WO2017150148A1 - 瞬目検出装置、眼鏡型電子機器、瞬目検出方法およびプログラム - Google Patents

瞬目検出装置、眼鏡型電子機器、瞬目検出方法およびプログラム Download PDF

Info

Publication number
WO2017150148A1
WO2017150148A1 PCT/JP2017/004998 JP2017004998W WO2017150148A1 WO 2017150148 A1 WO2017150148 A1 WO 2017150148A1 JP 2017004998 W JP2017004998 W JP 2017004998W WO 2017150148 A1 WO2017150148 A1 WO 2017150148A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
electrooculogram
blink
detecting
absolute value
Prior art date
Application number
PCT/JP2017/004998
Other languages
English (en)
French (fr)
Inventor
山田 幸光
高井 大輔
誠治 時田
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2017150148A1 publication Critical patent/WO2017150148A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]

Definitions

  • the present invention relates to a blink detection device that detects blinks by touching the skin of a human body, a spectacle-type electronic device, a blink detection method, and a program.
  • Blink is an operation of moving the eyeball up and down and can be detected from the movement of the eyeball.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a blink detection device, an eyeglass-type electronic device, a blink detection method, and a program that can detect blinks with high accuracy. .
  • the blink detection device of the present invention has a first peak in the first polarity of the electrooculogram generated when the eyeball is directed upward. And a second peak that occurs immediately after the first peak in the second polarity of the electrooculogram that occurs when the eyeball is directed downward.
  • a first average absolute value of the electrooculogram within one period is greater than a second average absolute value of the electrooculogram within a second period after the first peak.
  • Blinking detecting means for detecting that the eye is present.
  • the blink can be detected with high accuracy.
  • the blink detection unit of the blink detection device of the present invention is configured to blink when the slope between the first peak and the second peak is steeper than a predetermined reference slope. It is determined that According to this configuration, even if the amount of movement of the eyeball in the direction at the time of the lower blink is small, the gradient between the first peak and the second peak at the blink is a predetermined reference gradient. Since it becomes steeper, the blink can be detected with high accuracy.
  • the second period is a period after the second peak.
  • the first peak detection means of the blink detection means of the blink detection apparatus of the present invention is configured such that the absolute value of the electrooculogram has a first level in the polarity generated when the eyeball is directed upward.
  • the first peak is detected on condition that the eyeball has exceeded, and the second peak detecting means has an absolute value of the electrooculogram exceeding the second level in the polarity generated when the eyeball is directed downward.
  • the second peak is detected on the condition. According to this configuration, by setting the first level and the second level to levels necessary for blinking, erroneous determination due to upper and lower peaks unrelated to blinking can be suppressed.
  • the blink detection device of the present invention further includes an electrooculogram detection means for detecting the electrooculogram.
  • the electrooculogram detection means of the blink detection device of the present invention detects the first electrooculogram and the second electrooculogram at the symmetrical positions on the back of the nose or both sides of the back of the nose.
  • the electrooculogram detection means of the blink detection device of the present invention detects a third electrooculogram between the nasal root or the eyebrows.
  • the eyeglass-type electronic device of the present invention includes the blink detection device described above. According to this configuration, blinks can be detected with high accuracy in the eyeglass-type electronic device.
  • the blink detection method of the present invention includes a first step of detecting a first peak in a first polarity of an electrooculogram generated when an eyeball is directed upward, and when the eyeball is directed downward.
  • the absolute value of the first average of the electrooculogram in the first period before the first peak detected in the first step is a first value after the first peak.
  • the program of the present invention includes a first procedure for detecting a first peak in a first polarity of an electrooculogram generated when the eyeball is directed upward, and an electrooculogram generated when the eyeball is directed downward.
  • the first average absolute value of the electrooculogram in the first period before the first peak detected in the first procedure is the second period after the first peak.
  • the computer is caused to execute a third procedure for detecting that it is a blink.
  • a blink detection device it is possible to provide a blink detection device, a glasses-type electronic device, a blink detection method, and a program that can detect blinks with high accuracy.
  • FIG. 1 is an external perspective view of eyeglasses according to an embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the glasses shown in FIG.
  • FIG. 3 is an example of an electrooculogram for explaining a change in detection electrooculogram when a normal person blinks.
  • FIG. 4 is an example of an electrooculogram for explaining a change in the electrooculogram for detection of a person having a small lower peak at the time of blinking.
  • FIG. 5 is a functional block diagram relating to blink detection of the processing unit shown in FIG. .
  • FIG. 6 is a flowchart for explaining the operation of eyeglasses blink detection according to the embodiment of the present invention.
  • the eyeball is considered a battery, and the electrooculogram changes due to the movement of the eyeball when blinking.
  • the eyeglasses 1 detect blinks based on the change in electrooculogram.
  • a person with a small lower peak at the time of blinking tends to have a smaller average and a larger variance than a person who has a large lower peak as usual at the time of blinking.
  • the fact that the upper peak exceeds the upper threshold is a necessary condition for blinking, and it is blinking below the overall average and then expanding downward.
  • an upper peak positive voltage equal to or greater than a predetermined value
  • blink determination is performed based on a negative voltage value after a predetermined time.
  • the inventor also detects the first ocular potential for detection in the first period before the upper peak after the ocular potential exceeds the upper peak threshold even for a person whose lower peak at the blinking time is small. It has been found that blinks can be detected with high accuracy based on the fact that the absolute value of the average value of is greater than the absolute value of the second average value of the electrooculogram for detection in the second period after the upper peak.
  • FIG. 1 is an external perspective view of eyeglasses 1 according to an embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the glasses 1 shown in FIG.
  • the glasses 1 include, for example, temples 11 and 13 that are put on the user's ears, rims 31 and 33 to which the lenses 21 and 23 are fixed, and a bridge interposed between the rims 31 and 33. 35 and nose pads 41, 43. The tips of the rims 31 and 33 are called modern 37 and 39. Further, hinges 45 and 47 are provided between the temples 11 and 13 and the rims 31 and 33.
  • the temples 11 and 13, the rims 31 and 33, the bridge 35 interposed between the rims 31 and 33, the nose pads 41 and 43, the modern 37 and 39, and the hinges 45 and 47 are examples of the eyeglass-type frame of the present invention. is there.
  • a storage box 51 is provided between the nose pads 41 and 43.
  • a storage box 53 is fixed to the modern 37 side of the temple 11.
  • a right nose electrode 61 is provided on the surface of the nose pad 41, and a left nose electrode 63 is provided on the surface of the nose pad 43.
  • the right nose electrode 61 contacts (presses) the right side surface of the user's nasal muscles while wearing the glasses 1, and detects an ocular potential that is the potential of the contacted skin.
  • the left nose electrode 63 is in contact with the left side surface of the user's nasal muscles while the user wears the glasses 1, and detects an ocular potential that is the potential of the contacted skin.
  • the right nose electrode 61 and the left nose electrode 63 are arranged at symmetrical positions when the user's nose when using the glasses 1 is viewed from the front.
  • the accommodation box 51 is provided with an inter-brow electrode 65 that contacts the user's nasal root or the eyebrows while wearing the glasses 1 and detects the potential of the contacted skin.
  • the right nose electrode 61, the left nose electrode 63, and the interbrow electrode 65 are made of stainless steel or titanium, for example.
  • the right nose electrode 61, the left nose electrode 63, and the interbrow electrode 65 are formed in a shape suitable for the shape of the human body part to be contacted.
  • the storage box 53 has a storage space inside, and the acceleration sensor 71, the communication unit 73, the battery 75, and the processing unit 77 are stored in the storage space.
  • the storage box 51 and the storage box 53 are electrically connected by wiring such as a printed circuit board.
  • the acceleration sensor 71 is a three-axis acceleration sensor of X, Y, and Z, and outputs the acceleration detected by each axis to the processing unit 77.
  • the communication unit 73 is wireless communication such as Bluetooth (registered trademark) or wireless LAN, and the electrooculogram input from the right nose electrode 61, the left nose electrode 63, and the interbrow electrode 65, the acceleration input from the acceleration sensor 71, and the like. Can be sent to an external device. High-performance processing using high processing capacity and memory capacity can be realized.
  • the processing unit 77 generates information about the user based on the electrooculogram input from the right nose electrode 61, the left nose electrode 63 and the interbrow electrode 65 and the acceleration input from the acceleration sensor 71.
  • the ocular potential (skin potential) input from the right nose electrode 61, the left nose electrode 63, and the interbrow electrode 65, and the acceleration input from the acceleration sensor 71 are potentials according to the user's sweating phenomenon and movement, and It reflects the physical condition and mental state. Therefore, the processing unit 77 compares the inputted reference electrooculogram and acceleration with the above reference data by preparing the reference data that associates the electrooculogram and acceleration with the physical condition and mental state of the user in advance. By doing so, the physical condition and mental state of the user can be detected.
  • the eyeball is positively charged on the corneal side and negatively charged on the retinal side. Therefore, when the line of sight moves upward, the ocular potential of the right nose electrode 61 with the ocular potential of the interbrow electrode 65 as a reference and the ocular potential of the left nose electrode 63 with the interocular electrode 65 as a reference become negative. On the other hand, when the line of sight moves downward, the ocular potential of the right nose electrode 61 based on the ocular potential of the interbrow electrode 65 and the ocular potential of the left nose electrode 63 based on the ocular potential of the interbrow electrode 65 become positive. .
  • the interocular electrode 65 of the interbrow electrode 65 using the reference electrode as a reference can be obtained from the ocular potential of the right nose electrode 61 using the reference electrode as a reference.
  • the electrooculogram may be reduced.
  • the interocular electrode with the reference electrode as a reference from the ocular potential of the left nose electrode 63 with the reference electrode as a reference 65 electrooculograms may be reduced.
  • a ground electrode may be used as the reference electrode.
  • FIG. 3 is an example of an electrooculogram for explaining a change in detection electrooculogram when a normal person blinks.
  • FIG. 4 is an example of an electrooculogram for explaining a change in the electrooculogram for detection of a person having a small lower peak at the time of blinking. 3 and 4, the vertical axis represents the detection electrooculogram and the horizontal axis represents time. The ocular potential for detection is generated based on the right eye potential from the right nose electrode 61, the left eye potential from the left nose electrode 63, and the interbrow potential from the eyebrow electrode 65.
  • the upper peak and the lower peak of the detection electrooculogram are large in the blink of a normal person.
  • the upper peak is large, but the lower peak is small.
  • the upper peak occurs when the eyeball moves to the maximum extent upward, and the lower peak occurs when the eyeball moves to the maximum extent downward.
  • FIG. 5 is a functional block diagram relating to blink detection of the processing unit 77 shown in FIG.
  • the processing unit 77 includes, for example, an upper peak detection unit 81, a lower peak detection unit 83, and a blink detection unit 85 as functional blocks related to blink detection.
  • the blink detection unit 85 includes, for example, a pre-peak average calculation unit 851, a post-peak average calculation unit 853, a comparison unit 855, a vertical peak inclination calculation unit 857, and a blink determination unit 859.
  • each unit of the processing unit 77 may be realized by executing a program with a processing circuit (computer), or at least some of the functions may be realized with hardware.
  • the upper peak detector 81 generates an ocular potential for detection based on the right eye potential from the right nose electrode 61, the left eye potential from the left nose electrode 63, and the interbrow potential from the eyebrow electrode 65.
  • the upper peak detection unit 81 has a first polarity (positive) generated when the eye potential for detection is directed upward, and an absolute value thereof exceeds a predetermined upper peak threshold value. It is detected whether or not. Further, the upper peak detection unit 81 detects the maximum value as the upper peak until the absolute value of the detection electrooculogram exceeds the upper peak threshold value and becomes less than the upper peak threshold value.
  • the upper peak threshold value is determined based on experimental data at the time of blinking and a variance value due to noise.
  • the lower peak detection unit 83 has a second polarity (negative) generated when the eye potential for detection is directed downward, and an absolute value thereof exceeds a predetermined lower peak threshold value. It is detected whether or not.
  • the lower peak threshold is set in accordance with a user who has a small downward movement amount of the eyeball at the time of blinking. The lower peak threshold is determined based on experimental data at the time of blinking and a variance value due to noise.
  • the lower peak detection unit 83 detects, as the lower peak, the maximum value until the absolute value of the detection electrooculogram exceeds the lower peak threshold value and becomes less than the lower peak threshold value.
  • the pre-peak average calculation unit 851 calculates the absolute value VA1 of the first average value of the detection electrooculogram in the first period before the upper peak of the detection electrooculogram.
  • the first period is 27700 to 27500, for example.
  • the post-peak average calculating unit 853 calculates an absolute value VA2 of the second average value of the detection electrooculogram in the second period after the upper peak of the detection electrooculogram.
  • the second period is a predetermined period after the lower peak.
  • the second period is, for example, 27900-28000.
  • the comparison unit 855 compares the absolute value VA1 of the first average value calculated by the pre-peak average calculation unit 851 with the absolute value VA2 of the second average value calculated by the post-peak average calculation unit 853.
  • the vertical peak slope calculation unit 857 calculates the slope D between the upper peak detected by the upper peak detection unit 81 and the lower peak detected by the lower peak detection unit 83.
  • the blink determination unit 859 detects that the after-peak average calculation unit 853 detects the lower peak after the pre-peak average calculation unit 851 detects the upper peak, and the comparison unit 855 sets the absolute value VA1 of the first average value to the second peak.
  • the absolute value VA2 of the average value is determined to be larger than the absolute value VA2 and the slope D detected by the vertical peak slope calculation unit 857 is determined to be steeper than a predetermined reference slope. It is determined that it is a blink.
  • FIG. 6 is a flowchart for explaining the blink detection operation of the glasses 1 according to the embodiment of the present invention.
  • the user wears the glasses 1, the right nose electrode 61 contacts the right side surface of the user's nose muscles, and the left nose electrode 63 contacts the left side surface.
  • the inter-brow electrode 65 contacts between the user's eyebrows.
  • the right nose electrode 61, the left nose electrode 63, and the interbrow electrode 65 correspond to the potential of the skin on the right nose side of the user (right eye potential), the potential of the skin on the left nose side surface (left eye potential), and the space between the eyebrows, respectively. It becomes the electric potential of the skin (between eyebrows).
  • these right eye potential, left eye potential, and interocular eye potential are output (transmitted) to the processing unit 77.
  • Step ST11 If the processing unit 77 determines that the right eye potential, the left eye potential, and the eyebrow eye potential are input from the right nose electrode 61, the left nose electrode 63, and the eyebrow electrode 65, respectively, the process proceeds to step ST12.
  • Step ST12 The upper peak detector 81 generates an ocular potential for detection based on the right eye potential from the right nose electrode 61, the left eye potential from the left nose electrode 63, and the interbrow potential from the eyebrow electrode 65.
  • the upper peak detection unit 81 has a first polarity (positive) generated when the eye potential for detection is directed upward, and an absolute value thereof exceeds a predetermined upper peak threshold value. It is detected whether or not. Further, the upper peak detection unit 81 detects the maximum value as the upper peak until the absolute value of the detection electrooculogram exceeds the upper peak threshold value and becomes less than the upper peak threshold value.
  • Step ST13 The lower peak detection unit 83 has a second polarity (negative) generated when the eye potential for detection is directed downward, and an absolute value thereof exceeds a predetermined lower peak threshold value. It is detected whether or not. In addition, the lower peak detection unit 83 detects, as the lower peak, the maximum value until the absolute value of the detection electrooculogram exceeds the lower peak threshold value and becomes less than the lower peak threshold value.
  • Step ST14 The pre-peak average calculation unit 851 calculates the absolute value VA1 of the first average value of the detection electrooculogram in the first period before the upper peak of the detection electrooculogram.
  • Step ST15 The post-peak average calculating unit 853 calculates an absolute value VA2 of the second average value of the detection electrooculogram in the second period after the upper peak of the detection electrooculogram.
  • Step ST16 The comparison unit 855 compares the absolute value VA1 of the first average value calculated by the pre-peak average calculation unit 851 with the absolute value VA2 of the second average value calculated by the post-peak average calculation unit 853.
  • Step ST17 The vertical peak slope calculation unit 857 calculates the slope D between the upper peak detected by the upper peak detection unit 81 and the lower peak detected by the lower peak detection unit 83.
  • Step ST18 The blink determination unit 859 (1) the after-peak average calculation unit 851 detects the upper peak and then the after-peak average calculation unit 853 detects the lower peak, and (2) the comparison unit 855 determines the first average value. It is determined that the absolute value VA1 is greater than the absolute value VA2 of the second average value, and (3) the slope D detected by the vertical peak slope calculation unit 857 is determined to be steeper than a predetermined reference slope. That is, it is determined that there is a blink when the three conditions are satisfied.
  • the blink is detected with high accuracy even for a user whose eyeball downward movement amount is small. it can.
  • the blink can be detected with high accuracy in the same manner.
  • the human body characteristic detection device 2 can be realized with a small and inexpensive configuration. Further, according to the glasses 1, the acceleration sensor 71, the communication unit 73, the battery 75, and the processing unit 77 are accommodated in the accommodation box 53, so that it has an excellent design and can be worn without a sense of incongruity on a daily basis.
  • each signal (data) is transmitted to an external device such as a portable communication device via the communication unit 73 in the storage box 53, thereby using the high processing capacity and memory capacity of the external device. Highly functional processing can be realized.
  • the processing unit 77 is based on the condition that the slope D of the upper peak and the lower peak exceeds the reference value (step ST18), but the present invention is based on step ST18. It is not necessary to enter.
  • the lower peak threshold value is defined based on normal user experimental data, and the determination based on the lower peak threshold value may be combined with the determination shown in FIG. .
  • an electrode that contacts the back of the nose may be provided instead of the right nose electrode 61 and the left nose electrode 63.
  • the present invention is applied to the glasses 1 including the lenses 21 and 23 is illustrated, but the present invention may be applied to eyewear or the like without a lens.
  • the present invention can be used in a system for detecting blinks.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Human Computer Interaction (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

(1)眼電位の上ピークを検出した(ST12)後に下ピークを検出する(ST13)こと、(2)上ピークの前の第1の期間内における検出用眼電位の第1の平均値の絶対値VA1(ST14)と、上ピークの後の第2の期間内における検出用眼電位の第2の平均値の絶対値VA2(ST15)を検出し、VA1がVA2より大きいと判断されたこと(ST16)、且つ、(3)上下ピーク傾きDが所定の基準傾きより急峻であると判断された(ST18)、という条件を満たした場合に瞬目であると判定する(ST19)。

Description

瞬目検出装置、眼鏡型電子機器、瞬目検出方法およびプログラム
 本発明は、人体の皮膚に接触して瞬目を検出する瞬目検出装置、眼鏡型電子機器、瞬目検出方法およびプログラムに関するものである。
 人体の精神活動状態を示すパラメータとして、皮膚電気活動(Electro Dermal Activity)がある。
 このような人体の皮膚電気活動を人体の皮膚の電位を検出することで把握し、これらを使って様々な処理に用いたいという要請がある。
 このようなパラメータとして、瞬目があり、瞬目を高精度に検出することが求められている。瞬目は、眼球を上下に移動させる動作であり、眼球の移動から検出できる。
 しかしながら、瞬目時の人下の眼球の上下動作の移動量は、人によって個人差があり、特に下瞬目時における方向の眼球の移動量が小さい人の場合、高精度に瞬目を検出できない場合があるという問題がある。
 本発明はかかる事情に鑑みてなされたものであり、その目的は、瞬目を高精度に検出できる瞬目検出装置、眼鏡型電子機器、瞬目検出方法およびプログラムを提供することを目的とする。
 上述した従来技術の問題を解決し、上述した目的を達成するために、本発明の瞬目検出装置は、眼球が上方向に向いたときに生じる眼電位の第1の極性における第1のピークを検出する第1のピーク検出手段と、前記眼球が下方向に向いたときに生じる眼電位の第2の極性における第2のピークであって前記第1のピークの直後に生じる前記第2のピークを検出する第2のピーク検出手段と、前記第2のピーク検出手段が前記第2のピークを検出し、且つ、前記第1のピーク検出手段が検出した前記第1のピークの前の第1の期間内での前記眼電位の第1の平均の絶対値が、前記第1のピーク後の第2の期間内での前記眼電位の第2の平均の絶対値より大きい場合に、瞬目であると検出する瞬目検出手段とを有する。
 この構成によれば、下瞬目時における方向の眼球の移動量が小さい人でも、その瞬目時において、上述した前記第1のピークの前の第1の期間内での前記眼電位の第1の平均の絶対値が、前記第1のピーク後の第2の期間内での前記眼電位の第2の平均の絶対値より大きくなることから、その瞬目を高精度に検出できる。
 好適には、本発明の瞬目検出装置の前記瞬目検出手段は、前記第1のピークと前記第2のピークとの間の傾きが、所定の基準傾きより急峻である場合に、瞬目であると判定する。
 この構成によれば、下瞬目時における方向の眼球の移動量が小さい人でも、その瞬目時において、前記第1のピークと前記第2のピークとの間の傾きが、所定の基準傾きより急峻になることから、その瞬目を高精度に検出できる。
 好適には、本発明の瞬目検出装置の前記瞬目検出手段は、前記第2の期間は、前記第2のピーク後の期間である。
 好適には、本発明の瞬目検出装置の前記瞬目検出手段の前記第1のピーク検出手段は、眼球が上方向に向いたときに生じる極性において前記眼電位の絶対値が第1のレベルを超えたことを条件に前記第1のピークを検出し、前記第2のピーク検出手段は、眼球が下方向に向いたときに生じる極性において前記眼電位の絶対値が第2のレベルを超えたことを条件に前記第2のピークを検出する。
 この構成によれば、前記第1のレベルおよび前記第2のレベルを瞬目に必要なレベルに設定することで、瞬目とは無関係の上下ピークによる誤判定を抑制できる。
 好適には、本発明の瞬目検出装置は、前記眼電位を検出する眼電位検出手段をさらに有する。
 好適には、本発明の瞬目検出装置の前記眼電位検出手段は、鼻背あるいは鼻背の両側面の左右対称位置の第1の眼電位および第2の眼電位をそれぞれ検出する。
 好適には、本発明の瞬目検出装置の前記眼電位検出手段は、鼻根または眉間の第3の眼電位を検出する。
 本発明の眼鏡型電子機器は、上述したいずれかに記載の瞬目検出装置を備えている。
 この構成によれば、眼鏡型電子機器において、瞬目を高精度に検出できる。
 本発明の瞬目検出方法は、眼球が上方向に向いたときに生じる眼電位の第1の極性における第1のピークを検出する第1の工程と、前記眼球が下方向に向いたときに生じる眼電位の第2の極性における第2のピークであって前記第1のピークの直後に生じる前記第2のピークを検出する第2の工程と、前記第2の工程で前記第2のピークを検出し、且つ、前記第1の工程で検出した前記第1のピークの前の第1の期間内での前記眼電位の第1の平均の絶対値が、前記第1のピーク後の第2の期間内での前記眼電位の第2の平均の絶対値より大きい場合に、瞬目であると検出する第3の工程とを有する
 本発明のプログラムは、眼球が上方向に向いたときに生じる眼電位の第1の極性における第1のピークを検出する第1の手順と、前記眼球が下方向に向いたときに生じる眼電位の第2の極性における第2のピークであって前記第1のピークの直後に生じる前記第2のピークを検出する第2の手順と、前記第2の手順で前記第2のピークを検出し、且つ、前記第1の手順で検出した前記第1のピークの前の第1の期間内での前記眼電位の第1の平均の絶対値が、前記第1のピーク後の第2の期間内での前記眼電位の第2の平均の絶対値より大きい場合に、瞬目であると検出する第3の手順とをコンピュータに実行させる。
 本発明によれば、瞬目を高精度に検出できる瞬目検出装置、眼鏡型電子機器、瞬目検出方法およびプログラムを提供することができる。
図1は、本発明の実施形態に係る眼鏡の外観斜視図である。 図2は、図1に示す眼鏡の機能ブロック図である。 図3は、通常の人が瞬目をした際の検出用眼電位の変化を説明するための眼電位図の一例である。 図4は、瞬目時の下ピークが小さい人の検出用眼電位の変化を説明するための眼電位図の一例である。 図5は、図2に示す処理部の瞬目検出に関する機能ブロック図である。。 図6は、本発明の実施形態に係る眼鏡の瞬目検出の動作を説明するためのフローチャートである。
 以下、本発明の実施形態に係る眼鏡1について説明する。
 眼球は電池と考えられ、瞬き時の眼球の動きにより、眼電位の変化が生じる。眼鏡1では、当該眼電位の変化を基に瞬目を検出する。
 ところで、瞬目時の下ピークが小さい人は、瞬目時に通常通り下ピークが大きく生じる人に比べて、平均は小さくて分散は大きくなる傾向がある。
 上ピークが上しきい値を超えていることは瞬目の必要条件であり、且つ全体の平均を下回ってから、下に膨らんでいるのがまばたきである。
 本実施形態では、瞬目時の上ピーク(所定値以上の正電圧)が生じた際に、所定時間後の負電圧の電圧値に基づき、瞬目判断する。
 発明者は、上述したように瞬目時の下ピークが小さい人についても、眼電位が上ピークしきい値を超えた後に、上ピークの前の第1の期間の検出用眼電位の第1の平均値の絶対値が、上ピーク後の第2の期間の検出用眼電位の第2の平均値の絶対値より大きいことを基に瞬目を高精度に検出できることを見出した。
 図1は、本発明の実施形態に係る眼鏡1の外観斜視図である。図2は、図1に示す眼鏡1の機能ブロック図である。
 図1に示すように、眼鏡1は、例えば、使用者に耳に掛けられるテンプル11,13と、レンズ21,23が固定されるリム31,33と、リム31,33の間に介在するブリッジ35と、鼻パッド41,43とを有する。リム31,33の先端はモダン37,39と呼ばれる。また、テンプル11,13とリム31,33との間には丁番45,47が設けられている。
 テンプル11,13、リム31,33、リム31,33の間に介在するブリッジ35、鼻パッド41,43、モダン37,39及び丁番45,47とが、本発明の眼鏡型フレームの一例である。
 図1に示すように、鼻パッド41,43の間には、収容ボックス51が設けられている。
 また、テンプル11のモダン37側には、収容ボックス53が固定されている。
 鼻パッド41の表面には右鼻電極61が設けられ、鼻パッド43の表面には左鼻電極63が設けられる。
 右鼻電極61は、使用者が眼鏡1を装着した状態で使用者の鼻筋の右側面に接触し(押し付けられ)、当該接触した皮膚の電位である眼電位を検出する。
 左鼻電極63は、使用者が眼鏡1を装着した状態で使用者の鼻筋の左側面に接触し、当該接触した皮膚の電位である眼電位を検出する。
 右鼻電極61と左鼻電極63とは、眼鏡1の使用時の使用者の鼻を正面から見たときの左右対称の位置に配置されている。
 収容ボックス51には、使用者が眼鏡1を装着した状態で使用者の鼻根または眉間に接触し、当該接触した皮膚の電位を検出する眉間電極65が設けられている。
 右鼻電極61、左鼻電極63および眉間電極65は、例えば、ステンレスまたはチタンで形成される。
 右鼻電極61、左鼻電極63および眉間電極65は、接触対象の人体部位の形状に適した形状で形成されている。
 収容ボックス53は、内部に収容空間を有し、当該収容空間内に加速度センサ71、通信部73、バッテリー75および処理部77が収容されている。
 収容ボックス51と収容ボックス53とは、プリント基板等の配線で電気的に接続されている。
 加速度センサ71は、X,Y,Zの3軸の加速度センサであり、各軸の検出した加速度を処理部77に出力する。
 通信部73は、Bluetooth(登録商標)や無線LAN等の無線通信であり、右鼻電極61、左鼻電極63および眉間電極65から入力した眼電位や、加速度センサ71から入力した加速度等を、外部装置に送信することができる。高い処理能力及びメモリ容量を用いた高機能な処理を実現できる。
 処理部77は、右鼻電極61、左鼻電極63および眉間電極65から入力した眼電位、並びに加速度センサ71から入力した加速度を基に、使用者に関する情報を生成する。
 右鼻電極61、左鼻電極63および眉間電極65から入力した眼電位(皮膚電位)、並びに加速度センサ71から入力した加速度は、使用者の発汗現象や動きに応じた電位であり、使用者の体調や、精神状態を反映したものである。そのため、眼電位および加速度と、使用者の体調や精神状態とを予め対応付け参照データを用意することで、処理部77において、入力した使用者の眼電位および加速度と、上記参照データとを比較することで、使用者の体調や精神状態を検出できる。
 眼球は、角膜側が正に帯電しており、網膜側が負に帯電している。したがって、視線が上に移動した場合、眉間電極65の眼電位を基準とした右鼻電極61の眼電位と、眉間電極65を基準とした左鼻電極63の眼電位が負となる。
 一方、視線が下に移動した場合、眉間電極65の眼電位を基準とした右鼻電極61の眼電位と、眉間電極65の眼電位を基準とした左鼻電極63の眼電位が正となる。
 視線が右に移動した場合、眉間電極65を基準とした右鼻電極61の眼電位が負となり、眉間電極65を基準とした左鼻電極63の眼電位が正となる。
 視線が左に移動した場合、眉間電極65を基準とした右鼻電極61の眼電位が正となり、眉間電極65を基準とした左鼻電極63の眼電位が負となる。
 なお、眉間電極65の眼電位を基準とした右鼻電極61の眼電位を検出する代わりに、基準電極を基準とした右鼻電極61の眼電位から、基準電極を基準とした眉間電極65の眼電位を減じてもよい。そして同様に、眉間電極65の眼電位を基準とした左鼻電極63の眼電位を検出する代わりに、基準電極を基準とした左鼻電極63の眼電位から、基準電極を基準とした眉間電極65の眼電位を減じてもよい。基準電極としては、接地電極を用いてよい。
 図3は、通常の人が瞬目をした際の検出用眼電位の変化を説明するための眼電位図の一例である。
 図4は、瞬目時の下ピークが小さい人の検出用眼電位の変化を説明するための眼電位図の一例である。
 図3および図4において、縦軸が検出用眼電位を示し、横軸が時間を示している。検出用眼電位は、右鼻電極61からの右眼電位、左鼻電極63からの左眼電位および眉間電極65からの眉間電位とを基に生成される。
 図3に示すように、通常の人の瞬目では、検出用眼電位の上ピークと下ピークが大きく生じる。
 図4に示す例では、上ピークは大きく生じるが、下ピークが小さい。
 図3および図4において、上ピークは眼球が上向きに最大限移動したときに生じ、下ピークは眼球が下向きに最大限移動したときに生じる。
このように、正の検出用眼電位が示された場合には視線が上を向いたことを検出できる。また、負の検出用眼電位が示された場合には視線が下を向いたことを検出できる。
 さらに、右鼻電極61からの眼電位が負、左鼻電極63からの眼電位が正である場合には視線が右、右鼻電極61からの眼電位が正、左鼻電極63からの眼電位が負である場合は視線が左に向いたことを検出できる。
 図5は、図2に示す処理部77の瞬目検出に関する機能ブロック図である。
 図5に示すように、処理部77は、瞬目検出に関する機能ブロックとして、例えば、上ピーク検出部81、下ピーク検出部83、瞬目検出部85を有する。
 図5に示すように、瞬目検出部85は、例えば、ピーク前平均算出部851、ピーク後平均算出部853、比較部855、上下ピーク傾き算出部857および瞬目判定部859を有する。
 処理部77の各部の機能は、処理回路(コンピュータ)でプログラムを実行して実現してもよいし、少なくとも一部の機能をハードウェアで実現してもよい。
 上ピーク検出部81は、右鼻電極61からの右眼電位、左鼻電極63からの左眼電位および眉間電極65からの眉間電位とを基に検出用眼電位を生成する。
 上ピーク検出部81は、上記検出用眼電位が、眼球が上方向に向いたときに生じる第1の極性(正)であり、且つその絶対値が予め決められた上ピークしきい値を超えたか否かを検出する。
 また、上ピーク検出部81は、検出用眼電位の絶対値が上記上ピークしきい値を超えた後に、当該上ピークしきい値未満となるまでの間における最大値を上ピークとして検出する。
 上ピークしきい値は、瞬目時の実験データとノイズによる分散値を基に決定される。
 下ピーク検出部83は、上記検出用眼電位が、眼球が下方向に向いたときに生じる第2の極性(負)であり、且つその絶対値が予め決められた下ピークしきい値を超えたか否かを検出する。当該下ピークしきい値は、瞬目時の眼球の下方移動量が小さい使用者に合わせて設定される。下ピークしきい値は、瞬目時の実験データとノイズによる分散値を基に決定される。
 また、下ピーク検出部83は、検出用眼電位の絶対値が上記下ピークしきい値を超えた後に、当該下ピークしきい値未満となるまでの間における最大値を下ピークとして検出する。
 ピーク前平均算出部851は、上記検出用眼電位の上ピークの前の第1の期間内における検出用眼電位の第1の平均値の絶対値VA1を算出する。当該第1の期間は、例えば27700~27500である。
 ピーク後平均算出部853は、上記検出用眼電位の上ピークの後の第2の期間内における検出用眼電位の第2の平均値の絶対値VA2を算出する。当該第2の期間は下ピークの後の所定期間である。当該第2の期間は、例えば27900~28000である。
 比較部855は、ピーク前平均算出部851が算出した第1の平均値の絶対値VA1と、ピーク後平均算出部853が算出した第2の平均値の絶対値VA2とを比較する。
 上下ピーク傾き算出部857は、上ピーク検出部81が検出した上ピークと、下ピーク検出部83が検出した下ピークとの間の傾きDを算出する。
 瞬目判定部859は、ピーク前平均算出部851が上ピークを検出した後にピーク後平均算出部853が下ピークを検出すること、比較部855において第1の平均値の絶対値VA1が第2の平均値の絶対値VA2より大きいと判断されたこと、且つ、上下ピーク傾き算出部857で検出された傾きDが所定の基準傾きより急峻であるとは判断されたとう条件を満たした場合に瞬目であると判定する。
 以下、本発明の実施形態の眼鏡1の作用を説明する。
 図6は、本発明の実施形態に係る眼鏡1の瞬目検出の動作を説明するためのフローチャートである。
 先ず、使用者が眼鏡1を装着し、使用者の鼻筋の右側面に右鼻電極61が接触し、び左側面に左鼻電極63が接触する。また、使用者の眉間に眉間電極65が接触する。
 これにより、右鼻電極61、左鼻電極63および眉間電極65が、それぞれ使用者の右鼻側面の皮膚の電位(右眼電位)、左鼻側面の皮膚の電位(左眼電位)および眉間の皮膚の電位(眉間電位)となる。
 そして、これらの右眼電位、左眼電位および眉間眼電位が処理部77に出力(伝達)される。
 ステップST11:
 処理部77は、右鼻電極61、左鼻電極63および眉間電極65から、それぞれ右眼電位、左眼電位および眉間眼電位を入力したと判断すると、ステップST12に進む。
 ステップST12:
 上ピーク検出部81は、右鼻電極61からの右眼電位、左鼻電極63からの左眼電位および眉間電極65からの眉間電位とを基に検出用眼電位を生成する。
 上ピーク検出部81は、上記検出用眼電位が、眼球が上方向に向いたときに生じる第1の極性(正)であり、且つその絶対値が予め決められた上ピークしきい値を超えたか否かを検出する。また、上ピーク検出部81は、検出用眼電位の絶対値が上記上ピークしきい値を超えた後に、当該上ピークしきい値未満となるまでの間における最大値を上ピークとして検出する。
 ステップST13:
 下ピーク検出部83は、上記検出用眼電位が、眼球が下方向に向いたときに生じる第2の極性(負)であり、且つその絶対値が予め決められた下ピークしきい値を超えたか否かを検出する。また、下ピーク検出部83は、検出用眼電位の絶対値が上記下ピークしきい値を超えた後に、当該下ピークしきい値未満となるまでの間における最大値を下ピークとして検出する。
 ステップST14:
 ピーク前平均算出部851は、上記検出用眼電位の上ピークの前の第1の期間内における検出用眼電位の第1の平均値の絶対値VA1を算出する。
 ステップST15:
 ピーク後平均算出部853は、上記検出用眼電位の上ピークの後の第2の期間内における検出用眼電位の第2の平均値の絶対値VA2を算出する。
 ステップST16:
 比較部855は、ピーク前平均算出部851が算出した第1の平均値の絶対値VA1と、ピーク後平均算出部853が算出した第2の平均値の絶対値VA2とを比較する。
 ステップST17:
 上下ピーク傾き算出部857は、上ピーク検出部81が検出した上ピークと、下ピーク検出部83が検出した下ピークとの間の傾きDを算出する。
 ステップST18:
 瞬目判定部859は、(1)ピーク前平均算出部851が上ピークを検出した後にピーク後平均算出部853が下ピークを検出すること、(2)比較部855において第1の平均値の絶対値VA1が第2の平均値の絶対値VA2より大きいと判断されたこと、且つ(3)上下ピーク傾き算出部857で検出された傾きDが所定の基準傾きより急峻であると判断されたこと、3つの条件を満たした場合に瞬目であると判定する。
 以上説明したように、眼鏡1によれば、図6に示すアルゴリズムで使用者の瞬目を判定するため、瞬目時の眼球の下方移動量が小さい使用者についても高精度に瞬目を検出できる。また、瞬目時の眼球移動が通常の使用者についても、同様に高精度に瞬目を検出できる。
 眼鏡1によれば、小規模且つ安価な構成で人体特性検出装置2を実現できる。
 また、眼鏡1によれば、収容ボックス53内に加速度センサ71、通信部73、バッテリー75および処理部77を収容するため、優れたデザイン性を有すると共に、日常で違和感なく装着できる。
 また、眼鏡1によれば、収容ボックス53内の通信部73を介して携帯型通信装置等の外部装置に各信号(データ)送信することで、外部装置の高い処理能力及びメモリ容量を用いた高機能な処理を実現できる。
 本発明は上述した実施形態には限定されない。
 すなわち、当業者は、本発明の技術的範囲またはその均等の範囲内において、上述した実施形態の構成要素に関し、様々な変更、コンビネーション、サブコンビネーション、並びに代替を行ってもよい。
 上述した実施形態では、図6に示すように処理部77は、上ピークと下ピークの傾きDが基準値を超えることを条件としたが(ステップST18)、本発明は、ステップST18を条件に入れなくてもよい。
 また、下ピークしきい値を、通常の使用者の実験データを基に規定し、当該下ピークしきい値を基にした判定と、図6に示す判定とは組み合わせて判定を行ってもよい。
 また、右鼻電極61および左鼻電極63の代わりに、鼻背に接触する電極を設けてもよい。また、眉間電極65の代わりに、鼻根に接触する電極を設けてもよい。
 また、上述した実施形態では、本発明をレンズ21,23を備えた眼鏡1に適用した場合を例示したが、レンズが無いアイウェア等に適用してもよい。
 本発明は、瞬目を検出するシステムに使用可能である。
 1…眼鏡
 11,13…テンプル
 21,23…レンズ
 31,33リム
 37,39…モダン
 35…ブリッジ
 45,47…丁番
 51,53…収容ボックス
 61…右鼻電極
 63…左鼻電極
 65…眉間電極
 71…加速度センサ 
 73…通信部
 75…バッテリー
 77…処理部
 81…上ピーク検出部
 83…下ピーク検出部
 851…ピーク前平均算出部
 853…ピーク後平均算出部
 855…比較部
 857…上下ピーク傾き算出部
 859…瞬目判定部
 

Claims (10)

  1.  眼球が上方向に向いたときに生じる眼電位の第1の極性における第1のピークを検出する第1のピーク検出手段と、
     前記眼球が下方向に向いたときに生じる眼電位の第2の極性における第2のピークであって前記第1のピークの直後に生じる前記第2のピークを検出する第2のピーク検出手段と、
     前記第2のピーク検出手段が前記第2のピークを検出し、且つ、前記第1のピーク検出手段が検出した前記第1のピークの前の第1の期間内での前記眼電位の第1の平均の絶対値が、前記第1のピーク後の第2の期間内での前記眼電位の第2の平均の絶対値より大きい場合に、瞬目であると検出する瞬目検出手段と
     を有する瞬目検出装置。
  2.  前記瞬目検出手段は、前記第1のピークと前記第2のピークとの間の傾きが、所定の基準傾きより急峻である場合に、瞬目であると判定する
     請求項1に記載の瞬目検出装置。
  3.  前記第2の期間は、前記第2のピーク後の期間である
     請求項1または請求項2に記載の瞬目検出装置。
  4.  前記第1のピーク検出手段は、眼球が上方向に向いたときに生じる極性において前記眼電位の絶対値が第1のレベルを超えたことを条件に前記第1のピークを検出し、
     前記第2のピーク検出手段は、眼球が下方向に向いたときに生じる極性において前記眼電位の絶対値が第2のレベルを超えたことを条件に前記第2のピークを検出する
     請求項1~3のいずれかに記載の瞬目検出装置。
  5.  前記眼電位を検出する眼電位検出手段
     をさらに有する請求項1~4のいずれかに記載の瞬目検出装置。
  6.  前記眼電位検出手段は、鼻背あるいは鼻背の両側面の左右対称位置の第1の眼電位および第2の眼電位をそれぞれ検出する
     請求項5に記載の瞬目検出装置。
  7.  前記眼電位検出手段は、鼻根または眉間の第3の眼電位を検出する
     請求項5または請求項6に記載の瞬目検出装置。
  8.  請求項1~7のいずれかに記載の瞬目検出装置を備えた眼鏡型電子機器。
  9.  眼球が上方向に向いたときに生じる眼電位の第1の極性における第1のピークを検出する第1の工程と、
     前記眼球が下方向に向いたときに生じる眼電位の第2の極性における第2のピークであって前記第1のピークの直後に生じる前記第2のピークを検出する第2の工程と、
     前記第2の工程で前記第2のピークを検出し、且つ、前記第1の工程で検出した前記第1のピークの前の第1の期間内での前記眼電位の第1の平均の絶対値が、前記第1のピーク後の第2の期間内での前記眼電位の第2の平均の絶対値より大きい場合に、瞬目であると検出する第3の工程と
     を有する瞬目検出方法。
  10.  眼球が上方向に向いたときに生じる眼電位の第1の極性における第1のピークを検出する第1の手順と、
     前記眼球が下方向に向いたときに生じる眼電位の第2の極性における第2のピークであって前記第1のピークの直後に生じる前記第2のピークを検出する第2の手順と、
     前記第2の手順で前記第2のピークを検出し、且つ、前記第1の手順で検出した前記第1のピークの前の第1の期間内での前記眼電位の第1の平均の絶対値が、前記第1のピーク後の第2の期間内での前記眼電位の第2の平均の絶対値より大きい場合に、瞬目であると検出する第3の手順と
     をコンピュータに実行させるプログラム。
PCT/JP2017/004998 2016-03-03 2017-02-10 瞬目検出装置、眼鏡型電子機器、瞬目検出方法およびプログラム WO2017150148A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016040989 2016-03-03
JP2016-040989 2016-03-03

Publications (1)

Publication Number Publication Date
WO2017150148A1 true WO2017150148A1 (ja) 2017-09-08

Family

ID=59742776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004998 WO2017150148A1 (ja) 2016-03-03 2017-02-10 瞬目検出装置、眼鏡型電子機器、瞬目検出方法およびプログラム

Country Status (1)

Country Link
WO (1) WO2017150148A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431879A (zh) * 2021-12-24 2022-05-06 南京邮电大学 一种基于脑电图的眨眼咬牙判断方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136556A (ja) * 2004-11-12 2006-06-01 Toyota Motor Corp 居眠り検出装置及び検出方法
JP2014124308A (ja) * 2012-12-26 2014-07-07 Panasonic Corp 眼電位生成装置、眼電位生成方法およびビューワー
JP2015213734A (ja) * 2014-04-21 2015-12-03 株式会社ジェイアイエヌ プログラム、情報処理装置、及びアイウエア

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136556A (ja) * 2004-11-12 2006-06-01 Toyota Motor Corp 居眠り検出装置及び検出方法
JP2014124308A (ja) * 2012-12-26 2014-07-07 Panasonic Corp 眼電位生成装置、眼電位生成方法およびビューワー
JP2015213734A (ja) * 2014-04-21 2015-12-03 株式会社ジェイアイエヌ プログラム、情報処理装置、及びアイウエア

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431879A (zh) * 2021-12-24 2022-05-06 南京邮电大学 一种基于脑电图的眨眼咬牙判断方法及系统
CN114431879B (zh) * 2021-12-24 2024-04-16 南京邮电大学 一种基于脑电图的眨眼咬牙判断方法及系统

Similar Documents

Publication Publication Date Title
CN110520824B (zh) 多模式眼睛跟踪
EP2668898B1 (en) Eyewear
WO2016037120A1 (en) Computerized replacement temple for standard eyewear
US20180064371A1 (en) Posture detection apparatus, glasses-type electronic device, posture detection method, and program
JP2015213734A (ja) プログラム、情報処理装置、及びアイウエア
WO2018155098A1 (ja) 情報処理方法、情報処理装置及びプログラム
WO2017094492A1 (ja) キャリブレーション方法、携帯機器およびプログラム
WO2017150148A1 (ja) 瞬目検出装置、眼鏡型電子機器、瞬目検出方法およびプログラム
WO2015159861A1 (ja) 検出制御装置、装着具、眼電位情報処理システム、及びプログラム
WO2016052168A1 (ja) 人体特性検出装置及び眼鏡型電子機器
JP6699308B2 (ja) ウェアラブル生体計測装置
WO2015159850A1 (ja) 眼電位情報処理装置、眼電位情報処理システム、装着具及びプログラム
JP6557582B2 (ja) 人体電位検出装置、眼鏡型電子機器、人体電位検出方法およびプログラム
WO2016072395A1 (ja) プログラム、情報処理装置、及びアイウエア
WO2017064800A1 (ja) プログラム、情報処理装置、及びアイウエア
CA2953025A1 (en) Progressive ophthalmic lenses
JP2018010329A (ja) プログラム、情報処理装置、及びアイウエア
WO2021260829A1 (ja) 情報入力装置
CN116068293A (zh) 用于检测眼镜用户的眼睛活动的方法
WO2017122533A1 (ja) 眼電位キャリブレーション装置、眼鏡型電子機器、眼電位キャリブレーション方法およびプログラム
CA2824972A1 (en) Eyewear
JP2018082727A (ja) 信号処理方法、プログラム、情報処理装置及びアイウエア

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759619

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP