WO2016194753A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2016194753A1
WO2016194753A1 PCT/JP2016/065541 JP2016065541W WO2016194753A1 WO 2016194753 A1 WO2016194753 A1 WO 2016194753A1 JP 2016065541 W JP2016065541 W JP 2016065541W WO 2016194753 A1 WO2016194753 A1 WO 2016194753A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
electrode
layer
gate electrode
region
Prior art date
Application number
PCT/JP2016/065541
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 純男
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016194753A1 publication Critical patent/WO2016194753A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a display device.
  • a display device such as a liquid crystal display device includes, for example, an active matrix substrate, a counter substrate disposed so as to face the active matrix substrate, and a display medium layer (for example, a liquid crystal layer) provided between the two substrates. .
  • a display area of the display device is defined by a plurality of pixels included in the active matrix substrate.
  • the frame region is, for example, a driving circuit unit that drives a switching element (for example, a thin film transistor (hereinafter, “TFT”)) provided for each pixel, a transition that electrically connects an active matrix substrate and a counter substrate.
  • a sealing part formed from a sealing material for sealing a display medium (for example, liquid crystal). The seal portion sometimes has a role of bonding the active matrix substrate and the counter substrate together.
  • the narrowing of the frame of the display device refers to the narrowing of the frame region.
  • the frame can be narrowed by reducing the area of at least one of the drive circuit portion, the transition portion, and the seal portion. ing.
  • Patent Document 1 discloses that in a frame region, a seal portion formed from a seal material, a transition portion configured from a conductor that electrically connects an active matrix substrate and a counter substrate, and between the seal portion and the transition portion.
  • a liquid crystal display device having a barrier is disclosed. The barrier prevents the sealing material from covering the conductor when the active matrix substrate and the counter substrate are bonded to each other, and prevents a conduction failure between the substrates. Since the liquid crystal display device of Patent Document 1 has the seal portion, the conductor, and the barrier separately in the frame region, it is difficult to narrow the frame.
  • Patent Document 2 discloses that a sealing material containing conductive particles integrally forms a seal portion and a transition portion. Patent Document 2 discloses that a short-circuit prevention pattern is provided on the counter substrate in order to prevent unintentional conduction between the two substrates due to the conductive particles.
  • a TFT having high mobility as a TFT constituting the drive circuit (hereinafter, also referred to as “drive TFT”), the area of the drive circuit portion can be reduced.
  • a TFT used as an oxide semiconductor layer and an active layer (hereinafter referred to as an “oxide semiconductor TFT”) has a higher mobility than amorphous silicon.
  • a frame can be made.
  • the characteristics of the oxide semiconductor TFT may vary (for example, the threshold voltage Vth shifts).
  • an additional gate electrode hereinafter referred to as a back gate electrode located on the opposite side of the gate electrode with the semiconductor layer interposed therebetween may be referred to. .) Is disclosed.
  • the threshold voltage Vth of the TFT can be controlled by fixing the potential of the back gate electrode to a predetermined value different from the potential of the gate electrode. Further, the mobility of the TFT can be improved by making the potential of the back gate electrode the same as the potential of the gate electrode.
  • the driving TFT is not limited to the oxide semiconductor TFT, and the frame can be narrowed.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a display device having a narrow frame and excellent reliability without increasing the number of manufacturing steps.
  • a display device includes an active matrix substrate and a counter substrate disposed so as to face the active matrix substrate, and a display region defined by a plurality of pixels arranged in a matrix, A display device having a frame region around the display region, wherein the frame region is electrically connected to the active matrix substrate and the counter substrate by conductive particles and a seal portion surrounding the display region.
  • the active matrix substrate includes a driving TFT provided in the frame region and a substrate that supports the driving TFT, and the driving TFT includes a channel region, a source region, and a drain region.
  • the active matrix substrate protrudes to the counter substrate side.
  • the active matrix substrate is provided on the driving TFT and has an insulating member that covers the second gate electrode, and the insulating member is the same as the protruding structure. It is formed from a dielectric film.
  • the protruding structure is a first columnar spacer that defines a distance between the active matrix substrate and the counter substrate.
  • the protruding structure is a second columnar spacer that is lower than a first columnar spacer that defines a distance between the active matrix substrate and the counter substrate.
  • the second columnar spacer is formed of the same dielectric film as the first columnar spacer.
  • the height of the insulating member is substantially the same as the height of the protruding structure.
  • a display device includes an active matrix substrate and a counter substrate arranged to face the active matrix substrate, and is defined by a plurality of pixels arranged in a matrix. And a frame region around the display region, wherein the frame region electrically connects the active matrix substrate and the counter substrate with a sealing portion that surrounds the display region, and conductive particles.
  • the active matrix substrate includes a driving TFT provided in the frame region and a substrate that supports the driving TFT.
  • the driving TFT includes a channel region, a source region, and a drain.
  • a semiconductor layer including a region and the channel region of the semiconductor layer through a first insulating layer, the semiconductor layer and A first gate electrode located between the substrates, a source electrode and a drain electrode electrically connected to the source region and the drain region of the semiconductor layer, respectively, and a second insulation in the channel region of the semiconductor layer A second gate electrode that is located on a side opposite to the first gate electrode with respect to the semiconductor layer, and the active matrix substrate emits light of different colors in the display region.
  • a color filter layer including a first color filter, a second color filter, and a third color filter to transmit; and in the frame region, the active matrix substrate is provided on the driving TFT, and the second gate electrode
  • An insulating member that covers the first color filter, the second color filter, and the third color filter; It is formed from at least one same dielectric film of the color filter.
  • the height of the insulating member is greater than half of the average particle diameter of the conductive particles.
  • the seal part includes a first granular spacer that defines a distance between the active matrix substrate and the counter substrate.
  • the seal part is a second granular spacer located between the insulating member and the counter substrate, and defines a distance between the active matrix substrate and the counter substrate together with the insulating member. A second granular spacer.
  • the insulating member covers the entire driving TFT.
  • the transition portion is provided on one side of the display region, and the insulating member covers substantially the entire area between the transition portion and the display region.
  • the second gate electrode is electrically connected to the source electrode.
  • the active matrix substrate includes a contact electrode provided in the frame region
  • the counter substrate includes a counter electrode including a portion facing the contact electrode
  • the transition portion includes The contact electrode and the counter electrode are electrically connected.
  • the contact electrode includes a first conductive layer formed from the same conductive film as the first gate electrode and / or a second conductive layer formed from the same conductive film as the source electrode and the drain electrode. Electrically connected to the layer.
  • the transition portion is provided in the first insulating layer and the second insulating layer, and a first opening that electrically connects the first conductive layer, the second conductive layer, and the contact electrode to each other. Part.
  • the transition portion further includes a third conductive layer between the contact electrode and the second insulating layer, and the third conductive layer is in contact with the contact electrode in the first opening. ing.
  • the second gate electrode is formed of the same conductive film as the third conductive layer.
  • the second gate electrode is formed of the same conductive film as the contact electrode.
  • the second gate electrode is in contact with the source electrode in a second opening provided in the second insulating layer.
  • the driving TFT further includes an additional electrode provided on the second gate electrode and electrically connected to the second gate electrode, and the additional electrode includes the second insulating layer. Is electrically connected to the source electrode in a second opening provided in the first electrode.
  • the additional electrode is formed of the same conductive film as the contact electrode.
  • the second gate electrode is formed of the same conductive film as the contact electrode.
  • the insulating member covers the additional electrode in addition to the second gate electrode.
  • the semiconductor layer includes an oxide semiconductor.
  • the oxide semiconductor includes an In—Ga—Zn—O-based semiconductor.
  • the In—Ga—Zn—O-based semiconductor includes a crystalline portion.
  • a display device having a narrow frame and excellent reliability can be provided without increasing the number of manufacturing steps.
  • FIG. 4B is a cross-sectional view schematically showing the display region 100d of the liquid crystal display device 100 along the line 1b-1b ′ in FIG. 4 is a plan view schematically showing a frame region 100f of the liquid crystal display device 100.
  • FIG. 4 is a plan view schematically showing a display area 100d of the liquid crystal display device 100.
  • FIG. (A) is process sectional drawing which shows typically the manufacturing process of the frame area
  • (b) is process cross section which shows the manufacturing process of the display area 100d of the liquid crystal display device 100 typically.
  • FIG. (A) is process sectional drawing which shows typically the manufacturing process of the frame area
  • (b) is process cross section which shows the manufacturing process of the display area 100d of the liquid crystal display device 100 typically.
  • FIG. (A) is process sectional drawing which shows typically the manufacturing process of the frame area
  • (b) is process cross section which shows the manufacturing process of the display area 100d of the liquid crystal display device 100 typically.
  • FIG. (A) is process sectional drawing which shows typically the manufacturing process of the frame area
  • (b) is process cross section which shows the manufacturing process of the display area 100d of the liquid crystal display device 100 typically.
  • FIG. (A) is process sectional drawing which shows typically the manufacturing process of the frame area
  • (b) is process cross section which shows the manufacturing process of the display area 100d of the liquid crystal display device 100 typically.
  • FIG. (A) is process sectional drawing which shows typically the manufacturing process of the frame area
  • (b) is process cross section which shows the manufacturing process of the display area 100d of the liquid crystal display device 100 typically.
  • FIG. 13A is a cross-sectional view schematically showing a frame region 100f of a liquid crystal display device 100A that is a modified example of the liquid crystal display device 100, taken along lines 11At-11At ′ and 11Ad-11Ad ′ in FIG. (B), It is sectional drawing which shows typically the display area 100d of 100 A of liquid crystal display devices along the 11b-11b 'line in FIG. It is a top view which shows typically the frame area
  • FIG. 1 is process sectional drawing which shows typically the manufacturing process of the frame area
  • Process cross section which shows typically the manufacturing process of the display area
  • FIG. (A) is process sectional drawing which shows typically the manufacturing process of the frame area
  • Process cross section which shows typically the manufacturing process of the display area
  • FIG. 20 is a cross-sectional view schematically showing a frame region 200f of the liquid crystal display device 200 according to Embodiment 2 of the present invention along the 18At-18At 'line and the 18Ad-18Ad' line in FIG. 4 is a plan view schematically showing a frame region 200f of the liquid crystal display device 200.
  • FIG. 20 is a cross-sectional view schematically showing a frame region 200f of the liquid crystal display device 200 according to Embodiment 2 of the present invention along the 18At-18At 'line and the 18Ad-18Ad' line in FIG. 4 is a plan view schematically showing a frame region 200f of the liquid crystal display device 200.
  • (A) is sectional drawing which shows typically the frame area
  • (b) is sectional drawing which shows typically the display area 300d of the liquid crystal display device 300 It is. It is sectional drawing which shows typically the frame area
  • FIG. 21 is a cross-sectional view schematically showing a frame region 900f of a liquid crystal display device 900 of a comparative example.
  • the display area of the liquid crystal display device 900 of the comparative example is not shown.
  • components common to the embodiment of the present invention may be denoted by common reference numerals, and description thereof may be omitted.
  • the liquid crystal display device 900 of the comparative example includes an active matrix substrate 10, a counter substrate 30 disposed so as to face the active matrix substrate 10, and between the active matrix substrate 10 and the counter substrate 30. And a provided liquid crystal layer.
  • the liquid crystal display device 900 of the comparative example has a plurality of pixels arranged in a matrix having a plurality of rows and a plurality of columns.
  • the liquid crystal display device 900 of the comparative example includes a display area defined by a plurality of pixels and a frame area 900f around the display area.
  • the frame region 900f includes a seal portion 60s that surrounds the display region, a transfer portion 60t that electrically connects the active matrix substrate 10 and the counter substrate 30 by the conductive particles 62, and a drive circuit portion 60d that includes the drive TFT 11A. Including.
  • the driving TFT 11A includes a semiconductor layer 15A, a first gate electrode 12gA, a source electrode 14sA and a drain electrode 14dA, and a second gate electrode 16gA.
  • the semiconductor layer 15A includes a channel region 15cA, a source region 15sA, and a drain region 15dA.
  • the first gate electrode 12gA overlaps the channel region 15cA of the semiconductor layer 15A via the first insulating layer 2i, and is located between the semiconductor layer 15A and the substrate 1s.
  • the source electrode 14sA and the drain electrode 14dA are electrically connected to the source region 15sA and the drain region 15dA of the semiconductor layer 15A, respectively.
  • the second gate electrode 16gA overlaps the channel region 15cA of the semiconductor layer 15A via the second insulating layer 4i, and is located on the opposite side of the semiconductor layer 15A from the first gate electrode 12gA.
  • the second gate electrode 16gA may be called a back gate electrode.
  • the drive TFT 11A may be called a back gate TFT having a back gate electrode.
  • the seal portion 60s is provided overlapping the drive circuit portion 60d.
  • the frame area is further narrowed compared to the conventional liquid crystal display device, and the seal portion and the drive circuit portion are provided closer to each other than the conventional liquid crystal display device. It depends. For example, when the active matrix substrate 10 and the counter substrate 30 are bonded to each other, the seal material that forms the seal portion 60s extends to the drive TFT 11A.
  • the seal portion is provided separately from the drive circuit portion. Further, the seal portion and the drive circuit portion are provided so that the seal material forming the seal portion does not overlap the drive TFT even when the active matrix substrate and the counter substrate are bonded to each other.
  • the seal portion does not overlap the drive circuit portion.
  • the drive circuit section is referred to as a “gate circuit region” and is composed of a circuit block having a switching element.
  • the second gate electrode 16gA and the counter electrode 34 included in the counter substrate 30 are electrically connected by the conductive particles 62 because the seal material forming the seal portion 60s overlaps the driving TFT 11A. There are things to do. As a result, the drive TFT 11A malfunctions, which may cause a problem that the reliability of the liquid crystal display device is lowered.
  • the conductive particles 62 are included in, for example, a transition material that forms the transition portion 60t.
  • the sealing material forming the seal part 60s and the transition material forming the transition part 60t are in contact with each other, so that the conductive particles 62 are in contact with the second gate electrode 16gA.
  • the counter electrode 34 is electrically connected.
  • the seal part 60s and the transition part 60t both of which are made of a resin material, are often provided close to each other.
  • Both the sealing material and the transition material may include conductive particles 62.
  • the sealing material and the transition material may be the same resin material. Or like the liquid crystal display device of the said patent document 2, the seal
  • the second gate electrode 16gA and the counter electrode 34 can be electrically connected by the conductive particles 62. there were.
  • the third insulating layer 6i is a dielectric layer provided, for example, for forming an auxiliary capacitance, and may be relatively thin, for example, 10 nm to 300 nm. Even when the second gate electrode 16gA is covered with the third insulating layer 6i, the conductive particles 62 partially penetrate the third insulating layer 6i, and the conductive particles 62 and the second gate electrode 16gA are electrically connected. Can be connected to each other.
  • the problem that the reliability of the liquid crystal display device 900 of the comparative example is lowered is caused by the fact that the frame region is further narrowed compared to the conventional liquid crystal display device and the back gate TFT is used as the driving TFT. It is a problem.
  • FIGS. 1 to 3 are a cross-sectional view and a plan view schematically showing the liquid crystal display device 100.
  • FIG. FIG. 1A is a cross-sectional view schematically showing a frame region 100f of the liquid crystal display device 100 along the 1At-1At ′ line and the 1Ad-1Ad ′ line in FIG.
  • FIG. 1B is a cross-sectional view schematically showing the display region 100d of the liquid crystal display device 100 along the line 1b-1b ′ in FIG.
  • a liquid crystal display device 100 includes an active matrix substrate 10, a counter substrate 30 disposed so as to face the active matrix substrate 10, and the active matrix substrate 10 and the counter substrate. 30 and a liquid crystal layer 50 provided between 30.
  • the liquid crystal display device 100 includes a plurality of pixels arranged in a matrix having a plurality of rows and a plurality of columns.
  • the liquid crystal display device 100 includes a display area 100d defined by a plurality of pixels, and a frame area 100f around the display area 100d.
  • the frame region 100f includes a seal portion 60s that surrounds the display region 100d, a transition portion 60t that electrically connects the active matrix substrate 10 and the counter substrate 30 by the conductive particles 62, and a drive circuit portion 60d that includes the drive TFT 11A. including. As shown in FIG. 1, the seal portion 60s is provided overlapping the drive circuit portion 60d.
  • the active matrix substrate 10 has a contact electrode 64 provided in the frame region 100f, and the counter substrate 30 has a counter electrode 34 including a portion facing the contact electrode 64.
  • the transition part 60 t electrically connects the contact electrode 64 and the counter electrode 34.
  • the active matrix substrate 10 includes a drive TFT 11A provided in the frame region 100f, and a substrate (for example, a glass substrate) 1s that supports the drive TFT 11A.
  • the driving TFT 11A includes a semiconductor layer 15A, a first gate electrode 12gA, a source electrode 14sA and a drain electrode 14dA, and a second gate electrode 16gA.
  • the semiconductor layer 15A includes a channel region 15cA, a source region 15sA, and a drain region 15dA.
  • a region in contact with the source electrode 14sA is called a source region 15sA
  • a region in contact with the drain electrode 14dA is called a drain region 15dA.
  • a region of the semiconductor layer 15A that overlaps with the first gate electrode 12gA and is located between the source region 15sA and the drain region 15dA is called a channel region 15cA.
  • the first gate electrode 12gA overlaps the channel region 15cA of the semiconductor layer 15A via the first insulating layer 2i and is located between the semiconductor layer 15A and the substrate 1s.
  • the source electrode 14sA and the drain electrode 14dA are electrically connected to the source region 15sA and the drain region 15dA of the semiconductor layer 15A, respectively.
  • the second gate electrode 16gA overlaps the channel region 15cA of the semiconductor layer 15A via the second insulating layer 4i, and is located on the opposite side of the semiconductor layer 15A from the first gate electrode 12gA.
  • the second gate electrode 16gA is electrically connected to the source electrode 14sA.
  • the second gate electrode 16gA may be called a back gate electrode.
  • the drive TFT 11A may be called a back gate TFT having a back gate electrode.
  • the active matrix substrate 10 has an insulating member 19 provided on the driving TFT 11A in the frame region 100f and covering the second gate electrode 16gA.
  • the active matrix substrate 10 has a protruding structure protruding toward the counter substrate 30 in the display region 100d.
  • the protruding structure is a first columnar spacer 23a or a second columnar spacer 23b.
  • the insulating member 19 is formed of the same dielectric film as the protruding structure (the first columnar spacer 23a or the second columnar spacer 23b).
  • the driving TFT 11A includes the second gate electrode 16gA that functions as a back gate electrode, fluctuations in the electrical characteristics of the driving TFT 11A are suppressed. Thereby, the fall of the reliability of the liquid crystal display device 100 is suppressed. Since the liquid crystal display device 100 includes the insulating member 19 that covers the second gate electrode 16gA, the second gate electrode 16gA and the counter electrode 34 included in the counter substrate 30 are electrically connected by the conductive particles 62. Can be prevented. Accordingly, malfunction of the driving TFT 11A is suppressed, so that the liquid crystal display device 100 has excellent reliability. Further, since the seal portion 60s and / or the transition portion 60t and the driving TFT 11A can be provided close to each other, the area of the frame region 100f can be reduced. Since the insulating member 19 is formed of the same dielectric film as the protruding structure of the active matrix substrate 10 in the display region 100d, the liquid crystal display has a narrow frame and excellent reliability without increasing the number of manufacturing steps. A device is obtained.
  • the insulating member 19 may be in direct contact with the second gate electrode 16gA to cover the second gate electrode 16gA, or may cover the second gate electrode 16gA with another layer interposed therebetween.
  • the insulating member 19 covering the second gate electrode 16gA means a state in which all of the second gate electrode 16gA overlaps with the insulating member 19 when viewed from the normal direction of the active matrix substrate 10.
  • the third insulating layer 6i is provided on the second gate electrode 16gA, and the insulating member 19 covers the second gate electrode 16gA via the third insulating layer 6i.
  • the insulating member 19 prevents the conductive particles 62 from breaking through the third insulating layer 6i, thereby preventing the second gate electrode 16gA and the counter electrode 34 from being electrically connected by the conductive particles 62. it can.
  • the shape and size of the insulating member 19 are not particularly limited as long as it covers the second gate electrode 16gA.
  • the insulating member 19 may cover the entire driving TFT 11A. That is, when viewed from the normal direction of the active matrix substrate 10, the entire driving TFT 11 ⁇ / b> A may overlap with the insulating member 19.
  • the first columnar spacer 23 a is a spacer that defines the distance between the active matrix substrate 10 and the counter substrate 30. That is, the first columnar spacer 23 a controls the thickness of the liquid crystal layer 50 (sometimes referred to as “cell gap”).
  • the second columnar spacer 23b is a spacer lower than the first columnar spacer 23a.
  • the first columnar spacers 23 a are in contact with the counter substrate 30, and the second columnar spacers 23 b are not in contact with the counter substrate 30.
  • the first columnar spacers 23a are also called “main spacers”, and the second columnar spacers 23b are also called “subspacers”.
  • the second columnar spacer 23b is formed of the same dielectric film as the first columnar spacer 23a.
  • the second columnar spacer 23b may be formed of a dielectric film different from the first columnar spacer 23a.
  • the second columnar spacer 23b can be omitted, the following effects can be obtained by having the second columnar spacer 23b in addition to the first columnar spacer 23a.
  • the arrangement density of columnar spacers the number of columnar spacers per unit area
  • the effective spacer density is defined only by the first columnar spacers 23a. Therefore, the cell gap can easily follow the contraction of the liquid crystal layer 50, and the occurrence of low temperature foaming can be suppressed.
  • the insulating member 19 is formed in the same manufacturing process as the protruding structure (the first columnar spacer 23a or the second columnar spacer 23b).
  • the height h19 of the insulating member 19 may be substantially the same as the height of the protruding structure (the height h23a of the first columnar spacer 23a or the height h23b of the second columnar spacer 23b). Details of the manufacturing process of the liquid crystal display device 100 will be described later.
  • the height h ⁇ b> 19 of the insulating member 19 is not limited to the above example, and may be as long as the second gate electrode 16 g ⁇ / i> A and the counter substrate 30 can be prevented from being electrically connected by the conductive particles 62. Good.
  • the height h19 of the insulating member 19 is preferably larger than half of the average particle diameter of the conductive particles 62, for example.
  • the insulating member 19 may be in contact with the counter substrate 30 or may not be in contact with the counter substrate 30.
  • the conductive particles 62 are, for example, metal particles (for example, gold (Au), silver (Ag), nickel (Ni)), resin particles subjected to metal plating (for example, Ni plating), carbon particles, or transparent conductive particles (for example, ITO).
  • the particle size of the conductive particles 62 is, for example, 0.1 ⁇ m to 10 ⁇ m.
  • the conductive particles 62 are included in, for example, a transition material that forms the transition portion 60t.
  • the conductive particles 62 may be included in a sealing material that forms the seal portion 60s.
  • the conductive particles 62 may be included in both the sealing material and the transition material.
  • the seal portion 60s and the transition portion 60t may be integrally formed from the same resin material.
  • the same resin material can be used for the sealing material and the transition material.
  • a photo-curing resin including those that use thermosetting together
  • the sealing material and the transition material are not limited to the ultraviolet curable resin, and a resin curable with light of other wavelengths (for example, visible light) may be used, and various photocurable resins can be suitably used.
  • the photo-curable resin includes a resin that allows a curing reaction to proceed by irradiating with light of a predetermined wavelength, and that can be further thermally cured after photo-curing. By using thermosetting together, the physical properties (hardness and elastic modulus) of the cured product are generally improved.
  • grains (filler (filler)) for providing a scattering property with a sealing material and a transfer material with a photocurable resin, respectively. Since the sealing material and the transition material in which particles are dispersed scatter or diffusely reflect light, an effect of spreading the light over a wider portion in the sealing material or the transition material can be obtained.
  • the seal portion 60 s may further include a first granular spacer 66 a that defines the distance between the active matrix substrate 10 and the counter substrate 30.
  • the first granular spacer 66a is included in, for example, a sealing material.
  • the first granular spacer 66a may be included in the sealing material and / or the transition material.
  • the driving TFT 11A since the driving TFT 11A includes the second gate electrode 16gA that functions as a back gate electrode, variation in characteristics of the TFT is suppressed.
  • the third conductive layer 16 including the second gate electrode 16gA is formed of, for example, a transparent conductive film.
  • the second gate electrode 16gA may be made of, for example, a metal material. Since the second gate electrode 16gA formed of a metal material also functions as a light shielding film for the channel region 15cA of the semiconductor layer 15A, the shift of the threshold voltage Vth of the driving TFT 11A can be more effectively suppressed. As illustrated in FIG.
  • the second gate electrode 16gA of the drive TFT 11A is electrically connected to the source electrode 14sA of the drive TFT 11A.
  • the second gate electrode 16gA is in contact with the source electrode 14sA in the opening CH2 provided in the second insulating layer 4i.
  • the potential of the second gate electrode 16gA is fixed to a predetermined value, so that the threshold voltage Vth of the driving TFT 11A is shifted or driven. It can suppress that the hysteresis of TFT11A becomes large. Thereby, the characteristic variation of the driving TFT 11A is suppressed, and the variation in the characteristics of the driving TFT 11A can be reduced.
  • the second gate electrode 16gA may be electrically connected to an arbitrary electrode or wiring.
  • the electrode or wiring electrically connected to the second gate electrode 16gA is fixed at a predetermined potential, the same effect as described above can be obtained.
  • the electrical connection of the second gate electrode 16gA is not limited to this.
  • the second gate electrode 16gA may be electrically connected to the first gate electrode 12gA.
  • the second gate electrode 16gA may be electrically connected to the drain electrode 14dA.
  • the threshold voltage Vth of the driving TFT 11A can be changed depending on the value of the voltage applied to the drain electrode 14dA.
  • the insulating member 19 is formed of the same dielectric film as the protruding structure of the active matrix substrate 10 in the display region 100d.
  • the protruding structure is not limited to the illustrated columnar spacers 23a and 23b. Any protrusion structure that protrudes toward the counter substrate 30 in the active matrix substrate 10 in the display region 100d may be used.
  • the protrusion structure may be an alignment control structure that defines the alignment state of the liquid crystal.
  • the insulating member 19 is not limited to the protruding structure, and may be formed of the same dielectric film as the layer of the active matrix substrate 10 in the display region 100d.
  • the insulating member 19 may be formed of the same dielectric film as the color filter layer included in the active matrix substrate 10 in the display region 100d.
  • the insulating member 19 covers the second gate electrode 16gA, in the liquid crystal display device 100, the parasitic capacitance formed between the second gate electrode 16gA and the counter electrode 34 in the liquid crystal display device 900 of the comparative example. It can be reduced compared to. This is because the insulating member 19 can have a lower relative dielectric constant than the seal portion 60s.
  • the seal portion 60s and the insulating member 19 are both formed of, for example, an organic insulating film, and the seal material forming the seal portion 60s is typically filled with a filler.
  • the filler is typically an inorganic insulating powder, for example, a silica powder.
  • the liquid crystal display device 100 having the insulating member 19 is formed between the second gate electrode 16gA and the counter electrode 34.
  • the parasitic capacitance that is done can be reduced.
  • the active matrix substrate 10 includes the insulating member 19 and the protruding structure.
  • the driving TFT 11A can be effectively protected from moisture contained in the seal portion 60s. In particular, moisture can be prevented from entering the channel region 15cA of the semiconductor layer 15A.
  • the active matrix substrate 10 with the first columnar spacers 23a that define the distance between the active matrix substrate 10 and the counter substrate 30, it is possible to suppress cell gap variations.
  • the film thickness variation of the active matrix substrate 10 is reflected in the cell gap. Obtained.
  • the film thickness varies in the steps up to the step of providing the first columnar spacers 23a during the manufacturing process of the active matrix substrate 10. Even in this case, the cell gap can be controlled by aligning the height h23a of the first columnar spacers 23a.
  • the insulating member 19 can prevent the characteristic variation and / or malfunction of the driving TFT 11A by reducing the influence on the driving TFT 11A when stress is applied to the liquid crystal display device 100 from the outside. Therefore, for example, this embodiment is also suitable for a flexible display device.
  • the stress applied to the driving TFT 11A can also be caused by a change in the environment (for example, temperature and humidity) in which the display device is used.
  • the active matrix substrate 10 includes a substrate 1s, a first conductive layer 12 including a first gate electrode 12gA, a first insulating layer 2i, a semiconductor layer 15A, a source electrode 14sA, and a second electrode including a drain electrode 14dA.
  • the third conductive layer 16 including the conductive layer 14, the second insulating layer 4i, and the second gate electrode 16gA is provided.
  • the active matrix substrate 10 further includes a third insulating layer 6 i and a fourth conductive layer 18.
  • the active matrix substrate 10 has a pixel TFT 11B in the display area 100d as shown in FIG.
  • the pixel TFT 11B includes a semiconductor layer 15B including a channel region 15cB, a source region 15sB, and a drain region 15dB, a gate electrode 12gB that overlaps the channel region 15cB of the semiconductor layer 15B via the first insulating layer 2i, and a source region of the semiconductor layer 15B.
  • a source electrode 14sB and a drain electrode 14dB are electrically connected to 15sB and the drain region 15dB, respectively.
  • the first conductive layer 12 is provided on the substrate 1s.
  • the first conductive layer 12 includes a first gate electrode 12gA of the driving TFT 11A, a gate electrode 12gB of the pixel TFT 11B, and a gate wiring G.
  • the first conductive layer 12 may have a single layer structure or a stacked structure in which a plurality of layers are stacked.
  • the first conductive layer 12 includes at least a layer formed of a metal material. When the 1st conductive layer 12 is a laminated structure, a part layer may be formed from the metal nitride and the metal oxide.
  • the first insulating layer (gate insulating layer) 2 i is provided on the first conductive layer 12. That is, the first insulating layer 2i is formed so as to cover the first gate electrode 12gA, the gate electrode 12gB, and the gate wiring G.
  • the first insulating layer 2i is formed from an inorganic insulating material.
  • the semiconductor layers 15A and 15B are provided on the first insulating layer 2i.
  • the semiconductor layers 15A and 15B are formed from a common semiconductor film, for example.
  • the semiconductor layer 15A of the driving TFT 11A includes the channel region 15cA, the source region 15sA, and the drain region 15dA.
  • the semiconductor layer 15B of the pixel TFT 11B includes a first portion 15aB that overlaps the gate electrode 12gB, and a second portion 15bB that extends from the first portion 15aB across the edge of the gate electrode 12gB on the drain electrode 14dB side.
  • the first portion 15aB includes a channel region 15cB, a source region 15sB, and a drain region 15dB.
  • the second conductive layer 14 is provided on the semiconductor layers 15A and 15B.
  • the second conductive layer 14 includes a source electrode 14sA and a drain electrode 14dA of the driving TFT 11A, a source electrode 14sB and a drain electrode 14dB of the pixel TFT 11B, and a source wiring S.
  • the second conductive layer 14 may have a single layer structure or a stacked structure in which a plurality of layers are stacked.
  • the second metal layer 14 includes at least a layer formed of a metal material. When the second conductive layer 14 has a laminated structure, some layers may be formed from a metal nitride or a metal oxide.
  • first conductive layer 12 and the second conductive layer 14 including a layer formed from a metal material are generally more conductive than a conductive layer formed from a transparent conductive material, the width of the wiring can be reduced. This is possible, and can contribute to higher definition and improved pixel aperture ratio.
  • the second insulating layer (interlayer insulating layer) 4 i is provided on the second conductive layer 14.
  • the second insulating layer 4i is formed from an inorganic insulating material.
  • an opening CH2 provided in the drive circuit unit 60d and an opening CH3 provided in the display region 100d are formed.
  • the opening CH2 overlaps the source electrode 14sA when viewed from the normal direction of the active matrix substrate 10.
  • the opening CH3 overlaps the second portion 15bB of the semiconductor layer 15B when viewed from the normal direction of the active matrix substrate 10.
  • the opening CH3 also overlaps with the end 14de of the drain electrode 14dB on the second portion 15bB side when viewed from the normal direction of the active matrix substrate 10. That is, the opening CH3 is formed so that the end 14de of the drain electrode 14dB and the second portion 15bB of the semiconductor layer 15B are exposed.
  • the third conductive layer 16 is provided on the second insulating layer 4i.
  • the third conductive layer 16 is made of, for example, a transparent conductive material.
  • the third conductive layer 16 may be referred to as the first transparent electrode layer 16.
  • the third conductive layer 16 includes a second gate electrode 16gA of the driving TFT 11A and a pixel electrode 16B of the pixel TFT 11B.
  • the second gate electrode 16gA is in contact with the source electrode 14sA in the opening CH2.
  • the pixel electrode 16B is in contact with the second portion 15bB of the semiconductor layer 15B in the opening CH3.
  • the pixel TFT 11B and the pixel electrode 16B are provided for each pixel. That is, each pixel is defined by each pixel electrode 16B.
  • the third insulating layer (auxiliary capacitor insulating layer) 6 i covers the third conductive layer 16.
  • the third insulating layer 6i is formed from an inorganic insulating material.
  • the fourth conductive layer 18 is provided on the third insulating layer 6i.
  • the fourth conductive layer 18 is made of, for example, a transparent conductive material.
  • the fourth conductive layer 18 may be referred to as the second transparent electrode layer 18.
  • the fourth conductive layer 18 includes an electrode 18B that is not electrically connected to the pixel electrode 16B. This electrode 18B functions as a common electrode, for example.
  • the common electrode 18B is opposed to the pixel electrode 16B via the third insulating layer 6i, and the pixel electrode 16B and the common electrode 18B, and the third insulating layer 6i positioned therebetween constitute an auxiliary capacitor. Yes.
  • at least one slit (not shown) is formed in the common electrode 18B.
  • An alignment film (not shown) is provided on the common electrode 18B.
  • the active matrix substrate 10 having the above-described configuration is suitably used for the liquid crystal display device 100 in FFS (Fringe Field Switching) mode.
  • the opening CH3 overlaps the end portion 14de of the drain electrode 14dB on the second portion 15bB side and the second portion 15bB of the semiconductor layer 15B when viewed from the normal direction of the substrate 1s. Therefore, a part of the opening CH3 can be a light transmission region that is not shielded by either the gate electrode 12gB or the drain electrode 14dB. Since the second insulating layer (interlayer insulating layer) 4i is formed of an inorganic insulating material, that is, does not include an organic insulating layer, the opening CH3 is relatively shallow. Accordingly, the disturbance in the liquid crystal alignment due to the opening CH3 is small, and the light leakage in the vicinity of the opening CH3 is small. Therefore, even if the above-described light transmission region is provided, the display is not adversely affected. In this way, by using a part of the opening CH3 as a light transmission region, it is possible to increase the light use efficiency.
  • the structures of the drive TFT 11A and the pixel TFT 11B of the present embodiment are not limited to those illustrated.
  • the back gate electrode (second gate electrode) 16 gA may be formed of the same conductive film as the fourth conductive layer 18. Modification examples will be described later with reference to FIGS.
  • the driving TFT 11A can have various known back gate TFT structures, and the pixel TFT 11B can have various known TFT structures.
  • the driving TFT 11A and the pixel TFT 11B of the present embodiment are not limited to the channel etch type TFTs exemplified.
  • Each of the driving TFT 11A and the pixel TFT 11B may be an etch stop type TFT.
  • the etch stop layer is not formed on the channel region, and the end portions on the channel side of the source and drain electrodes are arranged in contact with the upper surface of the semiconductor layer.
  • the channel etch type TFT is formed, for example, by forming a conductive film for a source / drain electrode on a semiconductor layer and performing source / drain separation. In the source / drain separation step, the surface portion of the channel region may be etched.
  • a TFT etch stop type TFT
  • the channel-side end portions of the source and drain electrodes are located on the etch stop layer, for example.
  • an etch stop type TFT is formed by forming an etch stop layer that covers a portion of a semiconductor layer that becomes a channel region, and then forming a conductive film for a source / drain electrode on the semiconductor layer and the etch stop layer. Formed by performing separation.
  • the counter substrate 30 includes, for example, a substrate (for example, a glass substrate) 31, a color filter layer 32 (including a color filter and a black matrix) provided on the substrate 31, and a color filter layer 32.
  • the overcoat layer 33 is covered, and the counter electrode 34 is provided on the overcoat layer 33.
  • the color filter layer 32 may not include a color filter.
  • the counter electrode 34 is omitted in the display area 100d, but the counter substrate 30 includes the counter electrode 34 in the display area 100d and the frame area 100f, for example.
  • the counter electrode 34 can function as a common electrode.
  • the counter electrode 34 can be used as a detection electrode or a drive electrode of the touch panel.
  • the counter electrode 34 functioning as a common electrode can also serve as a detection electrode or a drive electrode of the touch panel.
  • the transition part 60t of the liquid crystal display device 100 electrically connects the contact electrode 64 and the counter electrode 34 by the conductive particles 62 as described above.
  • the active matrix substrate 10 has a contact electrode 64 at the transition portion 60 t.
  • the active matrix substrate 10 further includes the first conductive layer 12, the second conductive layer 14, and the third conductive layer 16, and the contact electrode 64 has the same conductivity as the fourth conductive layer 18. It is formed from a film.
  • the transition portion further includes an opening CH1 provided in the first insulating layer 2i and the second insulating layer 4i.
  • the opening CH1 electrically connects the first conductive layer 12, the second conductive layer 14, the third conductive layer 16, and the contact electrode 64 to each other.
  • the third conductive layer 16 is in contact with the contact electrode 64 in the opening CH1.
  • the structure of the transfer portion 60t is not limited to the example shown in FIG.
  • the contact electrode 64 only needs to be formed of the same conductive film as any one of the first conductive layer 12, the second conductive layer 14, the third conductive layer 16, and the fourth conductive layer 18.
  • the contact electrode 64 only needs to be electrically connected to the first conductive layer 12 and / or the second conductive layer 14.
  • the active matrix substrate 10 only needs to have a contact electrode 64 electrically connected to the counter substrate 30 via the conductive particles 62, and a conductive layer that does not include the contact electrode 64 (example of FIG. 1). Then, the first conductive layer 12, the second conductive layer 14, and the third conductive layer 16) need not be provided.
  • the contact portion (opening) that electrically connects the contact electrode 64 and another conductive layer may be provided in the transition portion 60t, or provided in a region other than the transition portion 60t in the frame region 100f. May be.
  • FIGS. 4 to 10 are process cross-sectional views schematically showing the manufacturing process of the liquid crystal display device 100, respectively. 4 to 10, (a) shows the process of manufacturing the frame area 100f, and (b) shows the process of manufacturing the display area 100d.
  • the first conductive layer 12 including the first gate electrodes 12gA and 12gB of the driving TFT 11A and the pixel TFT 11B is formed on a substrate (for example, a glass substrate) 1s. Specifically, after depositing a first conductive film on the substrate 11, the first conductive layer 12 is formed by patterning the first conductive film.
  • a material of the first conductive film for example, aluminum (Al), chromium (Cr), copper (Cu), tantalum (Ta), titanium (Ti), molybdenum (Mo), tungsten (W), or these Alloys can be used.
  • the first conductive film may have a single layer structure or a stacked structure in which a plurality of layers are stacked.
  • a laminate of Ti / Al / Ti (upper layer / intermediate layer / lower layer) or a laminate of Mo / Al / Mo can be used.
  • the stacked structure of the first conductive film is not limited to a three-layer structure, and may be a two-layer structure or a stacked structure of four or more layers. Furthermore, the first conductive film only needs to include at least a layer formed of a metal material. When the first conductive film has a stacked structure, some layers are formed of metal nitride or metal oxide. May be.
  • the first conductive film is formed.
  • the first conductive layer 12 is formed by patterning one conductive film by a photolithography process.
  • the first insulating layer 2i includes, for example, a silicon dioxide (SiO 2 ) film, a silicon nitride (SiN x ) film, a silicon oxynitride (SiO x N y (x> y)) film, and a silicon nitride oxide (SiN x O y (SiN x O y ( x> y)) film, aluminum oxide film or tantalum oxide film, or a laminated film thereof.
  • SiO 2 silicon dioxide
  • SiN x silicon nitride
  • SiO x N y silicon oxynitride
  • SiN x O y silicon nitride oxide
  • aluminum oxide film or tantalum oxide film aluminum oxide film or tantalum oxide film, or a laminated film thereof.
  • the first insulating layer 2i is formed by successively depositing a SiN x film having a thickness of 100 nm to 500 nm and a SiO 2 film having a thickness of 20 nm to 100 nm by, for example, CVD (Chemical Vapor Deposition). Form.
  • the semiconductor layers 15A and 15B of the driving TFT 11A and the pixel TFT 11B are formed on the first insulating layer 2i. Specifically, after depositing a semiconductor film on the first insulating layer 2i, the semiconductor film is patterned to form island-shaped semiconductor layers 15A and 15B. Here, after depositing an In—Ga—Zn—O-based semiconductor film having a thickness of 20 nm to 200 nm, the semiconductor layers 15A and 15B are formed by patterning the semiconductor film by a photolithography process.
  • the semiconductor layers 15A and 15B are, for example, oxide semiconductor layers.
  • the oxide semiconductor included in the semiconductor layers 15A and 15B may be an amorphous oxide semiconductor or a crystalline oxide semiconductor having a crystalline portion.
  • Examples of the crystalline oxide semiconductor include a polycrystalline oxide semiconductor, a microcrystalline oxide semiconductor, and a crystalline oxide semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface.
  • the semiconductor layers 15A and 15B may have a laminated structure of two or more layers.
  • the semiconductor layers 15A and 15B may include an amorphous oxide semiconductor layer and a crystalline oxide semiconductor layer. Alternatively, a plurality of crystalline oxide semiconductor layers having different crystal structures may be included.
  • the semiconductor layers 15A and 15B have a two-layer structure including an upper layer and a lower layer, the energy gap of the oxide semiconductor included in the upper layer is preferably larger than the energy gap of the oxide semiconductor included in the lower layer. However, when the difference in energy gap between these layers is relatively small, the energy gap of the lower oxide semiconductor may be larger than the energy gap of the upper oxide semiconductor.
  • the semiconductor layers 15A and 15B may contain at least one metal element of In, Ga, and Zn, for example.
  • the semiconductor layers 15A and 15B include, for example, an In—Ga—Zn—O based semiconductor.
  • Such semiconductor layers 15A and 15B can be formed of an oxide semiconductor film containing an In—Ga—Zn—O-based semiconductor.
  • a channel-etch TFT having an active layer containing an In—Ga—Zn—O-based semiconductor may be referred to as a “CE-InGaZnO-TFT”.
  • the In—Ga—Zn—O-based semiconductor may be amorphous or crystalline.
  • a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT). It is suitably used as a drive TFT and a pixel TFT.
  • the semiconductor layers 15A and 15B may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor.
  • an In—Sn—Zn—O-based semiconductor eg, In 2 O 3 —SnO 2 —ZnO
  • the In—Sn—Zn—O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc).
  • the semiconductor layers 15A and 15B may be made of an In—Al—Zn—O based semiconductor, an In—Al—Sn—Zn—O based semiconductor, a Zn—O based semiconductor, an In—Zn—O based semiconductor, or a Zn—Ti—O semiconductor.
  • Cd—Ge—O semiconductor Cd—Pb—O semiconductor, CdO (cadmium oxide), Mg—Zn—O semiconductor, In—Ga—Sn—O semiconductor, In—Ga—O semiconductor
  • a Zr—In—Zn—O based semiconductor an Hf—In—Zn—O based semiconductor, or the like may be included.
  • an opening 2a for electrically connecting the first conductive layer 12 and the second conductive layer 14 is formed in the first insulating layer 2i in the frame region 100f. Specifically, the first insulating layer 2i is patterned so that the first conductive layer 12 is exposed.
  • the second conductive layer including the source electrode 14sA and the drain electrode 14dA of the driving TFT 11A, the source electrode 14sB and the drain electrode 14dB of the pixel TFT 11B, and the source wiring S on the semiconductor layers 15A and 15B. 14 is formed. Specifically, after forming the second conductive film on the semiconductor layers 15A and 15B, the second conductive layer 14 is formed by patterning the second conductive film.
  • a material of the second conductive film for example, aluminum (Al), chromium (Cr), copper (Cu), tantalum (Ta), titanium (Ti), molybdenum (Mo) or tungsten (W), or these These alloys can be used.
  • the second conductive film may have a single layer structure or a stacked structure in which a plurality of layers are stacked.
  • a laminate of Ti / Al / Ti (upper layer / intermediate layer / lower layer) or a laminate of Mo / Al / Mo can be used.
  • the stacked structure of the second conductive film is not limited to a three-layer structure, and may be a two-layer structure or a stacked structure of four or more layers. Further, the second conductive film only needs to include at least a layer formed of a metal material. When the second conductive film has a stacked structure, some layers are formed of metal nitride or metal oxide. May be.
  • a Ti layer having a thickness of 10 nm to 100 nm, an Al layer having a thickness of 50 nm to 400 nm, and a Ti layer having a thickness of 50 nm to 300 nm are successively deposited by sputtering, for example.
  • the second conductive layer 14 is formed by patterning the second conductive film by a photolithography process.
  • a second insulating layer 4 i is formed on the second conductive layer 14. Further, an opening 4a is formed by patterning in a region of the second insulating layer 4i corresponding to the opening 2a of the first insulating layer 2i. That is, a part of the second insulating layer 4i is removed so that the second conductive layer 14 is exposed. Further, an opening CH2 for electrically connecting the source electrode 14sA of the driving TFT 11A and the second gate electrode 16gA is formed in the second insulating layer 4i of the driving circuit unit 60d. Further, an opening CH3 is formed in the second insulating layer 4i in the display region 100d by patterning.
  • the opening CH3 is formed by removing a part of the second insulating layer 4i so that a part of the drain electrode 14dB of the pixel TFT 11B and a part of the semiconductor layer 15B are exposed.
  • the second insulating layer 4i is, for example, a silicon dioxide (SiO 2 ) film, a silicon nitride (SiN x ) film, a silicon oxynitride (SiO x N y (x> y)) film, or a silicon nitride oxide (SiN x O y (SiN x O y ( x> y)) film, aluminum oxide film or tantalum oxide film, or a laminated film thereof.
  • the SiO 2 film is heat-treated at 200 ° C. to 400 ° C. for 0.5 hours to 4 hours in an air atmosphere, and then 50 nm A SiN x film having a thickness of ⁇ 500 nm is deposited, and these stacked films are used as the second insulating layer 4i.
  • a third conductive layer (first transparent electrode layer) 16 including the second gate electrode 16gA of the driving TFT 11A and the pixel electrode 16B of the pixel TFT 11B is formed on the second insulating layer 4i. .
  • the third conductive layer 16 is formed by patterning the third conductive film. At this time, patterning is performed so that the third conductive layer 16 is in contact with the second conductive layer 14 in the opening 4a. Patterning is performed so that the second gate electrode 16gA of the driving TFT 11A is in contact with the source electrode 14sA in the opening CH2.
  • the third conductive film As the material of the third conductive film, various transparent conductive materials can be used, and for example, metal oxides such as ITO, IZO, and ZnO can be used.
  • a third conductive film is formed by depositing a metal oxide film having a thickness of 20 nm to 300 nm by, for example, a sputtering method, and then the third conductive film is patterned by a photolithography process to form the third conductive film. A conductive layer 16 is formed.
  • a third insulating layer (auxiliary capacitor insulating layer) 6 i is formed on the third conductive layer 16.
  • the opening 6a is formed by patterning. That is, a part of the third insulating layer 6i is removed so that the third conductive layer 16 is exposed.
  • the third insulating layer 6i includes, for example, a silicon dioxide (SiO 2 ) film, a silicon nitride (SiN x ) film, a silicon oxynitride (SiO x N y (x> y)) film, and a silicon nitride oxide (SiN x O y (SiN x O y ( x> y)) film, aluminum oxide film or tantalum oxide film, or a laminated film thereof.
  • a SiN x film having a thickness of 50 nm to 500 nm is deposited by, for example, CVD.
  • a fourth conductive layer (second transparent electrode layer) 18 including the contact electrode 64 and the common electrode (transparent electrode) 18B of the pixel TFT 11B is formed on the third insulating layer 6i.
  • the fourth conductive layer 18 is formed by patterning the fourth conductive film. At this time, patterning is performed so that the contact electrode 64 is in contact with the third conductive layer 16 in the opening 6a.
  • An opening CH1 (see FIG. 1) is formed by the openings 2a, 4a, and 6a.
  • the material of the fourth conductive film various transparent conductive materials can be used, and for example, metal oxides such as ITO, IZO, ZnO, and the like can be used.
  • a fourth conductive film is formed by depositing a metal oxide film having a thickness of 20 nm to 300 nm by, for example, a sputtering method, and then the fourth conductive film is patterned by a photolithography process to form the fourth conductive film.
  • a conductive layer 18 is formed.
  • the first columnar spacer 23 a, the second columnar spacer 23 b, and the insulating member 19 are formed on the fourth conductive layer 18. Specifically, after the dielectric film is deposited on the fourth conductive layer 18, the spacers 23a and 23b and the insulating member 19 are formed by patterning the dielectric film. As a material for the dielectric film, for example, a negative or positive photosensitive resin can be used. Further, by performing an exposure process using a multi-tone mask, the first columnar spacers 23a and the second columnar spacers having different heights from the common dielectric film without increasing the number of manufacturing steps and the number of photomasks. 23b can be formed.
  • the insulating member 19 can also be formed from a common dielectric film.
  • a gray-tone mask or a half-tone mask can be used as the multi-tone mask.
  • the gray tone mask is formed with a slit below the resolution of the exposure machine, and intermediate exposure is realized by blocking a part of the light by the slit.
  • the halftone mask intermediate exposure is realized by using a semi-transmissive film.
  • a negative heat-resistant transparent photosensitive resist manufactured by JSR Corporation, heat-resistant transparent photosensitive protective film Optmer NN700G (Optomer is a registered trademark)
  • the dielectric film is deposited, the first columnar spacer 23a having a height of 1 ⁇ m to 10 ⁇ m and a height of 0.1 ⁇ m to 9.9 ⁇ m are obtained by performing exposure and development through a gray tone mask.
  • the second columnar spacer 23b and the insulating member 19 having the same height as the second columnar spacer 23b are formed.
  • An alignment film (not shown) is formed on the surfaces of the active matrix substrate 10 thus formed and the counter substrate 30 prepared separately.
  • the counter substrate 30 can be manufactured by various known methods, for example. Thereafter, a sealing material including the first granular spacer 66a is applied so as to surround an area of the active matrix substrate 10 or the counter substrate 30 corresponding to the display area 100d. A transition material including conductive particles 62 is applied along the contact electrode 64. The sealing material and the transfer material are applied by, for example, a dispenser method or a screen printing method. A liquid crystal layer is formed by dropping a liquid crystal material by a dropping method onto a substrate provided with a sealing material and a transition material. Thereafter, the active matrix substrate 10 and the counter substrate 30 are bonded together in a vacuum. Thereafter, the sealing material and the transition material are cured by, for example, ultraviolet irradiation to form the seal portion 60s and the transition portion 60t. For example, the ultraviolet rays are irradiated from the active matrix substrate 10 side.
  • the liquid crystal display device 100 can be manufactured.
  • FIG. 11 to 13 show a liquid crystal display device 100A which is a modified example of the liquid crystal display device 100.
  • FIG. 11 to 13 are a cross-sectional view and a plan view schematically showing the liquid crystal display device 100A.
  • FIG. 11A is a cross-sectional view schematically showing the frame region 100f of the liquid crystal display device 100A along the 11At-11At 'line and the 11Ad-11Ad' line in FIG.
  • FIG. 11B is a cross-sectional view schematically showing the display region 100d of the liquid crystal display device 100A along the line 11b-11b 'in FIG.
  • the second gate electrode 16gA is in contact with the source electrode 14sA in the opening CH2 provided in the second insulating layer 4i.
  • the driving TFT 11A further includes an additional electrode 18A provided on the second gate electrode 16gA and electrically connected to the second gate electrode 16gA.
  • the additional electrode 18A is electrically connected to the source electrode 14sA in the second opening CH2 provided in the second insulating layer 4i.
  • the second opening CH2 is also provided in the third insulating layer 6i.
  • the additional electrode 18A is formed of the same conductive film as the fourth conductive layer 18.
  • the additional electrode 18A may be formed of the same conductive film as the contact electrode 64.
  • the insulating member 19 covers the additional electrode 18A in addition to the second gate electrode 16gA.
  • the insulating member 19 covers the second gate electrode 16gA and the additional electrode 18A when the second gate electrode 16gA and the additional electrode 18A overlap with the insulating member 19 when viewed from the normal direction of the active matrix substrate 10. The state that is.
  • the same effect as that of the liquid crystal display device 100 can be obtained. Since the drive TFT 11A includes the second gate electrode 16gA that functions as a back gate electrode, fluctuations in the electrical characteristics of the drive TFT 11A are suppressed. Thereby, the fall of the reliability of 100 A of liquid crystal display devices is suppressed. Since the liquid crystal display device 100A includes the insulating member 19 that covers the second gate electrode 16gA and the additional electrode 18A, the second gate electrode 16gA and / or the additional electrode 18A and the counter electrode 34 of the counter substrate 30 are electrically conductive particles. It is possible to prevent electrical connection by 62.
  • the liquid crystal display device 100A has excellent reliability. Further, since the seal portion 60s and / or the transition portion 60t and the driving TFT 11A can be provided close to each other, the area of the frame region 100f can be reduced. Since the insulating member 19 is formed of the same dielectric film as the protruding structure of the active matrix substrate 10 in the display region 100d, the liquid crystal display has a narrow frame and excellent reliability without increasing the number of manufacturing steps. A device is obtained.
  • a third insulating layer 6i is formed on the second gate electrode 16gA.
  • the additional electrode 18A electrically connected to the second gate electrode 16gA is covered with an insulating film or dielectric film other than the insulating member 19. Not. Therefore, if the liquid crystal display device 100A does not have the insulating member 19, the second gate electrode 16gA and the counter electrode 34 are likely to be electrically connected by the conductive particles 62. That is, the liquid crystal display device 100 ⁇ / b> A can improve the reliability more effectively by including the insulating member 19.
  • liquid crystal display device 100A can be manufactured with a smaller number of masks than the liquid crystal display device 100.
  • the manufacturing process of the liquid crystal display device 100A differs from the manufacturing process of the liquid crystal display device 100 in the following points.
  • the manufacturing process of the second insulating layer 4i of the liquid crystal display device 100 as described with reference to FIG. 7, after depositing the insulating film, openings (opening 4a, opening CH2 and opening CH3 are formed in the insulating film. ) By patterning. Thereafter, the third conductive layer 16 is formed.
  • the manufacturing process (see FIG. 14) of the third conductive layer 16 is performed without providing an opening in the insulating film. Thereafter, in the manufacturing process of the third insulating layer 6i (see FIG.
  • the second insulating layer 4i and the third insulating layer are removed by removing a part of the second insulating layer 4i and a part of the third insulating layer 6i. An opening is formed in 6i. Accordingly, the liquid crystal display device 100A can be manufactured with a smaller number of masks than the liquid crystal display device 100. Details will be described below.
  • 14 to 16 are process cross-sectional views schematically showing the manufacturing process of the liquid crystal display device 100A. 14 to 16, (a) shows the process of manufacturing the frame area 100f, and (b) shows the process of manufacturing the display area 100d.
  • a third conductive layer including the second gate electrode 16gA of the driving TFT 11A and the electrode 16B of the pixel TFT 11B is formed on the second insulating layer 4i.
  • Layer 16 is formed.
  • the electrode 16B of the pixel TFT 11B can function as a common electrode.
  • a third insulating layer (auxiliary capacitor insulating layer) 6 i is formed on the third conductive layer 16. Openings 4a and 6a are formed by patterning in a region of the third insulating layer 6i corresponding to the opening 2a of the first insulating layer 2i. That is, part of the second insulating layer 4i and the third insulating layer 6i is removed so that the second conductive layer 14 is exposed. An opening CH1 (see FIG. 11) is formed by the openings 2a, 4a, and 6a. In addition, openings 4b and 6b are formed in the second insulating layer 4i and the third insulating layer 6i of the drive circuit unit 60d by patterning.
  • openings 4b and 6b a part of the second insulating layer 4i and a part of the third insulating layer 6i are removed so that a part of the source electrode 14sA of the driving TFT 11A and a part of the second gate electrode 16gA are exposed. Is formed.
  • An opening CH2 (see FIG. 11) is formed by the openings 4b and 6b. Further, openings 4c and 6c are formed in the second insulating layer 4i and the third insulating layer 6i in the display region 100d by patterning.
  • the openings 4c and 6c are formed by removing a part of the second insulating layer 4i and the third insulating layer 6i so that a part of the drain electrode 14dB of the pixel TFT 11B and a part of the semiconductor layer 15B are exposed. It is formed.
  • An opening CH3 (see FIG. 11) is formed by the openings 4c and 6c.
  • a fourth conductive layer (second transparent electrode layer) 18 including the contact electrode 64 and the pixel electrode 18B of the pixel TFT 11B is formed on the third insulating layer 6i.
  • the fourth conductive layer 18 is formed by patterning the fourth conductive film.
  • patterning is performed so that the contact electrode 64 is in contact with the second conductive layer 14 in the opening CH1.
  • patterning is performed so that the additional electrode 18A is in contact with the second gate electrode 16gA and the source electrode 14sA in the opening CH2.
  • patterning is performed so that the pixel electrode 18B is in contact with the second portion 15bB and the drain electrode 14dB of the semiconductor layer 15B in the opening CH3.
  • the pixel electrode 16B of the pixel TFT 11B is formed from the third conductive layer 16, and the common electrode 18B is formed from the fourth conductive layer 18.
  • the common electrode 16B is formed of the third conductive layer 16, and the pixel electrode 18B is formed of the fourth conductive layer 18.
  • the columnar spacers 23a and 23b and the insulating member 19 are formed on the fourth conductive layer 18 in the same process as the liquid crystal display device 100, whereby the active matrix substrate 10 of the liquid crystal display device 100A is manufactured.
  • FIG. 17 shows a liquid crystal display device 100B which is another modified example of the liquid crystal display device 100.
  • FIG. 17 is a cross-sectional view schematically showing a frame region 100f of the liquid crystal display device 100B.
  • the liquid crystal display device 100B will be described with a focus on differences from the liquid crystal display device 100A.
  • the second gate electrode 18gA is formed of the same conductive film as the fourth conductive layer 18.
  • the second gate electrode 18gA may be formed of the same conductive film as the contact electrode 64.
  • the second gate electrode 18gA is in contact with the source electrode 14sA in the opening CH2 provided in the second insulating layer 4i and the third insulating layer 6i.
  • liquid crystal display device 100B having such a configuration, the same effect as that of the liquid crystal display device 100A can be obtained.
  • the contact electrode 64 is formed of the same conductive film as the fourth conductive layer 18.
  • the contact electrode 64 may be formed of, for example, the same conductive film as the third conductive layer 16.
  • FIG. 18 is a cross-sectional view schematically showing a frame region 200f of the liquid crystal display device 200 along the 18At-18At ′ line and the 18Ad-18Ad ′ line in FIG.
  • a description will be given focusing on differences from the liquid crystal display device 100 of the first embodiment.
  • the liquid crystal display device 200 is different from the liquid crystal display device 100 of the first embodiment in the size of the insulating member 19.
  • the transition part 60t is provided on one side of the display area 200d, and the insulating member 19 covers substantially the entire area between the transition part 60t and the display area 200d.
  • the display area 200d is substantially rectangular, the transition part 60t is provided on one side of the display area 200d, and the insulating member 19 covers substantially the entire area between the transition part 60t and the display area 200d.
  • the insulating member 19 may be provided so as to expose at least the contact electrode 64, for example.
  • the same effect as that of the liquid crystal display device 100 can be obtained. Since the drive TFT 11A includes the second gate electrode 16gA that functions as a back gate electrode, fluctuations in the electrical characteristics of the drive TFT 11A are suppressed. Thereby, the fall of the reliability of the liquid crystal display device 200 is suppressed. Since the liquid crystal display device 200 includes the insulating member 19 that covers the second gate electrode 16gA, the second gate electrode 16gA and the counter electrode 34 of the counter substrate 30 are electrically connected by the conductive particles 62. Can be prevented. As a result, malfunction of the driving TFT 11A is suppressed, so that the liquid crystal display device 200 has excellent reliability.
  • the seal portion 60s and / or the transition portion 60t and the driving TFT 11A can be provided close to each other, the area of the frame region 200f can be reduced. Since the insulating member 19 is formed of the same dielectric film as the protruding structure of the active matrix substrate 10 in the display area 200d, a liquid crystal display having a narrow frame and excellent reliability without increasing the number of manufacturing steps. A device is obtained.
  • the driving TFT 11A (particularly the channel region 15cA of the semiconductor layer 15A) can be more effectively protected from moisture contained in the seal portion 60s. .
  • the seal portion 60 s of the liquid crystal display device 200 is a second granular spacer 66 b positioned between the insulating member 19 and the counter substrate 30, and the active matrix substrate 10 and the counter substrate together with the insulating member 19.
  • a second granular spacer 66b that defines a distance between the first and second particles may be included.
  • the second granular spacer 66b is included in the sealing material that forms the seal portion 60s.
  • the second granular spacer 66b may also be included in the transition material that forms the transition portion 60t.
  • the structure of the driving TFT 11A, the pixel TFT 11B, and the transition portion 60t is the same as that of the liquid crystal display device 100 of the first embodiment.
  • the present embodiment is not limited to this, and the structure of the driving TFT 11A, the pixel TFT 11B, and the transition portion 60t may be the same as the modified example of the liquid crystal display device 100 (including the liquid crystal display devices 100A and 100B).
  • FIG. 20 shows a liquid crystal display device 300 according to Embodiment 3 of the present invention.
  • FIG. 20 is a cross-sectional view schematically showing the frame region 300f and the display region 300d of the liquid crystal display device 300.
  • a description will be given focusing on differences from the liquid crystal display device 100 of the first embodiment.
  • the active matrix substrate 10 has the color filter layer 22 in the display region 300d. That is, a color filter on array structure is adopted.
  • the color filter layer 22 includes three types of color filters that transmit light of different colors, that is, a first color filter 22a, a second color filter 22b, and a third color filter (not shown).
  • the three types of color filters are, for example, a red color filter that transmits red light, a green color filter that transmits green light, and a blue color filter that transmits blue light.
  • the insulating member 19 is formed of the same dielectric film as at least one of the first color filter 22a, the second color filter 22b, and the third color filter.
  • the color filter layer 22 may further include a black matrix BM.
  • the same effect as that of the liquid crystal display device 100 can be obtained.
  • the drive TFT 11A includes the second gate electrode 16gA that functions as a back gate electrode, fluctuations in the electrical characteristics of the drive TFT 11A are suppressed. Thereby, the fall of the reliability of the liquid crystal display device 300 is suppressed.
  • the liquid crystal display device 300 has the insulating member 19 that covers the second gate electrode 16gA, the second gate electrode 16gA and the counter electrode 34 of the counter substrate 30 are electrically connected by the conductive particles 62. Can be prevented. As a result, malfunction of the driving TFT 11A is suppressed, so that the liquid crystal display device 300 has excellent reliability.
  • the seal portion 60s and / or the transition portion 60t and the driving TFT 11A can be provided close to each other, the area of the frame region 300f can be reduced.
  • the insulating member 19 is formed of the same dielectric film as the color filter layer 22 included in the active matrix substrate 10 in the display region 300d. A display device is obtained.
  • the liquid crystal display device 300 may have a higher aperture ratio than the liquid crystal display device 100.
  • the black matrix may be set wider in consideration of misalignment between the active matrix substrate 10 and the counter substrate 30.
  • the active matrix substrate 10 since the active matrix substrate 10 includes the color filter layer 22, it is not necessary to consider misalignment. Since the width of the black matrix can be reduced, the aperture ratio is improved accordingly.
  • the manufacturing process of the liquid crystal display device 300 will be described. Hereinafter, a description will be given focusing on differences from the manufacturing process of the liquid crystal display device 100.
  • the third conductive layer 16 is formed in the same manner as the manufacturing process of the liquid crystal display device 100 described with reference to FIGS.
  • the color filter layer 22 is formed on the third conductive layer 16. Specifically, first, a black matrix BM is formed on the third conductive layer 16, and then a red color filter 22a, a blue color filter 22b, and a green color filter (not shown) are sequentially formed, so that the color filter Layer 22 is formed.
  • a black matrix BM for example, a black photosensitive resin material can be used.
  • a material of the red color filter 22a, the blue color filter 22b, and the green color filter for example, a colored photosensitive resin material can be used.
  • a red color filter 22a and a blue color filter 22b are formed on the back gate electrode 16gA of the drive TFT 11A.
  • the red color filter 22a and the blue color filter 22b provided on the back gate electrode 16gA of the driving TFT 11A constitute the insulating member 19.
  • the insulating member 19 can function as a light shielding film for the channel region 15cA of the semiconductor layer 15A. Therefore, it is not necessary to provide the black matrix BM as a light shielding film for the channel region 15cA of the semiconductor layer 15A.
  • the insulating member 19 can be formed by stacking two or more color filters that transmit light of different colors. Even in this case, the same effect as described above can be obtained.
  • an organic insulating layer 24 for planarization is formed on the color filter layer 22.
  • the organic insulating layer 24 is made of, for example, a photosensitive resin.
  • an opening is formed in a region to be the opening CH1 or CH3 (see FIG. 20) later.
  • a fourth conductive layer (second transparent electrode layer) 18 including the pixel electrode 18B of the pixel TFT 11B is formed on the organic insulating layer 24.
  • a third insulating layer (auxiliary capacitor insulating layer) 6 i is formed on the fourth conductive layer 18.
  • the fifth conductive layer (third transparent electrode layer) 20 including the common electrode (transparent electrode) 20B and the contact electrode 64 of the pixel TFT 11B is formed on the third insulating layer 6i.
  • the common electrode 20B is opposed to the pixel electrode 18B through the third insulating layer 6i, and the pixel electrode 18B and the common electrode 20B and the third insulating layer 6i located therebetween constitute an auxiliary capacitor.
  • various transparent conductive materials can be used. For example, metal oxides such as ITO, IZO, ZnO, and the like can be used.
  • the active matrix substrate 10 of the liquid crystal display device 300 is manufactured by forming the columnar spacers 23a and 23b on the fifth conductive layer 20 in the same process as the liquid crystal display device 100.
  • the counter substrate 30 of the liquid crystal display device 300 may be the same as the counter substrate 30 of the liquid crystal display device 100 except that it does not have a color filter layer.
  • a display device having a narrow frame and excellent reliability can be obtained without increasing the number of manufacturing steps.
  • Embodiments of the present invention are widely used in various display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)

Abstract

A frame region (100f) of this display device (100) comprises a seal part (60s) and a transition part (60t) that electrically connects an active matrix substrate (10) and a counter substrate (30) with each other by means of conductive particles (62). A drive TFT (11A) provided in the frame region comprises a semiconductor layer (15), a first gate electrode (12gA), a source electrode (14sA), a drain electrode (14dA) and a second gate electrode (16gA) that is positioned opposite to the first gate electrode with respect to the semiconductor layer. In a display region (100d), the active matrix substrate has a projection structure that protrudes toward the counter substrate. In the frame region, the active matrix substrate has an insulating member (19) that is provided on the drive TFT and covers the second gate electrode. The insulating member is formed of the same dielectric film as the projection structure.

Description

表示装置Display device
 本発明は、表示装置に関する。 The present invention relates to a display device.
 液晶表示装置等の表示装置は、例えば、アクティブマトリクス基板と、アクティブマトリクス基板に対向するように配置された対向基板と、両基板の間に設けられた表示媒体層(例えば液晶層)とを有する。表示装置の表示領域は、アクティブマトリクス基板が有する複数の画素によって画定される。 A display device such as a liquid crystal display device includes, for example, an active matrix substrate, a counter substrate disposed so as to face the active matrix substrate, and a display medium layer (for example, a liquid crystal layer) provided between the two substrates. . A display area of the display device is defined by a plurality of pixels included in the active matrix substrate.
 表示装置の、表示領域以外の領域(例えば表示領域の周辺の領域)を額縁領域または非表示領域という。額縁領域は、例えば、画素毎に設けられたスイッチング素子(例えば薄膜トランジスタ(Thin Film Transistor;以下、「TFT」))を駆動する駆動回路部、アクティブマトリクス基板と対向基板とを電気的に接続する転移部、表示媒体(例えば液晶)を封止するシール材から形成されるシール部等を有する。シール部は、アクティブマトリクス基板と対向基板とを貼り合わせる役割を併せ持つことがある。 An area other than the display area (for example, an area around the display area) of the display device is called a frame area or a non-display area. The frame region is, for example, a driving circuit unit that drives a switching element (for example, a thin film transistor (hereinafter, “TFT”)) provided for each pixel, a transition that electrically connects an active matrix substrate and a counter substrate. Part, a sealing part formed from a sealing material for sealing a display medium (for example, liquid crystal). The seal portion sometimes has a role of bonding the active matrix substrate and the counter substrate together.
 近年、表示装置の狭額縁化、薄型化、高機能化(例えばタッチパネルと組み合わせた表示装置(インセルタッチパネルを含む))等の要請が強まっている。なかでも、表示装置の狭額縁化は、額縁領域の狭小化を指し、例えば、上記の駆動回路部、転移部およびシール部の少なくともいずれかの面積を小さくすることにより、狭額縁化が図られている。 In recent years, there has been an increasing demand for narrower, thinner, and higher-functional display devices (for example, display devices combined with touch panels (including in-cell touch panels)). In particular, the narrowing of the frame of the display device refers to the narrowing of the frame region. For example, the frame can be narrowed by reducing the area of at least one of the drive circuit portion, the transition portion, and the seal portion. ing.
 特許文献1は、額縁領域において、シール材から形成されたシール部と、アクティブマトリクス基板と対向基板とを電気的に接続する導電体から構成された転移部と、シール部および転移部の間に障壁とを有する液晶表示装置を開示している。障壁は、アクティブマトリクス基板と対向基板とを貼り合わせる際に、シール材が導電体を覆うことを防ぎ、両基板間の導通不良が起こることを防いでいる。特許文献1の液晶表示装置は、額縁領域に、シール部と導電体と障壁とを別々に有するので、狭額縁化を図ることは困難である。 Patent Document 1 discloses that in a frame region, a seal portion formed from a seal material, a transition portion configured from a conductor that electrically connects an active matrix substrate and a counter substrate, and between the seal portion and the transition portion. A liquid crystal display device having a barrier is disclosed. The barrier prevents the sealing material from covering the conductor when the active matrix substrate and the counter substrate are bonded to each other, and prevents a conduction failure between the substrates. Since the liquid crystal display device of Patent Document 1 has the seal portion, the conductor, and the barrier separately in the frame region, it is difficult to narrow the frame.
 これに対して、特許文献2は、導電性粒子を含むシール材が、シール部および転移部を一体として形成することを開示している。また、特許文献2は、導電性粒子による意図しない両基板間の導通を防ぐために、短絡防止パターンを対向基板に設けることを開示している。 On the other hand, Patent Document 2 discloses that a sealing material containing conductive particles integrally forms a seal portion and a transition portion. Patent Document 2 discloses that a short-circuit prevention pattern is provided on the counter substrate in order to prevent unintentional conduction between the two substrates due to the conductive particles.
 また、駆動回路を構成するTFT(以下、「駆動TFT」ということがある。)として、高い移動度を有するTFTを用いることで、駆動回路部の面積を小さくすることもできる。例えば、酸化物半導体層と活性層として用いるTFT(以下、「酸化物半導体TFT」という。)は、アモルファスシリコンよりも高い移動度を有するので、酸化物半導体TFTを駆動TFTとして用いることで、狭額縁化を図ることができる。ただし、酸化物半導体TFTは、その特性が変動する(例えばしきい値電圧Vthがシフトする)ことがある。特許文献3は、酸化物半導体TFTのしきい値電圧Vthを制御するために、半導体層を挟んでゲート電極と反対側に位置する付加的なゲート電極(以下、バックゲート電極と呼ぶことがある。)を設ける構造を開示している。バックゲート電極の電位を、ゲート電極の電位とは異なる、所定の値に固定することによって、TFTのしきい値電圧Vthを制御できることが記載されている。また、バックゲート電極の電位を、ゲート電極の電位と同じにすることによって、TFTの移動度を向上させることができる。これにより、駆動TFTが酸化物半導体TFTである場合に限られず、狭額縁化を図ることもできる。 Further, by using a TFT having high mobility as a TFT constituting the drive circuit (hereinafter, also referred to as “drive TFT”), the area of the drive circuit portion can be reduced. For example, a TFT used as an oxide semiconductor layer and an active layer (hereinafter referred to as an “oxide semiconductor TFT”) has a higher mobility than amorphous silicon. A frame can be made. However, the characteristics of the oxide semiconductor TFT may vary (for example, the threshold voltage Vth shifts). In Patent Document 3, in order to control the threshold voltage Vth of an oxide semiconductor TFT, an additional gate electrode (hereinafter referred to as a back gate electrode) located on the opposite side of the gate electrode with the semiconductor layer interposed therebetween may be referred to. .) Is disclosed. It is described that the threshold voltage Vth of the TFT can be controlled by fixing the potential of the back gate electrode to a predetermined value different from the potential of the gate electrode. Further, the mobility of the TFT can be improved by making the potential of the back gate electrode the same as the potential of the gate electrode. Thereby, the driving TFT is not limited to the oxide semiconductor TFT, and the frame can be narrowed.
特開2006-268020号公報JP 2006-268020 A 特開2007-156414号公報JP 2007-156414 A 特開2010-251735号公報JP 2010-251735 A
 狭額縁化の要請を受けて、本発明者が表示装置を試作したところ、表示装置の信頼性が低下することがあった。本発明者の検討によると、従来の表示装置では生じなかった問題が原因であることが分かった。詳細は後述する。 In response to a request for narrowing the frame, when the present inventor made a prototype of a display device, the reliability of the display device was sometimes lowered. According to the study by the present inventor, it was found that the problem was not caused by the conventional display device. Details will be described later.
 本発明は、上記事情に鑑みてなされたものであり、その目的は、製造工程を増やすことなく、狭額縁で、かつ、優れた信頼性を有する表示装置を提供することである。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a display device having a narrow frame and excellent reliability without increasing the number of manufacturing steps.
 本発明の実施形態による表示装置は、アクティブマトリクス基板と、前記アクティブマトリクス基板に対向するように配置された対向基板とを備え、マトリクス状に配列された複数の画素によって画定される表示領域と、前記表示領域の周辺の額縁領域とを有する表示装置であって、前記額縁領域は、前記表示領域を包囲するシール部と、導電性粒子によって前記アクティブマトリクス基板と前記対向基板とを電気的に接続する転移部とを含み、前記アクティブマトリクス基板は、前記額縁領域に設けられた駆動TFTと、前記駆動TFTを支持する基板とを有し、前記駆動TFTは、チャネル領域、ソース領域およびドレイン領域を含む半導体層と、前記半導体層の前記チャネル領域に第1絶縁層を介して重なり、前記半導体層および前記基板の間に位置する第1ゲート電極と、前記半導体層の前記ソース領域および前記ドレイン領域にそれぞれ電気的に接続されたソース電極およびドレイン電極と、前記半導体層の前記チャネル領域に第2絶縁層を介して重なり、前記半導体層に対して前記第1ゲート電極とは反対側に位置する第2ゲート電極とを有し、前記表示領域において、前記アクティブマトリクス基板は、前記対向基板側に突き出た突起構造体を有し、前記額縁領域において、前記アクティブマトリクス基板は、前記駆動TFT上に設けられ、前記第2ゲート電極を覆う絶縁部材を有し、前記絶縁部材は、前記突起構造体と同じ誘電体膜から形成されている。 A display device according to an embodiment of the present invention includes an active matrix substrate and a counter substrate disposed so as to face the active matrix substrate, and a display region defined by a plurality of pixels arranged in a matrix, A display device having a frame region around the display region, wherein the frame region is electrically connected to the active matrix substrate and the counter substrate by conductive particles and a seal portion surrounding the display region. The active matrix substrate includes a driving TFT provided in the frame region and a substrate that supports the driving TFT, and the driving TFT includes a channel region, a source region, and a drain region. A semiconductor layer that overlaps the channel region of the semiconductor layer with a first insulating layer interposed therebetween, and A first gate electrode located between the substrates, a source electrode and a drain electrode electrically connected to the source region and the drain region of the semiconductor layer, respectively, and a second insulating layer in the channel region of the semiconductor layer And the second gate electrode positioned opposite to the first gate electrode with respect to the semiconductor layer. In the display region, the active matrix substrate protrudes to the counter substrate side. In the frame region, the active matrix substrate is provided on the driving TFT and has an insulating member that covers the second gate electrode, and the insulating member is the same as the protruding structure. It is formed from a dielectric film.
 ある実施形態において、前記突起構造体は、前記アクティブマトリクス基板と前記対向基板との間の距離を規定する第1柱状スペーサである。 In one embodiment, the protruding structure is a first columnar spacer that defines a distance between the active matrix substrate and the counter substrate.
 ある実施形態において、前記突起構造体は、前記アクティブマトリクス基板と前記対向基板との間の距離を規定する第1柱状スペーサよりも低い第2柱状スペーサである。 In one embodiment, the protruding structure is a second columnar spacer that is lower than a first columnar spacer that defines a distance between the active matrix substrate and the counter substrate.
 ある実施形態において、前記第2柱状スペーサは、前記第1柱状スペーサと同じ誘電体膜から形成されている。 In one embodiment, the second columnar spacer is formed of the same dielectric film as the first columnar spacer.
 ある実施形態において、前記絶縁部材の高さは、前記突起構造体の高さと略同じである。 In one embodiment, the height of the insulating member is substantially the same as the height of the protruding structure.
 本発明の他の実施形態による表示装置は、アクティブマトリクス基板と、前記アクティブマトリクス基板に対向するように配置された対向基板とを備え、マトリクス状に配列された複数の画素によって画定される表示領域と、前記表示領域の周辺の額縁領域とを有する表示装置であって、前記額縁領域は、前記表示領域を包囲するシール部と、導電性粒子によって前記アクティブマトリクス基板と前記対向基板とを電気的に接続する転移部とを含み、前記アクティブマトリクス基板は、前記額縁領域に設けられた駆動TFTと、前記駆動TFTを支持する基板とを有し、前記駆動TFTは、チャネル領域、ソース領域およびドレイン領域を含む半導体層と、前記半導体層の前記チャネル領域に第1絶縁層を介して重なり、前記半導体層および前記基板の間に位置する第1ゲート電極と、前記半導体層の前記ソース領域および前記ドレイン領域にそれぞれ電気的に接続されたソース電極およびドレイン電極と、前記半導体層の前記チャネル領域に第2絶縁層を介して重なり、前記半導体層に対して前記第1ゲート電極とは反対側に位置する第2ゲート電極とを有し、前記表示領域において、前記アクティブマトリクス基板は、互いに異なる色の光を透過させる第1カラーフィルタ、第2カラーフィルタおよび第3カラーフィルタを含むカラーフィルタ層を有し、前記額縁領域において、前記アクティブマトリクス基板は、前記駆動TFT上に設けられ、前記第2ゲート電極を覆う絶縁部材を有し、前記絶縁部材は、前記第1カラーフィルタ、前記第2カラーフィルタおよび前記第3カラーフィルタのうちの少なくとも1つと同じ誘電体膜から形成されている。 A display device according to another embodiment of the present invention includes an active matrix substrate and a counter substrate arranged to face the active matrix substrate, and is defined by a plurality of pixels arranged in a matrix. And a frame region around the display region, wherein the frame region electrically connects the active matrix substrate and the counter substrate with a sealing portion that surrounds the display region, and conductive particles. The active matrix substrate includes a driving TFT provided in the frame region and a substrate that supports the driving TFT. The driving TFT includes a channel region, a source region, and a drain. A semiconductor layer including a region and the channel region of the semiconductor layer through a first insulating layer, the semiconductor layer and A first gate electrode located between the substrates, a source electrode and a drain electrode electrically connected to the source region and the drain region of the semiconductor layer, respectively, and a second insulation in the channel region of the semiconductor layer A second gate electrode that is located on a side opposite to the first gate electrode with respect to the semiconductor layer, and the active matrix substrate emits light of different colors in the display region. A color filter layer including a first color filter, a second color filter, and a third color filter to transmit; and in the frame region, the active matrix substrate is provided on the driving TFT, and the second gate electrode An insulating member that covers the first color filter, the second color filter, and the third color filter; It is formed from at least one same dielectric film of the color filter.
 ある実施形態において、前記絶縁部材の高さは、前記導電性粒子の平均粒径の半分よりも大きい。 In one embodiment, the height of the insulating member is greater than half of the average particle diameter of the conductive particles.
 ある実施形態において、前記シール部は、前記アクティブマトリクス基板と前記対向基板との間の距離を規定する第1粒状スペーサを含む。 In one embodiment, the seal part includes a first granular spacer that defines a distance between the active matrix substrate and the counter substrate.
 ある実施形態において、前記シール部は、前記絶縁部材と前記対向基板との間に位置する第2粒状スペーサであって、前記絶縁部材とともに前記アクティブマトリクス基板と前記対向基板との間の距離を規定する第2粒状スペーサを含む。 In one embodiment, the seal part is a second granular spacer located between the insulating member and the counter substrate, and defines a distance between the active matrix substrate and the counter substrate together with the insulating member. A second granular spacer.
 ある実施形態において、前記絶縁部材は、前記駆動TFT全体を覆う。 In one embodiment, the insulating member covers the entire driving TFT.
 ある実施形態において、前記転移部は、前記表示領域の一側に設けられ、前記絶縁部材は、前記転移部と前記表示領域との間の略全体を覆う。 In one embodiment, the transition portion is provided on one side of the display region, and the insulating member covers substantially the entire area between the transition portion and the display region.
 ある実施形態において、前記第2ゲート電極は、前記ソース電極と電気的に接続されている。 In one embodiment, the second gate electrode is electrically connected to the source electrode.
 ある実施形態において、前記アクティブマトリクス基板は、前記額縁領域に設けられたコンタクト電極を有し、前記対向基板は、前記コンタクト電極に対向する部分を含む対向電極を有し、前記転移部は、前記コンタクト電極と前記対向電極とを電気的に接続する。 In one embodiment, the active matrix substrate includes a contact electrode provided in the frame region, the counter substrate includes a counter electrode including a portion facing the contact electrode, and the transition portion includes The contact electrode and the counter electrode are electrically connected.
 ある実施形態において、前記コンタクト電極は、前記第1ゲート電極と同じ導電膜から形成された第1導電層、および/または、前記ソース電極および前記ドレイン電極と同じ導電膜から形成された第2導電層に電気的に接続されている。 In one embodiment, the contact electrode includes a first conductive layer formed from the same conductive film as the first gate electrode and / or a second conductive layer formed from the same conductive film as the source electrode and the drain electrode. Electrically connected to the layer.
 ある実施形態において、前記転移部は、前記第1絶縁層および前記第2絶縁層に設けられ、前記第1導電層、前記第2導電層および前記コンタクト電極を互いに電気的に接続する第1開口部を有する。 In one embodiment, the transition portion is provided in the first insulating layer and the second insulating layer, and a first opening that electrically connects the first conductive layer, the second conductive layer, and the contact electrode to each other. Part.
 ある実施形態において、前記転移部は、前記コンタクト電極と前記第2絶縁層との間に第3導電層をさらに有し、前記第3導電層は、前記第1開口部内で前記コンタクト電極と接している。 In one embodiment, the transition portion further includes a third conductive layer between the contact electrode and the second insulating layer, and the third conductive layer is in contact with the contact electrode in the first opening. ing.
 ある実施形態において、前記第2ゲート電極は、前記第3導電層と同じ導電膜から形成されている。 In one embodiment, the second gate electrode is formed of the same conductive film as the third conductive layer.
 ある実施形態において、前記第2ゲート電極は、前記コンタクト電極と同じ導電膜から形成されている。 In one embodiment, the second gate electrode is formed of the same conductive film as the contact electrode.
 ある実施形態において、前記第2ゲート電極は、前記第2絶縁層に設けられた第2開口部内で前記ソース電極と接している。 In one embodiment, the second gate electrode is in contact with the source electrode in a second opening provided in the second insulating layer.
 ある実施形態において、前記駆動TFTは、前記第2ゲート電極上に設けられ、前記第2ゲート電極と電気的に接続されている付加電極をさらに有し、前記付加電極は、前記第2絶縁層に設けられた第2開口部内で前記ソース電極と電気的に接続されている。 In one embodiment, the driving TFT further includes an additional electrode provided on the second gate electrode and electrically connected to the second gate electrode, and the additional electrode includes the second insulating layer. Is electrically connected to the source electrode in a second opening provided in the first electrode.
 ある実施形態において、前記付加電極は、前記コンタクト電極と同じ導電膜から形成されている。 In one embodiment, the additional electrode is formed of the same conductive film as the contact electrode.
 ある実施形態において、前記第2ゲート電極は、前記コンタクト電極と同じ導電膜から形成されている。 In one embodiment, the second gate electrode is formed of the same conductive film as the contact electrode.
 ある実施形態において、前記絶縁部材は、前記第2ゲート電極に加えて前記付加電極を覆っている。 In one embodiment, the insulating member covers the additional electrode in addition to the second gate electrode.
 ある実施形態において、前記半導体層は、酸化物半導体を含む。 In one embodiment, the semiconductor layer includes an oxide semiconductor.
 ある実施形態において、前記酸化物半導体は、In-Ga-Zn-O系の半導体を含む。 In one embodiment, the oxide semiconductor includes an In—Ga—Zn—O-based semiconductor.
 ある実施形態において、前記In-Ga-Zn-O系の半導体は、結晶質部分を含む。 In one embodiment, the In—Ga—Zn—O-based semiconductor includes a crystalline portion.
 本発明の実施形態によると、製造工程を増やすことなく、狭額縁で、かつ、優れた信頼性を有する表示装置が提供される。 According to the embodiment of the present invention, a display device having a narrow frame and excellent reliability can be provided without increasing the number of manufacturing steps.
(a)は、図2中の1At-1At’線および1Ad-1Ad’線に沿って、本発明の実施形態1による液晶表示装置100の額縁領域100fを模式的に示す断面図であり、(b)は、図3中の1b-1b’線に沿って、液晶表示装置100の表示領域100dを模式的に示す断面図である。(A) is a cross-sectional view schematically showing a frame region 100f of the liquid crystal display device 100 according to Embodiment 1 of the present invention, taken along lines 1At-1At ′ and 1Ad-1Ad ′ in FIG. FIG. 4B is a cross-sectional view schematically showing the display region 100d of the liquid crystal display device 100 along the line 1b-1b ′ in FIG. 液晶表示装置100の額縁領域100fを模式的に示す平面図である。4 is a plan view schematically showing a frame region 100f of the liquid crystal display device 100. FIG. 液晶表示装置100の表示領域100dを模式的に示す平面図である。4 is a plan view schematically showing a display area 100d of the liquid crystal display device 100. FIG. (a)は、液晶表示装置100の額縁領域100fの製造工程を模式的に示す工程断面図であり、(b)は、液晶表示装置100の表示領域100dの製造工程を模式的に示す工程断面図である。(A) is process sectional drawing which shows typically the manufacturing process of the frame area | region 100f of the liquid crystal display device 100, (b) is process cross section which shows the manufacturing process of the display area 100d of the liquid crystal display device 100 typically. FIG. (a)は、液晶表示装置100の額縁領域100fの製造工程を模式的に示す工程断面図であり、(b)は、液晶表示装置100の表示領域100dの製造工程を模式的に示す工程断面図である。(A) is process sectional drawing which shows typically the manufacturing process of the frame area | region 100f of the liquid crystal display device 100, (b) is process cross section which shows the manufacturing process of the display area 100d of the liquid crystal display device 100 typically. FIG. (a)は、液晶表示装置100の額縁領域100fの製造工程を模式的に示す工程断面図であり、(b)は、液晶表示装置100の表示領域100dの製造工程を模式的に示す工程断面図である。(A) is process sectional drawing which shows typically the manufacturing process of the frame area | region 100f of the liquid crystal display device 100, (b) is process cross section which shows the manufacturing process of the display area 100d of the liquid crystal display device 100 typically. FIG. (a)は、液晶表示装置100の額縁領域100fの製造工程を模式的に示す工程断面図であり、(b)は、液晶表示装置100の表示領域100dの製造工程を模式的に示す工程断面図である。(A) is process sectional drawing which shows typically the manufacturing process of the frame area | region 100f of the liquid crystal display device 100, (b) is process cross section which shows the manufacturing process of the display area 100d of the liquid crystal display device 100 typically. FIG. (a)は、液晶表示装置100の額縁領域100fの製造工程を模式的に示す工程断面図であり、(b)は、液晶表示装置100の表示領域100dの製造工程を模式的に示す工程断面図である。(A) is process sectional drawing which shows typically the manufacturing process of the frame area | region 100f of the liquid crystal display device 100, (b) is process cross section which shows the manufacturing process of the display area 100d of the liquid crystal display device 100 typically. FIG. (a)は、液晶表示装置100の額縁領域100fの製造工程を模式的に示す工程断面図であり、(b)は、液晶表示装置100の表示領域100dの製造工程を模式的に示す工程断面図である。(A) is process sectional drawing which shows typically the manufacturing process of the frame area | region 100f of the liquid crystal display device 100, (b) is process cross section which shows the manufacturing process of the display area 100d of the liquid crystal display device 100 typically. FIG. (a)は、液晶表示装置100の額縁領域100fの製造工程を模式的に示す工程断面図であり、(b)は、液晶表示装置100の表示領域100dの製造工程を模式的に示す工程断面図である。(A) is process sectional drawing which shows typically the manufacturing process of the frame area | region 100f of the liquid crystal display device 100, (b) is process cross section which shows the manufacturing process of the display area 100d of the liquid crystal display device 100 typically. FIG. (a)は、図12中の11At-11At’線および11Ad-11Ad’線に沿って、液晶表示装置100の改変例である液晶表示装置100Aの額縁領域100fを模式的に示す断面図であり、(b)は、図13中の11b-11b’線に沿って、液晶表示装置100Aの表示領域100dを模式的に示す断面図である。FIG. 13A is a cross-sectional view schematically showing a frame region 100f of a liquid crystal display device 100A that is a modified example of the liquid crystal display device 100, taken along lines 11At-11At ′ and 11Ad-11Ad ′ in FIG. (B), It is sectional drawing which shows typically the display area 100d of 100 A of liquid crystal display devices along the 11b-11b 'line in FIG. 液晶表示装置100Aの額縁領域100fを模式的に示す平面図である。It is a top view which shows typically the frame area | region 100f of 100 A of liquid crystal display devices. 液晶表示装置100Aの表示領域100dを模式的に示す平面図である。It is a top view which shows typically the display area 100d of 100 A of liquid crystal display devices. (a)は、液晶表示装置100Aの額縁領域100fの製造工程を模式的に示す工程断面図であり、(b)は、液晶表示装置100Aの表示領域100dの製造工程を模式的に示す工程断面図である。(A) is process sectional drawing which shows typically the manufacturing process of the frame area | region 100f of 100 A of liquid crystal display devices, (b) Process cross section which shows typically the manufacturing process of the display area | region 100d of 100 A of liquid crystal display devices. FIG. (a)は、液晶表示装置100Aの額縁領域100fの製造工程を模式的に示す工程断面図であり、(b)は、液晶表示装置100Aの表示領域100dの製造工程を模式的に示す工程断面図である。(A) is process sectional drawing which shows typically the manufacturing process of the frame area | region 100f of 100 A of liquid crystal display devices, (b) Process cross section which shows typically the manufacturing process of the display area | region 100d of 100 A of liquid crystal display devices. FIG. (a)は、液晶表示装置100Aの額縁領域100fの製造工程を模式的に示す工程断面図であり、(b)は、液晶表示装置100Aの表示領域100dの製造工程を模式的に示す工程断面図である。(A) is process sectional drawing which shows typically the manufacturing process of the frame area | region 100f of 100 A of liquid crystal display devices, (b) Process cross section which shows typically the manufacturing process of the display area | region 100d of 100 A of liquid crystal display devices. FIG. 液晶表示装置100の他の改変例である液晶表示装置100Bの額縁領域100fを模式的に示す断面図である。It is sectional drawing which shows typically the frame area | region 100f of liquid crystal display device 100B which is the other modification of the liquid crystal display device 100. FIG. 図19中の18At-18At’線および18Ad-18Ad’線に沿って、本発明の実施形態2による液晶表示装置200の額縁領域200fを模式的に示す断面図である。FIG. 20 is a cross-sectional view schematically showing a frame region 200f of the liquid crystal display device 200 according to Embodiment 2 of the present invention along the 18At-18At 'line and the 18Ad-18Ad' line in FIG. 液晶表示装置200の額縁領域200fを模式的に示す平面図である。4 is a plan view schematically showing a frame region 200f of the liquid crystal display device 200. FIG. (a)は、本発明の実施形態3による液晶表示装置300の額縁領域300fを模式的に示す断面図であり、(b)は、液晶表示装置300の表示領域300dを模式的に示す断面図である。(A) is sectional drawing which shows typically the frame area | region 300f of the liquid crystal display device 300 by Embodiment 3 of this invention, (b) is sectional drawing which shows typically the display area 300d of the liquid crystal display device 300 It is. 比較例の液晶表示装置900の額縁領域900fを模式的に示す断面図である。It is sectional drawing which shows typically the frame area | region 900f of the liquid crystal display device 900 of a comparative example.
 まず、本発明者が見出した、液晶表示装置の信頼性が低下するという問題について、図21を参照して、説明する。図21は、比較例の液晶表示装置900の額縁領域900fを模式的に示す断面図である。比較例の液晶表示装置900の表示領域については、図示を省略する。なお、図21において、本発明の実施形態と共通の構成要素は共通の参照符号で示すことがあり、またその説明を省略することがある。 First, the problem that the reliability of the liquid crystal display device found by the present inventor will be described with reference to FIG. FIG. 21 is a cross-sectional view schematically showing a frame region 900f of a liquid crystal display device 900 of a comparative example. The display area of the liquid crystal display device 900 of the comparative example is not shown. In FIG. 21, components common to the embodiment of the present invention may be denoted by common reference numerals, and description thereof may be omitted.
 図21に示すように、比較例の液晶表示装置900は、アクティブマトリクス基板10と、アクティブマトリクス基板10に対向するように配置された対向基板30と、アクティブマトリクス基板10および対向基板30の間に設けられた液晶層とを備える。比較例の液晶表示装置900は、複数の行および複数の列を有するマトリクス状に配列された複数の画素を有する。比較例の液晶表示装置900は、複数の画素によって画定される表示領域と、表示領域の周辺の額縁領域900fとを有する。 As shown in FIG. 21, the liquid crystal display device 900 of the comparative example includes an active matrix substrate 10, a counter substrate 30 disposed so as to face the active matrix substrate 10, and between the active matrix substrate 10 and the counter substrate 30. And a provided liquid crystal layer. The liquid crystal display device 900 of the comparative example has a plurality of pixels arranged in a matrix having a plurality of rows and a plurality of columns. The liquid crystal display device 900 of the comparative example includes a display area defined by a plurality of pixels and a frame area 900f around the display area.
 額縁領域900fは、表示領域を包囲するシール部60sと、導電性粒子62によってアクティブマトリクス基板10と対向基板30とを電気的に接続する転移部60tと、駆動TFT11Aを有する駆動回路部60dとを含む。 The frame region 900f includes a seal portion 60s that surrounds the display region, a transfer portion 60t that electrically connects the active matrix substrate 10 and the counter substrate 30 by the conductive particles 62, and a drive circuit portion 60d that includes the drive TFT 11A. Including.
 駆動TFT11Aは、半導体層15Aと、第1ゲート電極12gAと、ソース電極14sAおよびドレイン電極14dAと、第2ゲート電極16gAとを有する。半導体層15Aは、チャネル領域15cA、ソース領域15sAおよびドレイン領域15dAを含む。第1ゲート電極12gAは、半導体層15Aのチャネル領域15cAに第1絶縁層2iを介して重なり、半導体層15Aおよび基板1sの間に位置する。ソース電極14sAおよびドレイン電極14dAは、半導体層15Aのソース領域15sAおよびドレイン領域15dAに、それぞれ電気的に接続されている。第2ゲート電極16gAは、半導体層15Aのチャネル領域15cAに第2絶縁層4iを介して重なり、半導体層15Aに対して第1ゲート電極12gAとは反対側に位置する。第2ゲート電極16gAは、バックゲート電極と呼ばれることもある。駆動TFT11Aは、バックゲート電極を有するバックゲートTFTと呼ばれることもある。 The driving TFT 11A includes a semiconductor layer 15A, a first gate electrode 12gA, a source electrode 14sA and a drain electrode 14dA, and a second gate electrode 16gA. The semiconductor layer 15A includes a channel region 15cA, a source region 15sA, and a drain region 15dA. The first gate electrode 12gA overlaps the channel region 15cA of the semiconductor layer 15A via the first insulating layer 2i, and is located between the semiconductor layer 15A and the substrate 1s. The source electrode 14sA and the drain electrode 14dA are electrically connected to the source region 15sA and the drain region 15dA of the semiconductor layer 15A, respectively. The second gate electrode 16gA overlaps the channel region 15cA of the semiconductor layer 15A via the second insulating layer 4i, and is located on the opposite side of the semiconductor layer 15A from the first gate electrode 12gA. The second gate electrode 16gA may be called a back gate electrode. The drive TFT 11A may be called a back gate TFT having a back gate electrode.
 図21に示すように、比較例の液晶表示装置900において、シール部60sは、駆動回路部60dに重複して設けられている。これは、比較例の液晶表示装置900においては、従来の液晶表示装置よりもさらに額縁領域が狭小化され、従来の液晶表示装置よりもシール部と駆動回路部とが近接して設けられていることによる。例えばアクティブマトリクス基板10と対向基板30とを貼り合わせる際に、シール部60sを形成するシール材が、駆動TFT11A上にも及ぶ。 As shown in FIG. 21, in the liquid crystal display device 900 of the comparative example, the seal portion 60s is provided overlapping the drive circuit portion 60d. In the liquid crystal display device 900 of the comparative example, the frame area is further narrowed compared to the conventional liquid crystal display device, and the seal portion and the drive circuit portion are provided closer to each other than the conventional liquid crystal display device. It depends. For example, when the active matrix substrate 10 and the counter substrate 30 are bonded to each other, the seal material that forms the seal portion 60s extends to the drive TFT 11A.
 従来の液晶表示装置においては、シール部は駆動回路部とは別個に設けられる。さらに、シール部とは駆動回路部とは、アクティブマトリクス基板と対向基板とを貼り合わせる際においても、シール部を形成するシール材が駆動TFTには重ならない程度に離れて設けられている。例えば、上記の特許文献2の液晶表示装置(特許文献2の図3および図4参照)において、シール部は、駆動回路部には重複していない。ここで、特許文献2において駆動回路部は、「ゲート回路領域」と呼ばれ、スイッチング素子を有する回路ブロックから構成されるとされている。 In the conventional liquid crystal display device, the seal portion is provided separately from the drive circuit portion. Further, the seal portion and the drive circuit portion are provided so that the seal material forming the seal portion does not overlap the drive TFT even when the active matrix substrate and the counter substrate are bonded to each other. For example, in the above-described liquid crystal display device of Patent Document 2 (see FIGS. 3 and 4 of Patent Document 2), the seal portion does not overlap the drive circuit portion. Here, in Patent Document 2, the drive circuit section is referred to as a “gate circuit region” and is composed of a circuit block having a switching element.
 比較例の液晶表示装置900においては、シール部60sを形成するシール材が、駆動TFT11Aと重なることにより、第2ゲート電極16gAと対向基板30が有する対向電極34とが、導電性粒子62によって導通することがある。これにより、駆動TFT11Aが誤作動を起こし、液晶表示装置の信頼性が低下するという問題が生じることがあった。 In the liquid crystal display device 900 of the comparative example, the second gate electrode 16gA and the counter electrode 34 included in the counter substrate 30 are electrically connected by the conductive particles 62 because the seal material forming the seal portion 60s overlaps the driving TFT 11A. There are things to do. As a result, the drive TFT 11A malfunctions, which may cause a problem that the reliability of the liquid crystal display device is lowered.
 導電性粒子62は、例えば転移部60tを形成する転移材に含まれている。シール部60sおよび転移部60tが互いに近接して設けられると、シール部60sを形成するシール材と転移部60tを形成する転移材とが互いに接することで、導電性粒子62が第2ゲート電極16gAおよび対向電極34と電気的に接続されてしまう。特に、ともに樹脂材料から形成されるシール部60sおよび転移部60tは、互いに近接して設けられることが多い。シール材および転移材の両方が導電性粒子62を含んでいてもよい。シール材と転移材とは同じ樹脂材料であってもよい。あるいは、上記特許文献2の液晶表示装置のように、シール部と転移部とは、導電性粒子を含む樹脂材料から一体として形成されていてもよい。いずれの場合においても、上記問題が生じ得る。 The conductive particles 62 are included in, for example, a transition material that forms the transition portion 60t. When the seal part 60s and the transition part 60t are provided close to each other, the sealing material forming the seal part 60s and the transition material forming the transition part 60t are in contact with each other, so that the conductive particles 62 are in contact with the second gate electrode 16gA. In addition, the counter electrode 34 is electrically connected. In particular, the seal part 60s and the transition part 60t, both of which are made of a resin material, are often provided close to each other. Both the sealing material and the transition material may include conductive particles 62. The sealing material and the transition material may be the same resin material. Or like the liquid crystal display device of the said patent document 2, the seal | sticker part and the transfer part may be integrally formed from the resin material containing electroconductive particle. In either case, the above problem can occur.
 また、図21に示すように、第2ゲート電極16gAの上に第3絶縁層6iが形成されていても、第2ゲート電極16gAと対向電極34とが、導電性粒子62によって導通することがあった。第3絶縁層6iは、例えば補助容量を形成するために設けられた誘電体層であり、例えば10nm~300nmと比較的薄いことがある。そのような第3絶縁層6iによって第2ゲート電極16gAが覆われていても、導電性粒子62が第3絶縁層6iを部分的に突き破り、導電性粒子62と第2ゲート電極16gAとが電気的に接続され得る。 Further, as shown in FIG. 21, even if the third insulating layer 6i is formed on the second gate electrode 16gA, the second gate electrode 16gA and the counter electrode 34 can be electrically connected by the conductive particles 62. there were. The third insulating layer 6i is a dielectric layer provided, for example, for forming an auxiliary capacitance, and may be relatively thin, for example, 10 nm to 300 nm. Even when the second gate electrode 16gA is covered with the third insulating layer 6i, the conductive particles 62 partially penetrate the third insulating layer 6i, and the conductive particles 62 and the second gate electrode 16gA are electrically connected. Can be connected to each other.
 このように、比較例の液晶表示装置900における信頼性が低下するという問題は、従来の液晶表示装置よりもさらに額縁領域を狭小化し、かつ、駆動TFTとしてバックゲートTFTを用いたことによって、生じた問題である。 As described above, the problem that the reliability of the liquid crystal display device 900 of the comparative example is lowered is caused by the fact that the frame region is further narrowed compared to the conventional liquid crystal display device and the back gate TFT is used as the driving TFT. It is a problem.
 以下、図面を参照して、本発明の実施形態による表示装置を説明する。なお、本発明は以下で例示する実施形態に限られない。以下の図面において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、その説明を省略することがある。 Hereinafter, a display device according to an embodiment of the present invention will be described with reference to the drawings. In addition, this invention is not restricted to embodiment illustrated below. In the following drawings, components having substantially the same function are denoted by common reference numerals, and description thereof may be omitted.
 (実施形態1)
 図1~図3を参照して、本発明の実施形態1による液晶表示装置100を説明する。図1~図3は、液晶表示装置100を模式的に示す断面図および平面図である。図1(a)は、図2中の1At-1At’線および1Ad-1Ad’線に沿って、液晶表示装置100の額縁領域100fを模式的に示す断面図である。図1(b)は、図3中の1b-1b’線に沿って、液晶表示装置100の表示領域100dを模式的に示す断面図である。
(Embodiment 1)
A liquid crystal display device 100 according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 3 are a cross-sectional view and a plan view schematically showing the liquid crystal display device 100. FIG. FIG. 1A is a cross-sectional view schematically showing a frame region 100f of the liquid crystal display device 100 along the 1At-1At ′ line and the 1Ad-1Ad ′ line in FIG. FIG. 1B is a cross-sectional view schematically showing the display region 100d of the liquid crystal display device 100 along the line 1b-1b ′ in FIG.
 図1(a)および(b)に示すように、液晶表示装置100は、アクティブマトリクス基板10と、アクティブマトリクス基板10に対向するように配置された対向基板30と、アクティブマトリクス基板10および対向基板30の間に設けられた液晶層50とを備える。液晶表示装置100は、複数の行および複数の列を有するマトリクス状に配列された複数の画素を有する。液晶表示装置100は、複数の画素によって画定される表示領域100dと、表示領域100dの周辺の額縁領域100fとを有する。 As shown in FIGS. 1A and 1B, a liquid crystal display device 100 includes an active matrix substrate 10, a counter substrate 30 disposed so as to face the active matrix substrate 10, and the active matrix substrate 10 and the counter substrate. 30 and a liquid crystal layer 50 provided between 30. The liquid crystal display device 100 includes a plurality of pixels arranged in a matrix having a plurality of rows and a plurality of columns. The liquid crystal display device 100 includes a display area 100d defined by a plurality of pixels, and a frame area 100f around the display area 100d.
 額縁領域100fは、表示領域100dを包囲するシール部60sと、導電性粒子62によってアクティブマトリクス基板10と対向基板30とを電気的に接続する転移部60tと、駆動TFT11Aを有する駆動回路部60dとを含む。図1に示すように、シール部60sは、駆動回路部60dに重複して設けられている。 The frame region 100f includes a seal portion 60s that surrounds the display region 100d, a transition portion 60t that electrically connects the active matrix substrate 10 and the counter substrate 30 by the conductive particles 62, and a drive circuit portion 60d that includes the drive TFT 11A. including. As shown in FIG. 1, the seal portion 60s is provided overlapping the drive circuit portion 60d.
 転移部60tにおいて、アクティブマトリクス基板10は、額縁領域100fに設けられたコンタクト電極64を有し、対向基板30は、コンタクト電極64に対向する部分を含む対向電極34を有する。転移部60tは、コンタクト電極64と対向電極34とを電気的に接続する。 In the transfer portion 60t, the active matrix substrate 10 has a contact electrode 64 provided in the frame region 100f, and the counter substrate 30 has a counter electrode 34 including a portion facing the contact electrode 64. The transition part 60 t electrically connects the contact electrode 64 and the counter electrode 34.
 アクティブマトリクス基板10は、額縁領域100fに設けられた駆動TFT11Aと、駆動TFT11Aを支持する基板(例えばガラス基板)1sとを有する。 The active matrix substrate 10 includes a drive TFT 11A provided in the frame region 100f, and a substrate (for example, a glass substrate) 1s that supports the drive TFT 11A.
 駆動TFT11Aは、半導体層15Aと、第1ゲート電極12gAと、ソース電極14sAおよびドレイン電極14dAと、第2ゲート電極16gAとを有する。 The driving TFT 11A includes a semiconductor layer 15A, a first gate electrode 12gA, a source electrode 14sA and a drain electrode 14dA, and a second gate electrode 16gA.
 半導体層15Aは、チャネル領域15cA、ソース領域15sAおよびドレイン領域15dAを含む。半導体層15Aのうち、ソース電極14sAと接する領域は、ソース領域15sAと呼ばれ、ドレイン電極14dAと接する領域は、ドレイン領域15dAと呼ばれる。半導体層15Aのうち、第1ゲート電極12gAと重なり、かつ、ソース領域15sAとドレイン領域15dAとの間に位置する領域は、チャネル領域15cAと呼ばれる。 The semiconductor layer 15A includes a channel region 15cA, a source region 15sA, and a drain region 15dA. Of the semiconductor layer 15A, a region in contact with the source electrode 14sA is called a source region 15sA, and a region in contact with the drain electrode 14dA is called a drain region 15dA. A region of the semiconductor layer 15A that overlaps with the first gate electrode 12gA and is located between the source region 15sA and the drain region 15dA is called a channel region 15cA.
 第1ゲート電極12gAは、半導体層15Aのチャネル領域15cAに第1絶縁層2iを介して重なり、半導体層15Aおよび基板1sの間に位置する。 The first gate electrode 12gA overlaps the channel region 15cA of the semiconductor layer 15A via the first insulating layer 2i and is located between the semiconductor layer 15A and the substrate 1s.
 ソース電極14sAおよびドレイン電極14dAは、半導体層15Aのソース領域15sAおよびドレイン領域15dAに、それぞれ電気的に接続されている。 The source electrode 14sA and the drain electrode 14dA are electrically connected to the source region 15sA and the drain region 15dA of the semiconductor layer 15A, respectively.
 第2ゲート電極16gAは、半導体層15Aのチャネル領域15cAに第2絶縁層4iを介して重なり、半導体層15Aに対して第1ゲート電極12gAとは反対側に位置する。第2ゲート電極16gAは、例えば、ソース電極14sAと電気的に接続されている。第2ゲート電極16gAは、バックゲート電極と呼ばれることもある。駆動TFT11Aは、バックゲート電極を有するバックゲートTFTと呼ばれることもある。 The second gate electrode 16gA overlaps the channel region 15cA of the semiconductor layer 15A via the second insulating layer 4i, and is located on the opposite side of the semiconductor layer 15A from the first gate electrode 12gA. For example, the second gate electrode 16gA is electrically connected to the source electrode 14sA. The second gate electrode 16gA may be called a back gate electrode. The drive TFT 11A may be called a back gate TFT having a back gate electrode.
 アクティブマトリクス基板10は、額縁領域100fにおいて、駆動TFT11A上に設けられ、第2ゲート電極16gAを覆う絶縁部材19を有する。アクティブマトリクス基板10は、表示領域100dにおいて、対向基板30側に突き出た突起構造体を有する。図1に示す例においては、突起構造体は、第1柱状スペーサ23aまたは第2柱状スペーサ23bである。絶縁部材19は、突起構造体(第1柱状スペーサ23aまたは第2柱状スペーサ23b)と同じ誘電体膜から形成されている。 The active matrix substrate 10 has an insulating member 19 provided on the driving TFT 11A in the frame region 100f and covering the second gate electrode 16gA. The active matrix substrate 10 has a protruding structure protruding toward the counter substrate 30 in the display region 100d. In the example shown in FIG. 1, the protruding structure is a first columnar spacer 23a or a second columnar spacer 23b. The insulating member 19 is formed of the same dielectric film as the protruding structure (the first columnar spacer 23a or the second columnar spacer 23b).
 駆動TFT11Aは、バックゲート電極として機能する第2ゲート電極16gAを有するので、駆動TFT11Aの電気特性の変動が抑制される。これにより、液晶表示装置100の信頼性の低下が抑制される。液晶表示装置100は、第2ゲート電極16gAを覆う絶縁部材19を有するので、第2ゲート電極16gAと対向基板30が有する対向電極34とが、導電性粒子62によって電気的に接続されることを防ぐことができる。これにより、駆動TFT11Aの誤作動が抑制されるので、液晶表示装置100は優れた信頼性を有する。また、シール部60sおよび/または転移部60tと駆動TFT11Aとを互いに近接して設けることが可能になるので、額縁領域100fの面積を小さくできる。絶縁部材19は、表示領域100dにおいてアクティブマトリクス基板10が有する突起構造体と同じ誘電体膜から形成されるので、製造工程を増やすことなく、狭額縁で、かつ、優れた信頼性を有する液晶表示装置が得られる。 Since the driving TFT 11A includes the second gate electrode 16gA that functions as a back gate electrode, fluctuations in the electrical characteristics of the driving TFT 11A are suppressed. Thereby, the fall of the reliability of the liquid crystal display device 100 is suppressed. Since the liquid crystal display device 100 includes the insulating member 19 that covers the second gate electrode 16gA, the second gate electrode 16gA and the counter electrode 34 included in the counter substrate 30 are electrically connected by the conductive particles 62. Can be prevented. Accordingly, malfunction of the driving TFT 11A is suppressed, so that the liquid crystal display device 100 has excellent reliability. Further, since the seal portion 60s and / or the transition portion 60t and the driving TFT 11A can be provided close to each other, the area of the frame region 100f can be reduced. Since the insulating member 19 is formed of the same dielectric film as the protruding structure of the active matrix substrate 10 in the display region 100d, the liquid crystal display has a narrow frame and excellent reliability without increasing the number of manufacturing steps. A device is obtained.
 絶縁部材19は、第2ゲート電極16gAに直接接して第2ゲート電極16gAを覆っていてもよいし、別の層を間に挟んで第2ゲート電極16gAを覆っていてもよい。絶縁部材19が第2ゲート電極16gAを覆うとは、アクティブマトリクス基板10の法線方向から見たとき、第2ゲート電極16gAの全てが絶縁部材19と重複している状態をいう。例えば、図1に示す例においては、第2ゲート電極16gA上に第3絶縁層6iが設けられ、絶縁部材19は、第3絶縁層6iを介して第2ゲート電極16gAを覆っている。絶縁部材19は、導電性粒子62が第3絶縁層6iを突き破るのを防ぐことで、導電性粒子62によって第2ゲート電極16gAと対向電極34とが電気的に接続されることを防ぐことができる。絶縁部材19の形状および大きさは、特に限定されず、第2ゲート電極16gAを覆っていればよい。例えば、絶縁部材19は駆動TFT11A全体を覆っていてもよい。すなわち、アクティブマトリクス基板10の法線方向から見たとき、駆動TFT11A全体が絶縁部材19と重複していてもよい。 The insulating member 19 may be in direct contact with the second gate electrode 16gA to cover the second gate electrode 16gA, or may cover the second gate electrode 16gA with another layer interposed therebetween. The insulating member 19 covering the second gate electrode 16gA means a state in which all of the second gate electrode 16gA overlaps with the insulating member 19 when viewed from the normal direction of the active matrix substrate 10. For example, in the example shown in FIG. 1, the third insulating layer 6i is provided on the second gate electrode 16gA, and the insulating member 19 covers the second gate electrode 16gA via the third insulating layer 6i. The insulating member 19 prevents the conductive particles 62 from breaking through the third insulating layer 6i, thereby preventing the second gate electrode 16gA and the counter electrode 34 from being electrically connected by the conductive particles 62. it can. The shape and size of the insulating member 19 are not particularly limited as long as it covers the second gate electrode 16gA. For example, the insulating member 19 may cover the entire driving TFT 11A. That is, when viewed from the normal direction of the active matrix substrate 10, the entire driving TFT 11 </ b> A may overlap with the insulating member 19.
 第1柱状スペーサ23aは、アクティブマトリクス基板10と対向基板30との間の距離を規定するスペーサである。つまり、第1柱状スペーサ23aは、液晶層50の厚さ(「セルギャップ」と呼ばれることもある。)を制御する。第2柱状スペーサ23bは、第1柱状スペーサ23aよりも低いスペーサである。第1柱状スペーサ23aは対向基板30に接し、第2柱状スペーサ23bは対向基板30に接しない。第1柱状スペーサ23aは「メインスペーサ」とも呼ばれ、第2柱状スペーサ23bは「サブスペーサ」とも呼ばれる。第2柱状スペーサ23bは、例えば、第1柱状スペーサ23aと同じ誘電体膜から形成されている。第2柱状スペーサ23bは、第1柱状スペーサ23aと異なる誘電体膜から形成されていてもよい。 The first columnar spacer 23 a is a spacer that defines the distance between the active matrix substrate 10 and the counter substrate 30. That is, the first columnar spacer 23 a controls the thickness of the liquid crystal layer 50 (sometimes referred to as “cell gap”). The second columnar spacer 23b is a spacer lower than the first columnar spacer 23a. The first columnar spacers 23 a are in contact with the counter substrate 30, and the second columnar spacers 23 b are not in contact with the counter substrate 30. The first columnar spacers 23a are also called “main spacers”, and the second columnar spacers 23b are also called “subspacers”. For example, the second columnar spacer 23b is formed of the same dielectric film as the first columnar spacer 23a. The second columnar spacer 23b may be formed of a dielectric film different from the first columnar spacer 23a.
 第2柱状スペーサ23bは省略され得るが、第1柱状スペーサ23aに加えて第2柱状スペーサ23bを有すると、以下のような効果を得られる。従来の液晶表示装置では、耐荷重特性を向上するために柱状スペーサの配置密度(単位面積当たりの柱状スペーサの数)を高くすると、低温発泡が発生しやすくなるという問題があった。液晶表示装置100においては、図1に示すように、基本的には第1柱状スペーサ23aのみでセルギャップを制御するので、実効的なスペーサ密度は第1柱状スペーサ23aのみで規定される。そのため、セルギャップを液晶層50の収縮に追従させやすく、低温発泡の発生を抑制することができる。また、液晶表示装置100に荷重が加わってセルギャップが狭くなったときには、第1柱状スペーサ23aおよび第2柱状スペーサ23bの両方で両基板が支持される(このときの実効的なスペーサ密度は柱状スペーサ23aおよび23bの両方で規定される)ので、高い耐荷重特性を実現できる。 Although the second columnar spacer 23b can be omitted, the following effects can be obtained by having the second columnar spacer 23b in addition to the first columnar spacer 23a. In the conventional liquid crystal display device, when the arrangement density of columnar spacers (the number of columnar spacers per unit area) is increased in order to improve load bearing characteristics, there is a problem that low-temperature foaming is likely to occur. In the liquid crystal display device 100, as shown in FIG. 1, since the cell gap is basically controlled only by the first columnar spacers 23a, the effective spacer density is defined only by the first columnar spacers 23a. Therefore, the cell gap can easily follow the contraction of the liquid crystal layer 50, and the occurrence of low temperature foaming can be suppressed. Further, when a load is applied to the liquid crystal display device 100 and the cell gap becomes narrow, both the substrates are supported by both the first columnar spacer 23a and the second columnar spacer 23b (the effective spacer density at this time is the columnar shape). Therefore, a high load resistance characteristic can be realized.
 絶縁部材19は、突起構造体(第1柱状スペーサ23aまたは第2柱状スペーサ23b)と同じ製造工程において形成される。絶縁部材19の高さh19は、突起構造体の高さ(第1柱状スペーサ23aの高さh23aまたは第2柱状スペーサ23bの高さh23b)と略同じであり得る。液晶表示装置100の製造工程の詳細については、後述する。 The insulating member 19 is formed in the same manufacturing process as the protruding structure (the first columnar spacer 23a or the second columnar spacer 23b). The height h19 of the insulating member 19 may be substantially the same as the height of the protruding structure (the height h23a of the first columnar spacer 23a or the height h23b of the second columnar spacer 23b). Details of the manufacturing process of the liquid crystal display device 100 will be described later.
 絶縁部材19の高さh19は、上記の例に限定されず、第2ゲート電極16gAと、対向基板30とが導電性粒子62によって電気的に接続されることを防げることができる程度に高ければよい。絶縁部材19の高さh19は、例えば、導電性粒子62の平均粒径の半分よりも大きいことが好ましい。絶縁部材19は、対向基板30に接していてもよいし、対向基板30に接していなくてもよい。 The height h <b> 19 of the insulating member 19 is not limited to the above example, and may be as long as the second gate electrode 16 g </ i> A and the counter substrate 30 can be prevented from being electrically connected by the conductive particles 62. Good. The height h19 of the insulating member 19 is preferably larger than half of the average particle diameter of the conductive particles 62, for example. The insulating member 19 may be in contact with the counter substrate 30 or may not be in contact with the counter substrate 30.
 導電性粒子62は、例えば、金属粒子(例えば金(Au)、銀(Ag)、ニッケル(Ni))、金属メッキ(例えばNiメッキ)を施した樹脂粒子、カーボン粒子、または透明導電粒子(例えばITO)である。導電性粒子62の粒径は、例えば0.1μm~10μmである。導電性粒子62は、例えば、転移部60tを形成する転移材に含まれている。導電性粒子62は、シール部60sを形成するシール材に含まれていてもよい。導電性粒子62は、シール材および転移材の両方に含まれていてもよい。シール部60sと転移部60tとは、同じ樹脂材料から一体として形成されていてもよい。 The conductive particles 62 are, for example, metal particles (for example, gold (Au), silver (Ag), nickel (Ni)), resin particles subjected to metal plating (for example, Ni plating), carbon particles, or transparent conductive particles (for example, ITO). The particle size of the conductive particles 62 is, for example, 0.1 μm to 10 μm. The conductive particles 62 are included in, for example, a transition material that forms the transition portion 60t. The conductive particles 62 may be included in a sealing material that forms the seal portion 60s. The conductive particles 62 may be included in both the sealing material and the transition material. The seal portion 60s and the transition portion 60t may be integrally formed from the same resin material.
 シール材および転移材は、例えば同じ樹脂材料を用いることができる。シール材および転移材は、それぞれ、例えば光硬化性樹脂(熱硬化を併用するものを含む)が広く用いられている。なお、シール材および転移材は、紫外線硬化性樹脂に限られず、他の波長の光(例えば可視光)で硬化する樹脂を用いてもよく、種々の光硬化性樹脂を好適に用いることができる。また、光硬化性樹脂とは、所定の波長の光を照射することによって硬化反応が進行する樹脂を差し、光硬化後にさらに熱硬化を行うことができる樹脂を含む。熱硬化を併用することによって、一般に硬化物物性(硬度や弾性率)が向上する。さらに、シール材および転移材には、それぞれ、光硬化性樹脂とともに散乱性を付与するための粒子(充填剤(フィラー))を混合してもよい。粒子を分散させたシール材および転移材は、光を散乱または拡散反射するので、シール材または転移材内のより広い部分に光をいきわたらせる効果が得られる。 For example, the same resin material can be used for the sealing material and the transition material. As the sealing material and the transition material, for example, a photo-curing resin (including those that use thermosetting together) is widely used. Note that the sealing material and the transition material are not limited to the ultraviolet curable resin, and a resin curable with light of other wavelengths (for example, visible light) may be used, and various photocurable resins can be suitably used. . In addition, the photo-curable resin includes a resin that allows a curing reaction to proceed by irradiating with light of a predetermined wavelength, and that can be further thermally cured after photo-curing. By using thermosetting together, the physical properties (hardness and elastic modulus) of the cured product are generally improved. Furthermore, you may mix the particle | grains (filler (filler)) for providing a scattering property with a sealing material and a transfer material with a photocurable resin, respectively. Since the sealing material and the transition material in which particles are dispersed scatter or diffusely reflect light, an effect of spreading the light over a wider portion in the sealing material or the transition material can be obtained.
 シール部60sは、アクティブマトリクス基板10と対向基板30との間の距離を規定する第1粒状スペーサ66aをさらに含んでもよい。第1粒状スペーサ66aは、例えばシール材に含まれる。第1粒状スペーサ66aは、シール材および/または転移材に含まれ得る。 The seal portion 60 s may further include a first granular spacer 66 a that defines the distance between the active matrix substrate 10 and the counter substrate 30. The first granular spacer 66a is included in, for example, a sealing material. The first granular spacer 66a may be included in the sealing material and / or the transition material.
 上述したように、駆動TFT11Aは、バックゲート電極として機能する第2ゲート電極16gAを有するので、TFTの特性変動が抑制される。後述するように、第2ゲート電極16gAを含む第3導電層16は、例えば透明導電膜から形成される。第2ゲート電極16gAは、例えば金属材料から形成されてもよい。金属材料から形成された第2ゲート電極16gAは、半導体層15Aのチャネル領域15cAに対する遮光膜としても機能するので、駆動TFT11Aのしきい値電圧Vthのシフトをより効果的に抑制することができる。駆動TFT11Aの第2ゲート電極16gAは、図1に例示されるように、駆動TFT11Aのソース電極14sAと電気的に接続されている。例えば、第2ゲート電極16gAは、第2絶縁層4iに設けられた開口部CH2内でソース電極14sAと接している。第2ゲート電極16gAがソース電極14sAと電気的に接続されていると、第2ゲート電極16gAの電位が所定の値に固定されることにより、駆動TFT11Aのしきい値電圧Vthのシフトや、駆動TFT11Aのヒステリシスが大きくなることを抑制することができる。これにより、駆動TFT11Aの特性変動が抑制され、駆動TFT11Aの特性のばらつきを低減することができる。 As described above, since the driving TFT 11A includes the second gate electrode 16gA that functions as a back gate electrode, variation in characteristics of the TFT is suppressed. As will be described later, the third conductive layer 16 including the second gate electrode 16gA is formed of, for example, a transparent conductive film. The second gate electrode 16gA may be made of, for example, a metal material. Since the second gate electrode 16gA formed of a metal material also functions as a light shielding film for the channel region 15cA of the semiconductor layer 15A, the shift of the threshold voltage Vth of the driving TFT 11A can be more effectively suppressed. As illustrated in FIG. 1, the second gate electrode 16gA of the drive TFT 11A is electrically connected to the source electrode 14sA of the drive TFT 11A. For example, the second gate electrode 16gA is in contact with the source electrode 14sA in the opening CH2 provided in the second insulating layer 4i. When the second gate electrode 16gA is electrically connected to the source electrode 14sA, the potential of the second gate electrode 16gA is fixed to a predetermined value, so that the threshold voltage Vth of the driving TFT 11A is shifted or driven. It can suppress that the hysteresis of TFT11A becomes large. Thereby, the characteristic variation of the driving TFT 11A is suppressed, and the variation in the characteristics of the driving TFT 11A can be reduced.
 第2ゲート電極16gAは、任意の電極または配線と電気的に接続されていてよい。第2ゲート電極16gAと電気的に接続される電極または配線が、所定の電位に固定されていると、上記と同様の効果を得ることができる。ただし、第2ゲート電極16gAの電気的接続はこれに限られない。例えば、第2ゲート電極16gAは、第1ゲート電極12gAと電気的に接続されていてもよい。第1ゲート電極12gAおよび第2ゲート電極16gAの両方にゲート電圧を印加することにより、半導体層15Aの見かけの移動度を向上でき、消費電力の低減および/または駆動回路部60dの狭小化を効果的に行うことができる。また、例えば、第2ゲート電極16gAは、ドレイン電極14dAと電気的に接続されていてもよい。第2ゲート電極16gAがドレイン電極14dAと電気的に接続されていると、ドレイン電極14dAに印加される電圧の値によって、駆動TFT11Aのしきい値電圧Vthを変化させることができる。 The second gate electrode 16gA may be electrically connected to an arbitrary electrode or wiring. When the electrode or wiring electrically connected to the second gate electrode 16gA is fixed at a predetermined potential, the same effect as described above can be obtained. However, the electrical connection of the second gate electrode 16gA is not limited to this. For example, the second gate electrode 16gA may be electrically connected to the first gate electrode 12gA. By applying a gate voltage to both the first gate electrode 12gA and the second gate electrode 16gA, the apparent mobility of the semiconductor layer 15A can be improved, and the effect of reducing power consumption and / or narrowing the drive circuit portion 60d is effective. Can be done automatically. For example, the second gate electrode 16gA may be electrically connected to the drain electrode 14dA. When the second gate electrode 16gA is electrically connected to the drain electrode 14dA, the threshold voltage Vth of the driving TFT 11A can be changed depending on the value of the voltage applied to the drain electrode 14dA.
 上述したように、絶縁部材19は、表示領域100dにおいてアクティブマトリクス基板10が有する突起構造体と同じ誘電体膜から形成される。ここで、突起構造体は、例示した柱状スペーサ23a、23bに限られない。表示領域100dにおいてアクティブマトリクス基板10が有する、対向基板30側に突き出た突起構造体であればよい。例えば、突起構造体は、液晶の配向状態を規定する配向制御構造体であってもよい。また、絶縁部材19は、突起構造体に限られず、表示領域100dにおいてアクティブマトリクス基板10が有する層と同じ誘電体膜から形成されていてもよい。例えば、図20を参照して後述するように、絶縁部材19は、表示領域100dにおいてアクティブマトリクス基板10が有するカラーフィルタ層と同じ誘電体膜から形成されていてもよい。 As described above, the insulating member 19 is formed of the same dielectric film as the protruding structure of the active matrix substrate 10 in the display region 100d. Here, the protruding structure is not limited to the illustrated columnar spacers 23a and 23b. Any protrusion structure that protrudes toward the counter substrate 30 in the active matrix substrate 10 in the display region 100d may be used. For example, the protrusion structure may be an alignment control structure that defines the alignment state of the liquid crystal. The insulating member 19 is not limited to the protruding structure, and may be formed of the same dielectric film as the layer of the active matrix substrate 10 in the display region 100d. For example, as will be described later with reference to FIG. 20, the insulating member 19 may be formed of the same dielectric film as the color filter layer included in the active matrix substrate 10 in the display region 100d.
 絶縁部材19が第2ゲート電極16gAを覆っていることにより、液晶表示装置100において、第2ゲート電極16gAと対向電極34との間に形成される寄生容量が、比較例の液晶表示装置900に比べて低減され得る。シール部60sよりも絶縁部材19の方が、低い比誘電率を有し得るからである。シール部60sおよび絶縁部材19は、例えばともに有機絶縁膜から形成されるが、シール部60sを形成するシール材には典型的にはフィラーが充填されている。フィラーは、典型的には無機の絶縁性粉末であり、例えば、シリカの粉末である。一般に、無機絶縁物の比誘電率は有機絶縁物の比誘電率よりも高い傾向があるので、絶縁部材19を有する液晶表示装置100において、第2ゲート電極16gAと対向電極34との間に形成される寄生容量は低減され得る。 Since the insulating member 19 covers the second gate electrode 16gA, in the liquid crystal display device 100, the parasitic capacitance formed between the second gate electrode 16gA and the counter electrode 34 in the liquid crystal display device 900 of the comparative example. It can be reduced compared to. This is because the insulating member 19 can have a lower relative dielectric constant than the seal portion 60s. The seal portion 60s and the insulating member 19 are both formed of, for example, an organic insulating film, and the seal material forming the seal portion 60s is typically filled with a filler. The filler is typically an inorganic insulating powder, for example, a silica powder. In general, since the relative dielectric constant of an inorganic insulator tends to be higher than the relative dielectric constant of an organic insulator, the liquid crystal display device 100 having the insulating member 19 is formed between the second gate electrode 16gA and the counter electrode 34. The parasitic capacitance that is done can be reduced.
 液晶表示装置100において、上述したように、アクティブマトリクス基板10が絶縁部材19および突起構造体を有する。アクティブマトリクス基板10側に絶縁部材19および突起構造体が設けられていることによって、以下の効果がさらに得られる。 In the liquid crystal display device 100, as described above, the active matrix substrate 10 includes the insulating member 19 and the protruding structure. By providing the insulating member 19 and the protruding structure on the active matrix substrate 10 side, the following effects can be further obtained.
 絶縁部材19が駆動TFT11Aの第2ゲート電極16gAを覆っているので、駆動TFT11Aをシール部60sに含まれる水分から効果的に保護することができる。特に、半導体層15Aのチャネル領域15cAに水分が侵入することを抑制することができる。また、例えばシール材を硬化する工程においてシール材に照射され、シール材に含まれるフィラーによって散乱された紫外線が、半導体層15Aのチャネル領域15cAに入射するのを低減することができる。これらの効果により、駆動TFT11Aの特性変動および/または誤作動を防止することができるので、より効果的に信頼性の向上を図ることが可能になる。 Since the insulating member 19 covers the second gate electrode 16gA of the driving TFT 11A, the driving TFT 11A can be effectively protected from moisture contained in the seal portion 60s. In particular, moisture can be prevented from entering the channel region 15cA of the semiconductor layer 15A. In addition, for example, in the process of curing the sealing material, it is possible to reduce the incidence of ultraviolet rays that are irradiated on the sealing material and scattered by the filler included in the sealing material to the channel region 15cA of the semiconductor layer 15A. These effects can prevent characteristic fluctuations and / or malfunctions of the driving TFT 11A, so that the reliability can be improved more effectively.
 また、アクティブマトリクス基板10と対向基板30との間の距離を規定する第1柱状スペーサ23aを、アクティブマトリクス基板10に設けることにより、セルギャップのばらつきを抑制することができる。第1柱状スペーサ23aを対向基板30に設けると、アクティブマトリクス基板10の製造工程で膜厚にばらつきが生じると、アクティブマトリクス基板10の膜厚のばらつきがセルギャップに反映されてしまうという問題が生じ得た。これに対して、第1柱状スペーサ23aをアクティブマトリクス基板10に設けると、アクティブマトリクス基板10の製造工程中、第1柱状スペーサ23aを設ける工程までの工程において、膜厚にばらつきが生じた場合であっても、第1柱状スペーサ23aの高さh23aを揃えることで、セルギャップを制御することができる。 Further, by providing the active matrix substrate 10 with the first columnar spacers 23a that define the distance between the active matrix substrate 10 and the counter substrate 30, it is possible to suppress cell gap variations. When the first columnar spacers 23a are provided on the counter substrate 30, when the film thickness varies in the manufacturing process of the active matrix substrate 10, the film thickness variation of the active matrix substrate 10 is reflected in the cell gap. Obtained. On the other hand, when the first columnar spacers 23a are provided on the active matrix substrate 10, the film thickness varies in the steps up to the step of providing the first columnar spacers 23a during the manufacturing process of the active matrix substrate 10. Even in this case, the cell gap can be controlled by aligning the height h23a of the first columnar spacers 23a.
 さらに、絶縁部材19は、外部から液晶表示装置100に応力が加えられた場合、駆動TFT11Aへの影響を低減することにより、駆動TFT11Aの特性変動および/または誤作動を防止することができる。従って、例えば可撓性を有する表示装置にも本実施形態は好適である。駆動TFT11Aに加えられる応力は、表示装置が使用される環境(例えば温度、湿度)の変化によっても生じ得る。 Furthermore, the insulating member 19 can prevent the characteristic variation and / or malfunction of the driving TFT 11A by reducing the influence on the driving TFT 11A when stress is applied to the liquid crystal display device 100 from the outside. Therefore, for example, this embodiment is also suitable for a flexible display device. The stress applied to the driving TFT 11A can also be caused by a change in the environment (for example, temperature and humidity) in which the display device is used.
 以下、液晶表示装置100の構造をより詳細に説明する。 Hereinafter, the structure of the liquid crystal display device 100 will be described in more detail.
 アクティブマトリクス基板10は、図1に示すように、基板1s、第1ゲート電極12gAを含む第1導電層12、第1絶縁層2i、半導体層15A、ソース電極14sAおよびドレイン電極14dAを含む第2導電層14、第2絶縁層4i、および、第2ゲート電極16gAを含む第3導電層16を備える。また、アクティブマトリクス基板10は、第3絶縁層6iおよび第4導電層18をさらに備える。 As shown in FIG. 1, the active matrix substrate 10 includes a substrate 1s, a first conductive layer 12 including a first gate electrode 12gA, a first insulating layer 2i, a semiconductor layer 15A, a source electrode 14sA, and a second electrode including a drain electrode 14dA. The third conductive layer 16 including the conductive layer 14, the second insulating layer 4i, and the second gate electrode 16gA is provided. The active matrix substrate 10 further includes a third insulating layer 6 i and a fourth conductive layer 18.
 アクティブマトリクス基板10は、図1に示すように、表示領域100dに、画素TFT11Bを有する。画素TFT11Bは、チャネル領域15cB、ソース領域15sBおよびドレイン領域15dBを含む半導体層15Bと、半導体層15Bのチャネル領域15cBに第1絶縁層2iを介して重なるゲート電極12gBと、半導体層15Bのソース領域15sBおよびドレイン領域15dBにそれぞれ電気的に接続されたソース電極14sBおよびドレイン電極14dBとを有する。 The active matrix substrate 10 has a pixel TFT 11B in the display area 100d as shown in FIG. The pixel TFT 11B includes a semiconductor layer 15B including a channel region 15cB, a source region 15sB, and a drain region 15dB, a gate electrode 12gB that overlaps the channel region 15cB of the semiconductor layer 15B via the first insulating layer 2i, and a source region of the semiconductor layer 15B. A source electrode 14sB and a drain electrode 14dB are electrically connected to 15sB and the drain region 15dB, respectively.
 第1導電層12は、基板1s上に設けられている。第1導電層12は、駆動TFT11Aの第1ゲート電極12gAと、画素TFT11Bのゲート電極12gBと、ゲート配線Gとを含む。第1導電層12は、単層構造であってもよいし、複数の層が積層された積層構造であってもよい。第1導電層12は、少なくとも金属材料から形成された層を含む。第1導電層12が積層構造である場合、一部の層は金属窒化物や金属酸化物から形成されていてもよい。 The first conductive layer 12 is provided on the substrate 1s. The first conductive layer 12 includes a first gate electrode 12gA of the driving TFT 11A, a gate electrode 12gB of the pixel TFT 11B, and a gate wiring G. The first conductive layer 12 may have a single layer structure or a stacked structure in which a plurality of layers are stacked. The first conductive layer 12 includes at least a layer formed of a metal material. When the 1st conductive layer 12 is a laminated structure, a part layer may be formed from the metal nitride and the metal oxide.
 第1絶縁層(ゲート絶縁層)2iは、第1導電層12上に設けられている。つまり、第1絶縁層2iは、第1ゲート電極12gA、ゲート電極12gBおよびゲート配線Gを覆うように形成されている。第1絶縁層2iは、無機絶縁材料から形成されている。 The first insulating layer (gate insulating layer) 2 i is provided on the first conductive layer 12. That is, the first insulating layer 2i is formed so as to cover the first gate electrode 12gA, the gate electrode 12gB, and the gate wiring G. The first insulating layer 2i is formed from an inorganic insulating material.
 半導体層15A、15Bは、第1絶縁層2i上に設けられている。半導体層15Aおよび15Bは、例えば、共通の半導体膜から形成されている。駆動TFT11Aの半導体層15Aは、上述したように、チャネル領域15cA、ソース領域15sAおよびドレイン領域15dAを含む。画素TFT11Bの半導体層15Bは、ゲート電極12gBに重なる第1部分15aBと、第1部分15aBからゲート電極12gBのドレイン電極14dB側のエッジを横切って延設された第2部分15bBとを有する。第1部分15aBは、チャネル領域15cB、ソース領域15sBおよびドレイン領域15dBを含む。 The semiconductor layers 15A and 15B are provided on the first insulating layer 2i. The semiconductor layers 15A and 15B are formed from a common semiconductor film, for example. As described above, the semiconductor layer 15A of the driving TFT 11A includes the channel region 15cA, the source region 15sA, and the drain region 15dA. The semiconductor layer 15B of the pixel TFT 11B includes a first portion 15aB that overlaps the gate electrode 12gB, and a second portion 15bB that extends from the first portion 15aB across the edge of the gate electrode 12gB on the drain electrode 14dB side. The first portion 15aB includes a channel region 15cB, a source region 15sB, and a drain region 15dB.
 第2導電層14は、半導体層15A、15B上に設けられている。第2導電層14は、駆動TFT11Aのソース電極14sAおよびドレイン電極14dAと、画素TFT11Bのソース電極14sBおよびドレイン電極14dBと、ソース配線Sとを含む。第2導電層14は、単層構造であってもよいし、複数の層が積層された積層構造であってもよい。第2メタル層14は、少なくとも金属材料から形成された層を含む。第2導電層14が積層構造である場合、一部の層は金属窒化物や金属酸化物から形成されていてもよい。金属材料から形成された層を含む、第1導電層12および第2導電層14は、一般に、透明導電材料から形成された導電層よりも導電性が高いので、配線の幅を狭くすることが可能であり、高精細化および画素開口率の向上に寄与し得る。 The second conductive layer 14 is provided on the semiconductor layers 15A and 15B. The second conductive layer 14 includes a source electrode 14sA and a drain electrode 14dA of the driving TFT 11A, a source electrode 14sB and a drain electrode 14dB of the pixel TFT 11B, and a source wiring S. The second conductive layer 14 may have a single layer structure or a stacked structure in which a plurality of layers are stacked. The second metal layer 14 includes at least a layer formed of a metal material. When the second conductive layer 14 has a laminated structure, some layers may be formed from a metal nitride or a metal oxide. Since the first conductive layer 12 and the second conductive layer 14 including a layer formed from a metal material are generally more conductive than a conductive layer formed from a transparent conductive material, the width of the wiring can be reduced. This is possible, and can contribute to higher definition and improved pixel aperture ratio.
 第2絶縁層(層間絶縁層)4iは、第2導電層14上に設けられている。第2絶縁層4iは、無機絶縁材料から形成されている。 The second insulating layer (interlayer insulating layer) 4 i is provided on the second conductive layer 14. The second insulating layer 4i is formed from an inorganic insulating material.
 第2絶縁層4iには、駆動回路部60dに設けられた開口部CH2および表示領域100dに設けられた開口部CH3が形成されている。開口部CH2は、アクティブマトリクス基板10の法線方向から見たとき、ソース電極14sAに重なる。開口部CH3は、アクティブマトリクス基板10の法線方向から見たとき、半導体層15Bの第2部分15bBに重なる。また、開口部CH3は、アクティブマトリクス基板10の法線方向から見たとき、ドレイン電極14dBの、第2部分15bB側の端部14deにも重なる。つまり、開口部CH3は、ドレイン電極14dBの端部14deと、半導体層15Bの第2部分15bBとが露出するように形成されている。 In the second insulating layer 4i, an opening CH2 provided in the drive circuit unit 60d and an opening CH3 provided in the display region 100d are formed. The opening CH2 overlaps the source electrode 14sA when viewed from the normal direction of the active matrix substrate 10. The opening CH3 overlaps the second portion 15bB of the semiconductor layer 15B when viewed from the normal direction of the active matrix substrate 10. The opening CH3 also overlaps with the end 14de of the drain electrode 14dB on the second portion 15bB side when viewed from the normal direction of the active matrix substrate 10. That is, the opening CH3 is formed so that the end 14de of the drain electrode 14dB and the second portion 15bB of the semiconductor layer 15B are exposed.
 第3導電層16は、第2絶縁層4i上に設けられている。第3導電層16は、例えば透明導電材料から形成されている。第3導電層16を第1透明電極層16ということがある。第3導電層16は、駆動TFT11Aの第2ゲート電極16gAと、画素TFT11Bの画素電極16Bとを含む。第2ゲート電極16gAは、開口部CH2内でソース電極14sAと接している。画素電極16Bは、開口部CH3内において半導体層15Bの第2部分15bBに接する。画素TFT11Bおよび画素電極16Bは、画素ごとに設けられている。つまり、各画素は、各画素電極16Bによって画定される。 The third conductive layer 16 is provided on the second insulating layer 4i. The third conductive layer 16 is made of, for example, a transparent conductive material. The third conductive layer 16 may be referred to as the first transparent electrode layer 16. The third conductive layer 16 includes a second gate electrode 16gA of the driving TFT 11A and a pixel electrode 16B of the pixel TFT 11B. The second gate electrode 16gA is in contact with the source electrode 14sA in the opening CH2. The pixel electrode 16B is in contact with the second portion 15bB of the semiconductor layer 15B in the opening CH3. The pixel TFT 11B and the pixel electrode 16B are provided for each pixel. That is, each pixel is defined by each pixel electrode 16B.
 第3絶縁層(補助容量絶縁層)6iは、第3導電層16を覆っている。第3絶縁層6iは、無機絶縁材料から形成されている。 The third insulating layer (auxiliary capacitor insulating layer) 6 i covers the third conductive layer 16. The third insulating layer 6i is formed from an inorganic insulating material.
 第4導電層18は、第3絶縁層6i上に設けられている。第4導電層18は、例えば透明導電材料から形成されている。第4導電層18を第2透明電極層18ということがある。第4導電層18は、画素電極16Bに電気的に接続されていない電極18Bを含む。この電極18Bは、例えば共通電極として機能する。共通電極18Bは、第3絶縁層6iを介して画素電極16Bに対向しており、画素電極16Bおよび共通電極18Bと、これらの間に位置する第3絶縁層6iとが補助容量を構成している。共通電極18Bには、例えば、少なくとも1つのスリット(不図示)が形成されている。共通電極18B上には、不図示の配向膜が設けられている。上述した構成を有するアクティブマトリクス基板10は、FFS(Fringe Field Switching)モードの液晶表示装置100に好適に用いられる。 The fourth conductive layer 18 is provided on the third insulating layer 6i. The fourth conductive layer 18 is made of, for example, a transparent conductive material. The fourth conductive layer 18 may be referred to as the second transparent electrode layer 18. The fourth conductive layer 18 includes an electrode 18B that is not electrically connected to the pixel electrode 16B. This electrode 18B functions as a common electrode, for example. The common electrode 18B is opposed to the pixel electrode 16B via the third insulating layer 6i, and the pixel electrode 16B and the common electrode 18B, and the third insulating layer 6i positioned therebetween constitute an auxiliary capacitor. Yes. For example, at least one slit (not shown) is formed in the common electrode 18B. An alignment film (not shown) is provided on the common electrode 18B. The active matrix substrate 10 having the above-described configuration is suitably used for the liquid crystal display device 100 in FFS (Fringe Field Switching) mode.
 図1に示す画素TFT11Bでは、開口部CH3は、基板1sの法線方向から見たとき、ドレイン電極14dBの、第2部分15bB側の端部14deおよび半導体層15Bの第2部分15bBに重なる。そのため、開口部CH3の一部を、ゲート電極12gBおよびドレイン電極14dBのいずれによっても遮光されない光透過領域とすることができる。なお、第2絶縁層(層間絶縁層)4iは、無機絶縁材料から形成されているので、すなわち有機絶縁層を含んでいないので、開口部CH3は、比較的浅い。従って、開口部CH3に起因する液晶配向の乱れは小さく、開口部CH3近傍における光漏れは小さいので、上述した光透過領域を設けても表示への悪影響はない。このように、開口部CH3の一部を光透過領域として利用することによって、光の利用効率を高くすることができる。 In the pixel TFT 11B shown in FIG. 1, the opening CH3 overlaps the end portion 14de of the drain electrode 14dB on the second portion 15bB side and the second portion 15bB of the semiconductor layer 15B when viewed from the normal direction of the substrate 1s. Therefore, a part of the opening CH3 can be a light transmission region that is not shielded by either the gate electrode 12gB or the drain electrode 14dB. Since the second insulating layer (interlayer insulating layer) 4i is formed of an inorganic insulating material, that is, does not include an organic insulating layer, the opening CH3 is relatively shallow. Accordingly, the disturbance in the liquid crystal alignment due to the opening CH3 is small, and the light leakage in the vicinity of the opening CH3 is small. Therefore, even if the above-described light transmission region is provided, the display is not adversely affected. In this way, by using a part of the opening CH3 as a light transmission region, it is possible to increase the light use efficiency.
 なお、本実施形態の駆動TFT11Aおよび画素TFT11Bの構造は、例示したものに限られない。例えば、バックゲート電極(第2ゲート電極)16gAは、第4導電層18と同じ導電膜から形成されていてもよい。図11~図17を参照して改変例を後述する。また、駆動TFT11Aは、種々の公知のバックゲートTFTの構造を有することができ、画素TFT11Bは、種々の公知のTFTの構造を有することができる。 Note that the structures of the drive TFT 11A and the pixel TFT 11B of the present embodiment are not limited to those illustrated. For example, the back gate electrode (second gate electrode) 16 gA may be formed of the same conductive film as the fourth conductive layer 18. Modification examples will be described later with reference to FIGS. The driving TFT 11A can have various known back gate TFT structures, and the pixel TFT 11B can have various known TFT structures.
 本実施形態の駆動TFT11Aおよび画素TFT11Bは、それぞれ、例示したチャネルエッチ型のTFTに限られない。駆動TFT11Aおよび画素TFT11Bは、それぞれ、エッチストップ型のTFTであってもよい。「チャネルエッチ型のTFT」では、チャネル領域上にエッチストップ層が形成されておらず、ソースおよびドレイン電極のチャネル側の端部は、半導体層の上面と接するように配置されている。チャネルエッチ型のTFTは、例えば半導体層上にソース・ドレイン電極用の導電膜を形成し、ソース・ドレイン分離を行うことによって形成される。ソース・ドレイン分離工程において、チャネル領域の表面部分がエッチングされる場合がある。一方、チャネル領域上にエッチストップ層が形成されたTFT(エッチストップ型TFT)では、ソースおよびドレイン電極のチャネル側の端部は、例えばエッチストップ層上に位置する。エッチストップ型のTFTは、例えば半導体層のうちチャネル領域となる部分を覆うエッチストップ層を形成した後、半導体層およびエッチストップ層上にソース・ドレイン電極用の導電膜を形成し、ソース・ドレイン分離を行うことによって形成される。 The driving TFT 11A and the pixel TFT 11B of the present embodiment are not limited to the channel etch type TFTs exemplified. Each of the driving TFT 11A and the pixel TFT 11B may be an etch stop type TFT. In the “channel etch type TFT”, the etch stop layer is not formed on the channel region, and the end portions on the channel side of the source and drain electrodes are arranged in contact with the upper surface of the semiconductor layer. The channel etch type TFT is formed, for example, by forming a conductive film for a source / drain electrode on a semiconductor layer and performing source / drain separation. In the source / drain separation step, the surface portion of the channel region may be etched. On the other hand, in a TFT (etch stop type TFT) in which an etch stop layer is formed on the channel region, the channel-side end portions of the source and drain electrodes are located on the etch stop layer, for example. For example, an etch stop type TFT is formed by forming an etch stop layer that covers a portion of a semiconductor layer that becomes a channel region, and then forming a conductive film for a source / drain electrode on the semiconductor layer and the etch stop layer. Formed by performing separation.
 対向基板30は、図1に示すように、例えば、基板(例えばガラス基板)31と、基板31上に設けられたカラーフィルタ層32(カラーフィルタおよびブラックマトリクスを含む)と、カラーフィルタ層32を覆うオーバーコート層33と、オーバーコート層33上に設けられた対向電極34とを有する。額縁領域100fでは、カラーフィルタ層32は、カラーフィルタを含まなくてもよい。図1においては、表示領域100dにおいて対向電極34は省略されているが、対向基板30は、例えば表示領域100dおよび額縁領域100fにおいて対向電極34を有する。 As shown in FIG. 1, the counter substrate 30 includes, for example, a substrate (for example, a glass substrate) 31, a color filter layer 32 (including a color filter and a black matrix) provided on the substrate 31, and a color filter layer 32. The overcoat layer 33 is covered, and the counter electrode 34 is provided on the overcoat layer 33. In the frame region 100f, the color filter layer 32 may not include a color filter. In FIG. 1, the counter electrode 34 is omitted in the display area 100d, but the counter substrate 30 includes the counter electrode 34 in the display area 100d and the frame area 100f, for example.
 VAモードの液晶表示装置100では、対向電極34は、共通電極として機能し得る。FFSモードの液晶表示装置100をタッチパネルに適用する場合においては、対向電極34をタッチパネルの検出電極または駆動電極として用いることができる。VAモードの液晶表示装置100をタッチパネルに適用する場合においては、共通電極として機能する対向電極34が、タッチパネルの検出電極または駆動電極を兼ねることもできる。 In the VA mode liquid crystal display device 100, the counter electrode 34 can function as a common electrode. When the FFS mode liquid crystal display device 100 is applied to a touch panel, the counter electrode 34 can be used as a detection electrode or a drive electrode of the touch panel. In the case where the VA mode liquid crystal display device 100 is applied to a touch panel, the counter electrode 34 functioning as a common electrode can also serve as a detection electrode or a drive electrode of the touch panel.
 液晶表示装置100の転移部60tは、上述したように、導電性粒子62によってコンタクト電極64と対向電極34とを電気的に接続する。図1に示すように、転移部60tにおいて、アクティブマトリクス基板10は、コンタクト電極64を有する。また、転移部60tにおいて、アクティブマトリクス基板10は、第1導電層12と、第2導電層14と、第3導電層16とをさらに有し、コンタクト電極64は第4導電層18と同じ導電膜から形成されている。転移部は、第1絶縁層2iおよび第2絶縁層4iに設けられた開口部CH1をさらに有する。開口部CH1は、第1導電層12、第2導電層14、第3導電層16およびコンタクト電極64を互いに電気的に接続する。第3導電層16は、開口部CH1内でコンタクト電極64と接している。 The transition part 60t of the liquid crystal display device 100 electrically connects the contact electrode 64 and the counter electrode 34 by the conductive particles 62 as described above. As shown in FIG. 1, the active matrix substrate 10 has a contact electrode 64 at the transition portion 60 t. Further, in the transition portion 60t, the active matrix substrate 10 further includes the first conductive layer 12, the second conductive layer 14, and the third conductive layer 16, and the contact electrode 64 has the same conductivity as the fourth conductive layer 18. It is formed from a film. The transition portion further includes an opening CH1 provided in the first insulating layer 2i and the second insulating layer 4i. The opening CH1 electrically connects the first conductive layer 12, the second conductive layer 14, the third conductive layer 16, and the contact electrode 64 to each other. The third conductive layer 16 is in contact with the contact electrode 64 in the opening CH1.
 転移部60tの構造は、図1に示す例に限られない。例えば、コンタクト電極64は、第1導電層12、第2導電層14、第3導電層16、および第4導電層18のいずれかと同じ導電膜から形成されていればよい。または、コンタクト電極64は、第1導電層12および/または第2導電層14と電気的に接続されていればよい。転移部60tにおいて、アクティブマトリクス基板10は、導電性粒子62を介して対向基板30と電気的に接続されるコンタクト電極64を有すればよく、コンタクト電極64を含まない導電層(図1の例では、第1導電層12、第2導電層14および第3導電層16)を有しなくてもよい。コンタクト電極64と他の導電層とを電気的に接続するコンタクト部(開口部)は、転移部60tに設けられていてもよいし、額縁領域100fの、転移部60t以外の領域に設けられていてもよい。 The structure of the transfer portion 60t is not limited to the example shown in FIG. For example, the contact electrode 64 only needs to be formed of the same conductive film as any one of the first conductive layer 12, the second conductive layer 14, the third conductive layer 16, and the fourth conductive layer 18. Alternatively, the contact electrode 64 only needs to be electrically connected to the first conductive layer 12 and / or the second conductive layer 14. In the transition portion 60t, the active matrix substrate 10 only needs to have a contact electrode 64 electrically connected to the counter substrate 30 via the conductive particles 62, and a conductive layer that does not include the contact electrode 64 (example of FIG. 1). Then, the first conductive layer 12, the second conductive layer 14, and the third conductive layer 16) need not be provided. The contact portion (opening) that electrically connects the contact electrode 64 and another conductive layer may be provided in the transition portion 60t, or provided in a region other than the transition portion 60t in the frame region 100f. May be.
 続いて、図4~図10を参照しながら、液晶表示装置100の製造方法を説明する。図4~図10は、それぞれ、液晶表示装置100の製造工程を模式的に示す工程断面図である。図4~図10において、(a)は、額縁領域100fを製造する工程を示し、(b)は、表示領域100dを製造する工程を示している。 Subsequently, a method for manufacturing the liquid crystal display device 100 will be described with reference to FIGS. 4 to 10 are process cross-sectional views schematically showing the manufacturing process of the liquid crystal display device 100, respectively. 4 to 10, (a) shows the process of manufacturing the frame area 100f, and (b) shows the process of manufacturing the display area 100d.
 まず、図4に示すように、基板(例えばガラス基板)1s上に、駆動TFT11Aおよび画素TFT11Bの第1ゲート電極12gA、12gBを含む第1導電層12を形成する。具体的には、基板11上に第1の導電膜を堆積した後、第1の導電膜をパターニングすることによって第1導電層12を形成する。第1の導電膜の材料としては、例えば、アルミニウム(Al)、クロム(Cr)、銅(Cu)、タンタル(Ta)、チタン(Ti)、モリブデン(Mo)もしくはタングステン(W)、またはこれらの合金を用いることができる。第1の導電膜は、単層構造であってもよいし、複数の層が積層された積層構造であってもよい。例えば、Ti/Al/Ti(上層/中間層/下層)の積層体やMo/Al/Moの積層体を用いることができる。また、第1の導電膜の積層構造は、3層構造に限られず、2層構造や4層以上の積層構造であってもよい。さらに、第1の導電膜は、少なくとも金属材料から形成された層を含んでいればよく、第1の導電膜が積層構造である場合、一部の層は金属窒化物や金属酸化物から形成されてもよい。ここでは、5nm~100nmの厚さを有するTaN層と、50nm~500nmの厚さを有するW層とを、例えばスパッタリング法により連続して堆積することによって第1の導電膜を形成した後、第1の導電膜をフォトリソグラフィプロセスでパターニングすることによって第1導電層12を形成する。 First, as shown in FIG. 4, the first conductive layer 12 including the first gate electrodes 12gA and 12gB of the driving TFT 11A and the pixel TFT 11B is formed on a substrate (for example, a glass substrate) 1s. Specifically, after depositing a first conductive film on the substrate 11, the first conductive layer 12 is formed by patterning the first conductive film. As a material of the first conductive film, for example, aluminum (Al), chromium (Cr), copper (Cu), tantalum (Ta), titanium (Ti), molybdenum (Mo), tungsten (W), or these Alloys can be used. The first conductive film may have a single layer structure or a stacked structure in which a plurality of layers are stacked. For example, a laminate of Ti / Al / Ti (upper layer / intermediate layer / lower layer) or a laminate of Mo / Al / Mo can be used. The stacked structure of the first conductive film is not limited to a three-layer structure, and may be a two-layer structure or a stacked structure of four or more layers. Furthermore, the first conductive film only needs to include at least a layer formed of a metal material. When the first conductive film has a stacked structure, some layers are formed of metal nitride or metal oxide. May be. Here, after forming the first conductive film by successively depositing a TaN layer having a thickness of 5 nm to 100 nm and a W layer having a thickness of 50 nm to 500 nm by, for example, sputtering, the first conductive film is formed. The first conductive layer 12 is formed by patterning one conductive film by a photolithography process.
 次に、第1導電層12上に第1絶縁層(ゲート絶縁層)2iを形成する。第1絶縁層2iは、例えば、二酸化珪素(SiO2)膜、窒化珪素(SiNx)膜、酸化窒化珪素(SiOxy(x>y))膜、窒化酸化珪素(SiNxy(x>y))膜、酸化アルミニウム膜もしくは酸化タンタル膜、またはこれらの積層膜である。ここでは、100nm~500nmの厚さを有するSiNx膜と、20nm~100nmの厚さを有するSiO2膜とを例えばCVD(Chemical Vapor Deposition)により連続して堆積することによって、第1絶縁層2iを形成する。 Next, a first insulating layer (gate insulating layer) 2 i is formed on the first conductive layer 12. The first insulating layer 2i includes, for example, a silicon dioxide (SiO 2 ) film, a silicon nitride (SiN x ) film, a silicon oxynitride (SiO x N y (x> y)) film, and a silicon nitride oxide (SiN x O y (SiN x O y ( x> y)) film, aluminum oxide film or tantalum oxide film, or a laminated film thereof. Here, the first insulating layer 2i is formed by successively depositing a SiN x film having a thickness of 100 nm to 500 nm and a SiO 2 film having a thickness of 20 nm to 100 nm by, for example, CVD (Chemical Vapor Deposition). Form.
 続いて、図5に示すように、第1絶縁層2i上に、駆動TFT11Aおよび画素TFT11Bの半導体層15A、15Bを形成する。具体的には、第1絶縁層2i上に半導体膜を堆積した後、半導体膜をパターニングすることによって島状の半導体層15A、15Bを形成する。ここでは、20nm~200nmの厚さを有するIn-Ga-Zn-O系の半導体膜を堆積した後、この半導体膜をフォトリソグラフィプロセスでパターニングすることによって半導体層15A、15Bを形成する。 Subsequently, as shown in FIG. 5, the semiconductor layers 15A and 15B of the driving TFT 11A and the pixel TFT 11B are formed on the first insulating layer 2i. Specifically, after depositing a semiconductor film on the first insulating layer 2i, the semiconductor film is patterned to form island-shaped semiconductor layers 15A and 15B. Here, after depositing an In—Ga—Zn—O-based semiconductor film having a thickness of 20 nm to 200 nm, the semiconductor layers 15A and 15B are formed by patterning the semiconductor film by a photolithography process.
 半導体層15A、15Bは、例えば酸化物半導体層である。半導体層15A、15Bに含まれる酸化物半導体は、アモルファス酸化物半導体であってもよいし、結晶質部分を有する結晶質酸化物半導体であってもよい。結晶質酸化物半導体としては、多結晶酸化物半導体、微結晶酸化物半導体、c軸が層面に概ね垂直に配向した結晶質酸化物半導体などが挙げられる。 The semiconductor layers 15A and 15B are, for example, oxide semiconductor layers. The oxide semiconductor included in the semiconductor layers 15A and 15B may be an amorphous oxide semiconductor or a crystalline oxide semiconductor having a crystalline portion. Examples of the crystalline oxide semiconductor include a polycrystalline oxide semiconductor, a microcrystalline oxide semiconductor, and a crystalline oxide semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface.
 半導体層15A、15Bは、2層以上の積層構造を有していてもよい。半導体層15A、15Bが積層構造を有する場合には、半導体層15A、15Bは、非晶質酸化物半導体層と結晶質酸化物半導体層とを含んでいてもよい。あるいは、結晶構造の異なる複数の結晶質酸化物半導体層を含んでいてもよい。半導体層15A、15Bが上層と下層とを含む2層構造を有する場合、上層に含まれる酸化物半導体のエネルギーギャップは、下層に含まれる酸化物半導体のエネルギーギャップよりも大きいことが好ましい。ただし、これらの層のエネルギーギャップの差が比較的小さい場合には、下層の酸化物半導体のエネルギーギャップが上層の酸化物半導体のエネルギーギャップよりも大きくてもよい。 The semiconductor layers 15A and 15B may have a laminated structure of two or more layers. When the semiconductor layers 15A and 15B have a stacked structure, the semiconductor layers 15A and 15B may include an amorphous oxide semiconductor layer and a crystalline oxide semiconductor layer. Alternatively, a plurality of crystalline oxide semiconductor layers having different crystal structures may be included. When the semiconductor layers 15A and 15B have a two-layer structure including an upper layer and a lower layer, the energy gap of the oxide semiconductor included in the upper layer is preferably larger than the energy gap of the oxide semiconductor included in the lower layer. However, when the difference in energy gap between these layers is relatively small, the energy gap of the lower oxide semiconductor may be larger than the energy gap of the upper oxide semiconductor.
 非晶質酸化物半導体および上記の各結晶質酸化物半導体の材料、構造、成膜方法、積層構造を有する酸化物半導体層の構成などは、例えば特開2014-007399号公報に記載されている。参考のために、特開2014-007399号公報の開示内容の全てを本明細書に援用する。 The material, structure, film forming method, and structure of an oxide semiconductor layer having a stacked structure of the amorphous oxide semiconductor and each crystalline oxide semiconductor described above are described in, for example, Japanese Patent Application Laid-Open No. 2014-007399. . For reference, the entire disclosure of Japanese Patent Application Laid-Open No. 2014-007399 is incorporated herein by reference.
 半導体層15A、15Bは、例えば、In、GaおよびZnのうち少なくとも1種の金属元素を含んでもよい。本実施形態では、半導体層15A、15Bは、例えば、In-Ga-Zn-O系の半導体を含む。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。このような半導体層15A、15Bは、In-Ga-Zn-O系の半導体を含む酸化物半導体膜から形成され得る。なお、In-Ga-Zn-O系の半導体を含む活性層を有するチャネルエッチ型のTFTを、「CE-InGaZnO-TFT」と呼ぶことがある。 The semiconductor layers 15A and 15B may contain at least one metal element of In, Ga, and Zn, for example. In the present embodiment, the semiconductor layers 15A and 15B include, for example, an In—Ga—Zn—O based semiconductor. Here, the In—Ga—Zn—O-based semiconductor is a ternary oxide of In (indium), Ga (gallium), and Zn (zinc), and a ratio (composition ratio) of In, Ga, and Zn. Is not particularly limited, and includes, for example, In: Ga: Zn = 2: 2: 1, In: Ga: Zn = 1: 1: 1, In: Ga: Zn = 1: 1: 2, and the like. Such semiconductor layers 15A and 15B can be formed of an oxide semiconductor film containing an In—Ga—Zn—O-based semiconductor. Note that a channel-etch TFT having an active layer containing an In—Ga—Zn—O-based semiconductor may be referred to as a “CE-InGaZnO-TFT”.
 In-Ga-Zn-O系の半導体は、アモルファスでもよいし、結晶質でもよい。結晶質In-Ga-Zn-O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系の半導体が好ましい。 The In—Ga—Zn—O-based semiconductor may be amorphous or crystalline. As the crystalline In—Ga—Zn—O-based semiconductor, a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
 なお、結晶質In-Ga-Zn-O系の半導体の結晶構造は、例えば、上述した特開2014-007399号公報、特開2012-134475号公報、特開2014-209727号公報などに開示されている。参考のために、特開2012-134475号公報および特開2014-209727号公報の開示内容の全てを本明細書に援用する。In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有しているので、駆動TFTおよび画素TFTとして好適に用いられる。 Note that the crystal structure of a crystalline In—Ga—Zn—O-based semiconductor is disclosed in, for example, the above-described Japanese Patent Application Laid-Open Nos. 2014-007399, 2012-134475, and 2014-209727. ing. For reference, the entire contents disclosed in Japanese Patent Application Laid-Open Nos. 2012-134475 and 2014-209727 are incorporated herein by reference. A TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT). It is suitably used as a drive TFT and a pixel TFT.
 半導体層15A、15Bは、In-Ga-Zn-O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばIn-Sn-Zn-O系半導体(例えばIn23-SnO2-ZnO)を含んでもよい。In-Sn-Zn-O系半導体は、In(インジウム)、Sn(スズ)およびZn(亜鉛)の三元系酸化物である。あるいは、半導体層15A、15Bは、In-Al-Zn-O系半導体、In-Al-Sn-Zn-O系半導体、Zn-O系半導体、In-Zn-O系半導体、Zn-Ti-O系半導体、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Ga-Sn-O系半導体、In-Ga-O系半導体、Zr-In-Zn-O系半導体、Hf-In-Zn-O系半導体などを含んでいてもよい。 The semiconductor layers 15A and 15B may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor. For example, an In—Sn—Zn—O-based semiconductor (eg, In 2 O 3 —SnO 2 —ZnO) may be included. The In—Sn—Zn—O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc). Alternatively, the semiconductor layers 15A and 15B may be made of an In—Al—Zn—O based semiconductor, an In—Al—Sn—Zn—O based semiconductor, a Zn—O based semiconductor, an In—Zn—O based semiconductor, or a Zn—Ti—O semiconductor. Semiconductor, Cd—Ge—O semiconductor, Cd—Pb—O semiconductor, CdO (cadmium oxide), Mg—Zn—O semiconductor, In—Ga—Sn—O semiconductor, In—Ga—O semiconductor In addition, a Zr—In—Zn—O based semiconductor, an Hf—In—Zn—O based semiconductor, or the like may be included.
 次に、額縁領域100fの第1絶縁層2iに、第1導電層12と第2導電層14とを電気的に接続するための開口部2aを形成する。具体的には、第1導電層12が露出するように、第1絶縁層2iに対してパターニングを行う。 Next, an opening 2a for electrically connecting the first conductive layer 12 and the second conductive layer 14 is formed in the first insulating layer 2i in the frame region 100f. Specifically, the first insulating layer 2i is patterned so that the first conductive layer 12 is exposed.
 次に、図6に示すように、半導体層15A、15B上に、駆動TFT11Aのソース電極14sAおよびドレイン電極14dA、画素TFT11Bのソース電極14sBおよびドレイン電極14dB、ならびにソース配線Sを含む第2導電層14を形成する。具体的には、半導体層15A、15B上に第2の導電膜を形成した後、第2の導電膜をパターニングすることによって第2導電層14を形成する。第2の導電膜の材料としては、例えば、アルミニウム(Al)、クロム(Cr)、銅(Cu)、タンタル(Ta)、チタン(Ti)、モリブデン(Mo)もしくはタングステン(W)、または、これらの合金を用いることができる。第2の導電膜は、単層構造であってもよいし、複数の層が積層された積層構造であってもよい。例えば、Ti/Al/Ti(上層/中間層/下層)の積層体やMo/Al/Moの積層体を用いることができる。また、第2の導電膜の積層構造は、3層構造に限られず、2層構造や4層以上の積層構造であってもよい。さらに、第2の導電膜は、少なくとも金属材料から形成された層を含んでいればよく、第2の導電膜が積層構造である場合、一部の層は金属窒化物や金属酸化物から形成されていてもよい。ここでは、10nm~100nmの厚さを有するTi層、50nm~400nmの厚さを有するAl層、および、50nm~300nmの厚さを有するTi層を例えばスパッタリング法により連続して堆積することによって第2の導電膜を形成した後、第2の導電膜をフォトリソグラフィプロセスでパターニングすることによって第2導電層14を形成する。 Next, as shown in FIG. 6, the second conductive layer including the source electrode 14sA and the drain electrode 14dA of the driving TFT 11A, the source electrode 14sB and the drain electrode 14dB of the pixel TFT 11B, and the source wiring S on the semiconductor layers 15A and 15B. 14 is formed. Specifically, after forming the second conductive film on the semiconductor layers 15A and 15B, the second conductive layer 14 is formed by patterning the second conductive film. As a material of the second conductive film, for example, aluminum (Al), chromium (Cr), copper (Cu), tantalum (Ta), titanium (Ti), molybdenum (Mo) or tungsten (W), or these These alloys can be used. The second conductive film may have a single layer structure or a stacked structure in which a plurality of layers are stacked. For example, a laminate of Ti / Al / Ti (upper layer / intermediate layer / lower layer) or a laminate of Mo / Al / Mo can be used. The stacked structure of the second conductive film is not limited to a three-layer structure, and may be a two-layer structure or a stacked structure of four or more layers. Further, the second conductive film only needs to include at least a layer formed of a metal material. When the second conductive film has a stacked structure, some layers are formed of metal nitride or metal oxide. May be. Here, a Ti layer having a thickness of 10 nm to 100 nm, an Al layer having a thickness of 50 nm to 400 nm, and a Ti layer having a thickness of 50 nm to 300 nm are successively deposited by sputtering, for example. After the second conductive film is formed, the second conductive layer 14 is formed by patterning the second conductive film by a photolithography process.
 続いて、図7に示すように、第2導電層14上に、第2絶縁層4iを形成する。また、第2絶縁層4iの、第1絶縁層2iの開口部2aに対応する領域には、パターニングによって開口部4aが形成される。つまり、第2導電層14が露出するように、第2絶縁層4iの一部が除去される。また、駆動回路部60dの第2絶縁層4iに、駆動TFT11Aのソース電極14sAと第2ゲート電極16gAとを電気的に接続するための開口部CH2が形成される。さらに、表示領域100dの第2絶縁層4iに、パターニングによって開口部CH3が形成される。開口部CH3は、画素TFT11Bのドレイン電極14dBの一部および半導体層15Bの一部が露出するように、第2絶縁層4iの一部が除去されることにより、形成される。第2絶縁層4iは、例えば、二酸化珪素(SiO2)膜、窒化珪素(SiNx)膜、酸化窒化珪素(SiOxy(x>y))膜、窒化酸化珪素(SiNxy(x>y))膜、酸化アルミニウム膜もしくは酸化タンタル膜、または、これらの積層膜である。ここでは、50nm~500nmの厚さを有するSiO2膜を堆積した後、SiO2膜に対し、大気雰囲気中で200℃~400℃、0.5時間~4時間の熱処理を行い、その後、50nm~500nmの厚さを有するSiNx膜を堆積し、これらの積層膜を第2絶縁層4iとする。 Subsequently, as shown in FIG. 7, a second insulating layer 4 i is formed on the second conductive layer 14. Further, an opening 4a is formed by patterning in a region of the second insulating layer 4i corresponding to the opening 2a of the first insulating layer 2i. That is, a part of the second insulating layer 4i is removed so that the second conductive layer 14 is exposed. Further, an opening CH2 for electrically connecting the source electrode 14sA of the driving TFT 11A and the second gate electrode 16gA is formed in the second insulating layer 4i of the driving circuit unit 60d. Further, an opening CH3 is formed in the second insulating layer 4i in the display region 100d by patterning. The opening CH3 is formed by removing a part of the second insulating layer 4i so that a part of the drain electrode 14dB of the pixel TFT 11B and a part of the semiconductor layer 15B are exposed. The second insulating layer 4i is, for example, a silicon dioxide (SiO 2 ) film, a silicon nitride (SiN x ) film, a silicon oxynitride (SiO x N y (x> y)) film, or a silicon nitride oxide (SiN x O y (SiN x O y ( x> y)) film, aluminum oxide film or tantalum oxide film, or a laminated film thereof. Here, after depositing a SiO 2 film having a thickness of 50 nm to 500 nm, the SiO 2 film is heat-treated at 200 ° C. to 400 ° C. for 0.5 hours to 4 hours in an air atmosphere, and then 50 nm A SiN x film having a thickness of ˜500 nm is deposited, and these stacked films are used as the second insulating layer 4i.
 次に、図8に示すように、第2絶縁層4i上に、駆動TFT11Aの第2ゲート電極16gAおよび画素TFT11Bの画素電極16Bを含む第3導電層(第1透明電極層)16を形成する。具体的には、第2絶縁層4i上に第3の導電膜を堆積した後、第3の導電膜をパターニングすることによって第3導電層16を形成する。このとき、開口部4a内で、第3導電層16が第2導電層14と接するようにパターニングが行われる。開口部CH2内で、駆動TFT11Aの第2ゲート電極16gAがソース電極14sAに接するようにパターニングが行われる。さらに、開口部CH3内で、画素TFT11Bの画素電極16Bがドレイン電極14dBおよび半導体層15Bの第2部分15bBに接するようにパターニングが行われる。第3の導電膜の材料としては、種々の透明導電材料を用いることができ、例えば、ITO、IZO、ZnO等の金属酸化物を用いることができる。ここでは、20nm~300nmの厚さを有する金属酸化物膜を例えばスパッタリング法により堆積することによって第3の導電膜を形成した後、第3の導電膜をフォトリソグラフィプロセスでパターニングすることによって第3導電層16を形成する。 Next, as shown in FIG. 8, a third conductive layer (first transparent electrode layer) 16 including the second gate electrode 16gA of the driving TFT 11A and the pixel electrode 16B of the pixel TFT 11B is formed on the second insulating layer 4i. . Specifically, after depositing a third conductive film on the second insulating layer 4i, the third conductive layer 16 is formed by patterning the third conductive film. At this time, patterning is performed so that the third conductive layer 16 is in contact with the second conductive layer 14 in the opening 4a. Patterning is performed so that the second gate electrode 16gA of the driving TFT 11A is in contact with the source electrode 14sA in the opening CH2. Further, patterning is performed so that the pixel electrode 16B of the pixel TFT 11B is in contact with the drain electrode 14dB and the second portion 15bB of the semiconductor layer 15B in the opening CH3. As the material of the third conductive film, various transparent conductive materials can be used, and for example, metal oxides such as ITO, IZO, and ZnO can be used. Here, a third conductive film is formed by depositing a metal oxide film having a thickness of 20 nm to 300 nm by, for example, a sputtering method, and then the third conductive film is patterned by a photolithography process to form the third conductive film. A conductive layer 16 is formed.
 続いて、図9に示すように、第3導電層16上に、第3絶縁層(補助容量絶縁層)6iを形成する。第3絶縁層6iの、第2絶縁層4iの開口部4aに対応する領域には、パターニングによって開口部6aが形成される。つまり、第3導電層16が露出するように、第3絶縁層6iの一部が除去される。第3絶縁層6iは、例えば、二酸化珪素(SiO2)膜、窒化珪素(SiNx)膜、酸化窒化珪素(SiOxy(x>y))膜、窒化酸化珪素(SiNxy(x>y))膜、酸化アルミニウム膜もしくは酸化タンタル膜、または、これらの積層膜である。ここでは、第3絶縁層6iとして、50nm~500nmの厚さを有するSiNx膜を例えばCVDにより堆積する。 Subsequently, as shown in FIG. 9, a third insulating layer (auxiliary capacitor insulating layer) 6 i is formed on the third conductive layer 16. In the region of the third insulating layer 6i corresponding to the opening 4a of the second insulating layer 4i, the opening 6a is formed by patterning. That is, a part of the third insulating layer 6i is removed so that the third conductive layer 16 is exposed. The third insulating layer 6i includes, for example, a silicon dioxide (SiO 2 ) film, a silicon nitride (SiN x ) film, a silicon oxynitride (SiO x N y (x> y)) film, and a silicon nitride oxide (SiN x O y (SiN x O y ( x> y)) film, aluminum oxide film or tantalum oxide film, or a laminated film thereof. Here, as the third insulating layer 6i, a SiN x film having a thickness of 50 nm to 500 nm is deposited by, for example, CVD.
 その後、図10に示すように、第3絶縁層6i上に、コンタクト電極64および画素TFT11Bの共通電極(透明電極)18Bを含む第4導電層(第2透明電極層)18を形成する。具体的には、第3絶縁層6i上に第4の導電膜を堆積した後、第4の導電膜をパターニングすることによって第4導電層18を形成する。このとき、開口部6a内で、コンタクト電極64が第3導電層16と接するようにパターニングが行われる。開口部2a、4a、および6aによって開口部CH1(図1参照)が形成される。第4の導電膜の材料としては、種々の透明導電材料を用いることができ、例えば、ITO、IZO、ZnO等の金属酸化物を用いることができる。ここでは、20nm~300nmの厚さを有する金属酸化物膜を例えばスパッタリング法により堆積することによって第4の導電膜を形成した後、第4の導電膜をフォトリソグラフィプロセスでパターニングすることによって第4導電層18を形成する。 Thereafter, as shown in FIG. 10, a fourth conductive layer (second transparent electrode layer) 18 including the contact electrode 64 and the common electrode (transparent electrode) 18B of the pixel TFT 11B is formed on the third insulating layer 6i. Specifically, after depositing a fourth conductive film on the third insulating layer 6i, the fourth conductive layer 18 is formed by patterning the fourth conductive film. At this time, patterning is performed so that the contact electrode 64 is in contact with the third conductive layer 16 in the opening 6a. An opening CH1 (see FIG. 1) is formed by the openings 2a, 4a, and 6a. As the material of the fourth conductive film, various transparent conductive materials can be used, and for example, metal oxides such as ITO, IZO, ZnO, and the like can be used. Here, a fourth conductive film is formed by depositing a metal oxide film having a thickness of 20 nm to 300 nm by, for example, a sputtering method, and then the fourth conductive film is patterned by a photolithography process to form the fourth conductive film. A conductive layer 18 is formed.
 次に、第4導電層18上に、第1柱状スペーサ23a、第2柱状スペーサ23bおよび絶縁部材19を形成する。具体的には、第4導電層18上に誘電体膜を堆積した後、誘電体膜をパターニングすることによって柱状スペーサ23a、23bおよび絶縁部材19を形成する。誘電体膜の材料として、例えばネガ型またはポジ型の感光性樹脂を用いることができる。また、多階調マスクを用いて露光工程を行うことにより、製造工程およびフォトマスク数を増やすことなく、共通の誘電体膜から、互いに異なる高さを有する第1柱状スペーサ23aおよび第2柱状スペーサ23bを形成することができる。このとき、絶縁部材19の高さh19を、第1柱状スペーサ23aの高さh23aまたは第2柱状スペーサ23bの高さh23bのいずれかと同じとすることで、製造工程およびフォトマスク数を増やすことなく、共通の誘電体膜から絶縁部材19も形成することができる。多階調マスクとしては、グレートーンマスクまたはハーフトーンマスクを用いることができる。グレートーンマスクには、露光機の解像度以下のスリットが形成されており、このスリットによって光の一部を遮ることによって中間露光が実現される。一方、ハーフトーンマスクでは、半透過膜を用いることによって中間露光が実現される。ここでは、誘電体膜として、ネガ型の耐熱透明感光型レジスト(JSR株式会社製 耐熱透明感光型保護膜オプトマーNN700G(オプトマーは登録商標))を用いる。ここでは、誘電体膜を堆積した後、グレートーンマスクを介して露光および現像を行うことにより、1μm~10μmの高さを有する第1柱状スペーサ23a、0.1μm~9.9μmの高さを有する第2柱状スペーサ23b、および第2柱状スペーサ23bと同じ高さを有する絶縁部材19を形成する。 Next, the first columnar spacer 23 a, the second columnar spacer 23 b, and the insulating member 19 are formed on the fourth conductive layer 18. Specifically, after the dielectric film is deposited on the fourth conductive layer 18, the spacers 23a and 23b and the insulating member 19 are formed by patterning the dielectric film. As a material for the dielectric film, for example, a negative or positive photosensitive resin can be used. Further, by performing an exposure process using a multi-tone mask, the first columnar spacers 23a and the second columnar spacers having different heights from the common dielectric film without increasing the number of manufacturing steps and the number of photomasks. 23b can be formed. At this time, by making the height h19 of the insulating member 19 the same as either the height h23a of the first columnar spacer 23a or the height h23b of the second columnar spacer 23b, the number of manufacturing steps and the number of photomasks are not increased. The insulating member 19 can also be formed from a common dielectric film. As the multi-tone mask, a gray-tone mask or a half-tone mask can be used. The gray tone mask is formed with a slit below the resolution of the exposure machine, and intermediate exposure is realized by blocking a part of the light by the slit. On the other hand, in the halftone mask, intermediate exposure is realized by using a semi-transmissive film. Here, a negative heat-resistant transparent photosensitive resist (manufactured by JSR Corporation, heat-resistant transparent photosensitive protective film Optmer NN700G (Optomer is a registered trademark)) is used as the dielectric film. Here, after the dielectric film is deposited, the first columnar spacer 23a having a height of 1 μm to 10 μm and a height of 0.1 μm to 9.9 μm are obtained by performing exposure and development through a gray tone mask. The second columnar spacer 23b and the insulating member 19 having the same height as the second columnar spacer 23b are formed.
 このようにして形成したアクティブマトリクス基板10と、別途に用意した対向基板30の表面に配向膜(不図示)を形成する。対向基板30は、例えば、種々の公知の方法で作製することができる。その後、第1粒状スペーサ66aを含むシール材を、アクティブマトリクス基板10または対向基板30の、表示領域100dに対応する領域を包囲するように付与する。導電性粒子62を含む転移材を、コンタクト電極64に沿って付与する。シール材および転移材の付与は、例えばディスペンサ法またはスクリーン印刷法によって行われる。シール材および転移材を付与した基板に、滴下法によって液晶材料を滴下して、液晶層50を形成する。その後、真空中でアクティブマトリクス基板10および対向基板30を貼り合わせる。その後、シール材および転移材を例えば紫外線照射によって硬化させ、シール部60sおよび転移部60tを形成する。紫外線は、例えばアクティブマトリクス基板10側から照射する。 An alignment film (not shown) is formed on the surfaces of the active matrix substrate 10 thus formed and the counter substrate 30 prepared separately. The counter substrate 30 can be manufactured by various known methods, for example. Thereafter, a sealing material including the first granular spacer 66a is applied so as to surround an area of the active matrix substrate 10 or the counter substrate 30 corresponding to the display area 100d. A transition material including conductive particles 62 is applied along the contact electrode 64. The sealing material and the transfer material are applied by, for example, a dispenser method or a screen printing method. A liquid crystal layer is formed by dropping a liquid crystal material by a dropping method onto a substrate provided with a sealing material and a transition material. Thereafter, the active matrix substrate 10 and the counter substrate 30 are bonded together in a vacuum. Thereafter, the sealing material and the transition material are cured by, for example, ultraviolet irradiation to form the seal portion 60s and the transition portion 60t. For example, the ultraviolet rays are irradiated from the active matrix substrate 10 side.
 以上の工程により、液晶表示装置100を製造することができる。 Through the above steps, the liquid crystal display device 100 can be manufactured.
 続いて、本実施形態における液晶表示装置の改変例を説明する。 Subsequently, a modified example of the liquid crystal display device in the present embodiment will be described.
 図11~図13に、液晶表示装置100の改変例である液晶表示装置100Aを示す。図11~図13は、液晶表示装置100Aを模式的に示す断面図および平面図である。図11(a)は、図12中の11At-11At’線および11Ad-11Ad’線に沿って、液晶表示装置100Aの額縁領域100fを模式的に示す断面図である。図11(b)は、図13中の11b-11b’線に沿って、液晶表示装置100Aの表示領域100dを模式的に示す断面図である。 11 to 13 show a liquid crystal display device 100A which is a modified example of the liquid crystal display device 100. FIG. 11 to 13 are a cross-sectional view and a plan view schematically showing the liquid crystal display device 100A. FIG. 11A is a cross-sectional view schematically showing the frame region 100f of the liquid crystal display device 100A along the 11At-11At 'line and the 11Ad-11Ad' line in FIG. FIG. 11B is a cross-sectional view schematically showing the display region 100d of the liquid crystal display device 100A along the line 11b-11b 'in FIG.
 液晶表示装置100においては、図1に示すように、第2ゲート電極16gAは、第2絶縁層4iに設けられた開口部CH2内でソース電極14sAと接している。これに対し、液晶表示装置100Aでは、図11に示すように、駆動TFT11Aは、第2ゲート電極16gA上に設けられ、第2ゲート電極16gAと電気的に接続されている付加電極18Aをさらに有し、付加電極18Aは、第2絶縁層4iに設けられた第2開口部CH2内でソース電極14sAと電気的に接続されている。第2開口部CH2は、第3絶縁層6iにも設けられている。付加電極18Aは、第4導電層18と同じ導電膜から形成されている。付加電極18Aは、コンタクト電極64と同じ導電膜から形成されていてもよい。絶縁部材19は、第2ゲート電極16gAに加えて付加電極18Aを覆っている。絶縁部材19が第2ゲート電極16gAおよび付加電極18Aを覆うとは、アクティブマトリクス基板10の法線方向から見たとき、第2ゲート電極16gAおよび付加電極18Aの全てが絶縁部材19と重複している状態をいう。 In the liquid crystal display device 100, as shown in FIG. 1, the second gate electrode 16gA is in contact with the source electrode 14sA in the opening CH2 provided in the second insulating layer 4i. On the other hand, in the liquid crystal display device 100A, as shown in FIG. 11, the driving TFT 11A further includes an additional electrode 18A provided on the second gate electrode 16gA and electrically connected to the second gate electrode 16gA. The additional electrode 18A is electrically connected to the source electrode 14sA in the second opening CH2 provided in the second insulating layer 4i. The second opening CH2 is also provided in the third insulating layer 6i. The additional electrode 18A is formed of the same conductive film as the fourth conductive layer 18. The additional electrode 18A may be formed of the same conductive film as the contact electrode 64. The insulating member 19 covers the additional electrode 18A in addition to the second gate electrode 16gA. The insulating member 19 covers the second gate electrode 16gA and the additional electrode 18A when the second gate electrode 16gA and the additional electrode 18A overlap with the insulating member 19 when viewed from the normal direction of the active matrix substrate 10. The state that is.
 このような構成を有する液晶表示装置100Aにおいても、液晶表示装置100と同様の効果を得ることができる。駆動TFT11Aは、バックゲート電極として機能する第2ゲート電極16gAを有するので、駆動TFT11Aの電気特性の変動が抑制される。これにより、液晶表示装置100Aの信頼性の低下が抑制される。液晶表示装置100Aは、第2ゲート電極16gAおよび付加電極18Aを覆う絶縁部材19を有するので、第2ゲート電極16gAおよび/または付加電極18Aと対向基板30が有する対向電極34とが、導電性粒子62によって電気的に接続されることを防ぐことができる。これにより、駆動TFT11Aの誤作動が抑制されるので、液晶表示装置100Aは優れた信頼性を有する。また、シール部60sおよび/または転移部60tと駆動TFT11Aとを互いに近接して設けることが可能になるので、額縁領域100fの面積を小さくできる。絶縁部材19は、表示領域100dにおいてアクティブマトリクス基板10が有する突起構造体と同じ誘電体膜から形成されるので、製造工程を増やすことなく、狭額縁で、かつ、優れた信頼性を有する液晶表示装置が得られる。 Also in the liquid crystal display device 100A having such a configuration, the same effect as that of the liquid crystal display device 100 can be obtained. Since the drive TFT 11A includes the second gate electrode 16gA that functions as a back gate electrode, fluctuations in the electrical characteristics of the drive TFT 11A are suppressed. Thereby, the fall of the reliability of 100 A of liquid crystal display devices is suppressed. Since the liquid crystal display device 100A includes the insulating member 19 that covers the second gate electrode 16gA and the additional electrode 18A, the second gate electrode 16gA and / or the additional electrode 18A and the counter electrode 34 of the counter substrate 30 are electrically conductive particles. It is possible to prevent electrical connection by 62. As a result, malfunction of the driving TFT 11A is suppressed, so that the liquid crystal display device 100A has excellent reliability. Further, since the seal portion 60s and / or the transition portion 60t and the driving TFT 11A can be provided close to each other, the area of the frame region 100f can be reduced. Since the insulating member 19 is formed of the same dielectric film as the protruding structure of the active matrix substrate 10 in the display region 100d, the liquid crystal display has a narrow frame and excellent reliability without increasing the number of manufacturing steps. A device is obtained.
 液晶表示装置100において、図1に示すように、第2ゲート電極16gA上には、第3絶縁層6iが形成されている。これに対して、液晶表示装置100Aでは、図11に示すように、第2ゲート電極16gAに電気的に接続されている付加電極18Aは、絶縁部材19以外の絶縁膜または誘電体膜で覆われていない。従って、液晶表示装置100Aは、絶縁部材19を有しないと、第2ゲート電極16gAと対向電極34とが導電性粒子62によって電気的に接続されてしまうという問題が生じやすい。つまり、液晶表示装置100Aは、絶縁部材19を有することで、より効果的に信頼性を向上させることができる。 In the liquid crystal display device 100, as shown in FIG. 1, a third insulating layer 6i is formed on the second gate electrode 16gA. On the other hand, in the liquid crystal display device 100A, as shown in FIG. 11, the additional electrode 18A electrically connected to the second gate electrode 16gA is covered with an insulating film or dielectric film other than the insulating member 19. Not. Therefore, if the liquid crystal display device 100A does not have the insulating member 19, the second gate electrode 16gA and the counter electrode 34 are likely to be electrically connected by the conductive particles 62. That is, the liquid crystal display device 100 </ b> A can improve the reliability more effectively by including the insulating member 19.
 さらに、液晶表示装置100Aは、液晶表示装置100よりも少ないマスク数で製造することができる。 Furthermore, the liquid crystal display device 100A can be manufactured with a smaller number of masks than the liquid crystal display device 100.
 液晶表示装置100Aの製造工程は、液晶表示装置100の製造工程と、以下の点において異なる。液晶表示装置100の第2絶縁層4iの製造工程は、図7を参照して説明したように、絶縁膜を堆積した後、絶縁膜に開口部(開口部4a、開口部CH2および開口部CH3)をパターニングによって形成する工程である。その後、第3導電層16を形成する。液晶表示装置100Aにおいては、第2絶縁層4iを形成するために絶縁膜を堆積した後、絶縁膜に開口部を設けることなく、第3導電層16の製造工程(図14参照)を行う。その後、第3絶縁層6iの製造工程(図15参照)において、第2絶縁層4iの一部および第3絶縁層6iの一部を除去することにより、第2絶縁層4iおよび第3絶縁層6iに開口部を形成する。これによって、液晶表示装置100Aは、液晶表示装置100よりも少ないマスク数で製造することができる。以下、詳細を説明する。 The manufacturing process of the liquid crystal display device 100A differs from the manufacturing process of the liquid crystal display device 100 in the following points. In the manufacturing process of the second insulating layer 4i of the liquid crystal display device 100, as described with reference to FIG. 7, after depositing the insulating film, openings (opening 4a, opening CH2 and opening CH3 are formed in the insulating film. ) By patterning. Thereafter, the third conductive layer 16 is formed. In the liquid crystal display device 100A, after the insulating film is deposited to form the second insulating layer 4i, the manufacturing process (see FIG. 14) of the third conductive layer 16 is performed without providing an opening in the insulating film. Thereafter, in the manufacturing process of the third insulating layer 6i (see FIG. 15), the second insulating layer 4i and the third insulating layer are removed by removing a part of the second insulating layer 4i and a part of the third insulating layer 6i. An opening is formed in 6i. Accordingly, the liquid crystal display device 100A can be manufactured with a smaller number of masks than the liquid crystal display device 100. Details will be described below.
 図14~図16を参照して、液晶表示装置100Aの製造工程を説明する。液晶表示装置100の製造工程と異なる点を中心に説明を行う。図14~図16は、それぞれ、液晶表示装置100Aの製造工程を模式的に示す工程断面図である。図14~図16において、(a)は、額縁領域100fを製造する工程を示し、(b)は、表示領域100dを製造する工程を示している。 The manufacturing process of the liquid crystal display device 100A will be described with reference to FIGS. The description will focus on the differences from the manufacturing process of the liquid crystal display device 100. 14 to 16 are process cross-sectional views schematically showing the manufacturing process of the liquid crystal display device 100A. 14 to 16, (a) shows the process of manufacturing the frame area 100f, and (b) shows the process of manufacturing the display area 100d.
 図14に示すように、第2絶縁層4iを形成した後、第2絶縁層4i上に、駆動TFT11Aの第2ゲート電極16gAおよび画素TFT11Bの電極16Bを含む第3導電層(第1透明電極層)16を形成する。画素TFT11Bの電極16Bは共通電極として機能し得る。 As shown in FIG. 14, after the second insulating layer 4i is formed, a third conductive layer (first transparent electrode) including the second gate electrode 16gA of the driving TFT 11A and the electrode 16B of the pixel TFT 11B is formed on the second insulating layer 4i. Layer) 16 is formed. The electrode 16B of the pixel TFT 11B can function as a common electrode.
 続いて、図15に示すように、第3導電層16上に、第3絶縁層(補助容量絶縁層)6iを形成する。第3絶縁層6iの、第1絶縁層2iの開口部2aに対応する領域には、パターニングによって開口部4aおよび6aが形成される。つまり、第2導電層14が露出するように、第2絶縁層4iおよび第3絶縁層6iの一部が除去される。開口部2a、4a、および6aによって開口部CH1(図11参照)が形成される。また、駆動回路部60dの第2絶縁層4iおよび第3絶縁層6iに、パターニングによって開口部4bおよび6bが形成される。開口部4bおよび6bは、駆動TFT11Aのソース電極14sAの一部および第2ゲート電極16gAの一部が露出するように、第2絶縁層4iおよび第3絶縁層6iの一部が除去されることにより、形成される。開口部4bおよび6bによって開口部CH2(図11参照)が形成される。さらに、表示領域100dの第2絶縁層4iおよび第3絶縁層6iに、パターニングによって開口部4cおよび6cが形成される。開口部4cおよび6cは、画素TFT11Bのドレイン電極14dBの一部および半導体層15Bの一部が露出するように、第2絶縁層4iおよび第3絶縁層6iの一部が除去されることにより、形成される。開口部4cおよび6cによって開口部CH3(図11参照)が形成される。 Subsequently, as shown in FIG. 15, a third insulating layer (auxiliary capacitor insulating layer) 6 i is formed on the third conductive layer 16. Openings 4a and 6a are formed by patterning in a region of the third insulating layer 6i corresponding to the opening 2a of the first insulating layer 2i. That is, part of the second insulating layer 4i and the third insulating layer 6i is removed so that the second conductive layer 14 is exposed. An opening CH1 (see FIG. 11) is formed by the openings 2a, 4a, and 6a. In addition, openings 4b and 6b are formed in the second insulating layer 4i and the third insulating layer 6i of the drive circuit unit 60d by patterning. In the openings 4b and 6b, a part of the second insulating layer 4i and a part of the third insulating layer 6i are removed so that a part of the source electrode 14sA of the driving TFT 11A and a part of the second gate electrode 16gA are exposed. Is formed. An opening CH2 (see FIG. 11) is formed by the openings 4b and 6b. Further, openings 4c and 6c are formed in the second insulating layer 4i and the third insulating layer 6i in the display region 100d by patterning. The openings 4c and 6c are formed by removing a part of the second insulating layer 4i and the third insulating layer 6i so that a part of the drain electrode 14dB of the pixel TFT 11B and a part of the semiconductor layer 15B are exposed. It is formed. An opening CH3 (see FIG. 11) is formed by the openings 4c and 6c.
 次に、図16に示すように、第3絶縁層6i上に、コンタクト電極64および画素TFT11Bの画素電極18Bを含む第4導電層(第2透明電極層)18を形成する。具体的には、第3絶縁層6i上に第4の導電膜を堆積した後、第4の導電膜をパターニングすることによって第4導電層18を形成する。このとき、開口部CH1内で、コンタクト電極64が第2導電層14と接するようにパターニングが行われる。また、開口部CH2内で、付加電極18Aが第2ゲート電極16gAおよびソース電極14sAと接するようにパターニングが行われる。さらに、開口部CH3内で、画素電極18Bが半導体層15Bの第2部分15bBおよびドレイン電極14dBと接するようにパターニングが行われる。 Next, as shown in FIG. 16, a fourth conductive layer (second transparent electrode layer) 18 including the contact electrode 64 and the pixel electrode 18B of the pixel TFT 11B is formed on the third insulating layer 6i. Specifically, after depositing a fourth conductive film on the third insulating layer 6i, the fourth conductive layer 18 is formed by patterning the fourth conductive film. At this time, patterning is performed so that the contact electrode 64 is in contact with the second conductive layer 14 in the opening CH1. Further, patterning is performed so that the additional electrode 18A is in contact with the second gate electrode 16gA and the source electrode 14sA in the opening CH2. Further, patterning is performed so that the pixel electrode 18B is in contact with the second portion 15bB and the drain electrode 14dB of the semiconductor layer 15B in the opening CH3.
 液晶表示装置100では、図1~図3を参照して上述したように、画素TFT11Bの画素電極16Bは第3導電層16から形成され、共通電極18Bは第4導電層18から形成されている。これに対して、図11~図13に示す液晶表示装置100Aの画素TFT11Bでは、共通電極16Bは第3導電層16から形成され、画素電極18Bは第4導電層18から形成されている。 In the liquid crystal display device 100, as described above with reference to FIGS. 1 to 3, the pixel electrode 16B of the pixel TFT 11B is formed from the third conductive layer 16, and the common electrode 18B is formed from the fourth conductive layer 18. . In contrast, in the pixel TFT 11B of the liquid crystal display device 100A shown in FIGS. 11 to 13, the common electrode 16B is formed of the third conductive layer 16, and the pixel electrode 18B is formed of the fourth conductive layer 18.
 その後、液晶表示装置100と同様の工程で、第4導電層18上に、柱状スペーサ23a、23bおよび絶縁部材19を形成することによって、液晶表示装置100Aのアクティブマトリクス基板10が製造される。 Thereafter, the columnar spacers 23a and 23b and the insulating member 19 are formed on the fourth conductive layer 18 in the same process as the liquid crystal display device 100, whereby the active matrix substrate 10 of the liquid crystal display device 100A is manufactured.
 図17に、液晶表示装置100の他の改変例である液晶表示装置100Bを示す。図17は、液晶表示装置100Bの額縁領域100fを模式的に示す断面図である。以下、液晶表示装置100Bが、液晶表示装置100Aと異なる点を中心に説明を行う。 FIG. 17 shows a liquid crystal display device 100B which is another modified example of the liquid crystal display device 100. FIG. 17 is a cross-sectional view schematically showing a frame region 100f of the liquid crystal display device 100B. Hereinafter, the liquid crystal display device 100B will be described with a focus on differences from the liquid crystal display device 100A.
 図17に示すように、液晶表示装置100Bの駆動TFT11Aにおいて、第2ゲート電極18gAは、第4導電層18と同じ導電膜から形成されている。第2ゲート電極18gAは、コンタクト電極64と同じ導電膜から形成されていてもよい。第2ゲート電極18gAは、第2絶縁層4iおよび第3絶縁層6iに設けられた開口部CH2内で、ソース電極14sAと接している。 As shown in FIG. 17, in the driving TFT 11A of the liquid crystal display device 100B, the second gate electrode 18gA is formed of the same conductive film as the fourth conductive layer 18. The second gate electrode 18gA may be formed of the same conductive film as the contact electrode 64. The second gate electrode 18gA is in contact with the source electrode 14sA in the opening CH2 provided in the second insulating layer 4i and the third insulating layer 6i.
 このような構成を有する液晶表示装置100Bにおいても、液晶表示装置100Aと同様の効果を得ることができる。 Also in the liquid crystal display device 100B having such a configuration, the same effect as that of the liquid crystal display device 100A can be obtained.
 上述した液晶表示装置100Aおよび液晶表示装置100Bにおいては、コンタクト電極64は、第4導電層18と同じ導電膜から形成されている。コンタクト電極64は、例えば第3導電層16と同じ導電膜から形成されていてもよい。 In the liquid crystal display device 100A and the liquid crystal display device 100B described above, the contact electrode 64 is formed of the same conductive film as the fourth conductive layer 18. The contact electrode 64 may be formed of, for example, the same conductive film as the third conductive layer 16.
 (実施形態2)
 図18および図19に、本発明の実施形態2による液晶表示装置200を示す。図18および図19は、液晶表示装置200の額縁領域200fを模式的に示す断面図および平面図である。図18は、図19中の18At-18At’線および18Ad-18Ad’線に沿って、液晶表示装置200の額縁領域200fを模式的に示す断面図である。以下、実施形態1の液晶表示装置100と異なる点を中心に説明を行う。
(Embodiment 2)
18 and 19 show a liquid crystal display device 200 according to Embodiment 2 of the present invention. 18 and 19 are a cross-sectional view and a plan view schematically showing the frame region 200f of the liquid crystal display device 200. FIG. FIG. 18 is a cross-sectional view schematically showing a frame region 200f of the liquid crystal display device 200 along the 18At-18At ′ line and the 18Ad-18Ad ′ line in FIG. Hereinafter, a description will be given focusing on differences from the liquid crystal display device 100 of the first embodiment.
 図18および図19に示すように、液晶表示装置200は、絶縁部材19の大きさにおいて、実施形態1の液晶表示装置100と異なる。例えば、転移部60tは、表示領域200dの一側に設けられ、絶縁部材19は、転移部60tと表示領域200dとの間の略全体を覆う。例えば表示領域200dが略矩形である場合、転移部60tは表示領域200dの一辺に設けられ、絶縁部材19は、転移部60tと表示領域200dとの間の略全体を覆う。絶縁部材19は、例えば、少なくともコンタクト電極64を露出するように設けられていればよい。 18 and 19, the liquid crystal display device 200 is different from the liquid crystal display device 100 of the first embodiment in the size of the insulating member 19. For example, the transition part 60t is provided on one side of the display area 200d, and the insulating member 19 covers substantially the entire area between the transition part 60t and the display area 200d. For example, when the display area 200d is substantially rectangular, the transition part 60t is provided on one side of the display area 200d, and the insulating member 19 covers substantially the entire area between the transition part 60t and the display area 200d. The insulating member 19 may be provided so as to expose at least the contact electrode 64, for example.
 このような構成を有する液晶表示装置200においても、液晶表示装置100と同様の効果を得ることができる。駆動TFT11Aは、バックゲート電極として機能する第2ゲート電極16gAを有するので、駆動TFT11Aの電気特性の変動が抑制される。これにより、液晶表示装置200の信頼性の低下が抑制される。液晶表示装置200は、第2ゲート電極16gAを覆う絶縁部材19を有するので、第2ゲート電極16gAと対向基板30が有する対向電極34とが、導電性粒子62によって電気的に接続されることを防ぐことができる。これにより、駆動TFT11Aの誤作動が抑制されるので、液晶表示装置200は優れた信頼性を有する。また、シール部60sおよび/または転移部60tと駆動TFT11Aとを互いに近接して設けることが可能になるので、額縁領域200fの面積を小さくできる。絶縁部材19は、表示領域200dにおいてアクティブマトリクス基板10が有する突起構造体と同じ誘電体膜から形成されるので、製造工程を増やすことなく、狭額縁で、かつ、優れた信頼性を有する液晶表示装置が得られる。 Also in the liquid crystal display device 200 having such a configuration, the same effect as that of the liquid crystal display device 100 can be obtained. Since the drive TFT 11A includes the second gate electrode 16gA that functions as a back gate electrode, fluctuations in the electrical characteristics of the drive TFT 11A are suppressed. Thereby, the fall of the reliability of the liquid crystal display device 200 is suppressed. Since the liquid crystal display device 200 includes the insulating member 19 that covers the second gate electrode 16gA, the second gate electrode 16gA and the counter electrode 34 of the counter substrate 30 are electrically connected by the conductive particles 62. Can be prevented. As a result, malfunction of the driving TFT 11A is suppressed, so that the liquid crystal display device 200 has excellent reliability. Further, since the seal portion 60s and / or the transition portion 60t and the driving TFT 11A can be provided close to each other, the area of the frame region 200f can be reduced. Since the insulating member 19 is formed of the same dielectric film as the protruding structure of the active matrix substrate 10 in the display area 200d, a liquid crystal display having a narrow frame and excellent reliability without increasing the number of manufacturing steps. A device is obtained.
 液晶表示装置200は、液晶表示装置100よりも大きい絶縁部材19を有するので、駆動TFT11A(特に半導体層15Aのチャネル領域15cA)をシール部60sに含まれる水分からより効果的に保護することができる。また、例えばシール材を硬化する工程においてシール材に照射され、シール材に含まれるフィラーによって散乱された紫外線が、半導体層15Aのチャネル領域15cAに入射するのをより効果的に低減することができる。駆動TFT11Aの特性変動および/または誤作動を効果的に防止することができるので、より効果的に信頼性の向上を図ることが可能になる。 Since the liquid crystal display device 200 includes the insulating member 19 larger than the liquid crystal display device 100, the driving TFT 11A (particularly the channel region 15cA of the semiconductor layer 15A) can be more effectively protected from moisture contained in the seal portion 60s. . In addition, for example, it is possible to more effectively reduce the incidence of ultraviolet rays that are irradiated on the sealing material and scattered by the filler contained in the sealing material in the step of curing the sealing material, into the channel region 15cA of the semiconductor layer 15A. . Since the characteristic variation and / or malfunction of the driving TFT 11A can be effectively prevented, the reliability can be improved more effectively.
 液晶表示装置200は、液晶表示装置100よりも大きい絶縁部材19を有するので、アクティブマトリクス基板10と対向基板30との間の距離を一定に保ちやすい(制御しやすい)。図18に示すように、液晶表示装置200のシール部60sは、絶縁部材19と対向基板30との間に位置する第2粒状スペーサ66bであって、絶縁部材19とともにアクティブマトリクス基板10と対向基板30との間の距離を規定する第2粒状スペーサ66bを含んでもよい。第2粒状スペーサ66bは、シール部60sを形成するシール材に含まれる。第2粒状スペーサ66bは、転移部60tを形成する転移材にも含まれてもよい。 Since the liquid crystal display device 200 has the insulating member 19 larger than the liquid crystal display device 100, the distance between the active matrix substrate 10 and the counter substrate 30 can be easily maintained (easily controlled). As shown in FIG. 18, the seal portion 60 s of the liquid crystal display device 200 is a second granular spacer 66 b positioned between the insulating member 19 and the counter substrate 30, and the active matrix substrate 10 and the counter substrate together with the insulating member 19. A second granular spacer 66b that defines a distance between the first and second particles may be included. The second granular spacer 66b is included in the sealing material that forms the seal portion 60s. The second granular spacer 66b may also be included in the transition material that forms the transition portion 60t.
 液晶表示装置200において、駆動TFT11A、画素TFT11B、および転移部60tの構造は、実施形態1の液晶表示装置100と同じである。本実施形態はこれに限られず、駆動TFT11A、画素TFT11B、および転移部60tの構造は、液晶表示装置100の改変例(液晶表示装置100Aおよび100Bを含む)と同じであってもよい。 In the liquid crystal display device 200, the structure of the driving TFT 11A, the pixel TFT 11B, and the transition portion 60t is the same as that of the liquid crystal display device 100 of the first embodiment. The present embodiment is not limited to this, and the structure of the driving TFT 11A, the pixel TFT 11B, and the transition portion 60t may be the same as the modified example of the liquid crystal display device 100 (including the liquid crystal display devices 100A and 100B).
 (実施形態3)
 図20に、本発明の実施形態3による液晶表示装置300を示す。図20は、液晶表示装置300の額縁領域300fおよび表示領域300dを模式的に示す断面図である。以下、実施形態1の液晶表示装置100と異なる点を中心に説明を行う。
(Embodiment 3)
FIG. 20 shows a liquid crystal display device 300 according to Embodiment 3 of the present invention. FIG. 20 is a cross-sectional view schematically showing the frame region 300f and the display region 300d of the liquid crystal display device 300. Hereinafter, a description will be given focusing on differences from the liquid crystal display device 100 of the first embodiment.
 液晶表示装置300では、表示領域300dにおいて、アクティブマトリクス基板10がカラーフィルタ層22を有する。つまり、カラーフィルタ・オン・アレイ構造が採用されている。カラーフィルタ層22は、互いに異なる色の光を透過させる3種類のカラーフィルタ、すなわち第1カラーフィルタ22a、第2カラーフィルタ22bおよび第3カラーフィルタ(不図示)を含む。3種類のカラーフィルタは、例えば、赤色光を透過させる赤カラーフィルタ、緑色光を透過させる緑カラーフィルタ、および青色光を透過させる青カラーフィルタである。絶縁部材19は、第1カラーフィルタ22a、第2カラーフィルタ22bおよび第3カラーフィルタのうちの少なくとも1つと同じ誘電体膜から形成されている。カラーフィルタ層22は、ブラックマトリクスBMをさらに含んでもよい。 In the liquid crystal display device 300, the active matrix substrate 10 has the color filter layer 22 in the display region 300d. That is, a color filter on array structure is adopted. The color filter layer 22 includes three types of color filters that transmit light of different colors, that is, a first color filter 22a, a second color filter 22b, and a third color filter (not shown). The three types of color filters are, for example, a red color filter that transmits red light, a green color filter that transmits green light, and a blue color filter that transmits blue light. The insulating member 19 is formed of the same dielectric film as at least one of the first color filter 22a, the second color filter 22b, and the third color filter. The color filter layer 22 may further include a black matrix BM.
 このような構成を有する液晶表示装置300においても、液晶表示装置100と同様の効果を得ることができる。駆動TFT11Aは、バックゲート電極として機能する第2ゲート電極16gAを有するので、駆動TFT11Aの電気特性の変動が抑制される。これにより、液晶表示装置300の信頼性の低下が抑制される。液晶表示装置300は、第2ゲート電極16gAを覆う絶縁部材19を有するので、第2ゲート電極16gAと対向基板30が有する対向電極34とが、導電性粒子62によって電気的に接続されることを防ぐことができる。これにより、駆動TFT11Aの誤作動が抑制されるので、液晶表示装置300は優れた信頼性を有する。また、シール部60sおよび/または転移部60tと駆動TFT11Aとを互いに近接して設けることが可能になるので、額縁領域300fの面積を小さくできる。絶縁部材19は、表示領域300dにおいてアクティブマトリクス基板10が有するカラーフィルタ層22と同じ誘電体膜から形成されるので、製造工程を増やすことなく、狭額縁で、かつ、優れた信頼性を有する液晶表示装置が得られる。 Also in the liquid crystal display device 300 having such a configuration, the same effect as that of the liquid crystal display device 100 can be obtained. Since the drive TFT 11A includes the second gate electrode 16gA that functions as a back gate electrode, fluctuations in the electrical characteristics of the drive TFT 11A are suppressed. Thereby, the fall of the reliability of the liquid crystal display device 300 is suppressed. Since the liquid crystal display device 300 has the insulating member 19 that covers the second gate electrode 16gA, the second gate electrode 16gA and the counter electrode 34 of the counter substrate 30 are electrically connected by the conductive particles 62. Can be prevented. As a result, malfunction of the driving TFT 11A is suppressed, so that the liquid crystal display device 300 has excellent reliability. Further, since the seal portion 60s and / or the transition portion 60t and the driving TFT 11A can be provided close to each other, the area of the frame region 300f can be reduced. The insulating member 19 is formed of the same dielectric film as the color filter layer 22 included in the active matrix substrate 10 in the display region 300d. A display device is obtained.
 さらに、液晶表示装置300は、液晶表示装置100に比べて高い開口率を有し得る。液晶表示装置100では、対向基板30がカラーフィルタ層32を有するので、アクティブマトリクス基板10と対向基板30とのアライメントずれを考慮して、ブラックマトリクスを広めに設定することがある。これに対して、液晶表示装置300では、アクティブマトリクス基板10がカラーフィルタ層22を有するので、アライメントずれを考慮する必要がない。ブラックマトリクスの幅を狭くすることができるので、その分開口率が向上する。 Furthermore, the liquid crystal display device 300 may have a higher aperture ratio than the liquid crystal display device 100. In the liquid crystal display device 100, since the counter substrate 30 includes the color filter layer 32, the black matrix may be set wider in consideration of misalignment between the active matrix substrate 10 and the counter substrate 30. On the other hand, in the liquid crystal display device 300, since the active matrix substrate 10 includes the color filter layer 22, it is not necessary to consider misalignment. Since the width of the black matrix can be reduced, the aperture ratio is improved accordingly.
 液晶表示装置300の製造工程について説明する。以下、液晶表示装置100の製造工程と異なる点を中心に説明する。 The manufacturing process of the liquid crystal display device 300 will be described. Hereinafter, a description will be given focusing on differences from the manufacturing process of the liquid crystal display device 100.
 図4~図8を参照して説明した、液晶表示装置100の製造工程と同様にして、第3導電層16を形成する。 The third conductive layer 16 is formed in the same manner as the manufacturing process of the liquid crystal display device 100 described with reference to FIGS.
 その後、第3導電層16上にカラーフィルタ層22を形成する。具体的には、まず、第3導電層16上にブラックマトリクスBMを形成し、その後、赤カラーフィルタ22a、青カラーフィルタ22b、および緑カラーフィルタ(不図示)を順次形成することにより、カラーフィルタ層22を形成する。ブラックマトリクスBMの材料としては、例えば、黒色の感光性樹脂材料を用いることができる。赤カラーフィルタ22a、青カラーフィルタ22b、および緑カラーフィルタの材料としては、例えば、着色された感光性樹脂材料を用いることができる。駆動TFT11Aのバックゲート電極16gA上には、例えば、赤カラーフィルタ22aおよび青カラーフィルタ22bを形成する。駆動TFT11Aのバックゲート電極16gA上に設けられた、赤カラーフィルタ22aおよび青カラーフィルタ22bが、絶縁部材19を構成する。赤カラーフィルタ22aおよび青カラーフィルタ22bを重ねて絶縁部材19を形成すると、絶縁部材19は、半導体層15Aのチャネル領域15cAに対する遮光膜として機能し得る。従って、半導体層15Aのチャネル領域15cAに対する遮光膜として、ブラックマトリクスBMを設ける必要がない。上記の例に限られず、互いに異なる色の光を透過させる2以上のカラーフィルタを重ねて絶縁部材19を形成することができる。この場合においても、上記と同様の効果が得られる。 Thereafter, the color filter layer 22 is formed on the third conductive layer 16. Specifically, first, a black matrix BM is formed on the third conductive layer 16, and then a red color filter 22a, a blue color filter 22b, and a green color filter (not shown) are sequentially formed, so that the color filter Layer 22 is formed. As a material of the black matrix BM, for example, a black photosensitive resin material can be used. As a material of the red color filter 22a, the blue color filter 22b, and the green color filter, for example, a colored photosensitive resin material can be used. For example, a red color filter 22a and a blue color filter 22b are formed on the back gate electrode 16gA of the drive TFT 11A. The red color filter 22a and the blue color filter 22b provided on the back gate electrode 16gA of the driving TFT 11A constitute the insulating member 19. When the insulating member 19 is formed by overlapping the red color filter 22a and the blue color filter 22b, the insulating member 19 can function as a light shielding film for the channel region 15cA of the semiconductor layer 15A. Therefore, it is not necessary to provide the black matrix BM as a light shielding film for the channel region 15cA of the semiconductor layer 15A. The insulating member 19 can be formed by stacking two or more color filters that transmit light of different colors. Even in this case, the same effect as described above can be obtained.
 続いて、カラーフィルタ層22上に平坦化のための有機絶縁層24を形成する。有機絶縁層24は、例えば、感光性樹脂から形成される。有機絶縁層24のうち、後に開口部CH1またはCH3(図20参照)となる領域には、開口部が形成されている。 Subsequently, an organic insulating layer 24 for planarization is formed on the color filter layer 22. The organic insulating layer 24 is made of, for example, a photosensitive resin. In the organic insulating layer 24, an opening is formed in a region to be the opening CH1 or CH3 (see FIG. 20) later.
 その後、有機絶縁層24上に、画素TFT11Bの画素電極18Bを含む第4導電層(第2透明電極層)18を形成する。続いて、第4導電層18上に、第3絶縁層(補助容量絶縁層)6iを形成する。その後、第3絶縁層6i上に、画素TFT11Bの共通電極(透明電極)20Bおよびコンタクト電極64を含む第5導電層(第3透明電極層)20を形成する。共通電極20Bは、第3絶縁層6iを介して画素電極18Bに対向しており、画素電極18Bおよび共通電極20Bと、これらの間に位置する第3絶縁層6iとが補助容量を構成している。第5導電層20を形成する導電膜の材料としては、種々の透明導電材料を用いることができ、例えば、ITO、IZO、ZnO等の金属酸化物を用いることができる。 Thereafter, a fourth conductive layer (second transparent electrode layer) 18 including the pixel electrode 18B of the pixel TFT 11B is formed on the organic insulating layer 24. Subsequently, a third insulating layer (auxiliary capacitor insulating layer) 6 i is formed on the fourth conductive layer 18. Thereafter, the fifth conductive layer (third transparent electrode layer) 20 including the common electrode (transparent electrode) 20B and the contact electrode 64 of the pixel TFT 11B is formed on the third insulating layer 6i. The common electrode 20B is opposed to the pixel electrode 18B through the third insulating layer 6i, and the pixel electrode 18B and the common electrode 20B and the third insulating layer 6i located therebetween constitute an auxiliary capacitor. Yes. As a material for the conductive film forming the fifth conductive layer 20, various transparent conductive materials can be used. For example, metal oxides such as ITO, IZO, ZnO, and the like can be used.
 その後、液晶表示装置100と同様の工程で、第5導電層20上に、柱状スペーサ23a、23bを形成することによって、液晶表示装置300のアクティブマトリクス基板10が製造される。 Then, the active matrix substrate 10 of the liquid crystal display device 300 is manufactured by forming the columnar spacers 23a and 23b on the fifth conductive layer 20 in the same process as the liquid crystal display device 100.
 液晶表示装置300の対向基板30は、カラーフィルタ層を有しない点を除いて、液晶表示装置100の対向基板30と同じであってもよい。 The counter substrate 30 of the liquid crystal display device 300 may be the same as the counter substrate 30 of the liquid crystal display device 100 except that it does not have a color filter layer.
 本発明の実施形態によると、製造工程を増やすことなく、狭額縁で、かつ、優れた信頼性を有する表示装置を得ることができる。本発明の実施形態は、種々の表示装置に広く用いられる。 According to the embodiment of the present invention, a display device having a narrow frame and excellent reliability can be obtained without increasing the number of manufacturing steps. Embodiments of the present invention are widely used in various display devices.
 10  アクティブマトリクス基板
 1s  基板
 2i  第1絶縁層
 4i  第2絶縁層
 6i  第3絶縁層
 11A  駆動TFT
 11B  画素TFT
 12  第1導電層
 12gA、12gB  ゲート電極(第1ゲート電極)
 14  第2導電層
 14sA、14sB  ソース電極
 14dA、14dB  ドレイン電極
 15A、15B  半導体層
 15cA、15cB  チャネル領域
 15sA、15sB  ソース領域
 15dA、15dB  ドレイン領域
 16  第3導電層
 16gA  第2ゲート電極
 18  第4導電層
 19  絶縁部材
 20  第5導電層
 22  カラーフィルタ層
 23a  第1柱状スペーサ
 23b  第2柱状スペーサ
 24  有機絶縁層
 30  対向基板
 31  基板
 32  カラーフィルタ層
 33  オーバーコート層
 34  対向電極
 50  液晶層
 60s  シール部
 60t  転移部
 60d  駆動回路部
 62  導電性粒子
 64  コンタクト電極
 66a  第1粒状スペーサ
 66b  第2粒状スペーサ
 100、100A、100B、200、300、900  液晶表示装置
 100f、200f、300f、900f  額縁領域
 100d、200d  表示領域
10 active matrix substrate 1s substrate 2i first insulating layer 4i second insulating layer 6i third insulating layer 11A driving TFT
11B pixel TFT
12 First conductive layer 12gA, 12gB Gate electrode (first gate electrode)
14 Second conductive layer 14sA, 14sB Source electrode 14dA, 14dB Drain electrode 15A, 15B Semiconductor layer 15cA, 15cB Channel region 15sA, 15sB Source region 15dA, 15dB Drain region 16 Third conductive layer 16gA Second gate electrode 18 Fourth conductive layer 19 Insulating Member 20 Fifth Conductive Layer 22 Color Filter Layer 23a First Columnar Spacer 23b Second Columnar Spacer 24 Organic Insulating Layer 30 Counter Substrate 31 Substrate 32 Color Filter Layer 33 Overcoat Layer 34 Counter Electrode 50 Liquid Crystal Layer 60s Sealing Section 60t Transition Section 60d Drive circuit section 62 Conductive particles 64 Contact electrode 66a First granular spacer 66b Second granular spacer 100, 100A, 100B, 200, 300, 900 Liquid crystal display device 100f 200f, 300f, 900f frame region 100d, 200d display area

Claims (20)

  1.  アクティブマトリクス基板と、前記アクティブマトリクス基板に対向するように配置された対向基板とを備え、
     マトリクス状に配列された複数の画素によって画定される表示領域と、前記表示領域の周辺の額縁領域とを有する表示装置であって、
     前記額縁領域は、
     前記表示領域を包囲するシール部と、
     導電性粒子によって前記アクティブマトリクス基板と前記対向基板とを電気的に接続する転移部と
    を含み、
     前記アクティブマトリクス基板は、
     前記額縁領域に設けられた駆動TFTと、
     前記駆動TFTを支持する基板と
    を有し、
     前記駆動TFTは、
     チャネル領域、ソース領域およびドレイン領域を含む半導体層と、
     前記半導体層の前記チャネル領域に第1絶縁層を介して重なり、前記半導体層および前記基板の間に位置する第1ゲート電極と、
     前記半導体層の前記ソース領域および前記ドレイン領域にそれぞれ電気的に接続されたソース電極およびドレイン電極と、
     前記半導体層の前記チャネル領域に第2絶縁層を介して重なり、前記半導体層に対して前記第1ゲート電極とは反対側に位置する第2ゲート電極と
    を有し、
     前記表示領域において、前記アクティブマトリクス基板は、前記対向基板側に突き出た突起構造体を有し、
     前記額縁領域において、前記アクティブマトリクス基板は、前記駆動TFT上に設けられ、前記第2ゲート電極を覆う絶縁部材を有し、
     前記絶縁部材は、前記突起構造体と同じ誘電体膜から形成されている、表示装置。
    An active matrix substrate, and a counter substrate arranged to face the active matrix substrate,
    A display device having a display area defined by a plurality of pixels arranged in a matrix and a frame area around the display area,
    The frame area is
    A seal portion surrounding the display area;
    A transition portion that electrically connects the active matrix substrate and the counter substrate by conductive particles;
    The active matrix substrate is
    A driving TFT provided in the frame region;
    A substrate for supporting the driving TFT,
    The drive TFT is
    A semiconductor layer including a channel region, a source region and a drain region;
    A first gate electrode that overlaps the channel region of the semiconductor layer via a first insulating layer and is located between the semiconductor layer and the substrate;
    A source electrode and a drain electrode respectively electrically connected to the source region and the drain region of the semiconductor layer;
    A second gate electrode that overlaps the channel region of the semiconductor layer via a second insulating layer and is located on the opposite side of the semiconductor layer from the first gate electrode;
    In the display area, the active matrix substrate has a protruding structure protruding toward the counter substrate,
    In the frame region, the active matrix substrate is provided on the driving TFT and has an insulating member that covers the second gate electrode,
    The display device, wherein the insulating member is formed of the same dielectric film as the protruding structure.
  2.  前記突起構造体は、前記アクティブマトリクス基板と前記対向基板との間の距離を規定する第1柱状スペーサである、請求項1に記載の表示装置。 2. The display device according to claim 1, wherein the protruding structure is a first columnar spacer that defines a distance between the active matrix substrate and the counter substrate.
  3.  前記突起構造体は、前記アクティブマトリクス基板と前記対向基板との間の距離を規定する第1柱状スペーサよりも低い第2柱状スペーサである、請求項1に記載の表示装置。 The display device according to claim 1, wherein the protruding structure is a second columnar spacer that is lower than the first columnar spacer that defines a distance between the active matrix substrate and the counter substrate.
  4.  前記第2柱状スペーサは、前記第1柱状スペーサと同じ誘電体膜から形成されている、請求項3に記載の表示装置。 4. The display device according to claim 3, wherein the second columnar spacer is formed of the same dielectric film as the first columnar spacer.
  5.  前記絶縁部材の高さは、前記突起構造体の高さと略同じである、請求項1から4のいずれかに記載の表示装置。 The display device according to any one of claims 1 to 4, wherein a height of the insulating member is substantially the same as a height of the protruding structure.
  6.  アクティブマトリクス基板と、前記アクティブマトリクス基板に対向するように配置された対向基板とを備え、
     マトリクス状に配列された複数の画素によって画定される表示領域と、前記表示領域の周辺の額縁領域とを有する表示装置であって、
     前記額縁領域は、
     前記表示領域を包囲するシール部と、
     導電性粒子によって前記アクティブマトリクス基板と前記対向基板とを電気的に接続する転移部と
    を含み、
     前記アクティブマトリクス基板は、
     前記額縁領域に設けられた駆動TFTと、
     前記駆動TFTを支持する基板と
    を有し、
     前記駆動TFTは、
     チャネル領域、ソース領域およびドレイン領域を含む半導体層と、
     前記半導体層の前記チャネル領域に第1絶縁層を介して重なり、前記半導体層および前記基板の間に位置する第1ゲート電極と、
     前記半導体層の前記ソース領域および前記ドレイン領域にそれぞれ電気的に接続されたソース電極およびドレイン電極と、
     前記半導体層の前記チャネル領域に第2絶縁層を介して重なり、前記半導体層に対して前記第1ゲート電極とは反対側に位置する第2ゲート電極と
    を有し、
     前記表示領域において、前記アクティブマトリクス基板は、互いに異なる色の光を透過させる第1カラーフィルタ、第2カラーフィルタおよび第3カラーフィルタを含むカラーフィルタ層を有し、
     前記額縁領域において、前記アクティブマトリクス基板は、前記駆動TFT上に設けられ、前記第2ゲート電極を覆う絶縁部材を有し、
     前記絶縁部材は、前記第1カラーフィルタ、前記第2カラーフィルタおよび前記第3カラーフィルタのうちの少なくとも1つと同じ誘電体膜から形成されている、表示装置。
    An active matrix substrate, and a counter substrate arranged to face the active matrix substrate,
    A display device having a display area defined by a plurality of pixels arranged in a matrix and a frame area around the display area,
    The frame area is
    A seal portion surrounding the display area;
    A transition portion that electrically connects the active matrix substrate and the counter substrate by conductive particles;
    The active matrix substrate is
    A driving TFT provided in the frame region;
    A substrate for supporting the driving TFT,
    The drive TFT is
    A semiconductor layer including a channel region, a source region and a drain region;
    A first gate electrode that overlaps the channel region of the semiconductor layer via a first insulating layer and is located between the semiconductor layer and the substrate;
    A source electrode and a drain electrode respectively electrically connected to the source region and the drain region of the semiconductor layer;
    A second gate electrode that overlaps the channel region of the semiconductor layer via a second insulating layer and is located on the opposite side of the semiconductor layer from the first gate electrode;
    In the display region, the active matrix substrate has a color filter layer including a first color filter, a second color filter, and a third color filter that transmit light of different colors,
    In the frame region, the active matrix substrate is provided on the driving TFT and has an insulating member that covers the second gate electrode,
    The display device, wherein the insulating member is formed of the same dielectric film as at least one of the first color filter, the second color filter, and the third color filter.
  7.  前記絶縁部材の高さは、前記導電性粒子の平均粒径の半分よりも大きい、請求項1から6のいずれかに記載の表示装置。 The display device according to any one of claims 1 to 6, wherein a height of the insulating member is larger than half of an average particle diameter of the conductive particles.
  8.  前記シール部は、前記アクティブマトリクス基板と前記対向基板との間の距離を規定する第1粒状スペーサを含む、請求項1から7のいずれかに記載の表示装置。 The display device according to any one of claims 1 to 7, wherein the seal portion includes a first granular spacer that defines a distance between the active matrix substrate and the counter substrate.
  9.  前記シール部は、前記絶縁部材と前記対向基板との間に位置する第2粒状スペーサであって、前記絶縁部材とともに前記アクティブマトリクス基板と前記対向基板との間の距離を規定する第2粒状スペーサを含む、請求項1から8のいずれかに記載の表示装置。 The seal portion is a second granular spacer positioned between the insulating member and the counter substrate, and defines a distance between the active matrix substrate and the counter substrate together with the insulating member. The display device according to claim 1, comprising:
  10.  前記絶縁部材は、前記駆動TFT全体を覆う、請求項1から9のいずれかに記載の表示装置。 The display device according to claim 1, wherein the insulating member covers the entire driving TFT.
  11.  前記転移部は、前記表示領域の一側に設けられ、前記絶縁部材は、前記転移部と前記表示領域との間の略全体を覆う、請求項1から10のいずれかに記載の表示装置。 The display device according to claim 1, wherein the transition portion is provided on one side of the display region, and the insulating member covers substantially the entire area between the transition portion and the display region.
  12.  前記第2ゲート電極は、前記ソース電極と電気的に接続されている、請求項1から11のいずれかに記載の表示装置。 The display device according to claim 1, wherein the second gate electrode is electrically connected to the source electrode.
  13.  前記アクティブマトリクス基板は、前記額縁領域に設けられたコンタクト電極を有し、
     前記対向基板は、前記コンタクト電極に対向する部分を含む対向電極を有し、
     前記転移部は、前記コンタクト電極と前記対向電極とを電気的に接続する、請求項1から12のいずれかに記載の表示装置。
    The active matrix substrate has a contact electrode provided in the frame region,
    The counter substrate includes a counter electrode including a portion facing the contact electrode;
    The display device according to claim 1, wherein the transition portion electrically connects the contact electrode and the counter electrode.
  14.  前記コンタクト電極は、前記第1ゲート電極と同じ導電膜から形成された第1導電層、および/または、前記ソース電極および前記ドレイン電極と同じ導電膜から形成された第2導電層に電気的に接続されている、請求項13に記載の表示装置。 The contact electrode is electrically connected to a first conductive layer formed from the same conductive film as the first gate electrode and / or a second conductive layer formed from the same conductive film as the source electrode and the drain electrode. The display device according to claim 13, wherein the display device is connected.
  15.  前記転移部は、前記第1絶縁層および前記第2絶縁層に設けられ、前記第1導電層、前記第2導電層および前記コンタクト電極を互いに電気的に接続する第1開口部を有する、請求項14に記載の表示装置。 The transition portion is provided in the first insulating layer and the second insulating layer, and has a first opening that electrically connects the first conductive layer, the second conductive layer, and the contact electrode to each other. Item 15. The display device according to Item 14.
  16.  前記転移部は、前記コンタクト電極と前記第2絶縁層との間に第3導電層をさらに有し、前記第3導電層は、前記第1開口部内で前記コンタクト電極と接している、請求項15に記載の表示装置。 The transition portion further includes a third conductive layer between the contact electrode and the second insulating layer, and the third conductive layer is in contact with the contact electrode in the first opening. 15. The display device according to 15.
  17.  前記第2ゲート電極は、前記第3導電層と同じ導電膜から形成されている、請求項16に記載の表示装置。 The display device according to claim 16, wherein the second gate electrode is formed of the same conductive film as the third conductive layer.
  18.  前記第2ゲート電極は、前記コンタクト電極と同じ導電膜から形成されている、請求項13から16のいずれかに記載の表示装置。 The display device according to claim 13, wherein the second gate electrode is formed of the same conductive film as the contact electrode.
  19.  前記第2ゲート電極は、前記第2絶縁層に設けられた第2開口部内で前記ソース電極と接している、請求項1から18のいずれかに記載の表示装置。 The display device according to claim 1, wherein the second gate electrode is in contact with the source electrode in a second opening provided in the second insulating layer.
  20.  前記駆動TFTは、前記第2ゲート電極上に設けられ、前記第2ゲート電極と電気的に接続されている付加電極をさらに有し、前記付加電極は、前記第2絶縁層に設けられた第2開口部内で前記ソース電極と電気的に接続されている、請求項1から17のいずれかに記載の表示装置。 The driving TFT further includes an additional electrode provided on the second gate electrode and electrically connected to the second gate electrode, and the additional electrode is provided on the second insulating layer. The display device according to claim 1, wherein the display device is electrically connected to the source electrode in two openings.
PCT/JP2016/065541 2015-06-01 2016-05-26 Display device WO2016194753A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-111528 2015-06-01
JP2015111528 2015-06-01

Publications (1)

Publication Number Publication Date
WO2016194753A1 true WO2016194753A1 (en) 2016-12-08

Family

ID=57440519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065541 WO2016194753A1 (en) 2015-06-01 2016-05-26 Display device

Country Status (1)

Country Link
WO (1) WO2016194753A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020248616A1 (en) * 2019-06-12 2020-12-17 云谷(固安)科技有限公司 Circuit substrate, display panel and display apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228022A (en) * 1997-02-17 1998-08-25 Semiconductor Energy Lab Co Ltd Liquid crystal display device and its manufacture
JP2001077373A (en) * 1999-07-06 2001-03-23 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
JP2001100217A (en) * 1999-09-29 2001-04-13 Nec Corp Color liquid crystal display device and method for manufacturing the same
JP2003202589A (en) * 2001-12-28 2003-07-18 Fujitsu Display Technologies Corp Liquid crystal display device and its manufacturing method
JP2005241856A (en) * 2004-02-25 2005-09-08 Seiko Epson Corp Electrooptical device and electronic apparatus
JP2006178404A (en) * 2004-12-23 2006-07-06 Lg Phillips Lcd Co Ltd Liquid crystal display panel and method of fabricating the same
JP2007156414A (en) * 2005-11-30 2007-06-21 Lg Phillips Lcd Co Ltd Liquid crystal display device with gate-in-panel structure and its manufacturing method
JP2010251735A (en) * 2009-03-27 2010-11-04 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228022A (en) * 1997-02-17 1998-08-25 Semiconductor Energy Lab Co Ltd Liquid crystal display device and its manufacture
JP2001077373A (en) * 1999-07-06 2001-03-23 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
JP2001100217A (en) * 1999-09-29 2001-04-13 Nec Corp Color liquid crystal display device and method for manufacturing the same
JP2003202589A (en) * 2001-12-28 2003-07-18 Fujitsu Display Technologies Corp Liquid crystal display device and its manufacturing method
JP2005241856A (en) * 2004-02-25 2005-09-08 Seiko Epson Corp Electrooptical device and electronic apparatus
JP2006178404A (en) * 2004-12-23 2006-07-06 Lg Phillips Lcd Co Ltd Liquid crystal display panel and method of fabricating the same
JP2007156414A (en) * 2005-11-30 2007-06-21 Lg Phillips Lcd Co Ltd Liquid crystal display device with gate-in-panel structure and its manufacturing method
JP2010251735A (en) * 2009-03-27 2010-11-04 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020248616A1 (en) * 2019-06-12 2020-12-17 云谷(固安)科技有限公司 Circuit substrate, display panel and display apparatus

Similar Documents

Publication Publication Date Title
KR101761180B1 (en) Display substrate, display device comprising the same and method of manufacturing the same
US9715145B2 (en) Liquid crystal display device having a low reflecting layer made of the same material as the source electrode and the oxide semiconductor layer
JP6049764B2 (en) Display panel
JP5261979B2 (en) Image display device
JP6832624B2 (en) Liquid crystal display device and its manufacturing method
KR101794656B1 (en) Sensor array substrate, display device comprising the same and method of manufacturing the same
WO2016039211A1 (en) Semiconductor device, liquid crystal display device, and semiconductor device manufacturing method
CN108027541B (en) Thin film transistor substrate and method of manufacturing the same
WO2017002724A1 (en) Liquid crystal display device
US9583510B2 (en) Semiconductor device, display device, and method for manufacturing semiconductor device
KR101635746B1 (en) Sensor array substrate, display device comprising the same and method of manufacturing the same
JP6238712B2 (en) Thin film transistor substrate and manufacturing method thereof
JPH05251705A (en) Thin-film transistor
KR101981279B1 (en) Liquid crystal display device and Method for manufacturing the same
US9502570B2 (en) Thin film transistor and manufacturing method thereof, an array substrate and a display device
WO2015087586A1 (en) Semiconductor device and method for manufacturing same
US8760596B2 (en) Thin film transistor array panel and display device including the same, and manufacturing method thereof
US8698152B2 (en) Display panel and thin film transistor substrate
WO2015125685A1 (en) Active matrix substrate and method for producing same
JP5011479B2 (en) Manufacturing method of display device
KR101948174B1 (en) Liquid Crystal Display Device and the Method for fabricating thereof
WO2014002448A1 (en) Display device substrate and display device equipped with same
KR20170054597A (en) Display substrate, liquid crystal display comprising the same, and manufacturing method the same
JP5201298B2 (en) Liquid crystal display device and manufacturing method thereof
US8970799B2 (en) Liquid crystal display device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP