WO2016195024A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2016195024A1
WO2016195024A1 PCT/JP2016/066431 JP2016066431W WO2016195024A1 WO 2016195024 A1 WO2016195024 A1 WO 2016195024A1 JP 2016066431 W JP2016066431 W JP 2016066431W WO 2016195024 A1 WO2016195024 A1 WO 2016195024A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer device
less
heat
electrodes
Prior art date
Application number
PCT/JP2016/066431
Other languages
French (fr)
Japanese (ja)
Inventor
智靖 薄井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017522250A priority Critical patent/JP6414636B2/en
Publication of WO2016195024A1 publication Critical patent/WO2016195024A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point

Definitions

  • the present invention relates to a heat transfer device.
  • Non-Patent Document 1 reports Pd 0.8 Ba 0.2 ZrO 3 as a material having an electrocaloric effect (hereinafter also referred to as “EC effect”).
  • this Pd 0.8 Ba 0.2 ZrO 3 is formed into a thin film by a sol-gel method, and the EC effect is measured.
  • the Pd 0.8 Ba 0.2 ZrO 3 thin film described in Non-Patent Document 1 shows a large EC effect at 290 K near room temperature.
  • the electrocaloric effect is an endothermic phenomenon resulting from a change in entry peak when the electric dipole moment in a substance is aligned or disturbed by a change in electric field.
  • heat dissipation through the housing as described above is limited because the surface area of the housing is limited. Therefore, the temperature of each heat source is measured, and when the temperature exceeds a predetermined temperature, the performance of the CPU or the like is limited (suppressing heat generation itself). That is, the temperature rise of the housing may hinder the performance of the CPU or the like.
  • a large electronic device can obtain a sufficient cooling effect by the air-conditioning equipment as described above, but has a problem that power consumption is very high due to a very large power consumption.
  • the inventors of the present invention have focused on the above-mentioned electrocaloric effect and have come to consider using the Pd—Ba—Zr composite oxide exhibiting this electrocaloric effect for a heat transfer device, thereby completing the present invention.
  • a control voltage is required to develop the electrocaloric effect.
  • the Pd—Ba—Zr composite oxide is a ferroelectric substance that is an insulator, power consumption is very small. Therefore, the heat transfer device using the Pd—Ba—Zr composite oxide can be used even in a small portable device having a limited power source capacity.
  • a heat transfer device comprising a pair of electrodes and a dielectric portion made of a material exhibiting an electrocaloric effect located between the pair of electrodes.
  • the material showing the electrocaloric effect has the following formula: (Pb (1-x) y Ba x) ZrO 3 (In the formula, x is 0.15 or more and 0.34 or less, and y is 0.95 or more and 1.03 or less)
  • a heat transfer device is provided that is characterized by the material
  • a heat transfer device comprising a pair of electrodes and a dielectric portion made of a material exhibiting an electrocaloric effect located between the pair of electrodes.
  • the material showing the electrocaloric effect is a composite oxide containing Pb, Ba and Zr,
  • the content mole part of Ba with respect to Zr100 mole part is p mole part,
  • the molar content of Pb with respect to 100 mol of Zr is q mol, p is 15 or more and 34 or less
  • a heat transfer device characterized in that q is (100 ⁇ p) ⁇ r (wherein r is 0.95 or more and 1.03 or less).
  • an electronic component having the above heat transfer device.
  • an electronic apparatus having the above heat transfer device or the above electronic component.
  • a Pd—Ba—Zr composite oxide having a specific composition for example, the formula (Pb (1-x) y Ba x ) ZrO 3 (wherein x is 0.15 or more and 0.34 or less) And y is 0.95 or more and 1.03 or less), a small-sized and low power consumption heat transfer device can be provided.
  • FIG. 1 is a schematic cross-sectional view of a heat transfer device according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a heat transfer device according to the second embodiment of the present invention.
  • heat transfer device of the present invention will be described in detail with reference to the drawings.
  • shape and arrangement of the heat transfer device and each component of the present embodiment are not limited to the illustrated example.
  • the heat transfer device 1a is a dielectric composed of a pair of electrodes 2 and 4 and a material exhibiting an electrocaloric effect located between the pair of electrodes. And a body portion 6.
  • a voltage is applied between the electrodes 2 and 4
  • an electric field is applied to the dielectric portion 6.
  • the dielectric portion 6 generates heat.
  • the electric field applied to the dielectric portion 6 disappears.
  • the dielectric portion 6 absorbs heat.
  • the material showing the electrocaloric effect used in the present invention is a Pd—Ba—Zr composite oxide.
  • a complex oxide containing Pd, Ba and Zr exhibits an EC effect that generates heat when an electric field is applied and absorbs heat when removed.
  • the Pd—Ba—Zr composite oxide has the formula (Pb (1-x) y Ba x ) ZrO 3 (wherein x is 0.15 or more and 0.34 or less, and y is 0. 95 or more and 1.03 or less).
  • X is preferably 0.20 or more and 0.34 or less, more preferably 0.20 or more and 0.30 or less, and even more preferably 0.20 or more and 0.25 or less.
  • y is 0.95 or more and less than 1.00, such as 0.95 or more and 0.995 or less, or 0.95 or more and 0.99 or less, or 0.96 or more and less than 1.00; It may be 97 or more and less than 1.00 or 0.98 or more and less than 1.00.
  • y is greater than 1.00 and 1.03 or less, preferably 1.005 or more and 1.03 or less, for example 1.010 or more and 1.025 or less.
  • the Pd—Ba—Zr composite oxide is a composite oxide containing Pb, Ba and Zr,
  • the content mole part of Ba with respect to Zr100 mole part is p mole part,
  • the molar content of Pb with respect to 100 mol of Zr is q mol, p is 15 or more and 34 or less, q is (100 ⁇ p) ⁇ r (wherein r is 0.95 or more and 1.03 or less).
  • P is preferably 20 or more and 34 or less, more preferably 20 or more and 30 or less, and even more preferably 20 or more and 25 or less.
  • r is 0.95 or more and less than 1.00, for example 0.95 or more and 0.995 or less, or 0.95 or more and 0.99 or less, or 0.96 or more and less than 1.00; It may be 97 or more and less than 1.00 or 0.98 or more and less than 1.00.
  • r is less than 1.00, grain growth hardly occurs, a dense ceramic is obtained, insulation is improved, and a larger electric field can be applied.
  • r is greater than 1.00 and 1.03 or less, preferably 1.005 or more and 1.03 or less, for example 1.010 or more and 1.025 or less.
  • the average particle size of the Pd—Ba—Zr composite oxide used in the present invention is preferably 0.5 ⁇ m or more, more preferably 10 ⁇ m or less, and even more preferably 1 ⁇ m or more and 5 ⁇ m or less. By having such a particle size, it is possible to further increase the withstand voltage and electrocaloric effect of the dielectric portion.
  • the average particle diameter can be measured using an electron scanning microscope.
  • the Pd—Ba—Zr composite oxide used in the present invention exhibits an EC effect in the entire temperature range below the crystallization temperature, and particularly exhibits a large EC effect at 353 K to 453 K (80 ° C. to 180 ° C.). Further, the Pd—Ba—Zr composite oxide used in the present invention exhibits a very high insulating property. That is, a high voltage can be applied.
  • the Pd—Ba—Zr composite oxide used in the present invention can be obtained, for example, by mixing and firing Pb, Ba and Zr oxides or salts. Pb, Ba and Zr contents in Pd—Ba—Zr composite oxide obtained by mixing Pb, Ba and Zr so as to have a predetermined ratio and adjusting the Pb concentration in the atmosphere during firing Can be adjusted.
  • the content of the material exhibiting the electrocaloric effect is 50% by mass or more, preferably 60% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and even more preferably. It may be 98% by mass or more, for example, 98.0 to 99.8% by mass.
  • the dielectric portion 6 may be made of a material that substantially exhibits an electrocaloric effect.
  • the shape of the dielectric portion 6 is not particularly limited, and can be formed into, for example, a sheet shape, a block shape, and other various shapes.
  • the molding method is not particularly limited, and compression, sintering, or the like can be used. Moreover, you may mix and shape
  • the material constituting the electrodes 2 and 4 is not particularly limited, and examples thereof include Ag, Cu, Pt, Ni, Al, Pd, Au, and alloys thereof (for example, Ag—Pd). Among these, Pt, Ag, Pd, or Ag—Pd is preferable.
  • the electrodes 2 and 4 may have a function of conveying the amount of heat of the dielectric part in addition to the function of applying an electric field to the dielectric part. Therefore, from the viewpoint of heat transfer, the material constituting the electrode is preferably a material having high thermal conductivity, such as Ag.
  • the shape of the electrodes 2 and 4 is not particularly limited, but a shape that covers the entire surface of the dielectric portion 6 is preferable from the viewpoint of heat transfer.
  • the heat transfer device of the present invention uses a dielectric portion made of a material that exhibits an EC effect in the entire temperature range below the crystallization temperature, and particularly exhibits a large EC effect at 353 K to 453 K (80 ° C. to 180 ° C.). ing. Therefore, the heat transfer device of the present invention is preferably used as a heat transfer device, typically a cooling device, in electronic devices such as smartphones, tablet PCs, and data servers that have a temperature of 353 K to 453 K during heat generation. it can.
  • the temperature range showing a large EC effect can be adjusted by changing the Pb and Ba contents, particularly the Ba content, in the Pd—Ba—Zr composite oxide.
  • the dielectric part in the heat transfer device of the present invention exhibits very high insulation. Accordingly, since the withstand voltage is high and a high voltage can be applied between the electrodes, the change in the electric field can be increased. As a result, it is possible to increase the temperature change (hereinafter also referred to as “ ⁇ T”) due to the change in the electric field.
  • the insulating property of the dielectric portion can be adjusted by changing the Pb content in the Pd—Ba—Zr composite oxide.
  • a heat transfer device 1b as shown in FIG.
  • the plurality of internal electrodes 12a and 12b and the plurality of dielectric portions 14 are alternately stacked.
  • the internal electrodes 12a and 12b are electrically connected to external electrodes 16a and 16b disposed on the end face of the heat transfer device 1b, respectively.
  • a voltage is applied from the external electrodes 16a and 16b, an electric field is formed between the internal electrodes 12a and 12b. Due to this electric field, the dielectric portion 14 generates heat.
  • the dielectric portion 14 absorbs heat.
  • the electrode and the dielectric portion are substantially in contact with each other, but the present invention is not limited to such a structure, and an electric field can be applied to the dielectric portion. Any structure can be used.
  • the heat transfer devices 1a and 1b have a rectangular parallelepiped block shape, but the shape of the heat transfer device of the present invention is not limited thereto, and may be, for example, a cylindrical shape or a sheet shape. Etc. may be included.
  • the heat transfer device of the present invention absorbs heat generated by the heat source mainly when the electric field is released and absorbs heat, or when the temperature of the heat transfer device decreases due to this heat absorption.
  • the heat transfer device of the present invention releases absorbed heat to the outside mainly when an electric field is applied to dissipate heat.
  • the heat transfer device of the present invention When absorbing the heat generated by the heat source, the heat transfer device of the present invention is preferably located in the vicinity of the heat source, more preferably directly or via a member having high thermal conductivity.
  • the heat transfer device of the present invention when dissipating the absorbed heat, is preferably located away from the heat source. More preferably, when dissipating the absorbed heat, the heat transfer device of the present invention is located away from the heat source, and in the vicinity of another cooling device that assists heat dissipation of the heat transfer device of the present invention. Or positioned to contact the cooling device directly or through a member with high thermal conductivity.
  • the heat transfer device of the present invention is preferably located in the vicinity of the heat source and more preferably efficiently absorbed heat while still in direct contact or through a member with high thermal conductivity. Can be released to the outside. Since the temperature of the heat transfer device of the present invention decreases when the electric field is released, the temperature difference from the heat source becomes larger, and heat generated by the heat source can be absorbed more efficiently. Further, the heat transfer device of the present invention rises in temperature when an electric field is applied, and becomes higher than the external temperature, or the temperature difference from the external becomes larger, so that the heat can be more efficiently transferred to the outside. Can be dissipated. Therefore, the heat transfer device of the present invention can be used as a cooling device.
  • the heat transfer device of the present invention is connected to a heat conducting member and can release heat through this.
  • the heat conducting member itself can function as a cooling device that dissipates heat to the outside.
  • it may be connected to other cooling devices and function to transport heat absorbed from the heat transfer device of the present invention to the other cooling devices.
  • more efficient cooling is attained by connecting the heat transfer device of the present invention to the heat conducting member.
  • the present invention also provides an electronic component having the cooling device of the present invention and an electronic apparatus having the cooling device or the electronic component.
  • a central processing unit CPU
  • a hard disk HDD
  • a power management IC PMIC
  • PA power amplifier
  • transceiver IC a voltage regulator
  • Light emitting elements such as integrated circuits (ICs), light emitting diodes (LEDs), incandescent bulbs, semiconductor lasers, parts that can be heat sources such as field effect transistors (FETs), and other parts such as lithium ion batteries, substrates, heat sinks And parts commonly used in electronic devices such as housings.
  • the electronic device is not particularly limited, and examples thereof include a mobile phone, a smartphone, a personal computer (PC), a tablet terminal, a hard disk drive, and a data server.
  • a green chip (2 g) was degreased at 450 ° C. to 550 ° C. and then enclosed with 10 g of PbZrO 3 powder in an alumina hermetic sheath and baked at 1300 ° C. for 4 hours to produce a laminate chip.
  • An Ag paste was applied to both ends of the obtained laminate chip, baked to form external electrodes, and a sample (heat transfer device) having the structure shown in FIG. 2 was manufactured.
  • the composition of the sample was confirmed using ICP (inductively coupled plasma emission spectroscopy) and XRF (fluorescence X-ray measurement) in combination.
  • G indicates that the operating temperature is in the range of 353 K to 453 K (80 ° C. to 180 ° C.), no leakage current is observed in the insulation evaluation, and ⁇ T at 10 MV / m is 1.0 K or more. Those that did not satisfy even one were judged as NG. “*” Indicates a comparative example, “ ⁇ ” indicates that measurement is not performed, and “x” in the column of ⁇ T indicates that measurement is not possible.
  • the heat transfer device of the present invention can be used as a cooling device for various electronic devices, for example, small electronic devices such as mobile phones in which the problem of countermeasures against heat has become prominent.

Abstract

The present invention provides a heat transfer device characterized by including: a pair of electrodes; and a dielectric part which is located between the pair of electrodes and which is formed from a material exhibiting an electrocaloric effect, wherein the material exhibiting an electrocaloric effect is represented by formula: (Pb(1-x)yBax)ZrO3 (in the formula, x is 0.15-0.34, and y is 0.95-1.03).

Description

冷却デバイスCooling device
 本発明は、熱搬送デバイスに関する。 The present invention relates to a heat transfer device.
 近年、小型携帯機器(スマートフォン、タブレットPC)、さらにはデーターサーバー等の電子機器においては、中央処理装置(CPU)やハードディスク(HDD)等の発熱による、機器のパフォーマンスの低下、電子機器の寿命の短命化、故障といった問題が顕在化している。このような問題に対しては、電子機器における熱マネージメントが重要であるが、スマートフォン等の小型電子機器では、その電源容量が小さく、また、大きな冷却デバイスを設置可能なスペースがない。したがって、このような小型電子機器では、現状、温度の制御は、筺体を介する放熱による手段しかなく、熱源と筺体をサーマルシートなどで熱結合し熱を逃がしている。一方、サーバーなどの大型電子機器では、電源容量およびスペースが十分にあるので、エアコンディショナーなどの空調設備、ペルチェ式冷却デバイス等が用いられている。 In recent years, in electronic devices such as small portable devices (smartphones, tablet PCs) and data servers, the performance of electronic devices is reduced due to the heat generated by the central processing unit (CPU) and hard disk (HDD). Problems such as shortening of life and failure are becoming apparent. For such problems, thermal management in electronic devices is important, but small electronic devices such as smartphones have a small power supply capacity and no space for installing large cooling devices. Therefore, in such a small electronic device, the temperature is currently controlled only by means of heat radiation through the housing, and the heat source and the housing are thermally coupled by a thermal sheet or the like to release heat. On the other hand, large electronic devices such as servers have sufficient power capacity and space, and therefore air conditioning equipment such as air conditioners, Peltier cooling devices, and the like are used.
 一方、非特許文献1は、電気熱量効果(Electrocaloric effect:以下、「EC効果」ともいう)を奏する材料として、Pd0.8Ba0.2ZrOを報告している。非特許文献1では、このPd0.8Ba0.2ZrOをゾル-ゲル法により薄膜状に形成し、EC効果の測定行っている。その結果、非特許文献1に記載のPd0.8Ba0.2ZrO薄膜は、室温近傍の290Kで大きなEC効果を示すことが記載されている。尚、電気熱量効果とは、電場の変化によって物質内の電気双極子モーメントが揃うまたは乱れる際のエントリピーの変化に起因する吸発熱現象である。 On the other hand, Non-Patent Document 1 reports Pd 0.8 Ba 0.2 ZrO 3 as a material having an electrocaloric effect (hereinafter also referred to as “EC effect”). In Non-Patent Document 1, this Pd 0.8 Ba 0.2 ZrO 3 is formed into a thin film by a sol-gel method, and the EC effect is measured. As a result, it is described that the Pd 0.8 Ba 0.2 ZrO 3 thin film described in Non-Patent Document 1 shows a large EC effect at 290 K near room temperature. The electrocaloric effect is an endothermic phenomenon resulting from a change in entry peak when the electric dipole moment in a substance is aligned or disturbed by a change in electric field.
 小型電子機器において、上記のような筺体を介する放熱は、筺体の表面積が限られていることから限界がある。したがって、各熱源の温度を測定し、温度が所定の温度以上になった場合に、CPUなどのパフォーマンスを制限する(発熱自体を抑制する)ことで対応している。即ち、筺体の温度上昇が、CPU等のパフォーマンスの妨げになっていることがある。 In small electronic devices, heat dissipation through the housing as described above is limited because the surface area of the housing is limited. Therefore, the temperature of each heat source is measured, and when the temperature exceeds a predetermined temperature, the performance of the CPU or the like is limited (suppressing heat generation itself). That is, the temperature rise of the housing may hinder the performance of the CPU or the like.
 また、大型電子機器では、上記のような空調設備等により十分な冷却効果を得ることはできるが、消費電力が非常に大きいため熱マネージメントのために電力コストがかかる問題がある。 In addition, a large electronic device can obtain a sufficient cooling effect by the air-conditioning equipment as described above, but has a problem that power consumption is very high due to a very large power consumption.
 従って、小型で低消費電力の熱マネージメントデバイスの開発が望まれている。 Therefore, development of a small and low power consumption thermal management device is desired.
 本発明者らは、上記の電気熱量効果に着目し、この電気熱量効果を示すPd-Ba-Zr複合酸化物を熱搬送デバイスに利用することに思い至り、本発明を完成するに至った。電気熱量効果を発現させるためには制御電圧が必要であるが、Pd-Ba-Zr複合酸化物は絶縁体である強誘電体であるので、消費電力は非常に小さい。従って、Pd-Ba-Zr複合酸化物を利用する熱搬送デバイスは、電源容量の限られた小型携帯機器でも使用することができる。 The inventors of the present invention have focused on the above-mentioned electrocaloric effect and have come to consider using the Pd—Ba—Zr composite oxide exhibiting this electrocaloric effect for a heat transfer device, thereby completing the present invention. A control voltage is required to develop the electrocaloric effect. However, since the Pd—Ba—Zr composite oxide is a ferroelectric substance that is an insulator, power consumption is very small. Therefore, the heat transfer device using the Pd—Ba—Zr composite oxide can be used even in a small portable device having a limited power source capacity.
 本発明の第1の要旨によれば、一対の電極と、該一対の電極の間に位置する電気熱量効果を示す材料から構成される誘電体部とを有して成る熱搬送デバイスであって、
 電気熱量効果を示す材料が、下記式:
  (Pb(1-x)yBa)ZrO
(式中、xは0.15以上0.34以下であり、yは0.95以上1.03以下である)
で示される材料であることを特徴とする熱搬送デバイスが提供される。
According to a first aspect of the present invention, there is provided a heat transfer device comprising a pair of electrodes and a dielectric portion made of a material exhibiting an electrocaloric effect located between the pair of electrodes. ,
The material showing the electrocaloric effect has the following formula:
(Pb (1-x) y Ba x) ZrO 3
(In the formula, x is 0.15 or more and 0.34 or less, and y is 0.95 or more and 1.03 or less)
A heat transfer device is provided that is characterized by the material
 本発明の第2の要旨によれば、一対の電極と、該一対の電極の間に位置する電気熱量効果を示す材料から構成される誘電体部とを有して成る熱搬送デバイスであって、
 電気熱量効果を示す材料が、Pb、BaおよびZrを含む複合酸化物であり、
 Zr100モル部に対するBaの含有モル部がpモル部であり、
 Zr100モル部に対するPbの含有モル部がqモル部であり、
 pが15以上34以下であり、
 qが、(100-p)×r(式中、rは、0.95以上1.03以下である)である
ことを特徴とする熱搬送デバイスが提供される。
According to a second aspect of the present invention, there is provided a heat transfer device comprising a pair of electrodes and a dielectric portion made of a material exhibiting an electrocaloric effect located between the pair of electrodes. ,
The material showing the electrocaloric effect is a composite oxide containing Pb, Ba and Zr,
The content mole part of Ba with respect to Zr100 mole part is p mole part,
The molar content of Pb with respect to 100 mol of Zr is q mol,
p is 15 or more and 34 or less,
There is provided a heat transfer device characterized in that q is (100−p) × r (wherein r is 0.95 or more and 1.03 or less).
 本発明の第3の要旨によれば、上記の熱搬送デバイスを有してなる電子部品が提供される。 According to the third aspect of the present invention, there is provided an electronic component having the above heat transfer device.
 本発明の第4の要旨によれば、上記の熱搬送デバイスまたは上記の電子部品を有してなる電子機器が提供される。 According to the fourth aspect of the present invention, there is provided an electronic apparatus having the above heat transfer device or the above electronic component.
 本発明によれば、特定の組成を有するPd-Ba-Zr複合酸化物、例えば式(Pb(1-x)yBa)ZrO(式中、xは0.15以上0.34以下であり、yは0.95以上1.03以下である)で示される材料を用いることにより、小型で低消費電力の熱搬送デバイスを提供することができる。 According to the present invention, a Pd—Ba—Zr composite oxide having a specific composition, for example, the formula (Pb (1-x) y Ba x ) ZrO 3 (wherein x is 0.15 or more and 0.34 or less) And y is 0.95 or more and 1.03 or less), a small-sized and low power consumption heat transfer device can be provided.
図1は、本発明の第1の実施形態における熱搬送デバイスの概略断面図である。FIG. 1 is a schematic cross-sectional view of a heat transfer device according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態における熱搬送デバイスの概略断面図である。FIG. 2 is a schematic cross-sectional view of a heat transfer device according to the second embodiment of the present invention.
 本発明の熱搬送デバイスについて、以下、図面を参照しながら詳細に説明する。但し、本実施形態の熱搬送デバイスおよび各構成要素の形状および配置等は、図示する例に限定されない。 Hereinafter, the heat transfer device of the present invention will be described in detail with reference to the drawings. However, the shape and arrangement of the heat transfer device and each component of the present embodiment are not limited to the illustrated example.
 図1に示すように、本発明の第1の実施形態の熱搬送デバイス1aは、一対の電極2,4と、該一対の電極の間に位置する電気熱量効果を示す材料から構成される誘電体部6とを有して成る。電極2,4間に電圧が印加されると、誘電体部6に電場が印加される。その結果、誘電体部6は発熱する。また、電極2,4間の電圧が除去されると、誘電体部6に印加された電場が消失する。その結果、誘電体部6は吸熱する。 As shown in FIG. 1, the heat transfer device 1a according to the first embodiment of the present invention is a dielectric composed of a pair of electrodes 2 and 4 and a material exhibiting an electrocaloric effect located between the pair of electrodes. And a body portion 6. When a voltage is applied between the electrodes 2 and 4, an electric field is applied to the dielectric portion 6. As a result, the dielectric portion 6 generates heat. When the voltage between the electrodes 2 and 4 is removed, the electric field applied to the dielectric portion 6 disappears. As a result, the dielectric portion 6 absorbs heat.
 本発明で用いられる電気熱量効果を示す材料は、Pd-Ba-Zr複合酸化物である。Pd、BaおよびZrを含む複合酸化物は、電場を印加した場合に発熱し、除去した場合に吸熱するEC効果を示す。 The material showing the electrocaloric effect used in the present invention is a Pd—Ba—Zr composite oxide. A complex oxide containing Pd, Ba and Zr exhibits an EC effect that generates heat when an electric field is applied and absorbs heat when removed.
 一の態様において、Pd-Ba-Zr複合酸化物は、式(Pb(1-x)yBa)ZrO(式中、xは0.15以上0.34以下であり、yは0.95以上1.03以下である)で示される。 In one embodiment, the Pd—Ba—Zr composite oxide has the formula (Pb (1-x) y Ba x ) ZrO 3 (wherein x is 0.15 or more and 0.34 or less, and y is 0. 95 or more and 1.03 or less).
 xは、好ましくは0.20以上0.34以下であり、より好ましくは0.20以上0.30以下であり、さらにより好ましくは0.20以上0.25以下である。このような範囲のx値とすることにより、絶縁性とより大きなEC効果を得ることができる。また、xの値を変化させることにより、ΔTがピーク値を示す温度を調整することができる。 X is preferably 0.20 or more and 0.34 or less, more preferably 0.20 or more and 0.30 or less, and even more preferably 0.20 or more and 0.25 or less. By setting the x value in such a range, insulation and a larger EC effect can be obtained. Further, the temperature at which ΔT exhibits a peak value can be adjusted by changing the value of x.
 一の態様において、yは、0.95以上1.00未満であり、例えば0.95以上0.995以下または0.95以上0.99以下、あるいは0.96以上1.00未満、0.97以上1.00未満または0.98以上1.00未満であり得る。yを1.00未満とすることにより、粒成長が起こりにくく、緻密なセラミックスが得られ、絶縁性が向上し、より大きな電場を印加すること可能になる。 In one embodiment, y is 0.95 or more and less than 1.00, such as 0.95 or more and 0.995 or less, or 0.95 or more and 0.99 or less, or 0.96 or more and less than 1.00; It may be 97 or more and less than 1.00 or 0.98 or more and less than 1.00. By making y less than 1.00, grain growth hardly occurs, a dense ceramic is obtained, insulation is improved, and a larger electric field can be applied.
 別の態様において、yは、1.00よりも大きく1.03以下であり、好ましくは、1.005以上1.03以下、例えば1.010以上1.025以下であり得る。yを1.00より大きくすることにより、ΔTの値をより大きくすることができる。 In another aspect, y is greater than 1.00 and 1.03 or less, preferably 1.005 or more and 1.03 or less, for example 1.010 or more and 1.025 or less. By making y larger than 1.00, the value of ΔT can be made larger.
 一の態様において、Pd-Ba-Zr複合酸化物は、Pb、BaおよびZrを含む複合酸化物であり、
 Zr100モル部に対するBaの含有モル部がpモル部であり、
 Zr100モル部に対するPbの含有モル部がqモル部であり、
 pが15以上34以下であり、
 qが、(100-p)×r(式中、rは、0.95以上1.03以下である)である。
In one embodiment, the Pd—Ba—Zr composite oxide is a composite oxide containing Pb, Ba and Zr,
The content mole part of Ba with respect to Zr100 mole part is p mole part,
The molar content of Pb with respect to 100 mol of Zr is q mol,
p is 15 or more and 34 or less,
q is (100−p) × r (wherein r is 0.95 or more and 1.03 or less).
 pは、好ましくは20以上34以下であり、より好ましくは20以上30以下であり、さらにより好ましくは20以上25以下である。このような範囲のx値とすることにより、絶縁性とより大きなEC効果を得ることができる。また、pの値を変化させることにより、ΔTがピーク値を示す温度を調整することができる。 P is preferably 20 or more and 34 or less, more preferably 20 or more and 30 or less, and even more preferably 20 or more and 25 or less. By setting the x value in such a range, insulation and a larger EC effect can be obtained. Moreover, the temperature at which ΔT exhibits a peak value can be adjusted by changing the value of p.
 一の態様において、rは、0.95以上1.00未満であり、例えば0.95以上0.995以下または0.95以上0.99以下、あるいは0.96以上1.00未満、0.97以上1.00未満または0.98以上1.00未満であり得る。rを1.00未満とすることにより、粒成長が起こりにくく、緻密なセラミックスが得られ、絶縁性が向上し、より大きな電場を印加すること可能になる。 In one embodiment, r is 0.95 or more and less than 1.00, for example 0.95 or more and 0.995 or less, or 0.95 or more and 0.99 or less, or 0.96 or more and less than 1.00; It may be 97 or more and less than 1.00 or 0.98 or more and less than 1.00. When r is less than 1.00, grain growth hardly occurs, a dense ceramic is obtained, insulation is improved, and a larger electric field can be applied.
 別の態様において、rは、1.00よりも大きく1.03以下であり、好ましくは、1.005以上1.03以下、例えば1.010以上1.025以下であり得る。rを1.00より大きくすることにより、ΔTの値をより大きくすることができる。 In another embodiment, r is greater than 1.00 and 1.03 or less, preferably 1.005 or more and 1.03 or less, for example 1.010 or more and 1.025 or less. By making r larger than 1.00, the value of ΔT can be made larger.
 一の態様において、本発明で用いられるPd-Ba-Zr複合酸化物の平均粒径は、好ましくは0.5μm以上、より好ましくは10μm以下、さらに好ましくは1μm以上5μm以下であり得る。このような粒径を有することにより、誘電体部の耐電圧、電気熱量効果をより大きくすることができる。上記平均粒径は、電子走査顕微鏡を用いて測定することができる。 In one embodiment, the average particle size of the Pd—Ba—Zr composite oxide used in the present invention is preferably 0.5 μm or more, more preferably 10 μm or less, and even more preferably 1 μm or more and 5 μm or less. By having such a particle size, it is possible to further increase the withstand voltage and electrocaloric effect of the dielectric portion. The average particle diameter can be measured using an electron scanning microscope.
 本発明で用いられるPd-Ba-Zr複合酸化物は、結晶化温度以下の全温度領域でEC効果を示し、特に353K~453K(80℃~180℃)において、大きなEC効果を示す。また、本発明で用いられるPd-Ba-Zr複合酸化物は、非常に高い絶縁性を示す。即ち、高い電圧を印加することができる。 The Pd—Ba—Zr composite oxide used in the present invention exhibits an EC effect in the entire temperature range below the crystallization temperature, and particularly exhibits a large EC effect at 353 K to 453 K (80 ° C. to 180 ° C.). Further, the Pd—Ba—Zr composite oxide used in the present invention exhibits a very high insulating property. That is, a high voltage can be applied.
 本発明で用いられるPd-Ba-Zr複合酸化物は、例えば、Pb、BaおよびZrの酸化物または塩を混合し、焼成することにより得ることができる。Pb、BaおよびZrが所定の割合となるように混合し、焼成の際、雰囲気中のPb濃度を調整することにより、得られるPd-Ba-Zr複合酸化物中のPb、BaおよびZr含有量を調整することができる。 The Pd—Ba—Zr composite oxide used in the present invention can be obtained, for example, by mixing and firing Pb, Ba and Zr oxides or salts. Pb, Ba and Zr contents in Pd—Ba—Zr composite oxide obtained by mixing Pb, Ba and Zr so as to have a predetermined ratio and adjusting the Pb concentration in the atmosphere during firing Can be adjusted.
 誘電体部6中、電気熱量効果を示す材料の含有量は、50質量%以上、好ましくは60質量%以上、より好ましくは80質量%以上、さらにより好ましくは90質量%以上、さらにより好ましくは98質量%以上、例えば98.0~99.8質量%であり得る。また、誘電体部6は、実質的に電気熱量効果を示す材料から成っていてもよい。 In the dielectric portion 6, the content of the material exhibiting the electrocaloric effect is 50% by mass or more, preferably 60% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and even more preferably. It may be 98% by mass or more, for example, 98.0 to 99.8% by mass. The dielectric portion 6 may be made of a material that substantially exhibits an electrocaloric effect.
 誘電体部6の形状は、特に限定されず、例えばシート状、ブロック状、その他種々の形状に成形することができる。成形方法は、特に限定されず、圧縮、焼結等を用いることができる。また、樹脂またはガラス等のバインダーと混合して成形してもよい。 The shape of the dielectric portion 6 is not particularly limited, and can be formed into, for example, a sheet shape, a block shape, and other various shapes. The molding method is not particularly limited, and compression, sintering, or the like can be used. Moreover, you may mix and shape | mold with binders, such as resin or glass.
 電極2,4を構成する材料としては、特に限定されないが、Ag、Cu、Pt、Ni、Al、Pd、Au、またはこれらの合金(例えば、Ag-Pd等)が挙げられる。中でも、Pt、Ag、PdまたはAg-Pdが好ましい。 The material constituting the electrodes 2 and 4 is not particularly limited, and examples thereof include Ag, Cu, Pt, Ni, Al, Pd, Au, and alloys thereof (for example, Ag—Pd). Among these, Pt, Ag, Pd, or Ag—Pd is preferable.
 電極2,4は、誘電体部に電場を与える機能に加え、誘電体部の熱量を搬送する機能をも有し得る。従って、熱搬送の観点からは、電極を構成する材料は、熱伝導率が高い材料、例えばAgが好ましい。 The electrodes 2 and 4 may have a function of conveying the amount of heat of the dielectric part in addition to the function of applying an electric field to the dielectric part. Therefore, from the viewpoint of heat transfer, the material constituting the electrode is preferably a material having high thermal conductivity, such as Ag.
 電極2,4の形状は、特に限定されないが、熱搬送の観点からは、誘電体部6の一の表面全体を覆うような形状が好ましい。 The shape of the electrodes 2 and 4 is not particularly limited, but a shape that covers the entire surface of the dielectric portion 6 is preferable from the viewpoint of heat transfer.
 本発明の熱搬送デバイスは、結晶化温度以下の全温度領域でEC効果を示し、特に353K~453K(80℃~180℃)において、大きなEC効果を示す材料から構成される誘電体部を用いている。従って、本発明の熱搬送デバイスは、発熱時の温度が353K~453Kであるスマートフォン、タブレットPC、およびデーターサーバー等の電子機器において、熱搬送デバイス、代表的には冷却デバイスとして好適に用いることができる。 The heat transfer device of the present invention uses a dielectric portion made of a material that exhibits an EC effect in the entire temperature range below the crystallization temperature, and particularly exhibits a large EC effect at 353 K to 453 K (80 ° C. to 180 ° C.). ing. Therefore, the heat transfer device of the present invention is preferably used as a heat transfer device, typically a cooling device, in electronic devices such as smartphones, tablet PCs, and data servers that have a temperature of 353 K to 453 K during heat generation. it can.
 大きなEC効果を示す温度範囲は、Pd-Ba-Zr複合酸化物におけるPbおよびBaの含有量、特にBaの含有量を変更することにより、調整することができる。 The temperature range showing a large EC effect can be adjusted by changing the Pb and Ba contents, particularly the Ba content, in the Pd—Ba—Zr composite oxide.
 また、本発明の熱搬送デバイスにおける誘電体部は、非常に高い絶縁性を示す。従って、耐電圧が高く、電極間に高い電圧を印加することができるので、電場の変化を大きくすることができる。その結果、電場の変化による温度変化(以下、「ΔT」ともいう)を大きくすることが可能になる。 Moreover, the dielectric part in the heat transfer device of the present invention exhibits very high insulation. Accordingly, since the withstand voltage is high and a high voltage can be applied between the electrodes, the change in the electric field can be increased. As a result, it is possible to increase the temperature change (hereinafter also referred to as “ΔT”) due to the change in the electric field.
 誘電体部の絶縁性は、Pd-Ba-Zr複合酸化物におけるPbの含有量を変更することにより、調整することができる。 The insulating property of the dielectric portion can be adjusted by changing the Pb content in the Pd—Ba—Zr composite oxide.
 以上、本発明の第1の実施形態における熱搬送デバイスを説明したが、本発明は、上記の実施態様に限定されるものではなく、種々の改変が可能である。 Although the heat transfer device according to the first embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made.
 例えば、図2に示すような熱搬送デバイス1bとすることができる。本発明の第2の実施形態の熱搬送デバイス1bにおいて、複数の内部電極12a,12bと、複数の誘電体部14が交互に積層されている。内部電極12aおよび12bは、それぞれ、熱搬送デバイス1bの端面に配置される外部電極16aおよび16bに、電気的に接続されている。外部電極16aおよび16bから電圧を印加すると、内部電極12aおよび12b間に電場が形成される。この電場により誘電体部14は発熱する。また、電圧が除去されると、電場が消失し、その結果、誘電体部14は吸熱する。 For example, a heat transfer device 1b as shown in FIG. In the heat transfer device 1b according to the second embodiment of the present invention, the plurality of internal electrodes 12a and 12b and the plurality of dielectric portions 14 are alternately stacked. The internal electrodes 12a and 12b are electrically connected to external electrodes 16a and 16b disposed on the end face of the heat transfer device 1b, respectively. When a voltage is applied from the external electrodes 16a and 16b, an electric field is formed between the internal electrodes 12a and 12b. Due to this electric field, the dielectric portion 14 generates heat. When the voltage is removed, the electric field disappears, and as a result, the dielectric portion 14 absorbs heat.
 このような構造とすることにより、誘電体部14により強い電場を印加することが可能になり、より大きなΔTを得ることができる。また、内部電極が、誘電体部内部への熱の伝搬経路としても機能することから、効率のよい熱マネージメントを可能にする。 By adopting such a structure, it becomes possible to apply a strong electric field to the dielectric portion 14, and a larger ΔT can be obtained. Further, since the internal electrode also functions as a heat propagation path to the inside of the dielectric portion, efficient heat management is enabled.
 以上で説明した熱搬送デバイス1aおよび1bは、電極と誘電体部が、実質的に全面で接触しているが、本発明はこのような構造に限定されず、誘電体部に電場を印加できる構造であればよい。また、熱搬送デバイス1aおよび1bは、直方体のブロック形状であるが、本発明の熱搬送デバイスの形状はこれに限定されず、例えば円筒状、シート状であってもよく、さらに凹凸または貫通孔等を有していてもよい。 In the heat transfer devices 1a and 1b described above, the electrode and the dielectric portion are substantially in contact with each other, but the present invention is not limited to such a structure, and an electric field can be applied to the dielectric portion. Any structure can be used. The heat transfer devices 1a and 1b have a rectangular parallelepiped block shape, but the shape of the heat transfer device of the present invention is not limited thereto, and may be, for example, a cylindrical shape or a sheet shape. Etc. may be included.
 本発明の熱搬送デバイスは、主に電場が解除されて吸熱する際に、またはこの吸熱により熱搬送デバイスの温度が低下した際に、発熱源で生じた熱を吸収する。また、本発明の熱搬送デバイスは、主に電場が印加されて放熱する際に、吸収した熱を外部に放出する。 The heat transfer device of the present invention absorbs heat generated by the heat source mainly when the electric field is released and absorbs heat, or when the temperature of the heat transfer device decreases due to this heat absorption. The heat transfer device of the present invention releases absorbed heat to the outside mainly when an electric field is applied to dissipate heat.
 発熱源で生じた熱を吸収する際、本発明の熱搬送デバイスは、好ましくは発熱源の近傍に位置し、より好ましくは直接または熱伝導率の高い部材を介して接触するように位置する。 When absorbing the heat generated by the heat source, the heat transfer device of the present invention is preferably located in the vicinity of the heat source, more preferably directly or via a member having high thermal conductivity.
 一の態様において、吸収した熱を放熱する際、本発明の熱搬送デバイスは、好ましくは発熱源から離隔するように位置する。より好ましくは、吸収した熱を放熱する際、本発明の熱搬送デバイスは、発熱源から離隔するように位置し、かつ、本発明の熱搬送デバイスの放熱を補助する他の冷却デバイスの近傍に、または冷却デバイスに直接または熱伝導率の高い部材を介して接触するように位置する。 In one aspect, when dissipating the absorbed heat, the heat transfer device of the present invention is preferably located away from the heat source. More preferably, when dissipating the absorbed heat, the heat transfer device of the present invention is located away from the heat source, and in the vicinity of another cooling device that assists heat dissipation of the heat transfer device of the present invention. Or positioned to contact the cooling device directly or through a member with high thermal conductivity.
 別の態様において、本発明の熱搬送デバイスは、好ましくは発熱源の近傍に位置し、より好ましくは直接または熱伝導率の高い部材を介して接触するように位置したまま、効率よく吸収した熱を外部に放出することができる。本発明の熱搬送デバイスは、電場が解除されると温度が低下するので、発熱源との温度差がより大きくなり、より効率的に発熱源で生じた熱を吸収することができる。また、本発明の熱搬送デバイスは、電場が印加されると温度が上昇して、外部の温度よりも高くなり、あるいは、外部との温度差がより大きくなるので、より効率的に外部に熱を消散させることができる。従って、本発明の熱搬送デバイスは、冷却デバイスとして利用することができる。 In another aspect, the heat transfer device of the present invention is preferably located in the vicinity of the heat source and more preferably efficiently absorbed heat while still in direct contact or through a member with high thermal conductivity. Can be released to the outside. Since the temperature of the heat transfer device of the present invention decreases when the electric field is released, the temperature difference from the heat source becomes larger, and heat generated by the heat source can be absorbed more efficiently. Further, the heat transfer device of the present invention rises in temperature when an electric field is applied, and becomes higher than the external temperature, or the temperature difference from the external becomes larger, so that the heat can be more efficiently transferred to the outside. Can be dissipated. Therefore, the heat transfer device of the present invention can be used as a cooling device.
 好ましくは、本発明の熱搬送デバイスは、熱伝導部材に接続されており、これを介して熱を放出することができる。熱伝導部材は、それ自体外部に熱を消散させる冷却デバイスとして機能し得る。別の態様において、他の冷却デバイスに接続され、本発明の熱搬送デバイスから吸収した熱を、他の冷却デバイスに輸送するように機能し得る。このように、本発明の熱搬送デバイスを、熱伝導部材に接続することにより、より効率的な冷却が可能になる。 Preferably, the heat transfer device of the present invention is connected to a heat conducting member and can release heat through this. The heat conducting member itself can function as a cooling device that dissipates heat to the outside. In another aspect, it may be connected to other cooling devices and function to transport heat absorbed from the heat transfer device of the present invention to the other cooling devices. Thus, more efficient cooling is attained by connecting the heat transfer device of the present invention to the heat conducting member.
 本発明はまた、本発明の冷却デバイスを有して成る電子部品、ならびに冷却デバイスまたは電子部品を有して成る電子機器をも提供する。 The present invention also provides an electronic component having the cooling device of the present invention and an electronic apparatus having the cooling device or the electronic component.
 電子部品としては、特に限定するものではないが、例えば、中央処理装置(CPU)、ハードディスク(HDD)、パワーマネージメントIC(PMIC)、パワーアンプ(PA)、トランシーバーIC、ボルテージレギュレータ(VR)などの集積回路(IC)、発光ダイオード(LED)、白熱電球、半導体レーザーなどの発光素子、電界効果トランジスタ(FET)などの熱源となり得る部品、および、その他の部品、例えば、リチウムイオンバッテリー、基板、ヒートシンク、筐体等の電子機器に一般的に用いられる部品が挙げられる。 Although it does not specifically limit as an electronic component, For example, a central processing unit (CPU), a hard disk (HDD), a power management IC (PMIC), a power amplifier (PA), a transceiver IC, a voltage regulator (VR), etc. Light emitting elements such as integrated circuits (ICs), light emitting diodes (LEDs), incandescent bulbs, semiconductor lasers, parts that can be heat sources such as field effect transistors (FETs), and other parts such as lithium ion batteries, substrates, heat sinks And parts commonly used in electronic devices such as housings.
 電子機器としては、特に限定するものではないが、例えば、携帯電話、スマートフォン、パーソナルコンピュータ(PC)、タブレット型端末、ハードディスクドライブ、データーサーバー等が挙げられる。 The electronic device is not particularly limited, and examples thereof include a mobile phone, a smartphone, a personal computer (PC), a tablet terminal, a hard disk drive, and a data server.
・熱搬送デバイスの調製
 Pb、BaCO、ZrOの原料を、下記表の組成となるように秤量し、部分安定化ジルコニア(PSZ:Partial Stabilized Zirconia)ボールとともに粉砕混合を行った。乾燥後、1000℃で4時間仮焼し、仮焼後の粉体に有機溶剤とバインダーを加えて粉砕混合することでスラリーを形成した。得られたスラリーから、ドクターブレード法により、グリーンシート(厚み40μm)を形成した。このグリーンシート上に、Ptペーストをスクリーン印刷した。Ptペーストを印刷したグリーンシートを、図2のような層構造となるように圧着して、積層し、その後カットして、グリーンチップ(5mm×7mm×0.5mm)を作製した。
-Preparation of heat transfer device The raw materials of Pb 3 O 4 , BaCO 3 , and ZrO 2 were weighed so as to have the composition shown in the following table, and pulverized and mixed with partially stabilized zirconia (PSZ: Partial Stabilized Zirconia) balls. After drying, it was calcined at 1000 ° C. for 4 hours, and an organic solvent and a binder were added to the calcined powder and pulverized and mixed to form a slurry. A green sheet (thickness: 40 μm) was formed from the obtained slurry by a doctor blade method. A Pt paste was screen printed on the green sheet. The green sheet on which the Pt paste was printed was pressure-bonded so as to have a layer structure as shown in FIG. 2, stacked, and then cut to produce a green chip (5 mm × 7 mm × 0.5 mm).
 グリーンチップ(2g)を、450℃~550℃で脱脂した後、アルミナ密閉鞘に10gのPbZrO粉末とともに封入し、1300℃で4時間焼成して、積層体チップを作製した。得られた積層体チップの両端にAgペーストを塗布し、焼き付けを行い、外部電極を形成して、図2に示す構造を有する試料(熱搬送デバイス)を製造した。尚、試料の組成は、ICP(誘導結合プラズマ発光分光分析)およびXRF(蛍光X線測定)を併用して確認した。 A green chip (2 g) was degreased at 450 ° C. to 550 ° C. and then enclosed with 10 g of PbZrO 3 powder in an alumina hermetic sheath and baked at 1300 ° C. for 4 hours to produce a laminate chip. An Ag paste was applied to both ends of the obtained laminate chip, baked to form external electrodes, and a sample (heat transfer device) having the structure shown in FIG. 2 was manufactured. The composition of the sample was confirmed using ICP (inductively coupled plasma emission spectroscopy) and XRF (fluorescence X-ray measurement) in combination.
(評価)
・絶縁性評価
 PUND法によるP-Eヒステリシス測定で絶縁性を評価した。10MV/mでリーク電流の成分が観測された試料を×とし、観察されないものを○とした。結果を下記表に示す。
(Evaluation)
-Insulation evaluation The insulation was evaluated by PE hysteresis measurement by the PUND method. A sample in which a leakage current component was observed at 10 MV / m was marked with x, and a sample that was not observed was marked with ◯. The results are shown in the table below.
・動作温度
 誘電率の温度依存性を測定して、誘電率の値が最大となる温度を動作温度として決定した。結果を下記表に示す。
-Operating temperature The temperature dependence of the dielectric constant was measured, and the temperature at which the value of the dielectric constant was maximum was determined as the operating temperature. The results are shown in the table below.
・電気熱量効果の評価(ΔT評価)
 極細熱電対を試料に直接はりつけ、電場印加時・除去時の温度変化(ΔT)を測定した。結果を下記表に示す。
・ Evaluation of electrical calorific effect (ΔT evaluation)
An ultrafine thermocouple was directly attached to the sample, and the temperature change (ΔT) at the time of applying and removing the electric field was measured. The results are shown in the table below.
 下記表において、動作温度が、353K~453K(80℃~180℃)の範囲にあり、絶縁性評価でリーク電流が観測されず、10MV/mでのΔTが1.0K以上のものをGとし、1つでも満たさないものはNGとした。尚、「*」は、比較例を示し、「-」は、測定していないことを示し、ΔTの列における「×」は、測定不可を示す。 In the table below, G indicates that the operating temperature is in the range of 353 K to 453 K (80 ° C. to 180 ° C.), no leakage current is observed in the insulation evaluation, and ΔT at 10 MV / m is 1.0 K or more. Those that did not satisfy even one were judged as NG. “*” Indicates a comparative example, “−” indicates that measurement is not performed, and “x” in the column of ΔT indicates that measurement is not possible.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記の結果から、本発明の範囲にある試料は、電子機器での利用に適した動作温度において、高い絶縁性と、大きなΔTを有すことが確認された。特に、試料番号8~11、14~17および20~23は、30MV/mでも絶縁性を維持し、大きなΔTを示すことが確認された。 From the above results, it was confirmed that the sample within the scope of the present invention has high insulation and a large ΔT at an operating temperature suitable for use in electronic equipment. In particular, it was confirmed that Sample Nos. 8 to 11, 14 to 17, and 20 to 23 maintained insulation even at 30 MV / m and exhibited a large ΔT.
 本発明の熱搬送デバイスは、種々の電子機器、例えば、熱対策問題が顕著化している携帯電話などの小型電子機器の冷却デバイスとして利用することができる。 The heat transfer device of the present invention can be used as a cooling device for various electronic devices, for example, small electronic devices such as mobile phones in which the problem of countermeasures against heat has become prominent.
  1a,1b…熱搬送デバイス
  2,4…電極
  6…誘電体部
  12a,12b…内部電極
  14…誘電体部
  16a,16b…外部電極
DESCRIPTION OF SYMBOLS 1a, 1b ... Heat transfer device 2, 4 ... Electrode 6 ... Dielectric part 12a, 12b ... Internal electrode 14 ... Dielectric part 16a, 16b ... External electrode

Claims (11)

  1.  一対の電極と、該一対の電極の間に位置する電気熱量効果を示す材料から構成される誘電体部とを有して成る熱搬送デバイスであって、
     電気熱量効果を示す材料が、下記式:
      (Pb(1-x)yBa)ZrO
    (式中、xは0.15以上0.34以下であり、yは0.95以上1.03以下である)
    で示される材料であることを特徴とする熱搬送デバイス。
    A heat transfer device comprising a pair of electrodes and a dielectric portion made of a material exhibiting an electrocaloric effect located between the pair of electrodes,
    The material showing the electrocaloric effect has the following formula:
    (Pb (1-x) y Ba x) ZrO 3
    (In the formula, x is 0.15 or more and 0.34 or less, and y is 0.95 or more and 1.03 or less)
    A heat transfer device, characterized by being a material indicated by
  2.  yが、0.95以上1.00未満であることを特徴とする請求項1に記載の熱搬送デバイス。 The heat transfer device according to claim 1, wherein y is 0.95 or more and less than 1.00.
  3.  yが、1.00より大きく1.03以下であることを特徴とする請求項1に記載の熱搬送デバイス。 The heat transfer device according to claim 1, wherein y is greater than 1.00 and 1.03 or less.
  4.  一対の電極と、該一対の電極の間に位置する電気熱量効果を示す材料から構成される誘電体部とを有して成る熱搬送デバイスであって、
     電気熱量効果を示す材料が、Pb、BaおよびZrを含む複合酸化物であり、
     Zr100モル部に対するBaの含有モル部がpモル部であり、
     Zr100モル部に対するPbの含有モル部がqモル部であり、
     pが15以上34以下であり、
     qが、(100-p)×r(式中、rは、0.95以上1.03以下である)である
    ことを特徴とする熱搬送デバイス。
    A heat transfer device comprising a pair of electrodes and a dielectric portion made of a material exhibiting an electrocaloric effect located between the pair of electrodes,
    The material showing the electrocaloric effect is a composite oxide containing Pb, Ba and Zr,
    The content mole part of Ba with respect to Zr100 mole part is p mole part,
    The molar content of Pb with respect to 100 mol of Zr is q mol,
    p is 15 or more and 34 or less,
    A heat transfer device, wherein q is (100−p) × r (wherein r is 0.95 or more and 1.03 or less).
  5.  rが、0.95以上1.00未満であることを特徴とする請求項4に記載の熱搬送デバイス。 The heat transfer device according to claim 4, wherein r is 0.95 or more and less than 1.00.
  6.  rが、1.00より大きく1.03以下であることを特徴とする請求項4に記載の熱搬送デバイス。 The heat transfer device according to claim 4, wherein r is greater than 1.00 and 1.03 or less.
  7.  電極が、Pt、Ag、PdまたはAg-Pdから形成されていることを特徴とする、請求項1~6のいずれか1項に記載の熱搬送デバイス。 The heat transfer device according to any one of claims 1 to 6, wherein the electrode is made of Pt, Ag, Pd, or Ag-Pd.
  8.  複数の電極と、複数の誘電体部とが交互に積層されていることを特徴とする、請求項1~7のいずれか1項に記載の熱搬送デバイス。 The heat transfer device according to any one of claims 1 to 7, wherein a plurality of electrodes and a plurality of dielectric portions are alternately laminated.
  9.  冷却デバイスである、請求項1~8のいずれか1項に記載の熱搬送デバイス。 The heat transfer device according to any one of claims 1 to 8, which is a cooling device.
  10.  請求項1~9のいずれか1項に記載の熱搬送デバイスを有してなる電子部品。 An electronic component comprising the heat transfer device according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項に記載の熱搬送デバイスまたは請求項10に記載の電子部品を有してなる電子機器。 An electronic device comprising the heat transfer device according to any one of claims 1 to 9 or the electronic component according to claim 10.
PCT/JP2016/066431 2015-06-04 2016-06-02 Cooling device WO2016195024A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017522250A JP6414636B2 (en) 2015-06-04 2016-06-02 Cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-114197 2015-06-04
JP2015114197 2015-06-04

Publications (1)

Publication Number Publication Date
WO2016195024A1 true WO2016195024A1 (en) 2016-12-08

Family

ID=57441501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066431 WO2016195024A1 (en) 2015-06-04 2016-06-02 Cooling device

Country Status (2)

Country Link
JP (1) JP6414636B2 (en)
WO (1) WO2016195024A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102229905B1 (en) * 2019-01-29 2021-03-18 중앙대학교 산학협력단 Cold sensation actuator using electrocaloric effect and cold sensation actuating method using electrocaloric effect

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518371A (en) * 2011-06-30 2014-07-28 ケンフリッジ リミテッド Multi-material blade for active regenerative magnetocaloric heat engine or active regenerative electric calorie heat engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006056809A1 (en) * 2004-11-29 2006-06-01 Cambridge University Technical Services Limited Solid state electrocaloric cooling devices and methods
JP2015094552A (en) * 2013-11-13 2015-05-18 株式会社デンソー Cooler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518371A (en) * 2011-06-30 2014-07-28 ケンフリッジ リミテッド Multi-material blade for active regenerative magnetocaloric heat engine or active regenerative electric calorie heat engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAO ET AL.: "A comprehensive review on the progress of lead zirconate-based antiferroelectric materials", PROGRESS IN MATERIAL SCIENCE, vol. 63, pages 1 - 57, XP055332126 *

Also Published As

Publication number Publication date
JP6414636B2 (en) 2018-10-31
JPWO2016195024A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
WO2016194700A1 (en) Cooling device
US20220307735A1 (en) Electrocaloric effect element
JP6693113B2 (en) Heat transfer device
WO2015033691A1 (en) Cooling device
JP6414636B2 (en) Cooling device
WO2015033690A1 (en) Cooling device
WO2016006338A1 (en) Composite and cooling device
WO2017135030A1 (en) Magnetic composition
JP5605432B2 (en) Semiconductor ceramic and resistance element
US10544061B2 (en) Vanadium dioxide
WO2016042909A1 (en) Cooling device
JP6784322B2 (en) Composite oxide
JP6772878B2 (en) Thermal management method
JP6791350B2 (en) Composite oxide
KR102200952B1 (en) Heat radiation chip and method for manufacturing the same
WO2015033687A1 (en) Cooling device
JP2017065984A (en) Ceramic particle
JP7439954B2 (en) Electric calorific effect element
WO2015033689A1 (en) Cooling device
WO2015033688A1 (en) Cooling device
WO2023190558A1 (en) Ceramic
WO2015198770A1 (en) Electronic device
WO2015104874A1 (en) Electronic apparatus
JP4900171B2 (en) Heat dissipation board and manufacturing method thereof
WO2023190437A1 (en) Ceramic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017522250

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803458

Country of ref document: EP

Kind code of ref document: A1