WO2016195358A1 - 모니터링 센서를 이용한 탄소섬유강화 플라스틱 스택 가공 방법 - Google Patents

모니터링 센서를 이용한 탄소섬유강화 플라스틱 스택 가공 방법 Download PDF

Info

Publication number
WO2016195358A1
WO2016195358A1 PCT/KR2016/005723 KR2016005723W WO2016195358A1 WO 2016195358 A1 WO2016195358 A1 WO 2016195358A1 KR 2016005723 W KR2016005723 W KR 2016005723W WO 2016195358 A1 WO2016195358 A1 WO 2016195358A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring sensor
processing
carbon fiber
spindle
fiber reinforced
Prior art date
Application number
PCT/KR2016/005723
Other languages
English (en)
French (fr)
Inventor
김태곤
이석우
박경희
김효영
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to US15/124,664 priority Critical patent/US10265779B2/en
Publication of WO2016195358A1 publication Critical patent/WO2016195358A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B39/00General-purpose boring or drilling machines or devices; Sets of boring and/or drilling machines
    • B23B39/04Co-ordinate boring or drilling machines; Machines for making holes without previous marking
    • B23B39/08Devices for programme control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B35/00Methods for boring or drilling, or for working essentially requiring the use of boring or drilling machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/27Composites
    • B23B2226/275Carbon fibre reinforced carbon composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/128Sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0961Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring power, current or torque of a motor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49077Control of feed and spindle, cutting speed

Definitions

  • the present invention relates to a method for processing a carbon fiber reinforced plastic stack using a monitoring sensor, and more particularly, on the material properties of the stack at the beginning and the end of the process due to the material properties of the carbon fiber reinforced plastics stack.
  • the present invention relates to a carbon fiber reinforced plastic stack processing method using a monitoring sensor that can easily solve the problems caused by the difference.
  • Carbon fiber-reinforced composite material has superior properties such as specific strength, inelasticity and heat resistance, compared to other types of fibers, and has the advantage of making a highly elastic composite.
  • Carbon fiber-reinforced composites are now widely used in the aviation industry because of their inherent properties, such as specific stiffness, corrosion resistance, abrasion resistance, and high strength, and are increasingly used in many fields such as sporting goods, machinery structures, and automobiles. .
  • the carbon fiber reinforced composite material has a problem in that the performance in the thickness direction is deteriorated due to the laminated manufacturing process, so that delamination or the like occurs.
  • a spindle having a diameter of 5-12 mm is widely used in the drilling of holes for mounting parts of electronic products such as computers and the drilling of nozzles such as injection pulp, and the delamination is caused by the wear of the tool. If the separation between layers, there was a problem in the cost of the material production and the previous process, and to discard. In addition, in order to solve such a problem, there is a problem in that the tool cost is high due to a conservative approach to tool wear.
  • Patent Document 1 Korean Patent Publication No. 10-1990-0017701
  • a solution for solving such a problem is to provide a tool monitoring device for predicting tool life or monitoring machining conditions in a feed monitoring device for a small diameter spindle using a spindle-mounted torque sensor.
  • a system for automatically determining the exchange time of is possible, it is difficult to apply it to the heterogeneous composite material because no processing means for the interface found in the heterogeneous composite material is proposed.
  • the technical problem to be achieved by the present invention is a carbon fiber-reinforced plastic stack processing method using a monitoring sensor that can control the processing conditions by grasping the material and the stack structure of the processing material in real time To provide.
  • the present invention provides a method of processing a carbon fiber reinforced plastic using the monitoring sensor of claim 1, comprising: (a) a computer numerical control (CNC) spindle and a monitoring sensor; Step (S10), (b) determining the starting point for the machining of the spindle, the machining finishing position (S20) and (c) controlling the movement speed and the rotation speed of the spindle according to the determination result.
  • CNC computer numerical control
  • Step (S10) Step (S10), (b) determining the starting point for the machining of the spindle, the machining finishing position (S20) and (c) controlling the movement speed and the rotation speed of the spindle according to the determination result.
  • It provides a method of processing carbon fiber reinforced plastics using a monitoring sensor, characterized in that it comprises a step (S30).
  • the carbon fiber reinforced plastic stack material when processing the carbon fiber reinforced plastic stack material, it may be possible to determine the inlet and outlet, interface and material for the carbon fiber reinforced plastic stack material through a load cell so that the feed rate may be And a processing method and a processing device for heterogeneous bonding materials capable of controlling the rotational speed (rpm).
  • dynamometer and impedance sensor can check the machining status of the machining tool and the workpiece (workpiece) can be processed in real time by changing the machining process can be optimized for the machining method according to the machining conditions .
  • Incorporating monitoring technology can theoretically approach process conditions setup that was empirically conservative, increasing productivity and reducing tool costs.
  • Figure 2 is a schematic diagram showing the configuration of a processing system of carbon fiber reinforced plastics according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram showing the configuration of a processing system of carbon fiber reinforced plastics according to an embodiment of the present invention.
  • an embodiment of the present invention is a method of processing carbon fiber reinforced plastic using a monitoring sensor, (a) a computer numerical control (CNC) to electrically control the spindle and the monitoring sensor Step (S10) and (b) determining the starting point for the machining of the spindle, the machining finishing position (S20) and (c) controlling the moving speed and the rotational speed of the spindle according to the determination result.
  • CNC computer numerical control
  • It provides a method of processing carbon fiber reinforced plastics using a monitoring sensor comprising a step (S30).
  • a monitoring sensor for measuring a load on a workpiece and measuring an impedance between the spindle and the workpiece and the monitoring It is possible to provide a processing apparatus for carbon fiber reinforced plastics including a computer numerical control unit for receiving a signal from a sensor and determining a physical property of a workpiece from the monitoring sensor.
  • the real-time processing method of the heterojunction material using a monitoring sensor (a) using the monitoring sensor to determine the inlet and the material of the heterojunction material (S110), and (b) Processing according to the determination result (S120), (c) detecting the interface using the monitoring sensor (S130), and (d) changing the first process condition at the interface condition ( (S140), (e) proceeding the processing in accordance with the changed first process conditions (S150), (f) determining the outlet using the monitoring sensor (S160), and (g) determining the outlet
  • the process may include changing the second process condition according to the result (S170) and (h) processing the process according to the changed second process condition (S180).
  • the monitoring sensor for determining the hole inlet, hole exit and the interface of the heterojunction material, and the transfer of the spindle in accordance with the determination result of the monitoring sensor It is possible to provide a real-time processing apparatus for heterojunction materials using a computer numerical control unit for controlling the speed and rotation speed, and a monitoring sensor including a spindle for receiving a signal from the monitoring sensor and the computer numerical control unit to process heterojunction materials.
  • Figure 1 (a) and (b) it can be confirmed the information on the point where cracks (Crack) and the like can be found during processing of the workpiece. That is, Figure 1 (a) can be said to be the case in which the workpiece 100 is composed of a single material, Figure 1 (b) can be said to be the case in which the workpiece 100 includes a heterojunction material.
  • the heterojunction material may include a first workpiece 102 and a second workpiece 104.
  • the first workpiece 102 and the second workpiece 104 may be a first elastic fiber reinforced plastic, a metal, or a first elastic fiber reinforced plastic and a second elastic fiber reinforced plastic.
  • the spindle 150 which is a machining device, is caught at the starting point and the ending point of the machining.
  • the load may vary.
  • a process may be poor at the starting point or the end point when the process is configured to control the process according to a predetermined thickness.
  • the heterogeneous bonding materials as shown in Figure 1 (b) may be a sudden change in physical properties due to the difference in the material at the bonding site. Particularly, it is not a big problem when it is made of the same material, but the heterogeneous bonding material is damaged when the ductile metal and the fracture property are not paid attention to in the processing of the joining part in the case of the plastic bonding material. May occur.
  • the first workpiece 102 of FIG. 1B can be a carbon fiber reinforced plastic and the second workpiece 104 can be a metal.
  • the material for adhering the first workpiece 102 and the second workpiece 104 of FIG. 1B may be an epoxy resin.
  • An apparatus for processing a carbon fiber reinforced plastic stack using a monitoring sensor according to an embodiment of the present invention.
  • a load cell for measuring the load on the workpiece 100, an impedance sensor for measuring the impedance between the spindle and the workpiece 100, and a computer for receiving signals from the impedance sensor and determining the physical properties of the workpiece from the load cell. It may include a numerical control unit 200.
  • the load cell may be used to determine the entry, cutting and finishing steps of the spindle 150.
  • the load cell may be to measure the load on the spindle 150.
  • the load acting on the spindle 150 may cause a difference depending on the material of the processing material 100 for which the hole processing is performed. Therefore, before measuring the load on the spindle 150, the determination of the material of the workpiece 100 may be made first.
  • a load cell is a device having a characteristic of changing an electrical signal according to pressure, and checks a load generated between the spindle 150 and the workpiece 100 according to the vertical flow of the spindle 150, and checks the spindle ( The load generated in accordance with the transfer operation and the rotation operation of 150 may be checked. According to the load applied to such a load cell, the precision of machining can be improved.
  • the operation of the load cell may be controlled according to the detection signal of the monitoring sensor 250.
  • the determination of the processing state may be made by measuring an impedance between the workpiece 100 and the spindle 150.
  • a computer numerical controller refers to a controller that commands the position of the spindle 150 relative to the workpiece 100 with numerical information corresponding thereto.
  • a device capable of automatically processing as commanded is provided.
  • the monitoring sensor 250 may include any one or more of a torque sensor, a load cell, a dynamometer, and an impedance sensor.
  • the spindle 150 used to process the workpiece 100 may determine the machining position and change the characteristics of the machining through the load applied to the load cell. More specifically, the load cell may be used to determine the entry, cutting and finishing steps of the spindle 150.
  • the processing material 100 used in the processing apparatus may be carbon fiber reinforced plastic (CFRP) or a heterojunction material.
  • CFRP carbon fiber reinforced plastic
  • heterojunction materials may include a combination of carbon fiber reinforced plastics and metals or first carbon fiber reinforced plastics and second carbon fiber reinforced plastics.
  • Figure 2 is a schematic diagram showing the configuration of a carbon fiber reinforced plastics processing system according to an embodiment of the present invention
  • Figure 3 is a schematic diagram showing the configuration of a processing system of a carbon fiber reinforced plastic stack according to an embodiment of the present invention. .
  • FIGS. 2 and 3 a method of processing a carbon fiber reinforced plastic using a monitoring sensor will be described in detail.
  • Carbon fiber reinforced plastic processing method using a monitoring sensor (a) step of electrically connecting the spindle and the monitoring sensor with a computer numerical control (CNC) (S10) and (b) determining a starting point for the machining of the spindle, a machining finishing position (S20), and (c) controlling the moving speed and the rotational speed of the spindle according to the determination result (S30).
  • CNC computer numerical control
  • the computer numerical controller 200 may be in an electrically connected state with the monitoring sensor 250 through the signal transmitter 220.
  • the monitoring sensor 250 may be a device capable of determining various states of the spindle 150.
  • the monitoring sensor 250 may include a load cell, a torque sensor, a dynamometer, and an impedance sensor as described above.
  • the torque sensor and the dynamometer may measure torque, thrust force, and twist force operating on the spindle 150.
  • torque stress acts on the upper part of the spindle 150 through the torque sensor
  • the upper part of the spindle 150 may be twisted and distorted.
  • Such a motion can be detected by a displacement sensor. If a control means for such torque stress is not provided, a desired processing shape cannot be obtained.
  • the output of a constant waveform can be obtained from the displacement sensor through the operation of the torque sensor.
  • the dynamometer refers to an instrument for measuring the power generated from the spindle of the spindle 150 or the power transmitted to the workpiece 100, which is another machine.
  • High quality machining may be a processing to increase the rotational speed (rpm) of the spindle 150 and to lower the feed (feed). High quality machining may be performed in the entry section and the finishing section in which the spindle 150 enters the workpiece 100 as precision machining. In addition, high-quality processing can be performed at the boundary of the heterojunction material to which the binder resin is bonded.
  • the inside of the carbon fiber reinforced plastic which is the processing material 100 which is excellent in cutting property can be processed to make a feed rate high.
  • the determination of the feed speed and the rotation speed may be determined based on a signal received by the computer numerical control apparatus 200 from the monitoring sensor 250 and information on the material of the workpiece 100.
  • FIG. 3 shows a processing system for dissimilar material bonding materials.
  • the heterojunction material may refer to the bonding of carbon fiber reinforced plastic and metal, or the first carbon fiber reinforced plastic and the second carbon fiber reinforced plastic. Since the epoxy resin may be used as the above-mentioned bonding material, fracture may occur when high-speed machining is performed. High quality machining can be achieved with a low feed rate and a high rotational speed that can prevent the destruction of such binding materials.
  • the real-time processing method of the heterojunction material using the monitoring sensor (a) using the monitoring sensor to determine the inlet and the material of the heterojunction material (S110), and (b) to proceed in accordance with the determination result Step (S120), (c) detecting the interface using the monitoring sensor (S130), (d) changing the first process condition at the interface (S140), (e) the changed agent 1 the process of the process according to the process conditions (S150), (f) determining the outlet using the monitoring sensor (S160), and (g) changing the second process conditions in accordance with the outlet determination results Step (S170) and (h) it may include the step (S180) of proceeding the processing in accordance with the changed second process conditions.
  • the above processing may be hole processing.
  • the first process condition and the second process condition may be to change the rotational speed and the feed of the spindle 150.
  • the above-described machining process may be performed simultaneously with determination of material and displacement through the monitoring sensor 250 in real time.
  • the monitoring sensor for determining the hole inlet, hole exit and the interface of the heterojunction material, and the transfer of the spindle in accordance with the determination result of the monitoring sensor It may include a computer numerical control unit for controlling the speed and rotational speed, and a spindle for processing heterojunction material by receiving a signal from the monitoring sensor and the computer numerical control unit.
  • the above-described load cell and monitoring sensor 250 may be the same component as the above-described component.
  • the details of the processing process are as described above.

Abstract

본 발명의 일실시예는 본 발명의 일실시예는 모니터링 센서를 이용한 탄소 섬유 강화 플라스틱의 가공 방법에 있어서, (a) 컴퓨터 수치 제어 장치(Computer numerical control; CNC)로 스핀들과 모니터링 센서를 전기적으로 연결하는 단계(S10)와, (b) 스핀들의 가공에 대한 시작 지점, 가공 마무리 위치를 판정하는 단계(S20) 및 (c) 상기 판정 결과에 따라 상기 스핀들의 이동 속도와 회전 속도를 제어하는 단계(S30)를 포함하는 모니터링 센서를 이용한 탄소 섬유 강화 플라스틱의 가공 방법을 제공한다.

Description

모니터링 센서를 이용한 탄소섬유강화 플라스틱 스택 가공 방법
본 발명은 모니터링 센서를 이용한 탄소섬유강화 플라스틱 스택 가공방법에 관한 것으로, 더욱 상세하게는 탄소섬유 강화 플라스틱(Carbon Fiber Reinforced Plastics) 스택의 재질적 특성 상 진입하는 초기와 가공 종료 시에 스택 상의 재질 상의 차이로 말미암아 발생할 수 있는 문제를 용이하게 해결할 수 있는 모니터링 센서를 이용한 탄소섬유 강화플라스틱 스택 가공방법에 관한 것이다.
탄소 섬유 강화 복합 재료는 다른 종류의 섬유에 비해 비강도, 비탄성, 내열성과 같은 물성이 우수하고, 고탄성 복합체를 만들 수 있는 장점이 있다. 현재 탄소 섬유 강화 복합 재료는 소재 고유의 특성인 비강성, 내식성, 내마모성, 고강도성 등으로 인해 현재 항공 산업에 많이 사용되고 있으며, 스포츠 용품, 기계구조물, 자동차 등 많은 분야에서의 사용이 점차 증가하고 있다.
이러한 탄소 섬유 강화 복합 재료는 적층형 제조 공정으로 인해 두께 방향의 성능이 떨어져 층간 분리현상(delamination) 등이 발생하는 문제점이 있다.
종래에는 소경 스핀들 가공시 공구를 감시할 수 있는 시스템이 없었기 때문에 NC(Numerical Control) 공작기계, 머시닝 센서 및 F.M.S(Flexible Manufacturing System)등에 의한 고정도화, 성력화, 성 에너지화를 목적으로 한 공작 기계와 가공 시스템이 가동하고 있는 오늘 날에 있어서, 절삭 가공을 하는 공작기계가 인간의 손에서 떨어져 무인 운전 시스템으로 가공할 경우, 공구 손상은 굉장히 큰 문제로 대두된다.
특히 요즈음 컴퓨터 등 전자제품의 부품 취부용 구멍 뚫기 가공, 분사 펄프 등의 노즐의 구멍 뚫기 가공에는 5-12mm의 직경을 갖는 스핀들이 많이 사용되고 있는데, 공구 마모로 인하여 층간 분리(delamination)이 생기게 된다. 층간 분리가 생기면, 소재 제작과 전공정에 소요되었던 비용을 감수하고, 폐기해야 하는 문제가 있었다. 또한 이와 같은 문제를 해결하기 위해 공구 마모에 대해 보수적으로 접근하여 공구 비용이 많이 든다는 문제점이 있었다.
특허 문헌 1(한국 공개 특허 공보 제10-1990-0017701호)에서는 이러한 문제에 대한 해결방안으로 주축탑재형 토크 센서를 이용한 소경 스핀들용 공급 감시 장치에서 공구 수명을 예측하거나 가공 상태를 감시하도록 함으로써 공구의 교환시간을 자동적으로 판단하는 시스템이 가능하게 되었지만 이종 복합 재료에서 발견되는 경계면에 대한 가공 수단이 제시되어 있지 않아 이종 복합 재료에 대하여 적용하기에는 어려운 문제가 있었다.
상기와 같은 문제점을 해결하기 위하여, 본 발명이 이루고자 하는 기술적 과제는 실시간으로 가공 재료의 재질과 가공 재료의 스택 구조를 파악하여 공정 조건을 제어할 수 있는 모니터링 센서를 이용한 탄소섬유강화 플라스틱 스택 가공 방법을 제공하는 것이다.
상기와 같은 기술적 과제를 달성하기 위하여 안출된 본 발명은 청구항 1의 모니터링 센서를 이용한 탄소 섬유 강화 플라스틱의 가공 방법에 있어서, (a) 컴퓨터 수치 제어 장치(Computer numerical control; CNC)로 스핀들과 모니터링 센서를 전기적으로 연결하는 단계(S10), (b) 스핀들의 가공에 대한 시작 지점, 가공 마무리 위치를 판정하는 단계(S20) 및 (c) 상기 판정 결과에 따라 상기 스핀들의 이동 속도와 회전 속도를 제어하는 단계(S30)를 포함하는 것을 특징으로 하는 모니터링 센서를 이용한 탄소 섬유 강화 플라스틱의 가공 방법을 제공한다.
본 발명의 일실시예에 따르면, 할 탄소 섬유 강화 플라스틱 스택 소재에 대한 가공시 로드 셀을 통하여 탄소 섬유 강화 플라스틱 스택 소재에 대한 입출구부, 경계면과 재질에 대한 실시간 판정이 가능할 수 있어서 이에 맞추어 이송 속도와 회전수(r.p.m)을 제어할 수 있는 이종 접합 소재에 대한 가공 방법 및 가공 장치일 수 있다.
또한 토크 센서, 다이나모미터 및 임피던스 센서를 통해서 가공 툴과 가공 재료(workpiece)와의 가공 상태를 확인할 수 있어서 실시간으로 가공 공정을 변경하여 가공할 수 있어서 가공 조건에 맞는 가공 방법에 대한 최적화가 가능할 수 있다. 모니터링 기술을 접목하면 경험적으로 보수적으로 접근했던 공정조건 셋업을 이론적인 방법으로 접근하여 생산성을 늘리고 공구비용을 감소할 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1(a)와 (b)는 가공 소재에 대한 가공시 공정제어가 필요한 부분을 모식적으로 보여주는 도면이다.
도 2는 본 발명의 일 실시예에 따른 탄소 섬유 강화 플라스틱의 가공 시스템의 구성을 보여주는 모식도이다.
도 3은 본 발명의 일 실시예에 따른 탄소 섬유 강화 플라스틱의 가공 시스템의 구성을 보여주는 모식도이다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일실시예는 모니터링 센서를 이용한 탄소 섬유 강화 플라스틱의 가공 방법에 있어서, (a) 컴퓨터 수치 제어 장치(Computer numerical control; CNC)로 스핀들과 모니터링 센서를 전기적으로 연결하는 단계(S10)와, (b) 스핀들의 가공에 대한 시작 지점, 가공 마무리 위치를 판정하는 단계(S20) 및 (c) 상기 판정 결과에 따라 상기 스핀들의 이동 속도와 회전 속도를 제어하는 단계(S30)를 포함하는 모니터링 센서를 이용한 탄소 섬유 강화 플라스틱의 가공 방법을 제공한다.
본 발명의 일실시예인 탄소 섬유강화 플라스틱의 가공 장치에 있어서, 탄소 섬유강화 플라스틱의 가공 장치에 있어서, 가공 소재에 걸리는 부하를 측정하고, 스핀들과 가공 소재 사이의 임피던스를 측정하는 모니터링 센서 및 상기 모니터링 센서로부터 신호를 입력받고 상기 모니터링 센서로부터 가공 소재의 물성을 판단하는 컴퓨터 수치 제어부를 포함하는 탄소 섬유 강화 플라스틱의 가공 장치를 제공할 수 있다.
본 발명의 일 실시예에 있어서, 모니터링 센서를 이용한 이종 접합물질의 실시간 가공 방법은, (a) 모니터링 센서를 이용하여 이종 접합 물질의 입구부와 재질을 판정하는 단계(S110)와, (b) 상기 판정 결과에 따라 가공을 진행하는 단계(S120)와, (c) 상기 모니터링 센서를 이용하여 경계면을 검출하는 단계(S130)와, (d) 상기 경계면 조건에서 제1 공정 조건을 변경하는 단계(S140)와, (e) 변경된 제1 공정 조건에 맞추어 가공을 진행하는 단계(S150)와, (f) 상기 모니터링 센서를 이용하여 출구부를 판정하는 단계(S160)와, (g) 상기 출구부 판정 결과에 맞추어 제2 공정 조건을 변경하는 단계(S170) 및 (h) 변경된 제2 공정 조건에 맞추어 가공을 진행하는 단계(S180)를 포함할 수 있다.
본 발명의 일 실시예인 모니터링 센서를 활용한 이종 접합 물질의 실시간 가공 장치에 있어서, 이종 접합 물질의 홀 입구, 홀 출구 및 경계면을 판정하는 모니터링 센서와, 상기 모니터링 센서의 판정 결과에 맞추어 스핀들의 이송 속도와 회전 속도를 제어하는 컴퓨터 수치 제어부 및 상기 모니터링 센서와 컴퓨터 수치 제어부로부터 신호를 입력받아 이종 접합물질을 가공하는 스핀들을 포함하는 모니터링 센서를 이용한 이종 접합 물질의 실시간 가공장치를 제공할 수 있다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
도 1(a)와 (b)는 가공 소재에 대한 가공 시 공정제어가 필요한 부분을 모식적으로 보여주는 도면이다.
도 1(a)와 (b)를 참조하면 가공 소재에 대한 가공 시 크랙(Crack)등이 발견될 수 있는 지점에 대한 정보를 확인할 수 있다. 즉, 도 1(a)는 가공소재(100)가 하나의 재질로 구성되어있는 경우라고 할 수 있고, 도 1(b)는 가공 소재(100)가 이종 접합 물질을 포함하는 경우라고 할 수 있다. 상기 이종 접합 소재는 제1 워크피스(102)와 제2 워크피스(104)를 포함할 수 있다. 예를 들면, 상기 제1 워크피스(102)와 상기 제2 워크피스(104)는 제1 탄성 섬유 강화 플라스틱, 금속이거나, 제1 탄성 섬유 강화 플라스틱과 제2 탄성 섬유 강화 플라스틱일 수 있다.
도 1(a)와 도 1(b)에 도시된 바와 같이, 가공 소재(100)에 대한 가공을 진행할 때, 가공을 시작하는 지점과 가공을 종료하는 지점에서 가공 장치인 스핀들(150)에 걸리는 부하는 달라질 수 있다. 이와 같이 가공 장치인 스핀들(1500에 걸리는 부하가 달라짐에도 불구하고, 미리 정해진 두께에 따라 공정을 제어할 수 있도록 구성된 경우 시점이나 종점에서 가공이 불량한 경우가 많이 발생할 수 있다.
특히 도 1(b)와 같이 이종 접합 물질의 경우에는 접합 부위에서 재질 상의 차이로 말미암아 급격한 물성의 변이가 발생할 수 있다. 특히 동일한 재질의 물질로 구성되어 있는 경우에는 그다지 큰 문제가 되지 않지만 연성이 좋은 금속과 파괴특성을 플라스틱의 접합 재료의 경우에는 접합 부위에 대한 가공에서 주의하지 않을 경우 이종 접합 물질이 파손되는 일이 발생할 수 있다. 예를 들면 도 1(b)의 제1 워크피스(102)는 탄소 섬유 강화 플라스틱일 수 있고 제2 워크피스(104)는 금속일 수 있다.
도 1(b)의 제1 워크피스(102)와 제2 워크피스(104)를 접착하는 재료는 에폭시(epoxy) 수지일 수 있다.
본 발명의 일 실시예에 따른 모니터링 센서를 이용한 탄소 섬유 강화 플라스틱 스택의 가공 장치는. 가공 소재(100)에 걸리는 부하를 측정하는 로드 셀과, 스핀들과 가공 소재(100) 사이의 임피던스를 측정하는 임피던스 센서 및 상기 임피던스 센서로부터 신호를 입력받고 상기 로드셀로부터 가공 소재의 물성을 판단하는 컴퓨터 수치 제어부(200)를 포함하는 것일 수 있다.
상기 로드 셀은 스핀들(150)의 진입단계, 절삭 단계 및 마무리 단계를 판정하는 데 사용되는 것일 수 있다. 상기 로드 셀은 스핀들(150)에 걸리는 부하를 측정하는 것일 수 있다. 이와 같은 스핀들(150)에 작용하는 부하는 홀 가공을 진행하는 가공 소재(100)의 재질에 따라 차이가 발생할 수 있다. 따라서 스핀들(150)에 걸리는 부하를 측정하기 전에 가공 소재(100)의 재질에 대한 판단이 먼저 이루이질 수 있다.
로드 셀(load cell)은 압력에 따라 전기신호가 변하는 특성을 가진 소자로서, 스핀들(150)의 상하 유동에 따라 스핀들(150)과 가공 소재(100) 사이에 발생하는 부하를 체크하고, 스핀들(150)의 이송 동작과 회전 동작에 따라 발생하는 발생하는 부하를 체크할 수 있다. 이러한 로드 셀에 걸리는 부하에 따라 가공의 정밀도를 향상시킬 수 있다. 이러한 로드 셀의 동작은 모니터링 센서(250)의 감지 신호에 따라 제어될 수 있다.
또한 가공 소재(100)와 스핀들(150) 사이의 임피던스(impedance)를 측정하는 것을 통해 가공 상태에 대한 판단이 이루어질 수 있다.
컴퓨터 수치 제어장치(Computer numerical controller)는 가공 소재(100)에 대한 스핀들(150)의 위치를 그것에 대응하는 수치 정보로 지령하는 제어장치를 말한다. 가공 소재(100)의 형상이나 가공 조건의 정보를 펀치한 지령 테이프를 만들고, 이것을 정보처리회로가 읽어 들여 지령 펄스를 발생시켜 서보 기구를 구동시킴으로써 지령한 대로 가공을 자동적으로 수행할 수 있는 장치를 말한다.
이와 같은 컴퓨터 수치 제어장치(200)를 효과적으로 활용하기 위해서는 모니터링 센서(250)와 연동해서 작동하는 것이 바람직할 수 있다.
이러한 컴퓨터 수치 제어장치(200)에 사용될 수 있는 모니터링 센서(250)로는 토크 센서, 로드셀, 다이나모미터(dynamometer) 및 임피던스 센서 중의 어느 하나 이상을 포함하는 것일 수 있다.
이와 같이 가공 소재(100)의 가공에 사용되는 스핀들(150)은 로드 셀에 걸리는 부하를 통해서 가공 위치를 판정하고 가공의 특성을 변경할 수 있는 것일 수 있다. 좀더 구체적으로 로드 셀은 상기 스핀들(150)의 진입단계, 절삭 단계 및 마무리 단계를 판정하는 데 사용되는 것일 수 있다.
이와 같이 본 발명의 일 실시예에 따른 가공 장치에 사용되는 가공 소재(100)로는 탄소 섬유 강화 플라스틱(CFRP) 또는 이종 접합 물질일 수 있다. 예를 들면 이와 같은 이종 접합 물질로는 탄소 섬유 강화 플라스틱과 금속의 결합물 또는 제1 탄소 섬유 강화 플라스틱과 제2 탄소 섬유 강화 플라스틱을 포함할 수 있다.
도 2는 본 발명의 일 실시예에 따른 탄소 섬유 강화 플라스틱의 가공 시스템의 구성을 보여주는 모식도이고, 도 3은 본 발명의 일 실시예에 따른 탄소 섬유 강화 플라스틱 스택의 가공 시스템의 구성을 보여주는 모식도이다.
이하에서는 도 2와 도 3을 참고하여, 모니터링 센서를 이용한 탄소 섬유 강화 플라스틱의 가공 방법에 대하여 상술한다.
본 발명의 일 실시예에 따른 모니터링 센서를 이용한 탄소 섬유 강화 플라스틱의 가공 방법은, (a) 컴퓨터 수치 제어 장치(Computer numerical control; CNC)로 스핀들과 모니터링 센서를 전기적으로 연결하는 단계(S10)와, (b) 스핀들의 가공에 대한 시작 지점, 가공 마무리 위치를 판정하는 단계(S20) 및 (c) 상기 판정 결과에 따라 상기 스핀들의 이동 속도와 회전 속도를 제어하는 단계(S30)를 포함할 수 있다.
도 2를 참조하면, 컴퓨터 수치 제어부(200)는 신호 전송부(220)를 통해서 모니터링 센서(250)와 전기적으로 연결된 상태일 수 있다. 상기 모니터링 센서(250)는 스핀들(150)의 각종 상태를 판정할 수 있는 장치일 수 있다.
상기 모니터링 센서(250)로서 전술한 로드 셀과 토크센서, 다이나모미터(dynamometer) 및 임피던스 센서를 포함할 수 있다.
토크센서와 다이나모미터는 스핀들(150)에 작동하는 토크(torque), 추력(thrust force), 회전우력(twist force)을 측정할 수 있다. 토크 센서를 통해서 스핀들(150)의 주축의 상부에 토크 응력이 작동하면, 스핀들(150)의 상부체가 비틀어져 찌그러지게 될 수 있다. 이와 같은 동작은 변위 센서에 의해 감지될 수 있는데 이와 같은 토크 응력에 대한 제어수단이 구비되지 못하면 원하는 가공 형상을 얻을 수 없게 된다. 이와 같이 토크센서의 작동을 통해서 변위 센서로부터 일정한 파형의 출력을 얻을 수 있다. 다이나모미터는 스핀들(150)의 주축에서 발생하는 동력이나 다른 기계인 가공 소재(100)로 전달되는 동력을 측정하는 계기를 말한다.
이와 같은 토크센서와 다이나모미터의 작동으로 로드 셀을 통해서 측정되는 스핀들(150)에 대한 변위의 제어가 이루어질 수 있다.
도 1의 (a)에 도시된 바와 같이, 스핀들(150)이 가공 소재(100)로 들어가는 부위와 마무리하는 부분에서는 스트레스가 작동하여 정상적인 가공이 이루어지기 어려울 수 있다. 이에 대한 대책으로 고품위 가공이 이루어질 수 있다. 이때 전제 사항으로 가공 소재(100)의 재질에 대한 판정이 이루어질 수 있다.
고품위 가공은 스핀들(150)의 회전 속도(rpm)은 높이고 이송 속도(feed)는 낮추는 가공일 수 있다. 고품위 가공은 정밀 가공으로서 스핀들(150)이 가공 소재(100)에 들어가는 진입 구간과 마무리 구간에 이루어질 수 있다. 뿐만 아니라 결합성 수지가 접착되어 있는 이종 접합 물질의 경계부에서도 고품위 가공이 이루어질 수 있다.
이에 반해 절삭성이 우수한 가공 소재(100)인 탄소 섬유 강화 플라스틱의 내부에서는 이송 속도를 빨리 하는 가공을 진행할 수 있다. 이와 같은 이송 속도와 회전 속도에 대한 결정은 컴퓨터 수치 제어 장치(200)가 모니터링 센서(250)로부터 받는 신호와 가공 소재(100)의 재질에 대한 정보로부터 판단될 수 있다.
도 3은 이종 재질 접합물질에 대한 가공 시스템을 보여준다.
도 3에서 이종 접합 물질의 경우에는 경계면에 대한 가공에서 고품위 가공이 이루어질 수 있다.
이종 접합물질은 탄소 섬유 강화 플라스틱과 금속의 접합, 또는 제1 탄소 섬유 강화 플라스틱, 제2 탄소 섬유 강화 플라스틱을 말할 수 있다. 상술한 결합 물질로서는 에폭시 수지를 사용할 수 있기 때문에 고속의 가공을 수행하는 경우 파괴(fracture) 현상이 발생할 수 있다. 이와 같은 결합물질의 파괴를 막을 수 있는 낮은 속도의 이송 속도와 고속의 회전 속도를 갖는 고품위 가공이 이루어질 수 있다.
이종 접합 물질의 경우에도 진입 구간과 마무리 구간에서는 고품위 가공이 이루어지는 것은 단일 물질로 되어 있는 경우인 도 2의 경우와 동일하다고 할 수 있다.
모니터링 센서를 이용한 이종 접합물질의 실시간 가공 방법은, (a) 모니터링 센서를 이용하여 이종 접합 물질의 입구부와 재질을 판정하는 단계(S110)와, (b) 상기 판정 결과에 따라 가공을 진행하는 단계(S120)와, (c) 상기 모니터링 센서를 이용하여 경계면을 검출하는 단계(S130)와, (d) 상기 경계면 조건에서 제1 공정 조건을 변경하는 단계(S140)와, (e) 변경된 제1 공정 조건에 맞추어 가공을 진행하는 단계(S150)와, (f) 상기 모니터링 센서를 이용하여 출구부를 판정하는 단계(S160)와, (g) 상기 출구부 판정 결과에 맞추어 제2 공정 조건을 변경하는 단계(S170) 및 (h) 변경된 제2 공정 조건에 맞추어 가공을 진행하는 단계(S180)를 포함할 수 있다.
상술한 가공은 홀 가공일 수 있다. 제1 공정 조건과 제2 공정 조건은 스핀들(150)의 회전 속도와 이송 속도(feed)를 변경하는 것일 수 있다.
상술한 가공 공정은 실시간으로 모니터링 센서(250)를 통한 재질과 변위에 대한 판정과 동시에 진행될 수 있다.
본 발명의 일 실시예인 모니터링 센서를 활용한 이종 접합 물질의 실시간 가공 장치에 있어서, 이종 접합 물질의 홀 입구, 홀 출구 및 경계면을 판정하는 모니터링 센서와, 상기 모니터링 센서의 판정 결과에 맞추어 스핀들의 이송 속도와 회전 속도를 제어하는 컴퓨터 수치 제어부 및 상기 모니터링 센서와 컴퓨터 수치 제어부로부터 신호를 입력받아 이종 접합물질을 가공하는 스핀들을 포함할 수 있다
상술한 로드 셀과 모니터링 센서(250)는 전술한 구성 요소와 동일한 구성요소일 수 있다. 가공 공정에 대한 내용은 전술한 바와 같다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (11)

  1. 모니터링 센서를 이용한 탄소 섬유 강화 플라스틱의 가공 방법에 있어서,
    (a) 컴퓨터 수치 제어 장치(Computer numerical control; CNC)로 스핀들과 모니터링 센서를 전기적으로 연결하는 단계(S10);
    (b) 스핀들의 가공에 대한 시작 지점, 가공 마무리 위치를 판정하는 단계(S20); 및
    (c) 상기 판정 결과에 따라 상기 스핀들의 이동 속도와 회전 속도를 제어하는 단계(S30)를 포함하는 것을 특징으로 하는 모니터링 센서를 이용한 탄소 섬유 강화 플라스틱의 가공 방법.
  2. 제1항에 있어서,
    상기 모니터링 센서는
    토크 센서, 로드 셀, 다이나모미터(dynamometer) 및 임피던스 센서 중의 어느 하나 이상을 포함하는 것을 특징으로 하는 모니터링 센서를 이용한 탄소 섬유 강화 플라스틱의 가공 방법.
  3. 제1항에 있어서,
    스핀들의 가공에 대한 시작 지점, 가공 마무리 위치를 판정하는 단계(S20)는 상기 모니터링 센서에 의하여 판정하는 것을 특징으로 하는 모니터링 센서를 이용한 탄소 섬유 강화 플라스틱의 가공 방법.
  4. 제1항에 있어서,
    상기 스핀들은 로드 셀에 걸리는 부하를 통해서 가공 위치를 판정하고 가공의 특성을 변경시키고,
    가공 위치가 가공 시작지점이거나, 가공 마무리 위치인 경우에는
    스핀들의 회전 속도를 높이고 이송 속도를 낮추는 것을 특징으로 하는 모니터링 센서를 이용한 탄소 섬유 강화 플라스틱의 가공 방법.
  5. 탄소 섬유강화 플라스틱의 가공 장치에 있어서,
    가공 소재에 걸리는 부하를 측정하고, 스핀들과 가공 소재 사이의 임피던스를 측정하는 모니터링 센서; 및
    상기 모니터링 센서로부터 신호를 입력받고 상기 모니터링 센서로부터 가공 소재의 물성을 판단하는 컴퓨터 수치 제어부를 포함하는 것을 특징으로 하는 탄소 섬유 강화 플라스틱의 가공 장치.
  6. 제5항에 있어서,
    상기 모니터링 센서는 상기 스핀들의 진입단계, 절삭 단계 및 마무리 단계를 판정하는 데 사용되는 것을 특징으로 하는 탄소 섬유 강화 플라스틱의 가공 장치.
  7. 제5항에 있어서,
    상기 가공 소재는 탄소 섬유 강화 플라스틱이거나 탄소섬유 강화 플라스틱과 금속(metal)의 결합물인 것을 특징으로 하는 탄소 섬유 강화 플라스틱의 가공 장치.
  8. 모니터링 센서를 이용한 이종 접합물질의 실시간 가공 방법에 있어서,
    (a) 모니터링 센서를 이용하여 이종 접합 물질의 입구부와 재질을 판정하는 단계(S110);
    (b) 상기 판정 결과에 따라 가공을 진행하는 단계(S120);
    (c) 상기 모니터링 센서를 이용하여 경계면을 검출하는 단계(S130);
    (d) 상기 경계면 조건에서 제1 공정 조건을 변경하는 단계(S140);
    (e) 변경된 제1 공정 조건에 맞추어 가공을 진행하는 단계(S150);
    (f) 상기 모니터링 센서를 이용하여 출구부를 판정하는 단계(S160);
    (g) 상기 출구부 판정 결과에 맞추어 제2 공정 조건을 변경하는 단계(S170); 및
    (h) 변경된 제2 공정 조건에 맞추어 가공을 진행하는 단계(S180)를 포함하는 것을 특징으로 하는 모니터링 센서를 이용한 이종 접합 물질의 실시간 가공 방법.
  9. 제8항에 있어서,
    상기 가공은 홀 가공인 것을 특징으로 하는 모니터링 센서를 이용한 이종 접합 물질의 실시간 가공 방법.
  10. 모니터링 센서를 이용한 이종 접합 물질의 실시간 가공 장치에 있어서,
    이종 접합 물질의 홀 입구, 홀 출구 및 경계면을 판정하는 모니터링 센서;
    상기 모니터링 센서의 판정 결과에 맞추어 스핀들의 이송 속도와 회전 속도를 제어하는 컴퓨터 수치 제어부; 및
    상기 모니터링 센서와 컴퓨터 수치 제어부로부터 신호를 입력받아 이종 접합물질을 가공하는 스핀들을 포함하는 것을 특징으로 하는 모니터링 센서를 이용한 이종 접합 물질의 실시간 가공장치.
  11. 제10항에 있어서,
    상기 이종 접합 물질은 탄소 섬유 강화 플라스틱과 금속의 접합 물질이거나 제1 탄소 섬유 강화 플라스틱과 제2 탄소 섬유 강화 플라스틱의 접합물질인 것을 특징으로 하는 모니터링 센서를 활용한 이종 접합 물질의 실시간 가공장치.
PCT/KR2016/005723 2015-05-29 2016-05-30 모니터링 센서를 이용한 탄소섬유강화 플라스틱 스택 가공 방법 WO2016195358A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/124,664 US10265779B2 (en) 2015-05-29 2016-05-30 Carbon fiber reinforced plastic stack machining method using a monitoring sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150076504A KR101864751B1 (ko) 2015-05-29 2015-05-29 모니터링 센서를 이용한 탄소섬유강화 플라스틱 스택 가공 방법
KR10-2015-0076504 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016195358A1 true WO2016195358A1 (ko) 2016-12-08

Family

ID=57440740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005723 WO2016195358A1 (ko) 2015-05-29 2016-05-30 모니터링 센서를 이용한 탄소섬유강화 플라스틱 스택 가공 방법

Country Status (3)

Country Link
US (1) US10265779B2 (ko)
KR (1) KR101864751B1 (ko)
WO (1) WO2016195358A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106843160A (zh) * 2017-02-09 2017-06-13 南京威亚丁数据科技有限公司 一种应用于诺信喷胶机的视窗控制器
CN110682131A (zh) * 2019-10-28 2020-01-14 天津工业大学 碳纤维复合材料铣削加工支撑夹具
WO2021046738A1 (zh) * 2019-09-11 2021-03-18 大连理工大学 一种基于堆叠自编码器的深孔镗刀状态监测方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102046364B1 (ko) * 2017-12-13 2019-11-19 한국생산기술연구원 Nc프로그램을 이용한 가공 방법 및 장치
US10864580B2 (en) * 2018-01-23 2020-12-15 Quantum Impact, LLC Method and apparatus for machining a workpiece
KR102160397B1 (ko) 2018-11-19 2020-10-05 한국생산기술연구원 이종 소재로 이루어진 유연가이드기구의 제조방법 및 이의 제조방법으로 제조된 유연가이드기구
KR102133774B1 (ko) 2018-11-19 2020-07-15 한국생산기술연구원 유연지그변형 방지구조가 적용된 가공장비
KR102178519B1 (ko) 2018-11-19 2020-11-16 한국생산기술연구원 금속 및 cfrp로 이루어진 유연가이드기구의 제조방법 및 이의 제조방법으로 제조된 유연가이드기구
KR102252765B1 (ko) 2018-11-20 2021-05-18 한국생산기술연구원 로봇팔을 이용한 정밀 가공장치 및 이의 작동방법
KR102190450B1 (ko) * 2019-03-22 2020-12-11 울산과학기술원 탄소섬유강화플라스틱의 홀 가공시 손상 모니터링 방법
KR102352969B1 (ko) * 2020-11-11 2022-01-21 한국생산기술연구원 가공부의 온도와 가공물의 온도를 고려한 탄소섬유복합재 가공장치 및 방법
CN112548676A (zh) * 2020-11-13 2021-03-26 南京航空航天大学 一种叠层材料振动钻削状态自适应监测方法
CN114043002B (zh) * 2021-11-08 2024-01-12 陕西飞机工业有限责任公司 一种碳纤维复材制孔工艺方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036254A (ja) * 2008-07-31 2010-02-18 Toshiba Mach Co Ltd 炭素繊維素材の加工方法
KR101123395B1 (ko) * 2011-08-18 2012-03-23 (재)대구기계부품연구원 고속 주축의 절삭 부하값을 이용한 절삭 가공 장치의 상태 모니터링 및 제어 방법
KR20140002602A (ko) * 2010-07-09 2014-01-08 가부시키가이샤 스기노 마신 천공가공 제어방법 및 천공가공장치
JP5426454B2 (ja) * 2010-03-31 2014-02-26 ファナック株式会社 タッピング加工動作を行うタッピング加工装置
JP2014172113A (ja) * 2013-03-07 2014-09-22 Kobe Steel Ltd 低剛性複合材料の穴加工装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309649A (ja) * 1998-04-30 1999-11-09 Mitsubishi Materials Corp 刃具の欠損検出装置および方法ならびに欠損検出プログラムを記録したコンピュータ読み取り可能な記録媒体
KR100743152B1 (ko) 2006-02-07 2007-07-27 광주과학기술원 간격 유지 제어방법을 이용한 3차원 형상 측정 장치
US7467449B1 (en) * 2006-10-12 2008-12-23 Lee S Peter Thin plate drilling and milling machine
KR101127213B1 (ko) * 2009-12-24 2012-03-29 (재)대구기계부품연구원 부하 센서가 장착된 스핀들 장치
EP2529867A1 (en) * 2010-01-29 2012-12-05 Hukuzo Yagisita Boring device
GB201200005D0 (en) * 2012-01-01 2012-02-15 Thomas Rolf L Medical device for controlled tissue penetration and uses thereof
KR101452215B1 (ko) 2012-11-09 2014-10-21 주식회사 에스에프에이 곡선에지의 영상검사방법 및 그 장치
KR101491049B1 (ko) 2013-07-22 2015-02-10 창원대학교 산학협력단 드릴링 공구 제어 시스템 및 이를 이용한 드릴링 공구 제어 방법
US10228669B2 (en) * 2015-05-27 2019-03-12 Rolls-Royce Corporation Machine tool monitoring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036254A (ja) * 2008-07-31 2010-02-18 Toshiba Mach Co Ltd 炭素繊維素材の加工方法
JP5426454B2 (ja) * 2010-03-31 2014-02-26 ファナック株式会社 タッピング加工動作を行うタッピング加工装置
KR20140002602A (ko) * 2010-07-09 2014-01-08 가부시키가이샤 스기노 마신 천공가공 제어방법 및 천공가공장치
KR101123395B1 (ko) * 2011-08-18 2012-03-23 (재)대구기계부품연구원 고속 주축의 절삭 부하값을 이용한 절삭 가공 장치의 상태 모니터링 및 제어 방법
JP2014172113A (ja) * 2013-03-07 2014-09-22 Kobe Steel Ltd 低剛性複合材料の穴加工装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106843160A (zh) * 2017-02-09 2017-06-13 南京威亚丁数据科技有限公司 一种应用于诺信喷胶机的视窗控制器
WO2021046738A1 (zh) * 2019-09-11 2021-03-18 大连理工大学 一种基于堆叠自编码器的深孔镗刀状态监测方法
CN110682131A (zh) * 2019-10-28 2020-01-14 天津工业大学 碳纤维复合材料铣削加工支撑夹具

Also Published As

Publication number Publication date
KR101864751B1 (ko) 2018-06-08
US10265779B2 (en) 2019-04-23
KR20160141292A (ko) 2016-12-08
US20180065188A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
WO2016195358A1 (ko) 모니터링 센서를 이용한 탄소섬유강화 플라스틱 스택 가공 방법
US6925725B2 (en) Method of and device for determination of penetration depth
Stone et al. A neural network thrust force controller to minimize delamination during drilling of graphite-epoxy laminates
Hofer Fibre optic damage detection in composite structures
Dharan et al. Machining parameters for an intelligent machining system for composite laminates
CA1226428A (en) Method for the machining of composite materials
Yamada et al. Fail-safe human/robot contact in the safety space
US8196800B2 (en) Friction weld vibration quality monitoring system and methods
CA2641179A1 (en) Device and method for controlling the machining of workpieces using piezoceramic transducers
CN104289738A (zh) 叠层结构制孔在线监测自适应加工方法
US20180067467A1 (en) Machining system and robot system
CN104149125A (zh) 一种pcb机械钻孔机钻孔精度的检测方法
CN112045677B (zh) 一种航空发动机涡轮盘螺栓孔智能强化系统及其控制方法
Cruz et al. Monitoring in precision metal drilling process using multi-sensors and neural network
Bleicher et al. In-process control with a sensory tool holder to avoid chatter
Hintze et al. Evaluation of the total cutting force in drilling of CFRP: a novel experimental method for the analysis of the cutting mechanism
Ying et al. High-efficiency ultrasonic assisted drilling of CFRP/Ti stacks under non-separation type and dry conditions
Reddy et al. An experimental study using design of experiment method to compare the performance of solid carbide and HSS drills in drilling of GFRP composite material
CN107363730A (zh) 涡流检测装置及系统
CN209206522U (zh) 一种防护效果好的pcb钻孔用数控钻床机罩
Shunmugesh et al. Optimization of drilling process parameters via Taguchi, TOPSIS and RSA techniques
US10792736B1 (en) Lightweight intelligent top-tooling apparatus
CN201669446U (zh) 一种深孔钻钻头
Tsao et al. Analysis of thrust-induced drilling in composite materials using a hemispherical drill
US7873484B2 (en) Method for reliable position monitoring

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15124664

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803713

Country of ref document: EP

Kind code of ref document: A1