WO2016194581A1 - 姿勢検出装置、眼鏡型電子機器、姿勢検出方法およびプログラム - Google Patents

姿勢検出装置、眼鏡型電子機器、姿勢検出方法およびプログラム Download PDF

Info

Publication number
WO2016194581A1
WO2016194581A1 PCT/JP2016/064268 JP2016064268W WO2016194581A1 WO 2016194581 A1 WO2016194581 A1 WO 2016194581A1 JP 2016064268 W JP2016064268 W JP 2016064268W WO 2016194581 A1 WO2016194581 A1 WO 2016194581A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
posture
posture detection
detected
detecting
Prior art date
Application number
PCT/JP2016/064268
Other languages
English (en)
French (fr)
Inventor
山田 幸光
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to CN201680034194.4A priority Critical patent/CN107708552B/zh
Priority to JP2017521770A priority patent/JP6629313B2/ja
Priority to EP16803018.7A priority patent/EP3305193A4/en
Publication of WO2016194581A1 publication Critical patent/WO2016194581A1/ja
Priority to US15/796,283 priority patent/US20180064371A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches

Definitions

  • the present invention relates to a posture detection device, a glasses-type electronic device, a posture detection method, and a program for detecting the posture of an object such as a part of a human body.
  • Such a posture at the time of walking can be specified by detecting a deviation from the body axis at the time of walking, for example.
  • the acceleration output from the acceleration sensor is influenced by acceleration generated during walking other than gravity, the posture cannot be determined only by the acceleration, and an angular velocity that is not affected by acceleration is required.
  • a method for obtaining the posture angle of a rigid body in motion a method for obtaining the posture angle by integrating the angular velocity measured by the gyro sensor is often used.
  • the gyro sensor has a problem that the power consumption, the large scale, and the price are increased as compared with the acceleration sensor.
  • the acceleration detected by the acceleration sensor during walking is simply used as it is, there is a problem that the detection error of the posture is large because it is affected by the acceleration due to walking.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an attitude detection device, an eyeglass-type electronic device, an attitude detection method, and a program capable of detecting the attitude of an object with a power-saving, small-scale and inexpensive configuration.
  • the purpose is to provide.
  • the posture detection apparatus of the present invention is capable of moving a detection target part detected at predetermined time intervals within a predetermined period. Accumulating means for accumulating a plurality of corresponding accelerations, and posture detecting means for detecting the posture of the part based on the accumulated accelerations.
  • the accumulating unit accumulates a plurality of accelerations according to the movement of the part to be detected at predetermined time intervals, thereby obtaining information approximate to information detected using the gyro sensor. . Therefore, the posture detecting means can detect the posture of the part based on the accumulated acceleration. As described above, since the posture can be detected only by the acceleration, the posture of the object can be detected with a power-saving, small-scale and inexpensive configuration.
  • the accumulating unit of the posture detecting device of the present invention accumulates the accelerations in a plurality of directions, respectively, and the posture detecting unit is configured to perform the predetermined based on the accumulated accelerations in the plurality of directions. The position of the part is detected. According to this configuration, the postures of the object in a plurality of directions can be detected.
  • the posture detection means of the posture detection apparatus of the present invention detects the inclination of the part with respect to a predetermined axis.
  • the position of the part of the object can be detected as the inclination of the part with respect to the predetermined axis.
  • the posture detection apparatus of the present invention has step number detection means for detecting one step of the human body based on the acceleration, and the accumulation means sets the time of the one step to the predetermined period.
  • the posture detecting means detects the inclination of the human body relative to the body axis based on the accumulated value of the acceleration within the time of one step. According to this configuration, it is possible to detect the inclination of the human body with respect to the body axis when walking.
  • the posture detection device of the present invention further includes acceleration detection means for detecting the acceleration.
  • acceleration detection means for detecting the acceleration.
  • m and acceleration can be obtained by the acceleration detecting means.
  • position detection apparatus of this invention is provided in the human body head or the head vicinity. According to this configuration, the posture of the human body during exercise can be detected with high accuracy by providing the acceleration detection means near or near the head.
  • the eyeglass-type electronic device of the present invention is equipped with the above-described posture detection device.
  • the posture detection method of the present invention is based on an accumulating step of accumulating a plurality of accelerations according to the movement of a part to be detected detected at a predetermined time interval within a predetermined period, and based on the accumulated accelerations. And a posture detecting step for detecting the posture of the part.
  • the program of the present invention is based on an accumulating procedure for accumulating a plurality of accelerations according to movement of a part to be detected detected at a predetermined time interval within a predetermined period, and based on the accumulated accelerations,
  • the computer executes a posture detection procedure for detecting the posture of the part.
  • an attitude detection apparatus it is possible to provide an attitude detection apparatus, glasses-type electronic apparatus, attitude detection method, and program that can detect the attitude of an object with a power-saving, small-scale and inexpensive configuration.
  • FIG. 1 is an external perspective view of eyeglasses according to an embodiment of the present invention.
  • FIG. 2 is a functional block diagram relating to posture detection of the glasses shown in FIG.
  • FIG. 3 is a functional block diagram of the processing unit of the glasses shown in FIG.
  • FIG. 4 is a diagram showing a simple posture pitch angle generated by the glasses shown in FIG. 1 and an ideal posture pitch angle generated by a method using a conventional gyro.
  • FIG. 5 is a diagram showing the relationship between the simple posture pitch angle and the ideal posture pitch angle shown in FIG.
  • FIG. 6 is a flowchart of acceleration detection of the processing unit shown in FIG.
  • FIG. 7 is a free chart of the process of generating the acceleration acceleration value (simple posture pitch angle) of the glasses processing unit shown in FIG.
  • the present inventor has found that by accumulating the acceleration of the part of the object at predetermined time intervals, the posture of the part can be detected without using angular acceleration.
  • the acceleration from the acceleration sensor provided on the head of the human body is accumulated for one walking time, the deviation from the body axis of the head is specified based on the accumulated value, and the posture of the head is determined from this. The case where it judges is illustrated.
  • FIG. 1 is an external perspective view of eyeglasses 1 according to an embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the glasses 1 shown in FIG.
  • the glasses 1 include, for example, temples 11 and 13 that are put on the user's ears, rims 31 and 33 to which the lenses 21 and 23 are fixed, and a bridge interposed between the rims 31 and 33. 35 and nose pads 41, 43. The tips of the rims 31 and 33 are called modern 37 and 39. Further, hinges 45 and 47 are provided between the temples 11 and 13 and the rims 31 and 33.
  • the temples 11 and 13, the rims 31 and 33, the bridge 35 interposed between the rims 31 and 33, the nose pads 41 and 43, the modern 37 and 39, and the hinges 45 and 47 are examples of the eyeglass frame of the present invention. is there.
  • a storage box 51 is provided between the nose pads 41 and 43.
  • a storage box 53 is fixed to the modern 37 side of the temple 11.
  • a right nose electrode 61 is provided on the surface of the nose pad 41, and a left nose electrode 63 is provided on the surface of the nose pad 43.
  • the right nose electrode 61 contacts (presses) the right side surface of the user's nasal muscles while wearing the glasses 1, and detects an ocular potential that is the potential of the contacted skin.
  • the left nose electrode 63 is in contact with the left side surface of the user's nasal muscles while the user wears the glasses 1, and detects an ocular potential that is the potential of the contacted skin.
  • the right nose electrode 61 and the left nose electrode 63 are arranged at symmetrical positions when the user's nose when using the glasses 1 is viewed from the front.
  • the accommodation box 51 is provided with an inter-brow electrode 65 that contacts the user's nasal root or the eyebrows while wearing the glasses 1 and detects the potential of the contacted skin.
  • the right nose electrode 61, the left nose electrode 63, and the interbrow electrode 65 are made of stainless steel or titanium, for example.
  • the right nose electrode 61, the left nose electrode 63, and the interbrow electrode 65 are formed in a shape suitable for the shape of the human body part to be contacted.
  • the storage box 53 has a storage space inside, and the acceleration sensor 71, the communication unit 73, the battery 75, and the processing unit 77 are stored in the storage space.
  • the storage box 51 and the storage box 53 are electrically connected by wiring such as a printed circuit board.
  • the acceleration sensor 71 is a three-axis acceleration sensor of X, Y, and Z, and outputs the acceleration detected by each axis to the processing unit 77.
  • the acceleration sensor 71 detects acceleration at a predetermined detection time interval.
  • the acceleration sensor 71 stores the detected acceleration in a memory (not shown).
  • the acceleration sensor 71 is located around the ear of the head suitable for detecting the movement of the head when the glasses 1 are worn.
  • the communication unit 73 is wireless communication such as Bluetooth (registered trademark) or wireless LAN, and the electrooculogram input from the right nose electrode 61, the left nose electrode 63, and the interbrow electrode 65, the acceleration input from the acceleration sensor 71, and the like. Can be sent to an external device. High-performance processing using high processing capacity and memory capacity can be realized.
  • the processing unit 77 generates information about the user based on the electrooculogram input from the right nose electrode 61, the left nose electrode 63 and the interbrow electrode 65 and the acceleration input from the acceleration sensor 71.
  • the ocular potential (skin potential) input from the right nose electrode 61, the left nose electrode 63, and the interbrow electrode 65, and the acceleration input from the acceleration sensor 71 are potentials according to the user's sweating phenomenon and movement, and It reflects the physical condition and mental state. Therefore, by preparing reference data in which the electrooculogram and acceleration are associated with the physical condition and mental state of the user in advance, the processing circuit 77 compares the input electrooculogram and acceleration of the user with the reference data. By doing so, the physical condition and mental state of the user can be detected.
  • the eyeball is positively charged on the corneal side and negatively charged on the retinal side. Therefore, when the line of sight moves upward, the ocular potential of the right nose electrode 61 with the ocular potential of the interbrow electrode 65 as a reference and the ocular potential of the left nose electrode 63 with the interocular electrode 65 as a reference become negative. On the other hand, when the line of sight moves downward, the ocular potential of the right nose electrode 61 based on the ocular potential of the interbrow electrode 65 and the ocular potential of the left nose electrode 63 based on the ocular potential of the interbrow electrode 65 become positive. .
  • the interocular electrode 65 of the interbrow electrode 65 using the reference electrode as a reference can be obtained from the ocular potential of the right nose electrode 61 using the reference electrode as a reference.
  • the electrooculogram may be reduced.
  • the interocular electrode with the reference electrode as a reference from the ocular potential of the left nose electrode 63 with the reference electrode as a reference 65 electrooculograms may be reduced.
  • a ground electrode may be used as the reference electrode.
  • FIG. 3 is a functional block diagram relating to posture detection of the processing unit 77 shown in FIG.
  • the processing unit 77 includes, for example, a step count detection unit 951, an acceleration accumulation unit 953, and an attitude detection unit 955.
  • each unit of the processing unit 77 may be realized by executing a program in the processing circuit, or at least a part of the functions may be realized by hardware.
  • the step count detection unit 951 detects one step (step count) based on the acceleration from the acceleration sensor 71 and outputs the detection result to the acceleration accumulation unit 953. For example, the number-of-steps detection unit 951 detects one step on condition that the combined value of the three-axis accelerations detected by the acceleration sensor 71 is lower than 1G and then higher than 1G.
  • the acceleration accumulating unit 953 calculates the accumulative accumulated value by accumulating the acceleration detected by the acceleration sensor 71 within the time of one step detected by the step number detecting unit 951. As described above, the acceleration accumulating unit 953 integrates the acceleration for each axis in units of one step, and calculates an acceleration accumulated value (simple posture pitch angle) that is an integral value. Based on the accumulated acceleration value, it can be determined which direction the head on which the acceleration sensor 71 is provided is inclined with respect to the body axis. In addition, a vertical movement occurs when walking. The acceleration accumulating unit 953 can calculate the roll in addition to the pitch based on the accumulative accumulative knowledge about the predetermined axis. The acceleration accumulating unit 953 can determine how the acceleration sensor 71 (head) is tilted based on the direction of acceleration.
  • FIG. 4 is a view showing a simple uniaxial posture pitch angle generated by the glasses 1 shown in FIG. 1 and an ideal posture pitch angle generated by a method using a conventional gyroscope.
  • FIG. 5 is a diagram showing the relationship between the simple uniaxial posture pitch angle shown in FIG. 4 and the ideal posture pitch angle.
  • the acceleration accumulated value simple attitude pitch angle generated by the acceleration accumulating unit 953 approximates the ideal attitude pitch angle using the gyro. Therefore, in order to detect the posture of the human body, a simple posture pitch angle can be used instead of the ideal posture pitch angle.
  • the posture detection unit 955 detects the posture of the part where the acceleration sensor 71 is provided based on the accumulated acceleration value calculated by the acceleration accumulation unit 953.
  • the posture is an inclination (deviation) from the body axis, that is, a pitch angle.
  • the posture detection unit 955 detects the tilt of the body for each step based on the posture of the part (head) detected as described above, and specifies the left / right balance of the walking posture.
  • the age is also known based on body shake, inclination, etc. For example, older people have less blur.
  • the acceleration sensor 71 may be provided in other parts of the human body such as feet.
  • the posture detection unit 955 uses the cumulative value of acceleration within one step generated by the acceleration accumulation unit 953, but may use the average value of the acceleration.
  • FIG. 6 is a flowchart of acceleration detection of the processing unit 77 shown in FIG.
  • Step ST11 The acceleration sensor 71 detects the respective accelerations in the three axis directions of X, Y, and Z at predetermined time intervals.
  • Step ST12 The acceleration sensor 71 stores the accelerations in the triaxial directions detected in step ST11 in the memory.
  • FIG. 7 is a free chart of the acceleration accumulated value (simple posture pitch angle) generation process of the processing unit of the glasses shown in FIG. The process illustrated in FIG. 7 is performed after the process illustrated in FIG. 6 is completed, for example.
  • Step ST21 The acceleration accumulation unit 953 initializes the acceleration accumulation value (for example, 0).
  • Step ST22 The acceleration accumulating unit 953 sequentially reads the acceleration written in the memory by the flow shown in FIG. 6 and adds (accumulates) the acceleration to the acceleration accumulated value (simple posture pitch angle).
  • Step ST23 The step detection unit 951 determines whether or not one step (number of steps) has been detected based on the acceleration from the acceleration sensor 71. If it is determined that one step has been detected, the process proceeds to step ST24. For example, the number-of-steps detection unit 951 detects one step on condition that the combined value of the three-axis accelerations detected by the acceleration sensor 71 is lower than 1G and then higher than 1G.
  • Step ST24 The acceleration accumulating unit 953 stores the latest acceleration accumulated value in the memory as a simple posture pitch angle.
  • Step ST25 Posture detection section 955 determines whether or not a posture detection instruction has been received, and proceeds to step ST26 if it is determined that a posture detection instruction has been received, and returns to step ST21 otherwise.
  • Step ST26 The posture detection unit 955 reads the simple posture pitch angle from the memory, and detects the posture of the part where the acceleration sensor 71 is provided based on this.
  • the posture is an inclination from the body axis.
  • the posture detection unit 955 detects the tilt of the body for each step based on the posture of the part (head) detected as described above, and specifies the left / right balance of the walking posture.
  • various information such as the physical condition of the user is acquired based on body shake, inclination, and the like.
  • processing of FIG. 7 described above may be performed individually for the acceleration of each axis of the triaxial acceleration sensor 71, or may be performed for a combined acceleration obtained by combining these.
  • the glasses 1 it is not necessary to use a gyro sensor by generating a simple posture pitch angle at the time of walking of the user by the algorithm shown in FIGS. 6 and 7. Can be detected at low power and at low cost. As shown in FIGS. 4 and 5, according to the glasses 1, the required detection accuracy can be satisfied without significantly reducing the detection accuracy of the user's posture as compared with the case where the gyro sensor is used. .
  • the acceleration sensor 71, the communication unit 73, the battery 75, and the processing unit 77 are accommodated in the accommodation box 53, it has an excellent design and can be worn without a sense of incongruity on a daily basis.
  • each signal (data) is transmitted to an external device such as a portable communication device via the communication unit 73 in the storage box 53, thereby using the high processing capacity and memory capacity of the external device. Highly functional processing can be realized.
  • the posture or the like may be detected based on the motion other than the walking motion, or the part of the object having the motion other than the human body.
  • the generation of may be detected.
  • the acceleration sensor 71 may be provided in other portions of the glasses 1. A plurality of acceleration sensors may be provided at different positions on the glasses 1.
  • the present invention is applied to the glasses 1 including the lenses 21 and 23 is illustrated, but the present invention may be applied to eyewear or the like without a lens.
  • the present invention can be used in a posture detection device that detects the posture of a part of a human body.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

対象物の姿勢を省電力、小規模且つ安価に検出できる姿勢検出装置を提供する。歩数検出部951は、加速度センサ71からの加速度を基に1歩(歩数)を検出し、その検出結果を加速度累積部953に出力する。加速度累積部953は、歩数検出部951が検出した1歩の時間内において、加速度センサ71が検出した加速度を累積して加速度累積値(簡易姿勢ピッチ角)を算出する。姿勢検出部955は、加速度累積部953が算出した加速度累積値を基に、加速度センサ71が設けられた部位の姿勢を検出する。

Description

姿勢検出装置、眼鏡型電子機器、姿勢検出方法およびプログラム
 本発明は、人体の部位等の対象物の姿勢を検出する姿勢検出装置、眼鏡型電子機器、姿勢検出方法およびプログラムに関するものである。
 人体の精神活動状態や体調を示すパラメータとして、歩行時の姿勢等がある。
 このような歩行時の姿勢は、例えば、歩行時の体軸に対してのずれを検出することで特定できる。
 ところで、加速度センサから出力された加速度は、重力以外に歩行時に生じる加速度の影響を受けるため、当該加速度だけでは姿勢を判断できず、加速度の影響を受けない角速度が必要になる。
 現在,動作中の剛体の姿勢角を求める方法として,ジャイロセンサにより測定した角速度を積分することで姿勢角を求める方法が多く用いられている。
 しかしながら、ジャイロセンサは加速度センサに比べて大消費電力、大規模且つ高価格化するという問題がある。
 一方、歩行時に加速度センサで検出した加速度をそのまま単純に用いると、歩行による加速度の影響を受けるため、姿勢の検出誤差が大きいという問題がある。
 本発明はかかる事情に鑑みてなされたものであり、その目的は、対象物の姿勢を省電力、小規模かつ安価な構成で検出できる姿勢検出装置、眼鏡型電子機器、姿勢検出方法およびプログラムを提供することを目的とする。
 上述した従来技術の問題を解決し、上述した目的を達成するために、本発明の姿勢検出装置は、予め決められた期間内に、所定の時間間隔で検出された検出対象の部位の移動に応じた複数の加速度を累積する累積手段と、前記累積した加速度を基に、前記部位の姿勢を検出する姿勢検出手段とを有する。
 この構成によれば、累積手段において、検出対象の部位の移動に応じた複数の加速度を、所定の時間間隔、累積することで、ジャイロセンサを用いて検出される情報と近似した情報が得られる。そのため、姿勢検出手段において、前記累積した加速度を基に、前記部位の姿勢を検出できる。このように加速度のみで姿勢検出ができるため、対象物の姿勢を省電力、小規模かつ安価な構成で検出できる。
 好適には、本発明の姿勢検出装置の前記累積手段は、複数の方向の前記加速度をそれぞれ前記累積し、前記姿勢検出手段は、前記複数の方向について前記累積した加速度を基に、前記所定の部位の姿勢を検出する。
 この構成によれば、対象物の複数の方向の姿勢を検出できる。
 好適には、本発明の姿勢検出装置の前記姿勢検出手段は、所定の軸に対しての前記部位の傾きを検出する。
 この構成によれば、対象物の部位の姿勢を、所定の軸に対しての当該部位の傾きとして検出できる。
 好適には、本発明の姿勢検出装置は、前記加速度を基に、前記人体の1歩を検出する歩数検出手段を有し、前記累積手段は、前記1歩の時間を前記予め決められた期間として用いて前記加速度を累積し、前記姿勢検出手段は、前記1歩の時間内の前記加速度の累積値を基に、前記人体の体軸に対しての傾きを検出する。
 この構成によれば、人体の歩行時における人体の体軸に対しての傾きを検出できる。
 好適には、本発明の姿勢検出装置は、前記加速度を検出する加速度検出手段をさらに有する。この構成によればm、加速度検出手段により、加速度を得ることができる。
 好適には、本発明の姿勢検出装置の前記加速度検出手段は、人体の頭部あるいは頭部付近に設けられている。
 この構成によれば、頭部あるいは頭部付近に加速度検出手段を設けることで、運動時における人体の姿勢を高精度に検出できる。
 本発明の眼鏡型電子器は、上述した姿勢検出装置を備えている。
 本発明の姿勢検出方法は、予め決められた期間内に、所定の時間間隔で検出された検出対象の部位の移動に応じた複数の加速度を累積する累積工程と、前記累積した加速度を基に、前記部位の姿勢を検出する姿勢検出工程とを有する。
 本発明のプログラムは、予め決められた期間内に、所定の時間間隔で検出された検出対象の部位の移動に応じた複数の加速度を累積する累積手順と、前記累積した加速度を基に、前記部位の姿勢を検出する姿勢検出手順とをコンピュータに実行させる。
 本発明によれば、対象物の姿勢を省電力、小規模かつ安価な構成で検出できる姿勢検出装置、眼鏡型電子機器、姿勢検出方法およびプログラムを提供できる。
図1は、本発明の実施形態に係る眼鏡の外観斜視図である。 図2は、図1に示す眼鏡の姿勢検出に係る機能ブロック図である。 図3は、図2に示す眼鏡の処理部の機能ブロック図である。 図4は、図1に示す眼鏡で生成した簡易姿勢ピッチ角と、従来のジャイロを用いた方法で生成した理想姿勢ピッチ角とを示す図である。 図5は、図4に示す簡易姿勢ピッチ角と理想姿勢ピッチ角との関係を示した図である。 図6は、図2に示す処理部の加速度検出のフローチャートである。 図7は、図2に示す眼鏡の処理部の加速度累積値(簡易姿勢ピッチ角)の生成処理のフリーチャートである。
 本発明者は、対象物の部位の加速度を所定の時間間隔で累積することで、角加速度を用いることなく、当該部位の姿勢を検出できることを見出した。
 本実施形態では、人体の頭部に設けた加速度センサからの加速度を1歩行の時間累積し、その累積値を基に、頭部の体軸からのずれを特定し、これから頭部の姿勢を判断する場合を例示する。
 以下、本発明の実施形態に係る眼鏡1について説明する。
 図1は、本発明の実施形態に係る眼鏡1の外観斜視図である。図2は、図1に示す眼鏡1の機能ブロック図である。
 図1に示すように、眼鏡1は、例えば、使用者に耳に掛けられるテンプル11,13と、レンズ21,23が固定されるリム31,33と、リム31,33の間に介在するブリッジ35と、鼻パッド41,43とを有する。リム31,33の先端はモダン37,39と呼ばれる。また、テンプル11,13とリム31,33との間には丁番45,47が設けられている。
 テンプル11,13、リム31,33、リム31,33の間に介在するブリッジ35、鼻パッド41,43、モダン37,39及び丁番45,47とが、本発明の眼鏡型フレームの一例である。
 図2に示すように、鼻パッド41,43の間には、収容ボックス51が設けられている。
 また、テンプル11のモダン37側には、収容ボックス53が固定されている。
 鼻パッド41の表面には右鼻電極61が設けられ、鼻パッド43の表面には左鼻電極63が設けられる。
 右鼻電極61は、使用者が眼鏡1を装着した状態で使用者の鼻筋の右側面に接触し(押し付けられ)、当該接触した皮膚の電位である眼電位を検出する。
 左鼻電極63は、使用者が眼鏡1を装着した状態で使用者の鼻筋の左側面に接触し、当該接触した皮膚の電位である眼電位を検出する。
 右鼻電極61と左鼻電極63とは、眼鏡1の使用時の使用者の鼻を正面から見たときの左右対称の位置に配置されている。
 収容ボックス51には、使用者が眼鏡1を装着した状態で使用者の鼻根または眉間に接触し、当該接触した皮膚の電位を検出する眉間電極65が設けられている。
 右鼻電極61、左鼻電極63および眉間電極65は、例えば、ステンレスまたはチタンで形成される。
 右鼻電極61、左鼻電極63および眉間電極65は、接触対象の人体部位の形状に適した形状で形成されている。
 収容ボックス53は、内部に収容空間を有し、当該収容空間内に加速度センサ71、通信部73、バッテリー75および処理部77が収容されている。
 収容ボックス51と収容ボックス53とは、プリント基板等の配線で電気的に接続されている。
 加速度センサ71は、X,Y,Zの3軸の加速度センサであり、各軸の検出した加速度を処理部77に出力する。加速度センサ71は、所定の検出時間間隔で加速度を検出する。加速度センサ71は、当該検出した加速度をメモリ(図示せず)に記憶する。
 本実施形態では、加速度センサ71は眼鏡1を装着時に、頭の動きを検出するのに適した頭部の耳の周辺に位置する。
 通信部73は、Bluetooth(登録商標)や無線LAN等の無線通信であり、右鼻電極61、左鼻電極63および眉間電極65から入力した眼電位や、加速度センサ71から入力した加速度等を、外部装置に送信することができる。高い処理能力及びメモリ容量を用いた高機能な処理を実現できる。
 処理部77は、右鼻電極61、左鼻電極63および眉間電極65から入力した眼電位、並びに加速度センサ71から入力した加速度を基に、使用者に関する情報を生成する。
 右鼻電極61、左鼻電極63および眉間電極65から入力した眼電位(皮膚電位)、並びに加速度センサ71から入力した加速度は、使用者の発汗現象や動きに応じた電位であり、使用者の体調や、精神状態を反映したものである。そのため、眼電位および加速度と、使用者の体調や精神状態とを予め対応付け参照データを用意することで、処理回路77において、入力した使用者の眼電位および加速度と、上記参照データとを比較することで、使用者の体調や精神状態を検出できる。
 眼球は、角膜側が正に帯電しており、網膜側が負に帯電している。したがって、視線が上に移動した場合、眉間電極65の眼電位を基準とした右鼻電極61の眼電位と、眉間電極65を基準とした左鼻電極63の眼電位が負となる。
 一方、視線が下に移動した場合、眉間電極65の眼電位を基準とした右鼻電極61の眼電位と、眉間電極65の眼電位を基準とした左鼻電極63の眼電位が正となる。
 視線が右に移動した場合、眉間電極65を基準とした右鼻電極61の眼電位が負となり、眉間電極65を基準とした左鼻電極63の眼電位が正となる。
 視線が左に移動した場合、眉間電極65を基準とした右鼻電極61の眼電位が正となり、眉間電極65を基準とした左鼻電極63の眼電位が負となる。
 なお、眉間電極65の眼電位を基準とした右鼻電極61の眼電位を検出する代わりに、基準電極を基準とした右鼻電極61の眼電位から、基準電極を基準とした眉間電極65の眼電位を減じてもよい。そして同様に、眉間電極65の眼電位を基準とした左鼻電極63の眼電位を検出する代わりに、基準電極を基準とした左鼻電極63の眼電位から、基準電極を基準とした眉間電極65の眼電位を減じてもよい。基準電極としては、接地電極を用いてよい。
 このように、正の検出用眼電位が示された場合には視線が上を向いたことを検出できる。また、負の検出用眼電位が示された場合には視線が下を向いたことを検出できる。
 さらに、右鼻電極61からの眼電位が負、左鼻電極63からの眼電位が正である場合には視線が右、右鼻電極61からの眼電位が正、左鼻電極63からの眼電位が負である場合は視線が左に向いたことを検出できる。
 以下、眼鏡1による人体姿勢検出に係る機能について説明する。
 図3は、図2に示す処理部77の姿勢検出に係る機能ブロック図である。
 図3に示すように、処理部77は、例えば、歩数検出部951、加速度累積部953および姿勢検出部955を有する。
 処理部77の各部の機能は、処理回路でプログラムを実行して実現してもよし、少なくとも一部の機能をハードウェアで実現してもよい。
 歩数検出部951は、加速度センサ71からの加速度を基に1歩(歩数)を検出し、その検出結果を加速度累積部953に出力する。
 歩数検出部951は、例えば、加速度センサ71が検出した3軸の加速度の合成値が1Gより低くなった後に、1Gより高くなったことを条件に1歩を検出する。
 加速度累積部953は、歩数検出部951が検出した1歩の時間内において、加速度センサ71が検出した加速度を累積して加速度累積値を算出する。
 このように、加速度累積部953では、1歩単位で加速度を、軸ごとに積分し、その積分値である加速度累積値(簡易姿勢ピッチ角)を算出する。加速度センサ71が設けられた頭部が体軸を基準としてどちらに傾けているかが、当該加速度累積値を基に特定できる。
 なお、歩くと上下運動が生じる。加速度累積部953は、所定の軸についての加速度累積知を基、ピッチの他にロールも算出可能である。
 加速度累積部953は、加速度の方向を基に、加速度センサ71(頭)がどのように傾いているかを判定できる。
 図4は、図1に示す眼鏡1で生成した1軸の簡易姿勢ピッチ角と、従来のジャイロを用いた方法で生成した理想姿勢ピッチ角とを示す図である。図5は、図4に示す1軸の簡易姿勢ピッチ角と理想姿勢ピッチ角との関係を示した図である。
 図4および図5に示されるように、加速度累積部953が生成した加速度累積値(簡易姿勢ピッチ角)は、ジャイロを用いた理想姿勢ピッチ角と近似している。そのため、人体の姿勢を検出するために、理想姿勢ピッチ角の代わりに、簡易姿勢ピッチ角を用いることができる。
 姿勢検出部955は、加速度累積部953が算出した加速度累積値を基に、加速度センサ71が設けられた部位の姿勢を検出する。当該姿勢は、体軸からの傾き(ずれ)、すなわちピッチ角である。
 姿勢検出部955は、上述したように検出した部位(頭)の姿勢から、一歩毎に体の傾きを検出し、歩行姿勢の左右のバランスを特定する。
 歩行時の姿勢判定で、体のブレ、傾き等を基に年齢も分かる。例えば、年寄りはブレが少ない。
 すなわち、人間は右と左のバランスをくずしながら歩くため、頭の動きをみて、その姿勢を基に健康状態を調べることもできる。歩行時に体軸からのブレが大きいと、そのブレと病気との相関関係がわかる。
 本実施形態では、頭に加速度センサ71を設けた場合を例示したが、足などの人体の他の部位に加速度センサ71を設けてもよい。
 上述した例では、姿勢検出部955は、加速度累積部953が生成した1歩内の加速度の累積値を用いたが、当該加速度の平均値を用いてもよい。
 以下、本発明の実施形態の眼鏡1の動作を説明する。
 [加速度検出処理]
 図6は、図2に示す処理部77の加速度検出のフローチャートである。
 ステップST11:
 加速度センサ71は、所定の時間間隔で、X,Y,Zの3軸方向のそれぞれの加速度を検出する。
 ステップST12:
 加速度センサ71は、ステップST11で検出した3軸方向の加速度をそれぞれメモリに記憶する。
 [簡易姿勢ピッチ角の生成]
 図7は、図2に示す眼鏡の処理部の加速度累積値(簡易姿勢ピッチ角)生成処理のフリーチャートである。
 図7に示す処理は、例えば、図6に示す処理を完了した後に行われる。
 ステップST21:
 加速度累積部953は、加速度累積値を初期化(例えば、0)にする。
 ステップST22:
 加速度累積部953は、図6に示すフローによりメモリに書き込んだ加速度を順に読み出し、これを加速度累積値(簡易姿勢ピッチ角)に加算(累積)する。
 ステップST23:
 歩数検出部951が、加速度センサ71からの加速度を基に1歩(歩数)を検出したか否かを判断し、1歩を検出したと判断した場合に、ステップST24に進む。歩数検出部951は、例えば、加速度センサ71が検出した3軸の加速度の合成値が1Gより低くなった後に、1Gより高くなったことを条件に1歩を検出する。
 ステップST24:
 加速度累積部953は、最新の加速度累積値を簡易姿勢ピッチ角としてメモリに記憶する。
 ステップST25:
 姿勢検出部955は、姿勢検出指示を受けた否かを判断し、姿勢検出指示を受けたと判断した場合にステップST26に進み、そうでない場合にステップST21に戻る。
 ステップST26:
 姿勢検出部955は、メモリから簡易姿勢ピッチ角を読み出し、これを基に、加速度センサ71が設けられた部位の姿勢を検出する。当該姿勢は、体軸からの傾きである。
 姿勢検出部955は、上述したように検出した部位(頭)の姿勢から、一歩毎に体の傾きを検出し、歩行姿勢の左右のバランスを特定する。
 歩行時の姿勢判定で、体のブレ、傾き等を基に使用者の体調等の様々な情報を取得する。
 なお、上述した図7の処理は、3軸の加速度センサ71の各軸の加速度について個別に行ってもよいし、これらを合成した合成加速度について行ってもよい。
 以上説明したように、眼鏡1によれば、図6および図7に示すアルゴリズムで使用者の歩行時の簡易姿勢ピッチ角を生成することで、ジャイロセンサを使用する必要がなくなり、使用者の姿勢を省電力、安価且つ小規模で検出することができる。
 また、図4および図5に示すように、眼鏡1によれば、ジャイロセンサを用いた場合に比べて使用者の姿勢の検出精度を大幅に落とすことなく、必要な検出精度を満たすことができる。
 また、眼鏡1によれば、収容ボックス53内に加速度センサ71、通信部73、バッテリー75および処理部77を収容するため、優れたデザイン性を有すると共に、日常で違和感なく装着できる。
 また、眼鏡1によれば、収容ボックス53内の通信部73を介して携帯型通信装置等の外部装置に各信号(データ)送信することで、外部装置の高い処理能力及びメモリ容量を用いた高機能な処理を実現できる。
 本発明は上述した実施形態には限定されない。
 すなわち、当業者は、本発明の技術的範囲またはその均等の範囲内において、上述した実施形態の構成要素に関し、様々な変更、コンビネーション、サブコンビネーション、並びに代替を行ってもよい。
 上述した実施形態では、人体の歩行動作から姿勢を検出する場合を例示したが、歩行動作以外の動作を基に姿勢等を検出してもよいし、あるいは人体以外の動作がある対象物の部位の生成を検出してもよい。
また、上述した実施形態では、加速度センサ71を、テンプル11のモダン37側に位置する収容ボックス53内に設けた場合を例示したが、眼鏡1のその他の箇所に設けてもよい。また、複数の加速度センサを、眼鏡1の異なる位置に設けてもよい。
 また、上述した実施形態では、本発明をレンズ21,23を備えた眼鏡1に適用した場合を例示したが、レンズが無いアイウェア等に適用してもよい。
 本発明は、人体の部位の姿勢を検出する姿勢検出装置に使用可能である。
 1…メガネ
 11,13…テンプル
 21,23…レンズ
 31,33…リム
 37,39…モダン
 35…ブリッジ
 45,47…丁番
 51,53…収容ボックス
 61…右鼻電極
 63…左鼻電極
 65…眉間電極
 71…加速度センサ
 73…通信部
 75…バッテリー
 77…処理部
  951…歩数検出部
  953…加速度累積部
  955…姿勢検出部
 

Claims (9)

  1.  予め決められた期間内に、所定の時間間隔で検出された検出対象の部位の移動に応じた複数の加速度を累積する累積手段と、
     前記累積した加速度を基に、前記部位の姿勢を検出する姿勢検出手段と
     を有する姿勢検出装置。
  2.  前記累積手段は、複数の方向の前記加速度をそれぞれ前記累積し、
     前記姿勢検出手段は、前記複数の方向について前記累積した加速度を基に、前記所定の部位の姿勢を検出する
     請求項1に記載の姿勢検出装置。
  3.  前記姿勢検出手段は、所定の軸に対しての前記部位の傾きを検出する
     請求項1または請求項2に記載の姿勢検出装置。
  4.  前記加速度を基に、前記人体の1歩を検出する歩数検出手段
     を有し、
     前記累積手段は、前記1歩の時間を前記予め決められた期間として用いて前記加速度を累積し、
     前記姿勢検出手段は、前記1歩の時間内の前記加速度の累積値を基に、前記人体の体軸に対しての傾きを検出する
     請求項1~3のいずれかに記載の姿勢検出装置。
  5.  前記加速度を検出する加速度検出手段
     をさらに有する請求項1~4のいずれかに記載の姿勢検出装置。
  6.  前記加速度検出手段は、人体の頭部あるいは頭部付近に設けられている
     請求項1~5のいずれかに記載の姿勢検出装置。
  7.  請求項1~6のいずれかに記載の姿勢検出装置を備えた眼鏡型電子機器。
  8.  予め決められた期間内に、所定の時間間隔で検出された検出対象の部位の移動に応じた複数の加速度を累積する累積工程と、
     前記累積した加速度を基に、前記部位の姿勢を検出する姿勢検出工程と
     を有する姿勢検出方法。
  9.  予め決められた期間内に、所定の時間間隔で検出された検出対象の部位の移動に応じた複数の加速度を累積する累積手順と、
     前記累積した加速度を基に、前記部位の姿勢を検出する姿勢検出手順と
     をコンピュータに実行させるプログラム。
     
PCT/JP2016/064268 2015-05-29 2016-05-13 姿勢検出装置、眼鏡型電子機器、姿勢検出方法およびプログラム WO2016194581A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680034194.4A CN107708552B (zh) 2015-05-29 2016-05-13 姿势检测装置、眼镜型电子设备、姿势检测方法以及程序
JP2017521770A JP6629313B2 (ja) 2015-05-29 2016-05-13 姿勢検出装置、眼鏡型電子機器、姿勢検出方法およびプログラム
EP16803018.7A EP3305193A4 (en) 2015-05-29 2016-05-13 POSITION DETECTING DEVICE, LENS-SHAPED ELECTRONIC DEVICE, POSITION DETECTING METHOD, AND PROGRAM THEREOF
US15/796,283 US20180064371A1 (en) 2015-05-29 2017-10-27 Posture detection apparatus, glasses-type electronic device, posture detection method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015110241 2015-05-29
JP2015-110241 2015-05-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/796,283 Continuation US20180064371A1 (en) 2015-05-29 2017-10-27 Posture detection apparatus, glasses-type electronic device, posture detection method, and program

Publications (1)

Publication Number Publication Date
WO2016194581A1 true WO2016194581A1 (ja) 2016-12-08

Family

ID=57442050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064268 WO2016194581A1 (ja) 2015-05-29 2016-05-13 姿勢検出装置、眼鏡型電子機器、姿勢検出方法およびプログラム

Country Status (5)

Country Link
US (1) US20180064371A1 (ja)
EP (1) EP3305193A4 (ja)
JP (1) JP6629313B2 (ja)
CN (1) CN107708552B (ja)
WO (1) WO2016194581A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019136187A (ja) * 2018-02-07 2019-08-22 株式会社ジンズ アイウエアセット及び信号処理ユニット

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176164A1 (en) * 2018-11-12 2019-09-19 Ootaki Architect&Craftsmen Ltd. Auxiliary pedal system
CN109916594A (zh) * 2019-03-15 2019-06-21 北京艾索健康科技有限公司 一种自动检测护眼镜佩戴状态的装置
JP6957695B1 (ja) * 2020-07-30 2021-11-02 株式会社ジンズホールディングス プログラム、情報処理方法、及び情報処理装置
CN112237426B (zh) * 2020-10-14 2024-08-20 北京爱笔科技有限公司 步伐检测的方法、装置、检测设备以及计算机存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314392A (ja) * 2000-05-10 2001-11-13 Yoshiaki Yamada 日常生活動作用頭位・姿勢記録装置
JP2006175206A (ja) * 2004-11-29 2006-07-06 National Institute Of Advanced Industrial & Technology 身体状態検出装置、その検出方法及び検出プログラム
JP2007160076A (ja) * 2005-11-15 2007-06-28 Univ Nihon 人の姿勢動作判別装置およびエネルギー消費量算出装置
CN103479361A (zh) * 2013-09-03 2014-01-01 常州菲胜图自动化仪器有限公司 智能眼镜及利用其监测运动、预防近视、矫正坐姿的方法
CN103529563A (zh) * 2013-10-31 2014-01-22 南京安讯科技有限责任公司 一种可实时监测和预防颈椎疾病的眼镜装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919149A (en) * 1996-03-19 1999-07-06 Allum; John H. Method and apparatus for angular position and velocity based determination of body sway for the diagnosis and rehabilitation of balance and gait disorders
GB0602127D0 (en) * 2006-02-02 2006-03-15 Imp Innovations Ltd Gait analysis
US8956294B2 (en) * 2009-05-20 2015-02-17 Sotera Wireless, Inc. Body-worn system for continuously monitoring a patients BP, HR, SpO2, RR, temperature, and motion; also describes specific monitors for apnea, ASY, VTAC, VFIB, and ‘bed sore’ index
JP5628560B2 (ja) * 2010-06-02 2014-11-19 富士通株式会社 携帯電子機器、歩行軌跡算出プログラム及び歩行姿勢診断方法
CH703381B1 (fr) * 2010-06-16 2018-12-14 Myotest Sa Dispositif portable intégré et procédé pour calculer des paramètres biomécaniques de la foulée.
US20130178958A1 (en) * 2012-01-09 2013-07-11 Garmin Switzerland Gmbh Method and system for determining user performance characteristics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314392A (ja) * 2000-05-10 2001-11-13 Yoshiaki Yamada 日常生活動作用頭位・姿勢記録装置
JP2006175206A (ja) * 2004-11-29 2006-07-06 National Institute Of Advanced Industrial & Technology 身体状態検出装置、その検出方法及び検出プログラム
JP2007160076A (ja) * 2005-11-15 2007-06-28 Univ Nihon 人の姿勢動作判別装置およびエネルギー消費量算出装置
CN103479361A (zh) * 2013-09-03 2014-01-01 常州菲胜图自动化仪器有限公司 智能眼镜及利用其监测运动、预防近视、矫正坐姿的方法
CN103529563A (zh) * 2013-10-31 2014-01-22 南京安讯科技有限责任公司 一种可实时监测和预防颈椎疾病的眼镜装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SANTENSHIKI GAN DEN: "i Sensing Gijutsu de Tsukare ya Nemuke o Kashika suru Megane 'JINS MEME", RAISHUN HATSUBAI, AKI NIMO API KOKAI, ENGADGET, 13 May 2014 (2014-05-13), XP055332267, Retrieved from the Internet <URL:http://japanese.engadget.com/2014/05/12/jins-meme-api/> [retrieved on 20160722] *
See also references of EP3305193A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019136187A (ja) * 2018-02-07 2019-08-22 株式会社ジンズ アイウエアセット及び信号処理ユニット

Also Published As

Publication number Publication date
US20180064371A1 (en) 2018-03-08
CN107708552B (zh) 2021-04-27
EP3305193A4 (en) 2019-01-09
EP3305193A1 (en) 2018-04-11
CN107708552A (zh) 2018-02-16
JPWO2016194581A1 (ja) 2018-02-22
JP6629313B2 (ja) 2020-01-15

Similar Documents

Publication Publication Date Title
CN110520824B (zh) 多模式眼睛跟踪
US10512819B2 (en) Gait monitor and a method of monitoring the gait of a person
JP6629313B2 (ja) 姿勢検出装置、眼鏡型電子機器、姿勢検出方法およびプログラム
EP3189371A1 (en) Computerized replacement temple for standard eyewear
JP5724237B2 (ja) 歩行変化判定装置
WO2018085806A1 (en) System and method for activity monitoring eyewear and head apparel
CN106618498B (zh) 评估身体平衡的系统和方法
JP7101835B2 (ja) 運動認識システム
CN105675048A (zh) 平衡识别精确度与耗电量的无线系统和方法
JP6616842B2 (ja) キャリブレーション方法、携帯機器およびプログラム
WO2014077462A1 (en) Apparatus for measuring eye rotation angle for setting length of corridor of progressive lens and method thereof
WO2018155098A1 (ja) 情報処理方法、情報処理装置及びプログラム
JPWO2016194772A1 (ja) 装着判定装置、眼鏡型電子機器、装着判定方法およびプログラム
WO2015159861A1 (ja) 検出制御装置、装着具、眼電位情報処理システム、及びプログラム
WO2017150148A1 (ja) 瞬目検出装置、眼鏡型電子機器、瞬目検出方法およびプログラム
JP2017227941A (ja) プログラム、情報処理装置、及びアイウエア
JP6538203B2 (ja) 眼電位キャリブレーション装置、眼鏡型電子機器、眼電位キャリブレーション方法およびプログラム
CN114602148A (zh) 前庭平衡功能替代方法、替代系统、电子设备及存储介质
JP2017099457A (ja) 人体電位検出装置、眼鏡型電子機器、人体電位検出方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521770

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE