WO2016198262A1 - Laundry detergent composition - Google Patents

Laundry detergent composition Download PDF

Info

Publication number
WO2016198262A1
WO2016198262A1 PCT/EP2016/061823 EP2016061823W WO2016198262A1 WO 2016198262 A1 WO2016198262 A1 WO 2016198262A1 EP 2016061823 W EP2016061823 W EP 2016061823W WO 2016198262 A1 WO2016198262 A1 WO 2016198262A1
Authority
WO
WIPO (PCT)
Prior art keywords
laundry detergent
detergent composition
composition according
alkyl
alkyl ether
Prior art date
Application number
PCT/EP2016/061823
Other languages
French (fr)
Inventor
Stephen Norman Batchelor
Jayne Michelle Bird
Original Assignee
Unilever Plc
Unilever N.V.
Conopco, Inc., D/B/A Unilever
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Plc, Unilever N.V., Conopco, Inc., D/B/A Unilever filed Critical Unilever Plc
Priority to EP16724676.8A priority Critical patent/EP3307861B1/en
Priority to BR112017026234-7A priority patent/BR112017026234B1/en
Priority to US15/578,499 priority patent/US10941372B2/en
Priority to CN201680032264.2A priority patent/CN107690472B/en
Publication of WO2016198262A1 publication Critical patent/WO2016198262A1/en
Priority to ZA2017/07228A priority patent/ZA201707228B/en
Priority to PH12017502035A priority patent/PH12017502035A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38627Preparations containing enzymes, e.g. protease or amylase containing lipase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/28Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D10/00Compositions of detergents, not provided for by one single preceding group
    • C11D10/04Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap
    • C11D10/042Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap based on anionic surface-active compounds and soap
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • C11D2111/12

Definitions

  • the present invention concerns the use of specific alkyl ether carboxylic acids with an enzyme cocktail comprising a lipase and protease enzyme in a detergent formulation.
  • Lipases are used in domestic detergent formulations to remove fat based stains.
  • Protease enzymes are used in laundry detergent formulations to remove protein containing stains from fabrics.
  • Enzyme cocktails comprising protease and lipases are used in domestic laundry detergent formulations.
  • WO2013/087286 discloses liquids formulations containing alkyl ether carboxylic acids, betaines, anionic surfactant, non-ionic surfactant for providing softening benefits.
  • WO2014/060235 discloses a laundry detergent composition comprising (a) nonionic surfactant, (b) anionic surfactant, (c) alkyl ether carboxylic acid or carboxylate salt thereof, and, (d) a polyglucosamine or a copolymer of glucosamine and N-acetylglucosamine; and to its use to soften fabrics.
  • US 2006/122093 discloses laundry detergent composition containing from about 1 percent to about 80 percent of a surfactant system, a mixed builder system, and the balance adjunct ingredients.
  • the mixed builder system contains from about 0.1 percent to about 40 percent phosphate builder and from about 0.1 percent to about 40 percent of a non-phosphate builder.
  • concentration of the non-phosphate builder in the wash liquor is from about 240 ppm to about 3,600 ppm and the weight ratio of the phosphate builder to the non-phosphate builder in the wash liquor is from about 1 :10 to about 10:1.
  • US 2002/102702 discloses enzymes produced by mutating the genes for a number of subtilases and expressing the mutated genes in suitable hosts are presented. The enzymes are disclosed as exhibiting improved autoproteoiytic stability in comparison to their wild type parent enzymes.
  • the present invention provides a laundry detergent composition comprising:
  • R is selected from saturated and mono-unsaturated C10 to C26 linear or branched alkyl chains, preferably C12 to C24 linear or branched alkyl chains, most preferably a C16 to C20 linear alkyl chain; n is selected from 5 to 20, preferably 7 to 13, more preferably 8 to 12, most preferably 9.5 to 10.5; and,
  • the present invention provides a domestic method of treating a textile, the method comprising the step of: treating a textile with an aqueous solution of 0.5 to 20 g/L of the laundry detergent composition as defined herein.
  • alkyl ether carboxylic acid dispersants are not included as anionic surfactants. Weights of alkyl ether carboxylic acid are calculated as the protonated form, R-(OCH2CH2)n-OCH2COOH. They may be used as salt version for example sodium salt, or amine salt.
  • the alkyl chain may be linear or branched, preferably it is linear.
  • the alkyl chain may be aliphatic or contain one cis-double bond.
  • Preferred examples of aliphatic linear chains are CH 3 (CH 2 )i3, CH 3 (CH 2 )i 5 , CH 3 (CH 2 )i7, and CH 3 (CH 2 )i9.
  • the alkyl ether carboxylic acid is most preferably of the structure:
  • Alkyl ether carboxylic acid are available from Kao (Akypo ®), Sassol (Marlowet®) Huntsman (Empicol®) and Clariant (Emulsogen ®).
  • Cleaning lipases are preferable active at alkaline pH in the range 7 to 11 , most preferably they have maximum activity in the pH range 8 to 10.5.
  • the lipase may be selected from lipase enzymes in E.C. class 3.1 or 3.2 or a combination thereof.
  • the cleaning lipases selected a Triacylglycerol lipases (E.C. 3.1.1.3).
  • Suitable triacylglycerol lipases can be selected from variants of the Humicola lanuginosa (Thermomyces lanuginosus) lipase.
  • Other suitable triacylglycerol lipases can be selected from variants of Pseudomonas lipases, e.g., from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1 ,372,034), P. fluorescens, Pseudomonas sp.
  • strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), Bacillus lipases, e.g., from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1131 , 253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422).
  • EC 3.1.1.3 lipases include those described in WIPO publications WO 00/60063, WO 99/42566, WO 02/062973, WO 97/04078, WO 97/04079 and
  • Preferred lipases are produced by Absidia reflexa, Absidia corymbefera, Rhizmucor miehei, Rhizopus deleman Aspergillus niger, Aspergillus tubigensis, Fusarium oxysporum, Fusarium heterosporum, Aspergillus oryzea, Penicilium camembertii,
  • Certain preferred lipases are supplied by Novozymes under the tradenames. Lipolase®, Lipolase Ultra®, Lipoprime®, Lipoclean® and Lipex® (registered tradenames of Novozymes) and LIPASE P "AMANO®" available from Areario Pharmaceutical Co.
  • suitable lipases include the "first cycle lipases" described in WO 00/60063 and U.S. Patent
  • 6,939,702 Bl preferably a variant of SEQ ID No. 2, more preferably a variant of SEQ ID No. 2 having at least 90% homology to SEQ ID No. 2 comprising a substitution of an electrically neutral or negatively charged amino acid with R or K at any of positions 3, 224, 229, 231 and 233, with a most preferred variant comprising T23 IR and N233R mutations, such most preferred variant being sold under the tradename Lipex® (Novozymes).
  • lipases can be used in combination (any mixture of lipases can be used). Suitable lipases can be purchased from Novozymes, Bagsvaerd, Denmark; Areario Pharmaceutical Co. Ltd., Nagoya, Japan; Toyo Jozo Co., Tagata, Japan; Amersham
  • Lipase with reduced potential for odour generation and a good relative performance are particularly preferred, as described in WO2007/087243. These include lipoclean ®
  • proteases hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains.
  • suitable proteases families include aspartic proteases; cysteine proteases; glutamic proteases;
  • proteases aspargine peptide lyase; serine proteases and threonine proteases.
  • protease families are described in the MEROPS peptidase database (http://merops.sanqer.ac.uk/). Serine proteases are preferred. Subtilase type serine proteases are more preferred.
  • the term "subtilases" refers to a sub-group of serine protease according to Siezen et al., Protein Engng. 4 (1991 ) 719-737 and Siezen et al. Protein Science 6 (1997) 501 -523.
  • Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate.
  • the subtilases may be divided into 6 subdivisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.
  • subtilases are those derived from Bacillus such as Bacillus lentus, B.
  • WO96/034946 WO98/201 15, WO98/201 16, WO99/01 1768, WO01/44452, WO03/006602, WO04/03186, WO04/041979, WO07/006305, W01 1/036263, W01 1/036264, especially the variants with substitutions in one or more of the following positions: 3, 4, 9, 15, 27, 36, 57, 68, 76, 87, 95, 96, 97, 98, 99, 100, 101 , 102, 103, 104, 106, 1 18, 120, 123, 128, 129, 130, 160, 167, 170, 194, 195, 199, 205, 206, 217, 218, 222, 224, 232, 235, 236, 245, 248, 252 and 274 using the BPN' numbering.
  • subtilase variants may comprise the mutations: S3T, V4I, S9R, A15T, K27R, * 36D, V68A, N76D, N87S,R, * 97E, A98S, S99G,D,A, S99AD, S101 G,M,R S103A, V104I,Y,N, S106A, G1 18V,R, H120D,N, N123S, S128L, P129Q, S130A, G160D, Y167A, R170S, A194P, G195E, V199M, V205I, L217D, N218D, M222S, A232V, K235L, Q236H, Q245R, N252K, T274A (using BPN' numbering).
  • the protease is a subtilisins (EC 3.4.21.62).
  • subtilases are those derived from Bacillus such as Bacillus lentus, B.
  • subtilis alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867, and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in (WO93/18140).
  • the subsilisin is derived from Bacillus, preferably Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii as described in
  • subtilisin is derived from Bacillus gibsonii or Bacillus Lentus.
  • Suitable commercially available protease enzymes include those sold under the trade names names Alcalase®, Blaze®; DuralaseTm, DurazymTm, Relase®, Relase® Ultra, Savinase®, Savinase® Ultra, Primase®, Polarzyme®, Kannase®, Liquanase®, Liquanase® Ultra,
  • Ovozyme®, Coronase®, Coronase® Ultra, Neutrase®, Everlase® and Esperase® all could be sold as Ultra® or Evity® (Novozymes A S).
  • Maxatase® Maxacal®, Maxapem®, Properase®
  • Maxatase® Maxacal®, Maxapem®, Purafect®, Purafect Prime®, PreferenzTm, Purafect MA®, Purafect Ox®, Purafect OxP®, Puramax®,
  • BLAP BLAP with S3T + V4I + V199M + V205I + L217D
  • BLAP X BLAP with S3T + V4I + V205I
  • BLAP F49 BLAP with S3T + V4I + A194P + V199M + V205I + L217D
  • KAP Bath alkalophilus subtilisin with mutations A230V + S256G + S259N
  • the laundry composition comprises anionic charged surfactant (which includes a mixture of the same).
  • the composition comprises from 4 to 50 wt% of an anionic surfactant, preferably from 6 to 30 wt%, more preferably from 8 to 20 wt%.
  • the formulation may contain non-ionic surfactant, preferably the weight fraction of non-ionic surfactant/anionic surfactant is from 0 to 0.3, preferably 0 to 0.1.
  • Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher Cs to Cie alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl Cg to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the anionic surfactant is preferably selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof.
  • the most preferred anionic surfactants are selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof.
  • the alkyl ether sulphate is a C12-C14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units.
  • Sodium lauryl ether sulphate is particularly preferred (SLES).
  • the linear alkyl benzene sulphonate is a sodium Cn to C15 alkyl benzene sulphonates.
  • the alkyl sulphates is a linear or branched sodium C12 to Cie alkyl sulphates.
  • Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate).
  • liquid formulations preferably two or more anionic surfactant are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.
  • the laundry composition in addition to the anionic surfactant comprises alkyl exthoylated non-ionic surfactant, preferably from 2 to 8 wt% of alkyl ethoxylated non-ionic surfactant.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide.
  • Preferred nonionic detergent compounds are the condensation products of aliphatic Cs to Cis primary or secondary linear or branched alcohols with ethylene oxide.
  • nonionic detergent compound is the alkyl ethoxylated non-ionic surfactant is a Cs to C-is primary alcohol with an average ethoxylation of 7EO to 9EO units.
  • surfactants used are saturated.
  • Builder materials may be selected from 1 ) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of water- insoluble crystalline or amorphous aluminosilicates, of which zeolites are well known representatives thereof, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070.
  • zeolites are well known representatives thereof, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070.
  • composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.
  • Zeolite and carbonate are preferred builders, with carbonates being particularly preferred.
  • the composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15 wt%.
  • Aluminosilicates are materials having the general formula:
  • the preferred sodium aluminosilicates contain 1.5-3.5 S1O2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature.
  • the ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
  • phosphate builders may be used.
  • 'phosphate' embraces diphosphate, triphosphate, and phosphonate species.
  • Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
  • the laundry detergent formulation is a non-phosphate built powder laundry detergent formulation, i.e., contains less than 1 wt% of phosphate.
  • the powder laundry detergent formulations are predominantly carbonate built. Powders, should preferably give an in use pH of from 9.5 to 11.
  • the powder laundry detergent has linear alkyl benzene sulfonate as greater than 80 wt% of the total anionic surfactant present.
  • mono propylene glycol is present at a level from 1 to 30 wt%, most preferably 2 to 18 wt%, to provide the formulation with appropriate, pourable viscosity.
  • the composition preferably comprises a fluorescent agent (optical brightener).
  • fluorescent agents are well known and many such fluorescent agents are available commercially.
  • these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • the total amount of the fluorescent agent or agents used in the composition is generally from 0.0001 to 0.5 wt %, preferably 0.005 to 2 wt %, more preferably 0.01 to 0.1 wt %.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Preferred fluorescers are fluorescers with CAS-No 3426-43-5; CAS-No 35632-99-6; CAS-No 24565-13-7; CAS-No 12224-16-7; CAS-No 13863-31-5; CAS-No 4193-55-9; CAS-No 16090- 02-1 ; CAS-No 133-66-4; CAS-No 68444-86-0; CAS-No 27344-41-8.
  • fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1 ,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1 ,3,5-triazin-2- yl)]amino ⁇ stilbene-2-2' disulphonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1 ,3,5-triazin- 2-yl)]amino ⁇ stilbene-2-2' disulphonate, and disodium 4,4'-bis(2-sulphostyryl)biphenyl.
  • the aqueous solution used in the method has a fluorescer present.
  • the fluorescer is present in the aqueous solution used in the method preferably in the range from 0.0001 g/l to 0.1 g/l, more preferably 0.001 to 0.02 g/l.
  • the composition preferably comprises a perfume.
  • perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
  • the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2- methyl-, ethyl ester; octanal; benzyl acetate; 1 ,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1 ,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2- phenylethyl ester; amyl salicylate; beta-caryophyllene; ethyl undecylenate
  • perfume components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavour Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavour Chemicals by S. Arctander 1969, Montclair, N.J. (USA). It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components. In perfume mixtures preferably 15 to 25 wt% are top notes. Top notes are defined by
  • top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • the International Fragrance Association has published a list of fragrance ingredients (perfumes) in 2011. (http://www.ifraorg.Org/en-us/ingredients#.U7Z4hPldWzk)
  • Perfume top note may be used to cue the whiteness and brightness benefit of the invention.
  • perfume components which it is advantageous to encapsulate include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also advantageous to encapsulate perfume components which have a low CLog P (ie. those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0.
  • these materials have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole, benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo-carvone, d- carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3-hexenyl acetate,
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.
  • perfumes with which the present invention can be applied are the so-called aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium,
  • laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
  • composition may comprise one or more further polymers. Examples are:
  • alkyi groups are sufficiently long to form branched or cyclic chains, the alkyi groups encompass branched, cyclic and linear alkyi chains.
  • the alkyi groups are preferably linear or branched, most preferably linear.
  • indefinite article “a” or “an” and its corresponding definite article “the” as used herein means at least one, or one or more, unless specified otherwise.
  • Dye weights refer to the sodium or chloride salts unless otherwise stated.
  • a powder laundry detergent was prepared of the following formulation:
  • Sokalan CP5 (ex BASF) 0.1
  • the formulation was used to wash eight 5x5cm EMPA 117 stain monitor (blood/milk/ink stain on polycotton) in a tergotometer set at 200rpm. A 60 minute wash was conducted in 800ml of 26° French Hard water at 35°C, with 1.5g/L of the formulation. To simulate oily soil (7.4 g) of an SBL2004 soil strip (ex Warwick Equest) was added to the wash liquor.
  • alkyl ether carboxylic acid 2.1 0.5 11.1 0.5
  • the combination of the enzyme cocktail and alkyl ether carboxylic acid than expected from combination of the effects of the single components.
  • the formulation was remade with the addition of mix of amylase, mannase and pectinase enzymes (Stainzyme ® Novozyme, Mannaway ® Novozymes, Pectawash ® Novozymes)

Abstract

The present invention provides a domestic laundry cleaning composition, said composition comprising an anionic charged surfactant, an alkyl ether carboxylic acid dispersant, a lipase enzyme; and a protease enzyme.

Description

LAUNDRY DETERGENT COMPOSITION
Field of Invention
The present invention concerns the use of specific alkyl ether carboxylic acids with an enzyme cocktail comprising a lipase and protease enzyme in a detergent formulation.
Background of the Invention
Lipases are used in domestic detergent formulations to remove fat based stains.
Protease enzymes are used in laundry detergent formulations to remove protein containing stains from fabrics.
Many stains found in domestic laundry contain both proteins and fats.
Enzyme cocktails comprising protease and lipases are used in domestic laundry detergent formulations.
There is a need to improve the performance of protease and lipase enzyme cocktails in domestic laundry detergent formulations. WO2013/087286 (Unilever) discloses liquids formulations containing alkyl ether carboxylic acids, betaines, anionic surfactant, non-ionic surfactant for providing softening benefits.
WO2014/060235 (Unilever) discloses a laundry detergent composition comprising (a) nonionic surfactant, (b) anionic surfactant, (c) alkyl ether carboxylic acid or carboxylate salt thereof, and, (d) a polyglucosamine or a copolymer of glucosamine and N-acetylglucosamine; and to its use to soften fabrics.
US 2006/122093 discloses laundry detergent composition containing from about 1 percent to about 80 percent of a surfactant system, a mixed builder system, and the balance adjunct ingredients. The mixed builder system contains from about 0.1 percent to about 40 percent phosphate builder and from about 0.1 percent to about 40 percent of a non-phosphate builder. During use the concentration of the non-phosphate builder in the wash liquor is from about 240 ppm to about 3,600 ppm and the weight ratio of the phosphate builder to the non-phosphate builder in the wash liquor is from about 1 :10 to about 10:1.
US 2002/102702 discloses enzymes produced by mutating the genes for a number of subtilases and expressing the mutated genes in suitable hosts are presented. The enzymes are disclosed as exhibiting improved autoproteoiytic stability in comparison to their wild type parent enzymes.
Summary of the Invention None of the aforementioned documents disclose a synergy between the combination of a lipase protease enzyme cocktail and specific alkyl ether carboxylic acids.
We have found that the combination of a lipase protease enzyme cocktail and specific alkyl ether carboxylic acid gives enhanced cleaning.
In one aspect the present invention provides a laundry detergent composition comprising:
(i) from 4 to 50 wt% of an anionic charged surfactant, preferably the level of charged surfactant from 6 to 30 wt%, most preferably from 8 to 20 wt%;
(ii) from 0.5 to 20 wt%, preferably from 2 to 14 wt%, most preferably from 2.5 to 5 wt% of an alkyl ether carboxylic acid dispersant of the following structure:
R-(OCH2CH2)n-OCH2-COOH, wherein: R is selected from saturated and mono-unsaturated C10 to C26 linear or branched alkyl chains, preferably C12 to C24 linear or branched alkyl chains, most preferably a C16 to C20 linear alkyl chain; n is selected from 5 to 20, preferably 7 to 13, more preferably 8 to 12, most preferably 9.5 to 10.5; and,
(iii) from 0.0005 to 0.5 wt % of a lipase enzyme, preferably from 0.01 to 0.2 wt%. (iv) from 0.0005 to 0.2 wt% of a protease enzyme, preferably from 0.002 to 0.02 wt%.
All enzyme levels refer to pure protein.
In another aspect the present invention provides a domestic method of treating a textile, the method comprising the step of: treating a textile with an aqueous solution of 0.5 to 20 g/L of the laundry detergent composition as defined herein.
Detailed Description of the Invention
Alkyl ether carboxylic acid
In the context of the current invention alkyl ether carboxylic acid dispersants are not included as anionic surfactants. Weights of alkyl ether carboxylic acid are calculated as the protonated form, R-(OCH2CH2)n-OCH2COOH. They may be used as salt version for example sodium salt, or amine salt.
The alkyl chain may be linear or branched, preferably it is linear. The alkyl chain may be aliphatic or contain one cis-double bond. Preferred examples of aliphatic linear chains are CH3(CH2)i3, CH3(CH2)i5, CH3(CH2)i7, and CH3(CH2)i9.
The alkyl chain is most preferably CH3(CH2)7CH=CH(CH2)8. The alkyl ether carboxylic acid is most preferably of the structure:
CH3(CH2)7CH=CH(CH2)8(OCH2CH2)ioOCH2COOH. Alkyl ether carboxylic acid are available from Kao (Akypo ®), Sassol (Marlowet®) Huntsman (Empicol®) and Clariant (Emulsogen ®).
Lipases
Cleaning lipases are discussed in Enzymes in Detergency edited by Jan H. Van Ee, Onno Misset and Erik J. Baas (1997 Marcel Dekker, New York).
Cleaning lipases are preferable active at alkaline pH in the range 7 to 11 , most preferably they have maximum activity in the pH range 8 to 10.5. The lipase may be selected from lipase enzymes in E.C. class 3.1 or 3.2 or a combination thereof.
Preferably the cleaning lipases selected a Triacylglycerol lipases (E.C. 3.1.1.3). Suitable triacylglycerol lipases can be selected from variants of the Humicola lanuginosa (Thermomyces lanuginosus) lipase. Other suitable triacylglycerol lipases can be selected from variants of Pseudomonas lipases, e.g., from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1 ,372,034), P. fluorescens, Pseudomonas sp. strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), Bacillus lipases, e.g., from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1131 , 253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422).
Further examples of EC 3.1.1.3 lipases include those described in WIPO publications WO 00/60063, WO 99/42566, WO 02/062973, WO 97/04078, WO 97/04079 and
US 5,869,438. Preferred lipases are produced by Absidia reflexa, Absidia corymbefera, Rhizmucor miehei, Rhizopus deleman Aspergillus niger, Aspergillus tubigensis, Fusarium oxysporum, Fusarium heterosporum, Aspergillus oryzea, Penicilium camembertii,
Aspergillus foetidus, Aspergillus niger, Thermomyces lanoginosus (synonym: Humicola lanuginosa) and Landerina penisapora, particularly Thermomyces lanoginosus. Certain preferred lipases are supplied by Novozymes under the tradenames. Lipolase®, Lipolase Ultra®, Lipoprime®, Lipoclean® and Lipex® (registered tradenames of Novozymes) and LIPASE P "AMANO®" available from Areario Pharmaceutical Co. Ltd., Nagoya, Japan, AMANO-CES®, commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from Amersham Pharmacia Biotech., Piscataway, New Jersey, U.S.A. and Diosynth Co., Netherlands, and other lipases such as Pseudomonas gladioli. Additional useful lipases are described in WIPO publications WO 02062973, WO 2004/101759, WO 2004/101760 and WO 2004/101763. In one embodiment, suitable lipases include the "first cycle lipases" described in WO 00/60063 and U.S. Patent
6,939,702 Bl, preferably a variant of SEQ ID No. 2, more preferably a variant of SEQ ID No. 2 having at least 90% homology to SEQ ID No. 2 comprising a substitution of an electrically neutral or negatively charged amino acid with R or K at any of positions 3, 224, 229, 231 and 233, with a most preferred variant comprising T23 IR and N233R mutations, such most preferred variant being sold under the tradename Lipex® (Novozymes).
The aforementioned lipases can be used in combination (any mixture of lipases can be used). Suitable lipases can be purchased from Novozymes, Bagsvaerd, Denmark; Areario Pharmaceutical Co. Ltd., Nagoya, Japan; Toyo Jozo Co., Tagata, Japan; Amersham
Pharmacia Biotech., Piscataway, New Jersey, U.S.A; Diosynth Co., Oss, Netherlands and/or made in accordance with the examples contained herein.
Lipase with reduced potential for odour generation and a good relative performance, are particularly preferred, as described in WO2007/087243. These include lipoclean ®
(Novozyme)
Protease
Protease enzymes hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains. Examples of suitable proteases families include aspartic proteases; cysteine proteases; glutamic proteases;
aspargine peptide lyase; serine proteases and threonine proteases. Such protease families are described in the MEROPS peptidase database (http://merops.sanqer.ac.uk/). Serine proteases are preferred. Subtilase type serine proteases are more preferred. The term "subtilases" refers to a sub-group of serine protease according to Siezen et al., Protein Engng. 4 (1991 ) 719-737 and Siezen et al. Protein Science 6 (1997) 501 -523. Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate. The subtilases may be divided into 6 subdivisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.
Examples of subtilases are those derived from Bacillus such as Bacillus lentus, B.
alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867, and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in (WO93/18140). Other useful proteases may be those described in W092/175177, WO01/016285, WO02/026024 and WO02/016547. Examples of trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO89/06270, W094/25583 and
WO05/040372, and the chymotrypsin proteases derived from Cellumonas described in WO05/052161 and WO05/052146.
Further Examples of useful proteases are the variants described in: W092/19729,
WO96/034946, WO98/201 15, WO98/201 16, WO99/01 1768, WO01/44452, WO03/006602, WO04/03186, WO04/041979, WO07/006305, W01 1/036263, W01 1/036264, especially the variants with substitutions in one or more of the following positions: 3, 4, 9, 15, 27, 36, 57, 68, 76, 87, 95, 96, 97, 98, 99, 100, 101 , 102, 103, 104, 106, 1 18, 120, 123, 128, 129, 130, 160, 167, 170, 194, 195, 199, 205, 206, 217, 218, 222, 224, 232, 235, 236, 245, 248, 252 and 274 using the BPN' numbering. More preferred the subtilase variants may comprise the mutations: S3T, V4I, S9R, A15T, K27R, *36D, V68A, N76D, N87S,R, *97E, A98S, S99G,D,A, S99AD, S101 G,M,R S103A, V104I,Y,N, S106A, G1 18V,R, H120D,N, N123S, S128L, P129Q, S130A, G160D, Y167A, R170S, A194P, G195E, V199M, V205I, L217D, N218D, M222S, A232V, K235L, Q236H, Q245R, N252K, T274A (using BPN' numbering). Most preferably the protease is a subtilisins (EC 3.4.21.62).
Examples of subtilases are those derived from Bacillus such as Bacillus lentus, B.
alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867, and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in (WO93/18140). Preferably the subsilisin is derived from Bacillus, preferably Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii as described in
US 6,312,936 B I, US 5,679,630, US 4,760,025, US7,262,042 and WO09/021867. Most preferably the subtilisin is derived from Bacillus gibsonii or Bacillus Lentus.
Suitable commercially available protease enzymes include those sold under the trade names names Alcalase®, Blaze®; DuralaseTm, DurazymTm, Relase®, Relase® Ultra, Savinase®, Savinase® Ultra, Primase®, Polarzyme®, Kannase®, Liquanase®, Liquanase® Ultra,
Ovozyme®, Coronase®, Coronase® Ultra, Neutrase®, Everlase® and Esperase® all could be sold as Ultra® or Evity® (Novozymes A S).
Those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Properase®,
Purafect®, Purafect Prime®, Purafect Ox®, FN3® , FN4®, Excellase® and Purafect OXP® by Genencor International.
Those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Purafect®, Purafect Prime®, PreferenzTm, Purafect MA®, Purafect Ox®, Purafect OxP®, Puramax®,
Properase®, EffectenzTm, FN2®, FN3® , FN4®, Excellase®, Opticlean® and Optimase® (Danisco/DuPont), Axapem™ (Gist-Brocases N.V.),
Those available from Henkel/ Kemira, namely BLAP (sequence shown in Figure 29 of US 5,352,604 with the following mutations S99D + SIOI R + S103A + V104I + G159S, hereinafter referred to as BLAP), BLAP R (BLAP with S3T + V4I + V199M + V205I + L217D), BLAP X (BLAP with S3T + V4I + V205I) and BLAP F49 (BLAP with S3T + V4I + A194P + V199M + V205I + L217D) - all from Henkel/Kemira; and KAP (Bacillus alkalophilus subtilisin with mutations A230V + S256G + S259N) from Kao. Metalloproteases, most preferably zinc based proteases, may also be used. Surfactant
The laundry composition comprises anionic charged surfactant (which includes a mixture of the same). The composition comprises from 4 to 50 wt% of an anionic surfactant, preferably from 6 to 30 wt%, more preferably from 8 to 20 wt%.
The formulation may contain non-ionic surfactant, preferably the weight fraction of non-ionic surfactant/anionic surfactant is from 0 to 0.3, preferably 0 to 0.1.
Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher Cs to Cie alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl Cg to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
The anionic surfactant is preferably selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof. The most preferred anionic surfactants are selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof. Preferably the alkyl ether sulphate is a C12-C14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units. Sodium lauryl ether sulphate is particularly preferred (SLES). Preferably the linear alkyl benzene sulphonate is a sodium Cn to C15 alkyl benzene sulphonates. Preferably the alkyl sulphates is a linear or branched sodium C12 to Cie alkyl sulphates. Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate).
In liquid formulations preferably two or more anionic surfactant are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate. In liquid formulations, preferably the laundry composition in addition to the anionic surfactant comprises alkyl exthoylated non-ionic surfactant, preferably from 2 to 8 wt% of alkyl ethoxylated non-ionic surfactant. Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide. Preferred nonionic detergent compounds are the condensation products of aliphatic Cs to Cis primary or secondary linear or branched alcohols with ethylene oxide.
Most preferably the nonionic detergent compound is the alkyl ethoxylated non-ionic surfactant is a Cs to C-is primary alcohol with an average ethoxylation of 7EO to 9EO units. Preferably the surfactants used are saturated.
Builders or Complexing Agents
Builder materials may be selected from 1 ) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid. Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate.
Examples of calcium ion-exchange builder materials include the various types of water- insoluble crystalline or amorphous aluminosilicates, of which zeolites are well known representatives thereof, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070.
The composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below. Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.
Zeolite and carbonate (carbonate (including bicarbonate and sesquicarbonate) are preferred builders, with carbonates being particularly preferred.
The composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15 wt%. Aluminosilicates are materials having the general formula:
0.8-1.5 M20. AI2O3. 0.8-6 S1O2, where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least
50 mg CaO/g. The preferred sodium aluminosilicates contain 1.5-3.5 S1O2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. The ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
Alternatively, or additionally to the aluminosilicate builders, phosphate builders may be used. In this art the term 'phosphate' embraces diphosphate, triphosphate, and phosphonate species. Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
Most preferably the laundry detergent formulation is a non-phosphate built powder laundry detergent formulation, i.e., contains less than 1 wt% of phosphate. Preferably the powder laundry detergent formulations are predominantly carbonate built. Powders, should preferably give an in use pH of from 9.5 to 11. Preferably the powder laundry detergent has linear alkyl benzene sulfonate as greater than 80 wt% of the total anionic surfactant present.
In the aqueous liquid laundry detergent it is preferred that mono propylene glycol is present at a level from 1 to 30 wt%, most preferably 2 to 18 wt%, to provide the formulation with appropriate, pourable viscosity. Fluorescent Agent
The composition preferably comprises a fluorescent agent (optical brightener). Fluorescent agents are well known and many such fluorescent agents are available commercially.
Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
The total amount of the fluorescent agent or agents used in the composition is generally from 0.0001 to 0.5 wt %, preferably 0.005 to 2 wt %, more preferably 0.01 to 0.1 wt %. Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
Preferred fluorescers are fluorescers with CAS-No 3426-43-5; CAS-No 35632-99-6; CAS-No 24565-13-7; CAS-No 12224-16-7; CAS-No 13863-31-5; CAS-No 4193-55-9; CAS-No 16090- 02-1 ; CAS-No 133-66-4; CAS-No 68444-86-0; CAS-No 27344-41-8.
Most preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1 ,2-d]triazole, disodium 4,4'-bis{[(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1 ,3,5-triazin-2- yl)]amino}stilbene-2-2' disulphonate, disodium 4,4'-bis{[(4-anilino-6-morpholino-1 ,3,5-triazin- 2-yl)]amino} stilbene-2-2' disulphonate, and disodium 4,4'-bis(2-sulphostyryl)biphenyl.
The aqueous solution used in the method has a fluorescer present. The fluorescer is present in the aqueous solution used in the method preferably in the range from 0.0001 g/l to 0.1 g/l, more preferably 0.001 to 0.02 g/l.
Perfume
The composition preferably comprises a perfume. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
Preferably the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2- methyl-, ethyl ester; octanal; benzyl acetate; 1 ,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1 ,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2- phenylethyl ester; amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl anthranilate; alpha-irone; beta-phenyl ethyl benzoate; alpa-santalol; cedrol; cedryl acetate; cedry formate; cyclohexyl salicyate; gamma-dodecalactone; and, beta phenylethyl phenyl acetate.
Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavour Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavour Chemicals by S. Arctander 1969, Montclair, N.J. (USA). It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components. In perfume mixtures preferably 15 to 25 wt% are top notes. Top notes are defined by
Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol. The International Fragrance Association has published a list of fragrance ingredients (perfumes) in 2011. (http://www.ifraorg.Org/en-us/ingredients#.U7Z4hPldWzk)
The Research Institute for Fragrance Materials provides a database of perfumes
(fragrances) with safety information.
Perfume top note may be used to cue the whiteness and brightness benefit of the invention.
Some or all of the perfume may be encapsulated, typical perfume components which it is advantageous to encapsulate, include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also advantageous to encapsulate perfume components which have a low CLog P (ie. those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0. These materials, of relatively low boiling point and relatively low CLog P have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole, benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo-carvone, d- carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3-hexenyl acetate,
cuminic alcohol, cyclal c, dimethyl benzyl carbinol, dimethyl benzyl carbinol acetate, ethyl acetate, ethyl aceto acetate, ethyl amyl ketone, ethyl benzoate, ethyl butyrate, ethyl hexyl ketone, ethyl phenyl acetate, eucalyptol, eugenol, fenchyl acetate, flor acetate (tricyclo decenyl acetate) , frutene (tricycico decenyl propionate) , geraniol, hexenol, hexenyl acetate, hexyl acetate, hexyl formate, hydratropic alcohol, hydroxycitronellal, indone, isoamyl alcohol, iso menthone, isopulegyl acetate, isoquinolone, ligustral, linalool, linalool oxide, linalyl formate, menthone, menthyl acetphenone, methyl amyl ketone, methyl anthranilate, methyl benzoate, methyl benyl acetate, methyl eugenol, methyl heptenone, methyl heptine carbonate, methyl heptyl ketone, methyl hexyl ketone, methyl phenyl carbinyl acetate, methyl salicylate, methyl-n-methyl anthranilate, nerol, octalactone, octyl alcohol, p-cresol, p- cresol methyl ether, p-methoxy acetophenone, p-methyl acetophenone, phenoxy ethanol, phenyl acetaldehyde, phenyl ethyl acetate, phenyl ethyl alcohol, phenyl ethyl dimethyl carbinol, prenyl acetate, propyl bornate, pulegone, rose oxide, safrole, 4-terpinenol, alpha- terpinenol, and /or viridine. It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.
Another group of perfumes with which the present invention can be applied are the so- called aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium,
Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian. It is preferred that the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
Polymers
The composition may comprise one or more further polymers. Examples are
carboxymethylcellulose, poly (ethylene glycol), polyvinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers. Where alkyi groups are sufficiently long to form branched or cyclic chains, the alkyi groups encompass branched, cyclic and linear alkyi chains. The alkyi groups are preferably linear or branched, most preferably linear.
The indefinite article "a" or "an" and its corresponding definite article "the" as used herein means at least one, or one or more, unless specified otherwise.
Dye weights refer to the sodium or chloride salts unless otherwise stated.
Experimental Examples
A powder laundry detergent was prepared of the following formulation:
Ingredient Weight%
Linear alkyi benzene sulfonate 14.5
Sodium carbonate 20.0
Sodium sulphate 50.0
Sodium silicate 6.0 zeolite 2.5
Salt speckle granules (blue and red) 1.8 perfume 0.3
Sodium carboxymethylcellulose 0.1
Sokalan CP5 (ex BASF) 0.1
Minors (including fluorescer shading dye with to 100% CAS-No 72749-80-5 and CAS-No 81-42-5)
and moisture The formulation was used to wash eight 5x5cm EMPA 117 stain monitor (blood/milk/ink stain on polycotton) in a tergotometer set at 200rpm. A 60 minute wash was conducted in 800ml of 26° French Hard water at 35°C, with 1.5g/L of the formulation. To simulate oily soil (7.4 g) of an SBL2004 soil strip (ex Warwick Equest) was added to the wash liquor.
Once the wash had been completed the cotton monitors were rinsed once in 400ml clean water, removed dried and the colour measured on a reflectometer and expressed as the CIE L*a*b* values. Stain removal was calculates as the ΔΙ_* value:
AL* = L*(treatment)-L*(control without enzyme or alkyl ether carboxylic acid)
Higher AL* value equate to better cleaning.
Equivalent Formulations but with the addition of 13.3wt% alkyl ether carboxylic acid, wherein the alkyl group was cis-9-octadecene, were tested. The average number of ethoxy groups was 10. Experiments were repeated with and without the addition of a lipase-protease enzyme cocktail: Lipex® as the lipase and Savanase® as the protease (both ex Novozymes). The lipase was added to give 0.3wt% pure active protein to the formulation and the protease was added to give 0.007wt% pure active protein to the formulation. 95% confidence limits are also given calculated from the standard deviation on the measurements from the 8 monitors.
Without enzyme With enzyme cocktail cocktail
Reference
AL* 95% AL* 95%
Reference 0.0 - 5.5 0.4
Without dispersant
With alkyl ether carboxylic acid 2.1 0.5 11.1 0.5 The combination of the enzyme cocktail and alkyl ether carboxylic acid than expected from combination of the effects of the single components. For the combination a ΔΙ_* = 5.5 + 2.2 = 7.7 would be expected but 11.1 obtained. The formulation was remade with the addition of mix of amylase, mannase and pectinase enzymes (Stainzyme ® Novozyme, Mannaway ® Novozymes, Pectawash ® Novozymes)

Claims

1. A laundry detergent composition comprising:
(i) from 4 to 50 wt% of an anionic charged surfactant, other than an alkyl ether carboxylic acid dispersant;
(ii) from 0.5 to 20 wt% of an alkyl ether carboxylic acid dispersant of the following structure:
R-(OCH2CH2)n-OCH2-COOH, wherein:
R is selected from saturated and mono-unsaturated C10 to C26 linear or branched alkyl chains; n is selected from 5 to 20;
(iii) from 0.0005 to 0.5 wt % of a lipase enzyme; and,
(iv) from 0.0005 to 0.2 wt% of a protease enzyme.
2. A laundry detergent composition according to claim 1 wherein the lipase is selected from a Triacylglycerol lipase (E.C. 3.1.1.3).
3. A laundry detergent composition according to claim 1 or 2 where the protease is a Subtilisins type serine proteases (EC 3.4.21.62).
4. A laundry detergent composition according to claim 1 to 3, wherein the n is selected from 8 to 12.
5. A laundry detergent composition according to any one of claim 1 to 4, wherein R is a C16 to C20 linear alkyl chain.
A laundry detergent composition according any preceding claim, wherein the alkyl ether carboxylic acid dispersant is:
CH3(CH2)7CH=CH(CH2)8(OCH2CH2)ioOCH2COOH.
A laundry detergent composition according to any one of the preceding claims, where in the composition is is a non-phosphate built powder laundry detergent formulation.
A laundry detergent composition according to any one of the preceding claims, wherein the lipase is present at a level of from 0.01 to 0.2 wt % and the protease is present at a level from 0.002 to 0.02 wt%.
9. A laundry detergent composition according to any preceding claims, wherein the
anionic charged surfactant is selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; methyl ester sulphonates; and mixtures thereof.
10. A laundry detergent composition according to any preceding claims, wherein the
anionic surfactant is selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; and mixtures thereof. 11. A laundry detergent composition according to any preceding claims wherein the level of anionic surfactant is from 8 to 20 wt%.
12. A laundry detergent composition according to any preceding claims wherein the weight fraction of non-ionic surfactant/anionic surfactant is from 0 to 0.1.
13. A domestic method of treating a textile, the method comprising the step of: treating a textile with an aqueous solution of 0.5 to 20 g/L of the laundry detergent composition according to any preceding claim.
PCT/EP2016/061823 2015-06-11 2016-05-25 Laundry detergent composition WO2016198262A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16724676.8A EP3307861B1 (en) 2015-06-11 2016-05-25 Laundry detergent composition
BR112017026234-7A BR112017026234B1 (en) 2015-06-11 2016-05-25 DETERGENT COMPOSITION FOR WASHING CLOTHES AND DOMESTIC FABRIC TREATMENT METHOD
US15/578,499 US10941372B2 (en) 2015-06-11 2016-05-25 Laundry detergent composition
CN201680032264.2A CN107690472B (en) 2015-06-11 2016-05-25 Laundry detergent compositions
ZA2017/07228A ZA201707228B (en) 2015-06-11 2017-10-24 Laundry detergent composition
PH12017502035A PH12017502035A1 (en) 2015-06-11 2017-11-09 Laundry detergent composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15171685.9 2015-06-11
EP15171685 2015-06-11

Publications (1)

Publication Number Publication Date
WO2016198262A1 true WO2016198262A1 (en) 2016-12-15

Family

ID=53373365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/061823 WO2016198262A1 (en) 2015-06-11 2016-05-25 Laundry detergent composition

Country Status (9)

Country Link
US (1) US10941372B2 (en)
EP (1) EP3307861B1 (en)
CN (1) CN107690472B (en)
AR (1) AR104941A1 (en)
BR (1) BR112017026234B1 (en)
PH (1) PH12017502035A1 (en)
TR (1) TR201906232T4 (en)
WO (1) WO2016198262A1 (en)
ZA (1) ZA201707228B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018113643A1 (en) * 2016-12-22 2018-06-28 The Procter & Gamble Company Laundry detergent composition
WO2018113644A1 (en) * 2016-12-22 2018-06-28 The Procter & Gamble Company Laundry detergent composition
WO2018206197A1 (en) * 2017-05-10 2018-11-15 Unilever Plc Laundry detergent composition
EP3505609A1 (en) * 2017-12-29 2019-07-03 Itram Higiene, S.L. Detergent composition for the control and removal of biofilms
EP3356504B1 (en) * 2015-10-01 2019-08-14 Unilever PLC Powder laundry detergent composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016198263A1 (en) 2015-06-11 2016-12-15 Unilever Plc Laundry detergent composition
TR201906232T4 (en) * 2015-06-11 2019-05-21 Unilever Nv Detergent composition for laundry.
EP3401384A1 (en) * 2017-05-10 2018-11-14 Unilever PLC Liquid laundry detergent composition

Citations (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
DE3320340A1 (en) * 1982-06-07 1983-12-15 Chem-y, Fabriek van Chemische Produkten B.V., Bodegraven Liquid phosphate-free detergent
EP0218272A1 (en) 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
WO1989006270A1 (en) 1988-01-07 1989-07-13 Novo-Nordisk A/S Enzymatic detergent
WO1989006279A1 (en) 1988-01-07 1989-07-13 Novo-Nordisk A/S Mutated subtilisin genes
EP0331376A2 (en) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. Recombinant DNA, bacterium of the genus pseudomonas containing it, and process for preparing lipase by using it
EP0384070A2 (en) 1988-11-03 1990-08-29 Unilever Plc Zeolite P, process for its preparation and its use in detergent compositions
WO1991016422A1 (en) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases
WO1992017517A1 (en) 1991-04-02 1992-10-15 Minnesota Mining And Manufacturing Company Urea-aldehyde condensates and melamine derivatives comprising fluorochemical oligomers
WO1992019729A1 (en) 1991-05-01 1992-11-12 Novo Nordisk A/S Stabilized enzymes and detergent compositions
WO1993018140A1 (en) 1992-03-04 1993-09-16 Novo Nordisk A/S Novel proteases
US5352604A (en) 1989-08-25 1994-10-04 Henkel Research Corporation Alkaline proteolytic enzyme and method of production
WO1994025583A1 (en) 1993-05-05 1994-11-10 Novo Nordisk A/S A recombinant trypsin-like protease
WO1995006720A1 (en) 1993-08-30 1995-03-09 Showa Denko K.K. Novel lipase, microorganism producing the lipase, process for producing the lipase, and use of the lipase
WO1996012012A1 (en) 1994-10-14 1996-04-25 Solvay S.A. Lipase, microorganism producing same, method for preparing said lipase and uses thereof
WO1996027002A1 (en) 1995-02-27 1996-09-06 Novo Nordisk A/S Novel lipase gene and process for the production of lipase with the use of the same
WO1996034946A1 (en) 1995-05-05 1996-11-07 Novo Nordisk A/S Protease variants and compositions
WO1997004078A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
US5679630A (en) 1993-10-14 1997-10-21 The Procter & Gamble Company Protease-containing cleaning compositions
WO1998020116A1 (en) 1996-11-04 1998-05-14 Novo Nordisk A/S Subtilase variants and compositions
WO1998020115A1 (en) 1996-11-04 1998-05-14 Novo Nordisk A/S Subtilase variants and compositions
WO1998045396A1 (en) * 1997-04-10 1998-10-15 Henkel Corporation Cleaning compositions having enhanced enzyme activity
US5869438A (en) 1990-09-13 1999-02-09 Novo Nordisk A/S Lipase variants
WO1999011768A1 (en) 1997-08-29 1999-03-11 Novo Nordisk A/S Protease variants and compositions
WO1999042566A1 (en) 1998-02-17 1999-08-26 Novo Nordisk A/S Lipase variant
WO2000060063A1 (en) 1999-03-31 2000-10-12 Novozymes A/S Lipase variant
WO2001016285A2 (en) 1999-08-31 2001-03-08 Novozymes A/S Novel proteases and variants thereof
WO2001044452A1 (en) 1999-12-15 2001-06-21 Novozymes A/S Subtilase variants having an improved wash performance on egg stains
US6312936B1 (en) 1997-10-23 2001-11-06 Genencor International, Inc. Multiply-substituted protease variants
WO2002016547A2 (en) 2000-08-21 2002-02-28 Novozymes A/S Subtilase enzymes
WO2002026024A1 (en) 2000-08-05 2002-04-04 Haiquan Li An apparatus using recyclable resource
WO2002062973A2 (en) 2001-02-07 2002-08-15 Novozymes A/S Lipase variants
WO2003006602A2 (en) 2001-07-12 2003-01-23 Novozymes A/S Subtilase variants
WO2004003186A2 (en) 2002-06-26 2004-01-08 Novozymes A/S Subtilases and subtilase variants having altered immunogenicity
WO2004041979A2 (en) 2002-11-06 2004-05-21 Novozymes A/S Subtilase variants
WO2004101760A2 (en) 2003-05-12 2004-11-25 Genencor International, Inc. Novel lipolytic enzyme elip
WO2004101759A2 (en) 2003-05-12 2004-11-25 Genencor International, Inc. Novel lipolytic enzyme lip2
WO2004101763A2 (en) 2003-05-12 2004-11-25 Genencor International, Inc. Novel lipolytic enzyme lip1
WO2005040372A1 (en) 2003-10-23 2005-05-06 Novozymes A/S Protease with improved stability in detergents
WO2005052161A2 (en) 2003-11-19 2005-06-09 Genencor International, Inc. Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same
US20060122093A1 (en) 2004-12-07 2006-06-08 Permejo Fides L R Laundry detergent composition with mixed builder system
WO2007006305A1 (en) 2005-07-08 2007-01-18 Novozymes A/S Subtilase variants
WO2007087243A2 (en) 2006-01-23 2007-08-02 The Procter & Gamble Company Detergent compositions
US7262042B2 (en) 2001-12-20 2007-08-28 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Alkaline protease from Bacillus gibsonii (DSM 14393) and washing and cleaning products comprising said alkaline protease
WO2009021867A2 (en) 2007-08-10 2009-02-19 Henkel Ag & Co. Kgaa Agents containing proteases
WO2011036263A1 (en) 2009-09-25 2011-03-31 Novozymes A/S Subtilase variants
WO2011036264A1 (en) 2009-09-25 2011-03-31 Novozymes A/S Use of protease variants
WO2013087286A1 (en) 2011-12-12 2013-06-20 Unilever Plc Laundry compositions
WO2014060235A2 (en) 2012-10-17 2014-04-24 Unilever Plc Laundry compositions

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896998A1 (en) 1997-08-14 1999-02-17 The Procter & Gamble Company Laundry detergent compositions comprising a saccharide gum degrading enzyme
US6376445B1 (en) 1997-08-14 2002-04-23 Procter & Gamble Company Detergent compositions comprising a mannanase and a protease
CA2306908C (en) * 1997-10-23 2004-06-08 The Procter & Gamble Company Fatty acids, soaps, surfactant systems, and consumer products based thereon
US6630439B1 (en) 1998-09-25 2003-10-07 The Procter & Gamble Company Solid detergent compositions comprising sesquicarbonate
DE10150724A1 (en) * 2001-03-03 2003-04-17 Clariant Gmbh Washing agents such as detergents contain dye transfer inhibitors which are polyamine/cyanamide/amidosulfuric acid, cyanamide/aldehyde/ammonium salt or amine/epichlorhydrin reaction products
US6897188B2 (en) 2001-07-17 2005-05-24 Ecolab, Inc. Liquid conditioner and method for washing textiles
US7226900B2 (en) * 2003-06-16 2007-06-05 The Proctor & Gamble Company Liquid laundry detergent composition containing boron-compatible cationic deposition aids
US20060115440A1 (en) 2004-09-07 2006-06-01 Arata Andrew B Silver dihydrogen citrate compositions
CN101072859A (en) 2004-12-07 2007-11-14 宝洁公司 Laundry detergent composition with mixed builder system
JP4827756B2 (en) * 2007-02-02 2011-11-30 キヤノン株式会社 Data communication system, data communication method and program
US8586521B2 (en) * 2009-08-13 2013-11-19 The Procter & Gamble Company Method of laundering fabrics at low temperature
US8541352B2 (en) * 2011-11-11 2013-09-24 The Procter & Gamble Company Surface treatment compositions including poly(diallyldimethylammonium chloride) and sheilding salts
WO2013087287A1 (en) 2011-12-12 2013-06-20 Unilever Plc Laundry compositions
EP2767579B1 (en) 2013-02-19 2018-07-18 The Procter and Gamble Company Method of laundering a fabric
WO2016198263A1 (en) * 2015-06-11 2016-12-15 Unilever Plc Laundry detergent composition
TR201906232T4 (en) * 2015-06-11 2019-05-21 Unilever Nv Detergent composition for laundry.
EP3356504B1 (en) * 2015-10-01 2019-08-14 Unilever PLC Powder laundry detergent composition

Patent Citations (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
DE3320340A1 (en) * 1982-06-07 1983-12-15 Chem-y, Fabriek van Chemische Produkten B.V., Bodegraven Liquid phosphate-free detergent
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
EP0218272A1 (en) 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
WO1989006279A1 (en) 1988-01-07 1989-07-13 Novo-Nordisk A/S Mutated subtilisin genes
WO1989006270A1 (en) 1988-01-07 1989-07-13 Novo-Nordisk A/S Enzymatic detergent
EP0331376A2 (en) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. Recombinant DNA, bacterium of the genus pseudomonas containing it, and process for preparing lipase by using it
EP0384070A2 (en) 1988-11-03 1990-08-29 Unilever Plc Zeolite P, process for its preparation and its use in detergent compositions
US5352604A (en) 1989-08-25 1994-10-04 Henkel Research Corporation Alkaline proteolytic enzyme and method of production
WO1991016422A1 (en) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases
US5869438A (en) 1990-09-13 1999-02-09 Novo Nordisk A/S Lipase variants
WO1992017517A1 (en) 1991-04-02 1992-10-15 Minnesota Mining And Manufacturing Company Urea-aldehyde condensates and melamine derivatives comprising fluorochemical oligomers
WO1992019729A1 (en) 1991-05-01 1992-11-12 Novo Nordisk A/S Stabilized enzymes and detergent compositions
WO1993018140A1 (en) 1992-03-04 1993-09-16 Novo Nordisk A/S Novel proteases
WO1994025583A1 (en) 1993-05-05 1994-11-10 Novo Nordisk A/S A recombinant trypsin-like protease
WO1995006720A1 (en) 1993-08-30 1995-03-09 Showa Denko K.K. Novel lipase, microorganism producing the lipase, process for producing the lipase, and use of the lipase
US5679630A (en) 1993-10-14 1997-10-21 The Procter & Gamble Company Protease-containing cleaning compositions
WO1996012012A1 (en) 1994-10-14 1996-04-25 Solvay S.A. Lipase, microorganism producing same, method for preparing said lipase and uses thereof
WO1996027002A1 (en) 1995-02-27 1996-09-06 Novo Nordisk A/S Novel lipase gene and process for the production of lipase with the use of the same
WO1996034946A1 (en) 1995-05-05 1996-11-07 Novo Nordisk A/S Protease variants and compositions
WO1997004078A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
WO1997004079A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
WO1998020116A1 (en) 1996-11-04 1998-05-14 Novo Nordisk A/S Subtilase variants and compositions
WO1998020115A1 (en) 1996-11-04 1998-05-14 Novo Nordisk A/S Subtilase variants and compositions
US20020102702A1 (en) 1996-11-04 2002-08-01 Novozymes A/S Protease variants and compositions
WO1998045396A1 (en) * 1997-04-10 1998-10-15 Henkel Corporation Cleaning compositions having enhanced enzyme activity
WO1999011768A1 (en) 1997-08-29 1999-03-11 Novo Nordisk A/S Protease variants and compositions
US6312936B1 (en) 1997-10-23 2001-11-06 Genencor International, Inc. Multiply-substituted protease variants
WO1999042566A1 (en) 1998-02-17 1999-08-26 Novo Nordisk A/S Lipase variant
US6939702B1 (en) 1999-03-31 2005-09-06 Novozymes A/S Lipase variant
WO2000060063A1 (en) 1999-03-31 2000-10-12 Novozymes A/S Lipase variant
WO2001016285A2 (en) 1999-08-31 2001-03-08 Novozymes A/S Novel proteases and variants thereof
WO2001044452A1 (en) 1999-12-15 2001-06-21 Novozymes A/S Subtilase variants having an improved wash performance on egg stains
WO2002026024A1 (en) 2000-08-05 2002-04-04 Haiquan Li An apparatus using recyclable resource
WO2002016547A2 (en) 2000-08-21 2002-02-28 Novozymes A/S Subtilase enzymes
WO2002062973A2 (en) 2001-02-07 2002-08-15 Novozymes A/S Lipase variants
WO2003006602A2 (en) 2001-07-12 2003-01-23 Novozymes A/S Subtilase variants
US7262042B2 (en) 2001-12-20 2007-08-28 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Alkaline protease from Bacillus gibsonii (DSM 14393) and washing and cleaning products comprising said alkaline protease
WO2004003186A2 (en) 2002-06-26 2004-01-08 Novozymes A/S Subtilases and subtilase variants having altered immunogenicity
WO2004041979A2 (en) 2002-11-06 2004-05-21 Novozymes A/S Subtilase variants
WO2004101759A2 (en) 2003-05-12 2004-11-25 Genencor International, Inc. Novel lipolytic enzyme lip2
WO2004101760A2 (en) 2003-05-12 2004-11-25 Genencor International, Inc. Novel lipolytic enzyme elip
WO2004101763A2 (en) 2003-05-12 2004-11-25 Genencor International, Inc. Novel lipolytic enzyme lip1
WO2005040372A1 (en) 2003-10-23 2005-05-06 Novozymes A/S Protease with improved stability in detergents
WO2005052161A2 (en) 2003-11-19 2005-06-09 Genencor International, Inc. Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same
WO2005052146A2 (en) 2003-11-19 2005-06-09 Genencor International, Inc. Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same
US20060122093A1 (en) 2004-12-07 2006-06-08 Permejo Fides L R Laundry detergent composition with mixed builder system
WO2007006305A1 (en) 2005-07-08 2007-01-18 Novozymes A/S Subtilase variants
WO2007087243A2 (en) 2006-01-23 2007-08-02 The Procter & Gamble Company Detergent compositions
WO2009021867A2 (en) 2007-08-10 2009-02-19 Henkel Ag & Co. Kgaa Agents containing proteases
WO2011036263A1 (en) 2009-09-25 2011-03-31 Novozymes A/S Subtilase variants
WO2011036264A1 (en) 2009-09-25 2011-03-31 Novozymes A/S Use of protease variants
WO2013087286A1 (en) 2011-12-12 2013-06-20 Unilever Plc Laundry compositions
WO2014060235A2 (en) 2012-10-17 2014-04-24 Unilever Plc Laundry compositions

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Chemicals Buyers Directory", 1993, SCHNELL PUBLISHING CO
"Fenaroli's Handbook of Flavour Ingredients", 1975, CRC PRESS
"International Buyers Guide", 1992, CFTA PUBLICATIONS
DARTOIS ET AL., BIOCHEMICA ET BIOPHYSICA ACTA, vol. 1131, 1993, pages 253 - 360
JAN H. VAN EE: "Enzymes in Detergency", article "Cleaning lipase"
M. B. JACOBS: "Synthetic Food Adjuncts", 1947
ONNO MISSET; ERIK J. BAAS: "ENZYMES IN DETERGENCY", 1997, MARCEL DEKKER
POUCHER, JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, vol. 6, no. 2, 1955, pages 80
S. ARCTANDER: "Perfume and Flavour Chemicals", 1969
SIEZEN ET AL., PROTEIN ENGNG., vol. 4, 1991, pages 719 - 737
SIEZEN ET AL., PROTEIN SCIENCE, vol. 6, 1997, pages 501 - 523

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3356504B1 (en) * 2015-10-01 2019-08-14 Unilever PLC Powder laundry detergent composition
WO2018113643A1 (en) * 2016-12-22 2018-06-28 The Procter & Gamble Company Laundry detergent composition
WO2018113644A1 (en) * 2016-12-22 2018-06-28 The Procter & Gamble Company Laundry detergent composition
WO2018206197A1 (en) * 2017-05-10 2018-11-15 Unilever Plc Laundry detergent composition
CN110621769A (en) * 2017-05-10 2019-12-27 荷兰联合利华有限公司 Laundry detergent compositions
EP3505609A1 (en) * 2017-12-29 2019-07-03 Itram Higiene, S.L. Detergent composition for the control and removal of biofilms

Also Published As

Publication number Publication date
CN107690472B (en) 2020-10-27
BR112017026234A2 (en) 2018-09-11
US10941372B2 (en) 2021-03-09
EP3307861A1 (en) 2018-04-18
BR112017026234B1 (en) 2022-10-04
EP3307861B1 (en) 2019-04-03
PH12017502035B1 (en) 2018-04-23
PH12017502035A1 (en) 2018-04-23
TR201906232T4 (en) 2019-05-21
ZA201707228B (en) 2019-03-27
US20180100127A1 (en) 2018-04-12
CN107690472A (en) 2018-02-13
AR104941A1 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
US10941372B2 (en) Laundry detergent composition
EP3440170B1 (en) Laundry detergent composition
EP3294852B1 (en) Laundry detergent composition
WO2017055205A1 (en) Powder laundry detergent composition
EP3433346B1 (en) Laundry detergent composition
WO2017054983A1 (en) Liquid laundry detergent composition
EP3440172B1 (en) Laundry detergent composition
EP3313966B1 (en) Laundry detergent composition
EP3417040B1 (en) Whitening composition
EP3555255B1 (en) Laundry detergent composition
EP3417039B1 (en) Whitening composition
EP3303536B1 (en) Laundry detergent composition
WO2021185956A1 (en) Detergent composition
WO2020104155A1 (en) Detergent composition
EP3884023A1 (en) Detergent composition
EP3884026A1 (en) Detergent composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16724676

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12017502035

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 15578499

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017026234

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017026234

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171205