WO2016195375A1 - 백연 가스 저감 장치 - Google Patents

백연 가스 저감 장치 Download PDF

Info

Publication number
WO2016195375A1
WO2016195375A1 PCT/KR2016/005802 KR2016005802W WO2016195375A1 WO 2016195375 A1 WO2016195375 A1 WO 2016195375A1 KR 2016005802 W KR2016005802 W KR 2016005802W WO 2016195375 A1 WO2016195375 A1 WO 2016195375A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
blade
white smoke
heat exchanger
type heat
Prior art date
Application number
PCT/KR2016/005802
Other languages
English (en)
French (fr)
Inventor
박성규
Original Assignee
주식회사 케이에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이에프 filed Critical 주식회사 케이에프
Priority to CN201690001043.4U priority Critical patent/CN208653259U/zh
Priority to US15/578,917 priority patent/US20180180359A1/en
Publication of WO2016195375A1 publication Critical patent/WO2016195375A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/16Arrangements for preventing condensation, precipitation or mist formation, outside the cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/04Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/002Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using inserts or attachments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/01Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using means for separating solid materials from heat-exchange fluids, e.g. filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a white smoke gas reduction apparatus capable of preventing the outflow of white smoke gas generated in a paper mill, a semiconductor factory, various high pressure reactors, and the like and removing foreign substances.
  • White smoke refers to high-temperature steam generated while producing a product in a paper production process, a semiconductor production plant, and various high pressure reactors. In the case of such white gas, even if it does not contain environmental pollutants, since a large amount of white gas is discharged to the outside, it has been a subject of complaint from neighboring residents.
  • various methods for removing white smoke have been devised. For example, there is a method of heating the exhaust gas to reduce the relative humidity of the exhaust gas to suppress the generation of white smoke, or spraying cooling water to the exhaust gas to remove the water vapor component to reduce the absolute humidity of the exhaust gas to suppress the generation of white smoke. .
  • the method of heating the exhaust gas requires a lot of energy for the heating action, and the method of spraying the cooling water requires a large amount of cooling water. Therefore, these methods can further increase energy and cooling water consumption when applied to large chimneys that emit large amounts of off-gas.
  • the present invention provides a white smoke reduction device capable of reducing contaminants such as heavy metals contained in white smoke and fine dust, and condensing water vapor of white smoke, thereby lowering absolute humidity and reducing generation of white smoke. To provide.
  • an apparatus for reducing white smoke which is an embodiment of the present invention, includes a white gas inflow device for introducing white gas; An inertial collision type heat exchanger that removes fine dust contained in the introduced white smoke gas by an inertial collision method, cools the white smoke gas through heat exchange, and converts the fine dust into a low white smoke gas; And a condenser that cools the refrigerant used for the heat exchange in the inertial collision type heat exchanger and then returns to the inertial collision type heat exchanger.
  • the condenser may be installed outside the building to convert the refrigerant, which is gaseous by air-cooling, into a liquid phase.
  • the condenser may be located higher than the inertial collision type heat exchanger so that the liquid refrigerant may be returned to the inertial collision type heat exchanger by gravity.
  • the refrigerant may be a material that changes into liquid-phase at room temperature.
  • the flue gas inlet device and the inertial collision type heat exchanger may be located indoors, and the condenser may be disposed on a rooftop.
  • the condenser may include a fin tube metal tube having the refrigerant therein; And it may include a blowing fan for providing a flow of air to the fin tube metal tube.
  • the fin tube metal tube may include: a cooling tube having a heating refrigerant heated in the inertial collision type heat exchanger; And a plurality of cooling fins attached to the cooling tube to improve a cooling rate of the heating refrigerant.
  • the inertial collision type heat exchange apparatus the first blade is formed to be inclined at a predetermined angle with respect to the wind direction of the white smoke gas; A second blade extending from the first blade with an angle of refraction; And a heat exchange pipe installed at a connection point between the first blade and the second blade and holding the refrigerant.
  • the inertial collision type heat exchange apparatus the first refrigerant tank for supplying the refrigerant to the heat exchange pipe, attached to the first side of the first blade and the second blade; And a second refrigerant tank temporarily storing the refrigerant heated in the heat exchange pipe and attached to the second sides of the first blade and the second blade.
  • first blade and the second blade may be made of the same material as the heat exchange pipe.
  • the first refrigerant tank may include a tank inlet for introducing the refrigerant returned from the condenser
  • the second refrigerant tank may include a tank outlet for flowing the heated refrigerant to the condenser.
  • the white smoke gas reduction device may further include an inflator for adiabatic expansion of the generated gaseous refrigerant in the inertial collision type heat exchanger, and then sending the same to the condenser.
  • the manufacturing cost can be lowered to increase the economic efficiency.
  • FIG. 1 is an overall configuration diagram of a white smoke gas abatement apparatus according to an embodiment of the present invention.
  • FIG. 2 is a conceptual cross-sectional view of the entire inertial collision type heat exchanger apparatus used in the white smoke gas abatement apparatus according to the embodiment of the present invention.
  • FIG. 3 is a partially enlarged conceptual perspective view illustrating the shape of a blade unit and first and second refrigerant tanks of the inertial collision type heat exchanger of FIG. 2;
  • FIG. 4 is a specific cross-sectional view for explaining a blade portion of the inertial collision type heat exchanger apparatus used in the white smoke gas abatement apparatus according to the embodiment of the present invention.
  • FIG. 5 is a perspective view of a condenser assembly used in an embodiment of the white smoke reduction apparatus of the present invention.
  • FIG. 6 is a perspective view for explaining the inside of the condenser of FIG.
  • FIG. 7 is a view for explaining the connection relationship between the fin tube metal tube and the refrigerant outlet tube used in the condenser.
  • FIG 8 is an overall configuration diagram of another embodiment of the white smoke gas abatement apparatus according to the present invention.
  • the white smoke gas reducing device 1000 includes a white smoke inlet device 100, an inertial collision type heat exchanger 200, a condenser 300, and an expander 400. Can be configured.
  • the white smoke inflow device 100 is a device for introducing a flue gas (white smoke) containing a large amount of water generated in a paper mill, a semiconductor factory, a high pressure reactor, or the like.
  • a blowing fan or the like may be used as the inflow means for the white smoke gas generated during the manufacturing process.
  • the white smoke gas introduced here is hot and contains a lot of water vapor, and may also contain fine dust and contaminants.
  • the inertial collision heat exchanger 200 may remove moisture from the white smoke gas through inertia collision and heat exchange, and may remove fine dust and contaminants contained in the white smoke gas together with the water. That is, the inertial collision type heat exchanger 200 is provided with a heat exchange pipe through which a refrigerant passes, and the white smoke is removed from moisture by condensation and inertia collision (heat exchange) formed in the heat exchange pipe and the blade unit 230 connected to the heat exchange pipe. It is converted into low white gas.
  • This inertial collision type heat exchanger 200 will be described in more detail with reference to FIGS. 2 to 4.
  • the condenser 300 functions to cool the refrigerant used for heat exchange in the inertial collision type heat exchanger 200 and then return to the inertial collision type heat exchanger 200 again. That is, the refrigerant used in the inertial collision type heat exchanger 200 has a circulation structure that is returned to the original state from the condenser 300 and then sent to the heat exchanger 200.
  • the condenser 300 may convert the refrigerant to its original state by a natural cooling method. That is, the refrigerant in the liquid state is exchanged with the hot flue gas in the inertial collision type heat exchanger 200, and converted into a gas, which is again cooled to a liquid in the condenser, to the inertial collision type heat exchanger 200.
  • the inertial collision type heat exchanger 200 is located in the factory, and the condenser 300 may be located on the roof of the factory. That is, since the liquid refrigerant is returned to the inertial collision type heat exchanger 200 by gravity due to being positioned higher than the inertial collision type heat exchanger 200, the inertial refrigerant is inerted through natural circulation without a separate device. Since the impingement type heat exchanger 200 can be supplied, the manufacturing cost can be lowered and the facility equipment can be simplified.
  • the refrigerant may be used a material that is converted to liquid-gas at room temperature. That is, when a material having a boiling point of about 30 ° C. to 40 ° C. is used, the material is converted into a gas at the time of heat exchange with the hot white flue gas, and may be converted into a liquid when natural cooling is performed in the condenser 300.
  • HFC 134a may be used as such a refrigerant.
  • the white smoke gas reduction apparatus 1000 may further include an expander 400.
  • the expander 400 may be installed in a connecting pipe connected to the condenser 300 in the inertial collision type heat exchanger 200.
  • the refrigerant vaporized in the inertial collision type heat exchanger 200 is introduced into the expander 400 having a large space to perform adiabatic expansion, and work on a turbine installed therein to produce renewable energy. That is, in the expander 400, the refrigerant loses some energy, and finally, the condenser 300 returns to the liquid state in the original state.
  • inertial collision type heat exchanger 200 used in the white smoke gas abatement apparatus 1000 which is an embodiment of the present invention, will be described in more detail with reference to FIGS. 2 to 4.
  • FIG. 2 is a conceptual cross-sectional view of an inertial collision type heat exchanger used in a white smoke gas abatement apparatus according to an embodiment of the present invention
  • FIG. 3 is a blade portion of the inertial collision type heat exchanger of FIG. 2, and first and second parts.
  • Figure 4 is a specific cross-sectional view for explaining the blade portion in the inertial collision type heat exchanger device used in the white smoke gas reduction device of an embodiment of the present invention.
  • the inertial collision type heat exchanger 200 used in the white smoke gas abatement apparatus 1000 which is an embodiment of the present invention, includes a gas inlet 201 formed at one side of a housing, and A gas outlet 203 disposed on the opposite side, a first refrigerant tank 210 installed below the housing between the gas inlet 201 and the gas outlet 203, and a second refrigerant installed above the housing.
  • a tank 220 and a plurality of blades 230 (see FIG. 4), and a blade connecting pipe 240 and a blade 230 which are connected between the blades to allow refrigerant to flow through each, respectively.
  • it can be configured to include a sliding fastening portion 250 for coupling to the interior of the housing
  • the gas inlet 201 is for injecting the white smoke gas flowing from the white smoke inflow device 100 described in FIG. 1 to the blade unit 230 side. As shown, the gas inlet 201 is formed in the center of one side of the inertial collision type heat exchanger 200, and is formed in a shape that gradually enlarges thereafter, so that the white smoke gas naturally occurs in the blade unit 230. Spread out to be supplied.
  • the gas outlet 203 the low white smoke gas from which water, contaminants and fine dust is removed from the blade portion 230 flows out.
  • the gas outlet 203 is formed on the other side of one side of the inertial collision type heat exchanger 200, and has a configuration corresponding to the gas inlet 201.
  • the first refrigerant tank 210, the second refrigerant tank 220, and the blade unit 230 formed between the gas inlet 201 and the gas outlet 203 are described in more detail with reference to FIGS. 3 and 4. Explain.
  • a first refrigerant tank 210 in which a liquid refrigerant is stored is installed below the blade unit 230, and a gas refrigerant is temporarily stored above the blade unit 230.
  • the second refrigerant tank 220 is installed.
  • the refrigerant supplied to the heat exchange pipe 235 of the blade unit 230 is stored in the first refrigerant tank 210 in a liquid state.
  • the refrigerant is supplied to the heat exchange pipes 235 of the adjacent blades 230 through the connection pipe 240 connecting the respective blades 230.
  • the refrigerant supplied in this way is evaporated by heat exchange due to thermal contact with the hot white gas while moving along the heat exchange pipe 235.
  • the vaporized refrigerant is stored in the second refrigerant tank 220 installed above the blade unit 230.
  • a tank inlet 211 is formed in the first refrigerant tank 210 to receive the refrigerant liquefied by the condenser 300, and the vaporized refrigerant is sent to the condenser 300 in the second refrigerant tank 220.
  • a tank outlet 221 is formed.
  • each blade 230 is to be separated and fastened in a sliding manner through the sliding fastening portion 250, so that the replacement and repair of each blade 230 is easy. That is, each blade unit 230 is configured to be modularized, the sliding fastening unit 250 is fastened and positioned in the housing, and then connected to the connecting pipe 240, configured to circulate the refrigerant between each blade, Simple assembly and easy maintenance.
  • the blade unit 230 may include a first blade 231, a second blade 232, and a heat exchange pipe 235.
  • the blade unit 230 the first blade 231 is formed to be inclined at a predetermined angle with respect to the flow of the high temperature white smoke gas (white smoke gas wind);
  • a second blade 232 extending from the first blade 231 with a refractive angle; It is formed at the connection point of the first blade 231 and the second blade 232, it may be configured to include a heat exchange pipe 235 through which the refrigerant flows.
  • the refrigerant flowing in the heat exchange pipe 235 is heated and vaporized by the high temperature of the white smoke gas, so that the moisture in the white smoke gas is condensed, so that the first blade 231, the second blade 232, and the first block are blocked.
  • Moisture (w) is removed from the blade 233 and the second blocking blade 234.
  • first blade 231 and the second blade 232 are formed to be bent, fine dust and contaminants p may be removed together with moisture w by inertia collision. Furthermore, a pair of first blocking blades 233 is installed at the connection point of the first blade 231 and the second blade 232 so that contaminants such as dust and moisture collide with the blocking blade 233. Moisture is collected, and the collected moisture flows downward by gravity to remove moisture (w) in the white smoke gas and to lower the discharge temperature of the white smoke gas.
  • the heat exchange pipe 235 and the first and second blades 231 and 232 may be made of a metal having high thermal conductivity.
  • a metal material having high ductility, high conductivity, and high corrosion resistance, such as copper or aluminum durability is excellent.
  • durability is excellent when the first blade 231 and the second blade 232 are made of the same material as the heat exchange pipe 235, since the thermal shock does not occur even when the thermal expansion occurs due to the temperature difference during the operation, durability Will be excellent.
  • the second blocking blade 234 is installed at the end of the second blade 232, and the second blocking blade 234 is pollutants such as water (w) and dust While (p) is removed from the white smoke gas, the temperature of the white smoke gas can be lowered.
  • FIG. 5 is a perspective view of a condenser assembly used in an apparatus for reducing white smoke, which is an embodiment of the present invention.
  • FIG. 6 is a perspective view illustrating the inside of the condenser of FIG. 5, and
  • FIG. 7 is a fin tube metal tube used in the condenser.
  • the condenser assembly 300 ′ includes two condensers 300, and a support housing 400 for supporting the two condensers 300 is configured.
  • a refrigerant inlet pipe 500 through which the heated refrigerant flows is installed, and on the lower side of the condenser assembly 300', the refrigerant cooled and liquefied by the condenser 300 '. Is flowed out, and the refrigerant outlet pipe supplied to the inertial collision type heat exchanger 200 is installed.
  • the condenser 300 As shown in Figure 6, the condenser 300, the condenser 300, the fin tube metal tube is installed inclined downward from both sides ( 310 and a blowing fan 320 may be configured.
  • the refrigerant evaporated in the inertial collision type heat exchanger 200 is cooled in a natural cooling manner to liquefy.
  • One end of the fin tube metal tube 310 is connected to the refrigerant inlet tube 500 of FIG. 5. Accordingly, according to the structure of the fin tube metal tube 310 inclined downward, the vaporized refrigerant is naturally cooled and liquefied by the outside air and the blowing fan 320 while moving downward. As illustrated in FIG. 7, the liquefied refrigerant is supplied to the refrigerant outlet pipe 600, and finally, to the first refrigerant tank 210 of the inertial collision type heat exchanger 200.
  • the condenser assembly 300 ′ when the condenser assembly 300 ′ is installed on the roof and the inertial collision type heat exchanger 200 is installed indoors, the refrigerant naturally flows to the first refrigerant tank 210 by gravity without any driving means. Will be moved. On the other hand, since the refrigerant evaporated in the inertial collision type heat exchanger 200 is moved upward, it is moved to the condenser assembly 300 'installed on the roof without a separate driving means.
  • the blowing fan 320 is installed above the open support housing 400 to send natural wind to the fin tube metal tube 310 to increase the cooling effect on the vaporized heating refrigerant.
  • the fin tube metal tube 310 is attached to the cooling tube 311 with the heating refrigerant heated in the inertial collision type heat exchange device 200, and the cooling tube 311, thereby reducing the cooling rate of the heating refrigerant. It will include a plurality of cooling fins 312 to improve.
  • the plurality of cooling fins 312 are cooled by the wind of the blower fan 320, and the cooling fins 312 have a large surface area, thereby enhancing the effect of liquefying the vaporized refrigerant.
  • the white smoke gas reducing device 1000 ′ includes a white smoke inlet device 100, an inertial collision type heat exchanger 200, and a condenser 300, and instead of an expander, a hot water tank 410. ),
  • the energy utilization device 420, the cooling tank 430 may be configured to include a cooling water supply means (440).
  • water is used as the refrigerant.
  • the water heated in the inertial collision type heat exchanger is moved to the hot water tank 410.
  • the hot water filled in the hot water tank 410 is supplied to the energy utilization device 420 (eg, a power generator, a hot water supply device, etc.) to be utilized.
  • the hot water used is supplied to the condenser 300, and is cooled by the natural cooling method in the condenser 300.
  • the cooled water is again supplied to the cooling tank 430.
  • the cooling water supply unit 440 supplies cold water to the cooling tank 430, and the cooling water is inertial collision. It is supplied to the type heat exchanger 200.
  • the manufacturing cost can be lowered to increase the economic efficiency.
  • the above-described white smoke gas abatement apparatus may not be limitedly applied to the configuration and method of the above-described embodiments, but the embodiments may be selectively combined with each or all of the embodiments so that various modifications may be made. It may be configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

본 발명은, 백연 가스를 유입시키는 백연가스 유입 장치; 상기 유입되는 백연 가스에 포함된 미세 먼지를 관성 충돌 방식으로 제거하고, 열교환을 통해 상기 백연 가스를 냉각시켜서, 저백연 가스로 변환시켜 백연 가스내의 수분을 응결을 응결 및 충돌 제거하는 관성 충돌형 열교환 장치; 및 상기 관성 충돌형 열교환 장치에서 열교환에 사용된 냉매를 냉각시킨후 다시 상기 관성충돌형 열교환 장치로 되돌리는 응축기를 포함하는, 백연 가스 저감 장치에 관한 것이다.

Description

백연 가스 저감 장치
본 발명은, 제지 공장, 반도체 공장, 및 각 종 고압 반응기 등에서 발생되는 백연 가스의 유출을 방지하고, 이물질을 제거할 수 있는, 백연 가스 저감 장치에 관한 것이다.
백연 가스(white smoke)는 제지 생산 공정, 반도체 생산 공장, 및 각종 고압 반응기 등에서, 제품을 생산하면서 발생되는 고열의 수증기를 의미한다. 이와 같은 백연가스의 경우, 환경 오염물질을 포함하지 않은 경우에도, 다량의 하얀 가스가 외부로 배출되기 때문에, 주변의 주민들로부터 민원의 대상이 되어 왔다.
특히, 백연을 제거하기 위한 여러 가지 방법들이 강구되고 있다. 예를 들면, 배출가스를 가열하여 배출가스의 상대습도를 낮추어 백연 발생을 억제하거나, 배출가스에 냉각수를 분사하여 수증기 성분을 제거하여 배출가스의 절대습도를 낮추어 백연 발생을 억제하는 방법 등이 있다.
배출가스를 가열하는 방법은 가열 작용에 많은 에너지를 필요로 하고, 냉각수를 분사하는 방법은 대량의 냉각수를 필요로 한다. 따라서 이들 방법은 배출가스를 대량으로 배출하는 대형 굴뚝에 적용하면 에너지와 냉각수의 소비량을 더욱 증가시킬 수 있다.
본 발명은, 백연가스에 포함되어 있는 중금속과 같은 오염물질과 미세 먼지를 제거함과 더불어서, 백연가스의 수증기를 응결시킴으로써, 절대 습도를 낮추어서, 백연 가스의 발생을 저감시킬 수 있는, 백연 가스 저감 장치를 제공하기 위함이다.
상술한 목적을 해결하기 위하여 안출된 본 발명의 일실시예인 백연 가스 저감 장치는, 백연 가스를 유입시키는 백연가스 유입 장치; 상기 유입되는 백연 가스에 포함된 미세 먼지를 관성 충돌 방식으로 제거하고, 열교환을 통해 상기 백연 가스를 냉각시켜서, 저백연 가스로 변환시키는 관성 충돌형 열교환 장치; 및 상기 관성 충돌형 열교환 장치에서 열교환에 사용된 냉매를 냉각시킨후 다시 상기 관성충돌형 열교환 장치로 되돌리는 응축기를 포함할 수 있다.
여기서, 상기 응축기는, 건물 외부에 설치되어서, 공냉식으로 기상인 상기 냉매를 액상으로 변환시킬 수 있다.
여기서, 상기 응축기는, 상기 관성 충돌형 열교환 장치보다 높은 곳에 위치하여, 상기 액상인 냉매가 중력에 의하여 상기 관성 충돌형 열교환 장치로 되돌려질 수 있다.
여기서 상기 냉매는 상온에서 액상-기상으로 변하는 물질일 수 있다.
여기서, 상기 백연가스 유입 장치와 상기 관성 충돌형 열교환 장치는 실내에 위치하고, 상기 응축기는 옥상에 배치될 수 있다.
여기서, 상기 응축기는, 그 내부에 상기 냉매가 있는 핀튜브 금속관; 및 상기 핀튜브 금속관에 대하여 공기의 흐름을 제공하는 송풍팬을 포함할 수 있다.
여기서, 상기 핀튜브 금속관은, 상기 관성 충돌형 열교환 장치에서 가열된 가열 냉매가 있는 냉각관; 및 상기 냉각관에 부착되어서, 상기 가열 냉매의 냉각속도를 향상시키는 다수의 냉각핀을 포함할 수 있다.
여기서, 상기 관성 충돌형 열교환 장치는, 상기 백연가스의 바람의 방향에 대하여 일정 각도로 경사지게 형성되는 제 1 블레이드; 상기 제 1 블레이드로부터 굴절각을 가지고 연장 형성되는 제 2 블레이드; 및 상기 제 1 블레이드와 상기 제 2 블레이드의 연결점에 설치되며, 상기 냉매를 보유하는 열교환 파이프를 포함할 수 있다.
여기서, 상기 관성 충돌형 열교환 장치는, 상기 열교환 파이프로 상기 냉매를 공급하며, 상기 제 1 블레이드 및 상기 제 2 블레이드의 제 1 측에 부착되는 제 1 냉매 탱크; 및 상기 열교환 파이프에서 가열된 냉매를 임시 저장하며, 상기 제 1 블레이드 및 상기 제 2 블레이드의 제 2 측에 부착되는 제 2 냉매 탱크를 더 포함할 수 있다.
여기서, 상기 제 1 블레이드 및 상기 제 2 블레이드는, 상기 열교환 파이프와 동일한 재질로 이루어질 수 있다.
여기서, 상기 제 1 냉매탱크는 상기 응축기로부터 되돌아오는 냉매를 유입시키기 위한 탱크 유입구를 포함하고, 상기 제 2 냉매 탱크에는, 상기 가열 냉매를 상기 응축기로 유출시키는 탱크 유출구를 포함할 수 있다.
여기서, 상기 백연 가스 저감 장치는 상기 관성 충돌형 열교환 장치에서, 발생된 기상의 냉매에 대하여 단열 팽창시킨 후, 응축기로 이를 보내는 팽창기를 더 포함할 수 있다.
상술한 구성을 가지는 본 발명의 일실시예에 따르면, 백연가스의 수증기를 관성 충돌형 열교환 장치를 통해 응결시켜 제거할 뿐만 아니라, 응축된 수분과 동시에 미세 먼지나 오염 물질도 함께 충돌 효과에 의해 제거할 수 있게 된다.
또한, 본 발명의 일실시예에 따르면, 상온에서 액체-기체로 상이 변하는 물질을 냉매로 사용하고, 또한, 응축기를 관성 충돌형 열교환 장치보다 높은 곳에 배치하여, 중력에 의해 자연 순환하도록 함으로써, 구조를 간단하게 함과 더불어서, 제조 원가를 낮추어 경제성을 높일 수 있다.
도 1은, 본 발명의 일실시예인 백연 가스 저감 장치의 전체적인 구성도.
도 2는, 본 발명의 일실시예인 백연 가스 저감 장치에 사용되는 관성 충돌형 열교환 장치의 전체의 개념 단면도.
도 3은 도 2의 관성 충돌형 열교환 장치 중 블레이드부와, 제 1 및 제 2 냉매탱크의 형상을 설명하기 위한 부분 확대 개념 사시도.
도 4는, 본 발명의 일실시예인 백연 가스 저감 장치에 사용되는 관성 충돌형 열교환 장치에서의 블레이드 부분을 설명하기 위한 구체 단면도.
도 5는 본 발명의 일실시예인 백연 가스 저감 장치에 사용되는 응축기 어셈블리의 사시도.
도 6은 도 5의 응축기의 내부를 설명하기 위한 투과 사시도.
도 7은, 응축기에 이용되는 핀튜브 금속관과 냉매 유출관의 연결관계를 설명하기 위한 도면.
도 8은, 본 발명에 따른 백연 가스 저감 장치의 다른 실시예의 전체적인 구성도.
이하, 본 발명의 일실시예인 백연 가스 저감 장치에 대하여 도면을 참조하여 보다 상세하게 설명한다.
도 1은, 본 발명의 일실시예인 백연 가스 저감 장치의 전체적인 구성도이다. 도 1에 도시된 바와 같이 본 발명의 일실시예인 백연 가스 저감 장치(1000)는 백연 유입 장치(100), 관성 충돌형 열교환 장치(200), 응축기(300), 및 팽창기(400)를 포함하여 구성될 수 있다.
백연 유입 장치(100)는, 제지공장, 반도체 공장, 고압 반응기 등에서 발생되는 수분을 다수 함유하고 있는 배가스(백연가스)를 유입하기 위한 장치이다. 예컨대, 제조 공정 중에 발생되는 백연 가스에 대하여 유입 수단으로서 송풍팬 등이 이용될 수 있다. 여기서 유입되는 백연 가스는 고온이며 수증기를 많이 함유하고 있으며, 또한, 미세 먼지나 오염물질을 함유할 수도 있다.
관성 충돌형 열교환 장치(200)는, 상기 백연가스에서 수분을 관성 충돌 및 열교환을 통해 제거할 뿐 아니라 백연 가스내에 함유되어 있는 미세 먼지 및 오염 물질을 수분과 함께 제거할 수 있다. 즉 관성 충돌형 열교환 장치(200)에는 냉매가 통과하는 열교환 파이프가 설치되며, 백연가스는 열교환 파이프 및 열교환 파이프와 연결되는 블레이드부(230)에서 이루어지는 응결 및 관성 충돌(열교환)에 의해 수분이 제거되어서 저백연 가스로 변환된다.
이러한 관성 충돌형 열교환 장치(200)에 대해서는 도 2 내지 도 4에서 보다 상세하게 설명하도록 한다.
한편, 응축기(300)는 관성 충돌형 열교환 장치(200)에서 열교환에 사용된 냉매를 냉각시킨 후, 다시 관성 충돌형 열교환 장치(200)로 되돌리는 기능을 한다. 즉, 관성충돌형 열교환 장치(200)에서 사용되는 냉매는, 응축기(300)에서 다시 원상태로 복귀한 후, 열교환 장치(200)로 보내지게 되는 순환구조를 가지게 된다. 이 때, 응축기(300)는 자연 냉각 방식으로 냉매를 원상태로 변환할 수 있다. 즉, 액체 상태의 냉매가 관성 충돌형 열교환 장치(200)에서 고온의 백연가스와 열교환되어서, 기체로 변환되고, 이 기체는 다시 응층기에서 액체로 냉각되어서, 관성 충돌형 열교환 장치(200)로 공급되게 된다. 이 때, 관성 충돌형 열교환 장치(200)는 공장의 실내에 위치하고, 응축기(300)는 공장의 옥상에 위치할 수 있게 된다. 즉, 상기 관성 충돌형 열교환 장치(200)보다 높은 곳에 위치하여, 상기 액상인 냉매가 중력에 의하여 상기 관성 충돌형 열교환 장치(200)로 되돌려지게 되므로, 별도의 장치 없이 자연 순환을 통해 냉매를 관성 충돌형 열교환 장치(200)로 공급할 수 있게 되기 때문에, 제조 원가를 낮추고, 시설 설비를 단순화할 수 있다.
여기서, 냉매는, 상온에서 액체-기체로 변환화는 물질이 이용될 수 있다. 즉, 대략 30~40℃의 비등점을 갖는 물질이 이용되는 경우, 고온의 백연가스와 열교환시에 기체로 변환하게 되고, 응축기(300)에서 자연 냉각을 하는 경우, 액체로 변환하게 될 수 있다. 이러한 냉매로서 HFC 134a가 이용될 수 있다.
한편, 이와 같은 기능을 하는 응축기(300)는, 도 5 내지 도 7에서 보다 상세하게 그 구조를 설명하도록 한다.
또한, 본 발명의 일실시예인 백연 가스 저감 장치(1000)는 팽창기(400)를 더 포함할 수 있다.
팽창기(400)는, 관성 충돌형 열교환 장치(200)에서 응축기(300)로 연결되는 연결관에 설치될 수 있다. 관성 충돌형 열교환 장치(200)에서 기화된 냉매는 넓은 공간을 가지는 팽창기(400)로 유입되어 단열 팽창을 하게 되고, 그 내부에 설치된 터빈에 대하여 일을 행하여 재생 에너지를 생산할 수 있게 된다. 즉, 팽창기(400)에서 상기 냉매는 에너지를 일부 상실하게 하고, 응축기(300)에서 최종적으로 원래 상태인 액체 상태로 돌아가게 되는 것이다.
한편, 팽창기(400)를 대신하여, 관성 충돌형 열교환기(200)에서 열교환된 에너지를 재활용하는 예를 도 8에서 설명하도록 한다.
이하에서는 본 발명의 일실시예인 백연 가스 저감 장치(1000)에 사용되는 관성 충돌형 열교환 장치(200)에 대하여 도 2 내지 도 4에서 보다 상세하게 설명하도록 한다.
도 2는, 본 발명의 일실시예인 백연 가스 저감 장치에 사용되는 관성 충돌형 열교환 장치의 개념 전체 단면도이고, 도 3은, 도 2의 관성 충돌형 열교환 장치 중 블레이드부와, 제 1 및 제 2 냉매탱크의 형상을 설명하기 위한 부분 개념 확대 사시도이며, 도 4는, 본 발명의 일실시예인 백연 가스 저감 장치에 사용되는 관성 충돌형 열교환 장치에서의 블레이드부를 설명하기 위한 구체 단면도이다.
도 2에 도시된 바와 같이, 본 발명의 일실시예인 백연 가스 저감 장치(1000)에 사용되는 관성 충돌형 열교환 장치(200)는, 하우징의 일측에 형성된 가스 유입구(201), 그리고, 상기 하우징의 반대측에 설치되는 가스 유출구(203), 그리고, 가스 유입구(201)와 가스 유출구(203)사이에 상기 하우징의 하측에 설치되는 제 1 냉매 탱크(210), 상기 하우징의 상측에 설치되는 제 2 냉매 탱크(220), 그리고 복수의 블레이드부(230:도 4참조), 그리고, 상기 블레이드부 사이에 연결되어서, 냉매가 상호 유통되도록 하는 블레이드 연결관(240) 및 상기 블레이드부(230)를 각각 슬라이딩 방식으로, 하우징의 내부에 결합시키는 슬라이딩 체결부(250)를 포함하여 구성될 수 있다
가스 유입구(201)는, 도 1에서 설명한 백연 유입 장치(100)로부터 유입되는 백연 가스를 블레이드부(230)측으로 유입하게 위한 것이다. 도시된 바와 같이, 가스 유입구(201)는, 관성 충돌형 열교환 장치(200)의 일측면의 중앙에 형성되고, 그 뒤로 점차 확대되는 형상으로 이루어지게 되어서, 블레이드부(230)로 백연가스가 자연스럽게 퍼져서 공급되게 된다.
한편, 가스 유출구(203)는, 상기 블레이드부(230)에서 수분, 오염물질 및 미세 먼지 등이 제거된 저백연가스가 유출되게 된다. 도시된 바와 같이, 가스 유출구(203)는, 관성 충돌형 열교환 장치(200)의 일측면의 타측면에 형성되고, 상기 가스 유입구(201)와 대응되는 구성을 가지게 된다.
그리고, 가스 유입구(201)와 가스 유출구(203)사이에 형성되는 제 1 냉매 탱크(210), 제 2 냉매 탱크(220), 그리고 블레이드부(230)에 대해서는 도 3 및 도 4에서 보다 상세하게 설명하도록 한다.
도 3에 도시된 바와 같이, 블레이드부(230)의 하측에는 액체 상태인 냉매가 보관되는 제 1 냉매 탱크(210)가 설치되고, 블레이드부(230)의 상측에는 기체 상태인 냉매를 임시 보관하는 제 2 냉매 탱크(220)가 설치된다.
제 1 냉매 탱크(210)에는, 블레이드부(230)의 열교환 파이프(235)로 공급되는 냉매가 액체상태로 보관된다. 이 냉매는 각 블레이드부(230)를 연결하는 연결관(240)을 통해 인접 블레이드부(230)의 열교환 파이프(235)로 공급된다. 이렇게 공급된 냉매는 열교환 파이프(235)를 따라 이동하면서 고온의 백연가스와 열접촉에 따른 열교환하게 되어서 기화된다. 이와 같이 기화된 냉매는, 블레이드부(230)의 상측에 설치되는 제 2 냉매 탱크(220)에 보관되게 된다.
제 1 냉매 탱크(210)에는, 상기 응축기(300)에서 액화되는 냉매를 공급받기 위한 탱크 유입구(211)가 형성되고, 제 2 냉매 탱크(220)에는, 기화된 냉매를 응축기(300)로 보내기 위한 탱크 유출구(221)가 형성된다.
또한, 각 블레이드부(230)는 슬라이딩 체결부(250)을 통해 슬라이딩 방식으로 분리 및 체결되게 되어서, 각 블레이드부(230)의 교환 및 수리가 용이하게 된다. 즉, 각 블레이드부(230)를 모듈화하여 구성하고, 상기 슬라이딩 체결부(250)과 체결되어서 하우징 내에 위치한 다음, 상기 연결관(240)을 상호 연결시켜, 각블레이드간에 냉매가 유통하도록 구성하여, 조립이 간단하고 유지 관리를 편리하게 할 수 있다.
한편 블레이드부(230)는 도 4에 도시된 바와 같이, 제 1 블레이드(231), 제 2 블레이드(232), 및 열교환 파이프(235)를 포함하여 구성될 수 있다.
즉, 블레이드부(230)는, 고온의 백연 가스의 흐름(백연가스의 바람)에 대하여 소정 각도 기울어져 형성되는 제 1 블레이드(231); 상기 제 1 블레이드(231)로부터 굴절각을 가지고 연장 형성되는 제 2 블레이드(232); 상기 제 1 블레이드(231)와 제 2 블레이드(232)의 연결점에 형성되며, 그 내부에 냉매가 흐르는 열교환 파이프(235)를 포함하여 구성될 수 있다. 상기 열교환 파이프(235)에 흐르는 냉매는 상기 백연 가스의 고온에 의해 가열되어서 기화되고, 이에 따라 백연 가스 내의 수분은 응결되면서, 상기 제 1 블레이드(231)및 제 2 블레이드(232), 제 1 차단 블레이드(233), 및 제 2 차단 블레이드(234)에 맺히게 되어서 수분(w)이 제거된다.
다시 말해, 제 1 블레이드(231)및 제 2 블레이드(232)가 굴곡되어 형성되기 때문에, 관성 충돌에 의해 미세 먼지와 오염물질(p)이 수분(w)과 함께 제거될 수 있다. 더욱이, 한 쌍의 제 1 차단 블레이드(233)가, 상기 제 1 블레이드(231)와 제 2 블레이드(232)의 연결점에 설치되어서 먼지등의 오염물질과 수분등은 이 차단 블레이드(233)에 충돌되어서 수분이 포집되고, 이 포집된 수분은 중력에 의해 하향 흘러가게 되어서 백연 가스 내의 수분(w)을 제거함과 더불어서, 백연 가스의 배출 온도를 낮추는 기능을 한다.
상기 열교환 파이프(235)와 상기 제 1 및 제 2 블레이드(231,232)는 열전도성이 높은 금속재로 이루어질 수 있다. 특히, 구리나, 알루미늄과 같이 연성이 좋고 연전도성이 높으며 부식성에 강한 금속재를 사용하는 경우, 내구성이 우수하게 된다. 또한, 상기 제 1 블레이드(231) 및 상기 제 2 블레이드(232)는, 상기 열교환 파이프(235)와 동일한 재질로 이루어지게 되면, 동작중의 온도차에 따른 열팽창에도 열충격이 발생하지 않기 때문에, 내구성이 우수하게 된다.
한편, 관성 충돌 효과를 더욱 높이기 위하여 제 2 차단 블레이드(234)가 상기 제 2 블레이드(232)의 종단부에 설치되어고 이 제 2 차단 블레이드(234)에 의해 수분(w) 및 먼지등 오염물질(p)이 백연 가스로부터 제거되게 됨과 더불어서, 백연 가스의 온도를 낮출 수 있게 된다.
이하에서는, 도 5 내지 도 7을 참조하여 백연 가스 저감 장치(1000)에 사용되는 응축기(300)에 대하여 설명하도록 한다.
도 5는 본 발명의 일실시예인 백연 가스 저감 장치에 사용되는 응축기 어셈블리의 사시도이고, 도 6은 도 5의 응축기의 내부를 설명하기 위한 투과 사시도이며,도 7은, 응축기에 이용되는 핀튜브 금속관과 냉매 유출관의 연결관계를 설명하기 위한 도면이다.
도 5에 도시된 바와 같이, 응축기 어셈블리(300')는 2개의 응축기(300)를 구비하고, 상기 2개의 응축기(300)를 지지하기 위한 지지 하우징(400)이 구성된다. 상기 응축기 어셈블리(300')의 상측으로는, 가열된 냉매가 유입되는 냉매 유입관(500)이 설치되고, 상기 응축기 어셈블리(300')의 하측으로는, 응축기(300)에서 냉각되어서 액화된 냉매가 유출되어서, 다시 관성 충돌형 열교환기(200)로 공급되는 냉매 유출관이 설치된다. 도 6을 통해 상기 응축기(300)의 구조를 보다 상세하게 설명하면, 도 6에 도시된 바와 같이, 응축기(300)는, 상기 응축기(300)는, 양측에서 하향 경사지게 세워져 설치되는 핀튜브 금속관(310)와, 송풍팬(320)을 포함하여 구성될 수 있다.
핀튜브 금속관(310)는 그 내부에는 관성 충돌형 열교환 장치(200)에서 기화된 냉매가 자연 냉각방식으로 냉각되어 액화되게 된다. 이 핀튜브 금속관(310)의 일단은 도 5의 냉매 유입관(500)과 연결된다. 이에 따라, 하향 경사진 핀튜브 금속관(310)의 구조에 따라, 기화된 냉매가 아래로 이동하면서 외기 및 송풍팬(320)에 의해 자연냉각되고 액화된다. 이와 같이 액화된 냉매는, 도 7에서 도시된 바와 같이, 냉매 유출관(600)으로 공급되어서 최종적으로는 관성 충돌형 열교환 장치(200)의 제 1 냉매 탱크(210)로 공급되게 된다. 이 때, 상기 응축기 어셈블리(300')가 옥상에 설치되고, 관성 충돌형 열교환 장치(200)가 옥내에 설치되면, 별도의 구동 수단 없이, 중력에 의해 자연스럽게 냉매는 제 1 냉매 탱크(210)로 이동되게 된다. 한편, 관성 충돌형 열교환 장치(200)에서 기화된 냉매는 위로 상승하게 되기 때문에 별도의 구동 수단 없이 옥상에 설치된 응축기 어셉블리(300')로 이동되게 된다.
송풍팬(320)은, 개방된 지지 하우징(400)의 상부에 설치되어서 자연풍을 상기 핀튜브 금속관(310)로 보내게 하여, 기화된 가열 냉매에 대한 냉각 효과를 상승시키는 기능을 한다.
한편, 상기 핀튜브 금속관(310)는 상기 관성 충돌형 열교환 장치(200)에서 가열된 가열 냉매가 있는 냉각관(311)과, 상기 냉각관(311)에 부착되어서, 상기 가열 냉매의 냉각속도를 향상시키는 다수의 냉각핀(312)을 포함하게 된다. 이 다수의 냉각핀(312)은 송풍팬(320)의 바람에 의해 냉각되며, 냉각핀(312)은 그 표면적이 넓기 때문에 기화되어 있는 냉매를 액화시키는 효과를 강화하게 된다.
이하, 본 발명에 따른 열교환기에서 발생하는 에너지를 재활용하는 예에 관한 발명을 도 8을 통해 보다 설명하도록 한다.
도 8은, 본 발명에 따른 백연 가스 저감 장치(1000')의 다른 실시예의 전체적인 구성도이다. 도 8에 도시된 바와 같이, 백연 가스 저감 장치(1000')는, 백연 유입장치(100), 관성 충돌형 열교환기(200), 응축기(300)를 포함하고, 팽창기 대신에, 온수조(410), 에너지 활용 장치(420), 냉각조(430), 냉각수 공급수단(440)을 포함하여 구성될 수 있다.
백연 유입장치(100), 관성 충돌형 열교환기(200), 및 응축기(300)에 대한 설명은 이미 상세하게 설명하였으므로, 설명의 간략화를 위하여 그 설명을 생략하도록 한다.
도 8의 실시예에서는 냉매로서 물을 사용한다. 물을 사용하는 경우, 관성 충돌형 열교환기에서 가열된 물은 온수조(410)로 이동하게 된다. 온수조(410)에 채워진 고온의 물은 에너지 활용 장치(420:예컨대, 발전장치, 온수 공급 장치등)로 공급되어서 활용되게 된다. 이와 같이, 활용이 완료된 온수는 응축기(300)로 공급되게 되며, 응축기(300)에서 자연 냉각 방식으로 냉각되게 된다. 냉각된 물은, 다시 냉각조(430)로 공급되게 된다. 상기 온수조(410) 및 에너지 활용 장치(420)등에서 냉매인 물이 누설되는 것을 보완하기 위하여, 냉각수 공급수단(440)이 냉각조(430)에 냉수를 공급하게되고, 이 냉각수는, 관성 충돌형 열교환기(200)로 공급되게 된다.
상술한 구성을 가지는 본 발명의 일실시예에 따르면, 백연가스의 수증기를 관성 충돌형 열교환 장치를 통해 응결시켜 제거할 뿐만 아니라, 미세 먼지나 오염 물질도 함께 제거할 수 있게 된다.
또한, 본 발명의 일실시예에 따르면, 상온에서 액체-기체로 상이 변하는 물질을 냉매로 사용하고, 또한, 응축기를 관성 충돌형 열교환 장치보다 높은 곳에 배치하여, 중력에 의해 자연 순환하도록 함으로써, 구조를 간단하게 함과 더불어서, 제조 원가를 낮추어 경제성을 높일 수 있다.
상기와 같이 설명된 백연 가스 저감 장치는 상기 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.

Claims (11)

  1. 백연 가스를 유입시키는 백연가스 유입 장치;
    상기 유입되는 백연 가스에 포함된 미세 먼지를 관성 충돌 방식으로 제거하고, 열교환을 통해 상기 백연 가스를 냉각시켜서, 저백연 가스로 변환시켜 백연 가스내의 수분을 응결 및 충돌 제거하는 관성 충돌형 열교환 장치; 및
    상기 관성 충돌형 열교환 장치에서 열교환에 사용된 냉매를 냉각시킨후 다시 상기 관성충돌형 열교환 장치로 되돌리는 응축기를 포함하는, 백연 가스 저감 장치.
  2. 제 1 항에 있어서,
    상기 응축기는, 건물 외부에 설치되어서, 공냉식으로 기상인 상기 냉매를 액상으로 변환시키는, 백연 가스 저감 장치.
  3. 제 1 항에 있어서,
    상기 응축기는, 상기 관성 충돌형 열교환 장치보다 높은 곳에 위치하여, 상기 액상인 냉매가 중력에 의하여 상기 관성 충돌형 열교환 장치로 되돌려지는, 백연 가스 저감 장치.
  4. 제 3 항에 있어서,
    상기 냉매는 상온에서 액상-기상으로 변하는 물질인, 백연 가스 저감 장치.
  5. 제 2 항에 있어서,
    상기 백연가스 유입 장치와 상기 관성 충돌형 열교환 장치는 실내에 위치하고, 상기 응축기는 옥상에 배치되는, 백연 가스 저감 장치.
  6. 제 1 항에 있어서,
    상기 응축기는,
    그 내부에 상기 냉매가 있는 핀튜브 금속관; 및
    상기 핀튜브 금속관에 대하여 공기의 흐름을 제공하는 송풍팬을 포함하는, 백연 가스 저감 장치.
  7. 제 6 항에 있어서,
    상기 핀튜브 금속관은,
    상기 관성 충돌형 열교환 장치에서 가열된 가열 냉매가 있는 냉각관; 및
    상기 냉각관에 부착되어서, 상기 가열 냉매의 냉각속도를 향상시키는 다수의 냉각핀을 포함하는, 백연 가스 저감 장치.
  8. 제 1 항에 있어서,
    상기 관성 충돌형 열교환 장치는,
    상기 백연가스의 바람의 방향에 대하여 일정 각도로 경사지게 형성되는 제 1 블레이드;
    상기 제 1 블레이드로부터 굴절각을 가지고 연장 형성되는 제 2 블레이드; 및
    상기 제 1 블레이드와 상기 제 2 블레이드의 연결점에 설치되며, 상기 냉매를 보유하는 열교환 파이프를 포함하는, 백연 가스 저감 장치.
  9. 제 8 항에 있어서,
    상기 관성 충돌형 열교환 장치는,
    상기 열교환 파이프로 상기 냉매를 공급하며, 상기 제 1 블레이드 및 상기 제 2 블레이드의 제 1 측에 부착되는 제 1 냉매 탱크; 및
    상기 열교환 파이프에서 가열된 냉매를 임시 저장하며, 상기 제 1 블레이드 및 상기 제 2 블레이드의 제 2 측에 부착되는 제 2 냉매 탱크를 더 포함하는, 백연 가스 저감 장치.
  10. 제 9 항에 있어서,
    상기 제 1 블레이드 및 상기 제 2 블레이드는, 상기 열교환 파이프와 동일한 재질로 이루어지는, 백연 가스 저감 장치.
  11. 제 9 항에 있어서,
    상기 제 1 냉매탱크는 상기 응축기로부터 되돌아오는 냉매를 유입시키기 위한 탱크 유입구를 포함하고,
    상기 제 2 냉매 탱크에는, 상기 가열 냉매를 상기 응축기로 유출시키는 탱크 유출구를 포함하는, 백연 가스 저감 장치.
PCT/KR2016/005802 2015-06-02 2016-06-01 백연 가스 저감 장치 WO2016195375A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201690001043.4U CN208653259U (zh) 2015-06-02 2016-06-01 白烟减低装置
US15/578,917 US20180180359A1 (en) 2015-06-02 2016-06-01 White smoke gas reduction device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0078022 2015-06-02
KR1020150078022A KR101754665B1 (ko) 2015-06-02 2015-06-02 백연 가스 저감 장치

Publications (1)

Publication Number Publication Date
WO2016195375A1 true WO2016195375A1 (ko) 2016-12-08

Family

ID=57440622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005802 WO2016195375A1 (ko) 2015-06-02 2016-06-01 백연 가스 저감 장치

Country Status (4)

Country Link
US (1) US20180180359A1 (ko)
KR (1) KR101754665B1 (ko)
CN (1) CN208653259U (ko)
WO (1) WO2016195375A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102051526B1 (ko) * 2017-08-01 2020-01-07 주식회사 코퍼스트엔지니어링 토네이도 효과에 따라 오염 분진을 응집하여 제거할 수 있는 비방향성 열교환기
CN110174005B (zh) * 2019-05-28 2024-04-19 江苏龙净节能科技有限公司 一种大容量冷凝换热装置
KR102053376B1 (ko) * 2019-06-19 2019-12-06 주식회사 누리플랜 미세먼지 저감장치
KR102211685B1 (ko) * 2019-09-02 2021-02-04 주식회사 엘스 미세 오염 입자 배출 저감 가능한 연소형 난로 및 그에 사용되는 미세 오염 입자 제거 모듈
KR102357966B1 (ko) * 2020-03-04 2022-02-03 한국전력기술 주식회사 여과장치
CN111298589A (zh) * 2020-03-06 2020-06-19 复旦大学 一种船舶烟气冷凝撞击净化装置和方法
CN111351064A (zh) * 2020-03-13 2020-06-30 江苏峰业科技环保集团股份有限公司 一种冷却除湿的烟气消白系统
USD991067S1 (en) * 2020-10-17 2023-07-04 Honeywell International Inc. Modular aspirated smoke, gas, and air quality monitoring system device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109379A (ja) * 1992-03-31 1994-04-19 Tokyo Metropolis 冷却塔
JPH0712784U (ja) * 1993-06-30 1995-03-03 株式会社エー・アール・シー 熱交換器
JPH08254397A (ja) * 1995-03-15 1996-10-01 Toshiba Corp 凝縮器用熱交換器
KR20030030857A (ko) * 2002-09-19 2003-04-18 문준식 압축저장 냉각 응축식 휘발성 유기 증기 회수 장치
KR20130098504A (ko) * 2012-02-28 2013-09-05 주식회사 케이에프이앤이 고온 오염 기체 중의 오염 물질을 제거하는 에너지 활용형 먼지 제거 처리 시스템 및 이에 이용되는 관성 충돌형 에너지 회수 및 먼지 제거 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607011A (en) * 1991-01-25 1997-03-04 Abdelmalek; Fawzy T. Reverse heat exchanging system for boiler flue gas condensing and combustion air preheating
JPH08327276A (ja) * 1995-05-30 1996-12-13 Sanden Corp 多管式熱交換器
US6988538B2 (en) * 2004-01-22 2006-01-24 Hussmann Corporation Microchannel condenser assembly
US7814742B2 (en) * 2006-12-13 2010-10-19 Mitsubishi Heavy Industries, Ltd. Integrated coal gasification combined cycle plant
KR101197283B1 (ko) * 2010-10-29 2012-11-05 정순우 백연 발생 방지장치 및 이를 구비한 냉각탑
US9278359B2 (en) * 2011-12-08 2016-03-08 Kf E&E Co., Ltd. Energy recycling type dust removing processing system for removing contaiminated material in high temperature contaminated gas and inertial impact type energy recovering and dust removing apparatus
KR20130065173A (ko) * 2011-12-09 2013-06-19 현대자동차주식회사 차량용 열교환기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109379A (ja) * 1992-03-31 1994-04-19 Tokyo Metropolis 冷却塔
JPH0712784U (ja) * 1993-06-30 1995-03-03 株式会社エー・アール・シー 熱交換器
JPH08254397A (ja) * 1995-03-15 1996-10-01 Toshiba Corp 凝縮器用熱交換器
KR20030030857A (ko) * 2002-09-19 2003-04-18 문준식 압축저장 냉각 응축식 휘발성 유기 증기 회수 장치
KR20130098504A (ko) * 2012-02-28 2013-09-05 주식회사 케이에프이앤이 고온 오염 기체 중의 오염 물질을 제거하는 에너지 활용형 먼지 제거 처리 시스템 및 이에 이용되는 관성 충돌형 에너지 회수 및 먼지 제거 장치

Also Published As

Publication number Publication date
KR101754665B1 (ko) 2017-07-10
CN208653259U (zh) 2019-03-26
KR20160142099A (ko) 2016-12-12
US20180180359A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
WO2016195375A1 (ko) 백연 가스 저감 장치
US8622372B2 (en) Fan cooling tower design and method
WO2014104575A1 (ko) 복수의 잠열 열교환부를 갖는 콘덴싱 보일러
CN106488687B (zh) 用于对封闭的机柜进行冷却的装置
Baweja et al. A review on performance analysis of air-cooled condenser under various atmospheric conditions
CN104315875A (zh) 电厂尖峰冷却用蒸发式冷凝器
WO2013139151A1 (zh) 一种模块化数据中心
WO2010053278A2 (ko) 폐열회수기를 구비한 입형 및 횡형 타입 일체형 열교환 유닛
CN201715544U (zh) 烟气余热回收系统
CN108800975A (zh) 一种脱硫烟道口带制冷装置的烟气冷却换热器
Reay A review of gas-gas heat recovery systems
CN108546796B (zh) 一种转炉烟气全干式冷却装置及其冷却方法
CN110793364A (zh) 一种用于余热回收的热管换热装置及其工作方法
KR930011918B1 (ko) 코크스 건냉장치
WO2013012270A2 (ko) 응축기가 증발기 하부 또는 측부에 위치하는 저온비등 냉각시스템
WO2018105841A1 (ko) 직렬 복열 방식의 초임계 이산화탄소 발전 시스템
KR102398797B1 (ko) 공기-냉각을 제공하기 위한 시스템 및 방법, 그리고 관련된 발전 시스템
CA2573993A1 (en) A method of and an apparatus for protecting a heat exchanger and a steam boiler provided with an apparatus for protecting a heat exchanger
WO2020004702A1 (ko) 열사이펀을 이용해 공조하는 에너지저장시스템
CN215892304U (zh) 干熄焦烟气余热锅炉蒸发器设备
WO2015068874A1 (ko) 지역냉방 시스템용 냉동기
KR101102182B1 (ko) 모듈형 열교환기
KR20040049568A (ko) 하이브리드 냉각탑
JPH11159973A (ja) 冷却塔および冷却塔の白煙防止方法
WO2018012717A1 (ko) 폐기열 회수 열교환기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15578917

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 16803730

Country of ref document: EP

Kind code of ref document: A1