WO2016197576A1 - 显示装置及其驱动方法、制作方法 - Google Patents

显示装置及其驱动方法、制作方法 Download PDF

Info

Publication number
WO2016197576A1
WO2016197576A1 PCT/CN2015/097680 CN2015097680W WO2016197576A1 WO 2016197576 A1 WO2016197576 A1 WO 2016197576A1 CN 2015097680 W CN2015097680 W CN 2015097680W WO 2016197576 A1 WO2016197576 A1 WO 2016197576A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
electrode
electrode layer
touch
electrodes
Prior art date
Application number
PCT/CN2015/097680
Other languages
English (en)
French (fr)
Inventor
丁小梁
王海生
刘英明
赵卫杰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/103,980 priority Critical patent/US10222886B2/en
Publication of WO2016197576A1 publication Critical patent/WO2016197576A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display device, a driving method thereof, and a manufacturing method.
  • the existing touch display device includes an in-cell and an on-cell.
  • the in-cell touch display device generally multiplexes electrodes in the display panel as touch emitter electrodes for touch. This not only reduces the overall box thickness of the display device, but also reduces the step of separately manufacturing the touch emitter electrode. Therefore, the in-cell touch display device has gradually become the mainstream.
  • a mainstream 2D/3D convertible display device is a variable 3D grating module that can be switched between a transparent state and an opaque state on the outside of the display panel, thereby realizing 2D/3D conversion.
  • a variable 3D grating module requires conversion between a transparent state and an opaque state by electrodes. Since the electrodes in the variable 3D grating module are located on the light emitting side of the display panel, the electrodes in the display panel are shielded. Therefore, the electrodes in the display panel cannot be reused as the touch transmitting electrodes.
  • Implement an in-line touch structure In the current 2D/3D convertible touch display device, the touch emitter electrode is separately fabricated on the light exit side of the above-mentioned 3D grating module, which is difficult to manufacture and has a large box thickness.
  • Embodiments of the present invention provide a display device, a driving method thereof, and a manufacturing method.
  • a display device comprising: a display panel; and a 3D grating module disposed on a light exit side of the display panel.
  • the 3D grating module comprises: a 3D common electrode layer; a 3D grating electrode layer disposed on a light emitting side of the 3D common electrode layer; and an electrically controlled material layer disposed between the 3D common electrode layer and the 3D grating electrode layer And a touch receiving electrode layer disposed on a light emitting side of the 3D grating electrode layer.
  • the 3D grating module is adapted to operate as a 3D grating when an electric field is formed between the 3D common electrode layer and the 3D grating electrode layer, and is transparent when no electric field is formed between the 3D common electrode layer and the 3D grating electrode layer.
  • the 3D grating electrode layer includes a plurality of grating electrodes, and at least a portion of the plurality of grating electrodes are multiplexed into a touch transmitting electrode and connected to the touch transmitting electrode line.
  • the touch receiving electrode layer includes a plurality of receiving electrodes and a plurality of touch signal receiving lines connecting the corresponding receiving electrodes, a length direction of the receiving electrodes in the touch receiving electrode layer and a length direction of the grating electrodes in the 3D grating electrode layer vertical.
  • the electronic control material for forming the layer of the electronic control material is a liquid crystal material;
  • the 3D grating module further includes a polarizer on the light exit side of the 3D grating electrode layer;
  • the liquid crystal material is adapted to be located at the electric field In the middle, the light emitted from the display panel cannot pass through the polarizer, and the light emitted from the display panel is transmitted through the polarizer when not in the electric field.
  • the plurality of grating electrodes are divided into at least one grating electrode group, the grating electrode group includes at least one grating electrode; and at least one grating electrode in the grating electrode group is connected to the same touch transmitting electrode line.
  • the 3D common electrode layer includes a plurality of common electrodes and a plurality of 3D common electrode lines connecting the corresponding common electrodes, and the common electrode and the corresponding grating electrode group form electrode pairs for generating an electric field.
  • the receiving electrode comprises a plurality of receiving sub-electrodes connected to the same touch signal receiving line, the receiving sub-electrodes being parallel to the grating electrodes and spaced apart from the grating electrodes.
  • the 3D variable grating module further includes a transparent cover plate, and the 3D grating electrode layer and the touch receiving electrode layer are formed on the transparent cover plate by a patterning process.
  • a method for driving the above display device comprising: generating a voltage between a grating electrode and a corresponding common electrode by controlling a voltage applied to a grating electrode line and a 3D common electrode line Electric field for 3D display.
  • a touch emission signal is sequentially applied to each touch emitter electrode line to perform touch detection.
  • the method further includes: when the touch emission signal is applied to each touch transmitting electrode line, the 3D connected to the common electrode corresponding to the grating electrode group connected to the touch transmitting electrode line The touch emission signal is synchronously applied to the common electrode line.
  • the method further comprises: by controlling a voltage applied to the grating electrode line and the corresponding 3D common electrode line, no electric field is generated between the grating electrode and the common electrode for 2D display.
  • a method of fabricating the above display device includes providing a display panel; and forming a 3D grating module on a light exit side of the display panel.
  • the 3D grating module comprises: a 3D common electrode layer; a 3D grating electrode layer disposed on a light emitting side of the 3D common electrode layer; and an electrically controlled material layer disposed between the 3D common electrode layer and the 3D grating electrode layer And a touch receiving electrode layer disposed on a light emitting side of the 3D grating electrode layer.
  • the 3D grating module is adapted to operate as a 3D grating when an electric field is formed between the 3D common electrode layer and the 3D grating electrode layer, and is transparent when no electric field is formed between the 3D common electrode layer and the 3D grating electrode layer.
  • the 3D grating electrode layer includes a plurality of grating electrodes, and at least a portion of the plurality of grating electrodes are multiplexed into a touch transmitting electrode and connected to the touch transmitting electrode line.
  • the touch receiving electrode layer includes a plurality of receiving electrodes and a plurality of touch signal receiving lines connected to the corresponding receiving electrodes; a length direction of the receiving electrodes in the touch receiving electrode layer and a length direction of the grating electrodes in the 3D grating electrode layer vertical.
  • the grating electrode in the variable 3D grating module can be multiplexed as the touch transmitting electrode, so that no additional touch emitter electrode is required, which reduces the manufacturing difficulty and has Smaller box thickness.
  • the grating electrode multiplexed as the touch transmitting electrode in the present invention is located outside the 3D common electrode layer, and is not shielded by the 3D common electrode layer, so that the touch detection can be well realized.
  • FIG. 1 is a schematic structural view of a display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic view for explaining a partial structure in the variable 3D grating module 200 in the embodiment shown in FIG. 1.
  • the display device of the present embodiment includes a display panel 100 and a 3D raster module 200 disposed on a light exit side of the display panel 100.
  • the 3D raster 200 can switch between 2D display and 3D display.
  • a variable 3D grating module includes a 3D common electrode layer 210, a 3D grating electrode layer 220 disposed on a light exiting side of the 3D common electrode layer 210, and is formed between the 3D common electrode layer 210 and the 3D grating electrode layer 220.
  • the electronic control material layer 230 and the touch receiving electrode layer 240 formed on the light emitting side of the 3D grating electrode layer 220.
  • variable 3D grating module 200 when an electric field is formed between the 3D grating electrode layer 220 and the 3D common electrode layer 210, the variable 3D grating module 200 is opaque in the display region corresponding to the position of the grating electrode 221, and is transparent at other positions in the display region. In this case, the variable 3D grating module 200 can function as a naked-eye 3D raster to achieve naked-eye 3D display.
  • the variable 3D grating module 200 is transparent in the display region corresponding to the position of the grating electrode 221, and is also transparent in other positions in the display region. . In this case, the variable 3D grating module 200 is entirely transparent, so that the display device performs 2D display.
  • the grating electrode 221 may be strip-shaped, and therefore, hereinafter also referred to as a strip-shaped grating electrode 221.
  • the display device provided by the embodiment of the present invention can multiplex the strip grating electrode 221 in the variable 3D grating module 200 as a touch transmitting electrode, so that no additional touch emitter electrode is required, which reduces the manufacturing difficulty. Has a smaller box thickness.
  • the grating electrode multiplexed as the touch transmitting electrode in the present invention is located outside the 3D common electrode layer, and is not shielded by the 3D common electrode layer, so that the touch detection can be well realized.
  • the electronic control material in the layer of the electronic control material 230 may be specifically a liquid crystal material 231.
  • the variable 3D grating module 200 described above may further include a polarizer 250 disposed on the light-emitting side of the strip-shaped grating electrode 221.
  • the liquid crystal material 231 is adapted to prevent the light emitted from the display panel 100 from passing through the polarizer 250 when it is in an electric field, and to pass the light emitted from the display panel 100 through the polarizer 250 when it is not in the electric field.
  • the orientation of the liquid crystal molecules in the liquid crystal material 231 may be set such that the long axis of the liquid crystal molecules in the liquid crystal material 231 is rotated in a specific direction in the electric field, so that the light emitted from the display panel 100 is located in a specific direction through the long axes.
  • the polarization direction after the liquid crystal molecules in the liquid crystal material 231 is perpendicular to the polarization direction of the polarizer 250, and thus cannot be transmitted through the polarizer 250.
  • the long axis of the liquid crystal molecules in the liquid crystal material 231 which is not located in the electric field is not rotated, and the corresponding light emitted from the liquid crystal molecules in the liquid crystal material 231 which is not rotated by the long axis can pass through the polarizer 250.
  • an electric field is applied between the stripe grating electrode 221 in the 3D grating electrode layer 220 and the common electrode 211 of the 3D common electrode layer 210, and corresponding to each stripe grating electrode 221 is formed in the display region.
  • the opaque regions and the transparent regions corresponding to the other regions, the transparent regions and the opaque regions together constitute a naked-eye 3D raster required for naked-eye 3D display.
  • the common electrode 211 may be strip-shaped.
  • variable 3D grating module described above may also be in other structural forms.
  • the material in the layer of electrically controlled material 230 can be disposed as an electrochromic material.
  • the electrochromic material is opaque when in an electric field and is not transparent when in an electric field.
  • an electric field can be applied between each of the grating electrodes 221 in the 3D grating electrode layer 220 and the common electrode 211 of the 3D common electrode layer 210 to cause electrochromism between the grating electrode 221 and the common electrode 211.
  • the material is opaque and can also switch between 2D/3D display.
  • the strip-shaped grating electrode 221 is divided into a plurality of grating electrode groups 220u, and the grating electrode group 220u may be strip-shaped, hereinafter also referred to as a strip-shaped grating electrode group 220u.
  • Each of the stripe grating electrode groups 220u may include a plurality of stripe grating electrodes 221 (for example, three are shown in the drawing). This has the advantage that since the plurality of stripe grating electrodes 221 are connected to the same touch emitter electrode line 222, the number of the touch emitter electrode lines 222 can be reduced.
  • each strip-shaped grating electrode group 220u should not be excessive.
  • the inclusion of only one strip-shaped grating electrode 221 in each strip-shaped grating electrode group 220u can also achieve the basic purpose of the present invention, and the corresponding technical solutions should also fall within the protection scope of the present invention.
  • only part of the grating electrode 221 in the 3D grating electrode layer 220 may be connected to the touch transmitting electrode line 222 to be multiplexed into the touch transmitting electrode.
  • all of the grating electrodes 221 in the 3D grating electrode layer 220 may be divided into a plurality of grating electrode groups 220u and connected to corresponding touch transmitting electrode lines 222, respectively.
  • the 3D common electrode layer 210 may include a plurality of common electrodes 211 and a plurality of 3D common electrode lines (not shown) that connect the corresponding common electrodes.
  • the common electrode 211 and the corresponding strip-shaped grating electrode group 220u form an electrode pair for generating an electric field.
  • each of the common electrodes 211 may correspond to one strip-shaped grating electrode group 220u, thereby corresponding to the respective strip-shaped grating electrodes 221 in the strip-shaped grating electrode group 220u.
  • the above-described 3D common electrode layer 210 further includes a stripe grating electrode group 220u corresponding to the 3D grating electrode layer 220.
  • the common electrode 211 of the outer grating electrode 221 is operated in pairs when performing 3D display.
  • the advantage of this arrangement is that the strip grating can be applied to the strip-shaped grating electrodes 221 in one strip-shaped grating electrode group 220u through the touch-emitting electrode lines 222 while the voltage is applied through the 3D common electrode lines.
  • the common electrode 211 corresponding to the electrode group 220u is synchronously applied with the touch emission signal, so that the voltage on each stripe grating electrode 221 in the grating electrode group 220u is consistent with the voltage on the common electrode 211 at the corresponding position, which is weakened.
  • the signal caused by the capacitance between the stripe grating electrode 221 and the corresponding common electrode 211 in the group is delayed.
  • the above-mentioned common electrode 211 is set as a whole flat plate, and the basic purpose of the present invention can also be achieved, and the corresponding technical solutions should also fall within the protection scope of the present invention.
  • FIG. 2 is a schematic view for explaining a partial structure in the variable 3D grating module 200 in the embodiment shown in FIG.
  • the 3D grating electrode layer 220 in this example includes a plurality of stripe grating electrode groups 220u and a plurality of touch emitter electrode lines 222.
  • the strip grating electrode group 220u includes a plurality of strip grating electrodes 221. Each stripe grating electrode 221 in each stripe grating electrode group 220u is connected to the same touch emitter electrode line 222.
  • the strip grating electrode group 220u has a function of a touch emission (Tx) electrode.
  • the touch receiving (Rx) electrode layer 240 includes a plurality of equally spaced receiving electrodes 241 and a plurality of touch signal receiving lines 242 that connect the corresponding receiving electrodes 241.
  • the longitudinal direction of each of the receiving electrodes 241 in the touch receiving electrode layer 240 is perpendicular to the longitudinal direction of each of the stripe grating electrodes 221 in the 3D grating electrode layer 220.
  • the receiving electrode 241 may be strip-shaped, hereinafter also referred to as a strip-shaped receiving electrode 241.
  • each of the strip-shaped receiving electrodes 241 herein may include a plurality of receiving sub-electrodes 2411 connected to the same touch signal receiving line 242.
  • Each of the receiving sub-electrodes 2411 is parallel to each of the grating electrodes 221 and is spaced apart from each of the grating electrodes 221.
  • the receiving sub-electrode 2411 may be strip-shaped, hereinafter also referred to as a strip-shaped receiving sub-electrode 2411.
  • the arrangement of the spacers herein means that there is no vertical overlapping area between the strip-shaped receiving sub-electrode 2411 and the strip-shaped grating electrode 221 in the light-emitting direction. This can reduce the capacitance between the strip-shaped receiving sub-electrode 2411 and the strip-shaped grating electrode 221, thereby reducing the resulting signal delay.
  • the strip-shaped receiving electrode 241 may be provided as a single-piece electrode (ie, a plurality of receiving sub-electrodes 2411 belonging to the receiving electrode 241). There may be no space between them), and the corresponding technical solutions should also fall within the scope of protection of the present invention.
  • variable grating module 200 may further include a transparent cover 260.
  • the 3D grating electrode layer 220 and the touch receiving electrode layer 240 may be formed in a transparent process by a patterning process. On the cover plate 260. In this way, the variable 3D grating module 200 can be made to have a smaller box thickness.
  • a flat insulating layer 270 may be formed on the lower surface of the transparent substrate 260.
  • the flat insulating layer 270 is disposed between the grating electrode layer 220 and the touch receiving electrode layer 240 to facilitate the fabrication of the grating electrode layer 220.
  • the touch receiving electrode layer 240 and the strips as the touch emitting electrodes may be used.
  • the grating electrode group 220u is isolated.
  • the display panel 100 may be a liquid crystal display panel as shown in FIG. 1 , and the display panel includes a first substrate 110 , a second substrate 120 , and a first substrate 110 and a second substrate 120 . Liquid crystal material 130.
  • the display panel 100 can also be a display panel of other modes (such as an OLED display panel). Corresponding technical solutions can solve the basic problems to be solved by the present invention, and the corresponding technical solutions should also fall within the protection scope of the present invention.
  • a driving method of a display device which can be used to drive the display device in the above embodiment.
  • the method of this example by controlling the voltage applied to the grating electrode line and the 3D common electrode line, an electric field is generated between the strip grating electrode 221 and the corresponding common electrode 211 for 3D display.
  • a touch emission signal is sequentially applied to each of the touch emitter electrode lines 222 for touch detection.
  • the driving method in this example can also drive the above display device to realize 2D display.
  • the driving method of this example by controlling the voltage applied to the grating electrode line and the 3D common electrode line, no electric field is generated between the stripe grating electrode 221 and the common electrode 211 for 2D display.
  • the 3D common electrode layer 210 in the above display device includes a plurality of common electrodes 211 corresponding to the respective grating electrode groups 220u
  • the above method may also apply a touch emission signal to each of the touch transmitting and emitting electrode lines 222.
  • the touch transmission signal is synchronously applied to the 3D common electrode line connected to the common electrode 211 corresponding to the stripe grating electrode group 220u connected to the touch transmitting electrode line 222.
  • each stripe grating electrode 221 in the grating electrode group 220u is the same as the voltage on the common electrode 211 at the corresponding position, thus weakening the group.
  • the signal caused by the capacitance between the inner stripe grating electrode 221 and the corresponding common electrode 211 is delayed.
  • a method of fabricating a display device which can be used to fabricate the display device of any of the above, the method comprising: providing the display panel 100 and emitting light on the display panel The side forms a variable 3D grating module 200.
  • the variable 3D grating module 200 includes a 3D common electrode layer 210; a 3D grating electrode layer 220 disposed on a light exit side of the 3D common electrode layer 210; disposed between the 3D common electrode layer 210 and the 3D grating electrode layer 220 The electronic control material layer 230; and the touch receiving electrode layer 240 disposed on the light emitting side of the 3D grating electrode layer 220.
  • the variable 3D grating module 200 is adapted to operate as a 3D grating when an electric field is formed between the 3D common electrode layer 210 and the 3D grating electrode layer 220, and is not formed between the 3D common electrode layer 210 and the 3D grating electrode layer 220.
  • the electric field is transparent.
  • the electrically controlled material in the layer of electrically controlled material blocks the exiting light of the display panel when in an electric field.
  • the 3D grating electrode layer 220 includes a plurality of strip-shaped grating electrodes 221 arranged at equal intervals and a plurality of grating electrode lines.
  • a plurality of strip-shaped grating electrodes 221 arranged at equal intervals are divided into a plurality of strip-shaped grating electrode groups 220u, and each strip-shaped grating electrode in each strip-shaped grating electrode group 220u is connected to the same touch-emission electrode line 222, which is suitable as a Touch emitter electrode.
  • the touch receiving electrode layer 240 includes a plurality of strip receiving electrodes 241 and a plurality of touch signal receiving lines 242 that connect the corresponding receiving electrodes 241.
  • the longitudinal direction of each strip-shaped receiving electrode 241 in the touch-receiving electrode layer is perpendicular to the longitudinal direction of each strip-shaped grating electrode 221 in the 3D grating electrode layer.

Abstract

一种显示装置及其驱动方法、制作方法,显示装置包括显示面板(100)以及被设置在显示面板(100)的光射出一侧的3D光栅模组(200)。3D光栅模组(200)包括:3D公共电极层(210);被设置在3D公共电极层(210)的光射出一侧的3D光栅电极层(220);形成在3D公共电极层(210)和3D光栅电极层(220)之间的电控材料层(230);以及被设置在3D光栅电极层(220)的光射出一侧的触控接收电极层(240)。3D光栅电极层(220)包括多个光栅电极(221),多个光栅电极(221)的至少一部分被复用为触控发射电极,并与触控发射电极线(222)连接。触控接收电极层(240)包括多个接收电极(241)和多条连接相对应的接收电极(241)的触控信号接收线(242)。触控接收电极层(240)中的接收电极(241)的长度方向与3D光栅电极层(220)中的光栅电极(221)的长度方向垂直。

Description

显示装置及其驱动方法、制作方法
本申请要求2015年6月9日递交的中国专利申请第201510313988.1号的优先权,在此全文引用上述中国专利申请所公开的内容以作为本申请的一部分。
技术领域
本发明涉及显示技术领域,尤其涉及显示装置及其驱动方法、制作方法。
背景技术
现有的触控显示装置包括内嵌式(in cell)和外挂式(on cell),其中内嵌式触控显示装置一般复用显示面板中的电极作为触控发射电极进行触控。这样不但降低了显示装置的整体盒厚,还减少了一道单独制作触控发射电极的步骤,因此内嵌式触控显示装置逐渐成为主流。
然而,现有的内嵌式触控显示技术难以直接应用于日益受到消费者的青睐的2D/3D可转换显示装置。2D/3D可转换的显示装置能够实现2D显示模式和3D显示模式之间的切换。一种主流的2D/3D可转换的显示装置是在显示面板的外侧制作可以在透明状态和不透明状态之间转换的可变3D光栅模组,从而实现2D/3D的转换。一般的,这样的可变3D光栅模组需要通过电极实现透明状态和不透明状态之间的转换。而由于可变3D光栅模组中的电极位于显示面板的光射出一侧上,对显示面板中的电极具有屏蔽作用,因此,一般无法再复用显示面板中的电极作为触控发射电极,不能实现内嵌式的触控结构。目前的2D/3D可转换的触控显示装置中,是在上述的3D光栅模组的光射出一侧上单独制作触控发射电极,制作难度大且具有较大的盒厚。
发明内容
本发明的实施例提供显示装置及其驱动方法、制作方法。
根据本发明的一个方面,提供了一种显示装置,包括:显示面板;以及被设置在显示面板的光射出一侧的3D光栅模组。其中,3D光栅模组包括:3D公共电极层;被设置在3D公共电极层的光射出一侧的3D光栅电极层;被设置在3D公共电极层和3D光栅电极层之间的电控材料层;以及被设置在3D光栅电极层的光射出一侧的触控接收电极层。其中,3D光栅模组适于当在3D公共电极层和3D光栅电极层之间形成电场时,作为3D光栅工作,并当在3D公共电极层和3D光栅电极层之间没有形成电场时是透明的。3D光栅电极层包括多个光栅电极,多个光栅电极的至少一部分被复用为触控发射电极,并与触控发射电极线连接。触控接收电极层包括多个接收电极和多条连接相对应的接收电极的触控信号接收线,触控接收电极层中的接收电极的长度方向与3D光栅电极层中的光栅电极的长度方向垂直。
在本发明的实施例中,用于形成电控材料层的电控材料是液晶材料;3D光栅模组还包括位于3D光栅电极层的光射出一侧的偏光片;液晶材料适于在位于电场中时使显示面板出射的光线不能透过偏光片,在没有位于电场中时使显示面板出射的光线透过偏光片。
在本发明的实施例中,多个光栅电极被划分为至少一个光栅电极组,光栅电极组包括至少一个光栅电极;光栅电极组内的至少一个光栅电极连接到同一条触控发射电极线。
在本发明的实施例中,3D公共电极层包括多个公共电极以及多条连接相对应的公共电极的3D公共电极线,公共电极与相对应的光栅电极组形成用于产生电场的电极对。
在本发明的实施例中,接收电极包括连接到同一触控信号接收线上的多个接收子电极,接收子电极平行于光栅电极,且与光栅电极相互间隔排列。
在本发明的实施例中,3D可变光栅模组还包括透明盖板,3D光栅电极层以及触控接收电极层通过图案化工艺形成在透明盖板上。
根据本发明的另一个方面,提供了一种用于驱动上述显示装置的方法,包括:通过控制施加在光栅电极线和3D公共电极线上的电压,使光栅电极与对应的公共电极之间产生电场,以进行3D显示。依次在各条触控发射电极线施加触控发射信号,以进行触控检测。
在本发明的实施例中,方法还包括:在对每一条触控发射电极线施加触控发射信号时,在该触控发射电极线所连接的光栅电极组所对应的公共电极所连接的3D公共电极线上同步施加触控发射信号。
在本发明的实施例中,方法还包括:通过控制施加在光栅电极线和相对应的3D公共电极线上的电压,使光栅电极与公共电极之间不产生电场,以进行2D显示。
根据本发明的再一个方面,提供了一种制作上述显示装置的方法,包括:提供显示面板;以及在显示面板的光射出一侧形成3D光栅模组。其中,3D光栅模组包括:3D公共电极层;被设置在3D公共电极层的光射出一侧的3D光栅电极层;被设置在3D公共电极层和3D光栅电极层之间的电控材料层;以及被设置在3D光栅电极层的光射出一侧的触控接收电极层。其中,3D光栅模组适于在3D公共电极层和3D光栅电极层之间形成电场时,作为3D光栅工作,并当在3D公共电极层和3D光栅电极层之间没有形成电场时是透明的。3D光栅电极层包括多个光栅电极,多个光栅电极的至少一部分被复用为触控发射电极,并与触控发射电极线连接。触控接收电极层包括多个接收电极和多条连接相对应的接收电极的触控信号接收线;触控接收电极层中的接收电极的长度方向与3D光栅电极层中的光栅电极的长度方向垂直。
在本发明的实施例提供的显示装置中,可以复用可变3D光栅模组中的光栅电极作为触控发射电极,这样就不需要额外的制作触控发射电极,降低了制作难度,且具有较小的盒厚。并且本发明中复用为触控发射电极的光栅电极位于3D公共电极层的外侧,不会受到3D公共电极层的屏蔽,可以很好的实现触控检测。
附图说明
为了更清楚地说明本发明的实施例的技术方案,下面将对实施例的附图进行简要说明,应当知道,以下描述的附图仅仅涉及本发明的一些实施例,而非对本发明的限制,其中:
图1是根据本发明的一个实施例的显示装置的结构示意图;
图2为用于说明图1所示实施例中的可变3D光栅模组200中的部分结构的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他的实施例,都属于本发明保护的范围。
图1是根据本发明的一个实施例的显示装置的结构示意图。如图1所示,本实施例的显示装置,包括显示面板100以及被设置在显示面板100的光射出一侧的3D光栅模组200。3D光栅200可以在2D显示和3D显示之间切换,以下也称为可变3D光栅模组。可变3D光栅模组200包括3D公共电极层210、被设置在在3D公共电极层210的光射出一侧的3D光栅电极层220、形成在3D公共电极层210和3D光栅电极层220之间的电控材料层230、以及形成在3D光栅电极层220的光射出一侧的触控接收电极层240。
其中,当3D光栅电极层220与3D公共电极层210之间形成电场时,该可变3D光栅模组200在显示区域中对应于光栅电极221的位置不透明,在显示区域中的其他位置透明。在这种情况下,可变3D光栅模组200可以作为裸眼3D光栅以实现裸眼3D显示。当3D光栅电极层220与3D公共电极层210之间没有形成电场时,该可变3D光栅模组200在显示区域中对应于光栅电极221的位置透明,同时在显示区域中的其他位置也透明。 在这种情况下,可变3D光栅模组200整体透明,使显示装置进行2D显示。光栅电极221可以是条状的,因此,下文中也称为条状光栅电极221。
本发明实施例提供的显示装置,可以复用可变3D光栅模组200中的条状光栅电极221作为触控发射电极,这样就不需要额外的制作触控发射电极,降低了制作难度,且具有较小的盒厚。并且本发明中复用为触控发射电极的光栅电极位于3D公共电极层的外侧,不会受到3D公共电极层的屏蔽,可以很好的实现触控检测。
在本实施例中,电控材料层230中的电控材料可以具体为液晶材料231。在这种情况下,上述的可变3D光栅模组200还可以包括设置在条状光栅电极221的光射出一侧的偏光片250。液晶材料231适于在位于电场中时使显示面板100出射的光线不能透过偏光片250,在没有位于电场中时使显示面板100出射的光线透过偏光片250。
具体来说,可以设置液晶材料231中液晶分子的取向,使这里的液晶材料231中液晶分子的长轴在电场中旋转到特定方向上,使显示面板100出射的光线经这些长轴位于特定方向上的液晶材料231中的液晶分子之后的偏振方向与偏光片250的偏振方向垂直,从而无法经偏光片250透过。而没有位于电场中的液晶材料231中的液晶分子的长轴则不被旋转,相应的经这些长轴不被旋转的液晶材料231中的液晶分子出射的光线可以透过偏光片250。这样在进行3D显示时,可以通过在3D光栅电极层220中的条状光栅电极221与3D公共电极层210的公共电极211之间施加电场,在显示区域内形成对应于各个条状光栅电极221的不透明区域和对应于其他区域的透明区域,这些透明区域和不透明区域共同构成裸眼3D显示所需的裸眼3D光栅。而在需要进行2D显示时,不在3D光栅电极层220中的各个光栅电极221与3D公共电极层210的公共电极211之间形成电场,这样显示区域内对应于各个条状光栅电极221的区域和对应于各个条状光栅电极221的区域之外的其他区域均透明,可以实现2D显示。公共电极211可以是条状的。
在本实施例中,上述的可变3D光栅模组也可以为其他结构形式。比 如,可以将其中的电控材料层230中的材料设置为电致变色材料。该电致变色材料在电场中时不透明,不在电场中时透明。在需要进行3D显示时,可以在3D光栅电极层220中的各个光栅电极221与3D公共电极层210的公共电极211之间施加电场,使位于光栅电极221与公共电极211之间的电致变色材料不透明,同样能够实现2D/3D显示的切换。
在本实施例中,条状光栅电极221被划分为多个光栅电极组220u,光栅电极组220u可以是条状的,以下也称为条状光栅电极组220u。每一个条状光栅电极组220u可以包含多个条状光栅电极221(例如,图中示出的是3个)。这样做的好处是,由于多个条状光栅电极221连接同一触控发射电极线222,能够减少所制作的触控发射电极线222的数量。不难理解的是,为了保证触控的精度,在实际应用中,每一个条状光栅电极组220u内所包含的条状光栅电极221的数量不应过大。此外,在实际应用中,每一个条状光栅电极组220u内仅包含一个条状光栅电极221也可以达到本发明的基本目的,相应的技术方案也应该落入本发明的保护范围。
在本实施例中,可以仅将3D光栅电极层220内的部分光栅电极221连接到触控发射电极线222,从而复用为触控发射电极。或者在实际应用中,也可以将3D光栅电极层220内的全部光栅电极221分成多个光栅电极组220u并分别连接到相对应的触控发射电极线222。
在本实施例中,3D公共电极层210可以包括多个公共电极211以及多条连接相对应的公共电极的3D公共电极线(未图示)。公共电极211与相对应的条状光栅电极组220u形成用于产生电场的电极对。
具体来说,可以将每一个公共电极211的位置和面积与一个条状光栅电极组220u相对应,从而与该条状光栅电极组220u内的各个条状光栅电极221相对应。
当然在实际应用中,除了用于与各个光栅电极组220成对工作的公共电极211之外,上述的3D公共电极层210还包括对应于3D光栅电极层220中除条状光栅电极组220u之外的光栅电极221的公共电极211,以在进行3D显示时,成对工作。
这样设置的好处是,可以在触控阶段,通过触控发射电极线222对一个条状光栅电极组220u内的各个条状光栅电极221施加电压的同时,通过3D公共电极线对该条状光栅电极组220u所对应的公共电极211同步施加触控发射信号,使光栅电极组220u内的各个条状光栅电极221上的电压与对应位置的公共电极211上的电压一致,这样就减弱了因该组内的条状光栅电极221与相对应的公共电极211之间的电容导致的信号延迟。当然,在实际应用中,将上述的公共电极211设置为一整块平板,也能够达到本发明的基本目的,相应的技术方案也应该落入本发明的保护范围。
图2是用于说明图1所示的实施例中的可变3D光栅模组200中的部分结构的示意图。如图2所示,本例中的3D光栅电极层220包括多个条状光栅电极组220u以及多条触控发射电极线222。条状光栅电极组220u包括多个条状光栅电极221。每一个条状光栅电极组220u内的各个条状光栅电极221连接同一条触控发射电极线222。条状光栅电极组220u具有触控发射(Tx)电极的功能。
触控接收(Rx)电极层240包括多个等间距排列的接收电极241和多条连接相对应的接收电极241的触控信号接收线242。触控接收电极层240中的各个接收电极241的长度方向与3D光栅电极层220中的各个条状光栅电极221的长度方向垂直。接收电极241可以是条状的,以下,也称为条状接收电极241。
在本实施例中,这里的每一个条状接收电极241可以包括连接到同一触控信号接收线242上的多个接收子电极2411。各个接收子电极2411平行于各个光栅电极221,且与各个光栅电极221相互间隔排列。接收子电极2411可以是条状的,以下,也称为条状接收子电极2411。
如图2所示,这里的相互间隔排列是指在出光方向上,条状接收子电极2411与条状光栅电极221不存在垂直交叠区域。这样能够降低条状接收子电极2411与条状光栅电极221之间的电容,从而降低了因此导致的信号延迟。但是,就为了实现本发明的基本目的而言,也可以将上述的条状接收电极241设置为一整块电极(即属于接收电极241的多个接收子电极2411 之间可以没有间隔),相应的技术方案也应该落入本发明的保护范围。
在具体实施时,如图1所示,上述的可变光栅模组200还可以包括透明盖板260,此时可以将3D光栅电极层220以及触控接收电极层240通过图案化工艺形成在透明盖板260上。通过这种方式,可以使得可变3D光栅模组200具有较小的盒厚。
另外,如图1所示,在该透明基板260的下表面上还可以形成有平坦绝缘层270。该平坦绝缘层270设置在光栅电极层220与触控接收电极层240之间,以便于光栅电极层220的制作,另一方面可以将触控接收电极层240与作为触控发射电极的各个条状光栅电极组220u隔离。
在实际应用中,上述的显示面板100可以如图1所示为液晶显示面板,此时该显示面板包括第一基底110、第二基底120以及形成在第一基底110和第二基底120之间的液晶材料130。显然,显示面板100也可以为其他模式的显示面板(比如OLED显示面板)。相应的技术方案均能够解决本发明所要解决的基础问题,相应的技术方案也应该落入本发明的保护范围。
根据本发明的一个实施例,还提供一种显示装置的驱动方法,可用于驱动上述实施例中的显示装置。在本例的方法中,通过控制施加在光栅电极线和3D公共电极线上的电压,使条状光栅电极221与对应的公共电极211之间产生电场,以进行3D显示。依次在各条触控发射电极线222施加触控发射信号,以进行触控检测。
另外,本例中的驱动方法还可以驱动上述的显示装置实现2D显示。在本例的驱动方法中,通过控制施加在光栅电极线和3D公共电极线上的电压,使条状光栅电极221与公共电极211之间不产生电场,以进行2D显示。此外,当上述的显示装置中的3D公共电极层210包括多块与各个光栅电极组220u相对应的公共电极211时,上述的方法还可以在每一条触控发射电极线222施加触控发射信号时,在该触控发射电极线222所连接条状光栅电极组220u所相对应的公共电极211所连接的3D公共电极线上同步施加触控发射信号。这样光栅电极组220u内的各个条状光栅电极221上的电压与对应位置的公共电极211上的电压一致,这样就减弱了因该组 内的条状光栅电极221与相对应的公共电极211之间的电容导致的信号延迟。
根据本发明的再一个实施例,还提供了一种显示装置的制作方法,该方法可用于制作上述任一项的显示装置,该方法可以包括:提供显示面板100并在显示面板的光射出一侧形成可变3D光栅模组200。
可变3D光栅模组200包括3D公共电极层210;被设置在3D公共电极层210的光射出一侧的3D光栅电极层220;被设置在3D公共电极层210和3D光栅电极层220之间的电控材料层230;以及被设置在3D光栅电极层220的光射出一侧的触控接收电极层240。可变3D光栅模组200适于在3D公共电极层210和3D光栅电极层220之间形成电场时,作为3D光栅工作,并当在3D公共电极层210和3D光栅电极层220之间没有形成电场时是透明的。在作为3D光栅工作时,电控材料层中的电控材料在电场中时遮挡所述显示面板的出射光。没有在电场中时透过所述显示面板的出射光。3D光栅电极层220包括多个等间距排列的条状光栅电极221以及多条光栅电极线。多个等间距排列的条状光栅电极221分为多个条状光栅电极组220u,每一条状光栅电极组220u内的各个条状光栅电极连接同一条触控发射电极线222,适于作为一个触控发射电极。触控接收电极层240包括多个条状接收电极241和多条连接相对应的接收电极241的触控信号接收线242。触控接收电极层中的各个条状接收电极241的长度方向与3D光栅电极层中的各个条状光栅电极221的长度方向垂直。
以上所述,仅为本发明的具体实施方式,但是,本发明的保护范围不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替代,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种显示装置,包括:
    显示面板;以及
    被设置在所述显示面板的光射出一侧的3D光栅模组;
    其中,所述3D光栅模组包括:3D公共电极层;被设置在所述3D公共电极层的光射出一侧的3D光栅电极层;被设置在所述3D公共电极层和所述3D光栅电极层之间的电控材料层;以及被设置在所述3D光栅电极层的光射出一侧的触控接收电极层;
    其中,所述3D光栅模组适于当在所述3D公共电极层和所述3D光栅电极层之间形成电场时,作为3D光栅工作,并当在所述3D公共电极层和所述3D光栅电极层之间没有形成电场时是透明的;
    所述3D光栅电极层包括多个光栅电极,所述多个光栅电极的至少一部分被复用为触控发射电极,并与触控发射电极线连接;
    所述触控接收电极层包括多个接收电极和多条连接相对应的接收电极的触控信号接收线;所述触控接收电极层中的所述接收电极的长度方向与所述3D光栅电极层中的所述光栅电极的长度方向垂直。
  2. 如权利要求1所述的显示装置,其中,用于形成所述电控材料层的电控材料是液晶材料;所述3D光栅模组还包括位于所述3D光栅电极层的光射出一侧的偏光片;所述液晶材料适于在位于电场中时使所述显示面板出射的光线不能透过所述偏光片,在没有位于电场中时使所述显示面板出射的光线透过所述偏光片。
  3. 如权利要求1所述的显示装置,其中,所述多个光栅电极被划分为至少一个光栅电极组,所述光栅电极组包括至少一个光栅电极,所述光栅电极组内的所述至少一个光栅电极连接到同一条触控发射电极线。
  4. 如权利要求1-3任一项所述的显示装置,其中,所述3D公共电极层包括多个公共电极以及多条连接相对应的公共电极的3D公共电极线,公共电极与相对应的光栅电极组形成用于产生电场的电极对。
  5. 如权利要求1所述的显示装置,其中,接收电极包括连接到同一触 控信号接收线上的多个接收子电极;接收子电极平行于光栅电极,且与光栅电极相互间隔排列。
  6. 如权利要求1所述的显示装置,其中,所述3D光栅模组还包括透明盖板,所述3D光栅电极层以及所述触控接收电极层通过图案化工艺形成在所述透明盖板上。
  7. 一种用于驱动如权利要求1-6任一项所述的显示装置的方法,包括:
    通过控制施加在光栅电极线和3D公共电极线上的电压,使光栅电极与对应的公共电极之间产生电场,以进行3D显示;
    依次在各条触控发射电极线施加触控发射信号,以进行触控检测。
  8. 如权利要求7所述的方法,还包括:
    在对每一条触控发射电极线施加触控发射信号时,在该触控发射电极线所连接的光栅电极组所对应的公共电极所连接的3D公共电极线上同步施加触控发射信号。
  9. 如权利要求7所述的方法,还包括:
    通过控制施加在光栅电极线和相对应的3D公共电极线上的电压,使光栅电极与公共电极之间不产生电场,以进行2D显示。
  10. 一种用于制作如权利要求1-6任一项所述显示装置的方法,包括:
    提供显示面板;以及
    在所述显示面板的光射出一侧形成3D光栅模组;
    其中,所述3D光栅模组包括:3D公共电极层;被设置在所述3D公共电极层的光射出一侧的3D光栅电极层;被设置在所述3D公共电极层和所述3D光栅电极层之间的电控材料层;以及被设置在所述3D光栅电极层的光射出一侧的触控接收电极层;
    其中,所述3D光栅模组适于在所述3D公共电极层和所述3D光栅电极层之间形成电场时,作为3D光栅工作,并当在所述3D公共电极层和所述3D光栅电极层之间没有形成电场时是透明的;
    所述3D光栅电极层包括多个光栅电极,所述多个光栅电极的至少一部分被复用为触控发射电极,并与触控发射电极线连接;
    所述触控接收电极层包括多个接收电极和多条连接相对应的接收电极的触控信号接收线;所述触控接收电极层中的所述接收电极的长度方向与所述3D光栅电极层中的所述光栅电极的长度方向垂直。
PCT/CN2015/097680 2015-06-09 2015-12-17 显示装置及其驱动方法、制作方法 WO2016197576A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/103,980 US10222886B2 (en) 2015-06-09 2015-12-17 Display device, driving method thereof and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510313988.1 2015-06-09
CN201510313988.1A CN104849886B (zh) 2015-06-09 2015-06-09 显示装置及其驱动方法、制作方法

Publications (1)

Publication Number Publication Date
WO2016197576A1 true WO2016197576A1 (zh) 2016-12-15

Family

ID=53849650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097680 WO2016197576A1 (zh) 2015-06-09 2015-12-17 显示装置及其驱动方法、制作方法

Country Status (3)

Country Link
US (1) US10222886B2 (zh)
CN (1) CN104849886B (zh)
WO (1) WO2016197576A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104849886B (zh) 2015-06-09 2018-06-05 京东方科技集团股份有限公司 显示装置及其驱动方法、制作方法
CN106200204B (zh) * 2016-09-12 2023-09-22 合肥京东方光电科技有限公司 裸眼三维显示面板及其制造方法、裸眼三维显示装置
CN107656406A (zh) * 2017-09-30 2018-02-02 武汉华星光电半导体显示技术有限公司 一种oled显示屏及显示装置
CN108152980A (zh) * 2017-12-25 2018-06-12 张家港康得新光电材料有限公司 显示装置及其制备方法
CN108919546B (zh) * 2018-07-09 2022-08-16 京东方科技集团股份有限公司 一种显示面板及其控制方法、显示装置
CN108874233B (zh) * 2018-07-27 2021-07-06 厦门天马微电子有限公司 显示面板、显示器及终端
CN110928102B (zh) * 2019-12-31 2022-11-22 上海天马微电子有限公司 液晶光栅以及全息3d显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202548493U (zh) * 2012-05-03 2012-11-21 北京京东方光电科技有限公司 一种3d触控液晶透镜光栅及显示装置
CN103698926A (zh) * 2013-12-31 2014-04-02 京东方科技集团股份有限公司 一种显示装置及其制备方法
CN103777391A (zh) * 2012-10-23 2014-05-07 瀚宇彩晶股份有限公司 三维触控显示面板及其操作方法
CN103941445A (zh) * 2013-06-28 2014-07-23 上海中航光电子有限公司 一种液晶盒及包含该液晶盒的控制方法
US20150130751A1 (en) * 2012-09-04 2015-05-14 Sony Corporation Display device and electronic apparatus
CN104849886A (zh) * 2015-06-09 2015-08-19 京东方科技集团股份有限公司 显示装置及其驱动方法、制作方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US111470A (en) * 1871-01-31 Improvement in machines for molding knobs
KR20110052241A (ko) * 2009-11-12 2011-05-18 엘지디스플레이 주식회사 터치 패널 일체형 입체 영상 표시 장치 및 이의 제조 방법
TWI456262B (zh) * 2011-12-16 2014-10-11 Wintek Corp 可切換式觸控立體影像裝置
KR20130096050A (ko) * 2012-02-21 2013-08-29 삼성디스플레이 주식회사 표시장치
JP5726111B2 (ja) * 2012-03-14 2015-05-27 株式会社ジャパンディスプレイ 画像表示装置
KR101953249B1 (ko) * 2012-05-09 2019-06-03 삼성디스플레이 주식회사 터치 감지 및 입체 영상 표시 겸용 표시 장치 및 그 구동 방법
CN102830555B (zh) * 2012-08-31 2015-01-07 北京京东方光电科技有限公司 一种触控液晶光栅及3d触控显示装置
CN103091909B (zh) * 2013-01-29 2015-10-14 北京京东方光电科技有限公司 一种触控3d显示模组及其制作方法和触控3d显示装置
CN103278964A (zh) * 2013-06-09 2013-09-04 深圳超多维光电子有限公司 一种视差屏障装置及立体显示装置
TWI599831B (zh) * 2013-12-17 2017-09-21 友達光電股份有限公司 立體觸控顯示器
KR102230549B1 (ko) * 2014-09-12 2021-03-22 삼성디스플레이 주식회사 접촉 감지 기능을 가진 광학계 및 이를 포함하는 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202548493U (zh) * 2012-05-03 2012-11-21 北京京东方光电科技有限公司 一种3d触控液晶透镜光栅及显示装置
US20150130751A1 (en) * 2012-09-04 2015-05-14 Sony Corporation Display device and electronic apparatus
CN103777391A (zh) * 2012-10-23 2014-05-07 瀚宇彩晶股份有限公司 三维触控显示面板及其操作方法
CN103941445A (zh) * 2013-06-28 2014-07-23 上海中航光电子有限公司 一种液晶盒及包含该液晶盒的控制方法
CN103698926A (zh) * 2013-12-31 2014-04-02 京东方科技集团股份有限公司 一种显示装置及其制备方法
CN104849886A (zh) * 2015-06-09 2015-08-19 京东方科技集团股份有限公司 显示装置及其驱动方法、制作方法

Also Published As

Publication number Publication date
US10222886B2 (en) 2019-03-05
CN104849886B (zh) 2018-06-05
CN104849886A (zh) 2015-08-19
US20170115783A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2016197576A1 (zh) 显示装置及其驱动方法、制作方法
EP2703876B1 (en) Touch liquid crystal grating, 3d touch display device and driving method of touch liquid crystal grating
US9261993B2 (en) Touch liquid crystal grating, manufacturing method thereof and touch 3D display device
JP5286349B2 (ja) 屈折率分布型液晶光学素子および画像表示装置
WO2016004725A1 (zh) 触摸式三维光栅及显示装置
WO2015103824A1 (zh) 阵列基板、电容式触摸屏和触控显示装置
KR101778229B1 (ko) 유기 발광 표시 장치
WO2016188034A1 (zh) 3d光栅、彩膜基板、显示装置及其控制方法
TWI484221B (zh) 可切換式平面/立體(2d/3d)顯示裝置及其製造方法
KR20150078248A (ko) 표시소자
JP2012185307A (ja) 画像表示ユニット、画像表示制御方法および画像表示制御プログラム
CN104460163B (zh) 一种阵列基板及其制作方法及显示装置
KR20140048047A (ko) 표시 장치
KR101705023B1 (ko) 전자 베니션 블라인드
JP2006350278A (ja) 高透過率フリンジフィールドスイッチングモード液晶表示装置
WO2014146371A1 (zh) 一种电致变色面板及显示装置
JP2015114661A (ja) 液晶レンズモジュール
WO2016107027A1 (zh) 液晶光栅及其制作方法和驱动方法、拼接屏
WO2015100918A1 (zh) 一种显示装置及其制备方法
US10795217B2 (en) Liquid crystal grating and fabrication method thereof, and naked eye 3D display device
CN103995412A (zh) 电子狭缝光栅、立体显示装置及其驱动方法
KR101580362B1 (ko) 시차 장벽 및 디스플레이 장치
JP2013218133A (ja) 液晶レンズおよび立体表示装置
CN203433245U (zh) 电子狭缝光栅、立体显示装置
KR102000146B1 (ko) 광 제어 셀과 이를 포함하는 영상표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15103980

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894830

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15894830

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/06/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15894830

Country of ref document: EP

Kind code of ref document: A1