WO2016199268A1 - 水回収方法及び装置 - Google Patents

水回収方法及び装置 Download PDF

Info

Publication number
WO2016199268A1
WO2016199268A1 PCT/JP2015/066855 JP2015066855W WO2016199268A1 WO 2016199268 A1 WO2016199268 A1 WO 2016199268A1 JP 2015066855 W JP2015066855 W JP 2015066855W WO 2016199268 A1 WO2016199268 A1 WO 2016199268A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrodialysis
electrolysis
treated
solution
Prior art date
Application number
PCT/JP2015/066855
Other languages
English (en)
French (fr)
Inventor
千誉 松本
小林 秀樹
織田 信博
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to PCT/JP2015/066855 priority Critical patent/WO2016199268A1/ja
Publication of WO2016199268A1 publication Critical patent/WO2016199268A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention relates to a water recovery method and apparatus for recovering water by treating waste water containing scale components, organic substances, inorganic ions, etc., particularly waste water such as human body waste water and domestic waste water generated in a closed space. More specifically, the present invention has a simple configuration for drainage generated in a closed system space such as a nuclear shelter, a disaster shelter, a space station, a manned spacecraft of the moon and Mars mission, and a lunar base. The present invention relates to a water recovery method and apparatus for efficiently treating the apparatus.
  • a membrane distillation method (Patent Document 1) has been proposed for such a restriction.
  • the membrane distillation method has the following problems. Some effluents to be treated are volatile and such effluents cannot be removed by distillation or membrane distillation. Evaporation of wastewater containing hardness components causes scale failure. Since the effluent usually contains organic substances such as proteins, fouling occurs and membrane distillation performance is reduced. Since the basic operation is evaporation, energy consumption is large.
  • Patent Document 2 A method of performing membrane activated sludge treatment as a pretreatment for membrane distillation (Patent Document 2) has been proposed. This method has the following problems. If the operating conditions deviate from the appropriate values, the microorganisms are easily deactivated, and once the microorganisms are deactivated, they do not return. Since activated sludge makes 1/3 to 1/2 of organic matter sludge, sludge containing precious water becomes waste.
  • Patent Document 3 a water recovery device composed of a hardness component roughening device, a softening device, an electrolysis device, a catalyst decomposition device, and an electrodialysis device.
  • This water recovery apparatus has the following problems.
  • electrodialysis machines there is water loss during the production of acid / alkali, and the water recovery rate is at a low level.
  • oxidizing substances such as ammonia and hypochlorous acid generated by electrolysis in the electrolysis apparatus, it is necessary to provide a catalyst apparatus filled with a large amount of catalyst at the subsequent stage of the electrolysis apparatus. In view of installation space, maintenance, etc., a simpler configuration is desired.
  • the present invention relates to wastewater containing scale components, organic matter, inorganic ions, etc., particularly human body discharge generated in a closed system space such as a nuclear shelter, a disaster shelter, a space station or a manned spacecraft of the Moon / Mars mission, and a lunar base.
  • a closed system space such as a nuclear shelter, a disaster shelter, a space station or a manned spacecraft of the Moon / Mars mission, and a lunar base.
  • wastewater such as water and domestic wastewater with a simple configuration without worrying about clogging due to scale generation, fouling due to organic matter, etc., and consuming a large amount of energy such as evaporation
  • a water recovery method and apparatus are provided.
  • Wastewater such as domestic wastewater or human body wastewater generated in a closed system space such as a space station is electrolyzed to decompose and remove oxidizable substances such as organic matter and ammonia in the wastewater.
  • the organic acid, nitrate ion, residual ammonia, and other inorganic ions generated by electrolysis of organic matter and ammonia are removed before producing acid and alkali to produce water Divide it into a high-concentration salt concentrate, and then use the second electrodialyzer for acid / alkali production to produce an acid solution and an alkali solution from the salt concentrate obtained with the first desalting electrodialyzer.
  • the concentration of the production water (demineralized water) and the aqueous solution (concentrated solution) adjacent to each other differs between the case where the electrodialysis using the electrodialyzer is performed in one stage and the case where the electrodialysis is performed in two stages.
  • the salt is highly removed only by the one-stage electrodialyzer, so that a concentrated acid solution or alkali solution is obtained.
  • the salt concentration concentrate in the former electrodialysis apparatus becomes a concentrate having a relatively low concentration.
  • the gist of the present invention is as follows.
  • an electrolysis process for decomposing oxidizable substances in the wastewater by electrolyzing the wastewater by supplying direct current with an electrolysis device And a first electrodialyzer that treats the electrolytically treated water obtained in the electrolysis step to obtain a product water and a salt concentrate that are demineralized water from which ions are removed from the electrolytically treated water.
  • a water recovery method characterized by that.
  • the electrolyzed water is supplied from the electrolysis step to the first electrodialysis step without passing through another water treatment step. Water recovery method.
  • the first electrodialysis apparatus has at least two chambers, ie, a salt concentration chamber and a desalination chamber.
  • a water recovery method for producing a concentrated liquid is a water recovery method for producing a concentrated liquid.
  • the second electrodialysis apparatus has at least three chambers of an acid chamber, a desalting chamber, and an alkali chamber, and desalting the salt concentrate.
  • a water recovery method for producing an acid solution and an alkali solution is provided.
  • a pre-stage of the electrolysis step includes a softening step of removing the hardness component in the waste water by treating the waste water with a softening device, and is obtained in the softening step.
  • a water recovery method in which the softened water is treated in the electrolysis step comprising a regeneration step of regenerating the softening device using the acid solution and the alkali solution obtained in the second electrodialysis step.
  • the electrolytically treated water is passed through the first electrodialyzer and / or the salt concentrate is passed through the second electrodialyzer.
  • Water recovery method characterized in that is carried out in a transient manner.
  • an electrolyzer that decomposes oxidizable substances in the wastewater by electrolyzing the wastewater by supplying a direct current
  • a first electrodialyzer that treats the electrolyzed water obtained by the electrolyzer to obtain a production water composed of demineralized water from which ions are removed from the electrolyzed water, and a salt concentrate
  • a water recovery apparatus comprising: a second electrodialysis apparatus that obtains demineralized water, an acid solution, and an alkaline solution by processing the salt concentrate obtained by the electrodialysis apparatus.
  • the electrolyzed water is supplied from the electrolyzer to the first electrodialyzer without passing through other water treatment means. Water recovery device.
  • the first electrodialysis apparatus has at least two chambers, ie, a salt concentration chamber and a desalination chamber.
  • a water recovery apparatus for producing a concentrated liquid is provided.
  • the second electrodialysis apparatus has at least three chambers of an acid chamber, a desalting chamber, and an alkali chamber, and desalting the salt concentrate.
  • a water recovery apparatus for producing an acid solution and an alkali solution.
  • a softening device for treating the wastewater and removing a hardness component in the wastewater is provided upstream of the electrolysis device, and the softening treatment obtained by the softening device.
  • a water recovery device in which water is treated by the electrolysis device comprising a pipe for feeding the acid solution and the alkali solution obtained by the second electrodialysis device to the softening device, respectively.
  • the electrolytically treated water is passed through the first electrodialyzer and / or the salt concentrate is passed through the second electrodialyzer. Is a one-time-type water recovery apparatus.
  • wastewater containing scale components, organic matter, inorganic ions, etc. can be easily used without consuming a large amount of energy such as evaporation without worrying about clogging due to scale generation, fouling due to organic matter, etc.
  • an apparatus with a simple structure it is possible to efficiently treat and recover and reuse treated water. For this reason, water indispensable for human life maintenance can be reused in outer space such as a space station or a spaceship, and humans can stay in space for a long time.
  • Embodiments of a water recovery method and apparatus according to the present invention will be described below in detail with reference to the drawings.
  • the present invention is not limited to the following embodiment unless it exceeds the gist.
  • this invention is mainly applied to the water collection
  • the present invention is not limited to the treatment and recovery of wastewater generated in a closed space, but can be applied to the treatment and recovery of various wastewater containing scale components, organic substances, inorganic ions, and the like.
  • FIG. 1 is a system diagram showing an example of an embodiment of a water recovery apparatus of the present invention.
  • wastewater containing scale components, organic matter, inorganic ions, and the like which is water to be treated, such as wastewater generated in a closed system space, is first introduced into the softening device 1.
  • the hardness component in the waste water is removed.
  • the electrolysis apparatus 2 By electrolyzing the softened water with the electrolysis apparatus 2, the oxidizable substance in the softened water is decomposed and removed.
  • the electrolyzed water is treated with a first electrodialyzer (hereinafter sometimes referred to as “desalting electrodialyzer”) 3 to produce water consisting of demineralized water obtained by removing ions from the electrolyzed water; To obtain a salt concentrate.
  • dealting electrodialyzer hereinafter sometimes referred to as “desalting electrodialyzer”
  • the salt concentrate obtained with the desalting electrodialysis apparatus 3 is treated with a second electrodialysis apparatus (hereinafter also referred to as “electrodialysis apparatus for acid / alkali production”) 4 to obtain demineralized water and acid.
  • a solution and an alkaline solution are obtained.
  • the acid solution and the alkali solution obtained by the electrodialyzer 4 for acid / alkali production can be used for the regeneration of the softening device 1.
  • Part or all of the demineralized water obtained by the electrodialyzer 4 for acid / alkali production is returned to the inlet side of the electrodialyzer 3 for desalination and the electrolyzed water from the electrolyzer 2 together with the electrolyzed water for demineralization. It can be processed by the dialyzer 3.
  • the water to be treated is wastewater containing scale components, organic substances, inorganic ions, and the like.
  • wastewater such as human body wastewater and domestic wastewater generated in a closed space such as a nuclear shelter, a disaster shelter, a space station, a manned spacecraft of the Moon / Mars mission, and a lunar base.
  • Human drainage is urine, sweat, and so on.
  • Domestic wastewater includes air-condensed condensate, kitchen wastewater, laundry wastewater, bath / shower wastewater, cleaning wastewater, and wastewater generated by breeding cultivation of animals and plants.
  • Closed space is a space where the exchange of materials and energy inside and outside is restricted.
  • the closed system space to which the present invention is preferably applied includes outer space such as a shelter, a space station, and a spacecraft.
  • the present invention can be effectively applied to a manned environment in outer space.
  • Wastewater discharged from the closed system space is mainly condensed water related to air conditioning and sweat and urine discharged from the human body, scale components such as Mg and Ca, organic substances such as protein and urea, Na, K, Cl, Inorganic ions such as SO 4 , PO, NH 3 and NO are contained.
  • the treated water may be a mixed wastewater of the following wastewater.
  • Urine and various domestic wastewater generated in a closed space have different water quality.
  • each water species may be treated alone, or may be mixed and treated as necessary. You may join the to-be-processed water of a specific water type from the middle of a process process.
  • the processing method is preferably determined in consideration of processing efficiency.
  • the scale component is the most contained in urine. Therefore, the removal of the hardness component by the softening device 1 is intended only for urine, and in the electrolytic device 2 in the next step, other water to be treated is treated. May be processed together. By doing in this way, it can process efficiently, without increasing the amount of treated water in each process.
  • the hardness component is first removed from the waste water generated in the closed system space.
  • a strong acid cation exchange resin of Na type or a weak acid cation exchange resin can be used for the softening treatment.
  • the hardness component is removed by the following ion exchange reaction.
  • R represents an ion exchange resin exchange group.
  • an ion exchange resin tower filled with Na-type strong acid cation exchange resin or weak acid cation exchange resin is used as the softening device 1.
  • the treatment temperature is 20 to 40 ° C.
  • the liquid flow SV space velocity
  • Softening treatment removes scale components such as divalent Mg and Ca in the water to be treated. For this reason, in the latter electrolyzer 2, generation
  • the softening treatment is not essential.
  • the softening treatment is required when a large amount of hardness component is contained in the water to be treated, and scale failure is expected in the subsequent electrolyzer 2 and electrodialyzers 3 and 4.
  • scale failure is expected in the subsequent electrolyzer 2 and electrodialyzers 3 and 4.
  • the softening device 1 may be omitted, and the waste water may be directly treated by the electrolysis device 2.
  • the electrolyzed waste water or the softened water of the waste water is electrolyzed by the electrolysis device 2 to decompose and remove oxidizable substances such as organic substances, urea, and ammonia contained in the waste water.
  • the electrolyzer 2 decomposes and removes organic substances such as proteins that foul the ion exchange membranes of the subsequent electrodialyzers 3 and 4, and the later electrodialyzers 3 and 4 and electric regeneration described later provided as necessary.
  • Urea which cannot be removed by the conventional desalting apparatus, is decomposed into ammonia and carbonic acid by the electrolysis apparatus 2.
  • oxidizable substances contained in the waste water have a TOC concentration of about 100 to 20000 mg / L.
  • TOC concentration of about 100 to 20000 mg / L.
  • urine When urine is used as a target, it is about 1000 to 10,000 mg / L, usually about 5000 to 7000 mg / L.
  • reaction vessel applied to the electrolysis apparatus 2 As the reaction vessel applied to the electrolysis apparatus 2, the following is preferable.
  • the anode is treated water (drainage or softening) Install in a direction parallel to the flow of the (treated water) and so as to be insulated from the container, and connect the DC power source between the anode and the cathode with the pipe itself as the cathode.
  • the cylindrical container can easily maintain the strength against the internal pressure as compared with other shaped containers such as a rectangular tube, the thickness of the reaction container can be reduced, and the apparatus can be downsized.
  • nickel-based alloys such as Hastelloy and Incoloy
  • titanium-based alloys titanium-based alloys
  • steel materials such as carbon steel and stainless steel
  • It may be coated with a metal such as platinum.
  • the cathode may be made of a conductive diamond electrode.
  • the conductive diamond electrode is excellent in chemical stability, has high current efficiency, and is preferable in terms of electrolytic efficiency.
  • a conductive diamond coating layer may be formed on a base material made of a metal such as niobium, tungsten, stainless steel, molybdenum, platinum, or iridium.
  • the anode is preferably provided so that the distance between the anode and the inner wall of the reaction vessel serving as the cathode is uniform. If this distance varies, an excessively large current locally flows in a portion where the distance is short, which is not preferable because deterioration of the anode in that portion is promoted. It is preferable to provide a plate-like, columnar or cylindrical anode in a cylindrical pipe-type vessel so that its central axis substantially coincides with the central axis of the inner wall of the reaction vessel.
  • One or a plurality of flat plate-like anodes may be installed as they are, or a mesh or net may be formed into a cylindrical shape, a plate may be formed into a cylindrical shape, or a rod-shaped body It may be.
  • the anode As the anode, at least the surface thereof is preferably ruthenium, iridium, platinum, palladium, rhodium, tin, or an oxide or ferrite thereof.
  • the anode itself may be composed of these materials, or the surface of the anode substrate may be coated with these materials.
  • the ruthenium, iridium, platinum, palladium, rhodium, and tin constituting the anode may be a metal element itself or an oxide.
  • An alloy of these metals is also preferably used. Examples of the alloy include platinum-iridium, ruthenium-tin, ruthenium-titanium and the like.
  • the above-described metals and the like are excellent in corrosion resistance, and exhibit excellent insolubility when used as an anode.
  • the anode may also be composed of a conductive diamond electrode for the same reason as the cathode.
  • the whole anode may be composed of conductive diamond, such as silicon, niobium, tungsten, stainless steel, molybdenum, platinum, iridium, or silicon carbide, silicon nitride, molybdenum carbide, tungsten carbide.
  • a base material made of a non-metal such as a conductive diamond may be formed. Since TOC decomposition occurs particularly at the anode, TOC such as protein can be efficiently decomposed by using a conductive diamond electrode for the anode.
  • Electrolysis in the electrolyzer 2 is performed by either 1) or 2) below. 1) Under high temperature and high pressure. Specifically, under a pressure at which the water to be treated is maintained at a liquid phase at a temperature of 100 ° C. or higher and lower than the critical temperature of the water to be treated 2) a temperature lower than the high-temperature and high-pressure conditions in (1) above; Under pressure conditions (hereinafter referred to as “normal conditions” for convenience)
  • the temperature is preferably 20 to 90 ° C., particularly 50 to 80 ° C.
  • the pressure is preferably normal pressure to 0.5 MPa, particularly normal pressure to 0.2 MPa. The higher the temperature and pressure during electrolysis, the better the electrolysis efficiency.
  • the high-temperature and high-pressure conditions are adopted, the cost for the heat resistance and pressure-resistant structure of the electrolyzer and the cost for heating and pressurization are high. Electrolysis under normal conditions is advantageous in terms of cost.
  • the first electrodialysis apparatus 3 and the second electrodialysis apparatus 4 are used in the subsequent stage of the electrolysis apparatus 2 to perform the first electrodialysis apparatus in the subsequent stage by the excellent desalting effect described above. Since high-quality product water can be obtained from the desalting electrodialyzer 3 which is a dialysis apparatus, the electrolysis apparatus 2 can be electrolyzed under normal conditions without adopting high-temperature and high-pressure conditions. The subsequent two-stage electrodialysis treatment can provide production water with good water quality, and the cost for electrolysis can be reduced.
  • Electrolysis conditions under normal conditions vary depending on the quality of the water to be treated, the type of electrode used, the configuration of the reaction vessel, and the like.
  • the direct current to be supplied is usually about 2 to 50 A, preferably about 5 to 30 A.
  • the current density is usually 0.1 to 500 A / dm 2 , preferably 1 to 50 A / dm 2 .
  • the electrolysis time is usually from 0.3 to 30 hours, preferably from 5 to 20 hours.
  • the residence time in the reaction vessel of the water to be treated is It is preferable to adjust the flow rate so that the preferable electrolysis time is obtained.
  • the linear velocity in the electrolysis apparatus 2 is preferably 1 to 500 m / hr, more preferably 10 to 200 m / hr.
  • bubbles generated by electrolysis are pushed out by water flow and removed from the apparatus by increasing the linear velocity compared to the electrolysis under high temperature and high pressure conditions described later. Is preferred.
  • the high temperature and high pressure condition is a pressure at which the water to be treated maintains a liquid phase at a temperature of 100 ° C. or higher and lower than the critical temperature of the water to be treated.
  • the temperature is usually from 100 to 374 ° C., preferably from 200 to 250 ° C.
  • the pressure is usually 2 to 20 MPa, preferably 5 to 10 MPa.
  • the electrolysis conditions under high temperature and pressure vary depending on the quality of the water to be treated, the type of electrode used, the configuration of the reaction vessel, and the like.
  • the direct current to be supplied is usually about 2 to 30 A, preferably about 5 to 20 A.
  • the current density is usually 0.1 to 500 A / dm 2 , preferably 1 to 50 A / dm 2 .
  • the electrolysis time is usually 0.5 to 30 hours, preferably 5 to 20 hours.
  • the residence time in the reaction vessel of the water to be treated is It is preferable to adjust the flow rate so that the preferable electrolysis time is obtained.
  • the specific linear velocity in the electrolysis apparatus 2 is 0.1 to 50 m / hr, preferably 1 to 20 m / hr.
  • electrolysis at a low temperature and low pressure bubbles accumulate in the electrode, and it is necessary to increase the linear velocity in order to remove the bubbles.
  • electrolysis under high temperature and high pressure the generation of such bubbles is suppressed, the surface tension of the solution is lowered, and bubbles are easily detached from the electrode surface. Can be achieved.
  • the oxidizable substance in the waste water can be converted into ions such as carbonic acid, organic acid, nitric acid and the like that can be directly removed by the first electrodialysis apparatus 3 in the subsequent stage.
  • Electrolytic efficiency can be increased by using the effect of thermal decomposition by treating at a high temperature and increasing the mass transfer rate.
  • the oxygen concentration can be reduced from a highly explosive hydrogen / oxygen mixed gas, By-product gas can be made highly safe below the explosion limit value, and the water recovery rate can be made high. Under high pressure, the generation of oxides by electrolysis is suppressed, so that the load on the electrodialysis apparatus in the subsequent stage of the electrolysis apparatus can be reduced.
  • hypochlorous acid generated by the above reaction organic substances such as proteins and urea can be decomposed and converted to ions such as organic acid and ammonia that can be removed by the desalting electrodialysis apparatus 3 in the subsequent stage. it can.
  • ions such as organic acid and ammonia that can be removed by the desalting electrodialysis apparatus 3 in the subsequent stage. it can.
  • urea that cannot be removed by the subsequent electrodialysis apparatus 3 or the below-described electroregenerative deionization apparatus can be decomposed and removed. If electrolysis is performed under high temperature and pressure, urea can be more efficiently decomposed and removed into ammonia and carbonic acid.
  • HClO is generated by the electrolytic reaction (2Cl ⁇ + H 2 O ⁇ HClO + HCl + 2e ⁇ ) of chlorine ions contained in the water to be treated (drainage).
  • inorganic ions are oxidized to produce chlorine oxides such as ClO 3 and ClO 4 .
  • the generation of these oxidants is suppressed, and further the generation of perchloric acid such as ClO 3 and ClO 4 that becomes a load on the desalting electrodialysis apparatus 3 is also suppressed. .
  • two-stage electrodialysis treatment is performed with the first electrodialysis apparatus 3 for desalting and the second electrodialysis apparatus 4 for acid / alkali production.
  • Production water (desalted water) is produced by the electrodialysis apparatus 3 for desalting in the previous stage.
  • An acid solution and an alkaline solution are produced from the salt-concentrated water obtained by the electrodialysis apparatus 4 for producing acid / alkali in the latter stage and the electrodialysis apparatus 3 for desalting in the former stage.
  • Ammonia generated by electrolysis of urea becomes a load of electrodialysis, and conventionally, a catalytic decomposition device has been required after the electrolysis device.
  • ammonia can be sufficiently removed by a two-stage electrodialysis treatment, and the apparatus can be simplified.
  • heat treatment energy can be reduced by exchanging the electrolytically treated water with the water to be treated under high pressure conditions.
  • a heat exchanger for exchanging heat between the water to be treated flowing into the electrolyzer 2 and the electrolyzed water flowing out from the electrolyzer 2 while maintaining the high pressure condition may be provided. preferable.
  • pressurization of water to be treated in the electrolyzer 2 There are two types of pressurization of water to be treated in the electrolyzer 2, that is, using a gas and using a pump, and preferably using a pump. Since equipment, space, and the like are limited in a closed system space, downsizing and space saving of the apparatus can be achieved by setting a target pressure by increasing the pressure using a pump. In this case, the pressure at the time of electrolysis can be controlled by adjusting a high-pressure pump that boosts the water to be treated and sends it to the electrolysis apparatus 2 and a back pressure valve provided at the treated water outlet of the electrolysis apparatus 2.
  • the electrolyzer 2 is one that allows the water to be treated to pass through in a transient manner so that the equipment cost and power consumption can be reduced as compared with the circulation type.
  • the electrolyzer 2 In order to circulate while maintaining a high pressure, it is necessary to make the tank a high-pressure specification. When circulating with the pressure released, it is necessary to repeat the pressure increase, and the power consumption of the liquid passing pump becomes excessive. Such a problem can be solved if it is a transient method.
  • the transient liquid flow type requires a long reaction path. In the case where the electrolyzer 2 is a circulation type liquid flow type, there is no restriction on the reaction path length, which is advantageous in that the size can be reduced.
  • the electrolysis apparatus 2 may be one in which a plurality of the above-described cylindrical pipe-type reaction vessels are connected in series, and a plurality of reaction vessel groups in which a plurality of reaction vessels are connected in series are installed in parallel in a plurality of rows. It may be a thing.
  • By providing a plurality of reaction vessels it is possible to increase the amount of treated water of the electrolyzer 2 and the amount of decomposition of organic substances.
  • By providing multiple reaction vessels and optimizing the current conditions of each reaction vessel according to the organic substance concentration at the entrance of each reaction vessel current efficiency can be improved and applied voltage can be reduced, reducing power consumption. be able to.
  • ⁇ Desalination treatment> In the present invention, without providing a catalyst decomposing apparatus as in Patent Document 3, ions are removed from the electrolyzed water in the subsequent stage of the electrolyzer 2 to produce product water (demineralized water) and a salt concentrate.
  • a first desalting electrodialysis apparatus 3 to be separated is installed.
  • the first desalting electrodialysis apparatus 3 can remove ions such as organic acid, CO 2 gas, ammonia, and nitric acid generated in the preceding electrolysis apparatus 2 together with salt contained in the water to be treated.
  • the desalting electrodialysis apparatus 3 includes a salt concentration chamber, an anion exchange membrane AM, a desalting chamber, and a cation exchange membrane via an electrode chamber and a bipolar membrane BPM, respectively, between an anode and a cathode.
  • This is a two-chamber electrodialyzer provided such that the CM and the salinity concentrating chamber have one or more repeating units, and both poles serve as the salinity concentrating chamber.
  • the anions X ⁇ and cations Y + constituting the salts (XY) in the water to be treated that pass through the desalting chamber pass through the anion exchange membrane AM and the cation exchange membrane CM, respectively.
  • demineralized water from which the salt content has been removed is obtained from the desalting chamber, and a salt concentration solution is obtained from the salt concentration chamber.
  • the production water from the desalination chamber can be used as it is for beverages.
  • the conductivity of the water to be treated (electrolyzed water) supplied to the desalting electrodialyzer 3 is in the range of 1000 to 5000 mS / m, particularly 2000 to 3000 mS / m.
  • the water quality permitted as production water by desalting is 100 mS / m or less, preferably 10 mS / m or less, more preferably 5 mS / m or less in terms of conductivity.
  • the treatment conditions for the electrodialysis treatment in the desalting electrodialysis apparatus 3 are not particularly limited.
  • the treatment temperature is 20 to 40 ° C.
  • the pressure is 0 to 0.1 MPa
  • the linear velocity is about 1 to 100 m / hr.
  • the flow rate varies depending on the size of the apparatus, but is preferably about 1 to 100 mL / min.
  • the desalting electrodialysis apparatus 3 is preferably subjected to a liquid flow treatment in a transient manner, as compared with the case of the circulation system, which can reduce power consumption while maintaining a water recovery rate. .
  • the salt concentration concentrate discharged from the salt concentration chamber of the desalination electrodialysis apparatus 3 is supplied to the acid / alkali production electrodialysis apparatus 4 as the second electrodialysis apparatus to produce an acid solution and an alkali solution. .
  • the acid / alkali production electrodialysis apparatus 4 is a three-chamber electrodialysis apparatus.
  • the electrodialysis apparatus 4 for acid / alkali production comprises an acid chamber, an anion exchange membrane AM, a desalting chamber, a cation exchange between an anode and a cathode via an electrode chamber and a bipolar membrane BPM, respectively.
  • the membrane CM is provided so that the repeating unit of the alkali chamber is 1 or 2 or more, the anode side is the acid chamber, and the cathode side is the alkali chamber. As shown in FIG.
  • anion X ⁇ and cation Y + in the water to be treated permeate the anion membrane AM or cation membrane CM and move to the acid chamber or alkali chamber, respectively, and demineralized water is obtained from the desalting chamber.
  • An acid solution is obtained from the acid chamber and an alkali solution is obtained from the alkali chamber.
  • the chamber adjacent to the desalting chamber is not a concentration chamber in which anions X ⁇ and cations Y + are concentrated, but only anions are concentrated and H + is generated from water. This is different from the desalting electrodialyzer 3 in that the acid chamber is an alkaline chamber in which only cations are concentrated and OH ⁇ is generated from water.
  • a portion of the demineralized water obtained by the electrodialyzer 4 for acid / alkali production may be recovered as product water.
  • the water recovery rate can be increased.
  • the quality of the desalted water obtained in the electrodialyzer 4 for acid / alkali production is about the same as that of the electrolyzed water. What is necessary is just to process so that it may become water quality.
  • the acid solution and alkali solution obtained by the electrodialyzer 4 for acid / alkali production can be used for the regeneration of the softening device 1 in the previous stage.
  • the acid solution can be used as a regenerant for the Na-type strong acid cation exchange resin or weak acid cation exchange resin of the softening device 1.
  • the alkaline solution can be used as a Na-former for strongly acidic cation exchange resins or weakly acidic cation exchange resins.
  • the electrodialysis treatment conditions in the acid / alkali production electrodialysis apparatus 4 are not particularly limited.
  • the treatment temperature is 20 to 40 ° C.
  • the pressure is 0 to 0.1 MPa
  • the flow rate is about 50 to 100 m / hr.
  • the flow rate varies depending on the size of the apparatus, but is preferably about 1 to 100 mL / min.
  • the electrodialyzer 4 for acid / alkali production is also preferably subjected to a liquid passing treatment in a transient manner like the electrolyzer 2.
  • the recovery rate of acid and alkali can be increased.
  • the concentration of inorganic ions is reduced by performing two-stage electrodialysis with the first electrodialysis apparatus 3 for desalting and the second electrodialysis apparatus 4 for acid / alkali production.
  • Remarkably reduced, clear demineralized water can be obtained as production water from the electrolysis apparatus 3 for desalting in the previous stage. This is due to the following reason.
  • the concentration of the production water (demineralized water) and the aqueous solution (concentrated solution) adjacent to each other differs between the case where the electrodialysis using the electrodialyzer is performed in one stage and the case where it is treated in two stages.
  • the salt is highly removed only by the one-stage electrodialyzer, so that a concentrated acid solution or alkali solution is obtained.
  • the treatment is performed in two stages, ions are removed even in the latter electrodialysis apparatus, so that the concentrate has a relatively low concentration.
  • clear product water can be obtained.
  • the production water obtained from the desalting electrodialysis apparatus 3 is sufficiently clear as it is, but it is treated with a reverse osmosis membrane or an electroregenerative deionization apparatus for the purpose of improving the water quality. Also good. In that case, the concentrated liquid discharged by the treatment by the reverse osmosis membrane separation device or the electroregenerative deionization device can be returned to the inlet side of the desalting electrodialysis device 3 and circulated.
  • the circulation type device refers to a device that returns the effluent of the device to the inlet side of the device and treats it again with the device.
  • a transient apparatus refers to an apparatus that supplies effluent water from the apparatus to a subsequent apparatus without returning it to the apparatus and its upstream side.
  • a tank may be provided between the apparatuses, or the liquid may be sent by piping.
  • a tank is installed between the devices, and when circulating, water is circulated through the tank in the previous stage of each device.
  • Example 1 The water to be treated shown in Table 1-1 was treated using the water recovery apparatus shown in FIG.
  • the specifications and processing conditions of each device are as follows.
  • Reaction vessel Cylindrical piping type reaction vessel (inner diameter 8 mm, length 140 mm) having an inlet for treated water at one end and an outlet for treated water at the other end
  • Anode Plate-like conductive diamond electrode with a width of 6 mm and a length of 120 mm provided coaxially at the center of the reaction vessel
  • Cathode Conductive titanium piping that also serves as the inner wall of the reactor
  • Liquid passing method Circulating (electrolytically treated water is TOC 1 mg Circulate until less than / L.)
  • Temperature 70 ° C Pressure: 0.1 MPa Current density: 2 A / dm 2 Fluid flow speed: 150m / hr
  • Table 3 shows power consumption (system power consumption when treated at 9 L / day) and water recovery rate (ratio of production water to treated water).
  • the TOC concentration of the electrolytically treated water is 1 mg / L or less
  • the production water is treated to have a conductivity of 2 mS / m or less
  • the desalted water is the conductivity. It processed so that it might become 2000 mS / m or less.
  • Example 2 In Example 1, the desalting electrodialysis apparatus and the acid / alkali production electrodialysis apparatus were each made to be a single-through liquid flow type, and the flow rates of the respective chambers were respectively set as follows. The treated water having the water quality shown in -2 was treated.
  • ⁇ Electrolysis device> The same as that used in Example 1 (however, it is assumed to be a single-pass continuous liquid passing treatment) Temperature: 70 ° C Pressure: 0.1 MPa Current density: 2 A / dm 2 Fluid flow speed: 150m / hr
  • Catalytic decomposition device > Catalytic decomposition equipment using nickel peroxide Temperature: Room temperature Water flow SV: 10 hr ⁇ 1
  • Table 3 shows power consumption and water recovery rate (ratio of production water to treated water).
  • the TOC concentration of the electrolytically treated water was 1 mg / L or less, and the production water was treated so that the conductivity was 2 mS / m or less as described above.
  • Example 1 a catalyst decomposition device having the same configuration and conditions as those used in Comparative Example 1 is provided between the electrolysis device and the desalting electrodialysis device, and the softening device ⁇ the electrolysis device ⁇ the catalyst decomposition device ⁇ the desorption device.
  • Water to be treated shown in Table 2-2 was treated in the same manner except that the treatment was performed in the order of salt electrodialyzer ⁇ acid / alkali production electrodialyzer.
  • Table 3 shows power consumption and water recovery rate (ratio of production water to treated water).
  • Example 1 by providing the electrodialysis apparatus in two stages, the concentration of inorganic ions in the production water could be greatly reduced without providing a catalyst decomposing apparatus.
  • Example 1 it was possible to obtain the same level of production water as in Reference Example 1 provided with a catalyst decomposition apparatus.
  • Example 2 in which the desalting electrodialyzer and the acid / alkali producing electrodialyzer were passed through in a transient manner, the quality of the produced water was significantly superior to that of Example 1 and Reference Example 1.
  • impurities can be removed from domestic wastewater and human body effluent and reused with a small and simple apparatus.
  • the present invention can be suitably applied to a life support device for a space station.
  • Electrolysis apparatus First electrodialysis apparatus (electrodialysis apparatus for desalination) 4 Second electrodialyzer (electrodialyzer for acid and alkali production) AM Anion exchange membrane CM Cation exchange membrane BPM Bipolar membrane

Abstract

スケール成分、有機物、無機イオン等を含む排水、特に、核シェルター、災害避難所、宇宙ステーション又は月・火星ミッションの有人宇宙船、月面基地などの閉鎖系空間で生じた人体排出水、生活排水などの排水を、簡易な構成の装置により効率的に処理して水回収する。人体排出水などの被処理水から軟化装置1で硬度成分を除去した後、電解装置2で、電気分解により有機物、尿素、アンモニアなどを分解除去し、電解処理水を第一の脱塩用電気透析装置3で脱塩処理して生産水を得るとともに塩分濃縮液を得る。更に、塩分濃縮液を第二の酸・アルカリ製造用電気透析装置4で処理して脱塩水と酸溶液とアルカリ溶液を製造する。酸溶液は軟化装置1の再生剤として、アルカリ溶液は軟化装置1のNa形化剤として利用する。脱塩水は第一の脱塩用電気透析装置3で処理する。

Description

水回収方法及び装置
 本発明は、スケール成分、有機物、無機イオン等を含む排水、特に、閉鎖系空間で生じた人体排出水、生活排水などの排水を処理して水を回収する水回収方法及び装置に関する。詳しくは、本発明は、核シェルター、災害避難所、宇宙ステーション又は月・火星ミッションの有人宇宙船、月面基地などの閉鎖系空間で生じる排水を、この閉鎖系空間内において、簡易な構成の装置で効率的に処理する水回収方法及び装置に関する。
 核シェルター、災害避難所、宇宙ステーション又は月・火星ミッションの有人宇宙船、月面基地などの閉鎖系空間で発生した尿などの人体排出水や生活排水をこの閉鎖系空間内で処理して水回収する装置は、次の困難又は制約を受ける。
1) 宇宙空間などでは重力が微少であるため、重力による気液分離、固液分離は困難である。
2) 閉鎖系空間であるため、放出ガス種や放出量に制限がある。
3) 高い水回収率が要求され、また消費電力や設置スペースを小さくする必要がある。
 このような制約に対して、膜蒸留法(特許文献1)が提案されている。膜蒸留法では以下の問題がある。
 被処理排出物には揮発性のものもあり、このような排出物は蒸留や膜蒸留では除去し得ない。硬度成分を含む排水を蒸発させるとスケール障害が起こる。排出物には通常たんぱく質などの有機物が含まれているので、ファウリングが起こり膜蒸留性能を低下させる。基本的な操作は蒸発なのでエネルギー消費量が大きい。
 膜蒸留の前処理として膜式活性汚泥処理を行う方法(特許文献2)が提案されている。この方法では以下の問題がある。
 運転条件が適正値を外れると微生物が失活し易く、一旦微生物が失活してしまうと元に戻らない。活性汚泥は有機物の1/3~1/2を汚泥としてしまうため、貴重な水を含んだ汚泥が廃棄物となる。
 これらの問題を解決するものとして、硬度成分粗取り装置、軟化装置、電解装置、触媒分解装置、及び電気透析装置から構成される水回収装置(特許文献3)が提案されている。
 この水回収装置では、以下の問題がある。
 電気透析装置において、酸・アルカリ製造時に水の損失があり、水回収率が低い水準となる。電解装置における電気分解で発生したアンモニアや次亜塩素酸等の酸化物質を処理するために、電解装置の後段に多量の触媒を充填した触媒装置を設ける必要がある。設置スペースやメンテナンス等を考慮するとより簡易な構成とすることが望まれる。
特開2006-095526号公報 特開2010-119963号公報 特開2013-075259号公報
 本発明は、スケール成分、有機物、無機イオン等を含む排水、特に、核シェルター、災害避難所、宇宙ステーション又は月・火星ミッションの有人宇宙船、月面基地などの閉鎖系空間で生じた人体排出水、生活排水などの排水を、スケール発生による目詰まり、有機物によるファウリング等を懸念することなく、蒸発のような多量のエネルギーを消費することなく、簡易な構成の装置により効率的に処理する水回収方法及び装置を提供する。
 本発明者は鋭意検討を重ねた結果、以下の知見を得た。
 宇宙ステーション等の閉鎖系空間で発生した生活排水又は人体排出水等の排水を、電気分解して排水中の有機物やアンモニアなどの被酸化性物質を分解除去した後、電解処理水をまず第一の電気透析装置で処理して、有機物やアンモニアなどの電気分解で生じた有機酸や硝酸イオン、残留したアンモニア、その他の無機イオンなどを、酸やアルカリを製造する前に除去して生産水と高濃度の塩分濃縮液とに分け、その後第二の酸・アルカリ製造用電気透析装置で、第一の脱塩用電気透析装置で得られた塩分濃縮液から酸溶液とアルカリ溶液を製造すること、即ち、電気透析工程を脱塩用電気透析装置と酸・アルカリ製造用電気透析装置との2段で行うことにより、以下の作用により、前段の脱塩用電気透析装置において、電解処理水中の無機イオンの濃度を著しく低減して、前段の脱塩用電気透析装置から清澄な脱塩水を生産水として得ることができる。このため、特許文献3における電解装置の後段の触媒分解装置を不要とすることが可能となる。また、後段の酸・アルカリ製造用電気透析装置においては、水の損失を最低減に抑えて酸溶液及びアルカリ溶液を製造することができるため、高い水回収率を得ることが可能となる。
 電気透析装置による電気透析を1段で処理する場合と2段で処理する場合とでは、生産水(脱塩水)と膜を隔して隣り合う水溶液(濃縮液)の濃度が異なる。1段で処理する場合は、1段の電気透析装置のみで塩類を高度に除去しようとするため、濃度の濃い酸溶液又はアルカリ溶液となる。2段で処理する場合は、後段の電気透析装置でもイオン除去を行うため、前段の電気透析装置の塩分濃縮液は比較的濃度の薄い濃縮液となる。このため、2段の場合、前段の電気透析装置における脱塩室内の脱塩水と膜隔を隔てた塩分濃縮室内の塩分濃縮液との濃度差が小さく、この結果、前段の電気透析装置から清澄な生産水を得ることができる。
 本発明は、以下を要旨とする。
[1] 排水を処理して処理水を生産水として回収する方法において、該排水を電解装置で直流電流を供給して電気分解することにより、該排水中の被酸化性物質を分解する電解工程と、該電解工程で得られた電解処理水を第一の電気透析装置で処理して、該電解処理水からイオン類を除去した脱塩水よりなる生産水と塩分濃縮液とを得る第一の電気透析工程と、該第一の電気透析工程で得られた塩分濃縮液を第二の電気透析装置で処理して脱塩水と酸溶液とアルカリ溶液とを得る第二の電気透析工程とを備えることを特徴とする水回収方法。
[2] [1]において、前記排水は、閉鎖系空間で生じた人体排出水及び/又は生活排水であることを特徴とする水回収方法。
[3] [1]又は[2]において、前記電解処理水は、前記電解工程から、他の水処理工程を経ることなく、前記第一の電気透析工程に送給されることを特徴とする水回収方法。
[4] [1]ないし[3]のいずれかにおいて前記第一の電気透析装置は、少なくとも塩分濃縮室と脱塩室との2室を有し、前記電解処理水を脱塩しつつ、塩分濃縮液を製造するものであることを特徴とする水回収方法。
[5] [1]ないし[4]のいずれかにおいて前記第二の電気透析装置は、少なくとも酸室、脱塩室、及びアルカリ室の3室を有し、前記塩分濃縮液を脱塩しつつ、酸溶液及びアルカリ溶液を製造するものであることを特徴とする水回収方法。
[6] [1]ないし[5]のいずれかにおいて前記電解工程の前段に、前記排水を軟化装置で処理して該排水中の硬度成分を除去する軟化工程を備え、該軟化工程で得られた軟化処理水が前記電解工程で処理される水回収方法であって、前記第二の電気透析工程で得られた酸溶液とアルカリ溶液を用いて該軟化装置を再生する再生工程を備えることを特徴とする水回収方法。
[7] [1]ないし[6]のいずれかにおいて、前記電解装置は、導電性ダイヤモンド電極を備えることを特徴とする水回収方法。
[8] [1]ないし[7]のいずれかにおいて、前記第一の電気透析装置への前記電解処理水の通液及び/又は前記第二の電気透析装置への前記塩分濃縮液の通液が一過式で行われることを特徴とする水回収方法。
[9] 排水を処理して処理水を生産水として回収する装置において、該排水を、直流電流を供給して電気分解することにより、該排水中の被酸化性物質を分解する電解装置と、該電解装置で得られた電解処理水を処理して、該電解処理水からイオン類を除去した脱塩水よりなる生産水と、塩分濃縮液とを得る第一の電気透析装置と、該第一の電気透析装置で得られた塩分濃縮液を処理して脱塩水と酸溶液とアルカリ溶液とを得る第二の電気透析装置とを備えることを特徴とする水回収装置。
[10] [9]において、前記排水は、閉鎖系空間で生じた人体排出水及び/又は生活排水であることを特徴とする水回収装置。
[11] [9]又は[10]において、前記電解処理水は、前記電解装置から、他の水処理手段を経ることなく、前記第一の電気透析装置に送給されることを特徴とする水回収装置。
[12] [9]ないし[11]のいずれかにおいて前記第一の電気透析装置は、少なくとも塩分濃縮室と脱塩室との2室を有し、前記電解処理水を脱塩しつつ、塩分濃縮液を製造するものであることを特徴とする水回収装置。
[13] [9]ないし[12]のいずれかにおいて前記第二の電気透析装置は、少なくとも酸室、脱塩室、及びアルカリ室の3室を有し、前記塩分濃縮液を脱塩しつつ、酸溶液及びアルカリ溶液を製造するものであることを特徴とする水回収装置。
[14] [9]ないし[13]のいずれかにおいて前記電解装置の前段に、前記排水を処理して該排水中の硬度成分を除去する軟化装置を備え、該軟化装置で得られた軟化処理水が前記電解装置で処理される水回収装置であって、前記第二の電気透析装置で得られた酸溶液とアルカリ溶液をそれぞれ該軟化装置へ送給する配管を備え、該酸溶液とアルカリ溶液を用いて該軟化装置が再生されることを特徴とする水回収装置。
[15] [9]ないし[14]のいずれかにおいて、前記電解装置は、導電性ダイヤモンド電極を備えることを特徴とする水回収装置。
[16] [9]ないし[15]のいずれかにおいて、前記第一の電気透析装置への前記電解処理水の通液及び/又は前記第二の電気透析装置への前記塩分濃縮液の通液が一過式で行われることを特徴とする水回収装置。
 本発明によれば、スケール成分、有機物、無機イオン等を含む排水を、スケール発生による目詰まり、有機物によるファウリング等を懸念することなく、蒸発のような多量のエネルギーを消費することなく、簡易な構成の装置により、効率的に処理して処理水を回収、再利用することが可能となる。このため、例えば宇宙ステーションや宇宙船等の宇宙空間において、人間の生命維持に不可欠な水を再利用することができ、宇宙での人間の長期滞在が可能となる。
本発明の水回収装置の実施の形態の一例を示す系統図である。 本発明で用いる脱塩用電気透析装置の構成とイオン移動を説明する模式的な断面図である。 本発明で用いる酸・アルカリ製造用電気透析装置の構成とイオン移動を説明する模式的な断面図である。
 以下に、図面を参照して本発明の水回収方法及び装置の実施の形態を詳細に説明する。本発明はその要旨を超えない限り、以下の実施形態に限定されるものではない。
 以下においては、本発明を、主として、閉鎖系空間で発生した排水を処理して再利用するための水回収方法及び装置に適用した場合を例示して説明する。本発明は、閉鎖系空間内で生じた排水の処理、回収に限らず、スケール成分、有機物、無機イオン等を含む様々な排水の処理、回収に適用することができる。
 図1は本発明の水回収装置の実施の形態の一例を示す系統図である。
 本実施の形態では、図1に示されるように、被処理水であるスケール成分、有機物、無機イオン等を含む排水、例えば閉鎖系空間内で生じた排水を、まず軟化装置1に導入して該排水中の硬度成分を除去する。軟化処理水を、電解装置2で電気分解することにより、該軟化処理水中の被酸化性物質を分解除去する。電解処理水を第一の電気透析装置(以下、「脱塩用電気透析装置」と称す場合がある。)3で処理して該電解処理水からイオン類を除去した脱塩水よりなる生産水と、塩分濃縮液とを得る。脱塩用電気透析装置3で得られた塩分濃縮液を第二の電気透析装置(以下、「酸・アルカリ製造用電気透析装置」と称す場合がある。)4で処理して脱塩水と酸溶液とアルカリ溶液とを得る。酸・アルカリ製造用電気透析装置4で得られた酸溶液とアルカリ溶液は、軟化装置1の再生に利用することができる。酸・アルカリ製造用電気透析装置4で得られた脱塩水の一部又は全部は、脱塩用電気透析装置3の入口側に返送して電解装置2からの電解処理水と共にこの脱塩用電気透析装置3で処理することができる。
<被処理水>
 処理対象となる被処理水は、スケール成分、有機物、無機イオン等を含む排水である。例えば、核シェルター、災害避難所、宇宙ステーション又は月・火星ミッションの有人宇宙船、月面基地などの閉鎖系空間で発生した人体排出水や生活排水などの排水が挙げられる。人体排出水は尿、汗などである。生活排水は空調関係の凝縮水、厨房排水、洗濯排水、風呂・シャワー排水、清掃排水、動植物などの飼育栽培により発生する排水などである。
 閉鎖系空間とは、内外での物質やエネルギーのやりとりが制限された空間をさす。本発明が好適に適用される閉鎖系空間としては、シェルター、宇宙ステーションや宇宙船等の宇宙空間が挙げられる。特に宇宙空間の有人環境において本発明を有効に適用することができる。
 閉鎖系空間から排出される排水は、主として空調関係の凝縮水や人体から排出される汗や尿などであり、Mg、Ca等のスケール成分、たんぱく質や尿素等の有機物、Na、K、Cl、SO、PO、NH、NO等の無機イオンが含まれている。
 処理対象となる被処理水の水質としては、例えば次のようなものが挙げられる。被処理水は、以下の排水の混合排水であってもよい。
<人体から排出される汗や尿を主体とする排水>
  pH:6~8
  TOC:2000~15000mg/L
  無機イオン:5000~20000mg/L
    Na:1000~5000mg/L
    NH:100~1500mg/L
    K:500~2500mg/L
    Cl:2000~10000mg/L
    PO:500~2500mg/L
<生活排水>
  pH:5~13
  TOC:1~200mg/L
  無機イオン:0.01~200mg/L
    Na:0.01~10mg/L
    NH:0.01~100mg/L
    K:0.01~10mg/L
    Cl:0.01~10mg/L
    PO:0.01~10mg/L
 閉鎖系空間において発生する尿や各種の生活排水はそれぞれ水質が異なる。本発明により水回収するに当たり、必要に応じてそれぞれの水種を単独で処理しても良いし、それらを予め混合して処理しても良い。処理工程の途中から特定の水種の被処理水を合流させてもよい。処理方法は処理効率を考慮して決めることが望ましい。
 一般的に前記被処理水のうち、スケール成分は尿に最も多く含まれるため、軟化装置1による硬度成分の除去は尿のみを処理対象とし、次工程の電解装置2において、他の被処理水を合流させて処理してもよい。このようにすることにより、各工程における被処理水量を無駄に増やすことなく、効率的に処理することができる。
<軟化処理>
 図1の水回収装置においては、閉鎖系空間で生じた上記のような排水からまず硬度成分を除去する。軟化処理には、Na型の強酸性カチオン交換樹脂もしくは弱酸性カチオン交換樹脂を用いることができる。以下のイオン交換反応で硬度成分が除去される。 
  CaX、MgX + R-Na → R=Ca、R=Mg + NaX
 Xは陰イオンを示す。Rはイオン交換樹脂交換基を示す。
 軟化装置1としては、Na型強酸性カチオン交換樹脂もしくは弱酸性カチオン交換樹脂を充填したイオン交換樹脂塔が用いられる。処理条件には特に制限はない。通常、処理温度は20~40℃、通液SV(空間速度)は5~20hr-1である。
 軟化処理により、被処理水中の2価のMg、Ca等のスケール成分が除去される。このため、後段の電解装置2において、スケールの発生が抑制され、電流が効率良く流れるようになる。また、後段の電気透析装置3,4のイオン交換膜の目詰まりが防止される。
 本発明において、軟化処理は必須ではない。軟化処理は、被処理水中に硬度成分が多く含まれており、後段の電解装置2や電気透析装置3,4において、スケール障害が発生することが予想される場合に必要とされる。被処理水となる排水が硬度成分を含まないか、或いはその含有量が少ない場合には、軟化処理を行う必要はない。軟化装置1を省略して、排水を直接電解装置2で処理してもよい。
<電気分解>
 排水又は排水の軟化処理水を電解装置2で電気分解することにより、排水中に含まれている有機物、尿素、アンモニアなどの被酸化性物質を分解除去する。
 電解装置2では、後段の電気透析装置3,4のイオン交換膜をファウリングさせるたんぱく質などの有機物を分解除去すると共に、後段の電気透析装置3,4や必要に応じて設けられる後述の電気再生式脱塩装置では除去し得ない尿素を、電解装置2でアンモニアと炭酸に分解する。
 排水中に含まれるこれらの被酸化性物質はTOC濃度として100~20000mg/L程度である。尿を対象とする場合は1000~10000mg/L、通常5000~7000mg/L程度である。
 電解装置2に適用される反応容器としては、次のようなものが好ましい。
 一端側に被処理水の入口、他端側に電解処理水の出口を設けた、配管などの円筒形の容器(円筒状配管型容器)の内部に、陽極を、被処理水(排水又は軟化処理水)の流れと平行方向に、かつ容器と絶縁するように離隔して設置し、配管自体を陰極として、陽極、陰極間に直流電源を接続する。円筒形の容器は、角筒形等の他の形状の容器に比べて内圧に対して強度を保持しやすく、反応容器の肉厚を薄くすることができ、装置の小型化が可能となる。電極を被処理水の流れに対して平行に設置することで、発生した気泡を処理水とともに容器外へ押し出すことが可能となり、電極への気泡付着を抑制し、反応効率を高めることができる。
 電解装置の陰極(即ち、反応容器の内壁)の構成材料としては、例えばハステロイ、インコロイ等のニッケル基合金;チタン基合金;炭素鋼、ステンレス鋼等の鋼材等を用いることができる。白金等の金属で被覆されたものであってもよい。
 陰極は導電性ダイヤモンド電極からなるものであってもよい。導電性ダイヤモンド電極は、化学的安定性に優れ、電流効率が高く、電解効率の面で好ましい。この場合、ニオブ、タングステン、ステンレス、モリブデン、白金、イリジウム等の金属からなる基材に導電性ダイヤモンドの被覆層を形成したものとすることができる。
 陽極は、陽極と陰極となる反応容器内壁との距離が均等となるように設けられることが好ましい。この距離にばらつきがある場合には、距離が短い部分に局部的に過大な電流が流れ、その部分の陽極の劣化が促進されることとなり好ましくない。円筒状配管型容器内に、平板状、円柱形状又は円筒形状の陽極を、その中心軸が反応容器の内壁の中心軸と実質的に一致するように設けることが好ましい。
 陽極は、1枚又は複数枚の平板状のものをそのまま設置してもよいし、メッシュ又は網を円筒形状に形成したものでもよいし、板を円筒形状に形成したものでもよいし、棒状体であってもよい。
 陽極としては、少なくともその表面が、ルテニウム、イリジウム、白金、パラジウム、ロジウム、錫若しくはこれらの酸化物又はフェライトであるものが好ましい。陽極そのものがこれらの物質で構成されていてもよいし、陽極の基材の表面がこれらの物質で被覆されていてもよい。
 陽極を構成するルテニウム、イリジウム、白金、パラジウム、ロジウム、錫は、金属元素そのものであってもよいし、酸化物であってもよい。これらの金属の合金も好適に用いられる。合金としては、例えば、白金-イリジウム、ルテニウム-錫、ルテニウム-チタンなどが挙げられる。上記した金属等は、耐食性に優れており、陽極として用いる場合に優れた不溶性を示す。
 陽極もまた陰極と同様の理由から導電性ダイヤモンド電極からなるものであってもよい。この場合、陽極全体が導電性ダイヤモンドから構成されるものであってもよく、シリコン、ニオブ、タングステン、ステンレス、モリブデン、白金、イリジウム等の金属、或いは、炭化ケイ素、窒化ケイ素、炭化モリブデン、炭化タングステン等の非金属等からなる基材に導電性ダイヤモンドの被覆層を形成したものであってもよい。TOCの分解は特に陽極で起こるため、陽極に導電性ダイヤモンド電極を用いることにより、たんぱく質等のTOCを効率的に分解することができる。
 電解装置2における電気分解は、下記1)又は2)のいずれかで行われる。
1)高温高圧下。具体的には、100℃以上であって、被処理水の臨界温度以下の温度において、該被処理水が液相を維持する圧力下
2)上記(1)の高温高圧条件よりも低い温度及び圧力条件(以下、便宜上、「通常条件」という。)下
 通常条件下で電気分解を行う場合、温度は20~90℃、特に50~80℃で、圧力は常圧~0.5MPa、特に常圧~0.2MPaの範囲で行うことが好ましい。電気分解時の温度や圧力は、高い程電解効率が向上する。高温高圧条件を採用する場合、電解装置の耐熱、耐圧構造のためのコストと加熱、加圧のためのコストが高くつくことになる。通常条件下での電気分解であれば、コスト面で有利である。
 本発明では、電解装置2の後段に第一の電気透析装置3と第二の電気透析装置4で2段階の電気透析を行うことによる前述の優れた脱塩効果で、後段の第一の電気透析装置である脱塩用電気透析装置3から、高水質の生産水を得ることができるため、電解装置2においては、高温高圧条件を採用することなく、通常条件での電気分解を行っても、その後の2段電気透析処理で良好な水質の生産水を得ることができ、電気分解にかかるコストを低減することができる。
 通常条件下での電解条件は、被処理水の水質や用いる電極の種類、反応容器の構成等によっても異なる。供給する直流電流は通常2~50A、好ましくは5~30A程度である。電流密度は通常0.1~500A/dm、好ましくは1~50A/dmである。電解時間は通常0.3~30hr、好ましくは5~20hrである。
 被処理水を円筒状配管型容器の一端側から他端側へ通液して電気分解を行う一過式通液型の反応容器にあっては、被処理水の反応容器内の滞在時間が上記の好適な電解時間となるように流速を調節することが好ましい。
 通常条件下での電気分解の場合、電解装置2における線速は好ましくは1~500m/hr、より好ましくは10~200m/hrである。通常条件下での電気分解では、後述の高温高圧条件下での電気分解の場合よりも線速を上げることにより、電気分解で発生した気泡を水流で押し出して装置外に除去するようにすることが好ましい。
 高温高圧条件とは、100℃以上であって、被処理水の臨界温度以下の温度において、該被処理水が液相を維持する圧力である。温度は通常100~374℃、好ましくは200~250℃である。圧力は通常2~20MPa、好ましくは5~10MPaである。電気分解時の温度が200℃以上であると、たんぱく質や尿素の分解効率が向上する。
 高温高圧下での電解条件は、被処理水の水質や用いる電極の種類、反応容器の構成等によっても異なる。供給する直流電流は通常2~30A、好ましくは5~20A程度である。電流密度は通常0.1~500A/dm、好ましくは1~50A/dmである。電解時間は通常0.5~30hr、好ましくは5~20hrである。
 被処理水を円筒状配管型容器の一端側から他端側へ通液して電気分解を行う一過式通液型の反応容器にあっては、被処理水の反応容器内の滞在時間が上記の好適な電解時間となるように流速を調節することが好ましい。
 高温高圧条件下で電気分解を行う場合、電解装置2における具体的な線速は0.1~50m/hr、好ましくは1~20m/hrである。低温低圧での電気分解の場合には、電極に気泡が溜まるため、この気泡を取り除くために線速を大きくする必要がある。高温高圧下での電気分解では、このような気泡の発生が抑制され、溶液の表面張力も低下し電極面から気泡が離脱しやすくなるため、線速を大きくする必要はなく、装置の小型化を図ることができる。
 電解装置2における電気分解により、排水中の被酸化性物質を、後段の第一の電気透析装置3で直接除去することができる炭酸や有機酸、硝酸等のイオンに変換することができる。
 電気分解で、排水中の有機物の一部は炭酸ガスに分解される。排水中のアンモニアや硝酸の一部は分解されて窒素ガスとなる。高圧下の電気分解では、その圧力によって、電気分解で発生するガスが水に溶解し、気泡のサイズも小さくなるため、気泡による電極面への被分解物接触妨害を抑制することができる。高温で処理することによって熱分解の効果を利用するとともに物質移動速度を高めることで、電気分解効率を高めることもできる。更には、水の電気分解で生じた水素と酸素のガスを、再度水に戻す反応を引き起こすことができるため、爆発性の高い水素/酸素の混合ガスから、酸素濃度を低減させることができ、副生ガスを、爆発限界値を下回る安全性の高いものとすることができる上に、水回収率を高いものとすることができる。高圧下では、電気分解での酸化物の生成が抑制されることから、電解装置の後段にある電気透析装置への負荷を低減することもできる。
 電気分解により、以下の反応で有機物や尿素、アンモニア等を分解する。上記の高温高圧条件で電気分解を行う場合には、電気分解時における酸素ガスや水素ガスの発生を抑制するとともに、過塩素酸等の酸化物質の生成を抑制することができる。酸素と水素から水を生成する条件に設定することで、水回収率を向上させることができる。
  有機物→(酸化)→有機酸、CO
  尿素→NH +CO 2-
  2NH+3HClO→N+3HO+3HCl
 上記の反応で生じた次亜塩素酸を利用して、たんぱく質等の有機物や尿素を分解し、後段の脱塩用電気透析装置3で除去可能な有機酸、アンモニア等のイオンに変換することができる。電解装置2において、後段の電気透析装置3や、後述の電気再生式脱イオン装置では除去し得ない尿素を分解除去できる。高温高圧下の電気分解であればより効率的に尿素をアンモニアと炭酸に分解除去することができる。
 上記反応式中、HClOは被処理水(排水)に含まれる塩素イオンの電解反応(2Cl+HO→HClO+HCl+2e)により発生したものである。
 通常条件下での電気分解では、無機イオンが酸化され、ClOやClO等の塩素酸化物が生成する。高温高圧条件で電気分解することにより、これらの酸化物質の生成が抑えられ、更に後段の脱塩用電気透析装置3の負荷となるClOやClO等の過塩素酸の生成も抑制される。
 本発明では、第一の脱塩用電気透析装置3と第二の酸・アルカリ製造用電気透析装置4とで2段階の電気透析処理を行う。前段の脱塩用電気透析装置3で生産水(脱塩処理水)を製造する。後段の酸・アルカリ製造用電気透析装置4で前段の脱塩用電気透析装置3で得られた塩分濃縮水から酸溶液とアルカリ溶液を製造する。このため、電解装置2で高温高圧条件での電気分解を行わず、通常条件下で電気分解を行う場合であっても、塩素酸化物を低減できる。前述の作用効果で特許文献3における触媒分解装置を不要とすることができる。
 尿素の電気分解で生じるアンモニアは、電気透析の負荷となり、従来は、電解装置の後段に触媒分解装置を必要としていた。本発明では、2段階の電気透析処理でアンモニアを十分に除去することができ、装置を簡略化できる。
 高温高圧下の電気分解においては、電解処理水を高圧条件下で被処理水と熱交換することにより、加温エネルギーの削減を図ることができる。高温高圧下で電気分解を行う場合は、電解装置2に流入する被処理水と、電解装置2から流出する電解処理水とをその高圧条件を維持して熱交換させる熱交換器を設けることが好ましい。
 電解装置2の被処理水の昇圧には、ガスを用いた昇圧とポンプを用いた昇圧があるが、ポンプを用いた昇圧が好ましい。閉鎖系空間内では設備、スペースなどが限られているため、ポンプを用いて昇圧することで目的の圧力を設定することによって装置の小型化、省スペース化が達成される。この場合、電気分解時の圧力は、被処理水を昇圧して電解装置2に送液する高圧ポンプと電解装置2の処理水出口に設けた背圧バルブの調整により制御することができる。
 電解装置2は、被処理水を一過式で通液して処理するものであることが、循環式の場合に比べて設備コストや消費電力を抑えることができ、好ましい。高圧を維持して循環する場合には、タンクを高圧仕様にする必要がある。圧を開放して循環する場合には、昇圧を繰り返す必要があり、通液ポンプの消費電力が過大となる。一過式であればこのような問題が解消される。一過式通液型は反応経路を長くとる必要がある。電解装置2を循環式通液型とする場合には、反応経路長に制限がなく小型化できる点において有利である。装置の設置場所や設置目的、要求特性に応じて、一過式通液型とするか、循環式通液型とするかを決定する。
 電解装置2は、前述の円筒状配管型の反応容器を複数個直列に連結して設置したものであってもよく、反応容器を複数個直列に連結した反応容器群を複数列並列に設置したものであってもよい。反応容器を複数個設けることにより、電解装置2の処理水量、有機物等の分解量を高めることができる。反応容器を複数個設け、各反応容器の入り口の有機物濃度に合わせ、各反応容器の電流条件を最適化することで、電流効率の向上、印加電圧の低減を図ることができ、消費電力を抑えることができる。
<脱塩処理>
 本発明においては、特許文献3におけるような触媒分解装置を設けずに、電解装置2の後段に、電解処理水からイオン類を除去して生産水(脱塩処理水)と塩分濃縮液とに分離する第一の脱塩用電気透析装置3を設置する。第一の脱塩用電気透析装置3により、被処理水中に含まれる塩分とともに、前段の電解装置2で生成する有機酸やCOガス、アンモニア、硝酸等のイオン類を除去することができる。
 脱塩用電気透析装置3は、図2に示すように、陽極と陰極の間に、それぞれ電極室及びバイポーラ膜BPMを介して、塩分濃縮室、アニオン交換膜AM、脱塩室、カチオン交換膜CM、及び塩分濃縮室の繰り返し単位が、1又は2以上、両極側が塩分濃縮室となるように設けられた2室型の電気透析装置である。脱塩用電気透析装置3では、脱塩室内を通過する被処理水中の塩類(XY)を構成する陰イオンX及び陽イオンYがそれぞれアニオン交換膜AM、カチオン交換膜CMを透過して塩分濃縮室内に濃縮されることにより、脱塩室からは塩分が除去された脱塩水が得られ、塩分濃縮室からは、塩分濃縮液が得られる。脱塩室からの生産水はそのまま飲料用として用いることが可能である。塩分濃縮室からの塩分濃縮液は後段の酸・アルカリ製造用電気透析装置4に供給することで、被処理水中の成分の有効利用が可能となる。脱塩用電気透析装置3に供給される被処理水(電解処理水)の導電率は1000~5000mS/m、特に2000~3000mS/mの範囲にある。脱塩により生産水として許容される水質は導電率として100mS/m以下、好ましくは10mS/m以下、より好ましくは5mS/m以下である。
 脱塩用電気透析装置3における電気透析処理の処理条件は特に制限はない。処理温度は20~40℃、圧力は0~0.1MPa、線速は1~100m/hr程度である。流速は装置のサイズにより異なるが1~100mL/min程度とすることが好ましい。
 脱塩用電気透析装置3は、電解装置2と同様、一過式で通液処理されることが、循環方式の場合に比べて、水回収率を維持しつつ消費電力を下げることができ好ましい。
<酸・アルカリ製造>
 脱塩用電気透析装置3の塩分濃縮室から排出される塩分濃縮液を、第二の電気透析装置である酸・アルカリ製造用電気透析装置4に送給して酸溶液とアルカリ溶液を製造する。
 酸・アルカリ製造用電気透析装置4は、3室式の電気透析装置である。酸・アルカリ製造用電気透析装置4は、図3に示すように、陽極と陰極の間に、それぞれ電極室及びバイポーラ膜BPMを介して、酸室、アニオン交換膜AM、脱塩室、カチオン交換膜CM、アルカリ室の繰り返し単位が、1又は2以上、陽極側が酸室、陰極側がアルカリ室となるように設けられたものである。図3の通り、被処理水中の陰イオンX及び陽イオンYがそれぞれアニオン膜AM又はカチオン膜CMを透過して酸室又はアルカリ室に移動し、脱塩室から脱塩水が得られると共に、酸室から酸溶液が、アルカリ室からアルカリ溶液が得られる。酸・アルカリ製造用電気透析装置4は、脱塩室に隣接する室が、陰イオンX及び陽イオンYが濃縮される濃縮室ではなく、陰イオンのみが濃縮され水中からHが生成する酸室と、陽イオンのみが濃縮され、水中からOHが生成するアルカリ室である点が、脱塩用電気透析装置3とは異なる。
 酸・アルカリ製造用電気透析装置4で得られた脱塩水は、その一部を生産水として回収してもよい。この脱塩水の一部又は全部を前段の脱塩用電気透析装置3の入口側に返送し、電解処理水と共に脱塩処理することにより、水回収率を高めることができる。
 脱塩水の一部又は全部を前段の脱塩用電気透析装置3の入口に返送する場合には、酸・アルカリ製造用電気透析装置4において得られる脱塩水の水質が電解処理水と同程度の水質となるように処理すれば良い。
 酸・アルカリ製造用電気透析装置4で得られた酸溶液、アルカリ溶液は、前段の軟化装置1の再生に利用することができる。酸溶液は、軟化装置1のNa型強酸性カチオン交換樹脂もしくは弱酸性カチオン交換樹脂の再生剤として利用することができる。アルカリ溶液は強酸性カチオン交換樹脂もしくは弱酸性カチオン交換樹脂のNa形化剤として利用することができる。
 酸・アルカリ製造用電気透析装置4における電気透析処理の処理条件は特に制限はない。処理温度は20~40℃、圧力は0~0.1MPa、流速は50~100m/hr程度である。流速は装置のサイズにより異なるが1~100mL/min程度とすることが好ましい。
 酸・アルカリ製造用電気透析装置4もまた、電解装置2と同様一過式で通液処理することが好ましい。循環方式とすることにより、酸、アルカリの回収率を高くすることができる。
 本発明においては、脱塩のための第一の電気透析装置3と、酸・アルカリ製造のための第二の電気透析装置4とで2段の電気透析を行うことにより、無機イオンの濃度を著しく低減して、前段の脱塩用電気透析装置3から清澄な脱塩水を生産水として得ることができる。これは、次の理由による。
 電気透析装置による電気透析を1段で処理する場合と2段で処理する場合とでは、生産水(脱塩水)と膜を隔して隣り合う水溶液(濃縮液)の濃度が異なる。1段で処理する場合は、1段の電気透析装置のみで塩類を高度に除去しようとするため、濃度の濃い酸溶液又はアルカリ溶液となる。2段で処理する場合は、後段の電気透析装置でもイオン除去を行うため、比較的濃度の薄い濃縮液となる。2段の場合、脱塩室内の脱塩水と膜隔を隔てた濃縮室内の濃縮液との濃度差が小さいため、清澄な生産水を得ることができる。
<その他>
 脱塩用電気透析装置3から得られた生産水は、そのままで十分に清澄なものとなるが、より水質を向上させることを目的として、逆浸透膜や電気再生式脱イオン装置により処理してもよい。その場合、逆浸透膜分離装置や電気再生式脱イオン装置による処理で排出される濃縮液は、脱塩用電気透析装置3の入口側へ返送して循環処理することができる。
 循環式の装置とは、当該装置の流出水を当該装置の入口側へ返送して再度当該装置で処理する方式の装置をさす。一過式の装置とは、当該装置の流出水を当該装置及びその上流側へ返送することなく、後段の装置へ送給する装置をさす。いずれの方式の装置にあっても、装置間にタンクを設けてもよく、配管により送液するようにしてもよい。
 以下に実施例、比較例及び参考例を挙げて本発明をより具体的に説明する。
 以下の実施例、比較例及び参考例においては、各装置間にタンクを設置し、循環する場合は各装置の前段にあるタンクを介して水を循環させている。
[実施例1]
 図1に示す水回収装置を用いて、表1-1に示す水質の被処理水を処理した。各装置の仕様、処理条件は次の通りである。
<軟化装置>
  Na型強酸性カチオン交換樹脂塔
  温度:25℃
  通液SV:10hr-1
<電解装置>
 反応容器:一端側に被処理水の流入口、他端側に処理水の流出口を有する円筒状配管型反応容器(内径8mm、長さ140mm)
 陽極:反応容器の中心に、同軸状に設けられた幅6mm、長さ120mmの板状導電性ダイヤモンド電極
 陰極:反応器内壁を兼ねる導電性チタン配管
 通液方式:循環式(電解処理水がTOC1mg/L以下になるまで循環させる。)
  温度:70℃
  圧力:0.1MPa
  電流密度:2A/dm
  通液線速:150m/hr
<脱塩用電気透析装置>
  図2に示す構成の循環式通液型脱塩用電気透析装置
  温度:室温
  圧力:0.1MPa
  電流密度:1A/dm
  流速:50mL/min
  塩分濃縮液:全量を酸・アルカリ製造用電気透析装置に送給する。
  脱塩水:生産水として系外へ排出する脱塩水の導電率が2mS/m以下になるまで循環させる。
<酸・アルカリ製造用電気透析装置>
  図3に示す構成の循環式通液型酸・アルカリ製造用電気透析装置
  温度:室温
  圧力:0.1MPa
  電流密度:1A/dm
  流速:50mL/min
  濃縮液:酸室からの酸溶液はその全量を酸室の入口側へ循環する。アルカリ室からのアルカリ溶液はその全量をアルカリ室の入口側へ循環する。
  脱塩水:全量を脱塩用電気透析装置に返送する。
 軟化処理水、電解処理水、生産水(脱塩用電気透析装置の脱塩水)の水質を調べ、結果を表1-1に示した。
 消費電力(9L/日処理したときのシステム消費電力)と、水回収率(被処理水に対する生産水の割合)を表3に示した。上記の通り、電解処理水のTOC濃度は1mg/L以下、生産水は導電率2mS/m以下となるように処理し、脱塩水(酸・アルカリ製造用電気透析装置の処理水)は導電率2000mS/m以下となるように処理した。
[実施例2]
 実施例1において、脱塩用電気透析装置及び酸・アルカリ製造用電気透析装置をそれぞれ一過式通液型とし、各室の流速をそれぞれ以下の通りとしたこと以外は同様にして、表1-2に示す水質の被処理水を処理した。
<脱塩用電気透析装置>
  脱塩室:2.5mL/min
  塩分濃縮室:0.25mL/min
<酸・アルカリ製造用電気透析装置>
  脱塩室:2.5mL/min
  酸室及びアルカリ室:2.5mL/min
 得られた軟化処理水、電解処理水、生産水(脱塩用電気透析装置の脱塩水)の水質を調べ、結果を表1-2に示した。
 消費電力と、水回収率(被処理水に対する生産水の割合)を表3に示した。
Figure JPOXMLDOC01-appb-T000001
[比較例1]
 特許文献3に記載される軟化装置→電解装置→触媒分解装置→酸・アルカリ製造用電気透析装置よりなる水回収装置で、表2-1に示す水質の被処理水の処理を行った。装置の仕様、処理条件は次の通りである。
<軟化装置>
  Na型強酸性カチオン交換樹脂塔
  温度:25℃
  通液SV:10hr-1
<電解装置>
  実施例1で用いたものと同様(ただし、一過式連続通液処理とする。)
  温度:70℃
  圧力:0.1MPa
  電流密度:2A/dm
  通液線速:150m/hr
<触媒分解装置>
  過酸化ニッケルを用いた触媒分解装置
  温度:室温
  通水SV:10hr-1
<酸・アルカリ製造用電気透析装置>
  図3に示す構成の循環式通液型酸・アルカリ製造用電気透析装置
  温度:室温
  圧力:0.1MPa
  電流密度:1A/dm
  流速:50mL/min
  脱塩水:生産水である脱塩水の導電率が2mS/m以下になるまで循環する。
 得られた軟化処理水、電解処理水、触媒分解処理水、生産水(酸・アルカリ製造用電気透析装置の脱塩水)の水質を調べ、結果を表2-1に示した。
 表2-1には、アメリカ航空宇宙局(NASA)の設定する水質基準(SYSTEM SPECIFICATON FOR THE INTERNATIONAL SPACE STATION, March 2009, SSP41000BN)を基準値として併記した。
 消費電力と、水回収率(被処理水に対する生産水の割合)を表3に示した。電解処理水のTOC濃度は1mg/L以下、生産水は上記の通り、導電率2mS/m以下となるように処理した。
[参考例1]
 実施例1において、電解装置と脱塩用電気透析装置との間に、比較例1で用いたものと同様の構成及び条件の触媒分解装置を設け、軟化装置→電解装置→触媒分解装置→脱塩用電気透析装置→酸・アルカリ製造用電気透析装置の順で処理したこと以外は同様にして、表2-2に示す水質の被処理水を処理した。
 得られた軟化処理水、電解処理水、触媒分解処理水、生産水(脱塩用電気透析装置の脱塩水)の水質を調べ、結果を表2-2に示した。
 消費電力と、水回収率(被処理水に対する生産水の割合)を表3に示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 以上の結果から、次のことが分かる。
 実施例1,2、比較例1及び参考例1のいずれにおいても、基準値を満たす生産水が得られた。
 これら実施例1,2、比較例1及び参考例1は、電解装置までの処理条件は同じであるため、電解処理水についてはほぼ同等の水質のものが得られた。
 実施例1,2では、電気透析装置を2段に設けたことにより、触媒分解装置を設けなくても、生産水の無機イオンの濃度を大幅に低減することができた。実施例1では、触媒分解装置を設けた参考例1と同等レベルの生産水を得ることができた。脱塩用電気透析装置と酸・アルカリ製造用電気透析装置を一過式で通液した実施例2は、実施例1及び参考例1に比べて生産水の水質が格段に優れる。
 水回収率は、実施例1,2は比較例1の従来法に比べて格段に良好な結果を示し、参考例1に比べても同等の水準となっている。
 本発明の水回収方法及び装置によれば、小型で簡易な構成の装置により生活排水や人体排出水から不純物を取り除いて再利用することができる。本発明は特に、宇宙ステーションの生命維持装置に好適に適用することができる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2013年12月26日付で出願された日本特許出願2013-269294に基づいており、その全体が引用により援用される。
 1 軟化装置
 2 電解装置
 3 第一の電気透析装置(脱塩用電気透析装置)
 4 第二の電気透析装置(酸・アルカリ製造用電気透析装置)
 AM アニオン交換膜
 CM カチオン交換膜
 BPM バイポーラ膜

Claims (16)

  1.  排水を処理して処理水を生産水として回収する方法において、
     該排水を電解装置で直流電流を供給して電気分解することにより、該排水中の被酸化性物質を分解する電解工程と、
     該電解工程で得られた電解処理水を第一の電気透析装置で処理して、該電解処理水からイオン類を除去した脱塩水よりなる生産水と塩分濃縮液とを得る第一の電気透析工程と、
     該第一の電気透析工程で得られた塩分濃縮液を第二の電気透析装置で処理して脱塩水と酸溶液とアルカリ溶液とを得る第二の電気透析工程と
    を備えることを特徴とする水回収方法。
  2.  請求項1において、前記排水は、閉鎖系空間で生じた人体排出水及び/又は生活排水であることを特徴とする水回収方法。
  3.  請求項1又は2において、前記電解処理水は、前記電解工程から、他の水処理工程を経ることなく、前記第一の電気透析工程に送給されることを特徴とする水回収方法。
  4.  請求項1ないし3のいずれか1項において、前記第一の電気透析装置は、少なくとも塩分濃縮室と脱塩室との2室を有し、前記電解処理水を脱塩しつつ、塩分濃縮液を製造するものであることを特徴とする水回収方法。
  5.  請求項1ないし4のいずれか1項において、前記第二の電気透析装置は、少なくとも酸室、脱塩室、及びアルカリ室の3室を有し、前記塩分濃縮液を脱塩しつつ、酸溶液及びアルカリ溶液を製造するものであることを特徴とする水回収方法。
  6.  請求項1ないし5のいずれか1項において、前記電解工程の前段に、前記排水を軟化装置で処理して該排水中の硬度成分を除去する軟化工程を備え、該軟化工程で得られた軟化処理水が前記電解工程で処理される水回収方法であって、
     前記第二の電気透析工程で得られた酸溶液とアルカリ溶液を用いて該軟化装置を再生する再生工程を備えることを特徴とする水回収方法。
  7.  請求項1ないし6のいずれか1項において、前記電解装置は、導電性ダイヤモンド電極を備えることを特徴とする水回収方法。
  8.  請求項1ないし7のいずれか1項において、前記第一の電気透析装置への前記電解処理水の通液及び/又は前記第二の電気透析装置への前記塩分濃縮液の通液が一過式で行われることを特徴とする水回収方法。
  9.  排水を処理して処理水を生産水として回収する装置において、
     該排水を、直流電流を供給して電気分解することにより、該排水中の被酸化性物質を分解する電解装置と、
     該電解装置で得られた電解処理水を処理して、該電解処理水からイオン類を除去した脱塩水よりなる生産水と、塩分濃縮液とを得る第一の電気透析装置と、
     該第一の電気透析装置で得られた塩分濃縮液を処理して脱塩水と酸溶液とアルカリ溶液とを得る第二の電気透析装置と
    を備えることを特徴とする水回収装置。
  10.  請求項9において、前記排水は、閉鎖系空間で生じた人体排出水及び/又は生活排水であることを特徴とする水回収装置。
  11.  請求項9又は10において、前記電解処理水は、前記電解装置から、他の水処理手段を経ることなく、前記第一の電気透析装置に送給されることを特徴とする水回収装置。
  12.  請求項9ないし11のいずれか1項において、前記第一の電気透析装置は、少なくとも塩分濃縮室と脱塩室との2室を有し、前記電解処理水を脱塩しつつ、塩分濃縮液を製造するものであることを特徴とする水回収装置。
  13.  請求項9ないし12のいずれか1項において、前記第二の電気透析装置は、少なくとも酸室、脱塩室、及びアルカリ室の3室を有し、前記塩分濃縮液を脱塩しつつ、酸溶液及びアルカリ溶液を製造するものであることを特徴とする水回収装置。
  14.  請求項9ないし13のいずれか1項において、前記電解装置の前段に、前記排水を処理して該排水中の硬度成分を除去する軟化装置を備え、該軟化装置で得られた軟化処理水が前記電解装置で処理される水回収装置であって、
     前記第二の電気透析装置で得られた酸溶液とアルカリ溶液をそれぞれ該軟化装置へ送給する配管を備え、該酸溶液とアルカリ溶液を用いて該軟化装置が再生されることを特徴とする水回収装置。
  15.  請求項9ないし14のいずれか1項において、前記電解装置は、導電性ダイヤモンド電極を備えることを特徴とする水回収装置。
  16.  請求項9ないし15のいずれか1項において、前記第一の電気透析装置への前記電解処理水の通液及び/又は前記第二の電気透析装置への前記塩分濃縮液の通液が一過式で行われることを特徴とする水回収装置。
PCT/JP2015/066855 2015-06-11 2015-06-11 水回収方法及び装置 WO2016199268A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066855 WO2016199268A1 (ja) 2015-06-11 2015-06-11 水回収方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066855 WO2016199268A1 (ja) 2015-06-11 2015-06-11 水回収方法及び装置

Publications (1)

Publication Number Publication Date
WO2016199268A1 true WO2016199268A1 (ja) 2016-12-15

Family

ID=57504452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066855 WO2016199268A1 (ja) 2015-06-11 2015-06-11 水回収方法及び装置

Country Status (1)

Country Link
WO (1) WO2016199268A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107860517A (zh) * 2017-09-27 2018-03-30 北京航天时代光电科技有限公司 一种用于分流组件性能测试的试验装置
CN108002631A (zh) * 2018-01-12 2018-05-08 北京师范大学 尿液再生为电解制氧用水的复合吸附过滤方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262172A (ja) * 1993-03-12 1994-09-20 Asahi Glass Co Ltd 造水プロセス
JP2013075259A (ja) * 2011-09-30 2013-04-25 Kurita Water Ind Ltd 閉鎖系空間用の水回収装置
JP2015080778A (ja) * 2013-10-24 2015-04-27 栗田工業株式会社 水回収方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262172A (ja) * 1993-03-12 1994-09-20 Asahi Glass Co Ltd 造水プロセス
JP2013075259A (ja) * 2011-09-30 2013-04-25 Kurita Water Ind Ltd 閉鎖系空間用の水回収装置
JP2015080778A (ja) * 2013-10-24 2015-04-27 栗田工業株式会社 水回収方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107860517A (zh) * 2017-09-27 2018-03-30 北京航天时代光电科技有限公司 一种用于分流组件性能测试的试验装置
CN108002631A (zh) * 2018-01-12 2018-05-08 北京师范大学 尿液再生为电解制氧用水的复合吸附过滤方法和设备

Similar Documents

Publication Publication Date Title
JP5655128B1 (ja) 水回収方法及び装置
JP6565170B2 (ja) 水回収装置
KR102122384B1 (ko) 복합 폐수 처리시스템 및 이를 이용한 복합 폐수 처리방법
JP3174102U (ja) 海水を淡水化する低エネルギーの装置
JP5862167B2 (ja) 閉鎖系空間用の水回収装置
JP4936505B2 (ja) アンモニア含有水の処理方法および処理装置
JP5482917B2 (ja) 閉鎖系空間用の水回収装置
JP5900482B2 (ja) 水回収方法及び装置
WO2016199268A1 (ja) 水回収方法及び装置
JP3137831B2 (ja) 膜処理装置
JP3565098B2 (ja) 超純水の製造方法及び装置
US10550016B2 (en) Water recovery apparatus and electrodialysis device
JP2001191080A (ja) 電気脱イオン装置及びそれを用いた電気脱イオン化処理方法
JP3081079B2 (ja) 脱炭酸装置、及び同装置を組込んだ純水製造装置
JP7200014B2 (ja) 純水製造装置および純水の製造方法
CN115485245A (zh) 排水处理方法、超纯水制造方法及排水处理装置
JP2006159042A (ja) フッ素イオン含有廃液の処理方法および処理装置
JP2012196630A (ja) 酸性液の処理装置及び処理方法
WO2021045191A1 (ja) 酸性水溶液の製造装置及び酸性水溶液の製造方法
US11794147B2 (en) Wastewater treatment method and wastewater treatment apparatus
JP7094674B2 (ja) 有機性排水の処理方法及び処理装置
CN114945423A (zh) 水处理系统及水处理方法
Key et al. Electrochemical Reduction Of Nitrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP