WO2016006338A1 - Composite and cooling device - Google Patents

Composite and cooling device Download PDF

Info

Publication number
WO2016006338A1
WO2016006338A1 PCT/JP2015/064947 JP2015064947W WO2016006338A1 WO 2016006338 A1 WO2016006338 A1 WO 2016006338A1 JP 2015064947 W JP2015064947 W JP 2015064947W WO 2016006338 A1 WO2016006338 A1 WO 2016006338A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
composite
mole
ceramic material
less
Prior art date
Application number
PCT/JP2015/064947
Other languages
French (fr)
Japanese (ja)
Inventor
廣瀬 左京
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016006338A1 publication Critical patent/WO2016006338A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a composite and a cooling device.
  • Control of the heat generated from the heat source as described above is performed by a cooling fan, a heat pipe, a heat sink, a thermal sheet, a Peltier element, or the like, which is an existing heat management solution.
  • a cooling device in which a fan or a Peltier element is combined is described (see Patent Document 1).
  • the cooling device combining the heat sink and the fan or the Peltier element as described above has a relatively complicated structure and increases the size of the device, particularly for thin devices such as smartphones and tablet terminals. Hateful. Furthermore, since power is consumed, it is disadvantageous from the viewpoint of low power consumption (battery life).
  • the temperature is currently controlled only by means of heat dissipation through the housing, and the heat source and the housing are thermally coupled by a thermal sheet or the like to release heat.
  • Heat dissipation through the enclosure as described above is limited because the surface area of the enclosure is limited. Therefore, the temperature of each heat source is measured, and when the temperature exceeds a predetermined temperature, the performance of the CPU or the like is limited (suppressing heat generation itself). That is, the temperature rise of the housing may hinder the performance of the CPU or the like.
  • heat dissipation through such a case in other words, heat dissipation by heat transfer to the entire device, heat is also transferred to the battery, which can lead to a decrease in battery capacity over time.
  • the present inventor has considered a cooling device that can be used without a power source by arranging a ceramic material that absorbs heat accompanying a crystal structure phase transition, a magnetic phase transition, or the like in the vicinity of a heat source of an electronic device. did.
  • a ceramic material is formed by sintering and used as a cooling device.
  • cracks occur in the sintered body due to a heat cycle (thermal shock) due to heating and cooling of a cold object (for example, a heating element). I found out that there was a problem. Therefore, the present inventors tried to suppress the occurrence of cracks by combining with glass such as lead glass, borosilicate glass or bismuth glass, but in this case, the cooling characteristics of the cooling device deteriorated.
  • an object of the present invention is to provide a composite that can be used as a cooling device that can be used without a power source, has excellent cooling efficiency, and has high resistance to heat cycles.
  • a ceramic material mainly composed of vanadium oxide;
  • a composite of a glass material comprising pentavalent vanadium and / or a mixture comprising vanadium pentoxide is provided.
  • a cooling device comprising the above composite.
  • an electronic component comprising the cooling device.
  • an electronic apparatus comprising the cooling device or the electronic component.
  • a ceramic material mainly composed of vanadium oxide that absorbs heat accompanying a crystal structure phase transition or a magnetic phase transition is fired with a glass material containing pentavalent vanadium and / or vanadium pentoxide.
  • a glass material containing pentavalent vanadium and / or vanadium pentoxide is fired with a glass material containing pentavalent vanadium and / or vanadium pentoxide.
  • FIG. 1 shows the results of differential scanning calorimetry of V 0.995 W 0.005 O 2 produced in the experimental example.
  • FIG. 2 shows the endothermic test results of the cooling device of Example 2.
  • FIG. 3 shows the endothermic test results of the cooling device of Comparative Example 3.
  • the composite means a lump obtained by heat-treating a powder mixture of a ceramic material, vanadium pentoxide, a glass material or the like.
  • a composite is not particularly limited as long as powders (or particles) are bonded to each other as a result of heat treatment, and the size, shape, formation mechanism, and the like are not particularly limited.
  • the ceramic material used in the present invention is a ceramic material that absorbs heat by latent heat.
  • This ceramic material is done by absorbing the latent heat.
  • Such a ceramic material can obtain a high cooling effect by temporally smoothing the heat by temporarily absorbing excess heat by latent heat.
  • the ceramic material a ceramic material mainly composed of vanadium oxide that absorbs heat by latent heat is used.
  • the vanadium oxide only needs to contain vanadium and oxygen, and includes, for example, complex oxides and oxides doped with other elements.
  • the other element is not particularly limited as long as it can be contained in VO 2 as a doping element, and examples thereof include W, Ta, Mo, and Nb.
  • the main component means a component contained in the ceramic material by 50% by mass or more, particularly 60% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 98% by mass.
  • the above means a component contained in, for example, 98.0 to 99.8% by mass.
  • the ceramic material preferably has a latent heat amount of 5 J / g or more, more preferably 20 J / g or more.
  • latent heat is the total amount of thermal energy required when the phase of a substance changes, and in this specification, solid-solid phase transitions such as electrical, magnetic, and structural phase transitions are used. This refers to the amount of heat generated and absorbed.
  • Specific ceramic material is not particularly limited, for example, JP-ceramic material described in JP 2010-163510, specifically, VO 2, LiVS 2, LiVO 2, V 2 O 3, V 4 O 7 , V 6 O 11 , A y VO 2 (wherein A is Li or Na, 0.1 ⁇ y ⁇ 2.0, preferably 0.5 ⁇ y ⁇ 1.0), V 1-x M x O 2 (wherein M is W, Ta, Mo, Nb, Ru or Re, and 0 ⁇ x ⁇ 0.2, preferably 0 ⁇ x ⁇ 0.05).
  • the vanadium oxide contained in the composite of the present invention is an oxide containing V (vanadium) and M (wherein M is at least one selected from W, Ta, Mo and Nb).
  • the oxide containing M in an amount of not less than 0 mol and not more than about 5 mol, preferably not more than 1 mol, when the total of V and M is 100 mol.
  • M is not an essential component, and the content molar part of M may be 0.
  • the vanadium oxide contained in the composite of the present invention is an oxide containing A (where A is Li or Na) and V (vanadium), wherein V is 100 mole parts.
  • A is Li or Na
  • V vanadium
  • the content mole part of A is about 50 mole parts or more and about 100 mole parts or less.
  • the vanadium oxide contained in the composite of the present invention has a composition formula: V 1-x M x O 2 (Wherein, M is W, Ta, Mo or Nb, 0 ⁇ x ⁇ 0.05) Or the composition formula: A y VO 2 (Wherein, A is Li or Na, 0.5 ⁇ y ⁇ 1.0) It is an oxide represented by.
  • the vanadium oxide contained in the composite of the present invention has a composition formula: V 1-x W x O 2 (Where 0 ⁇ x ⁇ 0.01) It is an oxide represented by.
  • the vanadium oxide contained in the composite of the present invention is vanadium oxide doped with Ti or vanadium oxide doped with other atoms selected from the group consisting of W, Ta, Mo and Nb. Because When the other atom is W, the content mole part of the other atom is greater than 0 mole part and less than or equal to 5 mole part with respect to a total of 100 mole parts of vanadium, Ti, and other atoms, When the other atom is Ta, Mo or Nb, the content mole part of the other atom is greater than 0 mole part and 15 mole parts or less with respect to 100 mole parts in total of vanadium, Ti and other atoms, The content mole part of titanium is not less than 2 mole parts and not more than 30 mole parts with respect to 100 mole parts in total of vanadium, Ti and other atoms. By using such vanadium oxide, the moisture resistance of the ceramic material is improved.
  • the Ti-doped vanadium oxide may contain 5 to 10 mole parts of titanium with respect to 100 mole parts of Ti and other atoms in total.
  • the vanadium oxide contained in the complex of the present invention is Formula: V 1-xy Ti x M y O 2 [Wherein M is W, Ta, Mo or Nb; x is 0.02 or more and 0.3 or less, y is 0 or more, When M is W, y is 0.05 or less, When M is Ta, Mo or Nb, y is 0.15 or less. ] It is vanadium oxide represented by these. By using such vanadium oxide, the moisture resistance of the ceramic material is improved.
  • x may be 0.05 or more and 0.1 or less.
  • the temperature showing the latent heat of vanadium oxide that is, the temperature at which this vanadium oxide undergoes phase transition can be adjusted by adding (doping) another element and adjusting the amount of the element added.
  • vanadium oxide has the composition formula: V 1-x W x O 2 When x is 0.005, the phase transition occurs at about 50 ° C., and when x is 0.01, the phase transition occurs at about 40 ° C.
  • the temperature at which the vanadium oxide undergoes phase transition is appropriately selected depending on the object to be cooled, the purpose of cooling, and the like.
  • the phase is increased at 20 to 100 ° C., preferably 40 to 60 ° It is preferable to transfer.
  • the ceramic material is preferably in the form of particles (powder).
  • the average particle size of the core portion of the ceramic material (D50: the particle size distribution on a volume basis, the particle size at which the cumulative value is 50% in the cumulative curve with the total volume being 100%) is not particularly limited, For example, the thickness is 0.1 to several hundred ⁇ m, specifically 0.1 to 900 ⁇ m, typically about 0.2 to 50 ⁇ m, and preferably 0.5 to 50 ⁇ m.
  • the average particle diameter can be measured using a laser diffraction / scattering soot particle diameter / particle size distribution measuring apparatus or an electronic scanning microscope.
  • the average particle diameter is preferably 0.2 ⁇ m or more from the viewpoint of ease of handling, and is preferably 50 ⁇ m or less from the viewpoint that it can be more densely molded.
  • the ceramic material in the composite of the present invention has a volume fraction of 50% or more, preferably 60% or more, more preferably 70% or more.
  • the volume fraction represents the volume ratio of the ceramic material showing the latent heat contained in% when the volume of the composite is 100%.
  • the glass material used in the present invention contains pentavalent vanadium (V 5+ ).
  • the glass material containing pentavalent vanadium preferably contains pentavalent vanadium in terms of V 2 O 5 , preferably 15% by mass or more, more preferably 20% by mass or more. By containing 15 mass% or more of pentavalent vanadium in terms of V 2 O 5 , it is possible to further suppress diffusion of impurities contained in the glass that affect the endothermic property of the ceramic material into the ceramic material. .
  • the glass material containing pentavalent vanadium (V 5+ ) is not particularly limited as long as it contains V 5+ (V 2 O 5 ), and a glass generally referred to as vanadium glass, such as Hitachi Chemical Bunny Tect (commodity) Name).
  • the glass material containing pentavalent vanadium may contain at least one selected from the group consisting of alkaline earth, phosphorus, silicon, silver, tungsten, boron and tellurium in addition to pentavalent vanadium. .
  • glass such as lead-based glass, borosilicate glass, or bismuth-based glass to which V 2 O 5 is added can also be used.
  • the softening point of the glass material is preferably in a temperature range in which the ceramic material (preferably VO 2 ) does not substantially cause chemical alteration (for example, oxidation), and specifically, 500 ° C. or less is preferable. 400 ° C. or lower is more preferable, and 300 ° C. or lower is further preferable.
  • the lower limit of the softening point of the glass material only needs to be higher than the temperature of the environment in which the composite (cooling device) of the present invention is installed, for example, 150 ° C.
  • the softening point of the glass material can be measured by a thermomechanical analyzer (TMA), thermogravimetry / differential thermal analysis (TG-DTA).
  • TMA thermomechanical analyzer
  • TG-DTA thermogravimetry / differential thermal analysis
  • the vanadium pentoxide is preferably in the form of particles (powder).
  • the average particle size (D50) is preferably about the same as that of the ceramic material, and is not particularly limited. For example, it is 0.1 to several hundred ⁇ m, specifically 0.1 to 900 ⁇ m, and typically about 0. .2 to 50 ⁇ m, preferably 0.5 to 50 ⁇ m.
  • the average particle diameter can be measured using a laser diffraction / scattering soot particle diameter / particle size distribution measuring apparatus or an electronic scanning microscope.
  • the average particle diameter is preferably 0.2 ⁇ m or more from the viewpoint of ease of handling, and is preferably 50 ⁇ m or less from the viewpoint that it can be more densely molded.
  • the total content of vanadium pentoxide and glass material is preferably 20 to 50% by volume, more preferably 20 to 40% by volume, Preferably, it is 20 to 30% by volume.
  • the ratio of the ceramic material in the composite increases, so that the endothermic amount of the composite can be increased.
  • the ratio of vanadium pentoxide and the glass material is 20% by volume or more, the bonding between the particles of the ceramic material can be further strengthened, and the strength and heat cycle resistance of the composite can be increased.
  • the content of V 5+ is preferably 1% by weight or more, for example, 5% by weight or more or 10% by weight in terms of V 2 O 5. That can be the case.
  • the composite of the present invention can be obtained by heat-treating a mixture of a ceramic material, a glass material containing pentavalent vanadium and / or vanadium pentoxide. Accordingly, the present invention provides a method for producing the composite of the present invention, comprising heat treating a mixture of a ceramic material and a glass material.
  • a mixture of a glass material and / or vanadium pentoxide may be mixed and temporarily formed into a desired shape.
  • the method of temporary molding is not particularly limited, and examples thereof include a method of molding by compression and a method of molding after mixing with a binder resin.
  • the temperature of the heat treatment is preferably not less than the softening point of the glass material and not more than a temperature at which vanadium oxide in the ceramic material does not substantially change, for example, not more than a temperature at which the valence of vanadium oxide does not substantially change.
  • the heating temperature can range from 300 ° C to 600 ° C.
  • the heat treatment is performed in an atmosphere in which the vanadium oxide in the ceramic material is not substantially denatured, for example, an atmosphere in which the valence of vanadium in the vanadium oxide is not substantially changed (in other words, is not substantially oxidized / reduced). Done under.
  • the heat treatment atmosphere can be appropriately selected depending on the temperature of the heat treatment. For example, in the range of 300 ° C. to 600 ° C., in order to prevent oxidation of vanadium oxide, in a reducing atmosphere, for example, in a mixed atmosphere of nitrogen and hydrogen. possible. Further, when the temperature is low, for example, when it is lower than 300 ° C., vanadium oxide is hardly oxidized and may be heated in the atmosphere.
  • the heating time is not particularly limited, but may be 10 minutes to 10 hours.
  • the method of the present invention it is possible to obtain a composite that is very densified and has a large volume fraction of ceramic material.
  • a dense complex is thought to be obtained for the following reasons.
  • the glass material softens.
  • the softened glass attracts the surrounding ceramic material particles to reduce its surface free energy, resulting in a smaller distance between the ceramic material particles and fewer voids.
  • the proportion of the ceramic material (that is, vanadium oxide) in the composite is increased, and the endothermic amount is improved.
  • the present invention provides a cooling device including the above composite.
  • the shape of the cooling device of the present invention is not particularly limited, and can be any shape.
  • the cooling device of the present invention may be block-shaped. By making it into a block shape, the whole volume becomes large and more heat can be absorbed.
  • the cooling device of the present invention may be in the form of a sheet. By making it into a sheet shape, the surface area increases, so it becomes easy to release absorbed heat to the outside.
  • the cooling device of the present invention is installed in another member, for example, a protective cover for protecting the cooling device, a heat conductive part such as a metal for enhancing heat conductivity, an insulating sheet for ensuring insulation, and an electronic device.
  • a protective cover for protecting the cooling device for example, a heat conductive part such as a metal for enhancing heat conductivity, an insulating sheet for ensuring insulation, and an electronic device.
  • Members for example, pressure-sensitive adhesive sheets, pins, nails, etc. may be included.
  • the present invention also provides an electronic component and an electronic apparatus having the cooling device of the present invention.
  • the electronic component is not particularly limited, but for example, an integrated circuit (IC) such as a central processing unit (CPU), a power management IC (PMIC), a power amplifier (PA), a transceiver IC, and a voltage regulator (VR).
  • IC integrated circuit
  • CPU central processing unit
  • PMIC power management IC
  • PA power amplifier
  • TFT field effect transistors
  • the electronic device is not particularly limited, and examples thereof include a mobile phone, a smartphone, a personal computer (PC), and a tablet terminal.
  • PSZ partially stabilized zirconium balls
  • SN Dispersant 5468 dispersant 5468
  • DSC Differential scanning calorimetry
  • cooling device 30% by volume of V 2 O 5 powder is added to the ceramic material powder obtained above, mixed in an agate mortar, and then pellets having a diameter of 20 mm and a thickness of 3 mm using a mold and a press. Was made.
  • the produced pellet was heat-treated in a nitrogen atmosphere at 500 to 750 ° C. to obtain a cooling device (composite) of Example 1.
  • Example 2 Example 1 except that vanadium-based glass (manufactured by Hitachi Chemical, VP-1175, softening temperature: about 400 ° C.) (30% by volume) was used instead of V 2 O 5 powder (30% by volume). Thus, a cooling device (composite) of Example 2 was obtained.
  • vanadium-based glass manufactured by Hitachi Chemical, VP-1175, softening temperature: about 400 ° C.
  • Comparative Example 1 Except not using the V 2 O 5 powder, in the same manner as in Example 1 to obtain a cooling device in Comparative Example 1 comprising only the powder of the ceramic material (complex).
  • Comparative Example 2 Example 1 except that bismuth-based low-melting glass (manufactured by Sekiya Rika, 2280-06, softening temperature: about 400 ° C.) (30% by volume) was used instead of V 2 O 5 powder (30% by volume). In the same manner, a cooling device (composite) of Comparative Example 2 was obtained.
  • bismuth-based low-melting glass manufactured by Sekiya Rika, 2280-06, softening temperature: about 400 ° C.
  • Comparative Example 3 An acrylic resin (30% by volume) was added to the ceramic material powder obtained in the same manner as in Example 1, and this was solidified into pellets having a diameter of 20 mm and a thickness of 3 mm. Resin composite) was obtained.
  • Test example 1 Endothermic test A PTC (Positive Temperature Coefficient) heater having an ultimate temperature of about 75 ° C. was used as a heating element, heat conduction grease was applied to the heater surface, and an ultrafine K thermocouple was attached. From there, the cooling devices prepared in Examples 1 and 2 and Comparative Examples 1 to 3 were pressed and fixed. While monitoring the temperature with a thermocouple, a rated DC current was passed through the PTC heater for 10 minutes, and then the cycle of stopping the current for 10 minutes was repeated twice. As a control, the same test was performed without installing a cooling device.
  • PTC Physical Temperature Coefficient
  • the acrylic resin composite of Comparative Example 3 contained the same amount of V 0.995 W 0.005 O 2 (W-doped VO 2 ), the delay time was as short as 50 seconds.
  • the temperature of the cooling device of Example 2 is 40 ° C. even after about 600 seconds after the energization is stopped.
  • the temperature became 40 ° C. or less in about 400 seconds. From this result, it can be seen that a larger amount of heat was stored in the cooling device of Example 2.
  • Comparative Example 2 using a bismuth glass having a softening temperature similar to that of vanadium-based glass has a delay time of 105 seconds although the thermal conductivity is similar, and uses vanadium-based glass. It was about half of the case.
  • the present invention is not bound by any theory, but the reason is considered as follows.
  • the glass contains impurities such as boron, phosphoric acid, sodium, and molybdenum, regardless of whether they are vanadium glass or bismuth glass. These impurities affect the latent heat characteristics of vanadium oxide (in this embodiment, V 0.995 W 0.005 O 2 ), and when diffused into the vanadium oxide phase, the latent heat characteristics of vanadium oxide are deteriorated. When bismuth glass was used, such diffusion occurred, but when vanadium glass was used, it is considered that such diffusion did not occur.
  • vanadium-based glass contains V 2 O 5 (pentavalent vanadium), but V 2 O 5 has a property that it has structurally more gaps than VO 2 and easily incorporates different elements. Therefore, it is considered that the impurities are preferentially diffused into the V 2 O 5 phase, not VO 2 (in this example, V 0.995 W 0.005 O 2 ).
  • Heat cycle test The cooling devices produced in Examples 1 and 2 and Comparative Examples 1 to 3 were subjected to a heat cycle test of ⁇ 25 ° C. ⁇ 150 ° C. ⁇ ⁇ 25 ° C. 100 times, and the element surface was observed with an optical microscope. . The case where a crack did not occur was evaluated as “ ⁇ ”, and the case where a crack occurred was evaluated as “ ⁇ ”. The results are also shown in Table 1.
  • Comparative Example 1 which is a sintered body of V 0.995 W 0.005 O 2 alone, was cracked but was a composite with V 2 O 5 or vanadium-based glass. In Examples 1 and 2, it was confirmed that no cracks occurred in the heat cycle test. Although this invention is not restrained by any theory, it thinks as follows. In the sintered body of V 0.995 W 0.005 O 2 alone, internal stress is generated at the grain boundary portion by sintering. It is considered that stress is further concentrated on the grain boundary portion due to the structural change of vanadium oxide during endothermic heat generation, and the grain boundary breaks to cause a crack. On the other hand, by using glass, particles can be bonded at a low temperature, and a lump can be formed without causing stress. Further, the bonding force between the particles can be increased. Therefore, it is considered that no breakage occurs even if stress is generated due to the structural change of vanadium oxide during endothermic generation.
  • the cooling device of the present invention can be used, for example, as a cooling device for a small communication terminal in which a thermal countermeasure problem has become remarkable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Structural Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention provides a composite of a mixture containing: a ceramic material having vanadium dioxide and/or vanadium dioxide doped with another element as the principal component thereof; and vanadium pentoxide and/or a glass material containing vanadium having a valence of five. It is possible to use this composite in a cooling device which is usable without a power supply, exhibits excellent cooling efficiency, and has high heat-cycle resistance.

Description

複合体および冷却デバイスComposites and cooling devices
 本発明は、複合体および冷却デバイスに関する。 The present invention relates to a composite and a cooling device.
 近年の電子機器の性能向上を背景に、熱源となるCPU(中央処理装置)、パワーアンプ、FET(電界効果トランジスタ)、IC(集積回路)、ボルテージレギュレータなどの電子部品の数が増加し、投入されるエネルギーの増加も重なって、発熱の問題が顕著化している。特に、スマートフォンやタブレット型端末のようなモバイル機器では、この熱により、電池の容量が劣化したり、構成する電子機器の信頼性に深刻な影響を与えたりする問題がある。したがって、機器の内部の温度を、より高度に制御することが求められている。 With the recent improvement in performance of electronic equipment, the number of electronic components such as CPU (Central Processing Unit), power amplifier, FET (Field Effect Transistor), IC (Integrated Circuit), voltage regulator, etc., which become heat sources, has increased and introduced. The increase in energy generated overlaps with the problem of heat generation. In particular, mobile devices such as smartphones and tablet terminals have a problem that the heat deteriorates the capacity of the battery and seriously affects the reliability of the electronic devices to be configured. Therefore, it is required to control the temperature inside the device to a higher degree.
 上記のような熱源から生じた熱の制御は、既存の熱マネジメントソリューションである冷却ファン、ヒートパイプ、ヒートシンク、サーマルシート、ペルチェ素子などにより行われており、例えば、特許文献1には、ヒートシンクとファンまたはペルチェ素子を組み合わせた冷却装置が記載されている(特許文献1を参照)。 Control of the heat generated from the heat source as described above is performed by a cooling fan, a heat pipe, a heat sink, a thermal sheet, a Peltier element, or the like, which is an existing heat management solution. A cooling device in which a fan or a Peltier element is combined is described (see Patent Document 1).
 しかしながら、上記のようなヒートシンクとファンまたはペルチェ素子を組み合わせた冷却装置は、構造が比較的複雑であることに加え、機器が大きくなり、特にスマートフォンやタブレット型端末等の薄型の機器には使用しにくい。さらには、電力を消費するので、低消費電力(バッテリーの持ち時間)の観点からも不利である。 However, the cooling device combining the heat sink and the fan or the Peltier element as described above has a relatively complicated structure and increases the size of the device, particularly for thin devices such as smartphones and tablet terminals. Hateful. Furthermore, since power is consumed, it is disadvantageous from the viewpoint of low power consumption (battery life).
 したがって、スマートフォンやタブレット型端末等の薄型の機器では、現状、温度の制御は、筺体を介する放熱による手段しかなく、熱源と筺体をサーマルシートなどで熱結合し熱を逃がしている。 Therefore, for thin devices such as smartphones and tablet terminals, the temperature is currently controlled only by means of heat dissipation through the housing, and the heat source and the housing are thermally coupled by a thermal sheet or the like to release heat.
特開2010-223497号公報JP 2010-223497 A
 上記のような筺体を介する放熱は、筺体の表面積が限られていることから、限界がある。したがって、各熱源の温度を測定し、温度が所定の温度以上になった場合に、CPUなどのパフォーマンスを制限する(発熱自体を抑制する)ことで対応している。即ち、筺体の温度上昇が、CPU等のパフォーマンスの妨げになっていることがある。当然、このような筐体を介した放熱、換言すれば機器全体への伝熱による放熱においては、バッテリーにも熱が伝わることになり、電池容量の経時的な低下に繋がっているともいえる。 放熱 Heat dissipation through the enclosure as described above is limited because the surface area of the enclosure is limited. Therefore, the temperature of each heat source is measured, and when the temperature exceeds a predetermined temperature, the performance of the CPU or the like is limited (suppressing heat generation itself). That is, the temperature rise of the housing may hinder the performance of the CPU or the like. Naturally, in heat dissipation through such a case, in other words, heat dissipation by heat transfer to the entire device, heat is also transferred to the battery, which can lead to a decrease in battery capacity over time.
 そこで、本発明者は、結晶構造相転移や磁気相転移等に伴い熱を吸収するセラミック材料を、電子機器の熱源付近に配置することにより、無電源で使用可能な冷却デバイスとすることを検討した。このようなセラミック材料は、焼結することにより成形して冷却デバイスとして用いられるが、保冷対象物(例えば、発熱体)の加熱・冷却によるヒートサイクル(熱衝撃)により焼結体にクラックが生じるという問題があることがわかった。そこで、本発明者は、鉛系ガラス、ホウケイ酸系ガラスまたはビスマス系ガラス等のガラスと複合することでクラックの発生を抑制することを試みたが、この場合、冷却デバイスの冷却特性が劣化し、十分な冷却効果を得ることができないという別の問題が生じることがわかった。また、他のクラックの発生を防止するための方法として、セラミック材料と樹脂とを複合体化することが考えられる。しかしながら、このような複合体は、その形状およびハンドリング性を維持するために約50体積%の樹脂と混合する必要があり、樹脂は冷却に寄与せず、さらに熱伝導率も低いので、冷却デバイス全体としての吸熱効率を低下させるという問題が生じる。特に、設置スペースが限られるスマートフォンおよびタブレットPCのような小型機器では、高い吸熱効率が求められるのでこの問題は顕著になる。 Therefore, the present inventor has considered a cooling device that can be used without a power source by arranging a ceramic material that absorbs heat accompanying a crystal structure phase transition, a magnetic phase transition, or the like in the vicinity of a heat source of an electronic device. did. Such a ceramic material is formed by sintering and used as a cooling device. However, cracks occur in the sintered body due to a heat cycle (thermal shock) due to heating and cooling of a cold object (for example, a heating element). I found out that there was a problem. Therefore, the present inventors tried to suppress the occurrence of cracks by combining with glass such as lead glass, borosilicate glass or bismuth glass, but in this case, the cooling characteristics of the cooling device deteriorated. It has been found that another problem arises that a sufficient cooling effect cannot be obtained. Further, as a method for preventing the occurrence of other cracks, it is conceivable to make a composite of a ceramic material and a resin. However, such a composite needs to be mixed with about 50% by volume of resin to maintain its shape and handleability, and the resin does not contribute to cooling and also has a low thermal conductivity, so the cooling device There arises a problem that the heat absorption efficiency as a whole is lowered. In particular, in small devices such as smartphones and tablet PCs where installation space is limited, this problem becomes significant because high heat absorption efficiency is required.
 したがって、本発明の目的は、無電源で使用可能で、冷却効率に優れ、かつヒートサイクルに対する耐性が高い冷却デバイスとして用いることができる複合体を提供することにある。 Therefore, an object of the present invention is to provide a composite that can be used as a cooling device that can be used without a power source, has excellent cooling efficiency, and has high resistance to heat cycles.
 本発明者は、上記問題を解消すべく鋭意検討した結果、結晶構造相転移や磁気相転移等に伴い熱を吸収する酸化バナジウムを含むセラミック材料と、五酸化バナジウム(V)または5価のバナジウム(V5+)を含むガラス材料とを複合体化することにより、上記課題を解決できることを見出し、本発明に至った。 As a result of intensive studies to solve the above problems, the present inventor has found that a ceramic material containing vanadium oxide that absorbs heat in association with a crystal structure phase transition or a magnetic phase transition, and vanadium pentoxide (V 2 O 5 ) or 5 It discovered that the said subject could be solved by complex | conjugating with the glass material containing valent vanadium ( V5 + ), and it came to this invention.
 本発明の第1の要旨によれば、酸化バナジウムを主成分とするセラミック材料と、
 5価のバナジウムを含むガラス材料および/または五酸化バナジウムと
を含む混合物の複合体が提供される。
According to a first aspect of the present invention, a ceramic material mainly composed of vanadium oxide;
A composite of a glass material comprising pentavalent vanadium and / or a mixture comprising vanadium pentoxide is provided.
 本発明の第2の要旨によれば、上記複合体を含んで成る冷却デバイスが提供される。 According to a second aspect of the present invention, there is provided a cooling device comprising the above composite.
 本発明の第3の要旨によれば、上記冷却デバイスを有して成る電子部品が提供される。 According to a third aspect of the present invention, there is provided an electronic component comprising the cooling device.
 本発明の第4の要旨によれば、上記冷却デバイスまたは上記電子部品を有して成る電子機器が提供される。 According to a fourth aspect of the present invention, there is provided an electronic apparatus comprising the cooling device or the electronic component.
 本発明によれば、結晶構造相転移や磁気相転移等に伴い熱を吸収する酸化バナジウムを主成分とするセラミック材料を、5価のバナジウムを含むガラス材料および/または五酸化バナジウムと焼成することにより、冷却効率に優れ、かつヒートサイクルに対する耐性が高い複合体を提供することができる。 According to the present invention, a ceramic material mainly composed of vanadium oxide that absorbs heat accompanying a crystal structure phase transition or a magnetic phase transition is fired with a glass material containing pentavalent vanadium and / or vanadium pentoxide. Thus, it is possible to provide a composite having excellent cooling efficiency and high resistance to heat cycle.
図1は、実験例で製造したV0.9950.005の示差走査熱量測定の結果を示す。FIG. 1 shows the results of differential scanning calorimetry of V 0.995 W 0.005 O 2 produced in the experimental example. 図2は、実施例2の冷却デバイスの吸熱性試験結果を示す。FIG. 2 shows the endothermic test results of the cooling device of Example 2. 図3は、比較例3の冷却デバイスの吸熱性試験結果を示す。FIG. 3 shows the endothermic test results of the cooling device of Comparative Example 3.
 本明細書において、複合体とは、セラミック材料、五酸化バナジウム、ガラス材料等の粉末混合物を熱処理することにより得られる塊を意味する。かかる複合体は、熱処理の結果として、粉体(または粒子)が互いに接合したものであればよく、その大きさ、形状、形成メカニズム等は特に限定されない。 In this specification, the composite means a lump obtained by heat-treating a powder mixture of a ceramic material, vanadium pentoxide, a glass material or the like. Such a composite is not particularly limited as long as powders (or particles) are bonded to each other as a result of heat treatment, and the size, shape, formation mechanism, and the like are not particularly limited.
 本発明に用いられるセラミック材料は、潜熱により熱を吸収するセラミック材料である。 The ceramic material used in the present invention is a ceramic material that absorbs heat by latent heat.
 このセラミック材料による熱の吸収は、潜熱を吸収することにより為される。このようなセラミック材料は、過剰な熱を潜熱により一時的に吸収することにより、時間的な熱の平滑化をすることで、高い冷却効果を得ることが可能になる。 The heat absorption by this ceramic material is done by absorbing the latent heat. Such a ceramic material can obtain a high cooling effect by temporally smoothing the heat by temporarily absorbing excess heat by latent heat.
 上記セラミック材料としては、潜熱により熱を吸収する酸化バナジウムを主成分とするセラミック材料が用いられる。上記酸化バナジウムは、バナジウムおよび酸素を含んでいればよく、例えば、複合酸化物、および他の元素がドープされた酸化物も包含する。 As the ceramic material, a ceramic material mainly composed of vanadium oxide that absorbs heat by latent heat is used. The vanadium oxide only needs to contain vanadium and oxygen, and includes, for example, complex oxides and oxides doped with other elements.
 上記他の元素としては、ドープ元素としてVOに含ませ得るものであれば特に限定されず、例えばW、Ta、MoおよびNbが挙げられる。 The other element is not particularly limited as long as it can be contained in VO 2 as a doping element, and examples thereof include W, Ta, Mo, and Nb.
 ここに、主成分とは、セラミック材料中に50質量%以上含まれる成分を意味し、特に60質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは98質量%以上、例えば98.0~99.8質量%含まれる成分を意味する。 Here, the main component means a component contained in the ceramic material by 50% by mass or more, particularly 60% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 98% by mass. The above means a component contained in, for example, 98.0 to 99.8% by mass.
 上記セラミック材料は、好ましくは5J/g以上、より好ましくは20J/g以上の潜熱量を有する。このように大きな潜熱量を有することにより、より小さな体積で大きな冷却効果を発揮できるので、小型化の点で有利である。ここに、「潜熱」とは、物質の相が変化するときに必要とされる熱エネルギーの総量であり、本明細書においては、固体-固体の相転移、例えば電気・磁気・構造相転移に伴う吸発熱量の事をいう。 The ceramic material preferably has a latent heat amount of 5 J / g or more, more preferably 20 J / g or more. By having such a large amount of latent heat, a large cooling effect can be exhibited with a smaller volume, which is advantageous in terms of downsizing. Here, “latent heat” is the total amount of thermal energy required when the phase of a substance changes, and in this specification, solid-solid phase transitions such as electrical, magnetic, and structural phase transitions are used. This refers to the amount of heat generated and absorbed.
 具体的なセラミック材料としては、特に限定されないが、例えば特開2010-163510号公報に記載のセラミック材料、具体的には、VO、LiVS、LiVO、V、V、V11、AVO(式中、AはLiまたはNaであり、0.1≦y≦2.0、好ましくは0.5≦y≦1.0)、V1-x(式中、Mは、W、Ta、Mo、Nb、RuまたはReであり、0≦x≦0.2、好ましくは0≦x≦0.05)等が挙げられる。 Specific ceramic material is not particularly limited, for example, JP-ceramic material described in JP 2010-163510, specifically, VO 2, LiVS 2, LiVO 2, V 2 O 3, V 4 O 7 , V 6 O 11 , A y VO 2 (wherein A is Li or Na, 0.1 ≦ y ≦ 2.0, preferably 0.5 ≦ y ≦ 1.0), V 1-x M x O 2 (wherein M is W, Ta, Mo, Nb, Ru or Re, and 0 ≦ x ≦ 0.2, preferably 0 ≦ x ≦ 0.05).
 好ましい態様において、本発明の複合体に含まれる酸化バナジウムは、V(バナジウム)およびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化物であって、VとMの合計を100モル部としたときのMの含有モル部が0モル部以上約5モル部以下、好ましくは1モル部以下である酸化物である。なお、Mは必須成分ではなく、Mの含有モル部は0であってもよい。 In a preferred embodiment, the vanadium oxide contained in the composite of the present invention is an oxide containing V (vanadium) and M (wherein M is at least one selected from W, Ta, Mo and Nb). Thus, the oxide containing M in an amount of not less than 0 mol and not more than about 5 mol, preferably not more than 1 mol, when the total of V and M is 100 mol. Note that M is not an essential component, and the content molar part of M may be 0.
 別の好ましい態様において、本発明の複合体に含まれる酸化バナジウムは、A(ここに、AはLiまたはNaである)およびV(バナジウム)を含む酸化物であって、Vを100モル部としたときのAの含有モル部が約50モル部以上約100モル部以下である酸化物である。 In another preferred embodiment, the vanadium oxide contained in the composite of the present invention is an oxide containing A (where A is Li or Na) and V (vanadium), wherein V is 100 mole parts. In this case, the content mole part of A is about 50 mole parts or more and about 100 mole parts or less.
 また、別の好ましい態様において、本発明の複合体に含まれる酸化バナジウムは、組成式:
   V1-x
(式中、Mは、W、Ta、MoまたはNbであり、0≦x≦0.05)
または、組成式:
    AVO
 (式中、AはLiまたはNaであり、0.5≦y≦1.0)
で表される酸化物である。
In another preferred embodiment, the vanadium oxide contained in the composite of the present invention has a composition formula:
V 1-x M x O 2
(Wherein, M is W, Ta, Mo or Nb, 0 ≦ x ≦ 0.05)
Or the composition formula:
A y VO 2
(Wherein, A is Li or Na, 0.5 ≦ y ≦ 1.0)
It is an oxide represented by.
 より好ましい態様において、本発明の複合体に含まれる酸化バナジウムは、組成式:
   V1-x
(式中、0≦x≦0.01)
で表される酸化物である。
In a more preferred embodiment, the vanadium oxide contained in the composite of the present invention has a composition formula:
V 1-x W x O 2
(Where 0 ≦ x ≦ 0.01)
It is an oxide represented by.
 別の好ましい態様において、本発明の複合体に含まれる酸化バナジウムは、Tiがドープされた酸化バナジウムまたはさらにW、Ta、MoおよびNbからなる群から選択される他の原子がドープされた酸化バナジウムであって、
 他の原子がWである場合、バナジウム、Tiおよび他の原子の合計100モル部に対して、他の原子の含有モル部が、0モル部より大きく5モル部以下であり、
 他の原子がTa、MoまたはNbである場合、バナジウム、Tiおよび他の原子の合計100モル部に対して、他の原子の含有モル部が、0モル部より大きく15モル部以下であり、
 バナジウム、Tiおよび他の原子の合計100モル部に対して、チタンの含有モル部は、2モル部以上30モル部以下である。このような酸化バナジウムを用いることにより、セラミック材料の耐湿性が向上する。
In another preferred embodiment, the vanadium oxide contained in the composite of the present invention is vanadium oxide doped with Ti or vanadium oxide doped with other atoms selected from the group consisting of W, Ta, Mo and Nb. Because
When the other atom is W, the content mole part of the other atom is greater than 0 mole part and less than or equal to 5 mole part with respect to a total of 100 mole parts of vanadium, Ti, and other atoms,
When the other atom is Ta, Mo or Nb, the content mole part of the other atom is greater than 0 mole part and 15 mole parts or less with respect to 100 mole parts in total of vanadium, Ti and other atoms,
The content mole part of titanium is not less than 2 mole parts and not more than 30 mole parts with respect to 100 mole parts in total of vanadium, Ti and other atoms. By using such vanadium oxide, the moisture resistance of the ceramic material is improved.
 好ましい態様において、上記のTiがドープされた酸化バナジウムは、Tiおよび他の原子の合計100モル部に対して、チタンの含有モル部が、5モル部以上10モル部以下であり得る。 In a preferred embodiment, the Ti-doped vanadium oxide may contain 5 to 10 mole parts of titanium with respect to 100 mole parts of Ti and other atoms in total.
 別の好ましい態様において、本発明の複合体に含まれる酸化バナジウムは、
 式:V1-x-yTi
[式中、Mは、W、Ta、MoまたはNbであり、
 xは0.02以上0.3以下であり、
 yは0以上であって、
 MがWである場合、yは0.05以下であり、
 MがTa、MoまたはNbである場合、yは0.15以下である。]
で表される酸化バナジウムである。このような酸化バナジウムを用いることにより、セラミック材料の耐湿性が向上する。
In another preferred embodiment, the vanadium oxide contained in the complex of the present invention is
Formula: V 1-xy Ti x M y O 2
[Wherein M is W, Ta, Mo or Nb;
x is 0.02 or more and 0.3 or less,
y is 0 or more,
When M is W, y is 0.05 or less,
When M is Ta, Mo or Nb, y is 0.15 or less. ]
It is vanadium oxide represented by these. By using such vanadium oxide, the moisture resistance of the ceramic material is improved.
 好ましくは、上記式中、xは、0.05以上0.1以下であり得る。 Preferably, in the above formula, x may be 0.05 or more and 0.1 or less.
 酸化バナジウムの潜熱を示す温度、即ち、この酸化バナジウムが相転移する温度は、他の元素を添加(ドープ)し、その元素の添加量を調節することにより調節することができる。 The temperature showing the latent heat of vanadium oxide, that is, the temperature at which this vanadium oxide undergoes phase transition can be adjusted by adding (doping) another element and adjusting the amount of the element added.
 例えば、酸化バナジウムが、組成式:
   V1-x
で示される場合、xを0.005とすると、相転移は約50℃で起こり、xを0.01とすると、相転移は約40℃で起こる。
For example, vanadium oxide has the composition formula:
V 1-x W x O 2
When x is 0.005, the phase transition occurs at about 50 ° C., and when x is 0.01, the phase transition occurs at about 40 ° C.
 上記酸化バナジウムが相転移する温度は、冷却対象物、冷却目的などに応じて適宜選択され、例えば冷却対象物がCPUである場合、昇温時20~100℃、好ましくは40~60℃で相転移することが好ましい。 The temperature at which the vanadium oxide undergoes phase transition is appropriately selected depending on the object to be cooled, the purpose of cooling, and the like. For example, when the object to be cooled is a CPU, the phase is increased at 20 to 100 ° C., preferably 40 to 60 ° It is preferable to transfer.
 上記セラミック材料は、粒子(粉末)状であることが好ましい。セラミック材料のコア部の平均粒径(D50:体積基準で粒度分布を求め、全体積を100%とした累積曲線において、累積値が50%となる点の粒径)は、特に限定されないが、例えば、0.1~数百μm、具体的には0.1~900μm、代表的には約0.2~50μmであり、好ましくは、0.5~50μmである。かかる平均粒径は、レーザー回折・散乱式 粒子径・粒度分布測定装置または電子走査顕微鏡を用いて測定することができる。平均粒径は、取り扱いの容易性の観点から、0.2μm以上であることが好ましく、より緻密に成形できるという観点から、50μm以下であることが好ましい。 The ceramic material is preferably in the form of particles (powder). The average particle size of the core portion of the ceramic material (D50: the particle size distribution on a volume basis, the particle size at which the cumulative value is 50% in the cumulative curve with the total volume being 100%) is not particularly limited, For example, the thickness is 0.1 to several hundred μm, specifically 0.1 to 900 μm, typically about 0.2 to 50 μm, and preferably 0.5 to 50 μm. The average particle diameter can be measured using a laser diffraction / scattering soot particle diameter / particle size distribution measuring apparatus or an electronic scanning microscope. The average particle diameter is preferably 0.2 μm or more from the viewpoint of ease of handling, and is preferably 50 μm or less from the viewpoint that it can be more densely molded.
 本発明の複合体中のセラミック材料は、50%以上、好ましくは60%以上、より好ましくは70%以上の体積分率を有する。セラミック材料の体積分率を50%以上とすることにより、複合体の吸熱量を大きくすることができる。ここに、体積分率とは、複合体の体積を100%とした時に、その中に含まれる潜熱を示すセラミックス材料の体積比率を%で表しものである。 The ceramic material in the composite of the present invention has a volume fraction of 50% or more, preferably 60% or more, more preferably 70% or more. By setting the volume fraction of the ceramic material to 50% or more, the endothermic amount of the composite can be increased. Here, the volume fraction represents the volume ratio of the ceramic material showing the latent heat contained in% when the volume of the composite is 100%.
 本発明に用いられるガラス材料は、5価のバナジウム(V5+)を含む。 The glass material used in the present invention contains pentavalent vanadium (V 5+ ).
 5価のバナジウムを含むガラス材料は、5価のバナジウムを、V換算で、好ましくは15質量%以上、より好ましくは20質量%以上含む。5価のバナジウムをV換算で15質量%以上含むことにより、ガラス中に含まれる、セラミック材料の吸熱性に影響を及ぼす不純物が、セラミック材料に拡散することをより抑制することができる。 The glass material containing pentavalent vanadium preferably contains pentavalent vanadium in terms of V 2 O 5 , preferably 15% by mass or more, more preferably 20% by mass or more. By containing 15 mass% or more of pentavalent vanadium in terms of V 2 O 5 , it is possible to further suppress diffusion of impurities contained in the glass that affect the endothermic property of the ceramic material into the ceramic material. .
 5価のバナジウム(V5+)を含むガラス材料としては、V5+(V)を含む限り特に限定されず、一般的にバナジウム系ガラスと称されるガラス、例えば日立化成性バニーテクト(商品名)等が挙げられる。また、5価のバナジウムを含むガラス材料は、5価のバナジウムに加え、アルカリ土類、リン、ケイ素、銀、タングステン、ホウ素およびテルルからなる群から選択される少なくとも1つを含んでいてもよい。また、Vを添加した鉛系ガラス、ホウケイ酸系ガラスまたはビスマス系ガラス等のガラス等も用いることができる。 The glass material containing pentavalent vanadium (V 5+ ) is not particularly limited as long as it contains V 5+ (V 2 O 5 ), and a glass generally referred to as vanadium glass, such as Hitachi Chemical Bunny Tect (commodity) Name). The glass material containing pentavalent vanadium may contain at least one selected from the group consisting of alkaline earth, phosphorus, silicon, silver, tungsten, boron and tellurium in addition to pentavalent vanadium. . In addition, glass such as lead-based glass, borosilicate glass, or bismuth-based glass to which V 2 O 5 is added can also be used.
 上記ガラス材料の軟化点は、セラミック材料(好ましくはVO)が化学的な変質(例えば、酸化)を実質的に起こさない温度範囲であることが好ましく、具体的には、500℃以下が好ましく、400℃以下がより好ましく、300℃以下がさらに好ましい。ガラス材料の軟化点をこのような温度範囲とすることにより、セラミック材料およびガラス材料の混合物を焼成する際に、セラミック材料の性質(特に、吸熱温度および吸熱量)が変化することを抑制することができる。尚、ガラス材料の軟化点の下限は、本発明の複合体(冷却デバイス)が設置される環境の温度よりも高ければよく、例えば150℃以上、好ましくは200℃以上、より好ましくは250℃以上であればよい。なお、ガラス材料の軟化点は、熱機械分析装置(TMA)、熱重量測定・示差熱分析(TG-DTA)により測定することができる。 The softening point of the glass material is preferably in a temperature range in which the ceramic material (preferably VO 2 ) does not substantially cause chemical alteration (for example, oxidation), and specifically, 500 ° C. or less is preferable. 400 ° C. or lower is more preferable, and 300 ° C. or lower is further preferable. By controlling the softening point of the glass material in such a temperature range, it is possible to suppress changes in the properties of the ceramic material (particularly the endothermic temperature and endothermic amount) when firing the mixture of the ceramic material and the glass material. Can do. The lower limit of the softening point of the glass material only needs to be higher than the temperature of the environment in which the composite (cooling device) of the present invention is installed, for example, 150 ° C. or higher, preferably 200 ° C. or higher, more preferably 250 ° C. or higher. If it is. The softening point of the glass material can be measured by a thermomechanical analyzer (TMA), thermogravimetry / differential thermal analysis (TG-DTA).
 上記五酸化バナジウムは、粒子(粉末)状であることが好ましい。上記セラミック材料と同程度の平均粒径(D50)を有することが好ましく、特に限定されないが、例えば、0.1~数百μm、具体的には0.1~900μm、代表的には約0.2~50μmであり、好ましくは、0.5~50μmである。かかる平均粒径は、レーザー回折・散乱式 粒子径・粒度分布測定装置または電子走査顕微鏡を用いて測定することができる。平均粒径は、取り扱いの容易性の観点から、0.2μm以上であることが好ましく、より緻密に成形できるという観点から、50μm以下であることが好ましい。 The vanadium pentoxide is preferably in the form of particles (powder). The average particle size (D50) is preferably about the same as that of the ceramic material, and is not particularly limited. For example, it is 0.1 to several hundred μm, specifically 0.1 to 900 μm, and typically about 0. .2 to 50 μm, preferably 0.5 to 50 μm. The average particle diameter can be measured using a laser diffraction / scattering soot particle diameter / particle size distribution measuring apparatus or an electronic scanning microscope. The average particle diameter is preferably 0.2 μm or more from the viewpoint of ease of handling, and is preferably 50 μm or less from the viewpoint that it can be more densely molded.
 セラミック材料と、五酸化バナジウムおよび/またはガラス材料の混合物において、五酸化バナジウムおよびガラス材料の含有量は、その合計量として、好ましくは20~50体積%、より好ましくは20~40体積%、さらに好ましくは20~30体積%である。五酸化バナジウムおよびガラス材料の含有量を、50体積%以下とすることにより、複合体中のセラミック材料の割合が増えるので、複合体の吸熱量を大きくすることができる。また、五酸化バナジウムおよびガラス材料の割合を20体積%以上とすることにより、セラミック材料の粒子同士の結合をより強固にすることができ、複合体の強度およびヒートサイクル耐性を高めることができる。 In the mixture of the ceramic material and vanadium pentoxide and / or glass material, the total content of vanadium pentoxide and glass material is preferably 20 to 50% by volume, more preferably 20 to 40% by volume, Preferably, it is 20 to 30% by volume. By setting the content of vanadium pentoxide and the glass material to 50% by volume or less, the ratio of the ceramic material in the composite increases, so that the endothermic amount of the composite can be increased. Moreover, by setting the ratio of vanadium pentoxide and the glass material to 20% by volume or more, the bonding between the particles of the ceramic material can be further strengthened, and the strength and heat cycle resistance of the composite can be increased.
 また、セラミック材料と、五酸化バナジウムおよび/またはガラス材料の混合物において、V5+の含有量は、V換算で、好ましくは1重量%以上であり、例えば5重量%以上または10重量%以上であり得る。 In the mixture of the ceramic material and vanadium pentoxide and / or glass material, the content of V 5+ is preferably 1% by weight or more, for example, 5% by weight or more or 10% by weight in terms of V 2 O 5. That can be the case.
 本発明の複合体は、セラミック材料と、5価のバナジウムを含むガラス材料および/または五酸化バナジウムの混合物を熱処理することにより得ることができる。従って、本発明は、本発明の複合体の製造方法であって、セラミック材料およびガラス材料の混合物を熱処理することを含む方法を提供する。 The composite of the present invention can be obtained by heat-treating a mixture of a ceramic material, a glass material containing pentavalent vanadium and / or vanadium pentoxide. Accordingly, the present invention provides a method for producing the composite of the present invention, comprising heat treating a mixture of a ceramic material and a glass material.
 本発明の製造方法において、好ましくは、熱処理の前に、ガラス材料および/または五酸化バナジウムの混合物を混合し、所望の形状に仮成形してもよい。仮成形の方法は、特に限定されないが、例えば、圧縮により成形する方法、バインダー樹脂と混合してから成形する方法等が挙げられる。 In the production method of the present invention, preferably, before the heat treatment, a mixture of a glass material and / or vanadium pentoxide may be mixed and temporarily formed into a desired shape. The method of temporary molding is not particularly limited, and examples thereof include a method of molding by compression and a method of molding after mixing with a binder resin.
 熱処理の温度は、ガラス材料の軟化点以上、セラミック材料中の酸化バナジウムが実質的に変質しない温度以下、例えば酸化バナジウムの価数が実質的に変化しない温度以下であることが好ましい。例えば、加熱温度は、300℃~600℃の範囲であり得る。 The temperature of the heat treatment is preferably not less than the softening point of the glass material and not more than a temperature at which vanadium oxide in the ceramic material does not substantially change, for example, not more than a temperature at which the valence of vanadium oxide does not substantially change. For example, the heating temperature can range from 300 ° C to 600 ° C.
 好ましくは、熱処理は、セラミック材料中の酸化バナジウムが実質的に変質しない雰囲気下、例えば酸化バナジウム中のバナジウムの価数が実質的に変化しない(換言すれば、実質的に酸化・還元しない)雰囲気下で行われる。熱処理雰囲気は、熱処理の温度に応じて適宜選択することができ、例えば、300℃~600℃の範囲では、酸化バナジウムの酸化を防止する為に、還元雰囲気下、例えば窒素と水素の混合雰囲気であり得る。また、温度が低い場合、例えば300℃未満である場合は、酸化バナジウムの酸化は生じにくいので、大気下で加熱してもよい。 Preferably, the heat treatment is performed in an atmosphere in which the vanadium oxide in the ceramic material is not substantially denatured, for example, an atmosphere in which the valence of vanadium in the vanadium oxide is not substantially changed (in other words, is not substantially oxidized / reduced). Done under. The heat treatment atmosphere can be appropriately selected depending on the temperature of the heat treatment. For example, in the range of 300 ° C. to 600 ° C., in order to prevent oxidation of vanadium oxide, in a reducing atmosphere, for example, in a mixed atmosphere of nitrogen and hydrogen. possible. Further, when the temperature is low, for example, when it is lower than 300 ° C., vanadium oxide is hardly oxidized and may be heated in the atmosphere.
 加熱時間は、特に限定されないが、10分~10時間であり得る。 The heating time is not particularly limited, but may be 10 minutes to 10 hours.
 本発明の方法によれば、非常に緻密化され、セラミック材料の体積分率が大きな複合体を得ることができる。いかなる理論によっても拘束されないが、このような緻密な複合体は以下の理由により得られると考えられる。セラミック材料およびガラス材料の混合物を熱処理すると、ガラス材料が軟化する。軟化したガラスは、その表面自由エネルギーを減少させるために周囲のセラミック材料の粒子を引き寄せ、その結果、セラミック材料の粒子間の距離が小さくなり、空隙が少なくなる。このようにして得られた複合体は、複合体中に占めるセラミック材料(即ち、酸化バナジウム)の割合が大きくなり、吸熱量が向上する。 According to the method of the present invention, it is possible to obtain a composite that is very densified and has a large volume fraction of ceramic material. Without being bound by any theory, such a dense complex is thought to be obtained for the following reasons. When the mixture of ceramic material and glass material is heat treated, the glass material softens. The softened glass attracts the surrounding ceramic material particles to reduce its surface free energy, resulting in a smaller distance between the ceramic material particles and fewer voids. In the composite thus obtained, the proportion of the ceramic material (that is, vanadium oxide) in the composite is increased, and the endothermic amount is improved.
 本発明は、上記複合体を含む冷却デバイスを提供する。 The present invention provides a cooling device including the above composite.
 本発明の冷却デバイスの形状は、特に限定されず、任意の形状とすることができる。 The shape of the cooling device of the present invention is not particularly limited, and can be any shape.
 一の態様において、本発明の冷却デバイスは、ブロック状であり得る。ブロック状とすることにより、全体の体積が大きくなり、より多くの熱を吸収することができる。また、別の態様において、本発明の冷却デバイスは、シート状であり得る。シート状とすることにより、表面積が増加するので、吸収した熱を外部に放出しやすくなる。 In one aspect, the cooling device of the present invention may be block-shaped. By making it into a block shape, the whole volume becomes large and more heat can be absorbed. In another aspect, the cooling device of the present invention may be in the form of a sheet. By making it into a sheet shape, the surface area increases, so it becomes easy to release absorbed heat to the outside.
 本発明の冷却デバイスは、他の部材、例えば冷却デバイスを保護する保護カバー、伝熱性を高めるための金属等の熱伝導性部、絶縁性を確保するための絶縁性シート、電子機器に設置するための部材(例えば、粘着シート、ピン、爪等)などを有していてもよい。 The cooling device of the present invention is installed in another member, for example, a protective cover for protecting the cooling device, a heat conductive part such as a metal for enhancing heat conductivity, an insulating sheet for ensuring insulation, and an electronic device. Members (for example, pressure-sensitive adhesive sheets, pins, nails, etc.) may be included.
 本発明は、本発明の冷却デバイスを有する電子部品および電子機器をも提供する。 The present invention also provides an electronic component and an electronic apparatus having the cooling device of the present invention.
 電子部品としては、特に限定するものではないが、例えば、中央処理装置(CPU)、パワーマネージメントIC(PMIC)、パワーアンプ(PA)、トランシーバーIC、ボルテージレギュレータ(VR)などの集積回路(IC)、発光ダイオード(LED)、白熱電球、半導体レーザーなどの発光素子、電界効果トランジスタ(FET)などの熱源となり得る部品、および、その他の部品、例えば、基板、ヒートシンク、筐体等の電子機器に一般的に用いられる部品が挙げられる。 The electronic component is not particularly limited, but for example, an integrated circuit (IC) such as a central processing unit (CPU), a power management IC (PMIC), a power amplifier (PA), a transceiver IC, and a voltage regulator (VR). Light emitting diodes (LEDs), incandescent bulbs, semiconductor lasers and other light emitting elements, field effect transistors (FETs) and other components that can be heat sources, and other components such as substrates, heat sinks, housings, etc. Examples of parts that are commonly used.
 電子機器としては、特に限定するものではないが、例えば、携帯電話、スマートフォン、パーソナルコンピュータ(PC)、タブレット型端末等が挙げられる。 The electronic device is not particularly limited, and examples thereof include a mobile phone, a smartphone, a personal computer (PC), and a tablet terminal.
 実施例1
 ・セラミック材料の作製
 セラミック原料として、三酸化バナジウム(V)、五酸化バナジウム(V)、および酸化タングステン(WO)を用い、これらをV:W:O=0.995:0.005:2(モル比)となるように秤量し、乾式混合した。その後、窒素/水素/水雰囲気下で1000℃、4時間熱処理し、セラミック材料としてV0.9950.005(0.5at%WドープVO)を合成した。その後、純水、部分安定化ジルコニウムボール(PSZ)、分散剤(SN ディスパーサント5468)と合成粉をポリポットに秤量し、24時間粉砕し、その後乾燥させてセラミック材料の粉末を作製した。ここではPSZを用いて水により粉砕を行ったが、乾式により混合しても良い。
Example 1
-Production of ceramic material Vanadium trioxide (V 2 O 3 ), vanadium pentoxide (V 2 O 5 ), and tungsten oxide (WO 3 ) were used as ceramic raw materials, and these were V: W: O = 0.0.99. : 0.005: 2 (molar ratio) and weighed and dry-mixed. Thereafter, nitrogen / hydrogen / 1000 ° C. under a water atmosphere, heat treated 4 hours to synthesize V 0.995 W 0.005 O 2 as a ceramic material (0.5 at% W-doped VO 2). Thereafter, pure water, partially stabilized zirconium balls (PSZ), a dispersant (SN Dispersant 5468) and a synthetic powder were weighed in a polypot, pulverized for 24 hours, and then dried to produce a ceramic material powder. Here, PSZ was used for pulverization with water, but it may be mixed by a dry method.
 上記で得られたV0.9950.005の粉末について、示差走査熱量測定(Differential scanning calorimetry:DSC)を行った。測定は、0℃から100℃、100℃から0℃の温度掃引を行い、試料の熱の出入り(吸熱、発熱)を評価した。結果を図1に示す。図1に示されるように、上記で得られたセラミック材料は、温度上昇時には、約50℃から吸熱し、温度下降時には、上昇時よりも低い温度領域で放熱する特徴があることが確認された。 Differential scanning calorimetry (DSC) was performed on the V 0.995 W 0.005 O 2 powder obtained above. The measurement was performed by sweeping the temperature from 0 ° C. to 100 ° C. and from 100 ° C. to 0 ° C., and the heat input / output (endotherm, exotherm) of the sample was evaluated. The results are shown in FIG. As shown in FIG. 1, it was confirmed that the ceramic material obtained above absorbs heat from about 50 ° C. when the temperature rises and dissipates heat in a lower temperature region than when it rises when the temperature falls. .
 ・冷却デバイスの作製
 上記で得られたセラミック材料の粉末に、V粉末を30体積%添加し、メノウ乳鉢で混合し、その後金型とプレス機を用いて直径20mm、厚み3mmのペレットを作製した。作製したペレットを500~750℃窒素雰囲気中で熱処理して、実施例1の冷却デバイス(複合体)を得た。
-Preparation of cooling device 30% by volume of V 2 O 5 powder is added to the ceramic material powder obtained above, mixed in an agate mortar, and then pellets having a diameter of 20 mm and a thickness of 3 mm using a mold and a press. Was made. The produced pellet was heat-treated in a nitrogen atmosphere at 500 to 750 ° C. to obtain a cooling device (composite) of Example 1.
 実施例2
 V粉末(30体積%)の代わりに、バナジウム系ガラス(日立化成製、VP-1175、軟化温度:約400℃)(30体積%)を用いたこと以外は、実施例1と同様にして、実施例2の冷却デバイス(複合体)を得た。
Example 2
Example 1 except that vanadium-based glass (manufactured by Hitachi Chemical, VP-1175, softening temperature: about 400 ° C.) (30% by volume) was used instead of V 2 O 5 powder (30% by volume). Thus, a cooling device (composite) of Example 2 was obtained.
 比較例1
 V粉末を用いないこと以外は、実施例1と同様にして、セラミック材料の粉末のみからなる比較例1の冷却デバイス(複合体)を得た。
Comparative Example 1
Except not using the V 2 O 5 powder, in the same manner as in Example 1 to obtain a cooling device in Comparative Example 1 comprising only the powder of the ceramic material (complex).
 比較例2
 V粉末(30体積%)の代わりに、ビスマス系低融点ガラス(関谷理化製、2280-06、軟化温度:約400℃)(30体積%)を用いたこと以外は、実施例1と同様にして、比較例2の冷却デバイス(複合体)を得た。
Comparative Example 2
Example 1 except that bismuth-based low-melting glass (manufactured by Sekiya Rika, 2280-06, softening temperature: about 400 ° C.) (30% by volume) was used instead of V 2 O 5 powder (30% by volume). In the same manner, a cooling device (composite) of Comparative Example 2 was obtained.
 比較例3
 実施例1と同様にして得られたセラミック材料の粉末に、アクリル系樹脂(30体積%)を添加し、これを直径20mm、厚み3mmのペレット状に固化させて、比較例3の冷却デバイス(樹脂コンポジット)を得た。
Comparative Example 3
An acrylic resin (30% by volume) was added to the ceramic material powder obtained in the same manner as in Example 1, and this was solidified into pellets having a diameter of 20 mm and a thickness of 3 mm. Resin composite) was obtained.
 試験例1
 ・吸熱性試験
 発熱体として到達温度が約75℃のPTC(Positive Temperature Coefficient)ヒーターを使用し、ヒーター表面に熱伝導グリスを塗布し、極細K熱電対を張り付けた。その上から上記実施例1および2、比較例1~3において作製した冷却デバイスを押しつけて固定した。熱電対で温度をモニターしながらPTCヒーターに10分間定格直流電流を流し、その後電流を10分間止めるサイクルを2回繰り返した。また、対照として、冷却デバイスを設置せずに同様の試験を行った。
Test example 1
-Endothermic test A PTC (Positive Temperature Coefficient) heater having an ultimate temperature of about 75 ° C. was used as a heating element, heat conduction grease was applied to the heater surface, and an ultrafine K thermocouple was attached. From there, the cooling devices prepared in Examples 1 and 2 and Comparative Examples 1 to 3 were pressed and fixed. While monitoring the temperature with a thermocouple, a rated DC current was passed through the PTC heater for 10 minutes, and then the cycle of stopping the current for 10 minutes was repeated twice. As a control, the same test was performed without installing a cooling device.
 各試料について、最高到達温度(72℃)に達するまでの時間を測定し、冷却デバイスを設置しない場合と比較し、最高到達温度に達するまでの遅延時間を算出した。結果を下記表1に示す。また、代表として、実施例2および比較例3の冷却デバイスを用いた場合の測定結果を、図2および図3にそれぞれ示す。 For each sample, the time to reach the maximum temperature (72 ° C.) was measured, and the delay time to reach the maximum temperature was calculated compared to the case where no cooling device was installed. The results are shown in Table 1 below. Moreover, the measurement result at the time of using the cooling device of Example 2 and the comparative example 3 as a representative is shown in FIG. 2 and FIG. 3, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1および2の冷却デバイスは、最高到達温度までの時間を、それぞれ、180秒および200秒遅延できることが確認された。 As shown in Table 1, it was confirmed that the cooling devices of Examples 1 and 2 can delay the time to the highest temperature by 180 seconds and 200 seconds, respectively.
 一方、比較例3のアクリル樹脂複合体は、同じ量のV0.9950.005(WドープVO)を含んでいるにも拘わらず、遅延時間が50秒と短かった。また、図2および図3に示されるように、実施例2の冷却デバイスでは通電停止後、約600秒経過しても温度が40℃であるが、比較例3の冷却デバイスでは通電停止後、約400秒で40℃以下になった。この結果から、実施例2の冷却デバイスには、より多くの熱量が蓄熱されたことがわかる。両者は同じ量のWドープVOを含有しているにも拘わらずこのような差が生じた理由は、アクリル樹脂複合体では、樹脂の熱伝導率が低いためにデバイス全体で熱を吸収することができずヒーターと接する一部分でのみ吸熱し、吸熱材料の効果を十分に発揮できていないためと考えられる。 On the other hand, although the acrylic resin composite of Comparative Example 3 contained the same amount of V 0.995 W 0.005 O 2 (W-doped VO 2 ), the delay time was as short as 50 seconds. In addition, as shown in FIGS. 2 and 3, the temperature of the cooling device of Example 2 is 40 ° C. even after about 600 seconds after the energization is stopped. In the cooling device of Comparative Example 3, after the energization is stopped, The temperature became 40 ° C. or less in about 400 seconds. From this result, it can be seen that a larger amount of heat was stored in the cooling device of Example 2. The reason why such a difference arises even though both contain the same amount of W-doped VO 2 is that the acrylic resin composite absorbs heat throughout the device because the thermal conductivity of the resin is low. This is considered to be because the heat absorption is not possible due to heat absorption only at a part in contact with the heater.
 また、バナジウム系ガラスと同程度の軟化温度を有するビスマス系ガラスを用いた比較例2は、熱伝導率が同程度であるにも拘わらず、遅延時間が105秒であり、バナジウム系ガラスを用いた場合の約半分であった。 Further, Comparative Example 2 using a bismuth glass having a softening temperature similar to that of vanadium-based glass has a delay time of 105 seconds although the thermal conductivity is similar, and uses vanadium-based glass. It was about half of the case.
 本発明はいかなる理論によっても拘束されないが、この理由は以下のように考えられる。ガラスには、バナジウム系ガラスまたはビスマス系ガラスのいずれであっても、ホウ素、リン酸、ナトリウム、モリブデン等が不純物として含まれている。これらの不純物は、酸化バナジウム(本実施例においては、V0.9950.005)の潜熱特性に影響し、酸化バナジウムの相に拡散すると、酸化バナジウムの潜熱特性を劣化させる。ビスマス系ガラスを用いた場合には、このような拡散が起こったが、バナジウム系ガラスを用いた場合には、このような拡散が起こらなかったと考えられる。 The present invention is not bound by any theory, but the reason is considered as follows. The glass contains impurities such as boron, phosphoric acid, sodium, and molybdenum, regardless of whether they are vanadium glass or bismuth glass. These impurities affect the latent heat characteristics of vanadium oxide (in this embodiment, V 0.995 W 0.005 O 2 ), and when diffused into the vanadium oxide phase, the latent heat characteristics of vanadium oxide are deteriorated. When bismuth glass was used, such diffusion occurred, but when vanadium glass was used, it is considered that such diffusion did not occur.
 ・エネルギー分散型X線分析(EDX:Energy dispersive X-ray spectrometry)
 上記の不純物の拡散の有無を確認するために、実施例2および比較例2で得られた冷却デバイスの断面を、EDX法により観察した。
 その結果、実施例2の冷却デバイスにおいては、ガラス相に上記不純物元素が検出されたが、V0.9950.005粒子内にはほとんど不純物元素は検出されず、拡散が実質的に生じていないことが確認された。一方、比較例2の冷却デバイスにおいては、V0.9950.005粒子内に不純物元素が検出され、拡散が生じていることが確認された。本発明はいかなる理論によっても拘束されないが、バナジウム系ガラスを用いた場合に拡散を抑制できた理由は、以下のように考えられる。バナジウム系ガラスにはV(五価のバナジウム)が含まれるが、Vは、VOよりも構造的に隙間が多く異元素を取り込みやすい性質を有する。そのため不純物は、VO(本実施例においては、V0.9950.005)ではなくVの相に優先的に拡散したと考えられる。
・ Energy dispersive X-ray spectrometry (EDX)
In order to confirm the presence or absence of the diffusion of the impurities, the cross sections of the cooling devices obtained in Example 2 and Comparative Example 2 were observed by the EDX method.
As a result, in the cooling device of Example 2, the impurity element was detected in the glass phase, but the impurity element was hardly detected in the V 0.995 W 0.005 O 2 particles, and the diffusion was substantial. It was confirmed that this did not occur. On the other hand, in the cooling device of Comparative Example 2, an impurity element was detected in the V 0.995 W 0.005 O 2 particles, and it was confirmed that diffusion occurred. Although the present invention is not restricted by any theory, the reason why diffusion can be suppressed when vanadium glass is used is considered as follows. The vanadium-based glass contains V 2 O 5 (pentavalent vanadium), but V 2 O 5 has a property that it has structurally more gaps than VO 2 and easily incorporates different elements. Therefore, it is considered that the impurities are preferentially diffused into the V 2 O 5 phase, not VO 2 (in this example, V 0.995 W 0.005 O 2 ).
 ・ヒートサイクル試験
 実施例1および2、比較例1~3において作製した冷却デバイスについて、-25℃→150℃→-25℃のヒートサイクル試験を100回実施し、光学顕微鏡で素子表面を観察した。クラックが生じなかった場合を「○」、クラックが生じた場合を「×」と評価した。結果を表1に併せて示す。
Heat cycle test The cooling devices produced in Examples 1 and 2 and Comparative Examples 1 to 3 were subjected to a heat cycle test of −25 ° C. → 150 ° C. → −25 ° C. 100 times, and the element surface was observed with an optical microscope. . The case where a crack did not occur was evaluated as “◯”, and the case where a crack occurred was evaluated as “×”. The results are also shown in Table 1.
 表1に示されるように、V0.9950.005単独の焼結体である比較例1はクラックが生じたが、Vまたはバナジウム系ガラスとの複合体である実施例1および2は、ヒートサイクル試験において、クラックを生じないことが確認された。本発明はいかなる理論によっても拘束されないが、以下のように考えられる。V0.9950.005単独の焼結体では、焼結により粒界部分に内部応力が生じる。吸発熱時の酸化バナジウムの構造変化によりさらに応力が粒界部分に集中し、粒界が破断してクラックが生じると考えられる。一方、ガラスを用いることにより、低温で粒子を結合させることができ、応力を生じさせることなく塊とすることができる。また、粒子同士の結合力も高くすることができる。したがって、吸発熱時の酸化バナジウムの構造変化により応力が生じても破断を生じないと考えられる。 As shown in Table 1, Comparative Example 1, which is a sintered body of V 0.995 W 0.005 O 2 alone, was cracked but was a composite with V 2 O 5 or vanadium-based glass. In Examples 1 and 2, it was confirmed that no cracks occurred in the heat cycle test. Although this invention is not restrained by any theory, it thinks as follows. In the sintered body of V 0.995 W 0.005 O 2 alone, internal stress is generated at the grain boundary portion by sintering. It is considered that stress is further concentrated on the grain boundary portion due to the structural change of vanadium oxide during endothermic heat generation, and the grain boundary breaks to cause a crack. On the other hand, by using glass, particles can be bonded at a low temperature, and a lump can be formed without causing stress. Further, the bonding force between the particles can be increased. Therefore, it is considered that no breakage occurs even if stress is generated due to the structural change of vanadium oxide during endothermic generation.
 以上の結果から、五酸化バナジウムまたはバナジウム系ガラスとの複合体である実施例1および2の冷却デバイスは、高いヒートサイクル耐性、および優れた吸熱性を有することが確認された。 From the above results, it was confirmed that the cooling devices of Examples 1 and 2 which are composites with vanadium pentoxide or vanadium-based glass have high heat cycle resistance and excellent endothermic properties.
 本発明の冷却デバイスは、例えば、熱対策問題が顕著化している小型通信端末の冷却デバイスとして利用することができる。 The cooling device of the present invention can be used, for example, as a cooling device for a small communication terminal in which a thermal countermeasure problem has become remarkable.

Claims (16)

  1.  酸化バナジウムを主成分とするセラミック材料と、
     5価のバナジウムを含むガラス材料および/または五酸化バナジウムと
    を含む混合物の複合体。
    A ceramic material mainly composed of vanadium oxide;
    A composite of a glass material containing pentavalent vanadium and / or a mixture containing vanadium pentoxide.
  2.  酸化バナジウムが、バナジウムおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化物であって、バナジウムとMの合計を100モル部としたときのMの含有モル部が0モル部以上約5モル部以下であることを特徴とする、請求項1に記載の複合体。 When vanadium oxide is an oxide containing vanadium and M (where M is at least one selected from W, Ta, Mo and Nb), the total amount of vanadium and M is 100 mol parts 2. The composite according to claim 1, wherein the molar part of M is 0 to about 5 parts by mole.
  3.  酸化バナジウムが、A(ここに、AはLiまたはNaである)およびバナジウムを含む酸化物であって、バナジウムを100モル部としたときのAの含有モル部が約50モル部以上約100モル部以下であることを特徴とする、請求項1に記載の複合体。 The vanadium oxide is an oxide containing A (where A is Li or Na) and vanadium, and the content of A when the vanadium is 100 mol parts is about 50 mol parts or more and about 100 mol The composite according to claim 1, wherein the composite is less than or equal to parts.
  4.  酸化バナジウムが、式:
       V1-x
    (式中、Mは、W、Ta、MoまたはNbであり、xは、0以上0.05以下である)
    または、式:
       AVO
    (式中、Aは、LiまたはNaであり、yは、0.5以上1.0以下である)
    で表される1種またはそれ以上の酸化物を含むことを特徴とする、請求項1に記載の複合体。
    Vanadium oxide has the formula:
    V 1-x M x O 2
    (In the formula, M is W, Ta, Mo or Nb, and x is 0 or more and 0.05 or less)
    Or the formula:
    A y VO 2
    (In the formula, A is Li or Na, and y is 0.5 or more and 1.0 or less)
    The composite according to claim 1, comprising one or more oxides represented by:
  5.  酸化バナジウムが、Tiがドープされた酸化バナジウムまたはさらにW、Ta、MoおよびNbからなる群から選択される他の原子がドープされた酸化バナジウムであって、
     他の原子がWである場合、バナジウム、Tiおよび他の原子の合計100モル部に対して、他の原子の含有モル部が、0モル部より大きく5モル部以下であり、
     他の原子がTa、MoまたはNbである場合、バナジウム、Tiおよび他の原子の合計100モル部に対して、他の原子の含有モル部が、0モル部より大きく15モル部以下であり、
     バナジウム、Tiおよび他の原子の合計100モル部に対して、チタンの含有モル部は、2モル部以上30モル部以下であることを特徴とする、請求項1に記載の複合体。
    The vanadium oxide is Ti-doped vanadium oxide or further vanadium oxide doped with other atoms selected from the group consisting of W, Ta, Mo and Nb,
    When the other atom is W, the content mole part of the other atom is greater than 0 mole part and less than or equal to 5 mole part with respect to a total of 100 mole parts of vanadium, Ti, and other atoms,
    When the other atom is Ta, Mo or Nb, the content mole part of the other atom is greater than 0 mole part and 15 mole parts or less with respect to 100 mole parts in total of vanadium, Ti and other atoms,
    2. The composite according to claim 1, wherein a content mole part of titanium is not less than 2 mole parts and not more than 30 mole parts with respect to a total of 100 mole parts of vanadium, Ti and other atoms.
  6.  バナジウム、Tiおよび他の原子の合計100モル部に対して、チタンの含有モル部が、5モル部以上10モル部以下であることを特徴とする、請求項5に記載の複合体。 The composite according to claim 5, wherein a content mole part of titanium is 5 mole parts or more and 10 mole parts or less with respect to a total of 100 mole parts of vanadium, Ti and other atoms.
  7.  酸化バナジウムが、式:
    1-x-yTi
    [式中、Mは、W、Ta、MoまたはNbであり、
     xは0.02以上0.3以下であり、
     yは0以上であって、
     MがWである場合、yは0.05以下であり、
     MがTa、MoまたはNbである場合、yは0.15以下である。]
    で表される酸化バナジウムであることを特徴とする、請求項1に記載の複合体。
    Vanadium oxide has the formula:
    V 1-x-y Ti x M y O 2
    [Wherein M is W, Ta, Mo or Nb;
    x is 0.02 or more and 0.3 or less,
    y is 0 or more,
    When M is W, y is 0.05 or less,
    When M is Ta, Mo or Nb, y is 0.15 or less. ]
    The composite according to claim 1, wherein the composite is vanadium oxide represented by the formula:
  8.  xが0.05以上0.1以下であることを特徴とする、特徴とする、請求項7に記載の複合体。 The composite according to claim 7, wherein x is 0.05 or more and 0.1 or less.
  9.  セラミック材料の平均粒径が、0.1~50μmであることを特徴とする、請求項1~8のいずれかに記載の複合体。 9. The composite according to claim 1, wherein the ceramic material has an average particle size of 0.1 to 50 μm.
  10.  酸化バナジウムを主成分とするセラミック材料と、
     5価のバナジウムを含むガラス材料と
    を含む混合物の複合体であることを特徴とする、請求項1~9のいずれかに記載の複合体。
    A ceramic material mainly composed of vanadium oxide;
    The composite according to any one of claims 1 to 9, wherein the composite is a composite comprising a glass material containing pentavalent vanadium.
  11.  5価のバナジウムを含むガラス材料が、5価のバナジウムに加え、アルカリ土類、リン、ケイ素、銀、タングステン、ホウ素およびテルルからなる群から選択される少なくとも1つを含むガラス材料であることを特徴とする、請求項1~10のいずれかに記載の複合体。 The glass material containing pentavalent vanadium is a glass material containing at least one selected from the group consisting of alkaline earth, phosphorus, silicon, silver, tungsten, boron and tellurium in addition to pentavalent vanadium. The composite according to any one of claims 1 to 10, characterized in that
  12.  酸化バナジウムを主成分とするセラミック材料と、
     五酸化バナジウムと
    を含む混合物の複合体であることを特徴とする、請求項1~9のいずれかに記載の複合体。
    A ceramic material mainly composed of vanadium oxide;
    10. The composite according to claim 1, which is a composite of a mixture containing vanadium pentoxide.
  13.  酸化バナジウムを主成分とするセラミック材料と、
     5価のバナジウムを含むガラス材料および/または五酸化バナジウムと
    を含む混合物において、五酸化バナジウムおよび5価のバナジウムを含むガラス材料の含有量が、合計で20~50体積%であることを特徴とする、請求項1~12のいずれかに記載の複合体。
    A ceramic material mainly composed of vanadium oxide;
    The glass material containing pentavalent vanadium and / or the mixture containing vanadium pentoxide has a total content of the glass material containing vanadium pentoxide and pentavalent vanadium of 20 to 50% by volume. The complex according to any one of claims 1 to 12.
  14.  請求項1~13のいずれかに記載の複合体を含んで成る冷却デバイス。 A cooling device comprising the composite according to any one of claims 1 to 13.
  15.  請求項14に記載の冷却デバイスを有して成る電子部品。 An electronic component comprising the cooling device according to claim 14.
  16.  請求項14に記載の冷却デバイスまたは請求項15に記載の電子部品を有して成る電子機器。 An electronic apparatus comprising the cooling device according to claim 14 or the electronic component according to claim 15.
PCT/JP2015/064947 2014-07-11 2015-05-25 Composite and cooling device WO2016006338A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-143380 2014-07-11
JP2014143380 2014-07-11

Publications (1)

Publication Number Publication Date
WO2016006338A1 true WO2016006338A1 (en) 2016-01-14

Family

ID=55063980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064947 WO2016006338A1 (en) 2014-07-11 2015-05-25 Composite and cooling device

Country Status (1)

Country Link
WO (1) WO2016006338A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136773A1 (en) * 2015-02-27 2016-09-01 株式会社村田製作所 Vanadium dioxide
JP2017132677A (en) * 2016-01-30 2017-08-03 日本化学工業株式会社 Manufacturing method of vanadium dioxide
WO2020144982A1 (en) * 2019-01-09 2020-07-16 国立研究開発法人産業技術総合研究所 Powder material for sintering and solid latent heat storage member using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220402A (en) * 1985-03-27 1986-09-30 株式会社東芝 Ptc paste
JPH04160035A (en) * 1990-10-22 1992-06-03 Nippon Electric Glass Co Ltd Low-melting point sealing composition
JPH09186005A (en) * 1995-08-23 1997-07-15 Fuji Electric Co Ltd Current limiter element and its manufacture
JPH11217562A (en) * 1997-11-25 1999-08-10 Nec Corp Control of heat and apparatus therefor
JP2010163510A (en) * 2009-01-14 2010-07-29 Institute Of Physical & Chemical Research Heat storage material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220402A (en) * 1985-03-27 1986-09-30 株式会社東芝 Ptc paste
JPH04160035A (en) * 1990-10-22 1992-06-03 Nippon Electric Glass Co Ltd Low-melting point sealing composition
JPH09186005A (en) * 1995-08-23 1997-07-15 Fuji Electric Co Ltd Current limiter element and its manufacture
JPH11217562A (en) * 1997-11-25 1999-08-10 Nec Corp Control of heat and apparatus therefor
JP2010163510A (en) * 2009-01-14 2010-07-29 Institute Of Physical & Chemical Research Heat storage material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROYUKI ISHIBASHI: "Development Trend of Inorganic Materials and Our Developments", HITACHI KASEI TECHNICAL REPORT, January 2013 (2013-01-01), pages 43 - 46, XP055250104 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136773A1 (en) * 2015-02-27 2016-09-01 株式会社村田製作所 Vanadium dioxide
US10544061B2 (en) 2015-02-27 2020-01-28 Murata Manufacturing Co., Ltd. Vanadium dioxide
JP2017132677A (en) * 2016-01-30 2017-08-03 日本化学工業株式会社 Manufacturing method of vanadium dioxide
WO2020144982A1 (en) * 2019-01-09 2020-07-16 国立研究開発法人産業技術総合研究所 Powder material for sintering and solid latent heat storage member using same
CN113260690A (en) * 2019-01-09 2021-08-13 国立研究开发法人产业技术综合研究所 Powder material for sintering and latent heat type solid heat storage member using the same
JPWO2020144982A1 (en) * 2019-01-09 2021-10-21 国立研究開発法人産業技術総合研究所 Powder material for sintering and latent heat type solid heat storage member using it
JP7120665B2 (en) 2019-01-09 2022-08-17 国立研究開発法人産業技術総合研究所 Powder material for sintering and latent heat type solid heat storage material using the same
EP3919583A4 (en) * 2019-01-09 2022-10-12 National Institute Of Advanced Industrial Science And Technology Powder material for sintering and solid latent heat storage member using same

Similar Documents

Publication Publication Date Title
Cao et al. Origin of the distinct thermoelectric transport properties of chalcopyrite ABTe2 (A= Cu, Ag; B= Ga, In)
Qian et al. Enhanced thermoelectric performance in lead-free inorganic cssn1–x ge x i3 perovskite semiconductors
WO2016006338A1 (en) Composite and cooling device
Ju et al. Ultra‐Low Temperature Sintering and Dielectric Properties of SiO 2‐Filled Glass Composites
CN101585660B (en) Preparation of lead-silicon-aluminum glass powder for passivation encapsulation of semiconductor
WO2015033691A1 (en) Cooling device
Wang et al. Right heterogeneous microstructure for achieving excellent thermoelectric performance in Ca0. 9R0. 1MnO3− δ (R= Dy, Yb) ceramics
US9868672B2 (en) Ceramic material
Lei et al. Microwave Synthesis and Enhanced Thermoelectric Performance of p-Type Bi0. 90Pb0. 10Cu1–x Fe x SeO Oxyselenides
Zhao et al. Enhanced thermoelectric performance of Bi–Se Co-doped Cu1. 8S via carrier concentration regulation and multiscale phonon scattering
WO2016114296A1 (en) Vanadium dioxide
JP2014165247A (en) Method of producing thermoelectric conversion material
WO2015033690A1 (en) Cooling device
JP6460109B2 (en) Ceramic material
US10544061B2 (en) Vanadium dioxide
WO2016006337A1 (en) Sintered compact containing vanadium oxide
JP2017065984A (en) Ceramic particle
JP6414636B2 (en) Cooling device
WO2016114295A1 (en) Vanadium dioxide
WO2015033688A1 (en) Cooling device
JP2016063034A (en) Thermoelectric material and thermoelectric module
WO2015033687A1 (en) Cooling device
WO2015033689A1 (en) Cooling device
WO2017135030A1 (en) Magnetic composition
Nakhutsrishvili et al. Dependence of the Seebeck Coefficient on Specific and Universal Electrical Conductivities of Bi2Sr2Co1. 8Oy Thermoelectric Doped with Strontium Borate and Graphene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15819432

Country of ref document: EP

Kind code of ref document: A1