WO2016197969A1 - 粉尘浓度检测方法及粉尘浓度传感器 - Google Patents

粉尘浓度检测方法及粉尘浓度传感器 Download PDF

Info

Publication number
WO2016197969A1
WO2016197969A1 PCT/CN2016/085403 CN2016085403W WO2016197969A1 WO 2016197969 A1 WO2016197969 A1 WO 2016197969A1 CN 2016085403 W CN2016085403 W CN 2016085403W WO 2016197969 A1 WO2016197969 A1 WO 2016197969A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
dust concentration
source unit
electrical signal
concentration value
Prior art date
Application number
PCT/CN2016/085403
Other languages
English (en)
French (fr)
Inventor
颜松
吕建亮
刘世强
袁振
贾泽君
杨国斌
Original Assignee
艾欧史密斯(中国)热水器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾欧史密斯(中国)热水器有限公司 filed Critical 艾欧史密斯(中国)热水器有限公司
Publication of WO2016197969A1 publication Critical patent/WO2016197969A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions

Definitions

  • the invention relates to the technical field of particle concentration detection, in particular to a dust concentration detecting method and a dust concentration sensor.
  • Dust is one of the important pollutants in the air, which is harmful to the human body, especially small particle size.
  • the dust concentration sensor measured by the optical method is used to detect the concentration of dust in the air, thereby understanding the quality state of the air.
  • the dust concentration sensor measured by the optical method generally has two types of infrared scattering sensors and laser scattering sensors.
  • the particulate matter detecting sensor contains only one optically measured dust concentration sensor.
  • the laser scattering sensor alone can achieve high-precision detection of particles, but the life of the laser sensor is short, and the continuous working life is generally about 10,000-12,000 hours.
  • the infrared scattering sensor alone can have a continuous working life of about 100,000 hours, but since the infrared wavelength ranges from 700 to 1000 um, it is larger than the laser wavelength of 655 um, so that the particle size of the particles can be detected by infrared scattering.
  • the minimum value is 0.5 um, and the minimum particle size detected by laser scattering is 0.3 um, so the use of an infrared scatter sensor alone cannot achieve high-precision particle concentration detection.
  • the technical problem to be solved by the present invention is to provide a dust concentration detecting method and a dust concentration sensor capable of extending the first light source unit in the dust concentration sensor while maintaining a certain detection accuracy. Service life.
  • a dust concentration detecting method comprising the steps of: turning on a first light source unit and receiving a first electrical signal corresponding to the first light source unit, and calculating a first dust concentration value based on the first electrical signal; When the dust concentration value reaches the first predetermined condition, the first light source unit is in a closed or dormant state; the second light source unit is turned on and receives a second electrical signal corresponding to the second light source unit; Generating an output dust concentration value based on the signal and the first electrical signal, or based on the second electrical signal and the first dust concentration value; when the second electrical signal or the first electrical signal or the first When the dust concentration value reaches the second predetermined condition, the first light source unit is turned on again, thereby updating the first dust concentration value.
  • the fluctuation trend of the second electrical signal is obtained based on the second light source unit, and the first light source unit is turned on again based on the fluctuation trend of the second electrical signal, thereby updating the first dust concentration value.
  • the output dust concentration value is calculated based on a fluctuation trend of the second electrical signal and the first dust concentration value.
  • the first light source unit is brought into a closed or dormant state.
  • the first light source unit is caused to be in a closed or dormant state.
  • the first light source unit sleeps or the closing time reaches the fourth predetermined condition, the first light source unit is turned on, thereby updating the first dust concentration value.
  • any one of the first light source unit and the second light source unit is in a fault state
  • another light source unit in a normal state is turned on, and an output dust is calculated based on an electrical signal obtained by the light source unit in a normal state. Concentration value.
  • the first light source unit is capable of outputting laser light
  • the second light source unit is capable of outputting infrared light
  • the first light source unit is capable of outputting laser light
  • the second light source unit is capable of outputting laser light
  • the first light source unit is capable of outputting infrared rays
  • the second light source unit is capable of outputting infrared rays.
  • the second light source unit is always in an on state, and the first light source unit can be in an intermittently open state.
  • An air purification control method includes the steps of: turning on a first light source unit and receiving a first electrical signal corresponding to the first light source unit, and calculating a first dust concentration value based on the first electrical signal; When the dust concentration value reaches the first predetermined condition, the first light source unit is in a closed or dormant state; the second light source unit is turned on and receives a second electrical signal corresponding to the second light source unit; Calculating an output dust concentration value of the signal and the first dust concentration value; when the second electrical signal or the first electrical signal or the first dust concentration When the value reaches the second predetermined condition, the first light source unit is turned on again, thereby updating the first dust concentration value; and controlling the filtering device according to the output dust concentration value.
  • a dust concentration sensor comprising: a first light source unit for generating a first type of light and projecting the first type of light to a dust detecting area 1; and a second light source unit for generating a second type Light, and projecting the second light to the dust detecting area 2;
  • the first light receiving unit is configured to receive the first scattered light generated by the dust scattering by the first type of light projected through the dust detecting area, and according to The first scattered light generates a corresponding first electrical signal;
  • the second light receiving unit is configured to receive the second scattered light generated by the second light projected through the dust detecting region by the dust scattering, and according to the second scattered light Generating a corresponding second electrical signal;
  • a light source control unit for controlling the first light source unit and the second light source unit; and an electrical signal processing unit for receiving the first electrical signal to obtain a first dust concentration value, receiving the first
  • the second electrical signal calculates an output dust concentration value based on the second electrical signal and the first electrical signal, or based on the second electrical signal and the
  • the first light source unit includes a laser emitting device and a first lens
  • the first light receiving unit includes a laser receiving end
  • the second light source unit includes an infrared emitting device
  • the second light receiving unit includes a first Two lenses and an infrared receiving end.
  • the first light source unit comprises a first laser emitting device
  • the second light source unit comprises a second laser emitting device
  • the first light source unit comprises a first infrared emitting device
  • the second light source unit comprises a second infrared emitting device.
  • the light control unit controls the second light source unit to be always in an on state, and the first light source unit can be in an intermittently open state.
  • the electrical signal processing unit includes: a calculation module configured to calculate an output dust concentration value according to the first electrical signal and the second electrical signal; and a storage module configured to store various parameters required for calculating the output dust concentration value .
  • it further comprises a housing having an intake end and an outlet end, the housing being formed with chambers respectively communicating with the intake end and the outlet end, the detection area 1 and the detection area 2 being located in the chamber.
  • the detection area 1 overlaps with a partial position of the detection area 2.
  • the detection area 1 and the detection area 2 are respectively located upstream and downstream of the chamber.
  • it further comprises a housing having an intake end and an outlet end, the housing being formed with a first passage and a second passage respectively communicating with the intake end and the output air, the detection area being located in the first passage, The detection area 2 is located in the second channel.
  • An air cleaning device comprising the dust concentration sensor of any of the above.
  • An air purifying apparatus which employs the air purifying control method described above.
  • the present invention has the following significant beneficial effects: the dust concentration detecting method and the dust concentration sensor proposed in the present invention simultaneously use the first light source unit and the second light source unit, and the first light source unit is intermittently activated to be in an intermittent working state, thereby extending Its service life.
  • the second light source unit is in a continuous working state, and the measurement is still performed when the first light source unit is in the sleep state, and when the first light source is in the sleep state, the measured value obtained by the first light source unit in the previous working state is combined by the algorithm design and the second
  • the continuous electrical signal obtained by the light source unit obtains an output dust concentration value under the condition of maintaining a certain detection accuracy, and the output dust concentration value is more accurate than the dust concentration value measured by using the second light source unit alone.
  • FIG. 1 is a flow chart of a dust concentration detecting method of the present invention.
  • FIG. 2 is a schematic view showing the structure of a dust concentration sensor of the present invention in a first embodiment.
  • FIG. 3 is a schematic view showing the principle of the dust concentration sensor of the present invention in the first embodiment.
  • FIG. 4 is a schematic structural view of a dust concentration sensor of the present invention in a second embodiment.
  • FIG. 5 is a schematic diagram of the principle of the dust concentration sensor of the present invention in the second embodiment.
  • FIG. 6 is a schematic flow chart of the self-inspection of the dust concentration sensor of the present invention.
  • FIG. 7 is a schematic flow chart of the working mode of the dust sensor detecting unit of the present invention.
  • First light source unit 1. First light source unit; 2. First light receiving unit; 3. Second light source unit; 4. Second light receiving unit; 5. Electrical signal processing unit; ; 7, the pumping device; 8, the first channel; 9, the second channel; 10, the shell.
  • a dust concentration detecting method includes the following steps:
  • the first light source unit is turned on and receives a first electrical signal corresponding to the first light source unit, and the first dust concentration value is calculated based on the first electrical signal.
  • the first light source unit When the first dust concentration value reaches the first predetermined condition, the first light source unit is caused to be in a closed or dormant state.
  • the step is specifically: when the first dust concentration value is stabilized, the first light source unit is in a closed or dormant state.
  • the first predetermined condition is that the first dust concentration value is stable. In this way, the first light source unit is in a closed or dormant state, so that the use time of the first light source unit can be reduced, thereby prolonging the service life thereof.
  • the third predetermined condition is a certain length time in which the preset first dust concentration value is stable.
  • the first light source unit is turned off or in a sleep state. .
  • the detected first dust concentration value stabilization time reaches a certain time, indicating that the first dust concentration value is stable at a high level, and the air dust concentration value changes within a certain period of time is small, and it is not necessary to turn on the first light source unit to continue.
  • the first dust concentration value is detected, and can be brought into a closed or dormant state, and then detected by using the second light source unit.
  • the step is specifically: turning on the second light source unit and receiving the second electrical signal corresponding to the second light source unit, wherein the time of turning on the second light source unit may be the same as the time when the first light source unit is turned on, or may be earlier than the first light source unit
  • the opening time can be later than the opening time of the first light source unit.
  • the output dust concentration value is calculated based on the second electrical signal and the first electrical signal, or based on the second electrical signal and the first dust concentration value.
  • the step is specifically: calculating an output dust concentration value based on a fluctuation trend of the second electrical signal and the first electrical signal, or based on a fluctuation trend of the second electrical signal and a first dust concentration value.
  • the first dust concentration value is the latest first dust concentration value obtained before the first light source unit is turned off or before the sleep
  • the first electrical signal is the latest electric signal obtained before the first light source unit is turned off or before the sleep.
  • the first light source unit When the second electrical signal or the first electrical signal or the first dust concentration value reaches the second predetermined condition, the first light source unit is turned on again, thereby updating the first dust concentration value.
  • the step is specifically: obtaining a fluctuation trend of the second electrical signal based on the second light source unit, and turning on the first light source unit again based on the fluctuation trend of the second electrical signal, thereby updating the first dust concentration value.
  • the second predetermined condition represents the second The fluctuation trend of the signal, when the fluctuation trend of the second signal exceeds a certain degree, the first light source unit is turned on again, and the first dust density value is updated according to the first electrical signal obtained after the first light source unit is turned on to update the previously obtained first dust concentration value.
  • the first light source unit sleeps or the closing time reaches the fourth predetermined condition, the first light source unit is turned on, thereby updating the first dust concentration value.
  • the step is specifically that the fourth predetermined condition represents a preset longest length of the first light source unit to sleep or turn off, and when the first light source unit sleeps or the off time reaches a preset maximum time length, the first time is turned on. a light source unit to update the first dust concentration value.
  • the second light source unit obtains the fluctuation trend of the second electrical signal and is always in a stable state, and can forcibly turn on the first light source when the preset maximum time length is reached.
  • the unit guarantees the accuracy of the resulting output dust concentration value under the detection of the method.
  • the first light source unit can output laser light
  • the second light source unit can output infrared light.
  • the specific algorithm for calculating the output dust concentration value based on the second electrical signal obtained by the second light source unit and the first dust concentration value obtained by the first light source unit may have various forms. The following two specific algorithm processes are illustrated by way of example:
  • Algorithm 1 first obtains the first dust concentration value A before the first light source unit enters sleep or shuts down, and then obtains an infrared prediction coefficient corresponding to the laser based on the laser concentration range in which the value A is located based on multiple practices and trial and error.
  • the second process is as follows.
  • a first electrical signal processing data M1 is obtained, and the second electrical signal detected by the current second light source unit is read to obtain the processed data N1.
  • the above steps are repeated a plurality of times to obtain data such as M1, M2, M3, and N1, N2, and N3.
  • the correction value of the infrared prediction corresponding coefficient can be obtained.
  • the prediction data reference table By continuously correcting the prediction data reference table, the accuracy of the output dust concentration value obtained by the table can be further ensured.
  • the dust concentration value can be output by referring to the algorithm step in Algorithm 1.
  • the second light source unit is always in an on state, and the first light source unit can be in an intermittently open state. By intermittently activating the first light source unit, it is in an intermittent working state, thereby prolonging its service life.
  • the second light source unit is in a continuous working state, and the measurement is still performed when the first light source unit is in a sleep state, and the measured value combined with the measured value of the first light source unit and the measured value of the second light source unit are obtained by an algorithm design under the condition of maintaining a certain detection precision.
  • the output dust concentration value when the first light source unit is in a sleep state, and the output dust concentration value is more accurate than the dust concentration value measured by using the second light source unit alone.
  • first light source unit and the second light source unit when the first light source unit and the second light source unit are turned on, it is detected whether both the first light source unit and the second light source unit can operate normally. If the first light source unit and the second light source unit are detected When any one is in a fault state, another light source unit in a normal state is turned on, and an output dust concentration value is calculated based on an electric signal obtained by the light source unit in the normal state. When the first light source unit and the second light source unit are normally started, both of them work normally. In the working process, if any one of the first light source unit and the second light source unit is in a fault state, the other is in a normal state. The light source unit is turned on, and an output dust concentration value is calculated based on an electric signal obtained by the light source unit in a normal state.
  • the second light source unit is turned on and the second electrical signal corresponding to the second light source unit is received, based on the first An electrical signal calculates a first dust concentration value, and the first dust concentration value and the second electrical signal at this time are used as a reference for calculating the output dust concentration value in the subsequent step.
  • the second light source unit is turned on and the second electrical signal corresponding to the second light source unit is received, and the second electrical signal may be obtained in advance, and the first light source unit is in the off state or the sleep state.
  • the output dust concentration value may be calculated based on the previously obtained plurality of updated second electrical signal values and the first dust concentration value, so that the calculated output dust concentration value is more accurate than the original case.
  • the first light source unit is capable of outputting laser light and the second light source unit is capable of outputting laser light.
  • both light source units are in a state of intermittent operation, and the time of two intermittent operations is mutually staggered, ensuring that one is always in the detection state and the other is in the sleep or off state.
  • the first light source unit and the second light source unit can be simultaneously turned on, and the signals measured by the two are complemented to obtain an output dust concentration value, thus reducing the measurement error.
  • the first light source unit can output a first infrared ray
  • the second light source unit can output infrared light.
  • the two infrared units are in a state of intermittent operation, and the time of two intermittent operations is mutually staggered, ensuring that one is always in the detection state and the other is in the sleep or off state.
  • the first light source unit and the second light source unit are simultaneously turned on, and the signals measured by the two are complemented to obtain an output dust concentration value, thus reducing the measurement error.
  • An air purification control method comprising the steps of: turning on the first light source unit and receiving a first electrical signal corresponding to the first light source unit, and calculating a first dust concentration value based on the first electrical signal; When the first dust concentration value reaches the first predetermined condition, causing the first light source unit to be in a closed or dormant state; turning on the second light source unit and receiving the second electrical signal corresponding to the second light source unit; and based on the second electrical signal and the first electrical Signaling, or calculating an output dust concentration value based on the second electrical signal and the first dust concentration value; when the second electrical signal or the first electrical signal or the first dust concentration value reaches a second predetermined condition, turning on the second a light source unit to update the first dust concentration value; and controlling the filtering device according to the output dust concentration value.
  • the first light source unit can output laser light
  • the second light source unit can output infrared light.
  • the second light source unit is always in an on state, and the first light source unit can be in an intermittently open state.
  • the dust concentration detecting method is adopted in the air purification control method
  • the first light source unit and the second light source unit are used at the same time, on the one hand, the service life of the first light source unit is prolonged, and on the other hand, the second light source unit is in a continuous working state.
  • the first light source unit is in the sleep or off state, the measurement is still performed, and the first light source unit is obtained by the algorithm design combined with the measured value of the first light source unit and the measured value of the second light source unit while maintaining a certain detection precision.
  • the output dust concentration value in the state is more accurate than the dust concentration value measured by the infrared light source alone.
  • the filter device is controlled based on the output dust concentration value obtained by the first light source unit.
  • the output dust concentration value is calculated based on the second electrical signal and the first dust concentration value to control the filtering device.
  • a dust concentration sensor a first light source unit 1 for generating a first type of light and projecting a first type of light to a dust detecting area 1; a second light source unit 3 for generating a second type of light, and Projecting the second light to the dust detecting area 2;
  • the first light receiving unit 2 is configured to receive the first scattered light generated by the dust scattering of the first light projected through the dust detecting area, and generate corresponding according to the first scattered light a first electrical signal;
  • a second light receiving unit 4 configured to receive the second scattered light generated by the second light projected through the dust detecting area by the dust scattering, and generate a corresponding second electrical signal according to the second scattered light
  • a light source control unit 6 for controlling the first light source unit 1 and the second light source unit 3;
  • an electrical signal processing unit 5 for receiving the first electrical signal to obtain a first dust concentration value, and receiving the second electrical signal based on And outputting a dust concentration value based on the second electrical signal and the first electrical signal, or based on the second electrical signal
  • the electrical signal processing unit 5 includes: a calculation module configured to calculate an output dust concentration value according to the first electrical signal and the second electrical signal; and a storage module configured to store various parameters required to calculate the output dust concentration value.
  • the light control unit controls the second light source unit 3 to be always in an open state, and the first light source unit 1 can be in an intermittently open state.
  • the dust concentration sensor further includes a housing 10 having an intake end and an air outlet end, and the housing 10 is formed separately.
  • the chamber in which the gas end and the gas outlet end are connected, the detection area 1 and the detection area 2 are located in the chamber.
  • An air suction device 7 is provided at the air inlet end or the air outlet end of the casing 10 for convection of the gas in the chamber, thereby facilitating the detection of the dust concentration sensor and ensuring the effectiveness of the detected dust concentration.
  • the housing 10 is formed with a first passage 8 communicating with the intake end and the output gas, the first light source unit 1, the second light source unit 3, the first light receiving unit 2, and the second light receiving unit 4. They are all disposed in the first channel 8. As shown in FIG. 2, the detection area formed by the first light source unit 1 and the first light receiving unit 2 and the detection area formed by the second light source unit 3 and the second light receiving unit 4 are disposed in the first channel 8 of the chamber. Upstream and downstream.
  • the first light source unit 1 and the first light receiving unit 2 form a detection area one and second The position of the detection area 2 formed by the light source unit 3 and the second light receiving unit 4 overlaps, so that the gas in the same detection area is simultaneously monitored, which can improve the accuracy of the detection result to a certain extent, and reduce the possible detection area.
  • 3 is a schematic diagram of the principle of the dust concentration sensor of the present invention in the first embodiment. As shown in FIG. 3, the first detecting unit includes a first light source unit 1 and a first light receiving unit 2, and the second detecting unit includes a second The light source unit 3 and the second light receiving unit 4.
  • the first detecting unit and the second detecting unit are disposed upstream and downstream of the first passage 8 in the chamber.
  • the air flow enters the first passage 8 in the housing 10 by the air intake device 7 by the air suction device 7, and flows through the first detecting unit and the second detecting unit, and flows out through the air outlet end.
  • the light source control unit 6 and the electrical signal processing unit 5 can be integrated on the MCU.
  • the MCUs are electrically connected to the first detecting unit and the second detecting unit respectively for transmitting electrical signals.
  • the dust concentration sensor further includes a housing 10 having an intake end and an air outlet end, and the housing 10 is formed with The first passage 8 and the second passage 9 are connected to the intake end and the output air.
  • the detection area is located at the first passage 8 and the detection area 2 is located at the second passage 9.
  • An air suction device 7 is disposed at the air inlet end or the air outlet end of the casing 10 for realizing the circulation of gas in the first passage 8 and the second passage 9 in the chamber, thereby facilitating the detection of the dust concentration sensor and ensuring the detection thereof. The effectiveness of the dust concentration.
  • FIG. 5 is a schematic diagram of the principle of the dust concentration sensor of the present invention in a second embodiment.
  • the first detecting unit includes a first light source unit 1 and a first light receiving unit 2
  • the second detecting unit includes a second The light source unit 3 and the second light receiving unit 4.
  • the first detecting unit is disposed in the first passage 8 in the chamber
  • the second detecting unit is disposed in the second passage 9 in the chamber.
  • the air flow enters the first passage 8 and the second passage 9 in the casing 10 by the suction device 7 through the intake end, respectively, through the first detection unit and the second detection unit, and finally flows out through the outlet end.
  • the light source control unit 6 and the electrical signal processing unit 5 may be integrated on the MCU, and the MCU is electrically connected to the first detecting unit and the second detecting unit respectively for transmitting electrical signals.
  • the first light source unit 1 may include a laser emitting device
  • the second light source unit 3 includes an infrared emitting device.
  • the workflow of the dust concentration sensor of the present invention is as follows:
  • FIG. 6 is a schematic flow chart of the self-inspection of the dust concentration sensor of the present invention.
  • the dust concentration sensor first performs a self-test at the time of power-on to determine whether the two detection units are normal. If the two detection units are normal, enter the dual detection unit working mode; if one of the two detection units is abnormal, enter the single detection unit working mode; If both are abnormal, a detection unit abnormal alarm is issued.
  • Step 1 is a schematic flow chart of the operation mode of the dual detection unit, as shown in FIG. 7 : Step 1.
  • the first detection unit and the second detection unit continue to run for a period of time, for example, 5 minutes, so that the two enter a stable working state.
  • the first detecting unit feeds back the first electrical signal to the electrical signal processing unit 5, and the electrical signal processing unit 5 receives the first electrical signal to obtain the first dust concentration value.
  • the first dust concentration The value indicates the output dust concentration value
  • the dust concentration sensor indicates the output dust concentration value.
  • the second detecting unit continues to operate, collects the second electrical signal, and stores it by the electrical signal processing unit 5.
  • Step 2 When the first detecting unit continues to operate for a certain time, for example, 30 s, it indicates that the determination is performed every 30 seconds, and it is determined whether the first detecting unit satisfies the intermittent working condition, that is, whether the first dust concentration value detected by the first detecting unit is stable. If the first dust concentration value is stable, the first detecting unit is in a dormant or closed state, and if the first dust concentration is unstable, the first detecting unit continues to operate for a certain time. Step 3: The first detecting unit is in a dormant or closed state, and the second detecting unit remains in continuous operation.
  • the second electrical signal obtained by the second detecting unit in the calculation relates to a law of a second electrical signal stored in the storage module, a change trend, a correspondence relationship between the second electrical signal and the first dust concentration value, and the like, and thus, based on the second power
  • the signal and the first dust concentration value obtained before the first detecting unit is dormant or closed can calculate the dust concentration value obtained by directly converting the second electrical signal obtained directly by the second detecting unit.
  • Step 4 determining, according to the second electrical signal obtained by the second detecting unit, whether the condition for waking up the first detecting unit is met. If the condition for waking up the first detecting unit is met, the first detecting unit is turned on again, and then continuously passed through the first detecting unit. Update the first dust concentration value.
  • the condition for waking up the first detecting unit is the degree of stability of the second electrical signal obtained by the second detecting unit, and when the second electrical signal obtained by the second detecting unit is unstable, waking up the first detecting unit.
  • Step 5 The condition for waking up the first detecting unit further comprises determining whether the time when the first detecting unit is in the sleep or off state reaches the longest sleep or shutdown time, for example, 2 imn, and if the longest sleep or shutdown time is reached, the first time is turned on again.
  • the detection unit returns to step 2. If the maximum sleep or shutdown time has not been reached, continue to work as originally.
  • the dust concentration sensor of the present invention circulates in accordance with the above steps.
  • the first light source unit 1 may include a first laser emitting device and the second light source unit 3 includes a second laser emitting device.
  • the first light source unit 1 may include a first infrared emitting device, and the second light source unit 3 includes a second infrared emitting device.
  • the two light source units are in a state of intermittent operation, and the time of the two intermittent operations is mutually staggered, ensuring that one is always in the detection state and the other is in the sleep or off state.
  • the two light source units can also be simultaneously Turning on, the signals measured by the two are complemented to obtain an output dust concentration value, thus reducing the measurement error.
  • a dust concentration sensor that uses the above dust concentration detection method.
  • An air purifying device comprising a dust concentration sensor of any of the above structures.
  • An air purifying device adopts the above air purifying control method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种粉尘浓度检测方法和粉尘浓度传感器。粉尘浓度检测方法包括以下步骤:开启第一光源单元(1)并接收所述第一光源单元(1)对应的第一电信号,基于所述第一电信号计算第一粉尘浓度值;当所述第一粉尘浓度值达到第一预定条件时,使得所述第一光源单元(1)处于关闭或休眠状态;开启第二光源单元(3)并接收所述第二光源单元(3)对应的第二电信号;基于所述第二电信号和第一电信号,或基于第二电信号和第一粉尘浓度值计算输出粉尘浓度值;当所述第二电信号或所述第一电信号或所述第一粉尘浓度值达到第二预定条件时,再次开启所述第一光源单元(1),从而更新第一粉尘浓度值。本粉尘浓度检测方法可以在保持一定检测精度的条件下延长第一光源单元(1)的使用寿命。

Description

粉尘浓度检测方法及粉尘浓度传感器
交叉参考相关引用
本申请要求2015年6月12日提交的申请号为201510326144.0的中国专利申请的优先权,上述申请参考并入本文。
技术领域
本发明涉及颗粒物浓度检测技术领域,特别涉及一种粉尘浓度检测方法及粉尘浓度传感器。
背景技术
随着近几年来空气污染的加剧,空气的质量问题越来越受到人们的关注。粉尘是空气中重要污染物之一,其对人体的危害较大,尤其是小粒径颗粒物。目前,人们采用光学法测量的粉尘浓度传感器检测空气中粉尘的浓度,进而了解空气的质量状态。光学法测量的粉尘浓度传感器一般有红外线散射传感器和激光散射传感器两大类。在现有技术中颗粒物检测传感器内仅仅包含一种光学法测量的粉尘浓度传感器。在仅包含一种光学法测量的粉尘浓度传感器的情况下,单独使用激光散射传感器虽然能够实现颗粒物高精度的检测,但是其激光传感器的寿命较短,其连续工作寿命一般为10000-12000小时左右,无法实现长久使用。而单独使用红外线散射传感器,虽然其连续工作寿命可以达到10万小时左右,但是由于红外线的波长范围为700至1000um,其大于激光的波长655um,如此,红外线散射下其能够检测到的颗粒物粒径最小值为0.5um,而激光散射下够检测到的颗粒物粒径最小值为0.3um,所以单独使用红外线散射传感器无法实现高精度的颗粒浓度检测。
发明内容
为了克服现有技术的上述缺陷,本发明所要解决的技术问题是提供了一种粉尘浓度检测方法及粉尘浓度传感器,其能够在保持一定检测精度的条件下延长粉尘浓度传感器中第一光源单元的使用寿命。
本发明的具体技术方案是:
一种粉尘浓度检测方法,它包括以下步骤:开启第一光源单元并接收所述第一光源单元对应的第一电信号,基于所述第一电信号计算第一粉尘浓度值;当所述第一粉尘浓度值达到第一预定条件时,使得所述第一光源单元处于关闭或休眠状态;开启第二光源单元并接收所述第二光源单元对应的第二电信号;基于所述第二电信号和所述第一电信号,或基于所述第二电信号和所述第一粉尘浓度值计算输出粉尘浓度值;当所述第二电信号或所述第一电信号或所述第一粉尘浓度值达到第二预定条件时,再次开启所述第一光源单元,从而更新第一粉尘浓度值。
优选地,基于所述第二光源单元获得所述第二电信号的波动趋势,基于所述第二电信号的波动趋势,再次开启所述第一光源单元,从而更新第一粉尘浓度值。
优选地,基于所述第二电信号的波动趋势和所述第一粉尘浓度值计算所述输出粉尘浓度值。
优选地,当所述第一粉尘浓度值稳定后,使得所述第一光源单元处于关闭或休眠状态。
优选地,当所述第一粉尘浓度值稳定的时间达到第三预定条件时,使得所述第一光源单元处于关闭或休眠状态。
优选地,当所述第一光源单元休眠或关闭时间达到第四预定条件时,开启第一光源单元,从而更新第一粉尘浓度值。
优选地,当所述第一光源单元和所述第二光源单元其中任一个处于故障状态时,另一个处于正常状态的光源单元开启,基于该处于正常状态的光源单元获得的电信号计算输出粉尘浓度值。
优选地,所述第一光源单元能输出激光,所述第二光源单元能输出红外线。
优选地,所述第一光源单元能输出激光,所述第二光源单元能输出激光。
优选地,所述第一光源单元能输出红外线,所述第二光源单元能输出红外线。
优选地,所述第二光源单元始终处于开启状态,所述第一光源单元能处于间断开启状态。
一种空气净化控制方法,它包括以下步骤:开启第一光源单元并接收所述第一光源单元对应的第一电信号,基于所述第一电信号计算第一粉尘浓度值;当所述第一粉尘浓度值达到第一预定条件时,使得所述第一光源单元处于关闭或休眠状态;开启第二光源单元并接收所述第二光源单元对应的第二电信号;基于所述第二电信号和所述第一粉尘浓度值计算输出粉尘浓度值;当所述第二电信号或所述第一电信号或所述第一粉尘浓度 值达到第二预定条件时,再次开启所述第一光源单元,从而更新第一粉尘浓度值;根据输出粉尘浓度值对过滤装置进行控制。
一种粉尘浓度传感器,它包括:第一光源单元,其用于产生第一种光,并将所述第一种光投射至粉尘检测区域一;第二光源单元,其用于产生第二种光,并将所述第二种光投射至粉尘检测区域二;第一光接收单元,其用于接收第一种光投射过所述粉尘检测区域一经粉尘散射产生的第一散射光,并根据第一散射光产生相应的第一电信号;第二光接收单元,其用于接收第二种光投射过所述粉尘检测区域二经粉尘散射产生的第二散射光,并根据第二散射光产生相应的第二电信号;光源控制单元,其用于控制所述第一光源单元和第二光源单元;电信号处理单元,其用于接收第一电信号得到第一粉尘浓度值,接收第二电信号,基于第二电信号和第一电信号,或基于第二电信号和第一粉尘浓度值计算输出粉尘浓度值。
优选地,所述第一光源单元包括激光发射装置和第一透镜,所述第一光接收单元包括激光接收端;所述第二光源单元包括红外发射装置,所述第二光接收单元包括第二透镜和红外接收端。
优选地,所述第一光源单元包括第一激光发射装置,所述第二光源单元包括第二激光发射装置。
优选地,所述第一光源单元包括第一红外发射装置,所述第二光源单元包括第二红外发射装置。
优选地,所述光控制单元控制所述第二光源单元始终处于开启状态,所述第一光源单元能处于间断开启状态。
优选地,所述电信号处理单元包括:计算模块,其用于根据第一电信号和第二电信号计算输出粉尘浓度值;存储模块,用于存储计算输出粉尘浓度值所需的各项参数。
优选地,它还包括具有进气端和出气端的壳体,所述壳体形成有分别与所述进气端和出气端连通的腔室,检测区域一和检测区域二位于所述腔室。
优选地,所述检测区域一和所述检测区域二的部分位置重叠。
优选地,所述检测区域一和所述检测区域二分别位于所述腔室的上下游。
优选地,它还包括具有进气端和出气端的壳体,所述壳体形成有分别与所述进气端和输出气连通的第一通道和第二通道,检测区域一位于第一通道,所述检测区域二位于第二通道。
一种粉尘浓度传感器,它采用了上述中任一所述的粉尘浓度检测方法。
一种空气净化装置,它包括上述中任一所述的粉尘浓度传感器。
一种空气净化装置,它采用了上述中所述的空气净化控制方法。
本发明具有以下显著有益效果:本发明中提出的粉尘浓度检测方法和粉尘浓度传感器同时使用第一光源单元和第二光源单元,通过间断的激活第一光源单元使其处于间断工作状态,进而延长其使用寿命。第二光源单元处于连续工作状态,在第一光源单元处于休眠状态时仍进行测量,当第一光源处于休眠状态时,通过算法设计结合先前工作状态下第一光源单元获得的测量值和第二光源单元得到的持续电信号,在保持一定检测精度的条件下得到输出粉尘浓度值,该输出粉尘浓度值相比于单独使用第二光源单元测得的粉尘浓度值更为精准。
附图说明
在此描述的附图仅用于解释目的,而不意图以任何方式来限制本发明公开的范围。另外,图中的各部件的形状和比例尺寸等仅为示意性的,用于帮助对本发明的理解,并不是具体限定本发明各部件的形状和比例尺寸。本领域的技术人员在本发明的教导下,可以根据具体情况选择各种可能的形状和比例尺寸来实施本发明。
图1为本发明粉尘浓度检测方法的流程图。
图2为本发明粉尘浓度传感器在第一种实施方式下的结构示意图。
图3为本发明粉尘浓度传感器在第一种实施方式下的原理示意图。
图4为本发明粉尘浓度传感器在第二种实施方式下的结构示意图。
图5为本发明粉尘浓度传感器在第二种实施方式下的原理示意图。
图6为本发明粉尘浓度传感器开机自检的流程示意图。
图7为本发明粉尘传感器检测单元工作模式的流程示意图。
以上附图的附图标记:1、第一光源单元;2、第一光接收单元;3、第二光源单元;4、第二光接收单元;5、电信号处理单元;6、光源控制单元;7、抽气装置;8、第一通道;9、第二通道;10、壳体。
具体实施方式
结合附图和本发明具体实施方式的描述,能够更加清楚地了解本发明的细节。但是,在此描述的本发明的具体实施方式,仅用于解释本发明的目的,而不能以任何方式理解成是对本发明的限制。在本发明的教导下,技术人员可以构想基于本发明的任意可能的 变形,这些都应被视为属于本发明的范围。
图1为本发明粉尘浓度检测方法的流程图,如图1所示,一种粉尘浓度检测方法,它包括以下步骤:
开启第一光源单元并接收第一光源单元对应的第一电信号,基于第一电信号计算第一粉尘浓度值。
当第一粉尘浓度值达到第一预定条件时,使得第一光源单元处于关闭或休眠状态。
该步骤具体为,当第一粉尘浓度值稳定后,使得第一光源单元处于关闭或休眠状态。第一预定条件为第一粉尘浓度值稳定。如此,使得第一光源单元处于关闭或休眠状态,可以使第一光源单元的使用时间得到减小,进而延长其使用寿命。
当第一粉尘浓度值稳定的时间达到第三预定条件时,使得第一光源单元处于关闭或休眠状态。第三预定条件为预先设定的第一粉尘浓度值稳定的某一长度时间,当第一粉尘浓度值稳定且其稳定的时间达到某一长度时间时,使得第一光源单元处于关闭或休眠状态。如此,检测到的第一粉尘浓度值稳定时间达到一定时间,说明此时第一粉尘浓度值的稳定程度高,一定时间内的空气中粉尘浓度值变化小,此时无需开启第一光源单元继续检测得到第一粉尘浓度值,可以使其进入关闭或休眠状态,进而使用第二光源单元进行检测。
开启第二光源单元并接收第二光源单元对应的第二电信号。
该步骤具体为,开启第二光源单元并接收第二光源单元对应的第二电信号,其中开启第二光源单元的时间可以与第一光源单元开启的时间相同,也可以早于第一光源单元的开启时间,当然,还可以晚于第一光源单元的开启时间。
基于第二电信号和第一电信号,或基于第二电信号和第一粉尘浓度值计算输出粉尘浓度值。
该步骤具体为,基于第二电信号的波动趋势和第一电信号,或基于第二电信号的波动趋势和第一粉尘浓度值计算输出粉尘浓度值。其中,第一粉尘浓度值为第一光源单元关闭或休眠前获得的最新的第一粉尘浓度值,第一电信号为第一光源单元关闭或休眠前获得的最新的电信号。
当第二电信号或所述第一电信号或所述第一粉尘浓度值达到第二预定条件时,再次开启第一光源单元,从而更新第一粉尘浓度值。
该步骤具体为,基于第二光源单元获得第二电信号的波动趋势,基于第二电信号的波动趋势,再次开启第一光源单元,从而更新第一粉尘浓度值。第二预定条件表示第二 信号的波动趋势,当第二信号的波动趋势超过一定程度时,再次开启第一光源单元,根据开启第一光源单元后得到的第一电信号得到粉尘浓度值更新先前得到的第一粉尘浓度值。
当第一光源单元休眠或关闭时间达到第四预定条件时,开启第一光源单元,从而更新第一粉尘浓度值。
该步骤具体为,第四预定条件表示预先设定的第一光源单元休眠或关闭时间的最长时间长度,当第一光源单元休眠或关闭时间达到预先设定的最长时间长度时,开启第一光源单元,从而更新第一粉尘浓度值。如此,当第一光源单元处于休眠或关闭的时间长度内时,第二光源单元获得第二电信号的波动趋势一直处于稳定状态下,当到达预设最长时间长度时可以强制开启第一光源单元,进而在该方法检测下保证得到的输出粉尘浓度值的精度。
第一光源单元能输出激光,第二光源单元能输出红外线。其中,基于第二光源单元得到的第二电信号和第一光源单元获得的第一粉尘浓度值计算输出粉尘浓度值的具体算法可以有多种形式,下面举例说明了两种具体算法过程:
算法一,先获取第一光源单元进入休眠或者关闭前的第一粉尘浓度值A,再根据数值A所处的激光浓度范围,基于多次实践和反复试验得到与激光相对应的红外预测系数。
算法二,其具体过程如下,当第一光源单元检测到的粉尘浓度稳定时,得到一个第一电信号处理数据M1,同时读取当前第二光源单元检测的第二电信号得到处理数据N1。多次重复上述步骤,进而得到M1、M2、M3以及N1、N2、N3等数据。对这些数据通过算法逆推可以得到红外预测对应系数的修正值,通过不断自修正预测数据参照表,可以进一步保证通过该表得到的输出粉尘浓度值的准确性。在不断自修正预测数据参照表中的数值后,可以参照算法一中算法步骤输出粉尘浓度值。
在整个粉尘浓度检测方法中,第二光源单元始终处于开启状态,第一光源单元能处于间断开启状态。通过间断的激活第一光源单元,使其处于间断工作状态,进而延长其使用寿命。第二光源单元处于连续工作状态,在第一光源单元处于休眠状态时仍进行测量,通过算法设计结合第一光源单元的测量值和第二光源单元的测量值在保持一定检测精度的条件下得到第一光源单元处于休眠状态时的输出粉尘浓度值,该输出粉尘浓度值相比于单独使用第二光源单元测得的粉尘浓度值更为精准。
在一种优选的实施方式中,当第一光源单元和第二光源单元开启时,检测第一光源单元和第二光源单元是否都能够正常运行。若检测到第一光源单元和第二光源单元其中 任一个处于故障状态时,另一个处于正常状态的光源单元开启,基于该处于正常状态的光源单元获得的电信号计算输出粉尘浓度值。当第一光源单元和第二光源单元正常启动后,两者均正常工作,在工作过程中,若第一光源单元和第二光源单元其中任一个处于故障状态时,则另一个处于正常状态的光源单元开启,基于该处于正常状态的光源单元获得的电信号计算输出粉尘浓度值。
在一种优选的实施方式中,在开启第一光源单元并接收第一光源单元对应的第一电信号的同时,开启第二光源单元并接收第二光源单元对应的第二电信号,基于第一电信号计算第一粉尘浓度值,以此时的第一粉尘浓度值和第二电信号作为后续步骤中计算输出粉尘浓度值的基准。如此,在第一光源单元处于关闭或休眠状态前,开启第二光源单元并接收第二光源单元对应的第二电信号,可以预先获得第二电信号,在第一光源单元处于关闭或休眠状态时,可以基于预先获得的大量更新的第二电信号数值和第一粉尘浓度值计算输出粉尘浓度值,使得计算出的输出粉尘浓度值相比较原有情况下的更为精准。
在一种实施方式中,第一光源单元能输出激光,第二光源单元能输出激光。在一种工作模式下,两个光源单元均处于间断工作的状态,且两个间断工作的时间是相互错开的,保证始终有一个处于检测状态,另一个处于休眠或关闭状态。在另一种工作模式下,可以同时开启第一光源单元和第二光源单元,通过两者测量得到的信号进行互补以得到输出粉尘浓度值,如此减小测量误差。
在一种实施方式中,第一光源单元能输出第一红外线,第二光源单元能输出红外线。同样的,在一种工作模式下,两个红外单元处于间断工作的状态,且两个间断工作的时间是相互错开的,保证始终有一个处于检测状态,另一个处于休眠或关闭状态。在另一种工作模式下,同时开启第一光源单元和第二光源单元,通过两者测量得到的信号进行互补以得到输出粉尘浓度值,如此减小测量误差。
基于上述粉尘浓度检测方法得到一种空气净化控制方法,它包括以下步骤:开启第一光源单元并接收第一光源单元对应的第一电信号,基于第一电信号计算第一粉尘浓度值;当第一粉尘浓度值达到第一预定条件时,使得第一光源单元处于关闭或休眠状态;开启第二光源单元并接收第二光源单元对应的第二电信号;基于第二电信号和第一电信号,或基于第二电信号和第一粉尘浓度值计算输出粉尘浓度值;当第二电信号或所述第一电信号或所述第一粉尘浓度值达到第二预定条件时,再次开启第一光源单元,从而更新第一粉尘浓度值;根据输出粉尘浓度值对过滤装置进行控制。
上述空气净化控制方法中,第一光源单元能输出激光,第二光源单元能输出红外线。 第二光源单元始终处于开启状态,第一光源单元能处于间断开启状态。在空气净化控制方法中采用上述粉尘浓度检测方法后,其同时使用第一光源单元和第二光源单元,一方面延长了第一光源单元的使用寿命,另外一方面第二光源单元处于连续工作状态,在第一光源单元处于休眠或关闭状态时仍进行测量,通过算法设计结合第一光源单元的测量值和第二光源单元的测量值在保持一定检测精度的条件下得到第一光源单元处于休眠状态时的输出粉尘浓度值,该输出粉尘浓度值相比于单独使用红外线光源测得的粉尘浓度值更为精准。当第一光源单元处于工作状态时,基于第一光源单元得到的输出粉尘浓度值对过滤装置进行控制。当第一光源单元处于休眠或关闭状态时,基于第二电信号和第一粉尘浓度值计算输出粉尘浓度值对过滤装置进行控制。
一种粉尘浓度传感器,第一光源单元1,其用于产生第一种光,并将第一种光投射至粉尘检测区域一;第二光源单元3,其用于产生第二种光,并将第二种光投射至粉尘检测区域二;第一光接收单元2,其用于接收第一种光投射过粉尘检测区域一经粉尘散射产生的第一散射光,并根据第一散射光产生相应的第一电信号;第二光接收单元4,其用于接收第二种光投射过粉尘检测区域二经粉尘散射产生的第二散射光,并根据第二散射光产生相应的第二电信号;光源控制单元6,其用于控制第一光源单元1和第二光源单元3;电信号处理单元5,其用于接收第一电信号得到第一粉尘浓度值,接收第二电信号,基于所述第二电信号和所述第一电信号,或基于所述第二电信号和第一粉尘浓度值计算输出粉尘浓度值。
电信号处理单元5包括:计算模块,其用于根据第一电信号和第二电信号计算输出粉尘浓度值;存储模块,用于存储计算输出粉尘浓度值所需的各项参数。光控制单元控制第二光源单元3始终处于开启状态,第一光源单元1能处于间断开启状态。
图2为本发明粉尘浓度传感器在第一种实施方式下的结构示意图,如图2所示,本粉尘浓度传感器还包括具有进气端和出气端的壳体10,壳体10形成有分别与进气端和出气端连通的腔室,检测区域一和检测区域二位于腔室。在壳体10的进气端或出气端设置有一抽气装置7,其用于实现腔室内气体的对流,进而便于粉尘浓度传感器的检测以及保证其检测出的粉尘浓度的有效性。在本实施方式中,壳体10形成有与进气端和输出气连通的第一通道8,第一光源单元1、第二光源单元3、第一光接收单元2和第二光接收单元4均设置于第一通道8中。如图2所示,第一光源单元1和第一光接收单元2形成的检测区域一与第二光源单元3和第二光接收单元4形成的检测区域二设置于腔室内第一通道8的上下游。在另外一种情况下,第一光源单元1和第一光接收单元2形成的检测区域一与第二 光源单元3和第二光接收单元4形成的检测区域二的部分位置重叠,如此即对同一检测区域内的气体同时进行监测,在一定程度上可以提高检测结果的精确性,减少可能因检测区域一和检测区域二中粉尘浓度不同而导致发生的误差。图3为本发明粉尘浓度传感器在第一种实施方式下的原理示意图,如图3所示,第一检测单元包括第一光源单元1和第一光接收单元2,第二检测单元包括第二光源单元3和第二光接收单元4。第一检测单元和第二检测单元设置于腔室内第一通道8的上下游。气流在抽气装置7的作用下在壳体10内第一通道8中由进气端进入,流经第一检测单元和第二检测单元,通过出气端流出。光源控制单元6和电信号处理单元5可以集成在MCU上。MCU分别与第一检测单元和第二检测单元相电性连接,用于传输电信号。
图4为本发明粉尘浓度传感器在第二种实施方式下的结构示意图,如图4所示,本粉尘浓度传感器它还包括具有进气端和出气端的壳体10,壳体10形成有分别与进气端和输出气连通的第一通道8和第二通道9,检测区域一位于第一通道8,检测区域二位于第二通道9。在壳体10的进气端或出气端设置有一抽气装置7,其用于实现腔室内第一通道8和第二通道9中气体的流通,进而便于粉尘浓度传感器的检测以及保证其检测出的粉尘浓度的有效性。具体为,第一光接收单元2和第一光源单元1位于第一通道8中,第一光接收单元2和第一光源单元1形成检测区域一,其对流经第一通道8中的气体进行粉尘浓度检测。第二光接收单元4和第二光源单元3位于第二通道9中,第二光接收单元4和第二光源单元3形成检测区域二,其对流经第二通道9中的气体进行粉尘浓度检测。图5为本发明粉尘浓度传感器在第二种实施方式下的原理示意图,如图5所示,第一检测单元包括第一光源单元1和第一光接收单元2,第二检测单元包括第二光源单元3和第二光接收单元4。第一检测单元设置于腔室内的第一通道8中,第二检测单元设置于腔室内的第二通道9中。气流在抽气装置7的作用下在壳体10内的第一通道8和第二通道9中由进气端进入,分别流经第一检测单元和第二检测单元,最后通过出气端流出。光源控制单元6和电信号处理单元5可以集成在MCU上,MCU分别与第一检测单元和第二检测单元相电性连接,用于传输电信号。
在一种实施方式中,第一光源单元1可以包括激光发射装置,第二光源单元3包括红外发射装置。在本实施方式中,本发明粉尘浓度传感器的工作流程如下:
图6为本发明粉尘浓度传感器开机自检的流程示意图,如图6所示,粉尘浓度传感器在开机时首先进行自检,判断两个检测单元是否正常。如果两个检测单元正常,则进入双检测单元工作模式;如果两个检测单元中有一个异常,则进入单检测单元工作模式;如 果两个都异常,则进行检测单元异常报警。
图7为双检测单元工作模式的流程示意图,如图7所示:步骤1,开始工作后,第一检测单元和第二检测单元持续运行一段时间,例如5min,使两者进入稳定工作状态,当第一检测单元刚运行1min后,第一检测单元反馈第一电信号给电信号处理单元5,电信号处理单元5接收第一电信号得到第一粉尘浓度值,此时,第一粉尘浓度值表示输出粉尘浓度值,粉尘浓度传感器显示输出粉尘浓度值。在此阶段中,第二检测单元持续工作,采集第二电信号,并通过电信号处理单元5进行存储。步骤2,当第一检测单元持续运行一定时间,例如30s,其表示每隔30s进行一次判断,判断第一检测单元是否满足间断工作条件,也就是第一检测单元检测的第一粉尘浓度值是否稳定。若第一粉尘浓度值稳定,则使第一检测单元处于休眠或关闭状态,若第一粉尘浓度不稳定,则第一检测单元再继续运行一定时间。步骤3,第一检测单元处于休眠或关闭状态,此时第二检测单元保持持续工作中,此时,基于第二检测单元持续获得的第二电信号的变化趋势和第一检测单元休眠或关闭前获得的第一粉尘浓度值通过电信号处理单元5计算得到输出粉尘浓度值,粉尘浓度传感器显示此输出粉尘浓度值。其中计算中第二检测单元获得的第二电信号涉及存储在存储模块中第二电信号的规律、变化趋势和第二电信号与第一粉尘浓度值的对应关系等,如此,基于第二电信号和第一检测单元休眠或关闭前获得的第一粉尘浓度值才能计算得到相对精度高于直接通过第二检测单元获得的第二电信号直接转换得到的粉尘浓度值。步骤4,基于第二检测单元获得的第二电信号判断是否满足唤醒第一检测单元的条件,若满足唤醒第一检测单元的条件,则再次开启第一检测单元,进而通过第一检测单元不断更新第一粉尘浓度值。唤醒第一检测单元的条件是第二检测单元获得的第二电信号的稳定程度,当第二检测单元获得的第二电信号不稳定时,唤醒第一检测单元。步骤5,唤醒第一检测单元的条件还包括判断第一检测单元处于休眠或者关闭状态的时间是否达到最长休眠或关闭时间,例如2imn,如果达到最长休眠或关闭时间,则再次开启第一检测单元,返回步骤2。若未达到最长休眠或关闭时间则继续按原有步骤工作。如此,本发明粉尘浓度传感器按照上述步骤进行循环。
在另一种实施方式中,第一光源单元1可以包括第一激光发射装置,第二光源单元3包括第二激光发射装置。在另一种实施方式中,第一光源单元1可以包括第一红外发射装置,第二光源单元3包括第二红外发射装置。在上述两种实施方式中,两个光源单元均处于间断工作的状态,且两个间断工作的时间是相互错开的,保证始终有一个处于检测状态,另一个处于休眠或关闭状态。在上述两种实施方式中,两个光源单元还可以同时 开启,通过两者测量得到的信号进行互补以得到输出粉尘浓度值,如此减小测量误差。
一种粉尘浓度传感器,它采用了上述粉尘浓度检测方法。
一种空气净化装置,它包括上述任一种结构的粉尘浓度传感器。
一种空气净化装置,它采用了上述空气净化控制方法。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (25)

  1. 一种粉尘浓度检测方法,其特征在于,它包括以下步骤:
    开启第一光源单元并接收所述第一光源单元对应的第一电信号,基于所述第一电信号计算第一粉尘浓度值;
    当所述第一粉尘浓度值达到第一预定条件时,使得所述第一光源单元处于关闭或休眠状态;
    开启第二光源单元并接收所述第二光源单元对应的第二电信号;
    基于所述第二电信号和所述第一电信号,或基于所述第二电信号和第一粉尘浓度值计算输出粉尘浓度值;
    当所述第二电信号或所述第一电信号或所述第一粉尘浓度值达到第二预定条件时,再次开启所述第一光源单元,从而更新第一粉尘浓度值。
  2. 根据权利要求1所述的粉尘浓度检测方法,其特征在于:基于所述第二光源单元获得所述第二电信号的波动趋势,基于所述第二电信号的波动趋势,再次开启所述第一光源单元,从而更新第一粉尘浓度值。
  3. 根据权利要求1所述的粉尘浓度检测方法,其特征在于:基于所述第二电信号的波动趋势和所述第一粉尘浓度值计算所述输出粉尘浓度值。
  4. 根据权利要求1所述的粉尘浓度检测方法,其特征在于:当所述第一粉尘浓度值稳定后,使得所述第一光源单元处于关闭或休眠状态。
  5. 根据权利要求4所述的粉尘浓度检测方法,其特征在于:当所述第一粉尘浓度值稳定的时间达到第三预定条件时,使得所述第一光源单元处于关闭或休眠状态。
  6. 根据权利要求1所述的粉尘浓度检测方法,其特征在于:当所述第一光源单元休眠或关闭时间达到第四预定条件时,开启第一光源单元,从而更新第一粉尘浓度值。
  7. 根据权利要求1所述的粉尘浓度检测方法,其特征在于:当所述第一光源单元和所述第二光源单元其中任一个处于故障状态时,另一个处于正常状态的光源单元开 启,基于该处于正常状态的光源单元获得的电信号计算输出粉尘浓度值。
  8. 根据权利要求1所述的粉尘浓度检测方法,其特征在于:所述第一光源单元能输出激光,所述第二光源单元能输出红外线。
  9. 根据权利要求1所述的粉尘浓度检测方法,其特征在于:所述第一光源单元能输出激光,所述第二光源单元能输出激光。
  10. 根据权利要求1所述的粉尘浓度检测方法,其特征在于:所述第一光源单元能输出红外线,所述第二光源单元能输出红外线。
  11. 根据权利要求1所述的粉尘浓度检测方法,其特征在于:所述第二光源单元始终处于开启状态,所述第一光源单元能处于间断开启状态。
  12. 一种空气净化控制方法,其特征在于,它包括以下步骤:
    开启第一光源单元并接收所述第一光源单元对应的第一电信号,基于所述第一电信号计算第一粉尘浓度值;
    当所述第一粉尘浓度值达到第一预定条件时,使得所述第一光源单元处于关闭或休眠状态;
    开启第二光源单元并接收所述第二光源单元对应的第二电信号;
    基于所述第二电信号和所述第一电信号,或基于所述第二电信号和第一粉尘浓度值计算输出粉尘浓度值;
    当所述第二电信号或所述第一电信号或所述第一粉尘浓度值达到第二预定条件时,再次开启所述第一光源单元,从而更新第一粉尘浓度值;
    根据输出粉尘浓度值对过滤装置进行控制。
  13. 一种粉尘浓度传感器,其特征在于,它包括:
    第一光源单元,其用于产生第一种光,并将所述第一种光投射至粉尘检测区域一;
    第二光源单元,其用于产生第二种光,并将所述第二种光投射至粉尘检测区域二;
    第一光接收单元,其用于接收第一种光投射过所述粉尘检测区域一经粉尘散射产生 的第一散射光,并根据第一散射光产生相应的第一电信号;
    第二光接收单元,其用于接收第二种光投射过所述粉尘检测区域二经粉尘散射产生的第二散射光,并根据第二散射光产生相应的第二电信号;
    光源控制单元,其用于控制所述第一光源单元和第二光源单元;
    电信号处理单元,其用于接收第一电信号得到第一粉尘浓度值,接收第二电信号,基于所述第二电信号和所述第一电信号,或基于所述第二电信号和第一粉尘浓度值计算输出粉尘浓度值。
  14. 根据权利要求13所述的粉尘浓度传感器,其特征在于:所述第一光源单元包括激光发射装置,所述第二光源单元包括红外发射装置。
  15. 根据权利要求13所述的粉尘浓度传感器,其特征在于:所述第一光源单元包括第一激光发射装置,所述第二光源单元包括第二激光发射装置。
  16. 根据权利要求13所述的粉尘浓度传感器,其特征在于:所述第一光源单元包括第一红外发射装置,所述第二光源单元包括第二红外发射装置。
  17. 根据权利要求13所述的粉尘浓度传感器,其特征在于:所述光源控制单元控制所述第二光源单元始终处于开启状态,所述第一光源单元能处于间断开启状态。
  18. 根据权利要求13所述的粉尘浓度传感器,其特征在于,所述电信号处理单元包括:
    计算模块,其用于根据第一电信号和第二电信号计算输出粉尘浓度值;
    存储模块,用于存储计算输出粉尘浓度值所需的各项参数。
  19. 根据权利要求13所述的粉尘浓度传感器,其特征在于,它还包括具有进气端和出气端的壳体,所述壳体形成有分别与所述进气端和出气端连通的腔室,检测区域一和检测区域二位于所述腔室。
  20. 根据权利要求19所述的粉尘浓度传感器,其特征在于,所述检测区域一和所 述检测区域二的部分重叠。
  21. 根据权利要求19所述的粉尘浓度传感器,其特征在于,所述检测区域一和所述检测区域二分别位于所述腔室的上下游。
  22. 根据权利要求19所述的粉尘浓度传感器,其特征在于:它还包括具有进气端和出气端的壳体,所述壳体形成有分别与所述进气端和输出气连通的第一通道和第二通道,检测区域一位于第一通道,所述检测区域二位于第二通道。
  23. 一种粉尘浓度传感器,其特征在于:它采用了权利要求1至11中任一所述的粉尘浓度检测方法。
  24. 一种空气净化装置,其特征在于:它包括权利要求13至22中任一所述的粉尘浓度传感器。
  25. 一种空气净化装置,其特征在于:它采用了权利要求12所述的空气净化控制方法。
PCT/CN2016/085403 2015-06-12 2016-06-12 粉尘浓度检测方法及粉尘浓度传感器 WO2016197969A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510326144.0 2015-06-12
CN201510326144.0A CN104914026B (zh) 2015-06-12 2015-06-12 粉尘浓度检测方法及粉尘浓度传感器

Publications (1)

Publication Number Publication Date
WO2016197969A1 true WO2016197969A1 (zh) 2016-12-15

Family

ID=54083282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085403 WO2016197969A1 (zh) 2015-06-12 2016-06-12 粉尘浓度检测方法及粉尘浓度传感器

Country Status (2)

Country Link
CN (1) CN104914026B (zh)
WO (1) WO2016197969A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644869A (zh) * 2017-03-03 2017-05-10 广州飒括科技有限公司 一种红外pm2.5浓度传感器及检测方法
CN107421862A (zh) * 2017-08-13 2017-12-01 煤炭科学技术研究院有限公司 一种粉尘浓度传感器
CN110595969A (zh) * 2019-09-23 2019-12-20 宁波奥克斯电气股份有限公司 Pm2.5传感器的控制方法、装置、电器及存储介质
CN110940560A (zh) * 2019-11-11 2020-03-31 西安重光明宸检测技术有限公司 一种粉尘检测装置
CN111220577A (zh) * 2020-01-17 2020-06-02 中煤科工集团重庆研究院有限公司 气路保护式激光粉尘浓度检测装置及其自检方法
CN113008722A (zh) * 2021-04-05 2021-06-22 中国人民解放军63966部队 装甲车辆车内含尘量测量方法
CN113405958A (zh) * 2021-06-18 2021-09-17 中煤科工集团重庆研究院有限公司 一种粉尘浓度传感器标定方法
CN117196109A (zh) * 2023-09-15 2023-12-08 中煤科工集团重庆研究院有限公司 一种基于多源信息融合的煤矿井下粉尘浓度预测修正方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655539B (zh) * 2015-03-20 2018-05-29 安费诺(常州)连接系统有限公司 双通道粉尘浓度传感器及其粉尘浓度检测方法
CN104914026B (zh) * 2015-06-12 2018-08-07 艾欧史密斯(中国)热水器有限公司 粉尘浓度检测方法及粉尘浓度传感器
CN105136637B (zh) * 2015-09-17 2017-10-17 深圳代尔夫特电子科技有限公司 用于检测空气中的颗粒物的传感器及其制造方法
CN105352860B (zh) * 2015-10-23 2018-12-04 上海智觅智能科技有限公司 一种红外粉尘传感器的数据处理方法
CN105651673B (zh) * 2015-12-31 2018-11-02 北京怡和嘉业医疗科技股份有限公司 滤芯的效能检测装置、检测方法及呼吸机
CN105675527B (zh) * 2016-01-21 2018-10-09 深圳市理邦精密仪器股份有限公司 一种光源发光的控制方法及装置
CN106766022B (zh) * 2016-11-26 2020-09-15 北京小米移动软件有限公司 传感器控制方法及装置
DE102017001438B4 (de) * 2017-02-15 2023-04-27 Paragon Ag Partikelsensor
CN106970012B (zh) * 2017-05-02 2024-02-20 湖南建研信息技术股份有限公司 一种双传感器扬尘检测装置及方法
CN107036948A (zh) * 2017-05-16 2017-08-11 珠海格力电器股份有限公司 检测粉尘浓度的方法、装置和系统
CN108918371B (zh) * 2018-07-18 2021-01-26 中煤科工集团重庆研究院有限公司 一种高精度宽量程的粉尘浓度检测装置及粉尘浓度检测方法
CN109647097B (zh) * 2018-12-17 2023-09-26 宁波市政工程建设集团股份有限公司 一种施工扬尘控制方法
CN110044785B (zh) * 2019-04-16 2022-04-29 北京汽车股份有限公司 检测颗粒物的方法、装置及车辆
CN110595967B (zh) * 2019-08-02 2022-03-22 张家界航空工业职业技术学院 一种粉尘浓度检测仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594004A (en) * 1982-07-03 1986-06-10 Horiba, Ltd. Continuous particulate-measuring apparatus using an optoacoustic effect
CN101819128A (zh) * 2010-04-26 2010-09-01 浙江万里学院 一种抗积灰干扰的激光粉尘检测装置
CN203376235U (zh) * 2013-07-30 2014-01-01 上海理工大学 一种适用于空气净化器内在线测量pm2.5浓度的装置
CN103852405A (zh) * 2014-02-24 2014-06-11 深圳市芯通信息科技有限公司 一种分层式颗粒浓度测量装置及方法
CN104655539A (zh) * 2015-03-20 2015-05-27 安费诺(常州)连接系统有限公司 双通道粉尘浓度传感器及其粉尘浓度检测方法
CN104914026A (zh) * 2015-06-12 2015-09-16 艾欧史密斯(中国)热水器有限公司 粉尘浓度检测方法及粉尘浓度传感器
CN205091226U (zh) * 2015-06-12 2016-03-16 艾欧史密斯(中国)热水器有限公司 粉尘浓度传感器及空气净化装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ553800A0 (en) * 2000-02-10 2000-03-02 Cole, Martin Terence Improvements relating to smoke detectors particularily duct monitored smoke detectors
CN101968426B (zh) * 2010-09-27 2012-07-25 常熟市矿山机电器材有限公司 一种粉尘浓度传感器
CN202793978U (zh) * 2012-07-31 2013-03-13 安徽皖仪科技股份有限公司 新型激光后散射法测量粉尘浓度智能传感器
CN104165833A (zh) * 2014-09-01 2014-11-26 天津工业大学 一种港口粉尘污染程度的检测装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594004A (en) * 1982-07-03 1986-06-10 Horiba, Ltd. Continuous particulate-measuring apparatus using an optoacoustic effect
CN101819128A (zh) * 2010-04-26 2010-09-01 浙江万里学院 一种抗积灰干扰的激光粉尘检测装置
CN203376235U (zh) * 2013-07-30 2014-01-01 上海理工大学 一种适用于空气净化器内在线测量pm2.5浓度的装置
CN103852405A (zh) * 2014-02-24 2014-06-11 深圳市芯通信息科技有限公司 一种分层式颗粒浓度测量装置及方法
CN104655539A (zh) * 2015-03-20 2015-05-27 安费诺(常州)连接系统有限公司 双通道粉尘浓度传感器及其粉尘浓度检测方法
CN104914026A (zh) * 2015-06-12 2015-09-16 艾欧史密斯(中国)热水器有限公司 粉尘浓度检测方法及粉尘浓度传感器
CN205091226U (zh) * 2015-06-12 2016-03-16 艾欧史密斯(中国)热水器有限公司 粉尘浓度传感器及空气净化装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644869A (zh) * 2017-03-03 2017-05-10 广州飒括科技有限公司 一种红外pm2.5浓度传感器及检测方法
CN107421862A (zh) * 2017-08-13 2017-12-01 煤炭科学技术研究院有限公司 一种粉尘浓度传感器
CN110595969A (zh) * 2019-09-23 2019-12-20 宁波奥克斯电气股份有限公司 Pm2.5传感器的控制方法、装置、电器及存储介质
CN110940560A (zh) * 2019-11-11 2020-03-31 西安重光明宸检测技术有限公司 一种粉尘检测装置
CN111220577A (zh) * 2020-01-17 2020-06-02 中煤科工集团重庆研究院有限公司 气路保护式激光粉尘浓度检测装置及其自检方法
CN111220577B (zh) * 2020-01-17 2022-08-02 中煤科工集团重庆研究院有限公司 气路保护式激光粉尘浓度检测装置及其自检方法
CN113008722A (zh) * 2021-04-05 2021-06-22 中国人民解放军63966部队 装甲车辆车内含尘量测量方法
CN113405958A (zh) * 2021-06-18 2021-09-17 中煤科工集团重庆研究院有限公司 一种粉尘浓度传感器标定方法
CN113405958B (zh) * 2021-06-18 2023-03-17 中煤科工集团重庆研究院有限公司 一种粉尘浓度传感器标定方法
CN117196109A (zh) * 2023-09-15 2023-12-08 中煤科工集团重庆研究院有限公司 一种基于多源信息融合的煤矿井下粉尘浓度预测修正方法
CN117196109B (zh) * 2023-09-15 2024-04-05 中煤科工集团重庆研究院有限公司 一种基于多源信息融合的煤矿井下粉尘浓度预测修正方法

Also Published As

Publication number Publication date
CN104914026B (zh) 2018-08-07
CN104914026A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2016197969A1 (zh) 粉尘浓度检测方法及粉尘浓度传感器
JP2017519176A (ja) 空気浄化機、そのフィルタの交換時期決定方法、及びフィルタの交換時期差圧決定装置と方法
JP2019521326A (ja) 流れ及び気泡検出システムを有する自動出力制御液体粒子計数器
US9645009B2 (en) Ultraviolet monitoring systems, methods, and devices
JP2009002938A (ja) 吸光−光音響検知を用いた低出力且つ高速の赤外線ガスセンサ
CN109140691A (zh) 一种空调用过滤网脏堵情况自动检测方法
KR100539310B1 (ko) 자가 감도 보정 기능 및 감도편차 조절 기능을 갖는 광학식먼지센서
KR101927587B1 (ko) 공기 청정기 및 공기 청정기 필터의 청소 또는 교체 시기를 판단하는 방법
JP2005351896A (ja) ガスセンサ構造
JP4942325B2 (ja) 空気浄化装置
US11291940B2 (en) Air purifier including air filter life-time indicator and method for determining the life-time of an air filter
KR102383583B1 (ko) 오염감지센서, 이를 구비하는 공기정화장치 및 그 제어방법
FR2996002A1 (fr) Procede de detection d'elements polluants dans l'air et de pilotage d'un systeme de decontamination, sonde de detection d'une pollution de l'air et systeme de traitement d'air comprenant une telle sonde
CN205091226U (zh) 粉尘浓度传感器及空气净化装置
JP2009053910A (ja) ガス警報器
KR20160016504A (ko) 공기정화기 및 이의 필터교체시기 결정 방법
CN102762972B (zh) 用于确定散射光测量设备的测量结果质量的方法和装置
US8869594B2 (en) Particle detecting device evaluating system and particle detecting device evaluating method
JP2020051718A (ja) 加湿装置
CN106442249B (zh) 粉尘检测装置
CN108027158B (zh) 空气净化器
KR20160122024A (ko) 차량용 미세먼지 감지센서
KR102449622B1 (ko) 공기청정기 및 이의 동작 방법
JP6568636B1 (ja) 警報器
KR20120086101A (ko) 에어컨의 에어필터 오염 감지장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16806867

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16806867

Country of ref document: EP

Kind code of ref document: A1