WO2016199689A1 - Substrate treatment apparatus - Google Patents

Substrate treatment apparatus Download PDF

Info

Publication number
WO2016199689A1
WO2016199689A1 PCT/JP2016/066558 JP2016066558W WO2016199689A1 WO 2016199689 A1 WO2016199689 A1 WO 2016199689A1 JP 2016066558 W JP2016066558 W JP 2016066558W WO 2016199689 A1 WO2016199689 A1 WO 2016199689A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
glass substrate
mother glass
processing chamber
swinging
Prior art date
Application number
PCT/JP2016/066558
Other languages
French (fr)
Japanese (ja)
Inventor
実 戸島
貴浩 平子
北斗 稲
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016199689A1 publication Critical patent/WO2016199689A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a substrate processing apparatus.
  • a conductive film or an insulating film is formed on the surface of a glass substrate by a photolithography method and patterned.
  • a reduced pressure drying apparatus for performing a reduced pressure drying process for drying a photoresist applied to the surface of the substrate is used, and an example thereof is Patent Document 1 below. It is described in.
  • a vacuum drying apparatus described in Patent Document 1 includes a chamber that accommodates a substrate to be processed, a decompression unit that decompresses the inside of the chamber, a plurality of lift pins that are arranged in the chamber and support the substrate to be processed from below, and lift pins
  • Lift pin lifting means for lifting and lowering the lift pins in each group independently as a group unit
  • substrate temperature range detection means for detecting the temperature of the substrate that changes with the decompression drying process by dividing it into a predetermined temperature range
  • lift pin temperature adjusting means for setting a contact portion of the pin with the substrate to a predetermined temperature included in the temperature range detected by the substrate temperature range detecting means, and driving of the lift pin lifting means Control means for performing control.
  • Patent Document 1 (Problems to be solved by the invention) According to Patent Document 1 described above, switching control is performed so that the lift pin becomes a pin adjusted to a temperature approximate to the substrate temperature, and the contact location between the lift pin and the substrate is switched in accordance with the switching. .
  • the lift pins adjusted to a constant temperature are continuously supported for a certain time with respect to the same portion of the substrate to be processed until switching is performed, the atmospheric pressure and the substrate temperature in the chamber are not changed during that time. When the time changes, the pin mark may be transferred to the lift pin support position. That is, although the technique described in Patent Document 1 can suppress the transfer of pin marks to some extent, it is not always sufficient.
  • Patent Document 1 a lift pin temperature adjusting means for adjusting a plurality of lift pins to different temperatures is required, and a lift mechanism for controlling the lift pins to move up and down at a predetermined timing is required.
  • a lift pin temperature adjusting means for adjusting a plurality of lift pins to different temperatures is required, and a lift mechanism for controlling the lift pins to move up and down at a predetermined timing is required.
  • it tends to be complicated and expensive.
  • the present invention has been completed based on the above circumstances, and an object thereof is to sufficiently suppress the occurrence of transfer unevenness.
  • the substrate processing apparatus of the present invention includes a processing chamber for storing a substrate and processing the substrate, and a support pin for supporting the substrate in the processing chamber, and supports the substrate in a rotatable form. And a support pin having a rotation support portion for rotating, and a swinging portion for swinging the substrate supported by the rotation support portion along the plate surface in the processing chamber.
  • the substrate accommodated in the processing chamber is processed while being supported by the rotation support portion of the support pin.
  • the substrate is swung along the plate surface by the swinging portion, and the rotation support portion is rotated in accordance with the swinging.
  • substrate by a rotation support part is displaced continuously, it can avoid fixing the support part like the past. This makes it difficult for the traces of the support pins to be transferred to the substrate, and thus the occurrence of uneven transfer of the support pins is sufficiently suppressed.
  • the swinging portion contacts the end surface of the substrate and swings the substrate.
  • a mechanism for holding the substrate becomes unnecessary, and the structure is simplified and the cost is reduced. It becomes more suitable above. Further, the force for swinging the substrate along the plate surface from the swinging portion is efficiently transmitted to the substrate.
  • a transport unit that linearly transports the substrate along the plate surface thereof in order to move the substrate into and out of the processing chamber, and the swing unit is configured to transfer the substrate by the transport unit.
  • a plurality are arranged so as to be sandwiched from both sides with respect to the transport direction of the substrate. In this way, when the substrate is transported by the transport unit, it is possible to avoid the swinging unit from interfering with the transport. As a result, the substrate can be transported smoothly, which is suitable for shortening the tact time.
  • the rotation support unit includes a main rotating sphere in contact with the substrate, a plurality of sub rotating spheres arranged along a peripheral surface of the main rotating sphere and rotating in accordance with the rotation of the main rotating sphere, And a rotating sphere housing portion that houses the rotating sphere and the auxiliary rotating sphere.
  • the main rotating sphere in contact with the substrate rotates smoothly as the plurality of sub-rotating spheres arranged along the peripheral surface rotate, and the support location for the substrate swung by the swinging portion is smooth. Is displaced.
  • the degree of freedom related to the rotation direction of the main rotating sphere is high, so that the support location with respect to the substrate can be displaced more freely, thereby causing uneven transfer. It becomes harder to occur.
  • a decompression unit for decompressing the processing chamber is provided.
  • the substrate can be subjected to a reduced pressure drying process by reducing the pressure in the processing chamber by the pressure reducing unit.
  • a difference in drying speed occurs between the support portion by the support pin and the non-support portion in the substrate, and the trace of the support pin.
  • transfer unevenness may occur.
  • the support portion on the substrate is avoided from being fixed by swinging the substrate along the plate surface by the swing portion and rotating the rotation support portion accordingly.
  • the drying speed of the substrate is made uniform in the plate surface, and the occurrence of uneven transfer is sufficiently suppressed.
  • FIG. 1 is a schematic cross-sectional view showing a cross-sectional configuration of a liquid crystal panel according to Embodiment 1 of the present invention.
  • the enlarged plan view which shows the plane structure in the display area of the array substrate which comprises a liquid crystal panel
  • the enlarged plan view which shows the plane structure in the display area of CF substrate which comprises a liquid crystal panel Enlarged sectional view along line iv-iv in FIG.
  • Plan sectional drawing which shows the operation
  • Plan sectional drawing which shows the operation
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • a vacuum drying apparatus (substrate processing apparatus) 40 used for manufacturing the substrates 20 and 21 in the liquid crystal panel (display panel) 11 constituting the liquid crystal display apparatus will be exemplified.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • the liquid crystal panel 11 is formed by enclosing a liquid crystal layer 22 containing a liquid crystal material that is a substance whose optical characteristics change with application of an electric field between a pair of substrates 20 and 21.
  • the liquid crystal panel 11 is formed by enclosing a liquid crystal layer 22 containing a liquid crystal material that is a substance whose optical characteristics change with application of an electric field between a pair of substrates 20 and 21.
  • the two substrates 20 and 21 constituting the liquid crystal panel 11 the one disposed on the back side (backlight device side) is the array substrate (active matrix substrate, TFT substrate) 20, and is disposed on the front side (light emitting side).
  • the substrate is a CF substrate (counter substrate) 21.
  • Each of the array substrate 20 and the CF substrate 21 is formed by sequentially laminating a predetermined film (structure) on the inner surface side of a substantially transparent (translucent) glass substrate GS by a known photolithography method. It is said.
  • the array substrate 20 and the CF substrate 21 are divided into a display area (active area) AA in which an image is displayed and a non-display area (non-active area) NAA that surrounds the display area AA and does not display an image (See FIG. 6).
  • a pair of front and back polarizing plates 23 are respectively attached to the outer surface sides of both the substrates 20 and 21.
  • a TFT which is a switching element having three electrodes 24a to 24c. (Thin Film Transistor) 24 and a large number of pixel electrodes 25 are provided side by side.
  • a gate wiring (metal film) 26 and a source wiring (metal film) 27 are formed in a lattice shape. It is arranged so as to surround it.
  • the pixel electrode 25 is made of a transparent conductive film such as ITO (Indium Tin Oxide).
  • Both the gate wiring 26 and the source wiring 27 are made of a metal film containing copper (Cu) or aluminum (Al) as a metal material, and are patterned on the glass substrate GS.
  • the gate wiring 26 is disposed on the lower layer side (glass substrate GS side), while the source wiring 27 is disposed on the upper layer side.
  • a gate insulating film 35 which will be described later, is interposed between both the wirings 26 and 27, so that both the wirings 26 and 27 are kept insulated from each other at the intersection to prevent leakage (short circuit, short circuit). Has been.
  • the gate wiring 26 and the source wiring 27 are connected to the gate electrode 24a and the source electrode 24b of the TFT 24, respectively, and the pixel electrode 25 is connected to the drain electrode 24c of the TFT 24 via the drain wiring 34.
  • the drain wiring 34 is made of a metal film containing copper or aluminum as a metal material, like the source wiring 27, and is patterned on the glass substrate GS in the same layer (layer) as the source wiring 27 in the same process.
  • capacity wiring (auxiliary capacity wiring, storage capacity wiring, Cs wiring, metal film) 33 that is parallel to the gate wiring 26 and overlaps the pixel electrode 25 in plan view.
  • the capacitor wiring 33 is arranged alternately with the gate wiring 26 in the Y-axis direction, and is made of a metal film containing copper or aluminum as a metal material in the same process as the gate wiring 26 in the same process. Patterned on the glass substrate GS.
  • the gate wiring 26 is disposed between the pixel electrodes 25 adjacent to each other in the Y-axis direction, whereas the capacitor wiring 33 is disposed at a position that substantially crosses the central portion of each pixel electrode 25 in the Y-axis direction.
  • the end portion of the array substrate 20 is provided with a terminal portion routed from the gate wiring 26 and the capacitor wiring 33 and a terminal portion routed from the source wiring 27.
  • Each signal or reference potential is input from an external circuit that is not to be operated, and the drive of the TFT 24 is thereby controlled.
  • An alignment film 28 for aligning liquid crystal molecules contained in the liquid crystal layer 22 is formed on the inner surface side of the array substrate 20 (FIG. 1).
  • each pixel electrode on the array substrate 20 side is provided on the inner surface side (the liquid crystal layer 22 side, the surface facing the array substrate 20) of the glass substrate GS constituting the CF substrate 21, as shown in FIGS. 1 and 3, each pixel electrode on the array substrate 20 side is provided.
  • a large number of color filters are arranged side by side at a position overlapping 25 with a plan view.
  • the colored portions 29 exhibiting R (red), G (green), and B (blue) are arranged alternately along the X-axis direction.
  • the outer shape of each colored portion 29 has a vertically long rectangular shape in plan view following the outer shape of the pixel electrode 25.
  • each coloring part 29 which comprises a color filter
  • the light-shielding part (black matrix) 30 which makes the grid
  • the light shielding portion 30 is disposed so as to overlap with the gate wiring 26, the source wiring 27, and the capacitor wiring 33 on the array substrate 20 in plan view.
  • a counter electrode 31 is provided on the surface of each colored portion 29 and the light shielding portion 30 so as to face the pixel electrode 25 on the array substrate 20 side.
  • An alignment film 32 for aligning liquid crystal molecules contained in the liquid crystal layer 22 is formed on the inner surface side of the CF substrate 21.
  • the TFT 24 which is a switching element in the array substrate 20 will be described in detail.
  • the TFT 24 is configured by laminating a plurality of films on the glass substrate GS constituting the array substrate 20, and specifically, in order from the lower layer side (glass substrate GS side).
  • the gate electrode (metal film) 24a connected to the gate wiring 26, the gate insulating film (insulating film, gate insulator film) 35, the semiconductor film 36, the source electrode (metal film) 24b connected to the source wiring 27, and the pixel electrode 25, a drain electrode (metal film) 24c, an interlayer insulating film (insulating film, passivation film) 37, and a protective film (insulating film) 38 are stacked.
  • the gate electrode 24 a is made of a metal film containing copper or aluminum as a metal material, like the gate wiring 26, and is patterned on the glass substrate GS in the same process as the gate wiring 26.
  • the gate insulating film 35 is made of, for example, a silicon nitride film (SiN x ) or a silicon oxide layer (SiO x ), and is stacked on the glass substrate GS, the gate electrode 24 a and the gate wiring 26.
  • the gate insulating film 35 is a TFT 24.
  • the gate electrode 24a and the semiconductor film 36 are kept in an insulating state.
  • the semiconductor film 36 is made of, for example, amorphous silicon (a-Si), and has one end connected to the drain electrode 24c and the other end connected to the source electrode 24b. It is supposed to be possible.
  • the source electrode 24b and the drain electrode 24c are formed by laminating first conductive films 24b1 and 24c1 on the lower layer side (semiconductor film 36 side) and second conductive films 24b2 and 24c2 on the upper layer side (interlayer insulating film 37 side). Is done.
  • the first conductive films 24b1 and 24c1 on the lower layer side are made of amorphous silicon (n + Si) doped with an n-type impurity such as phosphorus (P) at a high concentration, and function as an ohmic contact layer.
  • the second conductive films 24b2 and 24c2 on the upper layer side are made of a metal film containing copper or aluminum as a metal material, like the source wiring 27 and the drain wiring 34, and the first conductive film is formed in the same process as the source wiring 27 and the drain wiring 34. Patterned on the films 24b1 and 24c1. A source line 27 and a drain line 34 are connected to ends of the source electrode 24b and the drain electrode 24c opposite to the channel region side, respectively.
  • the above-described source electrode 24b and drain electrode 24c are arranged opposite to each other with a predetermined interval (opening region) therebetween, and thus are not directly electrically connected to each other.
  • the source electrode 24b and the drain electrode 24c are indirectly electrically connected via the semiconductor film 36 on the lower layer side, and the bridge portion between the electrodes 24b and 24c in the semiconductor film 36 has a drain current. Functions as a flowing channel region.
  • the interlayer insulating film 37 is made of, for example, a silicon nitride film (SiN x ) or a silicon oxide layer (SiO x ), and is made of the same material as the gate insulating film 35 described above.
  • the protective film 38 is made of an acrylic resin (for example, polymethyl methacrylate resin (PMMA)) or a polyimide resin, which is an organic material. Therefore, the protective film 38 is thicker than the gate insulating film 35 and the interlayer insulating film 37 made of other inorganic materials and functions as a planarizing film.
  • Each insulating film (gate insulating film 35, interlayer insulating film 37, and protective film 38) related to the TFT 24 is formed with a uniform film thickness over almost the entire area including the area other than the area where the TFT 24 is formed on the array substrate 20. Has been.
  • the array substrate 20 having the TFT 24 having the above-described configuration is patterned by sequentially forming each conductive film and each insulating film constituting various wirings on the plate surface of the glass substrate GS using a known photolithography method. It is manufactured by.
  • the CF substrate 21 having the color filter is patterned by sequentially forming each film constituting the color filter, the light shielding portion 30 and the like on the plate surface of the glass substrate GS using a known photolithography method. It is manufactured by.
  • the glass substrate GS constituting each of the substrates 20 and 21 is formed with a resist film by applying a photoresist, which is a processing liquid, after each film is formed.
  • a reduced pressure drying apparatus substrate processing apparatus 40 is used to form a resist film by drying the photoresist applied to the plate surface of the glass substrate GS constituting each of the substrates 20 and 21 under reduced pressure.
  • the configuration of the reduced pressure drying apparatus 40 will be described in detail.
  • the mother glass substrate MG in which a plurality of glass substrates GS are arranged side by side in the plate surface is processed by the reduced pressure drying apparatus 40, and FIG. 6, FIG. 11 and FIG.
  • each display area AA in a plurality of glass substrates GS is illustrated by a two-dot chain line. Therefore, in FIG. 6, FIG. 11 and FIG. 16, the lattice-shaped part outside each display area AA and the frame part on the outermost periphery side are set as non-display areas NAA. Further, the mother glass substrate MG is divided into individual glass substrates GS after completing various processes including a vacuum drying process.
  • the vacuum drying apparatus 40 includes a processing chamber (chamber) 41 that accommodates a mother glass substrate MG (glass substrate GS) that is a substrate to be processed, a decompression unit 42 that decompresses the processing chamber 41, A pressure adjusting valve 43 that is connected to the decompression unit 42 and adjusts the pressure in the processing chamber 41, a transfer arm unit (transfer unit) 44 that transfers the mother glass substrate MG into and out of the processing chamber 41, and the inside of the processing chamber 41 And a support pin (lift pin) 45 for supporting the mother glass substrate MG.
  • a processing chamber (chamber) 41 that accommodates a mother glass substrate MG (glass substrate GS) that is a substrate to be processed
  • a decompression unit 42 that decompresses the processing chamber 41
  • a pressure adjusting valve 43 that is connected to the decompression unit 42 and adjusts the pressure in the processing chamber 41
  • a transfer arm unit (transfer unit) 44 that transfers the mother glass substrate MG into and out of the processing chamber 41
  • the processing chamber 41 has a substantially box shape as a whole, and a loading / unloading port 41 a for loading / unloading the mother glass substrate MG is opened on the left side wall of the processing chamber 41. . Outside the side wall of the processing chamber 41 where the loading / unloading port 41a is provided, it is possible to slide (move) along the Z-axis direction between a position where the loading / unloading port 41a is opened and a position where the loading / unloading port 41a is closed.
  • the gate part 41b is provided in a special form.
  • the decompression unit 42 is connected to the processing chamber 41 via an exhaust pipe 42 a and has a vacuum pump that sucks air in the processing chamber 41.
  • the pressure adjustment valve 43 is provided in the middle of the exhaust pipe 42a, and the pressure (depressurized state) in the processing chamber 41 can be finely adjusted by electrically controlling the opening degree.
  • the transfer arm portion 44 includes a main portion 44 a, and a plurality (four in this embodiment) of substrate support arms 44 b that branch from the main portion 44 a and support the mother glass substrate MG. ,have.
  • the main portion 44a is connected to a drive mechanism (not shown), and can move freely in at least the vertical direction (Z-axis direction) and the horizontal direction (X-axis direction and Y-axis direction) by the drive mechanism.
  • the substrate support arms 44b extend along the long side direction (X-axis direction) of the mother glass substrate MG, and a plurality of the substrate support arms 44b are spaced along the short side direction (Y-axis direction) of the mother glass substrate MG. They are arranged side by side.
  • the transfer arm unit 44 can carry the mother glass substrate MG supported by the substrate support arm 44b from the outside of the processing chamber 41 into the processing chamber 41 through the loading / unloading port 41a, and conversely, the mother glass substrate MG.
  • the inside can be carried out of the processing chamber 41 through the loading / unloading port 41a.
  • the transfer direction of the mother glass substrate MG with respect to the processing chamber 41 by the transfer arm unit 44 coincides with the X-axis direction (the long side direction of the mother glass substrate MG) and is linear.
  • the height position of the mother glass substrate MG transferred into the processing chamber 41 by the transfer arm unit 44 in other words, the position in the Z-axis direction is the transfer position (FIGS. 10 to 12).
  • the support pin 45 is disposed in the processing chamber 41 so as to rise from the bottom wall side to the ceiling wall side of the processing chamber 41, and is mechanical to a motor (not shown). By being connected to, it is possible to move up and down along the vertical direction (Z-axis direction, normal direction of the plate surface of the mother glass substrate MG).
  • the support pin 45 has a tip portion (rotation support portion 46 described later) in contact with the mother glass substrate MG at a height position lower than the transfer position of the mother glass substrate MG transferred into the processing chamber 41 by the transfer arm unit 44. And a lift position (FIGS. 13 to 15, 17, and 19) that are higher than the transfer position of the mother glass substrate MG. It has come to be.
  • the mother glass substrate MG is lifted while being supported by the support pins 45 that are lifted from the transfer position transferred into the processing chamber 41 by the transfer arm unit 44 to the lift position, and is supported by the support pins 45 that have reached the lift position.
  • the vacuum drying process is performed in the state.
  • the height position of the mother glass substrate MG lifted by the support pins 45 in the lift position is the processing position (FIGS. 13 to 15, 17, and 19).
  • the support pins 45 overlap with the mother glass substrate MG transferred into the processing chamber 41 by the transfer arm unit 44 in a plan view, and a plurality of support pins 45 are flat on the plate surface of the mother glass substrate MG. They are arranged side by side in a matrix. Specifically, the support pins 45 are arranged side by side at predetermined intervals along the long side direction (X-axis direction) and the short side direction (Y-axis direction) of the mother glass substrate MG. The Y-axis direction is adjacent to each substrate support arm 44b of the transfer arm unit 44 without overlapping.
  • the support pins 45 are arranged so that the arrangement interval in the Y-axis direction is wider than the width dimension of each substrate support arm 44b, and the support pins 45 are arranged alternately with the substrate support arms 44b in the Y-axis direction. Yes.
  • the support pin 45 according to the present embodiment is provided with a rotation support portion 46 that supports the mother glass substrate MG in a rotatable form.
  • the reduced-pressure drying apparatus 40 according to the present embodiment moves the mother glass substrate MG supported by the rotation support unit 46 in the processing chamber 41 along the plate surface. It has a swinging part 47 that swings. According to such a configuration, if the mother glass substrate MG is swung along the plate surface by the swinging portion 47 when the mother glass substrate MG is subjected to the decompression drying process in the processing chamber 41, the rocking is prevented. The rotation support part 46 is rotated with the movement.
  • the drying rate of the mother glass substrate MG when the reduced-pressure drying process proceeds is made uniform in the plate surface, and the traces of the support pins 45 are hardly transferred to the mother glass substrate MG. Accordingly, the occurrence of transfer unevenness of the support pin 45 is sufficiently suppressed.
  • it requires a complicated structure such as a conventional support pin temperature adjusting means for adjusting a plurality of support pins to different temperatures and a lift mechanism for individually driving the support pins adjusted to different temperatures, and complicated control related thereto. Compared with a product, the structure is simplified and the cost is reduced.
  • the rotation support portion 46 is provided at the upper end portion in the vertical direction of the support pin 45 (the end portion on the mother glass substrate MG side).
  • the rotation support part 46 is accommodated in a ball holder (rotary sphere accommodating part) 46a, a main ball (main rotating sphere) 46b accommodated in the ball holder 46a and in direct contact with the mother glass substrate MG, and accommodated in the ball holder 46a.
  • a plurality of sub-balls (sub-rotating spheres) 46c that are arranged along the peripheral surface of the main ball 46b and that rotate along with the rotation of the main ball 46b.
  • the ball holder 46a has a columnar shape that is thicker than the base end side portion (portion other than the rotation support portion 46) of the support pin 45, and a ball storage chamber that stores the balls 46b and 46c on the upper end surface in the vertical direction. 46a1 is formed open.
  • the ball housing chamber 46a1 is configured such that the opening opening is narrower than the internal space, and the main ball 46b is held in a state of being prevented from coming off by the opening end.
  • the ball holder 46a has a spherical surface in which the peripheral surface of the ball housing chamber 46a1 is slightly larger than the peripheral surface of the main ball 46b.
  • the main ball 46b is a sphere whose diameter is larger than the diameter of the sub-ball 46c and the opening opening of the ball housing chamber 46a1, and is held by the opening end of the ball housing chamber 46a1 in the ball holder 46a. It can be rotated.
  • the sub ball 46c is a sphere whose diameter is smaller than that of the main ball 46b, and is disposed between the peripheral surface of the ball housing chamber 46a1 and the peripheral surface of the main ball 46b. Are arranged side by side while being adjacent to each other in the circumferential surface (both spherical surfaces). These sub-balls 46c are rotated so as to follow the rotation of the main ball 46b, so that the main ball 46b is smoothly rotated with low loss.
  • the sub-ball 46c is held in a retaining state by the open end of the ball housing chamber 46a1 in the ball holder 46a.
  • the swinging portion 47 is disposed at a height position overlapping with the mother glass substrate MG in the processing chamber 41 as a processing position in the Z-axis direction, and in the mother glass substrate MG. They are arranged so as to face the end surface on the long side along the X-axis direction (conveying direction).
  • a mechanism for holding the mother glass substrate MG becomes unnecessary as compared with a case where the rocking portion is in contact with the plate surface of the mother glass substrate MG and the mother glass substrate MG is swung. Further, the force for swinging the mother glass substrate MG along the plate surface from the swinging portion 47 is efficiently transmitted to the mother glass substrate MG.
  • the swinging part 47 is arranged in a pair so as to sandwich the mother glass substrate MG from both sides in the short side direction (Y-axis direction). That is, the plurality of swinging portions 47 are arranged so as to be sandwiched from both sides in the transport direction of the mother glass substrate MG by the transport arm portion 44. In this way, when the mother glass substrate MG is transported by the transport arm portion 44, the swinging portion 47 can be prevented from hindering transport. As a result, the mother glass substrate MG can be transported smoothly, which is suitable for shortening the tact time.
  • Three sets of swinging portions 47 that are paired in the Y-axis direction are arranged at positions spaced apart in the X-axis direction. That is, the oscillating portion 47 is arranged so that the mother glass substrate MG is associated with both end portions and the central portion in the long side direction.
  • the rocking portion 47 is mechanically connected to a motor (not shown), and is displaced along the plate surface of the mother glass substrate MG by being driven by the motor. Specifically, first, the swinging portion 47 is moved to a standby position (FIG. 14) that is separated from the end surface of the mother glass substrate MG by the motor to the outside in the Y-axis direction, and a contact position that contacts the end surface of the mother glass substrate MG ( 17) and can be moved.
  • the distance between the swinging portions 47 paired in the Y-axis direction is larger than the short side dimension of the mother glass substrate MG at the standby position, but is substantially the same as the short side dimension of the mother glass substrate MG at the contact position. .
  • swiveling part 47 is the arrangement
  • each support pin 45 in the mother glass substrate MG is rotated.
  • the support location is continuously displaced, and the trajectory has an elliptical shape similar to the trajectory of the swinging portion 47 that is eccentrically moved. That is, each support location on the mother glass substrate MG by each support pin 45 is continuously displaced within the range of the elliptical orbit.
  • FIG. 18 the trajectory in which each support location on the mother glass substrate MG by each support pin 45 is displaced in accordance with the eccentric motion of the swinging portion 47 is shown in a shaded shape.
  • the major axis direction coincides with the X-axis direction and the minor axis direction coincides with the Y-axis direction, and the same orbit adjacent in the X-axis direction and the same orbit adjacent in the Y-axis direction overlap.
  • the mother glass substrate MG does not have a portion that contacts the plurality of support pins 45 when swinging.
  • This embodiment has the structure as described above, and its operation will be described next.
  • the mother glass substrate MG coated with a photoresist is placed on the substrate support arm 44 b of the transfer arm unit 44 arranged outside the processing chamber 41.
  • the transfer arm 44 is driven while the gate 41b of the processing chamber 41 is opened and the loading / unloading port 41a is opened, and the mother glass substrate MG is accommodated in the processing chamber 41 as shown in FIGS. Place it at the transfer position.
  • the support pin 45 since the support pin 45 is in the standby position, it is not in contact with the mother glass substrate MG in the transport position.
  • the support pins 45 are arranged so as not to overlap the substrate support arm 44b in the Y-axis direction, interference with the substrate support arm 44b of the transfer arm unit 44 that has entered the processing chamber 41 is avoided. (FIG. 11). Further, since the swinging portion 47 is disposed at the standby position retracted on both sides with respect to the mother glass substrate MG in the Y-axis direction, interference with the mother glass substrate MG carried in is avoided (FIG. 11).
  • the support pin 45 in the standby position is driven so as to rise, the main ball 46b of the rotation support portion 46 is moved to a predetermined height, and the plate surface on the back side of the mother glass substrate MG (photoresist non-coated surface). Touched.
  • the mother glass substrate MG supported by the rotation support portion 46 is also raised accordingly.
  • the swinging portion 47 Prior to the vacuum drying process, the swinging portion 47 is displaced from the standby position so as to approach the mother glass substrate MG in the Y-axis direction as shown in FIGS. . At this time, the mother glass substrate MG is held in a state of being sandwiched by the swinging portions 47 that make a pair from both sides in the Y-axis direction.
  • each oscillating portion 47 When each oscillating portion 47 is driven in synchronism with the vacuum drying process, each oscillating portion 47 moves eccentrically so as to draw an elliptical orbit as viewed in a plane, and accordingly, the mother glass The substrate MG is swung while drawing a similar trajectory along the plate surface.
  • the mother glass substrate MG is swung along the plate surface by the swinging portion 47, and the main ball 46b and the subball 46c of the rotation support portion 46 are rotated accordingly. It is possible to avoid fixing the support portion on the substrate MG. As a result, the drying speed of the mother glass substrate MG is made uniform within the plate surface, and the occurrence of uneven transfer is sufficiently suppressed.
  • each support location on the mother glass substrate MG by each support pin 45 is shown in FIG.
  • the range of the elliptical trajectory is continuously displaced. Since the ranges in which the support portions are displaced do not overlap each other in a plan view, the mother glass substrate MG does not have a portion that contacts the plurality of support pins 45 when swinging. Thereby, generation
  • the driving of each swinging portion 47 may be started prior to the start of the reduced pressure drying process, or conversely, may be started after a certain period of time has elapsed since the start of the reduced pressure drying process. Absent.
  • the reduced-pressure drying apparatus (substrate processing apparatus) 40 accommodates the mother glass substrate (substrate) MG and processes the mother glass substrate MG, and the processing chamber 41.
  • a rocking portion 47 that rocks the mother glass substrate MG supported by the plate along the plate surface.
  • the mother glass substrate MG accommodated in the processing chamber 41 is processed while being supported by the rotation support portion 46 of the support pin 45.
  • the mother glass substrate MG is swung along the plate surface by the swinging portion 47, and the rotation support portion 46 is rotated along with the swinging. .
  • the support part with respect to the mother glass substrate MG by the rotation support part 46 is displaced continuously, it is avoided that the support part is fixed as in the prior art.
  • the traces of the support pins 45 are difficult to be transferred to the mother glass substrate MG, and the occurrence of uneven transfer of the support pins 45 is sufficiently suppressed.
  • the swinging part 47 contacts the end surface of the mother glass substrate MG and swings the mother glass substrate MG.
  • a mechanism for holding the mother glass substrate MG becomes unnecessary as compared with a case where the rocking portion is in contact with the plate surface of the mother glass substrate MG and the mother glass substrate MG is swung. This is more suitable for simplification and cost reduction. Further, the force for swinging the mother glass substrate MG along the plate surface from the swinging portion 47 is efficiently transmitted to the mother glass substrate MG.
  • a transfer arm unit (transfer unit) 44 that linearly transfers the mother glass substrate MG along its plate surface is provided.
  • transfer unit 44 that linearly transfers the mother glass substrate MG along its plate surface.
  • the swinging portion 47 can be prevented from hindering transport.
  • the mother glass substrate MG can be transported smoothly, which is suitable for shortening the tact time.
  • the rotation support unit 46 includes a main ball (main rotating sphere) 46b in contact with the mother glass substrate MG and a plurality of sub-balls (lined along the peripheral surface of the main ball 46b and rotated with the rotation of the main ball 46b).
  • the main ball 46b in contact with the mother glass substrate MG rotates smoothly by rotating the plurality of sub-balls 46c arranged along the peripheral surface thereof, and the mother glass that is rocked by the rocking portion 47.
  • the support location for the substrate MG is smoothly displaced.
  • the rotation support portion 46 is configured by a roller having a rotation shaft, since the degree of freedom in the rotation direction of the main ball 46b is high, the support location for the mother glass substrate MG can be displaced more freely. Therefore, uneven transfer is less likely to occur.
  • a decompression unit 42 for decompressing the inside of the processing chamber 41 is provided.
  • the mother glass substrate MG can be subjected to a reduced pressure drying process by reducing the pressure in the processing chamber 41 by the pressure reducing unit 42.
  • the mother glass substrate MG is fixedly supported by the support pins for a certain period of time as in the prior art, there is a difference in the drying speed between the support portions by the support pins and the non-support portions in the mother glass substrate MG.
  • unevenness of transfer in which the trace of the support pin is transferred, occurs.
  • the mother glass substrate MG is swung along the plate surface by the swinging portion 47 and the rotation support portion 46 is rotated accordingly, whereby the support location on the mother glass substrate MG is fixed. Therefore, the drying rate of the mother glass substrate MG is made uniform in the plate surface, and the occurrence of transfer unevenness is sufficiently suppressed.
  • the swinging portion 147 is in contact with the plate surface of the mother glass substrate MG.
  • the swinging portion 147 is arranged so as to overlap with the mother glass substrate MG accommodated in the processing chamber 141 in a plan view, and is vacuum-sucked to the back plate surface of the mother glass substrate MG.
  • a vacuum suction means (not shown) including a vacuum pump for vacuum suction of the mother glass substrate MG is connected to the swing portion 147.
  • swiveling part 147 is contact
  • the swinging portion 147 is brought into contact with the plate surface of the mother glass substrate MG as in the present embodiment, there is a possibility that uneven transfer of the swinging portion 147 due to the reduced pressure drying process occurs at the contact portion. is there.
  • the contact portion of the rocking portion 147 in the mother glass substrate MG is set as the non-display area NAA of each glass substrate GS as described above. It is possible to avoid transfer unevenness in the display area AA. Therefore, when a liquid crystal panel is manufactured using the glass substrate GS obtained by dividing the mother glass substrate MG that has been subjected to such a reduced-pressure drying process, the image displayed in the display area AA of the liquid crystal panel is changed. It is possible to avoid adverse effects caused by uneven transfer of the moving part 147.
  • swiveling part 147 which concerns on this embodiment shall be eccentrically moved so that an elliptical locus may be drawn on a plane similarly to the rocking
  • the mother glass substrate MG constitutes a liquid crystal panel (display panel) having a display area AA on which an image is displayed and a non-display area NAA surrounding the display area AA.
  • the swinging unit 147 contacts the non-display area NAA on the plate surface of the mother glass substrate MG and swings the mother glass substrate MG.
  • the mother glass is caused by the force acting on the mother glass substrate MG as it swings, as compared with the case where the swinging portion abuts on the end surface of the mother glass substrate MG to swing the mother glass substrate MG.
  • the end of the substrate MG is difficult to be damaged.
  • the vacuum drying apparatus 240 is a transfer conveyor for transferring the mother glass substrate MG into and out of the processing chamber 241 instead of the transfer arm unit described in the first embodiment.
  • (Conveying section) 48 is provided.
  • the transport conveyor 48 is formed by arranging a number of transport rollers 48a that extend along the Y-axis direction and that are rotatable at predetermined intervals along the X-axis direction. Thereby, the conveyance conveyor 48 can convey the mother glass substrate MG linearly along the X-axis direction.
  • a pair of front and rear side walls in the transport direction of the mother glass substrate MG is provided with a carry-in port 49 for carrying the mother glass substrate MG, a carry-out port 50 for carrying the mother glass substrate MG, Are provided.
  • the transport conveyor 48 is connected to the plurality of transport rollers 48 a disposed in the processing chamber 241, the plurality of transport rollers 48 a disposed outside the carry-in port 49 with respect to the processing chamber 241, and the processing chamber 241. And a plurality of transport rollers 48a disposed outside the carry-out port 50.
  • the mother glass substrate MG is linearly conveyed by such a conveyance conveyor 48 so as to penetrate the processing chamber 241 before and after in the conveyance direction.
  • the processing chamber 241 is provided with a pair of gate portions 241b that can close the carry-in port 49 and the carry-out port 50, respectively.
  • the mother glass substrate MG When performing the reduced-pressure drying process, as shown in FIG. 22, the mother glass substrate MG is placed on the transport conveyor 48 outside the carry-in port 49 with respect to the process chamber 241.
  • the mother glass substrate MG is conveyed forward in the conveyance direction (right side shown in FIG. 22) by rotating each conveyance roller 48a.
  • the mother glass substrate MG is transferred into the processing chamber 241 through the conveyance inlet 49.
  • each support pin 245 is raised from the standby position to lift the mother glass substrate MG.
  • each support pin 245 reaches the lift position, as shown in FIG.
  • each gate portion 241b is slid to close the carry-in port 49 and the carry-out port 50, and a reduced-pressure drying process is performed.
  • the mother glass substrate MG is swung by a swinging portion (not shown) as in the first embodiment, so that uneven transfer of each support pin 245 is suppressed.
  • each support pin 245 is lowered from the lift position to the standby position, and the mother glass substrate MG is placed on the transport conveyor 48.
  • each gate portion 241b is slid to open the carry-in port 49 and the carry-out port 50, and the mother glass substrate MG is carried forward in the carrying direction by the carrying conveyor 48.
  • each gate portion 241b is closed at the same time as or prior to raising each support pin 245 from the standby position.
  • the gate portions 241b may be opened at the same time as or before the support pins 245 are lowered from the lift position.
  • Embodiment 4 A fourth embodiment of the present invention will be described with reference to FIG. In this Embodiment 4, what changed the structure of the rotation support part 346 from above-mentioned Embodiment 1 is shown. In addition, the overlapping description about the same structure, operation
  • the rotation support portion 346 includes a rotation roller 51 that is pivotally supported so as to be rotatable about a rotation shaft 51a.
  • the rotation roller 51 is configured such that the axis direction of the rotation shaft 51a coincides with the X-axis direction and is rotatable around the axis line of the rotation shaft 51a.
  • the swinging portion 347 is driven to repeatedly swing back and forth the mother glass substrate MG along the Y-axis direction.
  • each of the rotating rollers 51 constituting each of the rotation supporting portions 346 is rotated around the axis in the X-axis direction around each rotating shaft 51a, Thereby, each support location by each rotation roller 51 in the mother glass substrate MG is continuously displaced so as to repeatedly reciprocate along the Y-axis direction. As a result, it is possible to avoid fixing each supporting portion on the mother glass substrate MG, so that the drying speed of the mother glass substrate MG is made uniform within the plate surface, thereby sufficiently suppressing the occurrence of transfer unevenness. .
  • the swinging portion 447 is in contact with a pair of end surfaces on the long side and a pair of end surfaces on the short side of the mother glass substrate MG. It is composed of things. That is, the mother glass substrate MG is configured such that all of the outer peripheral end surfaces of the four sides are in contact with the swinging portion 447. Specifically, the mother glass substrate MG is sandwiched from both sides in the short side direction (Y-axis direction) by the swinging portions 447 that are in contact with the pair of end surfaces on the long side, and the pair of end surfaces on the short side. Are held so as to be swingable in a form of being sandwiched from both sides in the long side direction (X-axis direction) by each swinging part 447.
  • interposes the mother glass substrate MG from the both sides about the long side direction is shown with respect to the mother glass substrate MG made into a conveyance position (refer the two-dot chain line of the same figure) as shown in FIG.
  • the vertical direction (Z-axis direction) is arranged so as not to overlap with the upper side, thereby avoiding interference with the mother glass substrate MG conveyed by the conveyance arm unit 444.
  • Embodiment 6 of the present invention will be described with reference to FIG.
  • a swing portion 547 is changed from the fifth embodiment.
  • action, and effect as above-mentioned Embodiment 5 is abbreviate
  • the swinging portion 547 is composed of four members that are in contact with the four corners of the outer peripheral end surface of the mother glass substrate MG.
  • the oscillating portion 547 has an L shape as viewed in a plane following the corner portion of the mother glass substrate MG. In this way, it is possible to stably rock the mother glass substrate MG while reducing the number of installed rocking portions 547.
  • Embodiment 7 of the present invention will be described with reference to FIG.
  • the arrangement of the swinging portion 647 is changed from the above-described second embodiment.
  • action, and effect as above-mentioned Embodiment 2 is abbreviate
  • the swinging portion 647 includes a frame-like outer peripheral side portion and a central side portion surrounded by the outer peripheral side portion of the plate surface of the mother glass substrate MG. They are arranged in a plane so as to contact each other.
  • Four oscillating portions 647 that are in contact with the outer peripheral portion of the plate surface of the mother glass substrate MG are arranged so as to be in contact with the four corners of the outer peripheral portion.
  • the swinging portion 647 that abuts on the center side portion of the plate surface of the mother glass substrate MG 4 abuts on a lattice-like portion that partitions the display areas AA of the glass substrates GS out of the center side portion. One is arranged.
  • each of the swinging portions 647 is in contact with an area outside the display area AA of each glass substrate GS, that is, the non-display area NAA. Since each oscillating portion 647 according to the present embodiment is distributed and arranged in the outer peripheral side portion and the central side portion of the plate surface of the mother glass substrate MG, the mother glass substrate MG is more stably shaken. It is possible to move.
  • the mother glass substrate is moved by performing an eccentric motion so that the swinging portion draws an elliptical locus whose major axis direction coincides with the X-axis direction when viewed in a plane.
  • the mother glass substrate is swung by performing an eccentric motion so that the swinging portion draws an elliptical locus whose major axis direction coincides with the Y-axis direction when seen in a plane. It doesn't matter.
  • the swinging portion may be driven so as to draw a perfect circular locus along the plate surface of the mother glass substrate.
  • the swinging unit may be driven so as to draw a linear locus along the plate surface of the mother glass substrate.
  • the arrangement may be a non-opposing arrangement with the mother glass substrate interposed therebetween, such as a staggered arrangement.
  • the number of swinging portions disposed on one side across the mother glass substrate may not match the number of swinging portions disposed on the other side.
  • the oscillating portion is symmetrically arranged in the plate surface of the mother glass substrate.
  • the oscillating portion is asymmetric in the plate surface of the mother glass substrate. It may be arranged as follows. In that case, for example, the oscillating portion may be selectively disposed so as to contact only one long side portion (one short side portion) of the outer peripheral side portion of the mother glass substrate.
  • the swinging part is in contact with the non-display area on the mother glass substrate.
  • the swinging part is located between the non-display area and the display area on the mother glass substrate. You may make it contact
  • the reduced-pressure drying apparatus used for manufacturing a substrate constituting a TN type or VA type liquid crystal panel has been shown.
  • the present invention is also applicable to the vacuum drying apparatus used.
  • a vacuum drying apparatus used for manufacturing a substrate that constitutes a liquid crystal panel whose semiconductor film is made of amorphous silicon is shown.
  • a liquid crystal panel whose semiconductor film is made of an oxide semiconductor or low-temperature polysilicon is shown.
  • the present invention can also be applied to a vacuum drying apparatus used for manufacturing a substrate that constitutes the substrate.
  • a vacuum drying apparatus used for manufacturing a substrate constituting a liquid crystal panel in which a TFT is used as a switching element has been described.
  • a switching element other than a TFT for example, a thin film diode (TFD)
  • the present invention is also applicable to a vacuum drying apparatus used for manufacturing a substrate constituting the liquid crystal panel used.
  • the reduced-pressure drying apparatus used for manufacturing the substrate constituting the liquid crystal panel is shown.
  • the present invention is also applied to the reduced-pressure drying apparatus used for manufacturing the substrate constituting the display panel other than the liquid crystal panel.
  • the invention is applicable.
  • the display panel other than the liquid crystal panel include an organic EL panel, PDP, EPD (electrophoretic display panel, MEMS (Micro Electro Mechanical Systems) display panel, and the like.
  • the reduced pressure drying apparatus is shown as an example of the substrate processing apparatus, but the present invention is applicable to other types of substrate processing apparatuses than the reduced pressure drying apparatus.

Abstract

A reduced-pressure drying apparatus (substrate treatment apparatus) (40) is provided with: a treatment chamber (41) for treating a mother glass substrate (substrate) (MG) by housing the mother glass substrate (MG); a supporting pin (45) for supporting the mother glass substrate (MG) in the treatment chamber (41), said supporting pin (45) having a rotatably supporting section (46) that rotatably supports the mother glass substrate (MG); and a swinging section (47) that swings the mother glass substrate (MG) along the substrate surface, said mother glass substrate being supported by the rotatably supporting section (46) in the treatment chamber (41).

Description

基板処理装置Substrate processing equipment
 本発明は、基板処理装置に関する。 The present invention relates to a substrate processing apparatus.
 従来、液晶表示装置の主要構成部品である液晶パネルを製造する際には、ガラス製の基板の表面にフォトリソグラフィ法により導電膜や絶縁膜を成膜してパターニングしている。基板上に導電膜や絶縁膜を成膜するに際しては、基板の表面に塗布されたフォトレジストを乾燥させる減圧乾燥処理を行うための減圧乾燥装置が用いられており、その一例が下記特許文献1に記載されている。特許文献1に記載された減圧乾燥装置は、被処理基板を収容するチャンバと、チャンバ内を減圧する減圧手段と、チャンバ内に配列され、被処理基板を下方から支持する複数のリフトピンと、リフトピンの複数本をグループ単位として、各グループ内のリフトピンをそれぞれ独立に昇降させるリフトピン昇降手段と、減圧乾燥処理に伴い変化する基板の温度を、所定の温度範囲に区切って検出する基板温度範囲検出手段と、前記グループ内のリフトピン毎に、当該ピンにおける基板との接触部を前記基板温度範囲検出手段により検出された温度範囲に含まれる所定温度に設定するリフトピン温調手段と、リフトピン昇降手段の駆動制御を行う制御手段とを備える。 Conventionally, when manufacturing a liquid crystal panel which is a main component of a liquid crystal display device, a conductive film or an insulating film is formed on the surface of a glass substrate by a photolithography method and patterned. In forming a conductive film or an insulating film on a substrate, a reduced pressure drying apparatus for performing a reduced pressure drying process for drying a photoresist applied to the surface of the substrate is used, and an example thereof is Patent Document 1 below. It is described in. A vacuum drying apparatus described in Patent Document 1 includes a chamber that accommodates a substrate to be processed, a decompression unit that decompresses the inside of the chamber, a plurality of lift pins that are arranged in the chamber and support the substrate to be processed from below, and lift pins Lift pin lifting means for lifting and lowering the lift pins in each group independently as a group unit, and substrate temperature range detection means for detecting the temperature of the substrate that changes with the decompression drying process by dividing it into a predetermined temperature range And, for each lift pin in the group, lift pin temperature adjusting means for setting a contact portion of the pin with the substrate to a predetermined temperature included in the temperature range detected by the substrate temperature range detecting means, and driving of the lift pin lifting means Control means for performing control.
特開2009-295817号公報JP 2009-295817 A
(発明が解決しようとする課題)
 上記した特許文献1によれば、リフトピンが、基板温度に近似する温度に調整されたピンとなるよう切り替え制御がなされ、また、その切り替えに伴いリフトピンと基板との接触箇所が切り替わるようになっている。しかしながら、一定の温度に調整されたリフトピンは、切り替えが行われるまでの間は被処理基板の同一箇所に対して一定時間継続して支持しているため、その間にチャンバ内の気圧や基板温度が時間変化すると、それに起因してリフトピンの支持位置にピン跡が転写されるおそれがあった。つまり、特許文献1に記載された技術は、ピン跡の転写をある程度は抑制できるものの、必ずしも十分と言えるものではなかった。
(Problems to be solved by the invention)
According to Patent Document 1 described above, switching control is performed so that the lift pin becomes a pin adjusted to a temperature approximate to the substrate temperature, and the contact location between the lift pin and the substrate is switched in accordance with the switching. . However, since the lift pins adjusted to a constant temperature are continuously supported for a certain time with respect to the same portion of the substrate to be processed until switching is performed, the atmospheric pressure and the substrate temperature in the chamber are not changed during that time. When the time changes, the pin mark may be transferred to the lift pin support position. That is, although the technique described in Patent Document 1 can suppress the transfer of pin marks to some extent, it is not always sufficient.
 また、特許文献1では、複数のリフトピンを互いに異なる温度に調整するためのリフトピン温調手段を要するとともに、それらのリフトピンをそれぞれ所定のタイミングで昇降させる制御を行うリフト機構を要していたため、構造が複雑でコストが高くなりがちであった。 Further, in Patent Document 1, a lift pin temperature adjusting means for adjusting a plurality of lift pins to different temperatures is required, and a lift mechanism for controlling the lift pins to move up and down at a predetermined timing is required. However, it tends to be complicated and expensive.
 本発明は上記のような事情に基づいて完成されたものであって、転写ムラの発生を十分に抑制することを目的とする。 The present invention has been completed based on the above circumstances, and an object thereof is to sufficiently suppress the occurrence of transfer unevenness.
(課題を解決するための手段)
 本発明の基板処理装置は、基板を収容してその基板に処理を施すための処理室と、前記処理室内にて前記基板を支持する支持ピンであって、回転可能な形で前記基板を支持する回転支持部を有する支持ピンと、前記処理室内にて前記回転支持部により支持された前記基板をその板面に沿って揺動させる揺動部と、を備える。
(Means for solving the problem)
The substrate processing apparatus of the present invention includes a processing chamber for storing a substrate and processing the substrate, and a support pin for supporting the substrate in the processing chamber, and supports the substrate in a rotatable form. And a support pin having a rotation support portion for rotating, and a swinging portion for swinging the substrate supported by the rotation support portion along the plate surface in the processing chamber.
 このような構成にすれば、処理室内に収容された基板は、支持ピンの回転支持部によって支持された状態で処理が施される。この処理が行われる際には、揺動部により基板をその板面に沿って揺動させており、その揺動に伴って回転支持部が回転されるようになっている。このとき、回転支持部による基板に対する支持箇所が連続的に変位するので、同支持箇所が従来のように固定化することが避けられる。これにより、基板に支持ピンの跡が転写され難いものとなり、もって支持ピンの転写ムラの発生が十分に抑制される。しかも、従来のように複数の支持ピンを異なる温度に調整をする支持ピン温調手段や異なる温度に調整された支持ピンを個別に駆動するリフト機構といった複雑な構造及びそれに係る複雑な制御を要するものに比べると、構造などが簡単になりコストの低下が図られる。 With this configuration, the substrate accommodated in the processing chamber is processed while being supported by the rotation support portion of the support pin. When this processing is performed, the substrate is swung along the plate surface by the swinging portion, and the rotation support portion is rotated in accordance with the swinging. At this time, since the support part with respect to the board | substrate by a rotation support part is displaced continuously, it can avoid fixing the support part like the past. This makes it difficult for the traces of the support pins to be transferred to the substrate, and thus the occurrence of uneven transfer of the support pins is sufficiently suppressed. Moreover, it requires a complicated structure such as a conventional support pin temperature adjusting means for adjusting a plurality of support pins to different temperatures and a lift mechanism for individually driving the support pins adjusted to different temperatures, and complicated control related thereto. Compared with a product, the structure is simplified and the cost is reduced.
 本発明の実施態様として、次の構成が好ましい。
(1)前記揺動部は、前記基板の端面に当接して前記基板を揺動させる。このようにすれば、仮に揺動部が基板の板面に当接して基板を揺動させる場合に比べると、基板を保持するための機構が不要となり、構造の簡素化及び低コスト化を図る上でより好適となる。また、揺動部から基板を板面に沿って揺動させる力が基板に効率的に伝達される。
The following configuration is preferable as an embodiment of the present invention.
(1) The swinging portion contacts the end surface of the substrate and swings the substrate. In this way, as compared with the case where the swinging portion is in contact with the plate surface of the substrate to swing the substrate, a mechanism for holding the substrate becomes unnecessary, and the structure is simplified and the cost is reduced. It becomes more suitable above. Further, the force for swinging the substrate along the plate surface from the swinging portion is efficiently transmitted to the substrate.
(2)前記基板を前記処理室の内外に移動させるために前記基板をその板面に沿って直線的に搬送する搬送部を備えており、前記揺動部は、前記基板を前記搬送部による前記基板の搬送方向に対する両側から挟む形で複数が配されている。このようにすれば、搬送部によって基板を搬送する際に揺動部が搬送の妨げとなることが避けられる。これにより、基板をスムーズに搬送することができ、タクトの短縮化などを図る上で好適となる。 (2) A transport unit that linearly transports the substrate along the plate surface thereof in order to move the substrate into and out of the processing chamber, and the swing unit is configured to transfer the substrate by the transport unit. A plurality are arranged so as to be sandwiched from both sides with respect to the transport direction of the substrate. In this way, when the substrate is transported by the transport unit, it is possible to avoid the swinging unit from interfering with the transport. As a result, the substrate can be transported smoothly, which is suitable for shortening the tact time.
(3)前記基板として画像が表示される表示領域と前記表示領域の周りを取り囲む非表示領域とを有する表示パネルを構成するものを処理しており、前記揺動部は、前記基板の板面における前記非表示領域に当接して前記基板を揺動させる。このようにすれば、仮に揺動部が基板の端面に当接して基板を揺動させる場合に比べると、揺動に伴って基板に作用する力により基板の端部が損傷し難いものとなる。しかも、仮に基板の板面のうち揺動部が当接される箇所に当接に伴う揺動部の転写ムラが生じた場合であっても、基板によって構成される表示パネルの表示領域に表示される画像に悪影響が及ぶ事態が生じ難いものとなる。 (3) Processing a display panel having a display area on which an image is displayed and a non-display area surrounding the display area as the substrate, and the swinging portion is a plate surface of the substrate The substrate is swung in contact with the non-display area. In this way, the end of the substrate is less likely to be damaged by the force acting on the substrate as it swings, compared to the case where the swinging portion abuts against the end surface of the substrate and swings the substrate. . Moreover, even if there is uneven transfer of the swinging part due to the contact at the place where the swinging part is in contact with the plate surface of the substrate, the display is made in the display area of the display panel constituted by the substrate. It is difficult for a situation that adversely affects the image to be generated.
(4)前記回転支持部は、前記基板に接する主回転球体と、前記主回転球体の周面に沿って並ぶとともに前記主回転球体の回転に伴って回転する複数の副回転球体と、前記主回転球体及び前記副回転球体を収容する回転球体収容部と、を有する。このようにすれば、基板に接する主回転球体は、その周面に沿って並ぶ複数の副回転球体が回転することでスムーズに回転し、揺動部によって揺動される基板に対する支持箇所がスムーズに変位される。仮に回転軸を有するローラによって回転支持部を構成した場合に比べると、主回転球体の回転方向に係る自由度が高いので、基板に対する支持箇所をより自由に変位させることができ、もって転写ムラがより生じ難いものとなる。 (4) The rotation support unit includes a main rotating sphere in contact with the substrate, a plurality of sub rotating spheres arranged along a peripheral surface of the main rotating sphere and rotating in accordance with the rotation of the main rotating sphere, And a rotating sphere housing portion that houses the rotating sphere and the auxiliary rotating sphere. In this way, the main rotating sphere in contact with the substrate rotates smoothly as the plurality of sub-rotating spheres arranged along the peripheral surface rotate, and the support location for the substrate swung by the swinging portion is smooth. Is displaced. Compared to the case where the rotation support portion is configured by a roller having a rotation shaft, the degree of freedom related to the rotation direction of the main rotating sphere is high, so that the support location with respect to the substrate can be displaced more freely, thereby causing uneven transfer. It becomes harder to occur.
(5)前記処理室内を減圧する減圧部を備える。このようにすれば、減圧部により処理室内を減圧することで基板を減圧乾燥処理することができる。ここで、従来のように、基板が一定時間支持ピンによって固定的に支持される場合には、基板のうち支持ピンによる支持箇所と非支持箇所とでは乾燥速度に差異が生じて支持ピンの跡が転写される、転写ムラが発生することが懸念される。その点、上記したように基板を揺動部により板面に沿って揺動させてそれに伴って回転支持部が回転することで、基板における支持箇所が固定化されるのが避けられているので、基板の乾燥速度がその板面内において均一化され、もって転写ムラの発生が十分に抑制される。 (5) A decompression unit for decompressing the processing chamber is provided. In this way, the substrate can be subjected to a reduced pressure drying process by reducing the pressure in the processing chamber by the pressure reducing unit. Here, when the substrate is fixedly supported by the support pins for a certain period of time as in the conventional case, a difference in drying speed occurs between the support portion by the support pin and the non-support portion in the substrate, and the trace of the support pin. There is a concern that transfer unevenness may occur. In that respect, as described above, the support portion on the substrate is avoided from being fixed by swinging the substrate along the plate surface by the swing portion and rotating the rotation support portion accordingly. The drying speed of the substrate is made uniform in the plate surface, and the occurrence of uneven transfer is sufficiently suppressed.
(発明の効果)
 本発明によれば、転写ムラの発生を十分に抑制することができる。
(The invention's effect)
According to the present invention, the occurrence of transfer unevenness can be sufficiently suppressed.
本発明の実施形態1に係る液晶パネルの断面構成を示す概略断面図1 is a schematic cross-sectional view showing a cross-sectional configuration of a liquid crystal panel according to Embodiment 1 of the present invention. 液晶パネルを構成するアレイ基板の表示領域における平面構成を示す拡大平面図The enlarged plan view which shows the plane structure in the display area of the array substrate which comprises a liquid crystal panel 液晶パネルを構成するCF基板の表示領域における平面構成を示す拡大平面図The enlarged plan view which shows the plane structure in the display area of CF substrate which comprises a liquid crystal panel 図2のiv-iv線に沿った拡大断面図Enlarged sectional view along line iv-iv in FIG. 基板が処理室外に配された状態の減圧乾燥装置の側断面図Side sectional view of the vacuum drying apparatus with the substrate placed outside the processing chamber 基板が処理室外に配された状態の減圧乾燥装置の平断面図Plan sectional view of the vacuum drying apparatus with the substrate placed outside the processing chamber 基板が処理室外に配された状態の減圧乾燥装置の正断面図Front sectional view of the vacuum drying apparatus with the substrate placed outside the processing chamber 支持ピンの回転支持部付近を示す斜視図The perspective view which shows the rotation support part vicinity of a support pin 支持ピン及び基板の断面図Cross section of support pins and substrate 基板が処理室内に配された状態の減圧乾燥装置の側断面図Side sectional view of the vacuum drying apparatus with the substrate placed in the processing chamber 基板が処理室内に配された状態の減圧乾燥装置の平断面図Plan sectional view of the vacuum drying apparatus with the substrate placed in the processing chamber 基板が処理室内に配された状態の減圧乾燥装置の正断面図Front sectional view of the vacuum drying apparatus with the substrate placed in the processing chamber 支持ピンにより基板を持ち上げた状態の減圧乾燥装置の側断面図Side sectional view of the vacuum drying apparatus with the substrate lifted by the support pins 支持ピンにより基板を持ち上げた状態の減圧乾燥装置の正断面図Front sectional view of vacuum drying device with substrate lifted by support pins 搬送アーム部が処理室外に退出してゲート部を閉じた状態の減圧乾燥装置の側断面図Side cross-sectional view of the vacuum drying apparatus with the transfer arm part out of the processing chamber and the gate part closed. 搬送アーム部が処理室外に退出してゲート部を閉じた状態の減圧乾燥装置の平断面図Flat cross-sectional view of the vacuum drying apparatus with the transfer arm part out of the processing chamber and the gate part closed 搬送アーム部が処理室外に退出した状態の減圧乾燥装置の正断面図Front sectional view of the reduced pressure drying apparatus with the transfer arm part out of the processing chamber 揺動部により基板を揺動させる動作を示す平断面図Plan sectional view showing the operation of swinging the substrate by the swing part 揺動部により基板を揺動させる動作を示す正断面図Front sectional view showing operation of swinging substrate by swinging part 本発明の実施形態2に係る基板が処理室内に配された状態の減圧乾燥装置の平断面図Plan sectional drawing of the reduced pressure drying apparatus of the state which the board | substrate which concerns on Embodiment 2 of this invention has been arranged in the processing chamber 揺動部により基板を揺動させる動作を示す正断面図Front sectional view showing operation of swinging substrate by swinging part 本発明の実施形態3に係る基板が処理室外に配された状態の減圧乾燥装置の側断面図Side sectional view of a reduced-pressure drying apparatus in a state where a substrate according to Embodiment 3 of the present invention is arranged outside the processing chamber 基板が処理室内に配された状態の減圧乾燥装置の側断面図Side sectional view of the vacuum drying apparatus with the substrate placed in the processing chamber 支持ピンにより基板を持ち上げてゲート部を閉じた状態の減圧乾燥装置の側断面図Side sectional view of the vacuum drying device with the substrate lifted by the support pins and the gate portion closed. ゲート部が開いて基板が処理室外に配された状態の減圧乾燥装置の側断面図Side sectional view of the vacuum drying apparatus with the gate portion opened and the substrate disposed outside the processing chamber 本発明の実施形態4に係る揺動部により基板を揺動させるのに伴って回転支持部が回転される動作を示す正断面図Sectional drawing which shows operation | movement by which a rotation support part is rotated in connection with rocking | fluctuating a board | substrate by the rocking | swiveling part which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る揺動部により基板を揺動させる動作を示す平断面図Plan sectional drawing which shows the operation | movement which rock | fluctuates a board | substrate by the rocking | swiveling part which concerns on Embodiment 5 of this invention. 支持ピンにより基板を持ち上げて揺動部が基板に当接した状態の減圧乾燥装置の側断面図Side sectional view of the vacuum drying apparatus in a state where the substrate is lifted by the support pins and the swinging portion is in contact with the substrate. 本発明の実施形態6に係る揺動部により基板を揺動させる動作を示す平断面図Plan sectional drawing which shows the operation | movement which rock | fluctuates a board | substrate by the rocking | swiveling part which concerns on Embodiment 6 of this invention. 本発明の実施形態7に係る揺動部により基板を揺動させる動作を示す平断面図Plan sectional drawing which shows the operation | movement which rock | fluctuates a board | substrate by the rocking | swiveling part which concerns on Embodiment 7 of this invention.
 <実施形態1>
 本発明の実施形態1を図1から図19によって説明する。本実施形態では、液晶表示装置を構成する液晶パネル(表示パネル)11における各基板20,21の製造に用いられる減圧乾燥装置(基板処理装置)40について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS. In the present embodiment, a vacuum drying apparatus (substrate processing apparatus) 40 used for manufacturing the substrates 20 and 21 in the liquid crystal panel (display panel) 11 constituting the liquid crystal display apparatus will be exemplified. In addition, a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
 まず、液晶パネル11の構成について説明する。液晶パネル11は、図1に示すように、一対の基板20,21間に、電界印加に伴って光学特性が変化する物質である液晶材料を含む液晶層22を封入してなる。液晶パネル11を構成する両基板20,21のうち裏側(バックライト装置側)に配されるものが、アレイ基板(アクティブマトリクス基板、TFT基板)20とされ、表側(光出射側)に配されるものが、CF基板(対向基板)21とされている。アレイ基板20及びCF基板21は、いずれもほぼ透明な(透光性を有する)ガラス基板GSの内面側に所定の膜(構造物)を既知のフォトリソグラフィ法により順次に積層形成してなるものとされる。アレイ基板20及びCF基板21は、画像が表示される表示領域(アクティブエリア)AAと、表示領域AAを取り囲むとともに画像が表示されない非表示領域(ノンアクティブエリア)NAAと、に区分されている(図6を参照)。なお、両基板20,21の外面側には、表裏一対の偏光板23がそれぞれ貼り付けられている。 First, the configuration of the liquid crystal panel 11 will be described. As shown in FIG. 1, the liquid crystal panel 11 is formed by enclosing a liquid crystal layer 22 containing a liquid crystal material that is a substance whose optical characteristics change with application of an electric field between a pair of substrates 20 and 21. Of the two substrates 20 and 21 constituting the liquid crystal panel 11, the one disposed on the back side (backlight device side) is the array substrate (active matrix substrate, TFT substrate) 20, and is disposed on the front side (light emitting side). The substrate is a CF substrate (counter substrate) 21. Each of the array substrate 20 and the CF substrate 21 is formed by sequentially laminating a predetermined film (structure) on the inner surface side of a substantially transparent (translucent) glass substrate GS by a known photolithography method. It is said. The array substrate 20 and the CF substrate 21 are divided into a display area (active area) AA in which an image is displayed and a non-display area (non-active area) NAA that surrounds the display area AA and does not display an image ( (See FIG. 6). Note that a pair of front and back polarizing plates 23 are respectively attached to the outer surface sides of both the substrates 20 and 21.
 アレイ基板20を構成するガラス基板GSの内面側(液晶層22側、CF基板21との対向面側)には、図2に示すように、3つの電極24a~24cを有するスイッチング素子であるTFT(Thin Film Transistor)24及び画素電極25が多数個並んで設けられるとともに、これらTFT24及び画素電極25の周りには、格子状をなすゲート配線(金属膜)26及びソース配線(金属膜)27が取り囲むようにして配設されている。画素電極25は、ITO(Indium Tin Oxide)などの透明導電膜からなる。ゲート配線26及びソース配線27は、共に金属材料として銅(Cu)またはアルミニウム(Al)を含有する金属膜からなり、ガラス基板GS上にパターニングされている。ゲート配線26は、下層側(ガラス基板GS側)に配されるのに対し、ソース配線27は、上層側に配されている。両配線26,27の間には、後述するゲート絶縁膜35が介設されており、それにより両配線26,27が交差部において相互に絶縁状態に保たれてリーク(ショート、短絡)が防止されている。ゲート配線26とソース配線27とがそれぞれTFT24のゲート電極24aとソース電極24bとに接続され、画素電極25がドレイン配線34を介してTFT24のドレイン電極24cに接続されている。ドレイン配線34は、ソース配線27と同じく金属材料として銅またはアルミニウムを含有する金属膜からなるとともにソース配線27と同じ層(レイヤ)に同一工程にてガラス基板GS上にパターニングされている。 As shown in FIG. 2, on the inner surface side of the glass substrate GS constituting the array substrate 20 (the liquid crystal layer 22 side, the surface facing the CF substrate 21), a TFT which is a switching element having three electrodes 24a to 24c. (Thin Film Transistor) 24 and a large number of pixel electrodes 25 are provided side by side. Around these TFTs 24 and pixel electrodes 25, a gate wiring (metal film) 26 and a source wiring (metal film) 27 are formed in a lattice shape. It is arranged so as to surround it. The pixel electrode 25 is made of a transparent conductive film such as ITO (Indium Tin Oxide). Both the gate wiring 26 and the source wiring 27 are made of a metal film containing copper (Cu) or aluminum (Al) as a metal material, and are patterned on the glass substrate GS. The gate wiring 26 is disposed on the lower layer side (glass substrate GS side), while the source wiring 27 is disposed on the upper layer side. A gate insulating film 35, which will be described later, is interposed between both the wirings 26 and 27, so that both the wirings 26 and 27 are kept insulated from each other at the intersection to prevent leakage (short circuit, short circuit). Has been. The gate wiring 26 and the source wiring 27 are connected to the gate electrode 24a and the source electrode 24b of the TFT 24, respectively, and the pixel electrode 25 is connected to the drain electrode 24c of the TFT 24 via the drain wiring 34. The drain wiring 34 is made of a metal film containing copper or aluminum as a metal material, like the source wiring 27, and is patterned on the glass substrate GS in the same layer (layer) as the source wiring 27 in the same process.
 アレイ基板20には、図2に示すように、ゲート配線26に並行するとともに画素電極25に対して平面に視て重畳する容量配線(補助容量配線、蓄積容量配線、Cs配線、金属膜)33が設けられている。容量配線33は、Y軸方向についてゲート配線26と交互に配されており、ゲート配線26と同じく金属材料として銅またはアルミニウムを含有する金属膜からなるとともにゲート配線26と同じ層に同一工程にてガラス基板GS上にパターニングされている。ゲート配線26がY軸方向に隣り合う画素電極25の間に配されているのに対し、容量配線33は、各画素電極25におけるY軸方向のほぼ中央部を横切る位置に配されている。このアレイ基板20の端部には、ゲート配線26及び容量配線33から引き回された端子部及びソース配線27から引き回された端子部が設けられており、これらの各端子部には、図示しない外部回路から各信号または基準電位が入力されるようになっており、それによりTFT24の駆動が制御される。また、アレイ基板20の内面側には、液晶層22に含まれる液晶分子を配向させるための配向膜28が形成されている(図1)。 On the array substrate 20, as shown in FIG. 2, capacity wiring (auxiliary capacity wiring, storage capacity wiring, Cs wiring, metal film) 33 that is parallel to the gate wiring 26 and overlaps the pixel electrode 25 in plan view. Is provided. The capacitor wiring 33 is arranged alternately with the gate wiring 26 in the Y-axis direction, and is made of a metal film containing copper or aluminum as a metal material in the same process as the gate wiring 26 in the same process. Patterned on the glass substrate GS. The gate wiring 26 is disposed between the pixel electrodes 25 adjacent to each other in the Y-axis direction, whereas the capacitor wiring 33 is disposed at a position that substantially crosses the central portion of each pixel electrode 25 in the Y-axis direction. The end portion of the array substrate 20 is provided with a terminal portion routed from the gate wiring 26 and the capacitor wiring 33 and a terminal portion routed from the source wiring 27. Each signal or reference potential is input from an external circuit that is not to be operated, and the drive of the TFT 24 is thereby controlled. An alignment film 28 for aligning liquid crystal molecules contained in the liquid crystal layer 22 is formed on the inner surface side of the array substrate 20 (FIG. 1).
 一方、CF基板21を構成するガラス基板GSの内面側(液晶層22側、アレイ基板20との対向面側)には、図1及び図3に示すように、アレイ基板20側の各画素電極25と平面に視て重畳する位置に多数個のカラーフィルタが並んで設けられている。カラーフィルタは、R(赤色),G(緑色),B(青色)を呈する各着色部29がX軸方向に沿って交互に並ぶ配置とされる。また、各着色部29の外形は、画素電極25の外形に倣って平面に視て縦長の方形状をなしている。カラーフィルタを構成する各着色部29間には、混色を防ぐための格子状をなす遮光部(ブラックマトリクス)30が形成されている。遮光部30は、アレイ基板20側のゲート配線26、ソース配線27及び容量配線33に対して平面視重畳する配置とされる。また、各着色部29及び遮光部30の表面には、アレイ基板20側の画素電極25と対向する対向電極31が設けられている。また、CF基板21の内面側には、液晶層22に含まれる液晶分子を配向させるための配向膜32がそれぞれ形成されている。 On the other hand, on the inner surface side (the liquid crystal layer 22 side, the surface facing the array substrate 20) of the glass substrate GS constituting the CF substrate 21, as shown in FIGS. 1 and 3, each pixel electrode on the array substrate 20 side is provided. A large number of color filters are arranged side by side at a position overlapping 25 with a plan view. In the color filter, the colored portions 29 exhibiting R (red), G (green), and B (blue) are arranged alternately along the X-axis direction. In addition, the outer shape of each colored portion 29 has a vertically long rectangular shape in plan view following the outer shape of the pixel electrode 25. Between each coloring part 29 which comprises a color filter, the light-shielding part (black matrix) 30 which makes the grid | lattice shape for preventing color mixing is formed. The light shielding portion 30 is disposed so as to overlap with the gate wiring 26, the source wiring 27, and the capacitor wiring 33 on the array substrate 20 in plan view. A counter electrode 31 is provided on the surface of each colored portion 29 and the light shielding portion 30 so as to face the pixel electrode 25 on the array substrate 20 side. An alignment film 32 for aligning liquid crystal molecules contained in the liquid crystal layer 22 is formed on the inner surface side of the CF substrate 21.
 ここで、アレイ基板20のうち特にスイッチング素子であるTFT24に関して詳しく説明する。TFT24は、図2及び図4に示すように、アレイ基板20を構成するガラス基板GS上に複数の膜を積層した構成とされており、具体的には下層側(ガラス基板GS側)から順に、ゲート配線26に接続されたゲート電極(金属膜)24a、ゲート絶縁膜(絶縁膜、ゲートインシュレータ膜)35、半導体膜36、ソース配線27に接続されたソース電極(金属膜)24b及び画素電極25に接続されたドレイン電極(金属膜)24c、層間絶縁膜(絶縁膜、パッシベーション膜)37、保護膜(絶縁膜)38が積層されている。 Here, the TFT 24 which is a switching element in the array substrate 20 will be described in detail. As shown in FIGS. 2 and 4, the TFT 24 is configured by laminating a plurality of films on the glass substrate GS constituting the array substrate 20, and specifically, in order from the lower layer side (glass substrate GS side). The gate electrode (metal film) 24a connected to the gate wiring 26, the gate insulating film (insulating film, gate insulator film) 35, the semiconductor film 36, the source electrode (metal film) 24b connected to the source wiring 27, and the pixel electrode 25, a drain electrode (metal film) 24c, an interlayer insulating film (insulating film, passivation film) 37, and a protective film (insulating film) 38 are stacked.
 ゲート電極24aは、ゲート配線26と同じく金属材料として銅またはアルミニウムを含有する金属膜からなり、ゲート配線26と同一工程にてガラス基板GS上にパターニングされている。ゲート絶縁膜35は、例えばシリコン窒化膜(SiN)またはシリコン酸化層(SiO)からなり、ガラス基板GS、ゲート電極24a及びゲート配線26上に積層されている、ゲート絶縁膜35は、TFT24においてはゲート電極24aと半導体膜36とを絶縁状態に保つものとされる。半導体膜36は、例えばアモルファスシリコン(a‐Si)からなるものとされ、一端側がドレイン電極24cに、他端側がソース電極24bにそれぞれ接続されることで、相互間の導通を図るチャネル領域として機能し得るものとされる。 The gate electrode 24 a is made of a metal film containing copper or aluminum as a metal material, like the gate wiring 26, and is patterned on the glass substrate GS in the same process as the gate wiring 26. The gate insulating film 35 is made of, for example, a silicon nitride film (SiN x ) or a silicon oxide layer (SiO x ), and is stacked on the glass substrate GS, the gate electrode 24 a and the gate wiring 26. The gate insulating film 35 is a TFT 24. In FIG. 2, the gate electrode 24a and the semiconductor film 36 are kept in an insulating state. The semiconductor film 36 is made of, for example, amorphous silicon (a-Si), and has one end connected to the drain electrode 24c and the other end connected to the source electrode 24b. It is supposed to be possible.
 ソース電極24b及びドレイン電極24cは、下層側(半導体膜36側)の第1導電膜24b1,24c1と、上層側(層間絶縁膜37側)の第2導電膜24b2,24c2とを積層した構成とされる。下層側の第1導電膜24b1,24c1は、例えばリン(P)等のn型不純物を高濃度にドーピングしたアモルファスシリコン(nSi)からなり、オーミックコンタクト層として機能するものである。上層側の第2導電膜24b2,24c2は、ソース配線27及びドレイン配線34と同じく金属材料として銅またはアルミニウムを含有する金属膜からなり、ソース配線27及びドレイン配線34と同一工程にて第1導電膜24b1,24c1上にパターニングされている。ソース電極24b及びドレイン電極24cにおけるチャネル領域側とは反対側の端部には、それぞれソース配線27及びドレイン配線34が連ねられている。 The source electrode 24b and the drain electrode 24c are formed by laminating first conductive films 24b1 and 24c1 on the lower layer side (semiconductor film 36 side) and second conductive films 24b2 and 24c2 on the upper layer side (interlayer insulating film 37 side). Is done. The first conductive films 24b1 and 24c1 on the lower layer side are made of amorphous silicon (n + Si) doped with an n-type impurity such as phosphorus (P) at a high concentration, and function as an ohmic contact layer. The second conductive films 24b2 and 24c2 on the upper layer side are made of a metal film containing copper or aluminum as a metal material, like the source wiring 27 and the drain wiring 34, and the first conductive film is formed in the same process as the source wiring 27 and the drain wiring 34. Patterned on the films 24b1 and 24c1. A source line 27 and a drain line 34 are connected to ends of the source electrode 24b and the drain electrode 24c opposite to the channel region side, respectively.
 上記したソース電極24b及びドレイン電極24cは、所定の間隔(開口領域)を挟んで対向状に配されているため、相互が直接的には電気的に接続されていない。しかし、ソース電極24b及びドレイン電極24cは、その下層側の半導体膜36を介して間接的に電気的に接続されており、この半導体膜36における両電極24b,24c間のブリッジ部分がドレイン電流が流れるチャネル領域として機能する。 The above-described source electrode 24b and drain electrode 24c are arranged opposite to each other with a predetermined interval (opening region) therebetween, and thus are not directly electrically connected to each other. However, the source electrode 24b and the drain electrode 24c are indirectly electrically connected via the semiconductor film 36 on the lower layer side, and the bridge portion between the electrodes 24b and 24c in the semiconductor film 36 has a drain current. Functions as a flowing channel region.
 層間絶縁膜37は、例えばシリコン窒化膜(SiN)またはシリコン酸化層(SiO)からなり、上記したゲート絶縁膜35と同一材料とされる。保護膜38は、有機材料であるアクリル樹脂(例えばポリメタクリル酸メチル樹脂(PMMA))やポリイミド樹脂からなる。従って、この保護膜38は、他の無機材料からなるゲート絶縁膜35、層間絶縁膜37に比べて膜厚が厚いものとされるとともに、平坦化膜として機能するものである。なお、TFT24に係る各絶縁膜(ゲート絶縁膜35、層間絶縁膜37及び保護膜38)は、それぞれアレイ基板20においてTFT24の形成領域以外の領域を含みつつ概ね全域にわたって均一な膜厚でもって形成されている。 The interlayer insulating film 37 is made of, for example, a silicon nitride film (SiN x ) or a silicon oxide layer (SiO x ), and is made of the same material as the gate insulating film 35 described above. The protective film 38 is made of an acrylic resin (for example, polymethyl methacrylate resin (PMMA)) or a polyimide resin, which is an organic material. Therefore, the protective film 38 is thicker than the gate insulating film 35 and the interlayer insulating film 37 made of other inorganic materials and functions as a planarizing film. Each insulating film (gate insulating film 35, interlayer insulating film 37, and protective film 38) related to the TFT 24 is formed with a uniform film thickness over almost the entire area including the area other than the area where the TFT 24 is formed on the array substrate 20. Has been.
 上記した構成のTFT24を有するアレイ基板20は、既知のフォトリソグラフィ法を用いてガラス基板GSの板面上に各種配線などを構成する各導電膜及び各絶縁膜が順次に成膜されてパターニングされることで製造されている。同様に、カラーフィルタを有するCF基板21は、既知のフォトリソグラフィ法を用いてガラス基板GSの板面上にカラーフィルタや遮光部30などを構成する各膜が順次に成膜されてパターニングされることで製造されている。具体的には、各基板20,21を構成するガラス基板GSは、各膜が成膜された後に処理液であるフォトレジストが塗布されることでレジスト膜が形成され、そのレジスト膜が各膜のパターンに応じたフォトマスクを介して露光された後に現像処理などされることで、各膜のパターニングがなされる。このうち、各基板20,21を構成するガラス基板GSの板面に塗布されたフォトレジストを減圧乾燥させてレジスト膜を形成するために減圧乾燥装置(基板処理装置)40が用いられている。続いて、減圧乾燥装置40の構成について詳しく説明する。なお、本実施形態では、複数のガラス基板GSが板面内に並んで配されてなるマザーガラス基板MGを減圧乾燥装置40により処理するようにしており、図6,図11及び図16には複数のガラス基板GS(アレイ基板20またはCF基板21)における各表示領域AAの外形を二点鎖線により図示している。従って、図6,図11及び図16において各表示領域AA外の格子状の部分及び最外周側の額縁部分が非表示領域NAAとされる。また、マザーガラス基板MGは、減圧乾燥処理を含めた各種処理を終えた後に個々のガラス基板GSに分割されるようになっている。 The array substrate 20 having the TFT 24 having the above-described configuration is patterned by sequentially forming each conductive film and each insulating film constituting various wirings on the plate surface of the glass substrate GS using a known photolithography method. It is manufactured by. Similarly, the CF substrate 21 having the color filter is patterned by sequentially forming each film constituting the color filter, the light shielding portion 30 and the like on the plate surface of the glass substrate GS using a known photolithography method. It is manufactured by. Specifically, the glass substrate GS constituting each of the substrates 20 and 21 is formed with a resist film by applying a photoresist, which is a processing liquid, after each film is formed. Each film is patterned by being subjected to development processing after exposure through a photomask corresponding to the pattern. Among these, a reduced pressure drying apparatus (substrate processing apparatus) 40 is used to form a resist film by drying the photoresist applied to the plate surface of the glass substrate GS constituting each of the substrates 20 and 21 under reduced pressure. Next, the configuration of the reduced pressure drying apparatus 40 will be described in detail. In the present embodiment, the mother glass substrate MG in which a plurality of glass substrates GS are arranged side by side in the plate surface is processed by the reduced pressure drying apparatus 40, and FIG. 6, FIG. 11 and FIG. The outline of each display area AA in a plurality of glass substrates GS (array substrate 20 or CF substrate 21) is illustrated by a two-dot chain line. Therefore, in FIG. 6, FIG. 11 and FIG. 16, the lattice-shaped part outside each display area AA and the frame part on the outermost periphery side are set as non-display areas NAA. Further, the mother glass substrate MG is divided into individual glass substrates GS after completing various processes including a vacuum drying process.
 減圧乾燥装置40は、図5に示すように、被処理基板であるマザーガラス基板MG(ガラス基板GS)を収容する処理室(チャンバ)41と、処理室41内を減圧する減圧部42と、減圧部42に接続されていて処理室41内の圧力を調整する圧力調整弁43と、マザーガラス基板MGを処理室41の内外に搬送する搬送アーム部(搬送部)44と、処理室41内にてマザーガラス基板MGを支持する支持ピン(リフトピン)45と、を備えている。なお、鉛直方向についての上下の記載は、図5及び図7を基準とする。また、図5,図6及び図9から図19では、マザーガラス基板MG上のレジスト膜などの図示を省略している。 As shown in FIG. 5, the vacuum drying apparatus 40 includes a processing chamber (chamber) 41 that accommodates a mother glass substrate MG (glass substrate GS) that is a substrate to be processed, a decompression unit 42 that decompresses the processing chamber 41, A pressure adjusting valve 43 that is connected to the decompression unit 42 and adjusts the pressure in the processing chamber 41, a transfer arm unit (transfer unit) 44 that transfers the mother glass substrate MG into and out of the processing chamber 41, and the inside of the processing chamber 41 And a support pin (lift pin) 45 for supporting the mother glass substrate MG. Note that the upper and lower descriptions in the vertical direction are based on FIGS. 5 and 7. Further, in FIGS. 5, 6 and 9 to 19, illustration of a resist film and the like on the mother glass substrate MG is omitted.
 処理室41は、図5に示すように、全体として略箱型をなしており、同図左側の側壁にマザーガラス基板MGの搬入出を行うための搬入出口41aが開口して設けられている。処理室41のうち搬入出口41aが設けられた側壁の外側には、搬入出口41aを開放する位置と、搬入出口41aを閉塞する位置と、の間をZ軸方向に沿ってスライド(移動)可能な形でゲート部41bが設けられている。減圧部42は、排気配管42aを介して処理室41に接続されており、処理室41内の空気を吸引する真空ポンプを有している。圧力調整弁43は、排気配管42aの途中に設けられており、その開度が電気的に制御されることで、処理室41内の圧力(減圧状態)を微調整できるものとされる。 As shown in FIG. 5, the processing chamber 41 has a substantially box shape as a whole, and a loading / unloading port 41 a for loading / unloading the mother glass substrate MG is opened on the left side wall of the processing chamber 41. . Outside the side wall of the processing chamber 41 where the loading / unloading port 41a is provided, it is possible to slide (move) along the Z-axis direction between a position where the loading / unloading port 41a is opened and a position where the loading / unloading port 41a is closed. The gate part 41b is provided in a special form. The decompression unit 42 is connected to the processing chamber 41 via an exhaust pipe 42 a and has a vacuum pump that sucks air in the processing chamber 41. The pressure adjustment valve 43 is provided in the middle of the exhaust pipe 42a, and the pressure (depressurized state) in the processing chamber 41 can be finely adjusted by electrically controlling the opening degree.
 搬送アーム部44は、図5及び図6に示すように、主部44aと、主部44aから分岐されてマザーガラス基板MGを支持する複数(本実施形態では4つ)の基板支持アーム44bと、を有している。主部44aは、図示しない駆動機構に繋げられており、その駆動機構により少なくとも鉛直方向(Z軸方向)及び水平方向(X軸方向及びY軸方向)について自在に移動できるようになっている。基板支持アーム44bは、マザーガラス基板MGの長辺方向(X軸方向)に沿って延在するとともにマザーガラス基板MGの短辺方向(Y軸方向)に沿って複数が所定の間隔を空けて並んで配されている。搬送アーム部44は、基板支持アーム44bにより支持したマザーガラス基板MGを処理室41外から搬入出口41aを通って処理室41内へ搬入することができ、逆にマザーガラス基板MGを処理室41内から搬入出口41aを通って処理室41外へ搬出することができる。この搬送アーム部44による処理室41に対するマザーガラス基板MGの搬送方向は、X軸方向(マザーガラス基板MGの長辺方向)と一致していて直線的なものとなっている。搬送アーム部44により処理室41内に搬送されたマザーガラス基板MGの高さ位置、言い換えるとZ軸方向についての位置が搬送位置(図10から図12)となっている。 As shown in FIGS. 5 and 6, the transfer arm portion 44 includes a main portion 44 a, and a plurality (four in this embodiment) of substrate support arms 44 b that branch from the main portion 44 a and support the mother glass substrate MG. ,have. The main portion 44a is connected to a drive mechanism (not shown), and can move freely in at least the vertical direction (Z-axis direction) and the horizontal direction (X-axis direction and Y-axis direction) by the drive mechanism. The substrate support arms 44b extend along the long side direction (X-axis direction) of the mother glass substrate MG, and a plurality of the substrate support arms 44b are spaced along the short side direction (Y-axis direction) of the mother glass substrate MG. They are arranged side by side. The transfer arm unit 44 can carry the mother glass substrate MG supported by the substrate support arm 44b from the outside of the processing chamber 41 into the processing chamber 41 through the loading / unloading port 41a, and conversely, the mother glass substrate MG. The inside can be carried out of the processing chamber 41 through the loading / unloading port 41a. The transfer direction of the mother glass substrate MG with respect to the processing chamber 41 by the transfer arm unit 44 coincides with the X-axis direction (the long side direction of the mother glass substrate MG) and is linear. The height position of the mother glass substrate MG transferred into the processing chamber 41 by the transfer arm unit 44, in other words, the position in the Z-axis direction is the transfer position (FIGS. 10 to 12).
 支持ピン45は、図5及び図7に示すように、処理室41の底壁側から天井壁側に向けて立ち上がる形で処理室41内に配されており、図示しないモータに対して機械的に接続されることで鉛直方向(Z軸方向、マザーガラス基板MGの板面の法線方向)に沿って上下に昇降可能とされている。支持ピン45は、マザーガラス基板MGに接する先端部(後述する回転支持部46)が搬送アーム部44によって処理室41内に搬送されたマザーガラス基板MGの搬送位置よりも低い高さ位置とされる待機位置(図10から図12)と、同マザーガラス基板MGの搬送位置よりも高い高さ位置とされるリフト位置(図13から図15,図17及び図19)と、の間を昇降されるようになっている。マザーガラス基板MGは、搬送アーム部44によって処理室41内に搬送された搬送位置から、リフト位置へと上昇する支持ピン45により支持されつつ持ち上げられ、リフト位置に達した支持ピン45により支持された状態で減圧乾燥処理がなされるようになっている。このリフト位置とされた支持ピン45により持ち上げられたマザーガラス基板MGの高さ位置が処理位置(図13から図15,図17及び図19)となっている。 As shown in FIGS. 5 and 7, the support pin 45 is disposed in the processing chamber 41 so as to rise from the bottom wall side to the ceiling wall side of the processing chamber 41, and is mechanical to a motor (not shown). By being connected to, it is possible to move up and down along the vertical direction (Z-axis direction, normal direction of the plate surface of the mother glass substrate MG). The support pin 45 has a tip portion (rotation support portion 46 described later) in contact with the mother glass substrate MG at a height position lower than the transfer position of the mother glass substrate MG transferred into the processing chamber 41 by the transfer arm unit 44. And a lift position (FIGS. 13 to 15, 17, and 19) that are higher than the transfer position of the mother glass substrate MG. It has come to be. The mother glass substrate MG is lifted while being supported by the support pins 45 that are lifted from the transfer position transferred into the processing chamber 41 by the transfer arm unit 44 to the lift position, and is supported by the support pins 45 that have reached the lift position. The vacuum drying process is performed in the state. The height position of the mother glass substrate MG lifted by the support pins 45 in the lift position is the processing position (FIGS. 13 to 15, 17, and 19).
 支持ピン45は、図6に示すように、搬送アーム部44によって処理室41内に搬送されたマザーガラス基板MGと平面に視て重畳するとともにマザーガラス基板MGの板面内において複数が平面に視てマトリクス状に並んで配されている。詳しくは、支持ピン45は、マザーガラス基板MGの長辺方向(X軸方向)及び短辺方向(Y軸方向)に沿って複数ずつそれぞれ所定の間隔を空けて並んで配されており、特にY軸方向については搬送アーム部44の各基板支持アーム44bに対して重なることなく隣り合う配置とされている。つまり、各支持ピン45は、Y軸方向についての配列間隔が各基板支持アーム44bの幅寸法よりも広いものとされていて、Y軸方向について各基板支持アーム44bと交互に並んで配されている。 As shown in FIG. 6, the support pins 45 overlap with the mother glass substrate MG transferred into the processing chamber 41 by the transfer arm unit 44 in a plan view, and a plurality of support pins 45 are flat on the plate surface of the mother glass substrate MG. They are arranged side by side in a matrix. Specifically, the support pins 45 are arranged side by side at predetermined intervals along the long side direction (X-axis direction) and the short side direction (Y-axis direction) of the mother glass substrate MG. The Y-axis direction is adjacent to each substrate support arm 44b of the transfer arm unit 44 without overlapping. That is, the support pins 45 are arranged so that the arrangement interval in the Y-axis direction is wider than the width dimension of each substrate support arm 44b, and the support pins 45 are arranged alternately with the substrate support arms 44b in the Y-axis direction. Yes.
 そして、本実施形態に係る支持ピン45には、図8及び図9に示すように、回転可能な形でマザーガラス基板MGを支持する回転支持部46が設けられている。その上で、本実施形態に係る減圧乾燥装置40は、図6及び図7に示すように、処理室41内にて回転支持部46により支持されたマザーガラス基板MGをその板面に沿って揺動させる揺動部47を有している。このような構成によれば、処理室41内においてマザーガラス基板MGの減圧乾燥処理が行われる際に揺動部47によりマザーガラス基板MGをその板面に沿って揺動させれば、その揺動に伴って回転支持部46が回転される。このとき、回転支持部46によるマザーガラス基板MGに対する支持箇所が連続的に変位することになるので、同支持箇所が従来のように固定化することが避けられる。これにより、減圧乾燥処理が進行したときにおけるマザーガラス基板MGの乾燥速度がその板面内において均一化されてマザーガラス基板MGに支持ピン45の跡が転写され難いものとなる。もって、支持ピン45の転写ムラの発生が十分に抑制される。しかも、従来のように複数の支持ピンを異なる温度に調整をする支持ピン温調手段や異なる温度に調整された支持ピンを個別に駆動するリフト機構といった複雑な構造及びそれに係る複雑な制御を要するものに比べると、構造などが簡単になりコストの低下が図られる。 Further, as shown in FIGS. 8 and 9, the support pin 45 according to the present embodiment is provided with a rotation support portion 46 that supports the mother glass substrate MG in a rotatable form. In addition, as shown in FIGS. 6 and 7, the reduced-pressure drying apparatus 40 according to the present embodiment moves the mother glass substrate MG supported by the rotation support unit 46 in the processing chamber 41 along the plate surface. It has a swinging part 47 that swings. According to such a configuration, if the mother glass substrate MG is swung along the plate surface by the swinging portion 47 when the mother glass substrate MG is subjected to the decompression drying process in the processing chamber 41, the rocking is prevented. The rotation support part 46 is rotated with the movement. At this time, since the support location for the mother glass substrate MG by the rotation support portion 46 is continuously displaced, it is possible to avoid fixing the support location as in the prior art. As a result, the drying rate of the mother glass substrate MG when the reduced-pressure drying process proceeds is made uniform in the plate surface, and the traces of the support pins 45 are hardly transferred to the mother glass substrate MG. Accordingly, the occurrence of transfer unevenness of the support pin 45 is sufficiently suppressed. Moreover, it requires a complicated structure such as a conventional support pin temperature adjusting means for adjusting a plurality of support pins to different temperatures and a lift mechanism for individually driving the support pins adjusted to different temperatures, and complicated control related thereto. Compared with a product, the structure is simplified and the cost is reduced.
 回転支持部46は、図8及び図9に示すように、支持ピン45における鉛直方向の上端部(マザーガラス基板MG側の端部)に設けられている。回転支持部46は、ボールホルダ(回転球体収容部)46aと、ボールホルダ46a内に収容されてマザーガラス基板MGに直接接するメインボール(主回転球体)46bと、ボールホルダ46a内に収容されてメインボール46bの周面に沿って並ぶとともにメインボール46bの回転に伴って回転する複数のサブボール(副回転球体)46cと、を有している。ボールホルダ46aは、支持ピン45の基端側部分(回転支持部46以外の部分)よりも太い円柱状をなしており、その鉛直方向の上端面に各ボール46b,46cを収容するボール収容室46a1が開口して形成されている。ボール収容室46a1は、内部空間よりも開口間口が狭くなるよう構成されており、その開口端部によってメインボール46bが抜け止め状態に保持されている。ボールホルダ46aは、ボール収容室46a1の周面がメインボール46bの周面よりも一回り大きな球面とされている。メインボール46bは、その径寸法がサブボール46cの径寸法やボール収容室46a1の開口間口よりも大きな球体とされており、ボールホルダ46aにおけるボール収容室46a1の開口端部により保持された状態で回転自在とされる。サブボール46cは、その径寸法がメインボール46bの径寸法よりも小さな球体とされ、ボール収容室46a1の周面とメインボール46bの周面との間に挟まれる形で配されており、これらの周面(いずれも球面)の面内に複数が互いに隣接しつつ並んで配されている。これらのサブボール46cがメインボール46bの回転に追従する形で回転されることで、メインボール46bが低損失でもってスムーズに回転されるようになっている。また、サブボール46cは、ボールホルダ46aにおけるボール収容室46a1の開口端部によって抜け止め状態に保持されている。 As shown in FIGS. 8 and 9, the rotation support portion 46 is provided at the upper end portion in the vertical direction of the support pin 45 (the end portion on the mother glass substrate MG side). The rotation support part 46 is accommodated in a ball holder (rotary sphere accommodating part) 46a, a main ball (main rotating sphere) 46b accommodated in the ball holder 46a and in direct contact with the mother glass substrate MG, and accommodated in the ball holder 46a. And a plurality of sub-balls (sub-rotating spheres) 46c that are arranged along the peripheral surface of the main ball 46b and that rotate along with the rotation of the main ball 46b. The ball holder 46a has a columnar shape that is thicker than the base end side portion (portion other than the rotation support portion 46) of the support pin 45, and a ball storage chamber that stores the balls 46b and 46c on the upper end surface in the vertical direction. 46a1 is formed open. The ball housing chamber 46a1 is configured such that the opening opening is narrower than the internal space, and the main ball 46b is held in a state of being prevented from coming off by the opening end. The ball holder 46a has a spherical surface in which the peripheral surface of the ball housing chamber 46a1 is slightly larger than the peripheral surface of the main ball 46b. The main ball 46b is a sphere whose diameter is larger than the diameter of the sub-ball 46c and the opening opening of the ball housing chamber 46a1, and is held by the opening end of the ball housing chamber 46a1 in the ball holder 46a. It can be rotated. The sub ball 46c is a sphere whose diameter is smaller than that of the main ball 46b, and is disposed between the peripheral surface of the ball housing chamber 46a1 and the peripheral surface of the main ball 46b. Are arranged side by side while being adjacent to each other in the circumferential surface (both spherical surfaces). These sub-balls 46c are rotated so as to follow the rotation of the main ball 46b, so that the main ball 46b is smoothly rotated with low loss. The sub-ball 46c is held in a retaining state by the open end of the ball housing chamber 46a1 in the ball holder 46a.
 揺動部47は、図6及び図7に示すように、処理室41内において処理位置とされたマザーガラス基板MGとZ軸方向について重なり合う高さ位置に配されるとともに、マザーガラス基板MGにおけるX軸方向(搬送方向)に沿う長辺側の端面と対向する形で配されている。このようにすれば、仮に揺動部がマザーガラス基板MGの板面に当接してマザーガラス基板MGを揺動させる場合に比べると、マザーガラス基板MGを保持するための機構が不要となり、構造の簡素化及び低コスト化を図る上でより好適となり、また、揺動部47からマザーガラス基板MGを板面に沿って揺動させる力がマザーガラス基板MGに効率的に伝達される。揺動部47は、マザーガラス基板MGをその短辺方向(Y軸方向)について両側から挟み込むよう対をなす形で配されている。つまり、揺動部47は、搬送アーム部44によるマザーガラス基板MGの搬送方向に対する両側から挟む形で複数が配されている。このようにすれば、搬送アーム部44によってマザーガラス基板MGを搬送する際に揺動部47が搬送の妨げとなることが避けられる。これにより、マザーガラス基板MGをスムーズに搬送することができ、タクトの短縮化などを図る上で好適となる。Y軸方向について対をなす揺動部47の組は、X軸方向について間隔を空けた位置に3つ配されている。つまり、揺動部47は、マザーガラス基板MGをその長辺方向について両端部と中央部とに対応付けて配置されている。 As shown in FIGS. 6 and 7, the swinging portion 47 is disposed at a height position overlapping with the mother glass substrate MG in the processing chamber 41 as a processing position in the Z-axis direction, and in the mother glass substrate MG. They are arranged so as to face the end surface on the long side along the X-axis direction (conveying direction). In this case, a mechanism for holding the mother glass substrate MG becomes unnecessary as compared with a case where the rocking portion is in contact with the plate surface of the mother glass substrate MG and the mother glass substrate MG is swung. Further, the force for swinging the mother glass substrate MG along the plate surface from the swinging portion 47 is efficiently transmitted to the mother glass substrate MG. The swinging part 47 is arranged in a pair so as to sandwich the mother glass substrate MG from both sides in the short side direction (Y-axis direction). That is, the plurality of swinging portions 47 are arranged so as to be sandwiched from both sides in the transport direction of the mother glass substrate MG by the transport arm portion 44. In this way, when the mother glass substrate MG is transported by the transport arm portion 44, the swinging portion 47 can be prevented from hindering transport. As a result, the mother glass substrate MG can be transported smoothly, which is suitable for shortening the tact time. Three sets of swinging portions 47 that are paired in the Y-axis direction are arranged at positions spaced apart in the X-axis direction. That is, the oscillating portion 47 is arranged so that the mother glass substrate MG is associated with both end portions and the central portion in the long side direction.
 揺動部47は、図示しないモータに対して機械的に接続されており、モータによって駆動されることでマザーガラス基板MGの板面に沿って変位されるようになっている。詳しくは、まず、揺動部47は、モータによってマザーガラス基板MGの端面からY軸方向について外側に離間した待機位置(図14)と、マザーガラス基板MGの端面に当接した当接位置(図17)と、の間を移動可能とされている。Y軸方向について対をなす揺動部47の間の間隔は、待機位置ではマザーガラス基板MGの短辺寸法よりも大きいものの、当接位置ではマザーガラス基板MGの短辺寸法とほぼ同一となる。なお、揺動部47は、その一部が搬送位置とされたマザーガラス基板MGとZ軸方向について重なり合う配置とされているものの、Y軸方向については離間した配置とされることで、搬送途中のマザーガラス基板MGに干渉することが避けられるとともに、搬送位置から処理位置までのマザーガラス基板MGの変位量を小さくできてタクトの短縮化を図る上で好適とされる。そして、当接位置とされた揺動部47は、図18に示すように、モータによって平面に視て楕円状の軌道を描くよう偏心運動することが可能とされ、それに伴ってマザーガラス基板MGをその板面に沿って揺動させることが可能とされている。このようにマザーガラス基板MGが揺動されると、各支持ピン45の回転支持部46に備えられるメインボール46b及びサブボール46cが回転することで、各支持ピン45によるマザーガラス基板MGにおける各支持箇所が連続的に変位することになり、その軌道が偏心運動される揺動部47の軌道と同じく楕円状をなすものとされる。つまり、各支持ピン45によるマザーガラス基板MGにおける各支持箇所は、楕円状の軌道の範囲内を連続的に変位することになる。図18には、各支持ピン45によるマザーガラス基板MGにおける各支持箇所が揺動部47の偏心運動に伴って変位する軌道を網掛け状にして示されている。この楕円状の軌道は、長軸方向がX軸方向と、短軸方向がY軸方向と、それぞれ一致するとともに、X軸方向に隣り合う同軌道やY軸方向に隣り合う同軌道とは重なり合うことがないもの(非重畳)とされる。つまり、マザーガラス基板MGは、揺動時に複数の支持ピン45に接触する部位が生じることがないものとされる。 The rocking portion 47 is mechanically connected to a motor (not shown), and is displaced along the plate surface of the mother glass substrate MG by being driven by the motor. Specifically, first, the swinging portion 47 is moved to a standby position (FIG. 14) that is separated from the end surface of the mother glass substrate MG by the motor to the outside in the Y-axis direction, and a contact position that contacts the end surface of the mother glass substrate MG ( 17) and can be moved. The distance between the swinging portions 47 paired in the Y-axis direction is larger than the short side dimension of the mother glass substrate MG at the standby position, but is substantially the same as the short side dimension of the mother glass substrate MG at the contact position. . In addition, although the rocking | swiveling part 47 is the arrangement | positioning which overlaps about the mother glass substrate MG in which the one part was made into the conveyance position about a Z-axis direction, it is arrange | positioned apart in the Y-axis direction, so This is suitable for shortening the tact time by avoiding interference with the mother glass substrate MG and reducing the displacement of the mother glass substrate MG from the transfer position to the processing position. Then, as shown in FIG. 18, the swinging portion 47 brought into the contact position can be eccentrically moved so as to draw an elliptical orbit when viewed in plan by a motor, and accordingly, the mother glass substrate MG. Can be swung along the plate surface. When the mother glass substrate MG is swung in this manner, the main ball 46b and the sub ball 46c provided in the rotation support portion 46 of each support pin 45 rotate, whereby each support pin 45 in the mother glass substrate MG is rotated. The support location is continuously displaced, and the trajectory has an elliptical shape similar to the trajectory of the swinging portion 47 that is eccentrically moved. That is, each support location on the mother glass substrate MG by each support pin 45 is continuously displaced within the range of the elliptical orbit. In FIG. 18, the trajectory in which each support location on the mother glass substrate MG by each support pin 45 is displaced in accordance with the eccentric motion of the swinging portion 47 is shown in a shaded shape. In this elliptical orbit, the major axis direction coincides with the X-axis direction and the minor axis direction coincides with the Y-axis direction, and the same orbit adjacent in the X-axis direction and the same orbit adjacent in the Y-axis direction overlap. There is nothing (non-overlapping). That is, the mother glass substrate MG does not have a portion that contacts the plurality of support pins 45 when swinging.
 本実施形態は以上のような構造であり、続いてその作用を説明する。図5から図7に示すように、処理室41外に配された搬送アーム部44の基板支持アーム44bに、フォトレジストが塗布されたマザーガラス基板MGを載置する。処理室41のゲート部41bを開いて搬入出口41aが開放した状態としつつ搬送アーム部44を駆動し、図10から図12に示すように、マザーガラス基板MGを処理室41内に収容して搬送位置に配する。このとき、支持ピン45は、待機位置とされているので、搬送位置とされたマザーガラス基板MGとは非接触状態とされる。また、支持ピン45は、Y軸方向について基板支持アーム44bとは重なり合わない配置とされているので、処理室41内に進入した搬送アーム部44の基板支持アーム44bとの干渉が避けられている(図11)。また、揺動部47は、Y軸方向についてマザーガラス基板MGに対して両側方に退避した待機位置に配されているので、搬入されるマザーガラス基板MGとの干渉が避けられている(図11)。この待機位置とされた支持ピン45が上昇するよう駆動させると、所定高さ分上昇したところで回転支持部46のメインボール46bがマザーガラス基板MGの裏側の板面(フォトレジストの非塗布面)に接触される。この状態から支持ピン45がさらに上昇されると、回転支持部46によって支持されたマザーガラス基板MGもそれに伴って上昇する。 This embodiment has the structure as described above, and its operation will be described next. As shown in FIGS. 5 to 7, the mother glass substrate MG coated with a photoresist is placed on the substrate support arm 44 b of the transfer arm unit 44 arranged outside the processing chamber 41. The transfer arm 44 is driven while the gate 41b of the processing chamber 41 is opened and the loading / unloading port 41a is opened, and the mother glass substrate MG is accommodated in the processing chamber 41 as shown in FIGS. Place it at the transfer position. At this time, since the support pin 45 is in the standby position, it is not in contact with the mother glass substrate MG in the transport position. Further, since the support pins 45 are arranged so as not to overlap the substrate support arm 44b in the Y-axis direction, interference with the substrate support arm 44b of the transfer arm unit 44 that has entered the processing chamber 41 is avoided. (FIG. 11). Further, since the swinging portion 47 is disposed at the standby position retracted on both sides with respect to the mother glass substrate MG in the Y-axis direction, interference with the mother glass substrate MG carried in is avoided (FIG. 11). When the support pin 45 in the standby position is driven so as to rise, the main ball 46b of the rotation support portion 46 is moved to a predetermined height, and the plate surface on the back side of the mother glass substrate MG (photoresist non-coated surface). Touched. When the support pin 45 is further raised from this state, the mother glass substrate MG supported by the rotation support portion 46 is also raised accordingly.
 図13及び図14に示すように、支持ピン45がリフト位置に達すると、マザーガラス基板MGが処理位置に至る。それから搬送アーム部44がマザーガラス基板MGを非搭載の状態で搬入出口41aを通って処理室41外に退出したら、図15から図17に示すように、ゲート部41bをスライドさせて搬入出口41aを閉塞する。このようにして処理室41内を密閉空間としたら、減圧乾燥処理を行う。減圧乾燥処理を行うに際しては、圧力調整弁43を開くとともに減圧部42を駆動することで、処理室41内の空気を吸引・減圧して目的の真空度に保つようにする。これにより、マザーガラス基板MGに塗布されたフォトレジストが減圧乾燥され、やがてレジスト膜が形成される。 As shown in FIGS. 13 and 14, when the support pin 45 reaches the lift position, the mother glass substrate MG reaches the processing position. Then, when the transfer arm unit 44 leaves the processing chamber 41 through the loading / unloading port 41a with the mother glass substrate MG not mounted, as shown in FIGS. 15 to 17, the gate unit 41b is slid to load / unloading port 41a. Occlude. Thus, if the inside of the process chamber 41 is made into the sealed space, a reduced-pressure drying process is performed. When performing the reduced-pressure drying process, the pressure adjusting valve 43 is opened and the pressure-reducing part 42 is driven, so that the air in the process chamber 41 is sucked and depressurized so as to maintain the target vacuum degree. Thereby, the photoresist applied to the mother glass substrate MG is dried under reduced pressure, and a resist film is formed eventually.
 この減圧乾燥処理を行うのに先立って、揺動部47は、図18及び図19に示すように、待機位置からY軸方向についてマザーガラス基板MGに接近するよう変位されて当接位置に至る。このとき、マザーガラス基板MGは、Y軸方向について両側から対をなす揺動部47によって挟み込まれた状態で保持される。減圧乾燥処理が行われるのに同期して各揺動部47が駆動されると、各揺動部47は、平面に視て楕円状の軌道を描くよう偏心運動するので、それに伴ってマザーガラス基板MGがその板面に沿って同様の軌道を描きつつ揺動される。マザーガラス基板MGが揺動されると、各支持ピン45の回転支持部46に備えられるメインボール46b及びサブボール46cが回転することで、各支持ピン45によるマザーガラス基板MGにおける各支持箇所が連続的に変位する。このとき、メインボール46bは、サブボール46cが回転することでスムーズに回転し、それにより揺動部47によって揺動されるマザーガラス基板MGに対する支持箇所がスムーズに変位されるようになっている(図9を参照)。ここで、仮に、従来のようにマザーガラス基板MGが一定時間支持ピンによって固定的に支持される場合には、マザーガラス基板MGのうち支持ピンによる支持箇所と非支持箇所とでは乾燥速度に差異が生じて支持ピンの跡が転写される、転写ムラが発生することが懸念される。その点、上記したようにマザーガラス基板MGを揺動部47によりその板面に沿って揺動させてそれに伴って回転支持部46のメインボール46b及びサブボール46cが回転することで、マザーガラス基板MGにおける支持箇所が固定化されるのが避けられる。これにより、マザーガラス基板MGの乾燥速度がその板面内において均一化され、もって転写ムラの発生が十分に抑制される。 Prior to the vacuum drying process, the swinging portion 47 is displaced from the standby position so as to approach the mother glass substrate MG in the Y-axis direction as shown in FIGS. . At this time, the mother glass substrate MG is held in a state of being sandwiched by the swinging portions 47 that make a pair from both sides in the Y-axis direction. When each oscillating portion 47 is driven in synchronism with the vacuum drying process, each oscillating portion 47 moves eccentrically so as to draw an elliptical orbit as viewed in a plane, and accordingly, the mother glass The substrate MG is swung while drawing a similar trajectory along the plate surface. When the mother glass substrate MG is swung, the main ball 46b and the sub ball 46c provided in the rotation support portion 46 of each support pin 45 rotate, so that each support location on the mother glass substrate MG by each support pin 45 is changed. Displaces continuously. At this time, the main ball 46b rotates smoothly by the rotation of the sub ball 46c, whereby the support location for the mother glass substrate MG swung by the swinging portion 47 is smoothly displaced. (See FIG. 9). Here, if the mother glass substrate MG is fixedly supported by the support pins for a certain period of time as in the conventional case, the drying speed is different between the support location by the support pins and the non-support location in the mother glass substrate MG. This may cause transfer unevenness in which the trace of the support pin is transferred. In that respect, as described above, the mother glass substrate MG is swung along the plate surface by the swinging portion 47, and the main ball 46b and the subball 46c of the rotation support portion 46 are rotated accordingly. It is possible to avoid fixing the support portion on the substrate MG. As a result, the drying speed of the mother glass substrate MG is made uniform within the plate surface, and the occurrence of uneven transfer is sufficiently suppressed.
 この揺動時には、マザーガラス基板MGに接する回転支持部46のメインボール46bが高い自由度でもって回転自在とされているので、各支持ピン45によるマザーガラス基板MGにおける各支持箇所は、図18にて網掛け状にして示される平面に視て楕円状の軌道の範囲内を連続的に変位することになる。上記各支持箇所が変位する範囲は、平面に視て互いに重なり合うことがないので、マザーガラス基板MGは、揺動時に複数の支持ピン45に接触する部位が生じることがないものとされる。これにより、転写ムラの発生がより好適に抑制される。なお、上記した各揺動部47の駆動は、減圧乾燥処理の開始に先立って開始されても構わず、また逆に減圧乾燥処理が開始されて一定時間が経過してから開始されても構わない。 At the time of the swing, the main ball 46b of the rotation support portion 46 in contact with the mother glass substrate MG is rotatable with a high degree of freedom, so each support location on the mother glass substrate MG by each support pin 45 is shown in FIG. As shown in the plane shown by the shaded area in FIG. 3, the range of the elliptical trajectory is continuously displaced. Since the ranges in which the support portions are displaced do not overlap each other in a plan view, the mother glass substrate MG does not have a portion that contacts the plurality of support pins 45 when swinging. Thereby, generation | occurrence | production of a transfer nonuniformity is suppressed more suitably. It should be noted that the driving of each swinging portion 47 may be started prior to the start of the reduced pressure drying process, or conversely, may be started after a certain period of time has elapsed since the start of the reduced pressure drying process. Absent.
 上記のようにして減圧乾燥処理を終えたら、処理室41内の減圧状態を解除し、処理室41内の圧力を大気圧に戻す。その後、図13及び図14に示すように、ゲート部41bが開いた状態で搬入出口41aを通して搬送アーム部44を処理室41内に進入させたら、図10から図12に示すように、各支持ピン45をリフト位置から待機位置へと下降させる。各支持ピン45が待機位置に達する前に、マザーガラス基板MGが搬送位置にて搬送アーム部44により受け取られる。マザーガラス基板MGを受け取った搬送アーム部44を処理室41外へと移動させることで、図5から図7に示すように、減圧乾燥処理済みのマザーガラス基板MGが取り出される。 When the reduced pressure drying process is completed as described above, the reduced pressure state in the processing chamber 41 is released, and the pressure in the processing chamber 41 is returned to atmospheric pressure. Then, as shown in FIG. 13 and FIG. 14, when the transfer arm portion 44 enters the processing chamber 41 through the loading / unloading port 41a with the gate portion 41b open, each support is shown in FIGS. The pin 45 is lowered from the lift position to the standby position. Before each support pin 45 reaches the standby position, the mother glass substrate MG is received by the transfer arm unit 44 at the transfer position. By moving the transfer arm unit 44 that has received the mother glass substrate MG to the outside of the processing chamber 41, as shown in FIGS. 5 to 7, the mother glass substrate MG that has been subjected to the drying under reduced pressure is taken out.
 以上説明したように本実施形態の減圧乾燥装置(基板処理装置)40は、マザーガラス基板(基板)MGを収容してそのマザーガラス基板MGに処理を施すための処理室41と、処理室41内にてマザーガラス基板MGを支持する支持ピン45であって、回転可能な形でマザーガラス基板MGを支持する回転支持部46を有する支持ピン45と、処理室41内にて回転支持部46により支持されたマザーガラス基板MGをその板面に沿って揺動させる揺動部47と、を備える。 As described above, the reduced-pressure drying apparatus (substrate processing apparatus) 40 according to the present embodiment accommodates the mother glass substrate (substrate) MG and processes the mother glass substrate MG, and the processing chamber 41. A support pin 45 for supporting the mother glass substrate MG in the inside, and a support pin 45 having a rotation support portion 46 for supporting the mother glass substrate MG in a rotatable manner, and a rotation support portion 46 in the processing chamber 41. And a rocking portion 47 that rocks the mother glass substrate MG supported by the plate along the plate surface.
 このような構成にすれば、処理室41内に収容されたマザーガラス基板MGは、支持ピン45の回転支持部46によって支持された状態で処理が施される。この処理が行われる際には、揺動部47によりマザーガラス基板MGをその板面に沿って揺動させており、その揺動に伴って回転支持部46が回転されるようになっている。このとき、回転支持部46によるマザーガラス基板MGに対する支持箇所が連続的に変位するので、同支持箇所が従来のように固定化することが避けられる。これにより、マザーガラス基板MGに支持ピン45の跡が転写され難いものとなり、もって支持ピン45の転写ムラの発生が十分に抑制される。しかも、従来のように複数の支持ピンを異なる温度に調整をする支持ピン温調手段や異なる温度に調整された支持ピンを個別に駆動するリフト機構といった複雑な構造及びそれに係る複雑な制御を要するものに比べると、構造などが簡単になりコストの低下が図られる。 With such a configuration, the mother glass substrate MG accommodated in the processing chamber 41 is processed while being supported by the rotation support portion 46 of the support pin 45. When this processing is performed, the mother glass substrate MG is swung along the plate surface by the swinging portion 47, and the rotation support portion 46 is rotated along with the swinging. . At this time, since the support part with respect to the mother glass substrate MG by the rotation support part 46 is displaced continuously, it is avoided that the support part is fixed as in the prior art. As a result, the traces of the support pins 45 are difficult to be transferred to the mother glass substrate MG, and the occurrence of uneven transfer of the support pins 45 is sufficiently suppressed. Moreover, it requires a complicated structure such as a conventional support pin temperature adjusting means for adjusting a plurality of support pins to different temperatures and a lift mechanism for individually driving the support pins adjusted to different temperatures, and complicated control related thereto. Compared with a product, the structure is simplified and the cost is reduced.
 また、揺動部47は、マザーガラス基板MGの端面に当接してマザーガラス基板MGを揺動させる。このようにすれば、仮に揺動部がマザーガラス基板MGの板面に当接してマザーガラス基板MGを揺動させる場合に比べると、マザーガラス基板MGを保持するための機構が不要となり、構造の簡素化及び低コスト化を図る上でより好適となる。また、揺動部47からマザーガラス基板MGを板面に沿って揺動させる力がマザーガラス基板MGに効率的に伝達される。 Further, the swinging part 47 contacts the end surface of the mother glass substrate MG and swings the mother glass substrate MG. In this case, a mechanism for holding the mother glass substrate MG becomes unnecessary as compared with a case where the rocking portion is in contact with the plate surface of the mother glass substrate MG and the mother glass substrate MG is swung. This is more suitable for simplification and cost reduction. Further, the force for swinging the mother glass substrate MG along the plate surface from the swinging portion 47 is efficiently transmitted to the mother glass substrate MG.
 また、マザーガラス基板MGを処理室41の内外に移動させるためにマザーガラス基板MGをその板面に沿って直線的に搬送する搬送アーム部(搬送部)44を備えており、揺動部47は、マザーガラス基板MGを搬送アーム部44によるマザーガラス基板MGの搬送方向に対する両側から挟む形で複数が配されている。このようにすれば、搬送アーム部44によってマザーガラス基板MGを搬送する際に揺動部47が搬送の妨げとなることが避けられる。これにより、マザーガラス基板MGをスムーズに搬送することができ、タクトの短縮化などを図る上で好適となる。 Further, in order to move the mother glass substrate MG in and out of the processing chamber 41, a transfer arm unit (transfer unit) 44 that linearly transfers the mother glass substrate MG along its plate surface is provided. Are arranged in such a manner that the mother glass substrate MG is sandwiched from both sides in the conveyance direction of the mother glass substrate MG by the conveyance arm unit 44. In this way, when the mother glass substrate MG is transported by the transport arm portion 44, the swinging portion 47 can be prevented from hindering transport. As a result, the mother glass substrate MG can be transported smoothly, which is suitable for shortening the tact time.
 また、回転支持部46は、マザーガラス基板MGに接するメインボール(主回転球体)46bと、メインボール46bの周面に沿って並ぶとともにメインボール46bの回転に伴って回転する複数のサブボール(副回転球体)46cと、メインボール46b及びサブボール46cを収容するボールホルダ(回転球体収容部)46aと、を有する。このようにすれば、マザーガラス基板MGに接するメインボール46bは、その周面に沿って並ぶ複数のサブボール46cが回転することでスムーズに回転し、揺動部47によって揺動されるマザーガラス基板MGに対する支持箇所がスムーズに変位される。仮に回転軸を有するローラによって回転支持部46を構成した場合に比べると、メインボール46bの回転方向に係る自由度が高いので、マザーガラス基板MGに対する支持箇所をより自由に変位させることができ、もって転写ムラがより生じ難いものとなる。 The rotation support unit 46 includes a main ball (main rotating sphere) 46b in contact with the mother glass substrate MG and a plurality of sub-balls (lined along the peripheral surface of the main ball 46b and rotated with the rotation of the main ball 46b). A sub-rotating sphere) 46c, and a ball holder (rotating sphere accommodating portion) 46a for accommodating the main ball 46b and the sub-ball 46c. In this way, the main ball 46b in contact with the mother glass substrate MG rotates smoothly by rotating the plurality of sub-balls 46c arranged along the peripheral surface thereof, and the mother glass that is rocked by the rocking portion 47. The support location for the substrate MG is smoothly displaced. Compared to the case where the rotation support portion 46 is configured by a roller having a rotation shaft, since the degree of freedom in the rotation direction of the main ball 46b is high, the support location for the mother glass substrate MG can be displaced more freely. Therefore, uneven transfer is less likely to occur.
 また、処理室41内を減圧する減圧部42を備える。このようにすれば、減圧部42により処理室41内を減圧することでマザーガラス基板MGを減圧乾燥処理することができる。ここで、従来のように、マザーガラス基板MGが一定時間支持ピンによって固定的に支持される場合には、マザーガラス基板MGのうち支持ピンによる支持箇所と非支持箇所とでは乾燥速度に差異が生じて支持ピンの跡が転写される、転写ムラが発生することが懸念される。その点、上記したようにマザーガラス基板MGを揺動部47により板面に沿って揺動させてそれに伴って回転支持部46が回転することで、マザーガラス基板MGにおける支持箇所が固定化されるのが避けられているので、マザーガラス基板MGの乾燥速度がその板面内において均一化され、もって転写ムラの発生が十分に抑制される。 Further, a decompression unit 42 for decompressing the inside of the processing chamber 41 is provided. By doing so, the mother glass substrate MG can be subjected to a reduced pressure drying process by reducing the pressure in the processing chamber 41 by the pressure reducing unit 42. Here, when the mother glass substrate MG is fixedly supported by the support pins for a certain period of time as in the prior art, there is a difference in the drying speed between the support portions by the support pins and the non-support portions in the mother glass substrate MG. There is a concern that unevenness of transfer, in which the trace of the support pin is transferred, occurs. In that respect, as described above, the mother glass substrate MG is swung along the plate surface by the swinging portion 47 and the rotation support portion 46 is rotated accordingly, whereby the support location on the mother glass substrate MG is fixed. Therefore, the drying rate of the mother glass substrate MG is made uniform in the plate surface, and the occurrence of transfer unevenness is sufficiently suppressed.
 <実施形態2>
 本発明の実施形態2を図20または図21によって説明する。この実施形態2では、揺動部147を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 2>
A second embodiment of the present invention will be described with reference to FIG. 20 or FIG. In this Embodiment 2, what changed the rocking | swiveling part 147 is shown. In addition, the overlapping description about the same structure, operation | movement, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る揺動部147は、図20及び図21に示すように、マザーガラス基板MGの板面に当接するものとされる。詳しくは、揺動部147は、処理室141内において収容されたマザーガラス基板MGと平面に視て重畳する配置とされており、マザーガラス基板MGにおける裏側の板面に対して真空吸着されることでマザーガラス基板MGを保持し、もってマザーガラス基板MGを揺動させることが可能とされている。これにより、上記した実施形態1に比べると、揺動に伴ってマザーガラス基板MGの端部が損傷し難いものとなる。なお、揺動部147には、マザーガラス基板MGを真空吸着するための真空ポンプなどからなる真空吸着手段(図示せず)が接続されている。そして、揺動部147は、マザーガラス基板MGの板面のうちの枠状をなす外周側部分に当接されており、このマザーガラス基板MGの板面のうちの外周側部分は、各ガラス基板GSの表示領域AA外の領域、つまり非表示領域NAAとされている。ここで、本実施形態のように揺動部147をマザーガラス基板MGの板面に当接させると、その当接箇所において減圧乾燥処理に起因する揺動部147の転写ムラが発生するおそれがある。仮にそのような転写ムラが発生したとしても、上記したようにマザーガラス基板MGにおける揺動部147の当接箇所が各ガラス基板GSの非表示領域NAAとされているので、各ガラス基板GSの表示領域AAに転写ムラが生じることが避けられる。従って、このような減圧乾燥処理がなされたマザーガラス基板MGを分断して得られたガラス基板GSを用いて液晶パネルを製造したとき、その液晶パネルにおける表示領域AAに表示される画像に、揺動部147の転写ムラに起因する悪影響が及ぶことが避けられるようになっている。なお、本実施形態に係る揺動部147は、上記した実施形態1に記載した揺動部47と同様に平面に視て楕円状の軌跡を描くよう偏心運動するものとされる。 As shown in FIGS. 20 and 21, the swinging portion 147 according to the present embodiment is in contact with the plate surface of the mother glass substrate MG. Specifically, the swinging portion 147 is arranged so as to overlap with the mother glass substrate MG accommodated in the processing chamber 141 in a plan view, and is vacuum-sucked to the back plate surface of the mother glass substrate MG. Thus, it is possible to hold the mother glass substrate MG and thereby swing the mother glass substrate MG. Thereby, compared with the above-described first embodiment, the end portion of the mother glass substrate MG is less likely to be damaged along with the swing. Note that a vacuum suction means (not shown) including a vacuum pump for vacuum suction of the mother glass substrate MG is connected to the swing portion 147. And the rocking | swiveling part 147 is contact | abutted to the outer peripheral side part which makes frame shape among the plate surfaces of the mother glass substrate MG, and the outer peripheral side portion of the plate surfaces of this mother glass substrate MG is made of each glass. The area outside the display area AA of the substrate GS, that is, the non-display area NAA. Here, when the swinging portion 147 is brought into contact with the plate surface of the mother glass substrate MG as in the present embodiment, there is a possibility that uneven transfer of the swinging portion 147 due to the reduced pressure drying process occurs at the contact portion. is there. Even if such transfer unevenness occurs, the contact portion of the rocking portion 147 in the mother glass substrate MG is set as the non-display area NAA of each glass substrate GS as described above. It is possible to avoid transfer unevenness in the display area AA. Therefore, when a liquid crystal panel is manufactured using the glass substrate GS obtained by dividing the mother glass substrate MG that has been subjected to such a reduced-pressure drying process, the image displayed in the display area AA of the liquid crystal panel is changed. It is possible to avoid adverse effects caused by uneven transfer of the moving part 147. In addition, the rocking | swiveling part 147 which concerns on this embodiment shall be eccentrically moved so that an elliptical locus may be drawn on a plane similarly to the rocking | swiveling part 47 described in Embodiment 1 mentioned above.
 以上説明したように本実施形態によれば、マザーガラス基板MGとして画像が表示される表示領域AAと表示領域AAの周りを取り囲む非表示領域NAAとを有する液晶パネル(表示パネル)を構成するものを処理しており、揺動部147は、マザーガラス基板MGの板面における非表示領域NAAに当接してマザーガラス基板MGを揺動させる。このようにすれば、仮に揺動部がマザーガラス基板MGの端面に当接してマザーガラス基板MGを揺動させる場合に比べると、揺動に伴ってマザーガラス基板MGに作用する力によりマザーガラス基板MGの端部が損傷し難いものとなる。しかも、仮にマザーガラス基板MGの板面のうち揺動部147が当接される箇所に当接に伴う揺動部147の転写ムラが生じた場合であっても、マザーガラス基板MGによって構成される液晶パネルの表示領域AAに表示される画像に悪影響が及ぶ事態が生じ難いものとなる。 As described above, according to the present embodiment, the mother glass substrate MG constitutes a liquid crystal panel (display panel) having a display area AA on which an image is displayed and a non-display area NAA surrounding the display area AA. The swinging unit 147 contacts the non-display area NAA on the plate surface of the mother glass substrate MG and swings the mother glass substrate MG. In this way, the mother glass is caused by the force acting on the mother glass substrate MG as it swings, as compared with the case where the swinging portion abuts on the end surface of the mother glass substrate MG to swing the mother glass substrate MG. The end of the substrate MG is difficult to be damaged. Moreover, even if there is a transfer unevenness of the swinging part 147 due to the contact at the place where the swinging part 147 is in contact with the plate surface of the mother glass substrate MG, it is constituted by the mother glass substrate MG. It is difficult for a situation in which an image displayed on the display area AA of the liquid crystal panel is adversely affected.
 <実施形態3>
 本発明の実施形態3を図22から図25によって説明する。この実施形態3では、上記した実施形態1からマザーガラス基板MGの搬送手段を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 3>
A third embodiment of the present invention will be described with reference to FIGS. In the third embodiment, the transfer means for the mother glass substrate MG is changed from the first embodiment. In addition, the overlapping description about the same structure, operation | movement, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る減圧乾燥装置240は、図22に示すように、上記した実施形態1に記載した搬送アーム部に代えて、マザーガラス基板MGを処理室241の内外に搬送するための搬送コンベア(搬送部)48を有している。搬送コンベア48は、Y軸方向に沿って延在するとともに回転可能な搬送ローラ48aを、X軸方向に沿って所定の間隔を空けて多数並べて配置してなるものとされる。これにより、搬送コンベア48は、マザーガラス基板MGをX軸方向に沿って直線的に搬送することが可能とされる。処理室241のうち、マザーガラス基板MGの搬送方向についての前後一対の側壁には、マザーガラス基板MGを搬入するための搬入口49と、マザーガラス基板MGを搬出するための搬出口50と、がそれぞれ設けられている。そして、搬送コンベア48は、処理室241内に配される複数の搬送ローラ48aと、処理室241に対して搬入口49の外側に配される複数の搬送ローラ48aと、処理室241に対して搬出口50の外側に配される複数の搬送ローラ48aと、を備えてなる。このような搬送コンベア48によりマザーガラス基板MGは、処理室241を搬送方向の前後に貫く形で直線的に搬送されるようになっている。また、この処理室241には、搬入口49と搬出口50とをそれぞれ閉塞可能なゲート部241bが一対備えられている。 As shown in FIG. 22, the vacuum drying apparatus 240 according to the present embodiment is a transfer conveyor for transferring the mother glass substrate MG into and out of the processing chamber 241 instead of the transfer arm unit described in the first embodiment. (Conveying section) 48 is provided. The transport conveyor 48 is formed by arranging a number of transport rollers 48a that extend along the Y-axis direction and that are rotatable at predetermined intervals along the X-axis direction. Thereby, the conveyance conveyor 48 can convey the mother glass substrate MG linearly along the X-axis direction. Of the processing chamber 241, a pair of front and rear side walls in the transport direction of the mother glass substrate MG is provided with a carry-in port 49 for carrying the mother glass substrate MG, a carry-out port 50 for carrying the mother glass substrate MG, Are provided. The transport conveyor 48 is connected to the plurality of transport rollers 48 a disposed in the processing chamber 241, the plurality of transport rollers 48 a disposed outside the carry-in port 49 with respect to the processing chamber 241, and the processing chamber 241. And a plurality of transport rollers 48a disposed outside the carry-out port 50. The mother glass substrate MG is linearly conveyed by such a conveyance conveyor 48 so as to penetrate the processing chamber 241 before and after in the conveyance direction. Further, the processing chamber 241 is provided with a pair of gate portions 241b that can close the carry-in port 49 and the carry-out port 50, respectively.
 減圧乾燥処理を行うに際しては、図22に示すように、処理室241に対して搬入口49の外側において、マザーガラス基板MGを搬送コンベア48に載せるようにする。各搬送ローラ48aを回転させることでマザーガラス基板MGを搬送方向の前方(図22に示す右側)へと搬送し、図23に示すように、マザーガラス基板MGを搬入口49を通して処理室241内に収容する。マザーガラス基板MGは、処理室241内に収容したら、各支持ピン245を待機位置から上昇させ、マザーガラス基板MGを持ち上げるようにする。各支持ピン245がリフト位置に達したら、図24に示すように、各ゲート部241bをスライドさせて搬入口49及び搬出口50を閉塞し、減圧乾燥処理を行う。減圧乾燥処理を行う間は、上記した実施形態1と同様に揺動部(図示せず)によってマザーガラス基板MGを揺動させることで、各支持ピン245の転写ムラが抑制される。減圧乾燥処理を終えたら、図23に示すように、各支持ピン245をリフト位置から待機位置へと下降させてマザーガラス基板MGを搬送コンベア48に載せる。それから各ゲート部241bをスライドさせて搬入口49及び搬出口50を開放し搬送コンベア48によってマザーガラス基板MGを搬送方向の前方へ搬送し、図25に示すように、搬出口50を通して処理室241外へと搬出する。なお、各ゲート部241bを開閉する具体的なタイミングについては、適宜に変更することが可能であり、例えば各支持ピン245を待機位置から上昇させるのと同時またはそれに先立って各ゲート部241bを閉止したり、また各支持ピン245をリフト位置から下降させるのと同時またはそれに先立って各ゲート部241bを開放させるようにしてもよい。 When performing the reduced-pressure drying process, as shown in FIG. 22, the mother glass substrate MG is placed on the transport conveyor 48 outside the carry-in port 49 with respect to the process chamber 241. The mother glass substrate MG is conveyed forward in the conveyance direction (right side shown in FIG. 22) by rotating each conveyance roller 48a. As shown in FIG. 23, the mother glass substrate MG is transferred into the processing chamber 241 through the conveyance inlet 49. To house. When the mother glass substrate MG is accommodated in the processing chamber 241, each support pin 245 is raised from the standby position to lift the mother glass substrate MG. When each support pin 245 reaches the lift position, as shown in FIG. 24, each gate portion 241b is slid to close the carry-in port 49 and the carry-out port 50, and a reduced-pressure drying process is performed. During the drying under reduced pressure, the mother glass substrate MG is swung by a swinging portion (not shown) as in the first embodiment, so that uneven transfer of each support pin 245 is suppressed. When the decompression drying process is completed, as shown in FIG. 23, each support pin 245 is lowered from the lift position to the standby position, and the mother glass substrate MG is placed on the transport conveyor 48. Then, each gate portion 241b is slid to open the carry-in port 49 and the carry-out port 50, and the mother glass substrate MG is carried forward in the carrying direction by the carrying conveyor 48. As shown in FIG. Take it out. Note that the specific timing for opening and closing each gate portion 241b can be changed as appropriate. For example, each gate portion 241b is closed at the same time as or prior to raising each support pin 245 from the standby position. Alternatively, the gate portions 241b may be opened at the same time as or before the support pins 245 are lowered from the lift position.
 <実施形態4>
 本発明の実施形態4を図26によって説明する。この実施形態4では、上記した実施形態1から回転支持部346の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 4>
A fourth embodiment of the present invention will be described with reference to FIG. In this Embodiment 4, what changed the structure of the rotation support part 346 from above-mentioned Embodiment 1 is shown. In addition, the overlapping description about the same structure, operation | movement, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る回転支持部346は、図26に示すように、回転軸51aを中心に回転可能な形で軸支された回転ローラ51からなる。回転ローラ51は、回転軸51aの軸線方向がX軸方向と一致しており、その回転軸51aの軸線周りに回転自在とされている。これに対し、揺動部347は、マザーガラス基板MGをY軸方向に沿って繰り返し往復揺動させるよう駆動されるようになっている。揺動部347によってマザーガラス基板MGが揺動されると、それに伴って各回転支持部346を構成する各回転ローラ51が各回転軸51aを中心にしてX軸方向の軸線周りに回転し、それによりマザーガラス基板MGにおける各回転ローラ51による各支持箇所がY軸方向に沿って繰り返し往復するよう連続的に変位される。これにより、マザーガラス基板MGにおける各支持箇所が固定化されるのが避けられるので、マザーガラス基板MGの乾燥速度がその板面内において均一化され、もって転写ムラの発生が十分に抑制される。 As shown in FIG. 26, the rotation support portion 346 according to the present embodiment includes a rotation roller 51 that is pivotally supported so as to be rotatable about a rotation shaft 51a. The rotation roller 51 is configured such that the axis direction of the rotation shaft 51a coincides with the X-axis direction and is rotatable around the axis line of the rotation shaft 51a. On the other hand, the swinging portion 347 is driven to repeatedly swing back and forth the mother glass substrate MG along the Y-axis direction. When the mother glass substrate MG is oscillated by the oscillating portion 347, each of the rotating rollers 51 constituting each of the rotation supporting portions 346 is rotated around the axis in the X-axis direction around each rotating shaft 51a, Thereby, each support location by each rotation roller 51 in the mother glass substrate MG is continuously displaced so as to repeatedly reciprocate along the Y-axis direction. As a result, it is possible to avoid fixing each supporting portion on the mother glass substrate MG, so that the drying speed of the mother glass substrate MG is made uniform within the plate surface, thereby sufficiently suppressing the occurrence of transfer unevenness. .
 <実施形態5>
 本発明の実施形態5を図27または図28によって説明する。この実施形態5では、上記した実施形態1から揺動部447を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 5>
A fifth embodiment of the present invention will be described with reference to FIG. 27 or FIG. In the fifth embodiment, the swinging portion 447 is changed from the first embodiment. In addition, the overlapping description about the same structure, operation | movement, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る揺動部447は、図27に示すように、マザーガラス基板MGにおける長辺側の一対の端面に当接されるものと、短辺側の一対の端面に当接されるものと、から構成されている。つまり、マザーガラス基板MGは、4辺の外周端面の全てが揺動部447に当接されるようになっている。くわしくは、マザーガラス基板MGは、その長辺側の一対の端面に当接される各揺動部447によって短辺方向(Y軸方向)について両側から挟み込まれるとともに、短辺側の一対の端面に当接される各揺動部447によって長辺方向(X軸方向)について両側から挟み込まれる形で揺動可能に保持されている。これにより、マザーガラス基板MGをより安定的に揺動させることが可能とされる。なお、マザーガラス基板MGをその長辺方向について両側から挟み込む各揺動部447は、図28に示すように、搬送位置とされるマザーガラス基板MG(同図二点鎖線を参照)に対して鉛直方向(Z軸方向)について上側に重ならないよう配置されており、それにより搬送アーム部444により搬送されるマザーガラス基板MGと干渉することが避けられている。 As shown in FIG. 27, the swinging portion 447 according to the present embodiment is in contact with a pair of end surfaces on the long side and a pair of end surfaces on the short side of the mother glass substrate MG. It is composed of things. That is, the mother glass substrate MG is configured such that all of the outer peripheral end surfaces of the four sides are in contact with the swinging portion 447. Specifically, the mother glass substrate MG is sandwiched from both sides in the short side direction (Y-axis direction) by the swinging portions 447 that are in contact with the pair of end surfaces on the long side, and the pair of end surfaces on the short side. Are held so as to be swingable in a form of being sandwiched from both sides in the long side direction (X-axis direction) by each swinging part 447. Thereby, the mother glass substrate MG can be rocked more stably. In addition, each rocking | swiveling part 447 which pinches | interposes the mother glass substrate MG from the both sides about the long side direction is shown with respect to the mother glass substrate MG made into a conveyance position (refer the two-dot chain line of the same figure) as shown in FIG. The vertical direction (Z-axis direction) is arranged so as not to overlap with the upper side, thereby avoiding interference with the mother glass substrate MG conveyed by the conveyance arm unit 444.
 <実施形態6>
 本発明の実施形態6を図29によって説明する。この実施形態6では、上記した実施形態5から揺動部547を変更したものを示す。なお、上記した実施形態5と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 6>
Embodiment 6 of the present invention will be described with reference to FIG. In the sixth embodiment, a swing portion 547 is changed from the fifth embodiment. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 5 is abbreviate | omitted.
 本実施形態に係る揺動部547は、図29に示すように、マザーガラス基板MGにおける外周端面のうち、四隅の各角部に当接する4つのものから構成されている。揺動部547は、マザーガラス基板MGの角部に倣って平面に視てL字型をなしている。このようにすれば、揺動部547の設置数を削減した上でマザーガラス基板MGを安定的に揺動させることが可能とされる。 29. As shown in FIG. 29, the swinging portion 547 according to the present embodiment is composed of four members that are in contact with the four corners of the outer peripheral end surface of the mother glass substrate MG. The oscillating portion 547 has an L shape as viewed in a plane following the corner portion of the mother glass substrate MG. In this way, it is possible to stably rock the mother glass substrate MG while reducing the number of installed rocking portions 547.
 <実施形態7>
 本発明の実施形態7を図30によって説明する。この実施形態7では、上記した実施形態2から揺動部647の配置を変更したものを示す。なお、上記した実施形態2と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 7>
Embodiment 7 of the present invention will be described with reference to FIG. In the seventh embodiment, the arrangement of the swinging portion 647 is changed from the above-described second embodiment. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 2 is abbreviate | omitted.
 本実施形態に係る揺動部647は、図30に示すように、マザーガラス基板MGの板面のうち、枠状をなす外周側部分と、外周側部分により取り囲まれた中央側部分と、にそれぞれ当接するよう平面配置されている。マザーガラス基板MGの板面における外周側部分に当接される揺動部647は、同外周側部分のうちの四隅の角部に当接するよう4つ配置されている。マザーガラス基板MGの板面における中央側部分に当接される揺動部647は、同中央側部分のうち、各ガラス基板GSの表示領域AAの間を仕切る格子状の部分に当接するよう4つ配置されている。このように各揺動部647は、いずれも各ガラス基板GSの表示領域AA外の領域、つまり非表示領域NAAに当接されている。本実施形態に係る各揺動部647は、マザーガラス基板MGの板面のうちの外周側部分と中央側部分とに分散して配されているので、マザーガラス基板MGをより安定的に揺動させることが可能とされる。 As shown in FIG. 30, the swinging portion 647 according to this embodiment includes a frame-like outer peripheral side portion and a central side portion surrounded by the outer peripheral side portion of the plate surface of the mother glass substrate MG. They are arranged in a plane so as to contact each other. Four oscillating portions 647 that are in contact with the outer peripheral portion of the plate surface of the mother glass substrate MG are arranged so as to be in contact with the four corners of the outer peripheral portion. The swinging portion 647 that abuts on the center side portion of the plate surface of the mother glass substrate MG 4 abuts on a lattice-like portion that partitions the display areas AA of the glass substrates GS out of the center side portion. One is arranged. As described above, each of the swinging portions 647 is in contact with an area outside the display area AA of each glass substrate GS, that is, the non-display area NAA. Since each oscillating portion 647 according to the present embodiment is distributed and arranged in the outer peripheral side portion and the central side portion of the plate surface of the mother glass substrate MG, the mother glass substrate MG is more stably shaken. It is possible to move.
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した各実施形態(実施形態4を除く)では、揺動部が平面に視て長軸方向がX軸方向と一致した楕円状の軌跡を描くよう偏心運動することでマザーガラス基板を揺動させる場合を示したが、揺動部が平面に視て長軸方向がY軸方向と一致した楕円状の軌跡を描くよう偏心運動することでマザーガラス基板を揺動させるようにしても構わない。また、揺動部を、マザーガラス基板の板面に沿う真円状の軌跡を描くよう駆動しても構わない。また、揺動部を、マザーガラス基板の板面に沿う直線状の軌跡を描くよう駆動しても構わない。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In each of the above-described embodiments (except for the fourth embodiment), the mother glass substrate is moved by performing an eccentric motion so that the swinging portion draws an elliptical locus whose major axis direction coincides with the X-axis direction when viewed in a plane. In this case, the mother glass substrate is swung by performing an eccentric motion so that the swinging portion draws an elliptical locus whose major axis direction coincides with the Y-axis direction when seen in a plane. It doesn't matter. Further, the swinging portion may be driven so as to draw a perfect circular locus along the plate surface of the mother glass substrate. Further, the swinging unit may be driven so as to draw a linear locus along the plate surface of the mother glass substrate.
 (2)上記した各実施形態(実施形態4を除く)では、マザーガラス基板における各回転支持部による各支持箇所が揺動部による揺動に伴って変位する軌跡が互いに重なり合わない場合を示したが、上記軌跡が互いに重なり合う設定を採ることも可能である。 (2) In each of the above-described embodiments (excluding Embodiment 4), a case where the trajectories in which each support portion by each rotation support portion in the mother glass substrate is displaced along with the swing by the swing portion does not overlap each other is shown. However, it is also possible to take a setting in which the trajectories overlap each other.
 (3)上記した各実施形態(実施形態2,7を除く)では、揺動部がマザーガラス基板を挟んで互いに対向状に配される場合を示したが、揺動部が平面に視て千鳥状に配置されるなど、マザーガラス基板を挟んで非対向とされる配置であっても構わない。その場合、例えばマザーガラス基板を挟んだ片側に配される揺動部の数と、もう片側に配される揺動部の数と、が不一致とされても構わない。 (3) In each of the above-described embodiments (excluding Embodiments 2 and 7), the case where the oscillating portions are arranged to face each other with the mother glass substrate interposed therebetween is shown. For example, the arrangement may be a non-opposing arrangement with the mother glass substrate interposed therebetween, such as a staggered arrangement. In that case, for example, the number of swinging portions disposed on one side across the mother glass substrate may not match the number of swinging portions disposed on the other side.
 (4)上記した実施形態2,7では、揺動部がマザーガラス基板の板面内において対称的に配置される場合を示したが、揺動部がマザーガラス基板の板面内において非対称となる配置とされていても構わない。その場合、例えば、揺動部がマザーガラス基板の外周側部分のうち、一方の長辺部分(一方の短辺部分)にのみ当接するよう選択的に配されてもよい。 (4) In Embodiments 2 and 7 described above, the case where the oscillating portion is symmetrically arranged in the plate surface of the mother glass substrate is shown. However, the oscillating portion is asymmetric in the plate surface of the mother glass substrate. It may be arranged as follows. In that case, for example, the oscillating portion may be selectively disposed so as to contact only one long side portion (one short side portion) of the outer peripheral side portion of the mother glass substrate.
 (5)上記した実施形態2,7では、揺動部がマザーガラス基板における非表示領域に当接される場合を示したが、揺動部がマザーガラス基板における非表示領域と表示領域とに跨る範囲に当接したり、表示領域のみに当接したりするようにしても構わない。 (5) In Embodiments 2 and 7 described above, the swinging part is in contact with the non-display area on the mother glass substrate. However, the swinging part is located between the non-display area and the display area on the mother glass substrate. You may make it contact | abut to the range which straddles, or may contact | abut only to a display area.
 (6)上記した各実施形態(実施形態3を除く)では、1つの搬送アーム部によりマザーガラス基板の搬入出を行うとともに、処理室に搬入出口及びゲート部が1つずつ備えられる場合を示したが、搬入用の搬送アーム部によりマザーガラス基板の搬入を、搬出用の搬送アーム部によりマザーガラス基板の搬出を、それぞれ行い、処理室に搬入口と搬出口とを設けてそれらを個別に開閉するためのゲート部を2つ設けるようにしても構わない。 (6) In each of the above-described embodiments (excluding Embodiment 3), a case where the mother glass substrate is carried in and out by one transfer arm unit, and one loading / unloading port and one gate unit are provided in the processing chamber is shown. However, the mother glass substrate is carried in by the carrying arm portion for carrying in, and the mother glass substrate is carried out by the carrying arm portion for carrying out, respectively. Two gate portions for opening and closing may be provided.
 (7)上記した各実施形態(実施形態2,7を除く)では、支持ピンが昇降することで搬送アーム部との間でマザーガラス基板の受け渡しを行う構成を示したが、支持ピンを固定式とし、搬送アーム部が昇降することで支持ピンとの間でマザーガラス基板の受け渡しを行う構成を採ることも可能である。 (7) In each of the above-described embodiments (excluding Embodiments 2 and 7), the configuration in which the mother glass substrate is transferred to and from the transfer arm portion by moving the support pins up and down is shown. However, the support pins are fixed. It is also possible to adopt a configuration in which the mother glass substrate is transferred to and from the support pins by raising and lowering the transfer arm unit.
 (8)上記した実施形態2,7では、支持ピンが昇降することで搬送コンベアとの間でマザーガラス基板の受け渡しを行う構成を示したが、支持ピンを固定式とし、搬送コンベアの一部(処理室内に配された部分)が昇降することで支持ピンとの間でマザーガラス基板の受け渡しを行う構成を採ることも可能である。 (8) In the above-described Embodiments 2 and 7, the configuration in which the mother glass substrate is transferred to and from the conveyor by moving the support pins up and down has been shown. However, the support pins are fixed and part of the conveyor It is also possible to adopt a configuration in which the mother glass substrate is transferred to and from the support pins by raising and lowering the (part disposed in the processing chamber).
 (9)上記した実施形態2に記載した構成を、実施形態3,4に記載した構成に組み合わせることも可能である。 (9) The configuration described in the second embodiment can be combined with the configuration described in the third and fourth embodiments.
 (10)上記した実施形態3に記載した構成を、実施形態4~7に記載した構成に組み合わせることも可能である。 (10) The configuration described in the third embodiment can be combined with the configurations described in the fourth to seventh embodiments.
 (11)上記した実施形態4に記載した構成を、実施形態5~7に記載した構成に組み合わせることも可能である。 (11) The configuration described in the fourth embodiment can be combined with the configurations described in the fifth to seventh embodiments.
 (12)上記した各実施形態では、複数のガラス基板が面内に並ぶマザーガラス基板を減圧乾燥処理する場合を示したが、ガラス基板を個々に減圧乾燥処理する場合であっても構わない。 (12) In each of the above-described embodiments, the case where the mother glass substrate in which a plurality of glass substrates are arranged in the plane is subjected to the vacuum drying process, but the glass substrate may be individually subjected to the vacuum drying process.
 (13)上記した各実施形態では、ガラス製のマザーガラス基板を減圧乾燥処理する場合を示したが、合成樹脂製のマザー基板を減圧乾燥処理する場合であっても構わない。 (13) In each of the above-described embodiments, the case where the glass mother glass substrate is subjected to the drying under reduced pressure has been described, but the case where the synthetic resin mother substrate is subjected to the drying under reduced pressure may be used.
 (14)上記した各実施形態では、TN型やVA型の液晶パネルを構成する基板の製造に用いられる減圧乾燥装置を示したが、IPS型やFFS型の液晶パネルを構成する基板の製造に用いられる減圧乾燥装置にも本発明は適用可能である。 (14) In each of the above-described embodiments, the reduced-pressure drying apparatus used for manufacturing a substrate constituting a TN type or VA type liquid crystal panel has been shown. However, for manufacturing a substrate constituting an IPS type or FFS type liquid crystal panel. The present invention is also applicable to the vacuum drying apparatus used.
 (15)上記した各実施形態では、半導体膜がアモルファスシリコンからなる液晶パネルを構成する基板の製造に用いられる減圧乾燥装置を示したが、半導体膜が酸化物半導体や低温ポリシリコンからなる液晶パネルを構成する基板の製造に用いられる減圧乾燥装置にも本発明は適用可能である。 (15) In each of the above-described embodiments, a vacuum drying apparatus used for manufacturing a substrate that constitutes a liquid crystal panel whose semiconductor film is made of amorphous silicon is shown. However, a liquid crystal panel whose semiconductor film is made of an oxide semiconductor or low-temperature polysilicon. The present invention can also be applied to a vacuum drying apparatus used for manufacturing a substrate that constitutes the substrate.
 (16)上記した各実施形態では、スイッチング素子としてTFTが用いられる液晶パネルを構成する基板の製造に用いられる減圧乾燥装置を示したが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶パネルを構成する基板の製造に用いられる減圧乾燥装置にも本発明は適用可能である。 (16) In each of the above-described embodiments, a vacuum drying apparatus used for manufacturing a substrate constituting a liquid crystal panel in which a TFT is used as a switching element has been described. However, a switching element other than a TFT (for example, a thin film diode (TFD)) The present invention is also applicable to a vacuum drying apparatus used for manufacturing a substrate constituting the liquid crystal panel used.
 (17)上記した各実施形態では、液晶パネルを構成する基板の製造に用いられる減圧乾燥装置を示したが、液晶パネル以外の表示パネルを構成する基板の製造に用いられる減圧乾燥装置にも本発明は適用可能である。液晶パネル以外の表示パネルとしては、例えば有機ELパネル、PDP、EPD(電気泳動ディスプレイパネル、MEMS(Micro Electro Mechanical Systems)表示パネルなどが挙げられる。 (17) In each of the above-described embodiments, the reduced-pressure drying apparatus used for manufacturing the substrate constituting the liquid crystal panel is shown. However, the present invention is also applied to the reduced-pressure drying apparatus used for manufacturing the substrate constituting the display panel other than the liquid crystal panel. The invention is applicable. Examples of the display panel other than the liquid crystal panel include an organic EL panel, PDP, EPD (electrophoretic display panel, MEMS (Micro Electro Mechanical Systems) display panel, and the like.
 (18)上記した各実施形態では、基板処理装置の一例として減圧乾燥装置を示したが、減圧乾燥装置以外の種類の基板処理装置にも本発明は適用可能である。 (18) In each of the embodiments described above, the reduced pressure drying apparatus is shown as an example of the substrate processing apparatus, but the present invention is applicable to other types of substrate processing apparatuses than the reduced pressure drying apparatus.
 11...液晶パネル(表示パネル)、20...アレイ基板(基板)、21...CF基板(基板)、40,240...減圧乾燥装置(基板処理装置)、41,241...処理室、42...減圧部、44...搬送アーム部(搬送部)、45...支持ピン、46,346...回転支持部、46a...ボールホルダ(回転球体収容部)、46b...メインボール(主回転球体)、46c...サブボール(副回転球体)、47,147,347,447,547,647...揺動部、48...搬送コンベア部(搬送部)AA...表示領域、GS...ガラス基板(基板)、MG...マザーガラス基板(基板)、NAA...非表示領域 11 ... Liquid crystal panel (display panel), 20 ... Array substrate (substrate), 21 ... CF substrate (substrate), 40, 240 ... Vacuum drying apparatus (substrate processing apparatus), 41, 241. .. Processing chamber, 42 ... Decompression unit, 44 ... Transfer arm unit (transfer unit), 45 ... Support pin, 46, 346 ... Rotation support unit, 46a ... Ball holder (Rotating sphere) Accommodating portion), 46b ... main ball (main rotating sphere), 46c ... sub ball (sub rotating sphere), 47, 147, 347, 447, 547, 647 ... swinging portion, 48 ... Transport conveyor section (transport section) AA ... display area, GS ... glass substrate (substrate), MG ... mother glass substrate (substrate), NAA ... non-display area

Claims (6)

  1.  基板を収容してその基板に処理を施すための処理室と、
     前記処理室内にて前記基板を支持する支持ピンであって、回転可能な形で前記基板を支持する回転支持部を有する支持ピンと、
     前記処理室内にて前記回転支持部により支持された前記基板をその板面に沿って揺動させる揺動部と、を備える基板処理装置。
    A processing chamber for containing the substrate and processing the substrate;
    A support pin for supporting the substrate in the processing chamber, the support pin having a rotation support portion for supporting the substrate in a rotatable manner;
    A substrate processing apparatus comprising: an oscillating unit configured to oscillate the substrate supported by the rotation support unit in the processing chamber along a plate surface thereof.
  2.  前記揺動部は、前記基板の端面に当接して前記基板を揺動させる請求項1記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the swinging unit is in contact with an end surface of the substrate to swing the substrate.
  3.  前記基板を前記処理室の内外に移動させるために前記基板をその板面に沿って直線的に搬送する搬送部を備えており、
     前記揺動部は、前記基板を前記搬送部による前記基板の搬送方向に対する両側から挟む形で複数が配されている請求項2記載の基板処理装置。
    In order to move the substrate into and out of the processing chamber, the substrate includes a transport unit that transports the substrate linearly along its plate surface,
    The substrate processing apparatus according to claim 2, wherein a plurality of the swinging units are arranged so as to sandwich the substrate from both sides with respect to the transporting direction of the substrate by the transporting unit.
  4.  前記基板として画像が表示される表示領域と前記表示領域の周りを取り囲む非表示領域とを有する表示パネルを構成するものを処理しており、
     前記揺動部は、前記基板の板面における前記非表示領域に当接して前記基板を揺動させる請求項1記載の基板処理装置。
    Processing a display panel having a display area for displaying an image and a non-display area surrounding the display area as the substrate;
    The substrate processing apparatus according to claim 1, wherein the swinging unit contacts the non-display area on the plate surface of the substrate to swing the substrate.
  5.  前記回転支持部は、前記基板に接する主回転球体と、前記主回転球体の周面に沿って並ぶとともに前記主回転球体の回転に伴って回転する複数の副回転球体と、前記主回転球体及び前記副回転球体を収容する回転球体収容部と、を有する請求項1から請求項4のいずれか1項に記載の基板処理装置。 The rotation support unit includes a main rotating sphere in contact with the substrate, a plurality of sub rotating spheres arranged along a circumferential surface of the main rotating sphere and rotating in accordance with the rotation of the main rotating sphere, the main rotating sphere, and The substrate processing apparatus according to claim 1, further comprising: a rotating sphere housing portion that houses the auxiliary rotating sphere.
  6.  前記処理室内を減圧する減圧部を備える請求項1から請求項5のいずれか1項に記載の基板処理装置。 The substrate processing apparatus according to claim 1, further comprising a decompression unit that decompresses the processing chamber.
PCT/JP2016/066558 2015-06-11 2016-06-03 Substrate treatment apparatus WO2016199689A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-118203 2015-06-11
JP2015118203 2015-06-11

Publications (1)

Publication Number Publication Date
WO2016199689A1 true WO2016199689A1 (en) 2016-12-15

Family

ID=57504071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066558 WO2016199689A1 (en) 2015-06-11 2016-06-03 Substrate treatment apparatus

Country Status (1)

Country Link
WO (1) WO2016199689A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108267874A (en) * 2018-01-26 2018-07-10 惠州市华星光电技术有限公司 A kind of optimization method and substrate supporter of the distribution of glass substrate thimble

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094974A (en) * 1995-06-22 1997-01-10 Toshiba Corp Method and apparatus for drying coating
JP2000243687A (en) * 1999-02-19 2000-09-08 Tokyo Electron Ltd Apparatus and method for regulating temperature of substrate, and for processing substrate
WO2006022232A1 (en) * 2004-08-24 2006-03-02 Kabushiki Kaisha Ishiihyoki Drying furnace for coating film
JP2007226128A (en) * 2006-02-27 2007-09-06 Toppan Printing Co Ltd Hot plate for manufacturing color filter, and method for manufacturing the color filter
JP2008166623A (en) * 2006-12-29 2008-07-17 Chugai Ro Co Ltd Resist solution application processing apparatus
JP2010050140A (en) * 2008-08-19 2010-03-04 Tokyo Electron Ltd Processing system
JP5724014B1 (en) * 2014-04-22 2015-05-27 株式会社幸和 Substrate support apparatus and substrate processing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094974A (en) * 1995-06-22 1997-01-10 Toshiba Corp Method and apparatus for drying coating
JP2000243687A (en) * 1999-02-19 2000-09-08 Tokyo Electron Ltd Apparatus and method for regulating temperature of substrate, and for processing substrate
WO2006022232A1 (en) * 2004-08-24 2006-03-02 Kabushiki Kaisha Ishiihyoki Drying furnace for coating film
JP2007226128A (en) * 2006-02-27 2007-09-06 Toppan Printing Co Ltd Hot plate for manufacturing color filter, and method for manufacturing the color filter
JP2008166623A (en) * 2006-12-29 2008-07-17 Chugai Ro Co Ltd Resist solution application processing apparatus
JP2010050140A (en) * 2008-08-19 2010-03-04 Tokyo Electron Ltd Processing system
JP5724014B1 (en) * 2014-04-22 2015-05-27 株式会社幸和 Substrate support apparatus and substrate processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108267874A (en) * 2018-01-26 2018-07-10 惠州市华星光电技术有限公司 A kind of optimization method and substrate supporter of the distribution of glass substrate thimble
CN108267874B (en) * 2018-01-26 2021-01-15 惠州市华星光电技术有限公司 Optimization method for glass substrate thimble distribution and substrate support body

Similar Documents

Publication Publication Date Title
US7968881B2 (en) Thin film transistor substrate and display device having electrode plates on storage capacitors
KR20070067996A (en) Turn-diverter conveyor
WO2017088179A1 (en) Array substrate used in liquid crystal panel and method for manufacturing same
KR101023727B1 (en) manufacturing device for manufacturing of liquid crystal device turning the glass and method for driving the same
KR20080049561A (en) Apparatus for conveying substrate
US20150124236A1 (en) Light exposure system and light exposure process
WO2016199689A1 (en) Substrate treatment apparatus
JP2010238716A (en) Substrate heat treating method, method of manufacturing display device using the substrate heat treating method, and substrate heat treating apparatus
KR100978261B1 (en) Cassette for containing liquid crystal dispaly device
JP4352063B2 (en) LCD panel inspection equipment
KR100852414B1 (en) The variety form type tft-lcd panel manufacture method and the goods
JP5098375B2 (en) Manufacturing method of liquid crystal device
US20070114111A1 (en) Cassette and mechanical arm and process apparutus
US9588427B2 (en) Light exposure system comprising a plurality of moving stages and light exposure process
US10564490B2 (en) Array substrate, method for fabricating the same, and display device
US20200358039A1 (en) Manufacturing apparatus and method of manufacturing display apparatus using the same
KR20080058914A (en) Apparatus for conveying substrate
WO2018230457A1 (en) Substrate processing device
KR101801397B1 (en) Apparatus fabrication of liquid crystal display device
KR102032751B1 (en) Tray and deposition system
KR20100006088A (en) Vacuum process apparatus having substrate alignment device
KR101087232B1 (en) Fabricating apparatus and method of liquid crystal display device
TWI793142B (en) Thin-film transistor (tft) architecture for liquid crystal displays
US7719620B2 (en) Heat curing device and method of fabricating liquid crystal display device using the same
KR20060077455A (en) Apparatus for fabricating liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP