びその硬化物を提供することを目的とする。 An object of the present invention is to provide a curable resin composition excellent in heat resistance and a cured product thereof.
 上記の課題を達成するために、本発明は以下の手段を提供する。
[1]エチレン性不飽和基を有する樹脂成分と、エチレン性不飽和基を有する高分子グラフト鎖がベース粒子表面に結合した架橋性粒子と、を含む硬化性樹脂組成物。
[2]前記ベース粒子表面における前記高分子グラフト鎖の密度が、0.05~1.2本鎖/nmである、前記[1]に記載の硬化性樹脂組成物。
[3]前記高分子グラフト鎖が、イソシアナト基、カルボキシル基、ヒドロキシル基、及びエポキシ基からなる群から選択される少なくとも1種の反応性官能基(i)とエチレン性不飽和基とを有する単量体(C)に由来するモノマー単位を含有する、前記[1]又は[2]に記載の硬化性樹脂組成物。
[4]前記高分子グラフト鎖が、イソシアナト基、カルボキシル基、ヒドロキシル基、及びエポキシ基からなる群から選択される少なくとも1種の反応性官能基(i)と反応可能である反応性官能基(ii)とエチレン性不飽和基とを有する化合物(D)の反応性官能基(ii)と、前記単量体(C)に由来するモノマー単位の反応性官能基(i)とが化学結合した構造を有する、前記[3]に記載の硬化性樹脂組成物。
[5]前記単量体(C)における前記反応性官能基(i)と、前記化合物(D)における前記反応性官能基(ii)の組み合わせが、ヒドロキシル基とイソシアナト基の組み合わせ、イソシアナト基とヒドロキシル基の組み合わせ、イソシアナト基とカルボキシル基の組み合わせ、又はカルボキシル基とイソシアナト基の組み合わせである、前記[4]に記載の硬化性樹脂組成物。

[6]前記高分子グラフト鎖が、アルコキシシリル基とハロゲン基とを有する化合物(A)が前記ベース粒子表面に結合した、前記化合物(A)に由来する構造の重合開始基を開始点とするものである、前記[1]~[5]のいずれか一つに記載の硬化性樹脂組成物。
[7]前記化合物(A)が、下記式(I)で表される化合物である、前記[6]に記載の硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
[式(I)中、R 、Rは、それぞれ独立して炭素数1~3のアルキル基を表し、R、Rはそれぞれ独立して炭素数1~3のアルキル基を表し、Xはハロゲン原子を表し、nは3~10の整数である。]
[8]前記高分子グラフト鎖が、イソシアナト基、カルボキシル基、ヒドロキシル基、及びエポキシ基のいずれをも有さず且つエチレン性不飽和基を有する単量体(B)に由来するモノマー単位を含有する、前記[1]~[7]のいずれか一つに記載の硬化性樹脂組成物。
[9]前記単量体(B)が(メタ)アクリロイルオキシ基を有する単量体である、前記[8]に記載の硬化性樹脂組成物。
[10]前記エチレン性不飽和基を有する樹脂成分が、エチレン性不飽和基を有するアクリル樹脂、エチレン性不飽和基を有するウレタン樹脂、不飽和ポリエステル樹脂、及び不飽和ポリオレフィン樹脂からなる群から選択される少なくとも1種の樹脂を主成分として含む、前記[1]~[9]のいずれか一つに記載の硬化性樹脂組成物。
[11]前記ベース粒子の、レーザー回折式粒度分布測定装置を用いて測定される50%体積累積径(D50)である体積平均粒子径が10nm~1μmである、前記[1]~[10]のいずれか一つに記載の硬化性樹脂組成物。
[12]前記ベース粒子が、無機粒子である、前記[1]~[11]のいずれか一つに記載の硬化性樹脂組成物。
[13]前記無機粒子が、シリカ粒子または金属酸化物の粒子である、前記[12]に記載の硬化性樹脂組成物。
[14]前記ベース粒子が、有機粒子であり、前記有機粒子はアクリル樹脂、ポリスチレン樹脂、スチレン-アクリル共重合樹脂、酢酸ビニル樹脂、ウレタン樹脂、メラミン樹脂、シリコーン樹脂、又はスチレンブタジエンゴムのいずれかから選択される樹脂の粒子である、前記[1]~[13]のいずれか一つに記載の硬化性樹脂組成物。
[15]さらに、光重合開始剤を含む前記[1]~[14]のいずれか一つに記載の硬化性樹脂組成物。
[16]前記[1]~[15]のいずれか一つに記載の硬化性樹脂組成物を含有するコーティング剤。
[17]前記[1]~[15]のいずれか一つに記載の硬化性樹脂組成物を含有する粘接着剤。
[18]前記[1]~[15]のいずれか一つに記載の硬化性樹脂組成物を含有する紙又は繊維処理剤。
In order to achieve the above object, the present invention provides the following means.
[1] A curable resin composition comprising a resin component having an ethylenically unsaturated group and crosslinkable particles in which a polymer graft chain having an ethylenically unsaturated group is bonded to the surface of the base particle.
[2] The curable resin composition according to [1], wherein the density of the polymer graft chains on the surface of the base particles is 0.05 to 1.2 strands / nm 2 .
[3] The polymer graft chain is a single molecule having at least one reactive functional group (i) selected from the group consisting of an isocyanato group, a carboxyl group, a hydroxyl group, and an epoxy group, and an ethylenically unsaturated group. Curable resin composition as described in said [1] or [2] containing the monomer unit derived from a monomer (C).
[4] A reactive functional group in which the polymer graft chain is capable of reacting with at least one reactive functional group (i) selected from the group consisting of an isocyanato group, a carboxyl group, a hydroxyl group, and an epoxy group ( The reactive functional group (ii) of the compound (D) having ii) and an ethylenically unsaturated group is chemically bonded to the reactive functional group (i) of the monomer unit derived from the monomer (C). The curable resin composition according to [3], which has a structure.
[5] The combination of the reactive functional group (i) in the monomer (C) and the reactive functional group (ii) in the compound (D) is a combination of a hydroxyl group and an isocyanato group, an isocyanato group, The curable resin composition according to [4], which is a combination of a hydroxyl group, a combination of an isocyanate group and a carboxyl group, or a combination of a carboxyl group and an isocyanato group.

[6] The polymer graft chain starts from a polymerization initiating group having a structure derived from the compound (A) in which the compound (A) having an alkoxysilyl group and a halogen group is bonded to the surface of the base particle. The curable resin composition according to any one of [1] to [5] above.
[7] The curable resin composition according to [6], wherein the compound (A) is a compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000002
[In the formula (I), R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 3 carbon atoms, and R 4 and R 5 are each independently an alkyl group having 1 to 3 carbon atoms. X represents a halogen atom, and n is an integer of 3 to 10. ]
[8] The polymer graft chain contains a monomer unit derived from the monomer (B) having no isocyanato group, carboxyl group, hydroxyl group, and epoxy group and having an ethylenically unsaturated group The curable resin composition according to any one of [1] to [7].
[9] The curable resin composition according to [8], wherein the monomer (B) is a monomer having a (meth) acryloyloxy group.
[10] The resin component having an ethylenically unsaturated group is selected from the group consisting of an acrylic resin having an ethylenically unsaturated group, a urethane resin having an ethylenically unsaturated group, an unsaturated polyester resin, and an unsaturated polyolefin resin. The curable resin composition according to any one of the above [1] to [9], which contains at least one kind of resin as a main component.
[11] The above-mentioned [1] to [10], wherein the base particles have a volume average particle diameter of 10 nm to 1 μm, which is a 50% volume cumulative diameter (D50) measured using a laser diffraction particle size distribution analyzer. Curable resin composition as described in any one of these.
[12] The curable resin composition according to any one of [1] to [11], wherein the base particles are inorganic particles.
[13] The curable resin composition according to [12], wherein the inorganic particles are silica particles or metal oxide particles.
[14] The base particles are organic particles, and the organic particles are any of acrylic resin, polystyrene resin, styrene-acrylic copolymer resin, vinyl acetate resin, urethane resin, melamine resin, silicone resin, or styrene butadiene rubber. The curable resin composition according to any one of [1] to [13], wherein the curable resin composition is a resin particle selected from the group consisting of:
[15] The curable resin composition according to any one of [1] to [14], further including a photopolymerization initiator.
[16] A coating agent comprising the curable resin composition according to any one of [1] to [15].
[17] An adhesive containing the curable resin composition according to any one of [1] to [15].
[18] A paper or fiber treatment agent containing the curable resin composition according to any one of [1] to [15].
 本発明によれば、耐熱性に優れる硬化性樹脂組成物、及びその硬化物を提供できる。 According to the present invention, a curable resin composition having excellent heat resistance and a cured product thereof can be provided.
本発明の硬化性樹脂組成物の一例を示す模式図である。It is a schematic diagram which shows an example of the curable resin composition of this invention.
≪硬化性樹脂組成物≫
 本発明の一実施形態に係る硬化性樹脂組成物1は、エチレン性不飽和基を有する樹脂成分10と、エチレン性不飽和基を有する高分子グラフト鎖21がベース粒子22表面に結合した架橋性粒子20と、を含む(図1)。
≪Curable resin composition≫
The curable resin composition 1 according to an embodiment of the present invention has a crosslinkability in which a resin component 10 having an ethylenically unsaturated group and a polymer graft chain 21 having an ethylenically unsaturated group are bonded to the surface of a base particle 22. Particles 20 (FIG. 1).
<エチレン性不飽和基を有する樹脂成分>
 本発明において、エチレン性不飽和基を有する樹脂成分とは、分子内にエチレン性不飽和基を有するポリマー又はモノマーである。本発明においては、樹脂を構成するモノマーも樹脂成分に含めてよいものとする。前記樹脂成分としては、エチレン性不飽和基を有するアクリル樹脂、エチレン性不飽和基を有するウレタン樹脂、不飽和ポリエステル樹脂、不飽和ポリオレフィン樹脂などが挙げられ、なかでも硬化性の高さや使用される基材等への密着性という観点から、エチレン性不飽和基を有するアクリル樹脂、エチレン性不飽和基を有するウレタン樹脂が好ましい。エチレン性不飽和基を有するアクリル樹脂としては、アクリル樹脂アクリレートが挙げられる。エチレン性不飽和基を有するウレタン樹脂としては、ウレタンアクリレートが挙げられる。
 エチレン性不飽和基を有するアクリル樹脂の具体例としては、メチルメタクリレートとヒドロキシエタクリレートの共重合体の水酸基にイソシアナト基とエチレン性不飽和基を有する化合物、具体的には2-イソシアナトエチルメタクリレートなどを反応させたものが挙げられる。
<Resin component having an ethylenically unsaturated group>
In the present invention, the resin component having an ethylenically unsaturated group is a polymer or monomer having an ethylenically unsaturated group in the molecule. In the present invention, a monomer constituting the resin may be included in the resin component. Examples of the resin component include an acrylic resin having an ethylenically unsaturated group, a urethane resin having an ethylenically unsaturated group, an unsaturated polyester resin, an unsaturated polyolefin resin, and the like. From the viewpoint of adhesion to a substrate or the like, an acrylic resin having an ethylenically unsaturated group and a urethane resin having an ethylenically unsaturated group are preferable. An acrylic resin acrylate is mentioned as an acrylic resin which has an ethylenically unsaturated group. Urethane acrylate is mentioned as a urethane resin which has an ethylenically unsaturated group.
Specific examples of the acrylic resin having an ethylenically unsaturated group include compounds having an isocyanate group and an ethylenically unsaturated group at the hydroxyl group of a copolymer of methyl methacrylate and hydroxyethacrylate, specifically 2-isocyanatoethyl. What reacted with methacrylate etc. is mentioned.
 分子内にエチレン性不飽和基を有するモノマーの具体例としては、ブタジエンなどのジエン類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソ-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリルレート、sec-ブチル(メタ)アクリレート、イソ-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリルレート、ペンチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ドデシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、エチルシクロヘキシル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、ロジン(メタ)アクリレート、ノルボルニル(メタ)アクリレート、5-メチルノルボルニル(メタ)アクリレート、5-エチルノルボルニル(メタ)アクリレート、アリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、1,1,1-トリフルオロエチル(メタ)アクリレート、パーフルオロエチル(メタ)アクリレート、パーフルオロ-n-プロピル(メタ)アクリレート、パーフルオロ-イソ-プロピル(メタ)アクリレート、トリフェニルメチル(メタ)アクリレート、クミル(メタ)アクリレート、3-(N,N-ジメチルアミノ)プロピル(メタ)アクリレート、グリセリロールモノ(メタ)アクリレート、ブタントリオールモノ(メタ)アクリレート、ペンタントリオールモノ(メタ)アクリレート、ナフタレン(メタ)アクリレート、アントラセン(メタ)アクリレートなどの(メタ)アクリル酸エステル類;(メタ)アクリル酸アミド、(メタ)アクリル酸N,N-ジメチルアミド、(メタ)アクリル酸N,N-ジエチルアミド、(メタ)アクリル酸N,N-ジプロピルアミド、(メタ)アクリル酸N,N-ジ-イソ-プロピルアミド、(メタ)アクリル酸アントラセニルアミドなどの(メタ)アクリル酸アミド;(メタ)アクリル酸アニリド、(メタ)アクリロイルニトリル、アクロレイン、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、N-ビニルピロリドン、ビニルピリジン、酢酸ビニル、ビニルトルエンなどのビニル化合物;スチレン、スチレンのα-、o-、m-、p-アルキル、ニトロ、シアノ、アミド誘導体;シトラコン酸ジエチル、マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチルなどの不飽和ジカルボン酸ジエステル;N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-ラウリルマレイミド、N-(4-ヒドロキシフェニル)マレイミドなどのモノマレイミド類;(メタ)アクリル酸、クロトン酸、桂皮酸などの不飽和一塩基酸;グリシジル(メタ)アクリレート、脂環式エポキシを有する3,4-エポキシシクロヘキシルメチル(メタ)アクリレートおよびそのラクトン付加物[例えば、ダイセル化学工業(株)製サイクロマーA200、M100]、3,4-エポキシシクロヘキシルメチル-3´,4´-エポキシシクロヘキサンカルボキシレートのモノ(メタ)アクリル酸エステル、ジシクロペンテニル(メタ)アクリレートのエポキシ化物、ジシクロペンテニルオキシエチル(メタ)アクリレートのエポキシ化物などのエポキシ基を有するラジカル重合性モノマー;無水マレイン酸、無水イタコン酸、無水シトラコン酸などの不飽和多塩基酸無水物が挙げられる。これらは、単独で又は2種以上を組み合わせて用いることができる。 Specific examples of monomers having an ethylenically unsaturated group in the molecule include dienes such as butadiene; methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and iso-propyl (meth) acrylate. , N-butyl (meth) acrylate, sec-butyl (meth) acrylate, iso-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, neopentyl (meth) acrylate, benzyl (meth ) Acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, dodecyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl ( ) Acrylate, methylcyclohexyl (meth) acrylate, ethylcyclohexyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, rosin (meth) acrylate, norbornyl (meth) acrylate, 5-methylnorbornyl ( (Meth) acrylate, 5-ethylnorbornyl (meth) acrylate, allyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, 1,1,1-trifluoroethyl (meth) acrylate, perfluoroethyl (meth) acrylate , Perfluoro-n-propyl (meth) acrylate, perfluoro-iso-propyl (meth) acrylate, triphenylmethyl (meth) acrylate, cumyl (meth) acrylate, 3- (N, N-dimethyl) (Meth) acrylic acid such as mino) propyl (meth) acrylate, glyceryl mono (meth) acrylate, butanetriol mono (meth) acrylate, pentanetriol mono (meth) acrylate, naphthalene (meth) acrylate, anthracene (meth) acrylate Esters; (meth) acrylic acid amide, (meth) acrylic acid N, N-dimethylamide, (meth) acrylic acid N, N-diethylamide, (meth) acrylic acid N, N-dipropylamide, (meth) acrylic (Meth) acrylic amides such as acid N, N-di-iso-propylamide, (meth) acrylic acid anthracenyl amide; (meth) acrylic acid anilide, (meth) acryloylnitrile, acrolein, vinyl chloride, vinylidene chloride , Vinyl fluoride, vinylidide fluoride , N-vinyl pyrrolidone, vinyl pyridine, vinyl acetate, vinyl toluene and other vinyl compounds; styrene, α-, o-, m-, p-alkyl, nitro, cyano, amide derivatives of styrene; diethyl citraconic acid, maleic acid Unsaturated dicarboxylic acid diesters such as diethyl, diethyl fumarate and diethyl itaconate; monomaleimides such as N-phenylmaleimide, N-cyclohexylmaleimide, N-laurylmaleimide, N- (4-hydroxyphenyl) maleimide; (meth) Unsaturated monobasic acids such as acrylic acid, crotonic acid, cinnamic acid; glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate having alicyclic epoxy and lactone adduct thereof [eg, Daicel Chemical Industries Cyclomer A2 manufactured by 00, M100], 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate mono (meth) acrylate, epoxidized dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meta ) Radical polymerizable monomers having an epoxy group such as epoxidized acrylate; unsaturated polybasic acid anhydrides such as maleic anhydride, itaconic anhydride and citraconic anhydride. These can be used alone or in combination of two or more.
 前記エチレン性不飽和基を有する樹脂成分は、エチレン性不飽和基を有するアクリル樹脂、エチレン性不飽和基を有するウレタン樹脂、不飽和ポリエステル樹脂、及び不飽和ポリオレフィン樹脂からなる群から選択される少なくとも1種の樹脂を主成分として含むものであることが好ましい。
 アクリル樹脂とは、アクリル酸エステル又はメタクリル酸エステルに由来するモノマー単位を主成分として有する樹脂であり、他のモノマーとの共重合体であってもよい。共重合体の場合、アクリル樹脂は、アクリル酸エステル又はメタクリル酸エステルに由来するモノマー単位を50モル%以上含むことが好ましく、80モル%以上含むことがより好ましく、90モル%以上含むことがさらに好ましい。
 ウレタン樹脂とは、ウレタン結合を有する樹脂であり、他のモノマーとの共重合体であってもよい。共重合体の場合、ウレタン樹脂は、ウレタン結合を形成するモノマー単位を50モル%以上含むことが好ましく、80モル%以上含むことがより好ましく、90モル%以上含むことがさらに好ましい。
 「樹脂を主成分として含む」とは、当該樹脂の少なくとも1種を樹脂成分のうち50質量%以上含むことをいい、70質量%以上含むことが好ましく、80質量%以上含むことがより好ましく、90質量%以上含むことがさらに好ましい。
The resin component having an ethylenically unsaturated group is at least selected from the group consisting of an acrylic resin having an ethylenically unsaturated group, a urethane resin having an ethylenically unsaturated group, an unsaturated polyester resin, and an unsaturated polyolefin resin. It is preferable that one kind of resin is contained as a main component.
The acrylic resin is a resin having a monomer unit derived from an acrylic ester or a methacrylic ester as a main component, and may be a copolymer with another monomer. In the case of a copolymer, the acrylic resin preferably contains 50 mol% or more, more preferably 80 mol% or more, and more preferably 90 mol% or more of a monomer unit derived from an acrylic ester or methacrylic ester. preferable.
The urethane resin is a resin having a urethane bond, and may be a copolymer with another monomer. In the case of a copolymer, the urethane resin preferably contains 50 mol% or more of monomer units that form urethane bonds, more preferably 80 mol% or more, and even more preferably 90 mol% or more.
“Containing resin as a main component” means containing at least one of the resins in an amount of 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more. More preferably, the content is 90% by mass or more.
 樹脂成分がエチレン性不飽和基を有することにより、樹脂成分中のエチレン性不飽和基と、架橋性粒子における高分子グラフト鎖中のエチレン性不飽和基と、が重合可能である。 When the resin component has an ethylenically unsaturated group, the ethylenically unsaturated group in the resin component and the ethylenically unsaturated group in the polymer graft chain in the crosslinkable particle can be polymerized.
<ベース粒子>
 本発明における架橋性粒子のもととなるベース粒子としては、無機粒子および/又は有機粒子が挙げられる。
<Base particles>
Examples of the base particles that are the basis of the crosslinkable particles in the present invention include inorganic particles and / or organic particles.
 無機粒子としては、シリカ粒子等のケイ素酸化物の粒子、Au粒子、Ag粒子、Pt粒子、Pd粒子等の貴金属の粒子、Ti粒子、Zr粒子、Ta粒子、Sn粒子、Zn粒子、Cu粒子、V粒子、Sb粒子、In粒子、Hf粒子、Y粒子、Ce粒子、Sc粒子、La粒子、Eu粒子、Ni粒子、Co粒子、Fe粒子等の遷移金属の粒子、それらの酸化物の粒子又は窒化物の粒子などが挙げられる。なかでも、無機粒子としては、シリカ粒子、又は金属酸化物の粒子が好ましく、コロイダルシリカ粒子が最も好ましい。
 有機粒子としては、アクリル樹脂、ポリスチレン樹脂、スチレン-アクリル共重合樹脂、酢酸ビニル樹脂、ウレタン樹脂、メラミン樹脂、シリコーン樹脂、スチレンブタジエンゴム(SBR)などが挙げられる。なかでも、アクリル樹脂、ポリスチレン樹脂、スチレン-アクリル共重合樹脂、ウレタン樹脂、酢酸ビニル樹脂等の樹脂の粒子が挙げられ、なかでも、アクリル樹脂、スチレン-アクリル共重合樹脂、又はウレタン樹脂の粒子が好ましい。
Examples of inorganic particles include silicon oxide particles such as silica particles, noble metal particles such as Au particles, Ag particles, Pt particles, and Pd particles, Ti particles, Zr particles, Ta particles, Sn particles, Zn particles, Cu particles, Transition metal particles such as V particles, Sb particles, In particles, Hf particles, Y particles, Ce particles, Sc particles, La particles, Eu particles, Ni particles, Co particles, Fe particles, oxide particles or nitriding thereof Examples include particles of objects. Among these, silica particles or metal oxide particles are preferable as the inorganic particles, and colloidal silica particles are most preferable.
Examples of the organic particles include acrylic resin, polystyrene resin, styrene-acrylic copolymer resin, vinyl acetate resin, urethane resin, melamine resin, silicone resin, and styrene butadiene rubber (SBR). In particular, resin particles such as acrylic resin, polystyrene resin, styrene-acrylic copolymer resin, urethane resin, and vinyl acetate resin can be cited. Among them, particles of acrylic resin, styrene-acrylic copolymer resin, or urethane resin are used. preferable.
 有機粒子に比べ製造工程が簡便であるという観点からは、無機粒子のほうがより好ましい。 From the viewpoint that the production process is simple compared to organic particles, inorganic particles are more preferable.
 また、前記ベース粒子表面における高分子グラフト鎖の密度は、粒子の分散性及び架橋効率に優れるという観点から、0.05~1.2本鎖/nmの数値範囲であることが好ましく、0.1~1.0本鎖/nmの数値範囲であることがより好ましく、0.3~0.7本鎖/nmの数値範囲であることがさらに好ましい。
 ベース粒子表面の高分子グラフト鎖の密度は、後述する実施例に記載の測定方法により求めることができる。
The density of the polymer graft chains on the surface of the base particles is preferably in the numerical range of 0.05 to 1.2 strands / nm 2 from the viewpoint of excellent dispersibility and crosslinking efficiency of the particles. More preferably, the numerical range is from 1 to 1.0 strands / nm 2 , and further preferably from 0.3 to 0.7 strands / nm 2 .
The density of the polymer graft chains on the surface of the base particles can be determined by the measurement method described in the examples described later.
 ベース粒子の平均粒子径は、粒子の分散性及び架橋効率に優れるという観点から、10nm~1μmの数値範囲であることが好ましく、10nm~700nmの数値範囲であることがより好ましく、10nm~300nmの数値範囲であることがさらに好ましく、10nm~80nmの数値範囲であることが特に好ましい。
 ベース粒子の平均粒子径が10nm以上である場合、粒子表面からグラフト重合させる際に粒子の曲率の影響を受けにくくなるために、グラフト鎖の密度が高まり、樹脂組成物に用いた場合、架橋密度が高く、樹脂の硬度等膜物性が良好となる傾向にあるため好ましい。粒子径が1μm以下の場合、樹脂組成物に用いた場合、塗膜の透明性が低下する恐れが低減される傾向にあるため好ましい。なお、ベース粒子の平均粒子径は、レーザー回折式粒度分布測定装置を用いて測定される50%体積累積径(D50)のことを指す。
The average particle diameter of the base particles is preferably in a numerical range of 10 nm to 1 μm, more preferably in a numerical range of 10 nm to 700 nm, from the viewpoint of excellent particle dispersibility and crosslinking efficiency. A numerical range is more preferable, and a numerical range of 10 nm to 80 nm is particularly preferable.
When the average particle diameter of the base particles is 10 nm or more, the graft chain density is increased when the graft polymerization is performed from the particle surface, so that the density of the graft chain is increased. Is preferable because the film properties such as the hardness of the resin tend to be good. When the particle diameter is 1 μm or less, when used in a resin composition, there is a tendency that the transparency of the coating film tends to be reduced, which is preferable. The average particle diameter of the base particles refers to the 50% volume cumulative diameter (D50) measured using a laser diffraction particle size distribution measuring device.
 架橋性粒子1粒子あたりの高分子グラフト鎖全体の重量平均分子量は、分散性及び架橋効率に優れるという観点から、1,000~500,000が好ましく、10,000~400,000がより好ましく、40,000~300,000がさらに好ましい。重量平均分子量が1,000以上の場合、架橋性粒子の安定性が向上する傾向にある。500,000以下の場合、有機溶剤へ分散液粘度が著しく高くなる恐れが低減され、ハンドリングが良好となる傾向にある。
 なお、架橋性粒子1粒子あたりの高分子グラフト鎖全体の重量平均分子量は、後述する実施例に記載の測定方法により求めることができる。
The weight average molecular weight of the entire polymer graft chain per crosslinkable particle is preferably 1,000 to 500,000, more preferably 10,000 to 400,000, from the viewpoint of excellent dispersibility and crosslinking efficiency. More preferably, 40,000 to 300,000. When the weight average molecular weight is 1,000 or more, the stability of the crosslinkable particles tends to be improved. In the case of 500,000 or less, the possibility that the viscosity of the dispersion becomes extremely high in the organic solvent is reduced, and the handling tends to be good.
In addition, the weight average molecular weight of the whole polymer graft chain per one crosslinkable particle can be determined by the measurement method described in the examples described later.
<エチレン性不飽和基を有する高分子グラフト鎖>
 本発明における架橋性粒子は、ベース粒子表面に、エチレン性不飽和基を有する高分子グラフト鎖を有するものである。高分子グラフト鎖はポリマー鎖(重合体)であり、前記ベース粒子表面から重合反応によって伸長して形成することができる。
 高分子グラフト鎖におけるエチレン性不飽和基が、エチレン性不飽和基を有する樹脂成分どうしを架橋することで、架橋剤のように働く作用を有する。
<Polymer graft chain having an ethylenically unsaturated group>
The crosslinkable particle in the present invention has a polymer graft chain having an ethylenically unsaturated group on the surface of the base particle. The polymer graft chain is a polymer chain (polymer) and can be formed by extending from the surface of the base particle by a polymerization reaction.
The ethylenically unsaturated group in the polymer graft chain has a function of acting as a crosslinking agent by crosslinking the resin components having an ethylenically unsaturated group.
 そして高分子グラフト鎖は、リビングラジカル重合により製造されたものであることが好ましい。この場合高分子鎖の長さが比較的均一となり、架橋効率が向上する傾向にある。 The polymer graft chain is preferably produced by living radical polymerization. In this case, the length of the polymer chain becomes relatively uniform, and the crosslinking efficiency tends to be improved.
 高分子グラフト鎖においては、高分子グラフト鎖の分子内にエチレン性不飽和基を有するものであれば、高分子グラフト鎖を構成する単量体は特に制限されるものではないが、高分子グラフト鎖は、後述するエチレン性不飽和基と反応性官能基(ii)を有する化合物(D)に由来する構造を含むことが好ましい。より好ましくは、化合物(D)の反応性官能基(ii)と反応可能な反応性官能基(i)とエチレン性不飽和基を有する単量体(C)に由来するモノマー単位を含むことである。さらに好ましくは、単量体(B)に由来するモノマー単位を含むことである。さらに好ましくは、化合物(A)に由来する構造を含むことである。
 本明細書中において、「由来する」とは、前記単量体または化合物が重合するのに必要な構造の変化を受けたことを意味する。
 高分子グラフト鎖が化合物(A)、単量体(B)、単量体(C)、及び化合物(D)の反応物全てを含む場合、高分子グラフト鎖は、前記ベース粒子の側から、前記化合物(A)に由来する構造、前記単量体(B)に由来するモノマー単位、前記単量体(C)に由来するモノマー単位をこの順に含む重合物に、さらに単量体(C)の反応性官能基(i)を介して化合物(D)が結合した構成であることが好ましい。当該高分子グラフト鎖は、前記架橋性粒子のベース粒子に対して化合物(A)、単量体(B)、単量体(C)、化合物(D)の順番に反応させて得られる。化合物(A)に由来する構造、単量体(B)に由来するモノマー単位、単量体(C)に由来するモノマー単位、化合物(D)に由来する構造が、前記ベース粒子の側から、この順番で構成された高分子グラフト鎖において、当該順番が維持されるのであれば、同一種類の単位あるいは構造が連続しているものであってもよく、任意の他の構造が付加されているものであってもよい。
As long as the polymer graft chain has an ethylenically unsaturated group in the polymer graft chain, the monomer constituting the polymer graft chain is not particularly limited. The chain preferably includes a structure derived from the compound (D) having an ethylenically unsaturated group and a reactive functional group (ii) described later. More preferably, by including a monomer unit derived from the monomer (C) having a reactive functional group (i) capable of reacting with the reactive functional group (ii) of the compound (D) and an ethylenically unsaturated group. is there. More preferably, it includes a monomer unit derived from the monomer (B). More preferably, it includes a structure derived from the compound (A).
In the present specification, “derived” means that the monomer or compound has undergone a structural change necessary for polymerization.
When the polymer graft chain includes all reactants of the compound (A), the monomer (B), the monomer (C), and the compound (D), the polymer graft chain is from the base particle side, In addition to the structure derived from the compound (A), the monomer unit derived from the monomer (B), and the monomer unit derived from the monomer (C) in this order, the monomer (C) It is preferable that the compound (D) is bonded via the reactive functional group (i). The polymer graft chain is obtained by reacting the base particles of the crosslinkable particles in the order of the compound (A), the monomer (B), the monomer (C), and the compound (D). The structure derived from the compound (A), the monomer unit derived from the monomer (B), the monomer unit derived from the monomer (C), and the structure derived from the compound (D) are from the base particle side, In the polymer graft chain constituted in this order, the same kind of units or structures may be continuous as long as the order is maintained, and any other structure is added. It may be a thing.
<化合物(A)>
 高分子グラフト鎖は、アルコキシシリル基と、ハロゲン基とを有する化合物(A)が、ベース粒子表面に結合した、前記化合物(A)に由来する構造の重合開始基を開始点とするものであることが好ましい。なお、化合物(A)は、分子内にエチレン性不飽和基を有しないことが好ましい。
 架橋性粒子において、化合物(A)は、前記ベース粒子の表面に対して、アルコキシシリル基が直接結合している形で含まれていることが好ましい。
<Compound (A)>
The polymer graft chain starts from a polymerization initiating group having a structure derived from the compound (A) in which the compound (A) having an alkoxysilyl group and a halogen group is bonded to the surface of the base particle. It is preferable. In addition, it is preferable that a compound (A) does not have an ethylenically unsaturated group in a molecule | numerator.
In the crosslinkable particle, the compound (A) is preferably contained in a form in which an alkoxysilyl group is directly bonded to the surface of the base particle.
 高分子グラフト鎖の構成単位として重合された化合物(A)が、分子内にエチレン性不飽和基を有しない場合、化合物(A)がベース粒子表面に対して直接結合していることにより、ベース粒子表面からエチレン性不飽和基との間隔を適度にとることができるため、架橋性粒子の分散性が良好となり好ましい。 When the compound (A) polymerized as a structural unit of the polymer graft chain does not have an ethylenically unsaturated group in the molecule, the compound (A) is directly bonded to the surface of the base particle. Since the space between the particle surface and the ethylenically unsaturated group can be appropriately set, the dispersibility of the crosslinkable particles becomes good, which is preferable.
 アルコキシシリル基を有する化合物(A)としては、例えば、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシランなどの末端二重結合に、臭素、塩素、ヨウ素などのハロゲンが付加したものが挙げられる。中でも3-メタクリロキシプロピルトリメトキシシランが好ましく、ハロゲンとしては臭素が好ましい。 Examples of the compound (A) having an alkoxysilyl group include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropyltriethoxysilane. And a terminal double bond such as 3-acryloxypropyltrimethoxysilane to which a halogen such as bromine, chlorine or iodine is added. Of these, 3-methacryloxypropyltrimethoxysilane is preferable, and bromine is preferable as the halogen.
 化合物(A)は、一種類のみを用いてもよく、二種類以上を混合して用いてもよい。 Compound (A) may be used alone or in combination of two or more.
 アルコキシシリル基とハロゲンを有する化合物(A)としては、無機粒子に担持する工程が簡便であるという観点から、下記式(I)で表される化合物が好ましい。 As the compound (A) having an alkoxysilyl group and a halogen, a compound represented by the following formula (I) is preferable from the viewpoint that the step of supporting it on inorganic particles is simple.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(I)中、R 、Rは、それぞれ独立して炭素数1~3のアルキル基を表し、好ましくは炭素数1~2のアルキル基である。R、Rはそれぞれ独立して炭素数1~3のアルキル基を表し、好ましくは炭素数1~2のアルキル基である。Xはハロゲン原子を表し、中でもBrが好ましい。nは3~10の整数である。 In the formula (I), R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 3 carbon atoms, preferably an alkyl group having 1 to 2 carbon atoms. R 4 and R 5 each independently represents an alkyl group having 1 to 3 carbon atoms, preferably an alkyl group having 1 to 2 carbon atoms. X represents a halogen atom, and among them, Br is preferable. n is an integer of 3 to 10.
 本明細書において「アルキル基」とは、メタン、エタン、プロパンのような脂肪族炭化水素(アルカン)から水素原子が一つ失われて生ずる1価の基をいい、一般にCnH2n+1-で表される(ここで、nは正の整数である)。アルキル基は、直鎖状または分枝鎖状であり得る。炭素数1~3のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基が挙げられる。 In the present specification, the “alkyl group” means a monovalent group generated by losing one hydrogen atom from an aliphatic hydrocarbon (alkane) such as methane, ethane, or propane, and is generally represented by CnH 2n + 1 —. Where n is a positive integer. The alkyl group can be linear or branched. Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
 式(I)中、nは-CH-の数を表し、nは3~10の整数であり、4~8の整数が好ましく、6が最も好ましい。式(I)中、(CH)n部分はスペーサーとしての役割を有する。 In the formula (I), n represents the number of —CH 2 —, n is an integer of 3 to 10, an integer of 4 to 8 is preferable, and 6 is most preferable. In the formula (I), the (CH 2 ) n moiety has a role as a spacer.
 前記式(I)で表される化合物は、一般的な有機化学に基づいて、合成することができる。前記式(I)で表される化合物としては、例えば(2-ブロモ-2-メチル)プロピオニルオキシヘキシルトリエトキシシラン(BHE)などが挙げられる。 The compound represented by the formula (I) can be synthesized based on general organic chemistry. Examples of the compound represented by the formula (I) include (2-bromo-2-methyl) propionyloxyhexyltriethoxysilane (BHE).
<単量体(B)>
 本発明に係る高分子グラフト鎖は、イソシアナト基、カルボキシル基、ヒドロキシル基、及びエポキシ基のいずれをも有さず且つエチレン性不飽和基を有する単量体(B)、に由来するモノマー単位を含有することが好ましい。
 単量体(B)は、ベース粒子の表面に対して結合した化合物(A)のハロゲン末端を開始点として単量体(B)のエチレン性不飽和基がリビングラジカル重合されることが好ましい。
 単量体(B)が、イソシアナト基、カルボキシル基、ヒドロキシル基、及びエポキシ基のいずれをも有しないので、ベース粒子表面の後述する化合物(D)に由来する構造との間隔を適度にとることができるため、架橋性粒子の分散性が良好となり好ましい。
<Monomer (B)>
The polymer graft chain according to the present invention comprises monomer units derived from a monomer (B) having no isocyanato group, carboxyl group, hydroxyl group, and epoxy group and having an ethylenically unsaturated group. It is preferable to contain.
In the monomer (B), the ethylenically unsaturated group of the monomer (B) is preferably living radically polymerized starting from the halogen terminal of the compound (A) bonded to the surface of the base particle.
Since the monomer (B) does not have any of an isocyanato group, a carboxyl group, a hydroxyl group, and an epoxy group, the distance from the structure derived from the compound (D) described later on the surface of the base particle should be appropriately set. Therefore, the dispersibility of the crosslinkable particles becomes good, which is preferable.
 単量体(B)は、(メタ)アクリロイルオキシ基を有する単量体であることが好ましい。 The monomer (B) is preferably a monomer having a (meth) acryloyloxy group.
 単量体(B)の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、アクリロニトリル、スチレン、スチレン誘導体、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、塩化ビニリデン、エチレン、プロピレン、ブチレン、イソブチレン等を使用することができ、中でもメチルメタクリレート、エチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレートが好ましい。中でも2-エチルヘキシルアクリレートまたはブチルアクリレートが好ましく、ブチルアクリレートが好ましい。単量体(B)は一種類を用いてもよく、二種類以上を混合して用いてもよい。 Specific examples of the monomer (B) include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) It is possible to use acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, acrylonitrile, styrene, styrene derivatives, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride, ethylene, propylene, butylene, isobutylene, etc. Among them, methyl methacrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate are preferable. Of these, 2-ethylhexyl acrylate or butyl acrylate is preferable, and butyl acrylate is preferable. One type of monomer (B) may be used, or two or more types may be mixed and used.
<単量体(C)、化合物(D)>
 本発明に係る高分子グラフト鎖は、イソシアナト基、カルボキシル基、ヒドロキシル基、及びエポキシ基からなる群から選択される少なくとも1種の反応性官能基(i)とエチレン性不飽和基とを有する単量体(C)、に由来するモノマー単位を含有することが好ましい。
 単量体(C)に由来するモノマー単位は、単量体(B)に由来するモノマー単位と結合した形で高分子グラフト鎖内に存在していることが好ましい。単量体(C)に由来するモノマー単位は、単量体(C)の有する前記エチレン性不飽和基が、単量体(B)と重合する形でグラフト鎖内に存在していることが好ましい。例えば、単量体(B)の有するエチレン性不飽和基により末端がエチレン性不飽和基となっている高分子グラフト鎖の前記エチレン性不飽和基に、単量体(C)のエチレン性不飽和基が結合している形が挙げられる。
<Monomer (C), Compound (D)>
The polymer graft chain according to the present invention is a single molecule having at least one reactive functional group (i) selected from the group consisting of an isocyanato group, a carboxyl group, a hydroxyl group, and an epoxy group, and an ethylenically unsaturated group. It is preferable to contain a monomer unit derived from the monomer (C).
The monomer unit derived from the monomer (C) is preferably present in the polymer graft chain in a form combined with the monomer unit derived from the monomer (B). The monomer unit derived from the monomer (C) is such that the ethylenically unsaturated group of the monomer (C) is present in the graft chain in a form of polymerizing with the monomer (B). preferable. For example, the ethylenically unsaturated group of the monomer (C) is added to the ethylenically unsaturated group of the polymer graft chain whose end is an ethylenically unsaturated group due to the ethylenically unsaturated group of the monomer (B). The form which the saturated group has couple | bonded is mentioned.
 本発明に係る高分子グラフト鎖は、イソシアナト基、カルボキシル基、ヒドロキシル基、及びエポキシ基からなる群から選択される少なくとも1種の反応性官能基(i)と反応可能である反応性官能基(ii)とエチレン性不飽和基とを有する化合物(D)の反応性官能基(ii)と、前記単量体(C)に由来するモノマー単位の反応性官能基(i)とが化学結合した構造を有することが好ましい。
 化合物(D)は、単量体(C)の有する反応性官能基(i)により末端が反応性官能基(i)となっている高分子グラフト鎖の前記反応性官能基(i)に、化合物(D)の反応性官能基(ii)が結合している形が好ましい。
 なお、化合物(D)の有するエチレン性不飽和基は、高分子グラフト鎖の有するエチレン性不飽和基であってよい。
The polymer graft chain according to the present invention is a reactive functional group (i) capable of reacting with at least one reactive functional group (i) selected from the group consisting of an isocyanato group, a carboxyl group, a hydroxyl group, and an epoxy group. The reactive functional group (ii) of the compound (D) having ii) and an ethylenically unsaturated group is chemically bonded to the reactive functional group (i) of the monomer unit derived from the monomer (C). It preferably has a structure.
Compound (D) is a reactive functional group (i) of the polymer graft chain whose terminal is a reactive functional group (i) due to the reactive functional group (i) of the monomer (C). A form in which the reactive functional group (ii) of the compound (D) is bonded is preferred.
In addition, the ethylenically unsaturated group which a compound (D) has may be an ethylenically unsaturated group which a polymer graft chain has.
 反応性官能基(i)又は(ii)として、イソシアナト基を有する単量体(C)又は化合物(D)としては、2-イソシアナトエチル(メタ)アクリレート、3-イソシアナトプロピル(メタ)アクリレートが挙げられ、これらは化合物(D)と単量体(C)とを結合させる反応条件を低温で且つ短時間で行うことができる点で好ましい。このようなイソシアナト基含有エチレン性不飽和単量体は、単量体(C)として、高分子グラフト鎖中に一種類のみが含まれていてもよく、複数種類が含まれていてもよい。同様に、イソシアナト基含有エチレン性不飽和単量体は、化合物(D)として、高分子グラフト鎖中に一種類のみが含まれていてもよく、複数種類が含まれていてもよい。 As the reactive functional group (i) or (ii), the monomer (C) or compound (D) having an isocyanato group includes 2-isocyanatoethyl (meth) acrylate, 3-isocyanatopropyl (meth) acrylate. These are preferable in that the reaction conditions for bonding the compound (D) and the monomer (C) can be carried out at a low temperature and in a short time. As such an isocyanato group-containing ethylenically unsaturated monomer, only one type or a plurality of types may be included in the polymer graft chain as the monomer (C). Similarly, only one type of isocyanate group-containing ethylenically unsaturated monomer may be contained in the polymer graft chain as the compound (D), or a plurality of types may be contained.
 反応性官能基(i)又は(ii)として、カルボキシル基を有する単量体(C)又は化合物(D)としては、アクリル酸、メタクリル酸、クロトン酸、フマル酸、マレイン酸、無水マレイン酸、2-メチルマレイン酸、イタコン酸、フタル酸、テトラヒドロフタル酸、テトラヒドロフタル酸無水物、それらの金属塩、アンモニウム塩が挙げられる。重合安定性の点から、単量体(C)および化合物(D)は、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸であることが好ましい。このようなカルボキシル基含有エチレン性不飽和単量体は、単量体(C)として、高分子グラフト鎖中に一種類のみが含まれていてもよく、複数種類が含まれていてもよい。同様に、カルボキシル基含有エチレン性不飽和単量体は、化合物(D)として、高分子グラフト鎖中に一種類のみが含まれていてもよく、複数種類が含まれていてもよい。 As the reactive functional group (i) or (ii), the monomer (C) or compound (D) having a carboxyl group includes acrylic acid, methacrylic acid, crotonic acid, fumaric acid, maleic acid, maleic anhydride, Examples thereof include 2-methylmaleic acid, itaconic acid, phthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, metal salts thereof, and ammonium salts. From the viewpoint of polymerization stability, the monomer (C) and the compound (D) are preferably acrylic acid, methacrylic acid, maleic acid, and maleic anhydride. Such a carboxyl group-containing ethylenically unsaturated monomer may contain only one type or a plurality of types as the monomer (C) in the polymer graft chain. Similarly, only one type of carboxyl group-containing ethylenically unsaturated monomer may be included in the polymer graft chain as the compound (D), or a plurality of types may be included.
 反応性官能基(i)又は(ii)として、ヒドロキシル基を有する単量体(C)又は化合物(D)としては、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、ヒドロキシブチルアクリレート、ポリエチレングリコールモノアクリレート、ポリプロピレングリコールモノアクリレート、ポリテトラメチレングリコールモノアクリレート、ポリエチレングリコールポリテトラメチレングリコールモノアクリレート、ポリプロピレングリコールポリテトラメチレングリコールモノアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルメタクリレート、ポリエチレングリコールモノメタクリレート、ポリプロピレングリコールモノメタクリレート、ポリテトラメチレングリコールモノメタクリレート、ポリエチレングリコールポリテトラメチレングリコールモノメタクリレート、ポリプロピレングリコールポリテトラメチレングリコールモノメタクリレート等が挙げられる。単量体(C)および化合物(D)としては、重合安定性の点から、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレートが好ましい。このようなヒドロキシル基含有エチレン性不飽和単量体は、単量体(C)として、高分子グラフト鎖中に一種類のみが含まれていてもよく、複数種類が含まれていてもよい。同様に、ヒドロキシル基含有エチレン性不飽和単量体は、化合物(D)として、高分子グラフト鎖中に一種類のみが含まれていてもよく、複数種類が含まれていてもよい。 As the reactive functional group (i) or (ii), the hydroxyl group-containing monomer (C) or compound (D) includes hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, polyethylene glycol monoacrylate, polypropylene glycol Monoacrylate, polytetramethylene glycol monoacrylate, polyethylene glycol polytetramethylene glycol monoacrylate, polypropylene glycol polytetramethylene glycol monoacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, polyethylene glycol monomethacrylate, polypropylene glycol monomethacrylate, Polytetramethylene glycol Bruno methacrylate, polyethylene glycol polytetramethylene glycol monomethacrylate, polypropylene glycol polytetramethylene glycol monomethacrylate, and the like. As the monomer (C) and the compound (D), hydroxyethyl acrylate and hydroxyethyl methacrylate are preferable from the viewpoint of polymerization stability. As such a hydroxyl group-containing ethylenically unsaturated monomer, only one type or a plurality of types may be contained in the polymer graft chain as the monomer (C). Similarly, only one kind of hydroxyl group-containing ethylenically unsaturated monomer may be contained in the polymer graft chain as the compound (D), or a plurality of kinds may be contained.
 反応性官能基(i)又は(ii)として、エポキシ基を有する単量体(C)又は化合物(D)としては、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、メチルグリシジルアクリレート、メチルグリシジルメタクリレート、3,4-エポキシシクロヘキシルメチルアクリレート、3,4-エポキシシクロヘキシルメチルメタクリレートなどが挙げられる。単量体(C)および化合物(D)としては重合安定性の点から、グリシジルメタクリレートであることが好ましい。このようなグリシジル基含有エチレン性不飽和単量体は、単量体(C)として、高分子グラフト鎖中に一種類のみが含まれていてもよく、複数種類が含まれていてもよい。同様に、グリシジル基含有エチレン性不飽和単量体は、化合物(D)として、高分子グラフト鎖中に一種類のみが含まれていてもよく、複数種類が含まれていてもよい。 As the reactive functional group (i) or (ii), the monomer (C) or compound (D) having an epoxy group includes glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, methyl glycidyl acrylate, methyl glycidyl methacrylate, 3 , 4-epoxycyclohexylmethyl acrylate, 3,4-epoxycyclohexylmethyl methacrylate, and the like. The monomer (C) and the compound (D) are preferably glycidyl methacrylate from the viewpoint of polymerization stability. As such a glycidyl group-containing ethylenically unsaturated monomer, only one type or a plurality of types may be contained in the polymer graft chain as the monomer (C). Similarly, only one type of glycidyl group-containing ethylenically unsaturated monomer may be included in the polymer graft chain as the compound (D), or a plurality of types may be included.
<反応性官能基(i)または(ii)の組み合わせ>
 本発明において、高分子グラフト鎖が単量体(C)と(D)の両方を含む場合、単量体(C)における反応性官能基(i)と化合物(D)における反応性官能基(ii)の組み合わせとしては、下記のような組み合わせが好ましい。
<Combination of reactive functional group (i) or (ii)>
In the present invention, when the polymer graft chain contains both of the monomers (C) and (D), the reactive functional group (i) in the monomer (C) and the reactive functional group in the compound (D) ( As the combination of ii), the following combinations are preferable.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1中、「3」のカルボキシル基/イソシアナト基の組み合わせは、「4」のイソシアナト基/エポキシ基の組み合わせと比較して、低温で反応が進行し、反応に要する時間も短いため好ましい。「2」のカルボキシル基/エポキシ基の組み合わせは、「3」のカルボキシル基/イソシアナト基の組み合わせと比較して、反応に要する時間がより短いためより好ましい。「1」のヒドロキシル基/イソシアナト基の組み合わせは、「2」~「4」の組み合わせのなかで最も反応が進行しやすく、「2」~「4」の組み合わせと比較して低温で反応が進行し、また、反応に要する時間も短く、結合工程が容易である点で特に好ましい。 In Table 1, the combination of “3” carboxyl group / isocyanato group is preferable because the reaction proceeds at a lower temperature and the time required for the reaction is shorter than the combination of “4” isocyanato group / epoxy group. The “2” carboxyl group / epoxy group combination is more preferable because the time required for the reaction is shorter than the “3” carboxyl group / isocyanato group combination. The “1” hydroxyl / isocyanato group combination is most likely to proceed among the “2” to “4” combinations, and the reaction proceeds at a lower temperature than the “2” to “4” combinations. In addition, it is particularly preferable in that the time required for the reaction is short and the bonding step is easy.
 本発明の硬化性樹脂組成物は、硬化性樹脂組成物中、樹脂成分100質量部に対して、架橋性粒子を0.1~100質量部の範囲で含有することが好ましく、0.2~50質量部の範囲で含有することがより好ましく、0.3~20質量部の範囲で含有することがより好ましく、0.3~10質量部の範囲で含有することがさらに好ましい。 The curable resin composition of the present invention preferably contains 0.1 to 100 parts by mass of crosslinkable particles with respect to 100 parts by mass of the resin component in the curable resin composition. The content is more preferably in the range of 50 parts by mass, more preferably in the range of 0.3 to 20 parts by mass, and still more preferably in the range of 0.3 to 10 parts by mass.
 本発明の硬化性樹脂組成物は、硬化性樹脂組成物中、架橋性粒子を、0.1~50質量%の範囲で含有することが好ましく、0.2~40質量%の範囲で含有することがより好ましく、0.5~30質量%の範囲で含有することがさらに好ましく、1~10質量%の範囲で含有することが特に好ましい。架橋性粒子の含有率を上記数値範囲で含有することで、硬化性樹脂組成物中の架橋性粒子の分散性がよく、効率的に架橋することができる。 The curable resin composition of the present invention preferably contains the crosslinkable particles in the range of 0.1 to 50% by mass, and in the range of 0.2 to 40% by mass in the curable resin composition. The content is more preferably in the range of 0.5 to 30% by mass, still more preferably in the range of 1 to 10% by mass. By containing the content of the crosslinkable particles within the above numerical range, the dispersibility of the crosslinkable particles in the curable resin composition is good, and the crosslinkable particles can be efficiently crosslinked.
 本発明の硬化性樹脂組成物は、硬化性樹脂組成物中、樹脂成分を10~99.9質量%の範囲で含有することが好ましく、20~80質量%の範囲で含有することがより好ましく、30~70質量%の範囲で含有することがさらに好ましい。樹脂成分の含有率を上記数値範囲で含有することで、樹脂成分の基材への密着性、粘着性、耐水性を良好なものとできる。 The curable resin composition of the present invention preferably contains a resin component in the range of 10 to 99.9% by mass in the curable resin composition, and more preferably in the range of 20 to 80% by mass. More preferably, it is contained in the range of 30 to 70% by mass. By containing the content of the resin component in the above numerical range, the adhesion, adhesiveness, and water resistance of the resin component to the substrate can be improved.
 本発明の硬化性樹脂組成物は、硬化性樹脂組成物中、架橋性粒子のエチレン性不飽和基のモル数を、樹脂成分のエチレン性不飽和基のモル数に対して、0.5~50倍モル量とすることが好ましく、1~30倍モル量とすることがより好ましく、2~20倍モル量とすることがさらに好ましい。架橋性粒子のエチレン性不飽和基のモル数を上記数値範囲で含有することで、効率的に架橋することができる。
 高分子グラフト鎖が、化合物(A)、単量体(B)、単量体(C)、及び化合物(D)の化合物又は単量体に由来するモノマー単位又は構造を含む重合物である場合、化合物(A)のモル数Xに対する、高分子グラフト鎖における各単位又は構造の割合として、以下のものを例示できる。
単量体(B):1~5000倍モル量が好ましく、100~4500倍モル量がより好ましく、500~4000倍モル量がさらに好ましい。
単量体(C):1~1000倍モル量が好ましく、10~800倍モル量がより好ましく、50~500倍モル量がさらに好ましい。
化合物(D)1~1000倍モル量が好ましく、10~800倍モル量がより好ましく、50~500倍モル量がさらに好ましい。
In the curable resin composition of the present invention, the number of moles of ethylenically unsaturated groups of the crosslinkable particles in the curable resin composition is from 0.5 to the number of moles of ethylenically unsaturated groups of the resin component. The molar amount is preferably 50 times, more preferably 1 to 30 times, and even more preferably 2 to 20 times. By containing the number of moles of the ethylenically unsaturated group of the crosslinkable particle within the above numerical range, it is possible to efficiently crosslink.
When the polymer graft chain is a polymer containing a monomer unit or structure derived from a compound or monomer of the compound (A), the monomer (B), the monomer (C), and the compound (D) Examples of the ratio of each unit or structure in the polymer graft chain to the number of moles X of the compound (A) include the following.
Monomer (B): The molar amount is preferably 1 to 5000 times, more preferably 100 to 4500 times, and even more preferably 500 to 4000 times.
Monomer (C): The molar amount is preferably 1 to 1000 times, more preferably 10 to 800 times, and even more preferably 50 to 500 times.
The molar amount of the compound (D) is preferably 1 to 1000 times, more preferably 10 to 800 times, and even more preferably 50 to 500 times.
 <反応性モノマー>
 本発明の硬化性樹脂組成物は、反応性、重合性希釈剤として、いわゆる反応性モノマーを含有してもよい。反応性モノマーは、分子内に重合性官能基として少なくとも一つの重合可能なエチレン性不飽和基を有する化合物であり、なかでも重合性官能基を複数有することが好ましい。このような反応性モノマーは、必ずしも重合性組成物の必須成分ではないが、これを硬化性併用することにより、形成される塗膜の膜強度や、基材に対する密着性を向上させることができる。
 反応性モノマーとして用いられる単官能モノマーとしては、(メタ)アクリルアミド、メチロール(メタ)アクリルアミド、メトキシメチル(メタ)アクリルアミド、エトキシメチル(メタ)アクリルアミド、プロポキシメチル(メタ)アクリルアミド、ブトキシメトキシメチル(メタ)アクリルアミド、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、グリセリンモノ(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、グリシジル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、フタル酸誘導体のハーフ(メタ)アクリレートなどの(メタ)アクリレート化合物; スチレン、α-メチルスチレン、α-クロロメチルスチレン、ビニルトルエンなどの芳香族ビニル化合物; 酢酸ビニル、プロピオン酸ビニルなどのカルボン酸エステルなどが挙げられる。また、これらは単独又は2種以上組み合わせて用いることができる。
 一方、多官能モノマーとしては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-へキサングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、グリセリントリアクリレート、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、ウレタン(メタ)アクリレート(すなわち、トリレンジイソシアネート)、トリメチルヘキサメチレンジイソシアネートとヘキサメチレンジイソシアネート等と2-ビドロキシエチル(メタ)アクリレートとの反応物、トリス(ヒドロキシエチル)イソシアヌレートのトリ(メタ)アクリレートなどの(メタ)アクリレート化合物; ジビニルベンゼン、ジアリルフタレート、ジアリルベンゼンホスホネートなどの芳香族ビニル化合物; アジピン酸ジビニルなどのジカルボン酸エステル化合物; トリアリルシアヌレート、メチレンビス(メタ)アクリルアミド、(メタ)アクリルアミドメチレンエーテル、多価アルコールとN-メチロール(メタ)アクリルアミドとの縮合物などが挙げられる。また、これらは単独又は2種以上組み合わせて用いることができる。
<Reactive monomer>
The curable resin composition of the present invention may contain a so-called reactive monomer as a reactive and polymerizable diluent. The reactive monomer is a compound having at least one polymerizable ethylenically unsaturated group as a polymerizable functional group in the molecule, and preferably has a plurality of polymerizable functional groups. Such a reactive monomer is not necessarily an essential component of the polymerizable composition, but by using this in combination with the curability, the film strength of the formed coating film and the adhesion to the substrate can be improved. .
Monofunctional monomers used as reactive monomers include (meth) acrylamide, methylol (meth) acrylamide, methoxymethyl (meth) acrylamide, ethoxymethyl (meth) acrylamide, propoxymethyl (meth) acrylamide, butoxymethoxymethyl (meth) Acrylamide, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4- Hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, glycerol mono (Meth) acrylate, tetrahydrofurfuryl (meth) acrylate, glycidyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, phthalic acid (Meth) acrylate compounds such as half (meth) acrylates of derivatives; aromatic vinyl compounds such as styrene, α-methylstyrene, α-chloromethylstyrene, vinyltoluene; carboxylic acid esters such as vinyl acetate and vinyl propionate Can be mentioned. Moreover, these can be used individually or in combination of 2 or more types.
On the other hand, as the polyfunctional monomer, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexane glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) Acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, , 2-bis (4- (meth) acryloxydiethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane, 2-hydroxy-3- (meth) acryloyloxypropyl ( (Meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl phthalate di (meth) acrylate, glycerin triacrylate, glycerin polyglycidyl ether poly (meth) acrylate, Urethane (meth) acrylate (ie, tolylene diisocyanate), trimethylhexamethylene diisocyanate and hexamethylene diisocyanate, etc. and 2-bidoxyethyl (meth) acrylate (Meth) acrylate compounds such as tri (meth) acrylate of tris (hydroxyethyl) isocyanurate; aromatic vinyl compounds such as divinylbenzene, diallylphthalate and diallylbenzenephosphonate; dicarboxylic acid ester compounds such as divinyl adipate; Examples include allyl cyanurate, methylene bis (meth) acrylamide, (meth) acrylamide methylene ether, and a condensate of polyhydric alcohol and N-methylol (meth) acrylamide. Moreover, these can be used individually or in combination of 2 or more types.
<重合開始剤>
 本発明の硬化性樹脂組成物は、さらに重合開始剤を含んでいてもよい。
 重合開始剤は、硬化性樹脂組成物の硬化に寄与する。重合開始剤としては、ラジカルを発生する光重合開始剤および/または熱重合開始剤が挙げられる。
 光重合開始剤としては、例えば、ベンゾフェノン、ベンゾインメチルエーテル、ベンゾインプロピルエーテル、ジエトキシアセトフェノン、1-ヒドロキシ-フェニルフェニルケトン、2,6-ジメチルベンゾイルジフェニルホスフィンオキシド、ジフェニル-(2,4,6-トリメチルベンゾイル)フォスフィンオキシドおよびビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキシド、2-ヒドロキシ-1-(4-イソプロペニルフェニル)-2-メチルプロパン-1-オンのオリゴマー、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、2,4,6-トリメチルベンゾフェノンなどが挙げられる。これらの光重合開始剤は、単独で用いてもよいし、2種以上を併用してもよい。
 2種以上の光重合開始剤を含む重合開始剤としては、例えば、2-ヒドロキシ-1-(4-イソプロペニルフェニル)-2-メチルプロパン-1-オンのオリゴマーと2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシドと2,4,6-トリメチルベンゾフェノンとの混合物などが挙げられる。
<Polymerization initiator>
The curable resin composition of the present invention may further contain a polymerization initiator.
The polymerization initiator contributes to the curing of the curable resin composition. Examples of the polymerization initiator include a photopolymerization initiator that generates radicals and / or a thermal polymerization initiator.
Examples of the photopolymerization initiator include benzophenone, benzoin methyl ether, benzoin propyl ether, diethoxyacetophenone, 1-hydroxy-phenylphenyl ketone, 2,6-dimethylbenzoyldiphenylphosphine oxide, diphenyl- (2,4,6- Trimethylbenzoyl) phosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, oligomers of 2-hydroxy-1- (4-isopropenylphenyl) -2-methylpropan-1-one, 2 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzophenone and the like. These photopolymerization initiators may be used alone or in combination of two or more.
Examples of the polymerization initiator containing two or more kinds of photopolymerization initiators include oligomers of 2-hydroxy-1- (4-isopropenylphenyl) -2-methylpropan-1-one and 2,4,6-trimethyl. And a mixture of benzoyldiphenylphosphine oxide and 2,4,6-trimethylbenzophenone.
 熱重合開始剤としては、例えば、ベンゾイルパーオキシド、ジイソプロピルパーオキシカーボネート、t-ブチルパーオキシ(2-エチルヘキサノエート)、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシピバレート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカルボネート、ジラウロイルパーオキサイド、ジイソプロピルパーオキシジカルボネート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカルボネート、2,2-ジ(4,4-ジ-(t-ブチルパーオキシ)シクロヘキシル)プロパンが挙げられる。これらの熱重合開始剤は、単独で用いてもよいし、二種類以上を併用してもよい。 Examples of the thermal polymerization initiator include benzoyl peroxide, diisopropyl peroxycarbonate, t-butyl peroxy (2-ethylhexanoate), t-butyl peroxyneodecanoate, t-hexyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-butylperoxypivalate, t-butylperoxy-2-ethylhexanoate, t-hexylperoxyisopropylmonocarbo Nate, dilauroyl peroxide, diisopropyl peroxydicarbonate, di (4-t-butylcyclohexyl) peroxydicarbonate, 2,2-di (4,4-di- (t-butylperoxy) cyclohexyl) propane Can be mentioned. These thermal polymerization initiators may be used alone or in combination of two or more.
 重合開始剤の硬化性樹脂組成物中における含有量は、硬化性樹脂組成物を適度に硬化させる量であればよい。硬化性樹脂組成物中の重合開始剤の含有量は、0.01~10質量%であることが好ましく、より好ましくは0.02~5質量%であり、さらに好ましくは0.1~2質量%である。
 重合開始剤の含有量が多すぎると、硬化性樹脂組成物の保存安定性が低下したり、着色したりする場合がある。また、重合開始剤の含有量が多すぎると、硬化物を得る際の架橋が急激に進行して、割れ等の問題が発生する場合がある。また、重合開始剤の添加量が少なすぎると、硬化性樹脂組成物が硬化しにくくなる。
The content of the polymerization initiator in the curable resin composition may be an amount that allows the curable resin composition to be appropriately cured. The content of the polymerization initiator in the curable resin composition is preferably 0.01 to 10% by mass, more preferably 0.02 to 5% by mass, and further preferably 0.1 to 2% by mass. %.
When there is too much content of a polymerization initiator, the storage stability of curable resin composition may fall or it may color. Moreover, when there is too much content of a polymerization initiator, the bridge | crosslinking at the time of obtaining hardened | cured material will advance rapidly, and problems, such as a crack, may generate | occur | produce. Moreover, when there are too few addition amounts of a polymerization initiator, it will become difficult to harden | cure the curable resin composition.
〈その他の成分〉
 本発明の硬化性樹脂組成物は、上記成分の他に、必要に応じて、組成物の粘度、ならびに硬化物の透明性および耐熱性等の特性を損なわない範囲で、重合禁止剤、レベリング剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、光安定剤、顔料、他の無機フィラー等の充填剤、その他改質剤等を含有してもよい。本発明の硬化性樹脂組成物は、上記成分の他に、必要に応じて、粒子構造を有しない架橋剤を含んでもよい。粒子構造とは、前記ベース粒子である。本発明の硬化性樹脂組成物においては、樹脂組成物に通常される溶媒を使用することができる。
 溶媒の硬化性樹脂組成物中における含有量は、硬化性樹脂組成物の粘度等を考慮して適宜定めればよい。硬化性樹脂組成物中の溶媒の含有量は、10~90質量%であることが好ましく、より好ましくは20~80質量%であり、さらに好ましくは30~70質量%である。
 実施形態の硬化性樹脂組成物は、一例として、樹脂成分と、架橋性粒子と、重合開始剤と、溶媒と、を含む。硬化性樹脂組成物は、例えば、上記の1種以上の成分を、含有量(質量%)の合計が100質量%を超えないように含有する。
<Other ingredients>
In addition to the above components, the curable resin composition of the present invention includes a polymerization inhibitor and a leveling agent as necessary, as long as the viscosity of the composition and the properties of the cured product, such as transparency and heat resistance, are not impaired. , Antioxidants, ultraviolet absorbers, infrared absorbers, light stabilizers, pigments, fillers such as other inorganic fillers, other modifiers, and the like. The curable resin composition of this invention may contain the crosslinking agent which does not have a particle structure as needed other than the said component. The particle structure is the base particle. In the curable resin composition of this invention, the solvent normally used for the resin composition can be used.
The content of the solvent in the curable resin composition may be appropriately determined in consideration of the viscosity of the curable resin composition. The content of the solvent in the curable resin composition is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and further preferably 30 to 70% by mass.
The curable resin composition of the embodiment includes, as an example, a resin component, crosslinkable particles, a polymerization initiator, and a solvent. The curable resin composition contains, for example, the above-described one or more components so that the total content (% by mass) does not exceed 100% by mass.
 重合禁止剤としては、例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル、ベンゾキノン、p-t-ブチルカテコール、2,6-ジ-t-ブチル-4-メチルフェノール等が挙げられる。これらは1種又は2種以上を組み合わせて用いることができる。 Examples of the polymerization inhibitor include hydroquinone, hydroquinone monomethyl ether, benzoquinone, pt-butylcatechol, 2,6-di-t-butyl-4-methylphenol, and the like. These can be used alone or in combination of two or more.
 レベリング剤としては、例えば、ポリエーテル変性ジメチルポリシロキサン共重合物、ポリエステル変性ジメチルポリシロキサン共重合物、ポリエーテル変性メチルアルキルポリシロキサン共重合物、アラルキル変性メチルアルキルポリシロキサン共重合物、ポリエーテル変性メチルアルキルポリシロキサン共重合物等が挙げられる。これらは1種又は2種以上を組み合わせて用いることができる。 Examples of leveling agents include polyether-modified dimethylpolysiloxane copolymer, polyester-modified dimethylpolysiloxane copolymer, polyether-modified methylalkylpolysiloxane copolymer, aralkyl-modified methylalkylpolysiloxane copolymer, and polyether-modified. Examples thereof include methylalkylpolysiloxane copolymer. These can be used alone or in combination of two or more.
 充填剤または顔料としては、炭酸カルシウム、タルク、マイカ、クレー、アエロジル(登録商標)等、硫酸バリウム、水酸化アルミニウム、ステアリン酸亜鉛、亜鉛華、ベンガラ、アゾ顔料等が挙げられる。これらは1種又は2種以上を組み合わせて用いることができる。 Examples of the filler or pigment include calcium carbonate, talc, mica, clay, Aerosil (registered trademark), barium sulfate, aluminum hydroxide, zinc stearate, zinc white, bengara, azo pigment, and the like. These can be used alone or in combination of two or more.
<硬化性樹脂組成物の調製方法>
(架橋性粒子)
 本発明に係る高分子グラフト鎖がベース粒子表面に結合した架橋性粒子は、例えば以下の工程を経て作製することができる。
a)ベース粒子と化合物(A)と反応させ、ベース粒子表面に、末端がハロゲン基である鎖を結合させる工程
b)前記末端ハロゲンと、単量体(B)とをリビングラジカル重合させる工程
c)単量体(B)のラジカル重合の重合末端から、さらに単量体(C)をリビング重合させる工程
d)単量体(C)の反応性官能基(i)を末端とする高分子グラフト鎖に、化合物(D)の反応性官能基(ii)を反応させ、高分子グラフト鎖の末端にエチレン性不飽和基を導入する工程
<Method for preparing curable resin composition>
(Crosslinkable particles)
The crosslinkable particle in which the polymer graft chain according to the present invention is bonded to the surface of the base particle can be produced, for example, through the following steps.
a) a step of reacting the base particle with the compound (A) to bond a chain having a terminal halogen group to the surface of the base particle b) a step of living radical polymerization of the terminal halogen and the monomer (B) c ) Step of living polymerizing monomer (C) from the polymerization terminal of radical polymerization of monomer (B) d) Polymer graft having reactive functional group (i) of monomer (C) as terminal A step of reacting a reactive functional group (ii) of the compound (D) with a chain and introducing an ethylenically unsaturated group into the terminal of the polymer graft chain
《工程a》
 高分子グラフト鎖の製造方法として、まず、化合物(A)をベース粒子表面に結合させ末端がハロゲンである状態にしたのち、そこを起点に高分子グラフト鎖を成長させることが好ましい。この場合、化合物(A)と他の単量体でまず高分子鎖を作製し、それを直接ベース粒子に結合させる製法に比べて、粒子表面上の高分子グラフト鎖の密度が高い架橋性粒子が得られるという特長がある。
<< Step a >>
As a method for producing a polymer graft chain, it is preferable that the compound (A) is first bonded to the surface of the base particle so that the terminal is in a halogen state, and then the polymer graft chain is grown from that point. In this case, a crosslinkable particle having a higher density of polymer graft chains on the particle surface than a production method in which a polymer chain is first prepared with the compound (A) and another monomer and directly bonded to the base particle. There is a feature that can be obtained.
 化合物(A)と反応させるベース粒子は、有機溶媒にベース粒子を分散させてなる分散体を用いることが好ましい。ベース粒子を分散させる有機溶媒としては、例えば、エタノール、ベンゼン、キシレン、トルエンなどが挙げられる。このような分散体を用いることで、ベース粒子を化合物(A)中に容易に分散させることができる。 As the base particles to be reacted with the compound (A), it is preferable to use a dispersion obtained by dispersing the base particles in an organic solvent. Examples of the organic solvent in which the base particles are dispersed include ethanol, benzene, xylene, toluene, and the like. By using such a dispersion, the base particles can be easily dispersed in the compound (A).
 化合物(A)とベース粒子とを混合する方法としては、特に制限は無い。例えば、ミキサー、ボールミル、3本ロールなどの混合機を用いて、室温で化合物(A)とベース粒子とを混合する方法が挙げられる。また、反応容器に化合物(A)を入れ、反応容器中で化合物(A)を連続的に攪拌しながらベース粒子を添加して混合し、分散体を調整する方法を用いてもよい。
 前記分散体に触媒と、必要に応じてその他の成分とを添加して混合し、縮合反応を行う。混合液の温度は、縮合反応を効率的に進行させるために、100℃以下であることが好ましく、70℃以下であることがより好ましく、更に好ましくは50℃以下である。上記混合液の温度は、反応により発生したアルコールまたは水を除去する工程を短時間で行うために、20℃以上であることが好ましく、30℃以上であることがより好ましい。
There is no restriction | limiting in particular as a method of mixing a compound (A) and base particle. For example, the method of mixing a compound (A) and base particles at room temperature using mixers, such as a mixer, a ball mill, and 3 rolls, is mentioned. Alternatively, a method may be used in which the compound (A) is placed in a reaction vessel, and base particles are added and mixed while the compound (A) is continuously stirred in the reaction vessel to prepare a dispersion.
A catalyst and, if necessary, other components are added to the dispersion and mixed to perform a condensation reaction. The temperature of the mixed solution is preferably 100 ° C. or lower, more preferably 70 ° C. or lower, and further preferably 50 ° C. or lower in order to allow the condensation reaction to proceed efficiently. The temperature of the liquid mixture is preferably 20 ° C. or higher, and more preferably 30 ° C. or higher, in order to perform the step of removing alcohol or water generated by the reaction in a short time.
《工程b》
 前記末端ハロゲンを開始点として、単量体(B)とをリビングラジカル重合させる工程は、工程aで得られた末端がハロゲン基である鎖が結合したベース粒子を含む液に、単量体(B)と、触媒と、必要に応じてその他の成分とを添加して混合し、前記末端ハロゲンと、単量体(B)とをラジカル重合させる。混合液の温度は、反応を効率的に進行させるために、100℃以下であることが好ましく、70℃以下であることがより好ましく、更に好ましくは50℃以下である。上記混合液の温度は、短時間で脱溶媒を行うために、20℃以上であることが好ましく、30℃以上であることがより好ましい。
<< Process b >>
In the step of living radical polymerization of the monomer (B) with the terminal halogen as the starting point, the monomer (B) is added to a liquid containing base particles to which a chain having a halogen group at the terminal is obtained. B), a catalyst, and other components as necessary are added and mixed, and the terminal halogen and the monomer (B) are radically polymerized. The temperature of the mixed solution is preferably 100 ° C. or lower, more preferably 70 ° C. or lower, and further preferably 50 ° C. or lower in order to allow the reaction to proceed efficiently. The temperature of the mixed solution is preferably 20 ° C. or higher, and more preferably 30 ° C. or higher, in order to remove the solvent in a short time.
《工程c》
 単量体(B)のリビングラジカル重合の重合末端から、さらに単量体(C)を重合させる工程は、工程bで得られた末端がラジカル重合の重合末端であるグラフト鎖が結合したベース粒子を含む液に、続けて単量体(C)を添加して混合し、前記ラジカル重合の重合末端を開始点として、単量体(C)を重合させる。混合液の温度は、反応を効率的に進行させるために、100℃以下であることが好ましく、70℃以下であることがより好ましく、更に好ましくは50℃以下である。上記混合液の温度は、短時間で脱溶媒を行うために、20℃以上であることが好ましく、30℃以上であることがより好ましい。
<< Process c >>
The step of further polymerizing the monomer (C) from the polymerization terminal of the living radical polymerization of the monomer (B) is a base particle in which a graft chain in which the terminal obtained in the step b is a polymerization terminal of radical polymerization is bonded. Subsequently, the monomer (C) is added to and mixed with the liquid containing the monomer, and the monomer (C) is polymerized starting from the polymerization terminal of the radical polymerization. The temperature of the mixed solution is preferably 100 ° C. or lower, more preferably 70 ° C. or lower, and further preferably 50 ° C. or lower in order to allow the reaction to proceed efficiently. The temperature of the mixed solution is preferably 20 ° C. or higher, and more preferably 30 ° C. or higher, in order to remove the solvent in a short time.
《工程d》
 単量体(C)の反応性官能基(i)を有する高分子グラフト鎖に、化合物(D)の反応性官能基(ii)を反応させる工程は、工程cで得られた末端が反応性官能基(i)である鎖が結合したベース粒子を含む液に、化合物(D)と、必要に応じてその他の成分とを添加して混合し、前記反応性官能基(i)と、化合物(D)とを反応させ、架橋性粒子を得る。
 混合液の温度は、付加反応を効率的に進行させるために、100℃以下であることが好ましく、70℃以下であることがより好ましく、更に好ましくは50℃以下である。上記混合液の温度は、短時間で脱溶媒を行うために、20℃以上であることが好ましく、30℃以上であることがより好ましい。
<< Step d >>
In the step of reacting the reactive functional group (ii) of the compound (D) with the polymer graft chain having the reactive functional group (i) of the monomer (C), the terminal obtained in the step c is reactive. The reactive functional group (i) and the compound are mixed by adding and mixing the compound (D) and other components as necessary to the liquid containing the base particles to which the chain as the functional group (i) is bonded. (D) is reacted to obtain crosslinkable particles.
The temperature of the mixed solution is preferably 100 ° C. or lower, more preferably 70 ° C. or lower, and further preferably 50 ° C. or lower in order to allow the addition reaction to proceed efficiently. The temperature of the mixed solution is preferably 20 ° C. or higher, and more preferably 30 ° C. or higher, in order to remove the solvent in a short time.
(硬化性樹脂組成物)
 前記工程dで得られた架橋性粒子と、エチレン性不飽和基を有する樹脂成分、更に必要によりその他の任意成分とを混合することにより、硬化性樹脂組成物を得ることができる。
(Curable resin composition)
A curable resin composition can be obtained by mixing the crosslinkable particles obtained in the step d, a resin component having an ethylenically unsaturated group, and, if necessary, other optional components.
 硬化性樹脂組成物に対して、濾過を行ってもよい。この濾過は、硬化性樹脂組成物中に含まれるゴミ等の外来の異物を除去するために行う。濾過方法には、特に制限は無い。濾過方法としては、例えばメンブレンタイプ、カートリッジタイプ等のフィルターを使用して、加圧濾過する方法を用いることが好ましい。
 以上の各工程を経ることにより、本発明の硬化性樹脂組成物が得られる。
You may filter with respect to curable resin composition. This filtration is performed in order to remove foreign substances such as dust contained in the curable resin composition. There is no restriction | limiting in particular in the filtration method. As a filtration method, it is preferable to use a pressure filtration method using, for example, a membrane type or cartridge type filter.
The curable resin composition of the present invention is obtained through the above steps.
≪硬化物≫
 本発明の硬化物は、本発明の硬化性樹脂組成物を硬化させることにより得られる。
≪Hardened product≫
The cured product of the present invention is obtained by curing the curable resin composition of the present invention.
〔硬化物の製造方法〕
 本発明の硬化物の製造方法は、本発明の硬化性樹脂組成物を硬化させる工程を有する。
[Method for producing cured product]
The manufacturing method of the hardened | cured material of this invention has the process of hardening the curable resin composition of this invention.
 硬化性樹脂組成物に紫外線等の活性エネルギー線を照射して硬化させる場合は、上記の工程dにおいて得られた架橋性粒子を含む組成物に重合開始剤として光重合開始剤を添加する。また、硬化性樹脂組成物を熱処理により硬化させる場合は、上記の工程dにおいて得られた架橋性粒子を含む組成物に重合開始剤として熱重合開始剤を添加する。 When the curable resin composition is cured by irradiation with active energy rays such as ultraviolet rays, a photopolymerization initiator is added as a polymerization initiator to the composition containing the crosslinkable particles obtained in the above step d. Moreover, when hardening a curable resin composition by heat processing, a thermal polymerization initiator is added as a polymerization initiator to the composition containing the crosslinkable particle obtained in said process d.
 本発明の硬化物を形成するには、例えば、本発明の硬化性樹脂組成物をガラス板、プラスチック板、金属板またはシリコンウエハ等の基板上に塗布して塗膜等に形成するか、あるいは金型等へ注入する等の方法を使用できる。その後、例えば、当該塗膜に活性エネルギー線を照射する、および/または当該塗膜を加熱して硬化させることによって得られる。 In order to form the cured product of the present invention, for example, the curable resin composition of the present invention is applied to a substrate such as a glass plate, a plastic plate, a metal plate or a silicon wafer to form a coating film or the like. A method such as injection into a mold or the like can be used. Thereafter, for example, the coating film is obtained by irradiating the coating film with active energy rays and / or heating and curing the coating film.
 硬化性樹脂組成物の塗布方法としては、例えば、バーコーター、アプリケーター、ダイコーター、スピンコーター、スプレーコーター、カーテンコーターまたはロールコーターなどによる塗布、スクリーン印刷などによる塗布、ならびにディッピングなどによる塗布が挙げられる。
 本発明の硬化性樹脂組成物の基板上への塗布量は、特に限定されず、目的に応じて適宜調整することができる。硬化性樹脂組成物の基板上への塗布量は、活性エネルギー線照射および/または加熱での硬化処理後に得られる塗膜の膜厚が、1μm~10mmとなる量が好ましく、10~1000μmとなる量がより好ましい。
Examples of the application method of the curable resin composition include application by a bar coater, applicator, die coater, spin coater, spray coater, curtain coater or roll coater, application by screen printing, and application by dipping. .
The coating amount of the curable resin composition of the present invention on the substrate is not particularly limited and can be appropriately adjusted according to the purpose. The coating amount of the curable resin composition on the substrate is preferably such that the film thickness of the coating film obtained after the curing treatment by irradiation with active energy rays and / or heating is 1 μm to 10 mm, and 10 to 1000 μm. The amount is more preferred.
 硬化性樹脂組成物を硬化させるために使用される活性エネルギー線としては、電子線、または紫外から赤外の波長範囲の光が好ましい。光源としては、例えば、紫外線であれば、超高圧水銀光源またはメタルハライド光源を用いることができる。また、光源としては、例えば、可視光線であれば、メタルハライド光源またはハロゲン光源を用いることができる。また、光源としては、例えば、赤外線であればハロゲン光源が使用できる。この他にも、例えば、レーザー、LEDなどの光源が使用できる。 As the active energy ray used for curing the curable resin composition, an electron beam or light in the ultraviolet to infrared wavelength range is preferable. As the light source, for example, an ultra-high pressure mercury light source or a metal halide light source can be used in the case of ultraviolet rays. Moreover, as a light source, if it is visible light, a metal halide light source or a halogen light source can be used, for example. As the light source, for example, a halogen light source can be used in the case of infrared rays. In addition, for example, a light source such as a laser or an LED can be used.
 活性エネルギー線の照射量は、光源の種類、塗膜の膜厚などに応じて適宜設定される。
 また、活性エネルギー線を照射して硬化性樹脂組成物を硬化させた後、必要に応じて加熱処理(アニール処理)をして、硬化性樹脂組成物の硬化を更に進行させてもよい。その際の加熱温度は50~150℃の範囲にあることが好ましい。加熱時間は5分~60分の範囲にあることが好ましい。
The irradiation amount of the active energy ray is appropriately set according to the type of light source, the film thickness of the coating film, and the like.
Moreover, after irradiating an active energy ray and hardening a curable resin composition, you may heat-process (annealing) as needed, and may further harden | cure the curable resin composition. The heating temperature at that time is preferably in the range of 50 to 150 ° C. The heating time is preferably in the range of 5 minutes to 60 minutes.
 硬化性樹脂組成物を加熱して熱重合により硬化させる場合、加熱温度は、熱重合開始剤の分解温度に応じて設定すればよいが、好ましくは40~200℃の範囲であり、より好ましくは50~150℃の範囲である。加熱温度が前記範囲を下回ると、加熱時間を長くする必要があり経済性に欠ける傾向にある。加熱温度が前記範囲を上回ると、エネルギーコストがかかるうえに、加熱昇温時間および降温時間がかかるため経済性に欠ける傾向にある。加熱時間は、加熱温度、塗膜の膜厚などに応じて適宜設定される。 When the curable resin composition is heated and cured by thermal polymerization, the heating temperature may be set according to the decomposition temperature of the thermal polymerization initiator, but is preferably in the range of 40 to 200 ° C., more preferably It is in the range of 50 to 150 ° C. When the heating temperature is lower than the above range, it is necessary to lengthen the heating time, and the economy tends to be lacking. If the heating temperature exceeds the above range, energy costs are required, and further, the heating temperature rise time and the temperature drop time are required. The heating time is appropriately set according to the heating temperature, the film thickness of the coating film, and the like.
 熱重合により硬化性樹脂組成物を硬化させた後、必要に応じて加熱処理(アニール処理)を行って、硬化性樹脂組成物の硬化をさらに進行させてもよい。その際の加熱温度は50~150℃の範囲にあることが好ましい。加熱時間は5分~60分の範囲にあることが好ましい。
 一例として、以上の各工程を経ることにより、本発明の硬化物が得られる。
After curing the curable resin composition by thermal polymerization, heat treatment (annealing treatment) may be performed as necessary to further cure the curable resin composition. The heating temperature at that time is preferably in the range of 50 to 150 ° C. The heating time is preferably in the range of 5 minutes to 60 minutes.
As an example, the cured product of the present invention is obtained through the above steps.
 本実施形態の硬化性樹脂組成物は、多官能性架橋性粒子を含有しているため、本実施形態の硬化性樹脂組成物の硬化物は、優れた硬度、耐熱性、耐水性を有している。そのため、本実施形態の硬化性樹脂組成物は、例えば、フィルム、プラスチック、金属等のコーティング剤、粘接着剤、紙処理剤、繊維処理剤として好ましく使用できる。 Since the curable resin composition of this embodiment contains multifunctional crosslinkable particles, the cured product of the curable resin composition of this embodiment has excellent hardness, heat resistance, and water resistance. ing. Therefore, the curable resin composition of this embodiment can be preferably used as, for example, a coating agent such as a film, plastic, or metal, an adhesive, a paper treatment agent, or a fiber treatment agent.
 以下、実施例及び比較例によって本発明をより具体的に説明するが、本発明はこれら実施例に制限されるものではない。なお、実施例及び比較例中の「部」及び「%」は、特に記載がない場合質量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. In the examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified.
(平均分子量)
 本発明及び本明細書中における高分子グラフト鎖の重量平均分子量及び数平均分子量は、架橋性粒子をフッ化水素で処理することで、高分子グラフト鎖をベース粒子から切り離した後に、ゲルパーミエーションクロマトグラフィー(昭和電工株式会社製Shodex GPC System-11)を用いて、下記条件にて常温で測定し、標準ポリスチレン検量線を用いて求めることができる。
カラム:昭和電工株式会社製KF-806L
カラム温度:40℃
試料:反応性官能基含有スチレン系エラストマーの0.2質量%テトラヒドロフラン溶液流量:2ml/分
溶離液:テトラヒドロフラン
検出器:示差屈折率計(RI)
(Average molecular weight)
The weight average molecular weight and number average molecular weight of the polymer graft chain in the present invention and in the present specification are determined by gel permeation after separating the polymer graft chain from the base particle by treating the crosslinkable particles with hydrogen fluoride. Using a chromatography (Shodex GPC System-11 manufactured by Showa Denko KK), measurement is performed at room temperature under the following conditions, and a standard polystyrene calibration curve can be used.
Column: Showa Denko KF-806L
Column temperature: 40 ° C
Sample: 0.2 mass% tetrahydrofuran solution of a reactive functional group-containing styrene elastomer Flow rate: 2 ml / min Eluent: Tetrahydrofuran Detector: Differential refractometer (RI)
(ベース粒子表面のグラフト鎖の密度)
 本発明及び本明細書中におけるグラフト鎖の密度は下記の方法にて測定できる。
 グラフト密度は、熱重量測定装置TGDTA(SII製、TG/DTA6200)を用いて測定した。測定方法は、架橋性粒子を大気条件下で30℃から700℃まで20℃/分の速度で温度上昇させることにより測定した。このようにして、ベース粒子表面にグラフトされたポリマーの重量を求め、ベース粒子の比表面積、グラフトポリマーの数平均分子量を用い算出した。
[グラフト鎖の密度(本鎖/nm)]=
((ベース粒子1gあたりのポリマー重量[g]/グラフトポリマーの数平均分子量)×6.02×1023)/(ベース粒子の比表面積[m/g]×10^18)
(Density of graft chains on the base particle surface)
The density of the graft chain in the present invention and the present specification can be measured by the following method.
The graft density was measured using a thermogravimetric measuring device TGDTA (manufactured by SII, TG / DTA6200). The measurement was performed by raising the temperature of the crosslinkable particles from 30 ° C. to 700 ° C. at a rate of 20 ° C./min under atmospheric conditions. Thus, the weight of the polymer grafted on the surface of the base particle was determined, and the weight was calculated using the specific surface area of the base particle and the number average molecular weight of the graft polymer.
[Density of graft chain (main chain / nm 2 )] =
((Polymer weight per gram of base particle [g] / number average molecular weight of graft polymer) × 6.02 × 10 23 ) / (specific surface area of base particle [m 2 / g] × 10 ^ 18)
<製造例1-1> 架橋性粒子(1)の製造
[コロイダルシリカ表面へのハロゲン基含有表面修飾剤の修飾]
(ハロゲン基含有表面修飾剤(2-ブロモ-2-メチル)プロピオニルオキシヘキシルトリエトキシシラン(BHE。化合物(A))の合成)
 BHEの合成は、2段階反応により、行った。第1段階として、5-ヘキセン-1-オール(43g)、トリエチルアミン(71ml)、テトラヒドロフラン(THF;1000ml)の混合溶液を氷冷し、その中へ2-ブロモイソブチリルブロマイド(63ml)を滴下した。その後、反応液を0℃で3時間攪拌し、さらに室温で10時間攪拌した。反応液を濾過し、濾液を濃縮した後、得られたものをクロロホルム(500ml)により希釈し、それを1N塩酸水溶液、飽和炭酸水素ナトリウム水溶液、純水の順で洗浄した。有機層を乾燥、濃縮後、シリカゲルカラム(溶離液:ヘキサン/酢酸エチル=15/1)により精製し、1-(2-ブロモ-2-メチル)プロピオニルオキシ-5-ヘキセン(BPH)を収率90%で得た。第2段階として、2ッ口フラスコの中へBPH(40g)、トルエン(500ml)、トリエトキシシラン(500ml)、カルステッド触媒(450ml)を順次入れ、その混合液をアルゴン雰囲気下、室温で12時間攪拌した。トルエンと未反応のトリエトキシシランを減圧除去し、ほぼ定量的にBHEを合成した。
<Production Example 1-1> Production of crosslinkable particles (1) [Modification of halogen group-containing surface modifier on colloidal silica surface]
(Synthesis of Halogen Group-Containing Surface Modifier (2-Bromo-2-methyl) propionyloxyhexyltriethoxysilane (BHE. Compound (A)))
BHE was synthesized by a two-step reaction. As a first step, a mixed solution of 5-hexen-1-ol (43 g), triethylamine (71 ml) and tetrahydrofuran (THF; 1000 ml) is ice-cooled, and 2-bromoisobutyryl bromide (63 ml) is added dropwise thereto. did. Thereafter, the reaction solution was stirred at 0 ° C. for 3 hours, and further stirred at room temperature for 10 hours. The reaction solution was filtered, and the filtrate was concentrated. The obtained solution was diluted with chloroform (500 ml), and washed with a 1N hydrochloric acid aqueous solution, a saturated sodium hydrogen carbonate aqueous solution, and pure water in this order. The organic layer was dried and concentrated, and then purified by a silica gel column (eluent: hexane / ethyl acetate = 15/1) to give 1- (2-bromo-2-methyl) propionyloxy-5-hexene (BPH) in a yield. Obtained at 90%. As the second stage, BPH (40 g), toluene (500 ml), triethoxysilane (500 ml), and karsted catalyst (450 ml) were put into a two-necked flask in that order, and the mixture was kept under argon atmosphere at room temperature for 12 hours. Stir. Toluene and unreacted triethoxysilane were removed under reduced pressure, and BHE was synthesized almost quantitatively.
(コロイダルシリカ表面へのハロゲン基含有表面修飾剤(化合物(A)の修飾)
 シリカ微粒子表面へのハロゲン基表面修飾剤の修飾は、以下の手順で行った。コロイダルシリカ(日本触媒製、平均粒子径130nm)を7.7wt%の割合にて分散させたエタノール分散液(30g)を28質量%アンモニア水溶液(13.9g)とエタノール(200ml)の混合液中へ加えた。その混合液を40度で2時間攪拌した後、上記で合成したBHE(2g)のエタノール溶液(10ml)を滴下し、40度で18時間攪拌した。その後、重合開始基を有するコロイダルシリカを遠心分離機により回収し、エタノール、トルエンにより洗浄した後、トルエン中で保存した。
(Halogen group-containing surface modifier on colloidal silica surface (modification of compound (A))
Modification of the halogen group surface modifier on the surface of the silica fine particles was performed according to the following procedure. An ethanol dispersion (30 g) in which colloidal silica (manufactured by Nippon Shokubai Co., Ltd., average particle size 130 nm) is dispersed at a rate of 7.7 wt% is mixed in a 28% by mass ammonia aqueous solution (13.9 g) and ethanol (200 ml). Added to. The mixture was stirred at 40 degrees for 2 hours, and then the ethanol solution (10 ml) of BHE (2 g) synthesized above was added dropwise and stirred at 40 degrees for 18 hours. Thereafter, colloidal silica having a polymerization initiating group was recovered by a centrifuge, washed with ethanol and toluene, and then stored in toluene.
(コロイダルシリカ表面への単量体(B)~(D)の修飾)
 上記で調製した重合開始基を有するコロイダルシリカをベース粒子とし、2質量%の割合で分散させたブチルアクリレート(20g、単量体(B))、Cu(I)Cl(0.032g)、ジノニルビピリジン(0.268g)、エチル2-ブロモイソブチレート(EBIB;0.006g)をフラスコに入れ、窒素置換により脱気した後70℃で24時間重合した。次いで、下記表2に表す単量体(C)(1g)をそれぞれ添加し、窒素置換により脱気した後、70℃で24時間重合し、高分子末端にそれぞれ異なる官能基を有する、中間体粒子を得た。次に空気を導入し、前記中間体粒子に、下記表2に示す化合物(D)を加え、大気条件下にて反応を行い、高分子末端にエチレン性不飽和基を有する架橋性粒子(1)(固形分濃度10質量%)を得た。
 下記に、得られた(B)~(D)成分部分のグラフト鎖の構造式の一例を示す(式中、l,m,nは、それぞれ任意の1以上の整数を表す。)。
(Modification of monomers (B) to (D) on the surface of colloidal silica)
Butyl acrylate (20 g, monomer (B)), Cu (I) Cl (0.032 g), disulfide dispersed in a proportion of 2% by mass using colloidal silica having a polymerization initiating group prepared above as base particles. Nonylbipyridine (0.268 g) and ethyl 2-bromoisobutyrate (EBIB; 0.006 g) were placed in a flask, degassed by nitrogen substitution, and then polymerized at 70 ° C. for 24 hours. Next, each of the monomers (C) (1 g) shown in Table 2 below was added, degassed by nitrogen substitution, polymerized at 70 ° C. for 24 hours, and each having a different functional group at the polymer terminal. Particles were obtained. Next, air was introduced, the compound (D) shown in Table 2 below was added to the intermediate particles, and the reaction was performed under atmospheric conditions, so that crosslinkable particles (1 ) (Solid content concentration 10% by mass).
An example of the structural formula of the graft chains of the obtained component parts (B) to (D) is shown below (wherein, l, m and n each represents an arbitrary integer of 1 or more).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
<製造例1-2> 架橋性粒子(2)の製造
 上記の製造例1-1で使用した単量体(C)及び化合物(D)を、それぞれ下記表2に表す単量体(C)及び化合物(D)に代えた以外は、製造例1-1と同様に製造して、架橋性粒子(2)(固形分濃度10質量%)を得た。
<Production Example 1-2> Production of crosslinkable particles (2) Monomer (C) and compound (D) used in Production Example 1-1 above are represented by monomers (C) shown in Table 2 below, respectively. In the same manner as in Production Example 1-1 except that the compound (D) was used, crosslinkable particles (2) (solid content concentration of 10% by mass) were obtained.
<製造例1-3> 架橋性粒子(3)の製造
 上記の製造例1-1で使用した単量体(C)及び化合物(D)を、それぞれ下記表2に表す単量体(C)及び化合物(D)に代えた以外は、製造例1-1と同様に製造して、架橋性粒子(3)(固形分濃度10質量%)を得た。
<Production Example 1-3> Production of crosslinkable particles (3) Monomer (C) and compound (D) used in Production Example 1-1 above are represented by monomers (C) shown in Table 2 below, respectively. In the same manner as in Production Example 1-1 except that the compound (D) was used, a crosslinkable particle (3) (solid content concentration of 10% by mass) was obtained.
<製造例1-4> 架橋性粒子(4)の製造
 上記の製造例1-1で使用した単量体(C)及び化合物(D)を、それぞれ下記表2に表す単量体(C)及び化合物(D)に代えた以外は、製造例1-1と同様に製造して、架橋性粒子(4)(固形分濃度10質量%)を得た。
<Production Example 1-4> Production of crosslinkable particle (4) Monomer (C) and compound (D) used in Production Example 1-1 above are represented by monomer (C) shown in Table 2 below. In the same manner as in Production Example 1-1 except that the compound (D) was used, crosslinkable particles (4) (solid content concentration of 10% by mass) were obtained.
<製造例1-5> 架橋性粒子(5)の製造
 上記の製造例1-1で使用した単量体(C)及び化合物(D)を、それぞれ下記表2に表す単量体(C)及び化合物(D)に代えた以外は、製造例1-1と同様に製造して、架橋性粒子(5)(固形分濃度10質量%)を得た。
<Production Example 1-5> Production of crosslinkable particles (5) Monomer (C) and compound (D) used in Production Example 1-1 above are represented by monomers (C) shown in Table 2 below, respectively. In the same manner as in Production Example 1-1 except that the compound (D) was used, crosslinkable particles (5) (solid content concentration of 10% by mass) were obtained.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<製造例1-6> 架橋性粒子(6)の製造
 コロイダルシリカ粒子表面へのエチレン性不飽和二重結合の修飾は、以下の手順で行った。コロイダルシリカ(日本触媒製、平均粒子径130nm)を7.7wt%の割合にて分散させたエタノール分散液(30g)を28%アンモニア水溶液(13.9g)とエタノール(200ml)の混合液中へ加えた。その混合液を40度で2時間攪拌した後、3-メタクリロキシプロピルトリメトキシシラン(2g)のエタノール溶液(10ml)を滴下し、40度で18時間攪拌した。その後、エチレン性不飽和二重結合が修飾されたコロイダルシリカを遠心分離機により回収し、エタノール、トルエンにより洗浄した後、トルエン中で保存した。
 攪拌機、温度調節器、還流冷却器、滴下ロート、温度計を付した反応装置に、上記で調製したエチレン性不飽和二重結合を修飾したコロイダルシリカを5wt%の割合(50g)にて分散させたメタクリル酸メチル(2g、単量体(B))、アクリル酸2-ヒドロキシエチル(0.5g、単量体(C))を仕込み、加熱還流開始後、重合開始剤としてアゾビスイソブチロニトリル0.2gを加え、トルエンの還流温度で8時間反応した。その後、2-イソシアナトエチルメタクリレート(0.5g、化合物(D))を加え、付加反応を行い、架橋性粒子(6)(固形分濃度10質量%)を得た。
<Production Example 1-6> Production of Crosslinkable Particle (6) Modification of the ethylenically unsaturated double bond on the surface of the colloidal silica particle was carried out by the following procedure. An ethanol dispersion (30 g) in which colloidal silica (manufactured by Nippon Shokubai Co., Ltd., average particle size 130 nm) is dispersed at a rate of 7.7 wt% is mixed into a mixed solution of 28% aqueous ammonia (13.9 g) and ethanol (200 ml). added. The mixture was stirred at 40 ° C. for 2 hours, and then an ethanol solution (10 ml) of 3-methacryloxypropyltrimethoxysilane (2 g) was added dropwise and stirred at 40 ° C. for 18 hours. Thereafter, the colloidal silica in which the ethylenically unsaturated double bond was modified was recovered by a centrifuge, washed with ethanol and toluene, and then stored in toluene.
In a reactor equipped with a stirrer, a temperature controller, a reflux condenser, a dropping funnel, and a thermometer, the colloidal silica modified with the ethylenically unsaturated double bond prepared above is dispersed at a ratio of 5 wt% (50 g). Methyl methacrylate (2 g, monomer (B)) and 2-hydroxyethyl acrylate (0.5 g, monomer (C)) were charged, and after heating to reflux, azobisisobutyro was used as a polymerization initiator. 0.2 g of nitrile was added and reacted at the reflux temperature of toluene for 8 hours. Thereafter, 2-isocyanatoethyl methacrylate (0.5 g, compound (D)) was added and an addition reaction was carried out to obtain crosslinkable particles (6) (solid content concentration 10% by mass).
 上記の架橋性粒子(1)~(6)の架橋性粒子1粒子あたりの、高分子グラフト鎖全体の重量平均分子量は、約10万であった。 The weight average molecular weight of the entire polymer graft chain per one of the crosslinkable particles (1) to (6) was about 100,000.
<参考製造例1-1> 架橋性粒子(C1)の製造
 上記製造例1-1で調製したハロゲン基表面修飾剤を有するコロイダルシリカを2wt%の割合にて分散させたメタクリル酸2-ヒドロキシエチル(20g)、Cu(I)Cl(0.032g)、ジノニルビピリジン(0.268g)、エチル-2-ブロモイソブチレート(EBIB:)0.006gをフラスコに入れ、窒素置換により脱気した後70℃で24時間重合した。得られた粒子はゲル化していた。
<Reference Production Example 1-1> Production of Crosslinkable Particles (C1) 2-Hydroxyethyl methacrylate in which colloidal silica having a halogen group surface modifier prepared in Production Example 1-1 is dispersed at a ratio of 2 wt%. (20 g), Cu (I) Cl (0.032 g), dinonylbipyridine (0.268 g), and ethyl-2-bromoisobutyrate (EBIB :) 0.006 g were placed in a flask and degassed by nitrogen substitution. Thereafter, polymerization was carried out at 70 ° C. for 24 hours. The obtained particles were gelled.
<製造例2-1> コーティング剤用アクリル樹脂の製造
 攪拌機、温度調節器、還流冷却器、滴下ロート、温度計を付した反応装置に、メタクリル酸メチル280g、2-ヒドロキエチルアクリレート73g及びトルエン125gを仕込み、加熱還流開始後、重合開始剤としてアゾビスイソブチロニトリル2.3gを加え、トルエンの還流温度で8時間反応した。その後、2-イソシアナトエチルメタクリレート74g加え、付加反応を行った。トルエンにて希釈することにより固形分50質量%のコーティング剤用アクリル樹脂を得た。
<Production Example 2-1> Production of acrylic resin for coating agent A reactor equipped with a stirrer, a temperature controller, a reflux condenser, a dropping funnel, and a thermometer was charged with 280 g of methyl methacrylate, 73 g of 2-hydroxyethyl acrylate and 125 g of toluene. Then, 2.3 g of azobisisobutyronitrile was added as a polymerization initiator after the start of heating and refluxing, and the mixture was reacted at the reflux temperature of toluene for 8 hours. Thereafter, 74 g of 2-isocyanatoethyl methacrylate was added to carry out an addition reaction. By diluting with toluene, an acrylic resin for coating agent having a solid content of 50% by mass was obtained.
<製造例2-2> コーティング剤用ウレタン樹脂の製造
 攪拌装置、温度計およびコンデンサーを備えた反応容器中に、GI‐1000(日本曹達製水添ポリブタジエンポリオール)を120g、ヒドロキノンモノメチルエーテル(和光純薬工業製)を0.04g、KS-1260(堺化学工業製ジブチルスズジラウレート)を0.03gおよび、デスモジュールW(バイエル社製メチレンビス(4-シクロヘキシルイソシアネート))を20g、トルエンを70g投入し、撹拌しながら、オイルバスを用いて85~90℃に昇温した。その後、2.5時間撹拌しながら反応を継続した。その後、赤外吸収スペクトルを測定し、イソシアナト基の吸収が消失していることを確認して反応を終了し、さらに2-イソシアナトエチルメタクリレート10g加え、付加反応を行い、トルエンを80g投入して撹拌溶解し、固形分50質量%のコーティング剤用ウレタン樹脂を得た。
<Production Example 2-2> Production of urethane resin for coating agent In a reaction vessel equipped with a stirrer, a thermometer, and a condenser, 120 g of GI-1000 (hydrogenated polybutadiene polyol manufactured by Nippon Soda), hydroquinone monomethyl ether (Wako Pure) 0.04 g of Yakuhin Kogyo Co., Ltd. 0.03 g of KS-1260 (dibutyltin dilaurate manufactured by Sakai Chemical Industry), 20 g of Desmodur W (Methylenebis (4-cyclohexylisocyanate) manufactured by Bayer), and 70 g of toluene. While stirring, the temperature was raised to 85 to 90 ° C. using an oil bath. Thereafter, the reaction was continued with stirring for 2.5 hours. Thereafter, the infrared absorption spectrum was measured, and it was confirmed that the absorption of the isocyanato group had disappeared. Then, the reaction was completed, 10 g of 2-isocyanatoethyl methacrylate was added, an addition reaction was performed, and 80 g of toluene was added. The mixture was dissolved by stirring to obtain a urethane resin for coating agent having a solid content of 50% by mass.
<製造例2-3> 粘接着剤用アクリル樹脂の製造
 攪拌機、温度調節器、還流冷却器、滴下ロート、温度計を付した反応装置に、アクリル酸n-ブチル34g、メタクリル酸メチル150g、アクリル酸2-ヒドロキシエチル2g及びトルエン195gを仕込み、加熱還流開始後、重合開始剤としてアゾビスイソブチロニトリル0.2gを加え、トルエンの還流温度で8時間反応した。その後、2-イソシアナトエチルメタクリレート2g加え、付加反応を行った。トルエンにて希釈することにより固形分50質量%の粘接着剤用アクリル樹脂を得た。
<Manufacture example 2-3> Manufacture of acrylic resin for adhesives A reactor equipped with a stirrer, a temperature controller, a reflux condenser, a dropping funnel, and a thermometer was charged with 34 g of n-butyl acrylate, 150 g of methyl methacrylate, 2 g of 2-hydroxyethyl acrylate and 195 g of toluene were charged, and after heating to reflux, 0.2 g of azobisisobutyronitrile was added as a polymerization initiator and reacted at the reflux temperature of toluene for 8 hours. Thereafter, 2 g of 2-isocyanatoethyl methacrylate was added to carry out an addition reaction. By diluting with toluene, an acrylic resin for adhesive having a solid content of 50% by mass was obtained.
<物性評価>
 物性評価を以下の方法により行った。
(密着性)
 塗膜の上にセロテープ(登録商標)剥離試験を実施した。試験後の表面を目視し、以下の基準で評価した。
○:剥離なし △:一部剥離 ×:大部分剥離
<Physical property evaluation>
The physical properties were evaluated by the following methods.
(Adhesion)
A cellophane (registered trademark) peel test was performed on the coating film. The surface after the test was visually observed and evaluated according to the following criteria.
○: No peeling △: Partial peeling ×: Most peeling
(耐温水白化性)
 密着性試験と同様の試験片を50℃の温水に7日間浸漬した後のガラス板に対する透過率(430nm)の変化を測定した。
(Warm water whitening resistance)
A change in transmittance (430 nm) with respect to a glass plate after a test piece similar to the adhesion test was immersed in warm water at 50 ° C. for 7 days was measured.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(鉛筆硬度)
 PETフィルムに塗装した硬化塗膜にて、JIS-K-5400に基づいて測定した。
(Pencil hardness)
The measurement was performed based on JIS-K-5400 with a cured coating film applied to a PET film.
(初期粘着力)
 得られた粘着シートを、SUS304研磨板に23℃、50%RHにて、2kgローラーを1往復させて貼合させてから20分後に、JIS Z 0237に規定する粘着力の測定方法に準じて180度剥離強度(N/cm)を測定した。
(Initial adhesive strength)
20 minutes after bonding the obtained adhesive sheet to a SUS304 polishing plate at 23 ° C. and 50% RH by reciprocating a 2 kg roller in accordance with the method for measuring the adhesive strength defined in JIS Z 0237 180 degree peel strength (N / cm) was measured.
(耐熱保持力)
 得られた粘着シートを貼合面積が25mm×25mmとなるようにステンレス板に貼り付け、所定の温度条件下にて1kgの荷重をかけて、JIS Z 0237に規定する保持力の測定方法に準じて、測定を行い、1時間以上落下しない温度を耐熱保持力とした。
(Heat resistant holding power)
The obtained pressure-sensitive adhesive sheet was affixed to a stainless steel plate so that the bonding area was 25 mm × 25 mm, applied with a load of 1 kg under a predetermined temperature condition, and in accordance with the measuring method for holding force defined in JIS Z 0237. The temperature at which the sample was not dropped for 1 hour or more was defined as the heat resistant holding force.
<実施例1> コーティング剤組成物、およびその硬化物の製造
 上記製造例2-1で得られたコーティング剤用アクリル樹脂100gに、上記製造例1-1で得られた架橋性粒子(1)12.5g、及び光重合開始剤2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(チバ・スペシャルティ・ケミカルズ株式会社製、DAROCUR(登録商標)1173を2g添加し、コーティング剤組成物を得た。
 得られたコーティング剤組成物を、PETフィルム(厚み25μm)上に乾燥後の厚みが10μmとなるように塗工し、その後105℃、3分間乾燥させた。500mJ/cmの紫外線を照射した後、得られたコーティングシートについて密着性、耐温水性、鉛筆高度の物性測定を行った。結果を表4に示す。
<Example 1> Production of coating agent composition and cured product thereof A crosslinkable particle (1) obtained in Production Example 1-1 was added to 100 g of the acrylic resin for coating agent obtained in Production Example 2-1. 12.5 g and 2 g of photopolymerization initiator 2-hydroxy-2-methyl-1-phenyl-propan-1-one (manufactured by Ciba Specialty Chemicals Co., Ltd., DAROCUR (registered trademark) 1173) were added to form a coating agent composition I got a thing.
The obtained coating agent composition was coated on a PET film (thickness 25 μm) so that the thickness after drying was 10 μm, and then dried at 105 ° C. for 3 minutes. After irradiating with 500 mJ / cm 2 of ultraviolet rays, the obtained coating sheet was measured for physical properties such as adhesion, hot water resistance, and pencil height. The results are shown in Table 4.
<実施例2~6、比較例1~2>
 成分を表4のとおり変更した以外は実施例1と同様にコーティング剤組成物及びコーティングシートを製造し、物性評価を行った。結果を表4に示す。
<Examples 2-6, Comparative Examples 1-2>
A coating composition and a coating sheet were produced in the same manner as in Example 1 except that the components were changed as shown in Table 4, and physical properties were evaluated. The results are shown in Table 4.
<実施例7>
 粘接着剤用アクリル樹脂100gに架橋性粒子(1)12.5g、光重合開始剤イルガキュア2gを添加し粘接着剤組成物を得た。PETフィルム(厚み25μm)上に乾燥後の厚みが10μmとなるように塗工し、その後105℃、3分間乾燥した。次いで、片面に離型フィルムを貼り合せ、ロールで圧着し、PETフィルム基材粘着シートを得た。片面に離型フィルムを貼り合せ、500mJ/cmの紫外線を照射した後、初期粘着力、耐熱保持力の物性測定を行った。結果を表5に示す。
<Example 7>
12.5 g of crosslinkable particles (1) and 2 g of photopolymerization initiator Irgacure were added to 100 g of acrylic resin for adhesives to obtain an adhesive composition. It coated so that the thickness after drying might be set to 10 micrometers on PET film (25 micrometers in thickness), and it dried at 105 degreeC after that for 3 minutes. Next, a release film was bonded to one side and pressure-bonded with a roll to obtain a PET film base material pressure-sensitive adhesive sheet. A release film was bonded to one side and irradiated with ultraviolet rays of 500 mJ / cm 2 , and then physical properties of the initial adhesive strength and heat resistance were measured. The results are shown in Table 5.
<実施例8、比較例3~4>
 成分を表5のとおり変更した以外は実施例7と同様に粘接着剤組成物及び粘着シートを製造し、物性評価を行った。結果を表5に示す。
<Example 8, Comparative Examples 3 to 4>
Except having changed the component as Table 5, the adhesive composition and the adhesive sheet were manufactured similarly to Example 7, and physical-property evaluation was performed. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
---- 架橋性粒子の粒子径による性能の比較について ----
<製造例1-7> 架橋性粒子(7)の製造
 コロイダルシリカを、平均粒子径が15nmのものを用いたこと以外は製造例1-1と同様にして、架橋性粒子(7)(固形分濃度10質量%)を作製した。
---- Comparison of cross-linkable particle performance by particle size ----
<Production Example 1-7> Production of crosslinkable particles (7) Crosslinkable particles (7) (solid) were produced in the same manner as Production Example 1-1 except that colloidal silica having an average particle diameter of 15 nm was used. A partial concentration of 10% by mass) was prepared.
<製造例1-8> 架橋性粒子(8)の製造
 コロイダルシリカを、平均粒子径が450nmのものを用いたこと以外は製造例1-1と同様にして、架橋性粒子(8)(固形分濃度10質量%)を作製した。
<Production Example 1-8> Production of crosslinkable particles (8) Crosslinkable particles (8) (solid) were produced in the same manner as in Production Example 1-1 except that colloidal silica having an average particle diameter of 450 nm was used. A partial concentration of 10% by mass) was prepared.
<実施例9・10>
 架橋性粒子を下記表6のように変更した他は実施例7と同様にして粘接着剤組成物及び粘着シートを製造し、初期粘着力と耐熱保持力の測定を行った。結果を表6に示す。
<Examples 9 and 10>
An adhesive composition and a pressure-sensitive adhesive sheet were produced in the same manner as in Example 7 except that the crosslinkable particles were changed as shown in Table 6 below, and the initial pressure-sensitive adhesive force and heat-resistant holding force were measured. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
---- 架橋性粒子の単量体(B)の違いによる性能の比較について ----
<製造例1-9> 架橋性粒子(9)の製造
 単量体(B)として、ブチルアクリレートに代えてメチルメタクリレートを用いたこと以外は製造例1-1と同様にして、架橋性粒子(9)(固形分濃度10質量%)を作製した。
---- Comparing the performance of different crosslinkable particle monomer (B) ----
<Production Example 1-9> Production of crosslinkable particles (9) Crosslinkable particles (9) were produced in the same manner as in Production Example 1-1 except that methyl methacrylate was used in place of butyl acrylate as the monomer (B). 9) A solid content concentration of 10% by mass was prepared.
<製造例1-10> 架橋性粒子(10)の製造
 単量体(B)として、ブチルアクリレートに代えて2-エチルヘキシルアクリレートを用いたこと以外は製造例1-1と同様にして、架橋性粒子(10)(固形分濃度10質量%)を作製した。
<Production Example 1-10> Production of crosslinkable particles (10) Crosslinkability was the same as Production Example 1-1 except that 2-ethylhexyl acrylate was used in place of butyl acrylate as monomer (B). Particles (10) (solid content concentration of 10% by mass) were prepared.
<実施例11・12>
 架橋性粒子を下記表7のように変更した他は実施例7と同様にして粘接着剤組成物及び粘着シートを製造し、初期粘着力と耐熱保持力の測定を行った。結果を表7に示す。
<Examples 11 and 12>
An adhesive composition and a pressure-sensitive adhesive sheet were produced in the same manner as in Example 7 except that the crosslinkable particles were changed as shown in Table 7 below, and the initial pressure-sensitive adhesive force and heat resistant holding force were measured. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
---- グラフト鎖分子量の違いによる性能の比較について ----
<製造例1-11> 架橋性粒子(11)の製造
 上記製造例1-1で調製したハロゲン基表面修飾剤を有するコロイダルシリカを2wt%の割合にて分散させたメタクリル酸メチル(13.3g、単量体(B))、Cu(I)Cl(0.32g)、ジノニルビピリジン(2.68g)、エチル2-ブロモイソブチレート(EBIB;0.06g)をフラスコに入れ、窒素置換により脱気した後70℃で24時間重合した。次いで、メタクリル酸2-ヒドロキシエチル(0.66g)を単量体(C)として添加し、窒素置換により脱気した後70℃で24時間重合し、中間体粒子を得た。前記中間体粒子に2-イソシアナトエチルメタクリレート(0.66g)を加え付加反応を行い、高分子末端にエチレン性不飽和基を有する架橋性粒子(11)(固形分濃度10質量%)を得た。架橋性粒子(11)の1粒子あたりの、高分子グラフト鎖全体の重量平均分子量は、約1万であった。
---- Comparison of performance due to differences in graft chain molecular weight ----
<Production Example 1-11> Production of crosslinkable particles (11) Methyl methacrylate (13.3 g) in which colloidal silica having a halogen group surface modifier prepared in Production Example 1-1 was dispersed in a proportion of 2 wt%. , Monomer (B)), Cu (I) Cl (0.32 g), dinonylbipyridine (2.68 g), ethyl 2-bromoisobutyrate (EBIB; 0.06 g) were placed in a flask and purged with nitrogen After deaeration by polymerization, polymerization was carried out at 70 ° C. for 24 hours. Next, 2-hydroxyethyl methacrylate (0.66 g) was added as monomer (C), degassed by nitrogen substitution, and then polymerized at 70 ° C. for 24 hours to obtain intermediate particles. 2-isocyanatoethyl methacrylate (0.66 g) is added to the intermediate particles and subjected to an addition reaction to obtain crosslinkable particles (11) (solid content concentration 10% by mass) having an ethylenically unsaturated group at the polymer terminal. It was. The weight average molecular weight of the entire polymer graft chain per one particle of the crosslinkable particle (11) was about 10,000.
<製造例1-12> 架橋性粒子(12)の製造
 上記製造例1-1で調製したハロゲン基表面修飾剤を有するコロイダルシリカを2wt%の割合にて分散させたメタクリル酸メチル(20.8g、単量体(B))、Cu(I)Cl(0.0011g)、ジノニルビピリジン(0.0095g)、エチル2-ブロモイソブチレート(EBIB;0.00021g)をフラスコに入れ、窒素置換により脱気した後70℃で24時間重合した。次いで、メタクリル酸2-ヒドロキシエチル(1.03g)を単量体(C)としてそれぞれ添加し、窒素置換により脱気した後70℃で24時間重合し、中間体粒子を得た。前記中間体粒子に2-イソシアナトエチルメタクリレート(1.03g)を加え付加反応を行い、高分子末端にエチレン性不飽和基を有する架橋性粒子(12)(固形分濃度10質量%)を得た。架橋性粒子(12)の1粒子あたりの、高分子グラフト鎖全体の重量平均分子量は、約30万であった。
<Production Example 1-12> Production of crosslinkable particles (12) Methyl methacrylate (20.8 g) in which colloidal silica having a halogen group surface modifier prepared in Production Example 1-1 was dispersed at a rate of 2 wt%. , Monomer (B)), Cu (I) Cl (0.0011 g), dinonylbipyridine (0.0095 g), ethyl 2-bromoisobutyrate (EBIB; 0.00021 g) were placed in a flask and purged with nitrogen After deaeration by polymerization, polymerization was carried out at 70 ° C. for 24 hours. Next, 2-hydroxyethyl methacrylate (1.03 g) was added as a monomer (C), degassed by nitrogen substitution, and polymerized at 70 ° C. for 24 hours to obtain intermediate particles. 2-isocyanatoethyl methacrylate (1.03 g) is added to the intermediate particles and subjected to an addition reaction to obtain crosslinkable particles (12) (solid content concentration 10% by mass) having an ethylenically unsaturated group at the polymer terminal. It was. The weight average molecular weight of the entire polymer graft chain per one particle of the crosslinkable particle (12) was about 300,000.
<実施例13・14>
 架橋性粒子として架橋性粒子(11)および(12)を用いた他は、実施例7と同様にして粘接着剤組成物及び粘着シートを製造し、初期粘着力および耐熱保持力を測定した。
結果を表8に示す。
<Examples 13 and 14>
Except for using the crosslinkable particles (11) and (12) as the crosslinkable particles, the pressure-sensitive adhesive composition and the pressure-sensitive adhesive sheet were produced in the same manner as in Example 7, and the initial pressure-sensitive adhesive force and the heat-resistant holding force were measured. .
The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
---- グラフト鎖の密度の違いによる性能の比較について ----
<製造例1-13> 架橋性粒子(13)の製造
(コロイダルシリカ表面へのBHEの修飾)
 シリカ微粒子表面へのハロゲン基表面修飾剤の修飾は、以下の手順で行った。コロイダルシリカ(日本触媒製、平均粒子径130nm)を7.7wt%の割合にて分散させたエタノール分散液(30g)を28%アンモニア水溶液(25g)とエタノール(200ml)の混合液中へ加えた。その混合液を40度で2時間攪拌した後、製造例1-1において合成したBHE(2g)のエタノール溶液(10ml)を滴下し、40度で18時間攪拌した。その後、開始基を有するコロイダルシリカを遠心分離機により回収し、エタノール、トルエンにより洗浄した後、トルエン中で保存した。
---- Comparison of performance due to graft chain density difference ----
<Production Example 1-13> Production of crosslinkable particles (13) (modification of BHE on colloidal silica surface)
Modification of the halogen group surface modifier on the surface of the silica fine particles was performed according to the following procedure. An ethanol dispersion (30 g) in which colloidal silica (manufactured by Nippon Shokubai, average particle size 130 nm) was dispersed at a rate of 7.7 wt% was added to a mixed solution of 28% aqueous ammonia (25 g) and ethanol (200 ml). . The mixture was stirred at 40 ° C. for 2 hours, and then an ethanol solution (10 ml) of BHE (2 g) synthesized in Production Example 1-1 was added dropwise and stirred at 40 ° C. for 18 hours. Thereafter, colloidal silica having an initiating group was recovered with a centrifuge, washed with ethanol and toluene, and then stored in toluene.
(コロイダルシリカ表面への単量体(B)~(D)の修飾)
 上記で調製したハロゲン基含有表面修飾剤を有するコロイダルシリカを2wt%の割合にて分散させたメタクリル酸メチル(20g、単量体(B))、Cu(I)Cl(0.032g)、ジノニルビピリジン(0.268g)、エチル2-ブロモイソブチレート(EBIB;0.006g)をフラスコに入れ、窒素置換により脱気した後70℃で24時間重合した。次いで、メタクリル酸2-ヒドロキシメチル(1g)を単量体(C)として添加し、窒素置換により脱気した後70℃で24時間重合し、中間体粒子を得た。前記中間体粒子に2-イソシアナトエチルメタクリレート(1g、化合物(D))を加え付加反応を行い、高分子末端にエチレン性不飽和基を有する架橋性粒子(13)(固形分濃度10質量%)を得た。架橋性粒子(13)1粒子あたりの、重量平均分子量は約10万、グラフト密度は0.8本鎖/nmであった。
(Modification of monomers (B) to (D) on the surface of colloidal silica)
Methyl methacrylate (20 g, monomer (B)), Cu (I) Cl (0.032 g), disulfide having colloidal silica having a halogen group-containing surface modifier prepared as described above dispersed at a rate of 2 wt%. Nonylbipyridine (0.268 g) and ethyl 2-bromoisobutyrate (EBIB; 0.006 g) were placed in a flask, degassed by nitrogen substitution, and then polymerized at 70 ° C. for 24 hours. Next, 2-hydroxymethyl methacrylate (1 g) was added as monomer (C), degassed by nitrogen substitution, and polymerized at 70 ° C. for 24 hours to obtain intermediate particles. 2-isocyanatoethyl methacrylate (1 g, compound (D)) is added to the intermediate particles and subjected to an addition reaction to form crosslinkable particles (13) having an ethylenically unsaturated group at the polymer terminal (solid content concentration: 10% by mass) ) The weight average molecular weight per crosslinkable particle (13) was about 100,000, and the graft density was 0.8 strands / nm 2 .
<製造例1-14> 架橋性粒子(14)の製造
(コロイダルシリカ表面へのBHEの修飾)
 シリカ微粒子表面へのハロゲン基表面修飾剤の修飾は、以下の手順で行った。コロイダルシリカ(日本触媒製、平均粒子径130nm)を7.7wt%の割合にて分散させたエタノール分散液(30g)を28%アンモニア水溶液(5g)とエタノール(200ml)の混合液中へ加えた。その混合液を40度で2時間攪拌した後、製造例1-1において合成したBHE(2g)のエタノール溶液(10ml)を滴下し、40度で18時間攪拌した。その後、開始基を有するコロイダルシリカを遠心分離機により回収し、エタノール、トルエンにより洗浄した後、トルエン中で保存した。
<Production Example 1-14> Production of crosslinkable particles (14) (modification of BHE on colloidal silica surface)
Modification of the halogen group surface modifier on the surface of the silica fine particles was performed according to the following procedure. An ethanol dispersion (30 g) in which colloidal silica (manufactured by Nippon Shokubai, average particle size 130 nm) was dispersed at a rate of 7.7 wt% was added to a mixed solution of 28% aqueous ammonia (5 g) and ethanol (200 ml). . The mixture was stirred at 40 ° C. for 2 hours, and then an ethanol solution (10 ml) of BHE (2 g) synthesized in Production Example 1-1 was added dropwise and stirred at 40 ° C. for 18 hours. Thereafter, colloidal silica having an initiating group was recovered with a centrifuge, washed with ethanol and toluene, and then stored in toluene.
(コロイダルシリカ表面への単量体(B)~(D)の修飾)
 上記で調製したハロゲン基含有表面修飾剤を有するコロイダルシリカを2wt%の割合にて分散させたメタクリル酸メチル(20g、単量体(B))、Cu(I)Cl(0.032g)、ジノニルビピリジン(0.268g)、エチル2-ブロモイソブチレート(EBIB;0.006g)をフラスコに入れ、窒素置換により脱気した後70℃で24時間重合した。次いで、メタクリル酸2-ヒドロキシメチル(1g)を単量体(C)としてそれぞれ添加し、窒素置換により脱気した後70℃で24時間重合し、中間体粒子を得た。
前記中間体粒子に2-イソシアナトエチルメタクリレート(1g、化合物(D))を加え付加反応を行い、高分子末端にエチレン性不飽和基を有する架橋性粒子(14)(固形分濃度10質量%)を得た。架橋性粒子(14)1粒子あたりの、重量平均分子量は約10万、グラフト密度は0.2本鎖/nmであった。
(Modification of monomers (B) to (D) on the surface of colloidal silica)
Methyl methacrylate (20 g, monomer (B)), Cu (I) Cl (0.032 g), disulfide having colloidal silica having a halogen group-containing surface modifier prepared as described above dispersed at a rate of 2 wt%. Nonylbipyridine (0.268 g) and ethyl 2-bromoisobutyrate (EBIB; 0.006 g) were placed in a flask, degassed by nitrogen substitution, and then polymerized at 70 ° C. for 24 hours. Next, 2-hydroxymethyl methacrylate (1 g) was added as monomer (C), degassed by nitrogen substitution, and polymerized at 70 ° C. for 24 hours to obtain intermediate particles.
2-isocyanatoethyl methacrylate (1 g, compound (D)) is added to the intermediate particles and subjected to an addition reaction to form crosslinkable particles (14) having an ethylenically unsaturated group at the polymer terminal (solid content concentration: 10% by mass) ) The weight average molecular weight per crosslinkable particle (14) was about 100,000, and the graft density was 0.2 strands / nm 2 .
<実施例15・16>
 架橋性粒子として架橋性粒子(13)および(14)を用いた他は、実施例7と同様にして粘接着剤組成物及び粘着シートを製造し、初期粘着力および耐熱保持力を測定した。
結果を表9に示す。
<Examples 15 and 16>
An adhesive composition and a pressure-sensitive adhesive sheet were produced in the same manner as in Example 7 except that the cross-linkable particles (13) and (14) were used as the cross-linkable particles, and the initial pressure-sensitive adhesive force and heat-resistant holding force were measured. .
The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<比較製造例1-2>
 コンデンサー及び攪拌機を取り付けた三口フラスコに、ペンタエリスリトール13.6g、2,2-ビスヒドロキシメチルプロピオン酸163g、及びp-トルエンスルホン酸0.5gを加えて窒素をフローしながら145℃のオイルバス中で2時間反応させて均一系溶液とした。その後、減圧下(50mmHg以下 、145℃)で更に2時間反応させて、下記式(II)に示すデンドリマーを得た。
<Comparative Production Example 1-2>
To a three-necked flask equipped with a condenser and a stirrer, add 13.6 g of pentaerythritol, 163 g of 2,2-bishydroxymethylpropionic acid, and 0.5 g of p-toluenesulfonic acid, and in a 145 ° C. oil bath while flowing nitrogen. For 2 hours to obtain a homogeneous solution. Then, it was made to react further under reduced pressure (50 mmHg or less, 145 degreeC) for 2 hours, and the dendrimer shown to following formula (II) was obtained.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 その後、得られた前記デンドリマーに、トルエン20g、2-イソシアナートエチルメタクリレート202g、ジ-n-ブチルスズジラウレート0.05g及びハイドロキノン0.07gを追加添加し、80℃で5時間反応させて、エチレン性不飽和基を有するデンドリマーを得た。 Thereafter, 20 g of toluene, 202 g of 2-isocyanatoethyl methacrylate, 0.05 g of di-n-butyltin dilaurate and 0.07 g of hydroquinone were added to the obtained dendrimer, and the mixture was reacted at 80 ° C. for 5 hours to obtain ethylenic acid. A dendrimer having an unsaturated group was obtained.
<比較例5>
 上記比較製造例1-2で得られた不飽和基を有するデンドリマーを、架橋性粒子(1)の代わりに用いた他は、実施例7と同様にして粘接着剤組成物及び粘着シートを製造し、初期粘着力および耐熱保持力を測定した。結果を表10に示す。
<Comparative Example 5>
The adhesive composition and the pressure-sensitive adhesive sheet were obtained in the same manner as in Example 7 except that the dendrimer having an unsaturated group obtained in Comparative Production Example 1-2 was used instead of the crosslinkable particle (1). Manufactured and measured for initial adhesion and heat retention. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。 Each configuration in each embodiment, a combination thereof, and the like are examples, and the addition, omission, replacement, and other changes of the configuration can be made without departing from the spirit of the present invention. Further, the present invention is not limited by each embodiment, and is limited only by the scope of the claims.
 本発明によれば、耐熱性に優れる硬化性樹脂組成物、及びその硬化物を提供することができる。 According to the present invention, a curable resin composition having excellent heat resistance and a cured product thereof can be provided.
1…硬化性樹脂組成物、10…樹脂成分、20…架橋性粒子、21…高分子グラフト鎖、22…ベース粒子 DESCRIPTION OF SYMBOLS 1 ... Curable resin composition, 10 ... Resin component, 20 ... Crosslinkable particle, 21 ... Polymer graft chain, 22 ... Base particle

Claims (15)

  1.  エチレン性不飽和基を有する樹脂成分と、エチレン性不飽和基を有する高分子グラフト鎖がベース粒子表面に結合した架橋性粒子と、を含む硬化性樹脂組成物。 A curable resin composition comprising a resin component having an ethylenically unsaturated group and crosslinkable particles in which a polymer graft chain having an ethylenically unsaturated group is bonded to the surface of the base particle.
  2.  前記ベース粒子表面における前記高分子グラフト鎖の密度が、0.05~1.2本鎖/nmである、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the density of the polymer graft chains on the surface of the base particles is 0.05 to 1.2 strands / nm 2 .
  3.  前記高分子グラフト鎖が、イソシアナト基、カルボキシル基、ヒドロキシル基、及びエポキシ基からなる群から選択される少なくとも1種の反応性官能基(i)とエチレン性不飽和基とを有する単量体(C)に由来するモノマー単位を含有する、請求項1又は2に記載の硬化性樹脂組成物。 The polymer graft chain is a monomer having at least one reactive functional group (i) selected from the group consisting of an isocyanato group, a carboxyl group, a hydroxyl group, and an epoxy group and an ethylenically unsaturated group ( Curable resin composition of Claim 1 or 2 containing the monomer unit derived from C).
  4.  前記高分子グラフト鎖が、イソシアナト基、カルボキシル基、ヒドロキシル基、及びエポキシ基からなる群から選択される少なくとも1種の反応性官能基(i)と反応可能である反応性官能基(ii)とエチレン性不飽和基とを有する化合物(D)の反応性官能基(ii)と、前記単量体(C)に由来するモノマー単位の反応性官能基(i)とが化学結合した構造を有する、請求項3に記載の硬化性樹脂組成物。 A reactive functional group (ii) in which the polymer graft chain is capable of reacting with at least one reactive functional group (i) selected from the group consisting of an isocyanato group, a carboxyl group, a hydroxyl group, and an epoxy group; It has a structure in which the reactive functional group (ii) of the compound (D) having an ethylenically unsaturated group and the reactive functional group (i) of the monomer unit derived from the monomer (C) are chemically bonded. The curable resin composition according to claim 3.
  5.  前記単量体(C)における前記反応性官能基(i)と、前記化合物(D)における前記反応性官能基(ii)の組み合わせが、ヒドロキシル基とイソシアナト基の組み合わせ、イソシアナト基とヒドロキシル基の組み合わせ、イソシアナト基とカルボキシル基の組み合わせ、又はカルボキシル基とイソシアナト基の組み合わせである、請求項4に記載の硬化性樹脂組成物。 A combination of the reactive functional group (i) in the monomer (C) and the reactive functional group (ii) in the compound (D) is a combination of a hydroxyl group and an isocyanate group, an isocyanate group and a hydroxyl group. The curable resin composition according to claim 4, which is a combination, a combination of an isocyanate group and a carboxyl group, or a combination of a carboxyl group and an isocyanate group.
  6.  前記高分子グラフト鎖が、アルコキシシリル基とハロゲン基とを有する化合物(A)が前記ベース粒子表面に結合した、前記化合物(A)に由来する構造の重合開始基を開始点とするものである、請求項1~5のいずれか一項に記載の硬化性樹脂組成物。 The polymer graft chain starts from a polymerization initiating group having a structure derived from the compound (A) in which a compound (A) having an alkoxysilyl group and a halogen group is bonded to the surface of the base particle. The curable resin composition according to any one of claims 1 to 5.
  7.  前記化合物(A)が、下記式(I)で表される化合物である、請求項6に記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、R 、Rは、それぞれ独立して炭素数1~3のアルキル基を表し、R、Rはそれぞれ独立して炭素数1~3のアルキル基を表し、Xはハロゲン原子を表し、nは3~10の整数である。]
    The curable resin composition according to claim 6, wherein the compound (A) is a compound represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (I), R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 3 carbon atoms, and R 4 and R 5 are each independently an alkyl group having 1 to 3 carbon atoms. X represents a halogen atom, and n is an integer of 3 to 10. ]
  8.  前記高分子グラフト鎖が、イソシアナト基、カルボキシル基、ヒドロキシル基、及びエポキシ基のいずれをも有さず且つエチレン性不飽和基を有する単量体(B)に由来するモノマー単位を含有する、請求項1~7のいずれか一項に記載の硬化性樹脂組成物。 The polymer graft chain contains a monomer unit derived from the monomer (B) having no isocyanato group, carboxyl group, hydroxyl group, and epoxy group and having an ethylenically unsaturated group. Item 8. The curable resin composition according to any one of Items 1 to 7.
  9.  前記単量体(B)が(メタ)アクリロイルオキシ基を有する単量体である、請求項8に記載の硬化性樹脂組成物。 The curable resin composition according to claim 8, wherein the monomer (B) is a monomer having a (meth) acryloyloxy group.
  10.  前記エチレン性不飽和基を有する樹脂成分が、エチレン性不飽和基を有するアクリル樹脂、エチレン性不飽和基を有するウレタン樹脂、不飽和ポリエステル樹脂、及び不飽和ポリオレフィン樹脂からなる群から選択される少なくとも1種の樹脂を主成分として含む、請求項1~9のいずれか一項に記載の硬化性樹脂組成物。 The resin component having an ethylenically unsaturated group is at least selected from the group consisting of an acrylic resin having an ethylenically unsaturated group, a urethane resin having an ethylenically unsaturated group, an unsaturated polyester resin, and an unsaturated polyolefin resin. The curable resin composition according to any one of claims 1 to 9, comprising one resin as a main component.
  11.  前記ベース粒子の、レーザー回折式粒度分布測定装置を用いて測定される50%体積累積径(D50)である体積平均粒子径が10nm~1μmである、請求項1~10のいずれか一項に記載の硬化性樹脂組成物。 11. The volume average particle diameter of the base particle, which is a 50% volume cumulative diameter (D50) measured using a laser diffraction particle size distribution measuring device, is 10 nm to 1 μm, according to any one of claims 1 to 10. The curable resin composition described.
  12.  前記ベース粒子が、無機粒子である、請求項1~11のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of Claims 1 to 11, wherein the base particles are inorganic particles.
  13.  前記無機粒子が、シリカ粒子または金属酸化物の粒子である、請求項12に記載の硬化性樹脂組成物。 The curable resin composition according to claim 12, wherein the inorganic particles are silica particles or metal oxide particles.
  14.  前記ベース粒子が、有機粒子であり、前記有機粒子はアクリル樹脂、ポリスチレン樹脂、スチレン-アクリル共重合樹脂、酢酸ビニル樹脂、ウレタン樹脂、メラミン樹脂、シリコーン樹脂、又はスチレンブタジエンゴムのいずれかから選択される樹脂の粒子である、請求項1~13のいずれか一項に記載の硬化性樹脂組成物。 The base particles are organic particles, and the organic particles are selected from acrylic resin, polystyrene resin, styrene-acrylic copolymer resin, vinyl acetate resin, urethane resin, melamine resin, silicone resin, or styrene butadiene rubber. The curable resin composition according to any one of claims 1 to 13, which is a resin particle.
  15.  さらに、光重合開始剤を含む請求項1~14のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 14, further comprising a photopolymerization initiator.
PCT/JP2016/066754 2015-06-12 2016-06-06 Curable resin composition including crosslinkable particles WO2016199717A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017523625A JP6749325B2 (en) 2015-06-12 2016-06-06 Adhesive composition, paper treatment agent or fiber treatment agent, coating composition and coating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-119208 2015-06-12
JP2015119208 2015-06-12

Publications (1)

Publication Number Publication Date
WO2016199717A1 true WO2016199717A1 (en) 2016-12-15

Family

ID=57503376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066754 WO2016199717A1 (en) 2015-06-12 2016-06-06 Curable resin composition including crosslinkable particles

Country Status (2)

Country Link
JP (1) JP6749325B2 (en)
WO (1) WO2016199717A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078115A1 (en) * 2017-10-18 2019-04-25 ダイキン工業株式会社 Coating film
JP2020094091A (en) * 2018-12-10 2020-06-18 Dic株式会社 Particle, composition, molding, and printed matter
WO2020170677A1 (en) * 2019-02-20 2020-08-27 住友化学株式会社 Laminate, adhesive layer, and adhesive sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108451A1 (en) * 2004-05-07 2005-11-17 Kyoto University Method for preparing colloidal crystal using polymer-grafted fine particles
JP2007191562A (en) * 2006-01-18 2007-08-02 Toyo Ink Mfg Co Ltd Reactive monodisperse resin micro-particle and method for producing the same
JP2007238897A (en) * 2006-03-13 2007-09-20 Jsr Corp Curable resin composition and cured film comprising the same
JP2009046526A (en) * 2007-08-13 2009-03-05 Shigeki Iida Resin film for improving resistance
JP2013040229A (en) * 2011-08-11 2013-02-28 Kansai Paint Co Ltd Active energy ray-curable composition, production method of the composition
JP2013199522A (en) * 2012-03-23 2013-10-03 Kansai Paint Co Ltd Active energy ray curable composition and coating film
JP2014047291A (en) * 2012-08-31 2014-03-17 Kaneka Corp Photocurable composition for fpd lamination with improved dark part hardening

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108451A1 (en) * 2004-05-07 2005-11-17 Kyoto University Method for preparing colloidal crystal using polymer-grafted fine particles
JP2007191562A (en) * 2006-01-18 2007-08-02 Toyo Ink Mfg Co Ltd Reactive monodisperse resin micro-particle and method for producing the same
JP2007238897A (en) * 2006-03-13 2007-09-20 Jsr Corp Curable resin composition and cured film comprising the same
JP2009046526A (en) * 2007-08-13 2009-03-05 Shigeki Iida Resin film for improving resistance
JP2013040229A (en) * 2011-08-11 2013-02-28 Kansai Paint Co Ltd Active energy ray-curable composition, production method of the composition
JP2013199522A (en) * 2012-03-23 2013-10-03 Kansai Paint Co Ltd Active energy ray curable composition and coating film
JP2014047291A (en) * 2012-08-31 2014-03-17 Kaneka Corp Photocurable composition for fpd lamination with improved dark part hardening

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078115A1 (en) * 2017-10-18 2019-04-25 ダイキン工業株式会社 Coating film
CN111225961A (en) * 2017-10-18 2020-06-02 大金工业株式会社 Coating film
JPWO2019078115A1 (en) * 2017-10-18 2020-07-09 ダイキン工業株式会社 Film
JP6997390B2 (en) 2017-10-18 2022-01-17 ダイキン工業株式会社 Coating
JP2020094091A (en) * 2018-12-10 2020-06-18 Dic株式会社 Particle, composition, molding, and printed matter
WO2020170677A1 (en) * 2019-02-20 2020-08-27 住友化学株式会社 Laminate, adhesive layer, and adhesive sheet
JP2020131566A (en) * 2019-02-20 2020-08-31 住友化学株式会社 Laminate, adhesive layer, and adhesive sheet
CN113453891A (en) * 2019-02-20 2021-09-28 住友化学株式会社 Laminate, adhesive layer, and adhesive sheet
JP7194042B2 (en) 2019-02-20 2022-12-21 住友化学株式会社 laminate

Also Published As

Publication number Publication date
JPWO2016199717A1 (en) 2018-03-29
JP6749325B2 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
TWI513751B (en) A hardened composition, a hardened product, an optical material, and an optical lens
JP5885585B2 (en) Curable composition and cured product thereof
JP2016501312A (en) Controlled radical polymerization process of branched polyacrylate
WO2016199717A1 (en) Curable resin composition including crosslinkable particles
CN110167972A (en) Novel ferroelectric material
JP5762212B2 (en) Active energy ray-curable composition and method for producing the composition
TW200838950A (en) Composition for coating material
JP5011731B2 (en) Reactive monodisperse resin fine particles and production method thereof
JP6605028B2 (en) Adhesive composition, paper treating agent or fiber treating agent having crosslinkable particles
KR101236569B1 (en) Methods for preparing resin syrup
WO2018101460A1 (en) Resin composition for adhesive and adhesive sheet
JP5656546B2 (en) Organic-inorganic composite fine particles, dispersion thereof, method for producing the dispersion, and coating composition
JP2015129222A (en) Production method for hard coat film
JP2005239837A (en) Light diffusion coating film-forming coating material and light diffusion sheet
JP5473874B2 (en) Active energy ray-curable composition and method for producing the composition
JPH08501585A (en) Fluorochemical polymer type
JP2017193615A (en) Aqueous reactive polymer, method for producing the same, and photocurable aqueous composition
JP5821103B2 (en) Antistatic agent and antistatic composition comprising quaternary cationic vinyl monomer
JP2008007688A (en) Thermosetting fine particle and its production method
US20210193905A1 (en) Novel ferroelectric material
JP2016029129A (en) Adhesive composition and adhesive film
JP6343883B2 (en) Active energy ray-curable resin composition
JP2004083707A (en) Crosslinked microparticles
JP2017141331A (en) Bismaleimide composition
JP2007063344A (en) Hydrophilic group-containing cross-linked fine particle dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523625

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807424

Country of ref document: EP

Kind code of ref document: A1