WO2016194419A1 - Semiconductor device and method for manufacturing semiconductor device - Google Patents

Semiconductor device and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2016194419A1
WO2016194419A1 PCT/JP2016/055982 JP2016055982W WO2016194419A1 WO 2016194419 A1 WO2016194419 A1 WO 2016194419A1 JP 2016055982 W JP2016055982 W JP 2016055982W WO 2016194419 A1 WO2016194419 A1 WO 2016194419A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
region
semiconductor device
film
test
Prior art date
Application number
PCT/JP2016/055982
Other languages
French (fr)
Japanese (ja)
Inventor
史郎 日野
康史 貞松
英之 八田
泰宏 香川
勝俊 菅原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2016194419A1 publication Critical patent/WO2016194419A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • silicon carbide for example, see Non-Patent Document 3 below.
  • the MOSFET structure has a parasitic pn diode (body diode) between the source and the drain, and when a forward current flows through the body diode, reliability degradation similar to that of the pn diode is caused.
  • This problem is alleviated when a Schottky barrier diode chip having a low forward voltage is connected in parallel as a free wheel diode to the MOSFET chip.
  • the MOSFET body diode is responsible for all or part of the function as a freewheeling diode, the above-described reliability degradation can reach the MOSFET chip.
  • a stress test is performed in which a forward current is passed through a pn diode structure for a long time and a change in forward voltage before and after this is measured. is there. Higher reliability can be ensured by excluding (screening) elements with large deterioration from the product in the stress test.
  • the amount of fluctuation in the forward voltage that is noticed for determining the presence or absence of deterioration is proportional to the area of the stacking fault.
  • the expansion rate of this area is approximately proportional to the integrated amount of minority carriers injected through the pn diode. This integrated amount depends on the magnitude of the current and the time during which the current is applied.
  • the diode or the test apparatus may be damaged due to excessive heat generation of the diode element.
  • the current is reduced, a long time is required for the test, and as a result, there are practical problems such as an increase in chip cost.
  • a diode that conducts electricity only by majority carriers that is, a unipolar diode
  • a freewheeling diode in place of a pn diode that can lead to reliability deterioration as described above.
  • a SBD Schottky Barrier Diode
  • a unipolar diode having an operating voltage lower than the operating voltage of the body diode is built in the unit cell as the active region of the unipolar transistor, so that a forward current is supplied to the body diode in the active region in actual use. It can be prevented from flowing. Thereby, characteristic deterioration of the active region can be suppressed.
  • the operating voltage of the SBD is lower than the operating voltage of the parasitic diode, most of the stress current used for the stress test mainly passes through the built-in SBD, not the parasitic diode that needs to be tested. .
  • the current passing through the built-in SBD also causes Joule heat that causes the element to generate heat. Therefore, it is necessary to reduce the stress current to such an extent that thermal damage of the chip or the evaluation facility due to the heat generation of the element can be prevented. As a result, the test time becomes long.
  • a transistor having a built-in unipolar diode has a problem that a stress test for screening requires a long time.
  • a stress test for screening requires a long time.
  • the transistor characteristics greatly vary due to the stress test.
  • the generation of triangular stacking faults that cause these problems is well known for SiC, but can also occur in other wide bandgap semiconductors.
  • the present inventors have electrically connected both the first well region provided on the drift layer in the active region and the second well region provided on the drift layer in the termination region.
  • the connected source electrode Prior to forming the connected source electrode, it has been considered to provide first and second electrodes connected to each of the first well region in the active region and the second well region in the termination region.
  • the stress current By causing the stress current to flow only to the second electrode instead of the first electrode, the stress current mainly flows to the second well region, not the first well region.
  • the stress current selectively flows mainly in the termination region, not in the active region.
  • the first electrode and the second electrode are preferably short-circuited. If the potential of the second well region is not properly maintained at the source potential (the potential of the first electrode) due to the short circuit not being performed, a high potential can be generated in the second well region during a switching operation or the like. There is a concern that this high potential destroys the insulating film on the second well region. Therefore, it is desirable to connect between the first electrode and the second electrode after the stress test.
  • the pad area In order to perform wire bonding, the pad area requires a relatively large size. This pad region is not an active region, and is not a region where a unit cell having an original function as an element can be disposed. For this reason, if a pad region for wire bonding is provided, the size of a chip having a predetermined element resistance is increased. The cost increases as the chip size increases, and this problem is particularly noticeable when a single crystal substrate made of a wide band gap semiconductor such as silicon carbide is used. In addition, it may be necessary to hit a large number of bonding wires, which increases process costs.
  • problems can arise due to the parasitic impedance of the bonding wire.
  • the termination region and the active region are different from the case where the termination region and the active region are connected by a single source electrode.
  • the parasitic inductance increases as the bonding wires are longer, and as each bonding wire is thinner and the number of bonding wires is smaller. Due to this parasitic impedance, the potential of the second well region deviates from the source potential.
  • the counter electromotive force according to the product of the parasitic inductance (Ls) and the time change of the current (di / dt). Occurrence of the potential causes the potential of the second well region to deviate from the source potential, thereby causing various problems. Specifically, the insulating film on the second well region may be destroyed, or oscillation may occur due to a combination of parasitic inductance and parasitic capacitance in the semiconductor. For this reason, when the parasitic inductance is large, there arises a problem that the switching speed must be kept low. In a power semiconductor device, the switching loss tends to increase as the switching speed is low. Therefore, the restriction on the switching speed may lead to an increase in power loss.
  • Patent Document 5 a plurality of semiconductor chips are formed, and an electrode in a defective chip area determined to be unable to realize desired characteristics is covered with a mask portion made of an insulating material. In other regions, the electrodes are connected to each other by a wiring layer penetrating the insulating protective layer.
  • This technique requires formation of an insulating protective layer and patterning by photolithography and etching to form an opening that penetrates the insulating protective layer. This increases the process cost.
  • the process of forming the insulating protective layer generally requires heating to a high temperature, it may adversely affect the already formed structure, and in particular may cause oxidation of the formed electrode. is there.
  • the etching process may adversely affect the electrode, and in particular, there may be a concern that the wet etching etchant may adversely affect the electrode. Further, depending on the structure in which the wiring layer passes through the through hole, parasitic impedance can be a problem.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to perform an inspection or a stress test involving a process of making the potentials of a plurality of electrodes different from each other, and then the electrodes are connected to each other. Is to provide a semiconductor device that can be short-circuited with low impedance.
  • the semiconductor device has an active region and a termination region in a region different from the active region in plan view.
  • the semiconductor device has a first electrode, a second electrode, and a metal electrode film.
  • the first electrode is disposed in the active region.
  • the second electrode is disposed in the termination region and is separated from the first electrode.
  • the metal electrode film electrically connects the first electrode and the second electrode.
  • a semiconductor device includes a first electrode, a second electrode, and a metal electrode film.
  • the first electrode has a first side surface.
  • the second electrode is separated from the first electrode in plan view, and has a second side surface facing the first side surface.
  • the metal electrode film connects between the first side surface of the first electrode and the second side surface of the second electrode.
  • the method for manufacturing a semiconductor device of the present invention includes the following steps. A first electrode and a second electrode separated from the first electrode are formed. A predetermined potential is applied to the first electrode. A potential different from the potential of the first electrode is applied to the second electrode. After a potential different from the potential of the first electrode is applied to the second electrode, a metal electrode film that electrically connects the first electrode and the second electrode is formed.
  • the second electrode located in the termination region is provided separately from the first electrode located in the active region.
  • An inspection or stress test on the termination region by applying a potential different from the potential of the first electrode to the second electrode can be performed using the second electrode.
  • the current flowing through the active region can be suppressed. Therefore, in the inspection or stress test, first, the amount of heat generated in the active region becomes smaller. Accordingly, since a larger current can be used, the inspection or the stress test can be performed in a shorter time. Secondly, the influence on the active region by the inspection or the stress test is suppressed. This makes it difficult for the semiconductor characteristics to vary due to the inspection or the stress test.
  • the time for the inspection or stress test can be shortened, and fluctuations in the semiconductor characteristics due to the inspection or stress test can be suppressed. Further, the first electrode and the second electrode are short-circuited with low impedance by the metal electrode film straddling the first electrode and the second electrode.
  • the inspection or stress test by applying a potential different from the potential of the first electrode to the second electrode is performed using the second electrode before forming the metal electrode film. Can do. As a result, the current flowing in the vicinity of the first electrode can be suppressed. Therefore, in the inspection or stress test, first, the amount of heat generated in the vicinity of the first electrode becomes smaller. Accordingly, since a larger current can be used, the inspection or the stress test can be performed in a shorter time. Second, the influence on the vicinity of the first electrode due to the inspection or the stress test is suppressed. This makes it difficult for the semiconductor characteristics to vary due to the inspection or the stress test.
  • the time for the inspection or stress test can be shortened, and fluctuations in the semiconductor characteristics due to the inspection or stress test can be suppressed.
  • the first electrode and the second electrode are short-circuited with low impedance by the metal electrode film connecting the first side surface of the first electrode and the second side surface of the second electrode facing each other.
  • an inspection or stress test by applying a potential different from the potential of the first electrode to the second electrode can be performed using the second electrode before forming the metal electrode film. it can.
  • the current flowing in the vicinity of the first electrode can be suppressed. Therefore, in the inspection or stress test, first, the amount of heat generated in the vicinity of the first electrode becomes smaller. Accordingly, since a larger current can be used, the inspection or the stress test can be performed in a shorter time. Second, the influence on the vicinity of the first electrode due to the inspection or the stress test is suppressed. This makes it difficult for the semiconductor characteristics to vary due to the inspection or the stress test.
  • the time for the inspection or stress test can be shortened, and fluctuations in the semiconductor characteristics due to the inspection or stress test can be suppressed. Further, the first electrode and the second electrode are short-circuited with low impedance by the metal electrode film straddling the first electrode and the second electrode.
  • JP 2004-289023 A JP 2003-017701 A International Publication No. 2014/038110 JP 2010-251772 A JP 2013-149805 A
  • FIG. 1 is a plan view schematically showing a configuration of a semiconductor device in a first embodiment of the present invention.
  • FIG. 2 is a schematic partial sectional view taken along line II-II in FIG. It is a top view which shows roughly 1 process of the manufacturing method of the semiconductor device in Embodiment 1 of this invention. It is a top view which shows roughly the structure of the semiconductor device of a comparative example.
  • FIG. 5 is a schematic partial sectional view taken along line VV in FIG. 3.
  • FIG. 4 is a schematic partial sectional view taken along line VI-VI in FIG. 3. It is a fragmentary sectional view which shows the modification of FIG. It is a top view which shows roughly the structure of the semiconductor device in Embodiment 2 of this invention.
  • FIG. 9 is a schematic partial cross-sectional view taken along line IX-IX in FIG. 8.
  • MOSFET 101 semiconductor device
  • MOSFET 101 has an active region R1 (FIG. 2) and a termination region R2 in addition to the active region R1 in plan view.
  • Unit cells are periodically arranged in the active region R1.
  • Each unit cell is provided with a MOSFET element as a semiconductor element.
  • the MOSFET 101 has a built-in SBD, which will be described in detail later.
  • the unit cell is not arranged in the termination region R2.
  • the termination region R2 is typically disposed between the active region R1 and the outer end (right end in FIG. 2) of the substrate 10, and is provided with a configuration for improving the breakdown voltage characteristics of the MOSFET 101.
  • the termination region R2 preferably surrounds the active region R1, and more preferably completely surrounds the termination region R1.
  • the MOSFET 101 includes an n-type (first conductivity type) substrate 10 (semiconductor substrate), a semiconductor layer on the substrate 10, a gate insulating film 50, a field insulating film 52, an interlayer insulating film 55, and a source electrode 80.
  • first electrode first conductivity type substrate 10
  • second electrode test electrode 81
  • metal film 87 gate electrode 82
  • gate electrode 82 separation electrode
  • ohmic electrode 79 and drain electrode 85 (third electrode).
  • the semiconductor layer includes an n-type drift layer 20, a plurality of first well regions 30 having a p-type (second conductivity type different from the first conductivity type), a second well region 31 having a p-type, A source region 40 having an n-type and a JTE (Junction Termination Extension) region 37 having a p-type are included.
  • n-type drift layer 20 a plurality of first well regions 30 having a p-type (second conductivity type different from the first conductivity type), a second well region 31 having a p-type,
  • a source region 40 having an n-type and a JTE (Junction Termination Extension) region 37 having a p-type are included.
  • the substrate 10 is made of a semiconductor, for example, silicon carbide having a 4H polytype.
  • the impurity concentration of the substrate 10 is preferably higher than the impurity concentration of the drift layer 20.
  • the surface orientation of one surface (upper surface in FIG. 2) of the substrate 10 is, for example, a surface inclined by about 4 ° from the (0001) surface.
  • the drain electrode 85 is provided on the other surface (the lower surface in FIG. 2) of the substrate 10 via an ohmic electrode 79.
  • the ohmic electrode 79 is in contact with the lower surface of the substrate 10.
  • the drain electrode 85 is electrically ohmically connected to the substrate 10.
  • the drift layer 20 is provided on the substrate 10.
  • Drift layer 20 is made of a wide band gap semiconductor.
  • drift layer 20 is made of silicon carbide having a hexagonal crystal structure.
  • the entire semiconductor layer on substrate 10 is made of silicon carbide as a wide band gap semiconductor. That is, the semiconductor layer is a silicon carbide layer.
  • the plurality of first well regions 30 are disposed in the active region R1 and are provided on the drift layer 20 so as to be separated from each other. Accordingly, the first separation region 21 or the second separation region 22 made of the drift layer 20 is provided between the first well regions 30 adjacent to each other on the semiconductor layer. For example, the first separation region 21 and the second separation region 22 are alternately arranged.
  • the plurality of first well regions 30 may be provided so as to be separated from each other in a sectional view in one plane as shown in FIG. They may be connected to each other at places other than vision.
  • the source region 40 is provided on each of the first well regions 30 in the surface layer portion of the semiconductor layer.
  • the depth of the source region 40 is shallower than the depth of the first well region 30, and the source region 40 is separated from the drift layer 20 by the first well region 30.
  • nitrogen (N) is used as a conductive impurity (donor impurity) for imparting n-type to the source region 40.
  • the first well region 30 is disposed in each of unit cells provided periodically in the MOSFET 101. Therefore, the plurality of first well regions 30 are periodically arranged.
  • Each of the first well regions 30 has a p-type first high concentration region 35 between the source region 40 and the second separation region 22 in the surface layer portion of the semiconductor layer.
  • the first high concentration region 35 has a higher impurity concentration than the impurity concentration of other regions of the first well region 30. Therefore, the first high concentration region 35 has a lower electrical resistance than other portions in the first well region 30.
  • the second well region 31 is disposed in the termination region R2 around the active region R1, and is provided on the drift layer 20 so as to be separated from the plurality of first well regions 30.
  • the width of the separation region between the first well region 30 and the second well region 31 is approximately the same as the width of the first separation region 21.
  • the area of the second well region 31 is larger than the area of the single first well region 30.
  • the second well region 31 projects outward from the source electrode 80 (on the right side in FIG. 2) in the planar layout.
  • the second well region 31 has a second high concentration region 36 located in the surface layer portion of the semiconductor layer.
  • the second high concentration region 36 has a higher impurity concentration than the impurity concentration of other regions of the second well region 31. Therefore, the second high concentration region 36 has a lower electrical resistance than other portions in the second well region 31.
  • the second well region 31 preferably has the same concentration profile due to the same type of conductive impurities as the first well region 30. In this case, the first well region 30 and the second well region 31 are simultaneously formed. Can be formed.
  • the second high concentration region 36 preferably has the same concentration profile due to the same type of conductive impurities as the first high concentration region 35. In this case, the first high concentration regions 35 and 36 are simultaneously formed. Can be formed.
  • the JTE region 37 is arranged on the outer peripheral side (the right side in FIG. 2) of the second well region 31 and is connected to the second well region 31.
  • the JTE region 37 has an impurity concentration lower than that of the second well region 31.
  • the gate insulating film 50 is provided on the first well region 30 and straddles the first well region 30 between the source region 40 and the first separation region 21.
  • the gate insulating film 50 is preferably made of silicon oxide, for example, a thermal oxide film.
  • the gate electrode 82 has a gate electrode part 60 and a gate wiring layer 82 w in contact with the gate electrode part 60.
  • the gate electrode portion 60 is provided on the gate insulating film 50 and straddles the first well region 30 between the source region 40 and the first separation region 21 via the gate insulating film 50. With this configuration, a portion of the first well region 30 that faces the gate electrode portion 60 through the gate insulating film 50 between the first separation region 21 and the source region 40 functions as a channel region.
  • the channel region is a region where an inversion layer is formed when the MOSFET 101 is turned on by controlling the potential of the gate electrode unit 60.
  • the resistivity of the material of the gate wiring layer 82w is preferably lower than the resistivity of the material of the gate electrode portion 60.
  • the gate electrode 82 is electrically insulated from the source electrode 80 and the test electrode 81. In other words, the gate electrode 82 is not short-circuited with the source electrode 80 and the test electrode 81.
  • the field insulating film 52 is provided on the semiconductor layer in the termination region R2. Therefore, the field insulating film 52 is provided on the second well region 31 separately from the first well region 30.
  • the thickness of the field insulating film 52 is larger than the thickness of the gate insulating film 50.
  • the field insulating film 52 is disposed on the outer peripheral side of the gate insulating film 50.
  • Gate electrode portion 60 has a portion extending onto field insulating film 52.
  • the field insulating film 52 has an inner peripheral end in contact with the outer peripheral end of the gate insulating film 50.
  • the inner peripheral edge of the field insulating film 52 is preferably closer to the active region R1 than the end of the second high concentration region 36 on the active region R1 side.
  • the inner peripheral edge of the field insulating film 52 is preferably in a plan view of the second well region 31, that is, on the second well region 31.
  • the interlayer insulating film 55 covers the gate electrode portion 60 provided on the gate insulating film 50 and the field insulating film 52. Interlayer insulating film 55 is preferably made of silicon oxide.
  • the interlayer insulating film 55 is provided with a gate contact hole 95 exposing the gate electrode portion 60 in the termination region R2.
  • the gate wiring layer 82 w of the gate electrode 82 is connected to the gate electrode portion 60 in the gate contact hole 95.
  • the gate contact hole 95 and the gate wiring layer 82w of the gate electrode 82 are included in the second well region 31 in the planar layout.
  • An active region contact hole 90 is provided in the insulating layer having the gate insulating film 50 and the interlayer insulating film 55.
  • the active region contact hole 90 partially exposes the surface of the active region R1 of the semiconductor layer. Specifically, a part of the source region 40, the first high concentration region 35, and the second separation region 22 are exposed. And exposed.
  • a termination region test electrode contact hole 92 is provided in the insulating layer having the field insulating film 52 and the interlayer insulating film 55. Termination region test electrode contact hole 92 partially exposes the surface of termination region R2 of the semiconductor layer. In the present embodiment, second high concentration region 36 of second well region 31 is partially exposed. is doing.
  • the source electrode 80 is provided on a structure having the gate insulating film 50, the gate electrode portion 60, and the interlayer insulating film 55.
  • the source electrode 80 is disposed in the active region R1, and includes the active region R1 in a planar layout.
  • the source electrode 80 includes a Schottky electrode 75, a first ohmic contact portion 70, and a source wiring layer 80w. Schottky electrode 75 and first ohmic contact portion 70 are short-circuited to each other by source wiring layer 80w.
  • the source electrode 80 has a side surface S1 (first side surface) on the termination region R2 side on the interlayer insulating film 55.
  • the Schottky electrode 75 is disposed at the bottom of the active region contact hole 90 and is connected to the drift layer 20 between the first well regions 30. In other words, the Schottky electrode 75 is in contact with the drift layer 20 in the second separation region 22. Thus, the source electrode 80 is Schottky connected to the drift layer 20 in the second separation region 22. With this configuration, the Schottky electrode 75 exhibits a diode characteristic that allows unipolar conduction with the drain electrode 85. That is, the SBD is incorporated in the active region R1 of the MOSFET 101. Therefore, the source electrode 80 has a diode characteristic that allows unipolar current flow to the drift layer 20 between the first well regions 30.
  • the diffusion potential of this SBD is lower than the diffusion potential of the pn junction formed by the drift layer 20 and the first well region 30.
  • the Schottky electrode 75 preferably includes the surface of the second separation region 22, but may not include it.
  • no SBD is built in the termination region R2 of the MOSFET 101.
  • the first ohmic contact portion 70 is disposed at the bottom of the active region contact hole 90 and is in contact with the source region 40. As a result, the source electrode 80 is electrically ohmically connected to the source region 40. The first ohmic contact portion 70 is also in contact with the first high concentration region 35 of the first well region 30 in the active region contact hole 90. Thus, the source electrode 80 is ohmically connected to the first high concentration region 35 of the first well region 30. Since the first ohmic contact portion 70 is in contact with the first high concentration region 35, transfer of electrons or holes between the first ohmic contact portion 70 and the first well region 30 becomes easier.
  • the test electrode 81 is separated from the gate electrode 82 and the source electrode 80.
  • the test electrode 81 has a third ohmic contact portion 72 and a test wiring layer 81w.
  • the third ohmic contact portion 72 is disposed at the bottom of the termination region test electrode contact hole 92 and is in contact with the second high concentration region 36 of the second well region 31.
  • the third ohmic contact portion 72 is electrically ohmically connected to the second high concentration region 36 of the second well region 31.
  • the test electrode 81 is in contact with the second well region 31 and is ohmically connected to the second well region 31.
  • the ohmic connection here refers to a connection exhibiting electrical characteristics such that electrons and holes can be easily exchanged between the second well region 31 and the test electrode 81.
  • the test electrode 81 is arranged in the termination region R2, and preferably surrounds the active region R1 as completely as possible, but does not have to be completely surrounded.
  • the boundary between the field insulating film 52 and the gate insulating film 50 is located closer to the active region R1 than the termination region test electrode contact hole 92.
  • the termination region test electrode contact hole 92 penetrates not only the interlayer insulating film 55 but also the field insulating film 52.
  • the third ohmic contact portion 72 is disposed in the termination region test electrode contact hole 92 provided in the field insulating film 52.
  • the test electrode 81 has a side surface S2 (second side surface) facing the side surface S1 of the source electrode 80 on the active region R1 side.
  • the second high concentration region 36 extends not only directly under the third ohmic contact portion 72 but also over a wide range in the second well region 31. This serves to lower the resistance of the second well region 31 in the chip plane direction, that is, the sheet resistance.
  • the gate insulating film 50 or the field insulating film 52 over the second well region 31 is destroyed due to a change in potential inside the second well region 31 during the switching operation of the MOSFET 101. It plays a role to prevent that. For example, during the turn-off operation of the MOSFET 101, the reverse bias applied to the pn junction between the second well region 31 and the drift layer 20 rapidly increases due to the potential of the drain electrode 85 rapidly increasing.
  • an n-type region may be formed on the second well region 31. That is, the n-type region may be disposed between the second well region 31 and the insulating film above the second well region 31.
  • the metal film 87 includes a source metal electrode film 87S (metal electrode film) and a gate metal electrode film 87G.
  • the metal film 87 is a plating film in the present embodiment.
  • the source metal electrode film 87S at least partially covers each of the source electrode 80 and the test electrode 81.
  • the source metal electrode film 87 ⁇ / b> S extends over the source electrode 80 and the test electrode 81 to electrically connect the source electrode 80 and the test electrode 81.
  • the source metal electrode film 87 ⁇ / b> S connects the side surface S ⁇ b> 1 of the source electrode 80 and the side surface S ⁇ b> 2 of the test electrode 81.
  • the gate metal electrode film 87G at least partially covers the gate electrode 82.
  • the source metal electrode film 87S and the gate metal electrode film 87G are separated from each other. Therefore, the gate electrode 80 covered with the gate metal electrode film 87G is an electrode (separation electrode) electrically separated from the source electrode 80 and the test electrode 81 covered with the source metal electrode film 87S.
  • the source metal electrode film 87S is used as a source pad, and the gate metal electrode film 87G is used as a gate pad.
  • a source electrode 80, a test electrode 81, and a gate electrode 82 are provided on the upper surface of MOSFET 101. These electrodes are separated from each other.
  • the source electrode 80 and the test electrode 81 are separated from each other in a plan view (in a two-dimensional layout in the field of view of FIG. 1).
  • these electrodes are, for example, interposed via a part of the interlayer insulating film 55 in the stacking direction. They may overlap each other. That is, it is only necessary that the source electrode 80 and the test electrode 81 are electrically insulated before the source metal electrode film 87S is formed.
  • the shortest distance between the source electrode 80 and the test electrode 81 is preferably 1 ⁇ m or more and 100 ⁇ m or less. When this distance is less than 1 ⁇ m, there is a high possibility that a process failure in which the source electrode 80 and the test electrode 81 are not properly separated will occur. Desirably, the thickness is larger than half of the thickness of the source electrode 80.
  • the thickness of the source electrode 80 is the thickness of the portion of the source electrode 80 formed on the interlayer insulating film 55.
  • this distance is 100 ⁇ m or less, even if the source metal electrode film 87S has a relatively small thickness, a portion that grows from the side surface S1 and a portion that grows from the side surface S2 during the plating growth of the source metal electrode film 87S become easier to connect. That is, the source electrode 80 and the test electrode 81 are easily connected. More preferably, this distance is smaller than twice the film thickness of the source metal electrode film 87S.
  • the source electrode 80 and the test electrode 81 are sufficiently close to each other in the MOSFET 101.
  • the distance between the side surfaces S1 and S2 (FIG. 2) is sufficiently small everywhere in the MOSFET 101. Therefore, when the source metal electrode film 87S is grown, the portion grown from the side surface S1 and the portion grown from the side surface S2 are easily connected everywhere in the MOSFET 101. That is, the source electrode 80 and the test electrode 81 are easily connected everywhere in the MOSFET 101.
  • the parasitic impedance between the source electrode 80 and the test electrode 81 is extremely small, and both can be regarded as a single source electrode. it can.
  • the source electrode 80 and the test electrode 81 may be connected by the source metal electrode film 87 ⁇ / b> S at at least a part of the MOSFET 101, and the source electrode 80 and the test electrode 81 may be connected at a part of the MOSFET 101. Both may be separated due to the large distance between them.
  • the shortest distance between the gate electrode 82 and the source electrode 80 or the test electrode 81 is made larger than the shortest distance between the source electrode 80 and the test electrode 81. As a result, contact between the gate metal electrode film 87G and the source metal electrode film 87S can be more easily avoided.
  • the source electrode 80 is larger than the test electrode 81 in plan view. Thereby, the area which functions as a MOSFET element which is a semiconductor element can be widened. Preferably, the source electrode 80 is twice or more larger than the test electrode 81.
  • the test electrode 81 preferably has a portion located between the source electrode 80 and the gate electrode 82.
  • the source electrode 80 and the test electrode 81 can be prevented from being separated by the gate electrode 82 in the planar layout. Therefore, the source metal electrode film 87S can connect the source electrode 80 and the test electrode 81 in a wider range.
  • the test electrode 81 is provided with a first probe electrode portion 81P.
  • the “probe electrode portion” is a region of the electrode that has a function as a probe electrode portion, that is, a region that is large enough to allow contact with a probe needle, and has a size of 30 ⁇ m square or more. It is preferable.
  • the test electrode 81 has a first probe electrode portion 81P and a portion extending linearly with a width smaller than the width of the probe electrode portion.
  • the chip size can be suppressed while maintaining the size of the active region R1 directly connected to the device performance such as the on-resistance of the MOSFET 101.
  • the shape of the probe electrode portion is not limited to that shown in FIG. 1. If the test electrode 81 has a region of 30 ⁇ m square or more in plan view, this region functions as a probe electrode portion.
  • the source electrode 80 is preferably provided with a second probe electrode portion 80P.
  • the gate electrode 82 is preferably provided with a third probe electrode portion 82P. Since the source electrode 80 and the gate electrode 82 typically have a region of 30 ⁇ m square or more, it can be said that the second probe electrode portion 80P and the third probe electrode portion 82P are usually provided.
  • a high potential is applied to the parasitic pn diode formed between the second well region 31 and the drift layer 20 by applying a potential higher than the drain electrode 85 to the test electrode 81 before the metal film 87 is formed.
  • a stress test is conducted to pass a stress current of density.
  • the first probe electrode portion 81 ⁇ / b> P has a probe mark generated by applying a probe needle to apply this potential.
  • a semiconductor layer is formed on one surface of the substrate 10.
  • This semiconductor layer is a layer including a portion that becomes the drift layer 20 as it is.
  • silicon carbide doped with a donor impurity at an impurity concentration of 1 ⁇ 10 15 cm ⁇ 3 to 1 ⁇ 10 17 cm ⁇ 3 by a chemical vapor deposition (CVD) method is 5 ⁇ m to 50 ⁇ m. It is epitaxially grown on the substrate 10 with a thickness of about.
  • an implantation mask is formed on the surface of the semiconductor layer with a photoresist or the like.
  • Al ions are selectively implanted as acceptor impurities.
  • the depth of Al ion implantation is about 0.5 ⁇ m to 3 ⁇ m which does not exceed the thickness of the semiconductor layer.
  • the impurity concentration of Al to be ion-implanted is higher than the donor concentration of the semiconductor layer in the range of 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 .
  • the implantation mask is removed.
  • the regions into which Al is ion-implanted by this step become the first well region 30 and the second well region 31. Therefore, the first well region 30 and the second well region 31 can be formed together.
  • Al ions are selectively implanted as acceptor impurities.
  • the depth of Al ion implantation is about 0.5 ⁇ m to 3 ⁇ m which does not exceed the thickness of the semiconductor layer.
  • the impurity concentration of Al to be ion-implanted is higher than the first impurity concentration of the semiconductor layer in the range of 1 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 and the Al concentration of the first well region 30. Lower than that.
  • the implantation mask is removed. A region into which Al is ion-implanted by this step becomes the JTE region 37.
  • N which is a donor impurity
  • N is selectively ion-implanted using this implantation mask.
  • the ion implantation depth of N is shallower than the thickness of the first well region 30.
  • the impurity concentration of the ion-implanted N exceeds the acceptor concentration of the first well region 30 in the range of 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the n-type region is the source region 40.
  • implantation mask is formed on the surface of the semiconductor layer with a photoresist or the like.
  • Al which is an acceptor impurity, is ion-implanted using this implantation mask.
  • the implantation mask is removed.
  • the regions into which Al is implanted by this step become the first high concentration regions 35 and 36.
  • the ion implantation of the acceptor impurity is preferably performed while heating the substrate 10 or the semiconductor layer to 150 ° C. or higher for the purpose of reducing the resistance of the first high concentration regions 35 and 36.
  • annealing is performed at 1300 to 1900 ° C. for 30 seconds to 1 hour in an inert gas atmosphere such as argon (Ar) gas by a heat treatment apparatus.
  • an inert gas atmosphere such as argon (Ar) gas
  • the ion-implanted conductive impurities are electrically activated.
  • an n-type region into which impurity ions are not implanted corresponds to the drift layer 20.
  • a field insulating film 52 made of a silicon dioxide film having a thickness of about 0.5 to 2 ⁇ m is formed in a region other than the position substantially corresponding to the active region R1.
  • the field insulating film 52 at a position substantially corresponding to the active region R1 is removed by using a photolithography technique and an etching technique.
  • a gate insulating film 50 having a desired thickness made of silicon oxide is formed.
  • a polycrystalline silicon film having conductivity is formed on the gate insulating film 50 by low pressure CVD, and the gate electrode portion 60 is formed by patterning this film.
  • an interlayer insulating film 55 is formed by a low pressure CVD method.
  • an opening that exposes a portion of the semiconductor layer where the first ohmic contact portion 70 is to be formed is formed in the interlayer insulating film 55 and the gate insulating film 50.
  • an opening that exposes a portion of the semiconductor layer where the third ohmic contact 72 is to be formed is formed in the interlayer insulating film 55 and the field insulating film 52.
  • a metal layer mainly composed of nickel (Ni) is formed by sputtering or the like.
  • the film is heat-treated at a temperature of 600 ° C. to 1100 ° C.
  • silicide is formed between the silicon carbide layer and the metal layer in the opening.
  • the remaining portion of the metal layer that is not silicided is removed. This removal can be performed, for example, by wet etching using any one of sulfuric acid, nitric acid, hydrochloric acid, or a mixed solution of these with hydrogen peroxide.
  • the first ohmic contact part 70 and the third ohmic contact part 72 are formed.
  • a metal layer mainly composed of Ni is formed on the lower surface of the substrate 10.
  • the ohmic electrode 79 is formed on the back side of the substrate 10 by heat-treating the metal layer.
  • the gate insulating film 50 and the interlayer insulating film 55 on the second separation region 22 and the interlayer insulating film 55 at the position where the gate contact hole 95 is provided are removed by a patterning technique using a photoresist or the like.
  • a removal method wet etching that does not damage the silicon carbide surface that becomes the SBD interface is preferable.
  • a Schottky electrode 75 is deposited by sputtering or the like.
  • the deposited material is preferably titanium (Ti), molybdenum (Mo) or nickel (Ni).
  • a wiring metal layer such as Al is formed on the surface of the substrate 10 processed so far by sputtering or vapor deposition, and this is processed into a predetermined shape by photolithography. Accordingly, the source wiring layer 80w that contacts the first ohmic contact portion 70 and the Schottky electrode 75, the test wiring layer 81w that contacts the third ohmic contact portion 72, and the gate wiring layer 82w that contacts the gate electrode portion 60. And are formed. Further, a drain electrode 85 that is a metal layer is formed on the surface of the ohmic electrode 79 formed on the lower surface of the substrate 10.
  • the substrate 10 As described above, the substrate 10, the above-described semiconductor layer on the substrate 10, the gate insulating film 50, the field insulating film 52, the interlayer insulating film 55, the source electrode 80, the test electrode 81, the gate electrode 82, A semi-finished product 101P of the MOSFET 101 having the drain electrode 85 is formed.
  • the first probe electrode portion 81P, the second probe electrode portion 80P, and the third probe electrode portion 82P (FIG. 1) are exposed on the surface.
  • a stress test is performed on the semi-finished product 101P.
  • a predetermined potential is applied to the source electrode 80, and a potential different from the potential of the source electrode 80 is applied to the test electrode 81.
  • a forward bias is applied to the pn junction formed by the second well region 31 and the drift layer 20.
  • the probe needle is brought into contact with the first probe electrode portion 81P (FIG. 1) of the test electrode 81.
  • the probe needle needs to be sunk into the first probe electrode portion 81P.
  • the first probe electrode Probe marks are formed on the portion 81P.
  • the probe trace is a trace in which the probe needle is indented into the surface of the first probe electrode portion 81P.
  • the surface shape of the first probe electrode portion 81P is uneven.
  • the first probe electrode part 81P may be formed with a pattern shape in a lower layer than the first probe electrode part 81P, that is, surface irregularities formed by steps, but the first probe electrode part
  • the surface irregularities of the first probe electrode portion 81P that do not depend on the pattern shape in the lower layer than 81P are probe marks.
  • the voltage applied between the test electrode 81 and the drain electrode 85 is set lower than the voltage between the source electrode 80 and the drain electrode 85.
  • the potential of the source electrode 80 is made lower than the potential of the test electrode 81.
  • the potential of the source electrode 80 is set to a potential that does not exceed the diffusion potential of the parasitic pn diode with respect to the potential of the drain electrode 85.
  • the potential of the source electrode 80 may be a floating potential without applying a potential from the outside. Even in that case, the potential of the source electrode 80 is between the potential of the test electrode 81 and the potential of the drain electrode 85, and thus is lower than the potential of the test electrode 81.
  • the potential of the gate electrode 82 is preferably equal to that of the test electrode 81 or lower than that of the test electrode 81 in order to reliably turn off the channel.
  • Triangular stacking faults expand.
  • the extension of the defects affects the current-carrying characteristics between the source electrode 80 or the test electrode 81 and the drain electrode 85.
  • the energization characteristic may be a resistance value or a withstand voltage characteristic. For example, a current is passed between the test electrode 81 and the drain electrode 85, and elements having a large voltage drop are eliminated. Further, the same measurement may be performed before the stress test, and the necessity of exclusion may be determined from the characteristic fluctuation amount before and after the stress test.
  • the metal film 87 is formed by a plating method.
  • the plating method is an electroless plating method.
  • the metal film 87 is selectively formed on the exposed source electrode 80, test electrode 81, and gate electrode 82.
  • the metal film 87 isotropically grows from the source electrode 80, the test electrode 81, and the gate electrode 82 by using the plating method. That is, the metal film 87 grows not only on the upper surfaces of the source electrode 80, the test electrode 81 and the gate electrode 82 but also on the side surfaces. For this reason, between the side surface S1 of the source electrode 80 and the side surface S2 of the test electrode 81 that are close to each other, the growth surfaces of the plating films formed on both side surfaces come into contact with each other, A metal film 87 is formed to connect the side surface S2. On the other hand, the distance between each of the source electrode 80 and the test electrode 81 and the gate electrode 82 is larger than the distance between the source electrode 80 and the test electrode 81.
  • the metal film 87 is formed as a source metal electrode film 87S and a gate metal electrode film 87G which are separated from each other.
  • the material of the metal film 87 formed by the electroless plating method is preferably Al, Cu, Ni or Au.
  • the film thickness of the metal film 87 needs to be larger than half the distance between the source electrode 80 and the test electrode 81 in order to connect the source electrode 80 and the test electrode 81. On the other hand, this film thickness is desirably 20 ⁇ m or less from the viewpoint of ease of processing.
  • MOSFET 101 is obtained.
  • MOSFET 101 of the present embodiment has undergone the screening described above, such characteristic deterioration is unlikely to occur.
  • the comparative MOSFET 199 does not have the test electrode 81 described above. For this reason, the potential application in the stress test must be performed using the source electrode 80.
  • the source electrode 80 is also in contact with the active region R1 in which the SBD having a lower operating voltage than the pn diode is built. For this reason, most of the stress current flows into the active region R1 that does not require a stress test.
  • the current flowing through the SBD built in the active region R1 also generates Joule heat corresponding to the voltage drop in the device, thereby causing the element to generate heat. In order to prevent thermal damage to the chip or evaluation equipment due to this heat generation, it is necessary to suppress the amount of current to be applied. As a result, the stress current density to the pn diode formed by the second well region 31 and the drift layer 20 in the termination region R2 is reduced. Therefore, the time required for the stress test becomes long.
  • the test electrode 81 electrically connected to the second well region 31 located in the termination region R2 is separated from the source electrode 80 in contact with the first well region 30 located in the active region R1.
  • a stress test in which a forward bias is applied to the pn junction formed by the second well region 31 and the drift layer 20 is performed using the test electrode 81 before the metal film 87 is formed.
  • the stress current flowing through the active region R1 can be suppressed. Therefore, first, the amount of heat generated in the active region R1 during the stress test becomes smaller. Therefore, since a larger current can be used for the stress test, the stress test can be performed in a shorter time.
  • the generation of stacking faults in the active region R1 during the stress test is suppressed. This makes it difficult for the transistor characteristics to vary due to the stress test. As described above, the stress test time can be shortened, and fluctuations in transistor characteristics due to the stress test can be suppressed.
  • a stress current can be easily applied from the outside by the first probe electrode portion 81P.
  • a probe needle for applying a stress current can be easily applied.
  • the first probe electrode portion 81P has a probe mark, it can be identified that a stress current has already been applied.
  • the source electrode 80 and the test electrode 81 are short-circuited by the source metal electrode film 87S, so that the potential of the second well region 31 is prevented from becoming a floating potential. Specifically, the source electrode 80 and almost the same potential. Thereby, it is possible to prevent a high voltage from being applied to the gate insulating film 50 and the field insulating film 52 on the second well region 31.
  • a source metal electrode film 87S extending over these is used for the short-circuit connection between the source electrode 80 and the test electrode 81.
  • the impedance of a short circuit connection can be made low. Impedance reduction is particularly advantageous for high speed operation of MOSFET 101. Further, since it is not necessary to secure an area for wire bonding for the short-circuit connection between the source electrode 80 and the test electrode 81, the chip size is further reduced. Thereby, manufacturing cost can be reduced.
  • the source metal electrode film 87S connects between the side surface S1 (first side surface) of the source electrode 80 and the side surface S2 (second side surface) of the test electrode 81 facing each other. Thereby, since the source electrode 80 and the test electrode 81 are connected at a short distance, the impedance of the short-circuit connection can be further reduced.
  • the electrical path for this short-circuit connection is provided between the side surface S1 of the source electrode and the side surface S2 of the test electrode facing each other. Thereby, there is no need to form a contact hole for arranging the electrical path and an insulating film provided with the contact hole. Therefore, since the manufacturing process is simplified, the manufacturing cost of MOSFET 101 can be reduced.
  • the source metal electrode film 87S is formed by a plating method. Thus, if the shortest distance between each of the source electrode 80 and the test electrode 81 and the gate electrode 82 is sufficiently large, the source metal electrode film 87S that does not contact the gate electrode 82 can be formed without the patterning step. Can do.
  • termination region source electrode contact hole 91 is provided in the insulating layer having field insulating film 52 and interlayer insulating film 55. Termination region source electrode contact hole 91 partially exposes the surface of termination region R2 of the semiconductor layer, and in the present embodiment, second high concentration region 36 of second well region 31 is partially exposed. is doing. Termination region source electrode contact hole 91 is arranged closer to active region R1 than termination region test electrode contact hole 92.
  • the source electrode 80 includes a second ohmic contact portion 71.
  • Second ohmic contact portion 71 is short-circuited to each of Schottky electrode 75 and first ohmic contact portion 70 by source wiring layer 80w.
  • the second ohmic contact portion 71 is disposed at the bottom of the termination region source electrode contact hole 91 and is in ohmic contact with the second high concentration region 36 of the second well region 31.
  • the source electrode 80 is ohmically connected to the second high concentration region 36 of the second well region 31. Since the second ohmic contact portion 71 is in contact with the second high-concentration region 36, transfer of electrons or holes between the second ohmic contact portion 71 and the second well region 31 becomes easier.
  • the potential of the second well region 31 is further increased to the potential of the source electrode 80 by electrical connection via the termination region source electrode contact hole 91 even in a location where the test electrode 81 is not provided. You can get closer. This is particularly useful when the test electrode 81 does not completely surround the source electrode 80, unlike FIG.
  • this modification also has the effect of suppressing the current flowing through the active region R1 during the stress test, although it does not reach the configuration of FIG. This is because the sheet resistance of the second well region 31 (particularly the second high-concentration region 36), which is an electrical path between the test electrode 81 and the source electrode 80 during the stress test before the metal film 87 is formed, is a metal resistance. This is because the stress current leaking from the test electrode 81 toward the active region R1 can be made sufficiently small compared to the sheet resistance of the film 87.
  • the termination region source electrode contact hole 91 is preferably formed so as to completely surround the active region R1
  • the test electrode 81 is preferably formed so as to surround the active region R1 as completely as possible.
  • the second well region 31 completely surrounds the active region R1, but may not be surrounded. As shown in FIG. 1, the second well region 31 may be formed below the third probe electrode portion 82P in the gate electrode 82, and may be formed in a region different from the active region R1. That's fine.
  • a planar MOSFET cell is disposed in the active region R1, but a trench MOSFET may be disposed.
  • the structure of the MOSFET cell may be polygonal or comb-shaped.
  • a Schottky barrier diode may be disposed in the active region R1. That is, as another example of the semiconductor device according to the present embodiment, the semiconductor device may be a Schottky barrier diode. In this case, no MOSFET cell is arranged in the active region R1, and a Schottky barrier diode is formed.
  • a p-type region such as JTE or FLR (Field Limiting Ring) is formed as an electric field relaxation region, and the anode electrode of the Schottky barrier diode and at least a part of the p-type region are electrically connected. . Since this p-type region corresponds to the second well region 31, the same effect as in the present embodiment can be obtained.
  • gate electrode 82 of MOSFET 102 semiconductor device of the present embodiment is added to a region (corresponding to the entire gate electrode 82 in FIG. 1) as third probe electrode portion 82P in plan view.
  • the terminal area R2 has a wiring area extending linearly from the third probe electrode section 82P with a width smaller than the width of the third probe electrode section 82P.
  • MOSFET 102 has a surface protective layer 57 partially formed on gate electrode 82.
  • the surface protective layer 57 exposes a portion of the gate electrode 82 that requires electrical contact with the outside, such as the third probe electrode portion 82P, and extends from the third probe electrode portion 82P. It is preferable to cover.
  • the surface protective layer 57 exposes each of the source electrode 80 and the test electrode 81 at least partially, and is preferably provided apart from the source electrode 80 and the test electrode 81.
  • the surface protective layer 57 is made of an insulator.
  • the material of the surface protective layer 57 is preferably one that can be formed at a temperature of 500 ° C. or lower.
  • the material of the surface protective layer 57 is preferably an organic material, and particularly preferably polyimide.
  • the metal film 87 is selectively formed only on a portion of the source electrode 80, the test electrode 81, and the gate electrode 82 that is not covered with the surface protective layer 57.
  • the thickness of the surface protective layer 57 is preferably selected so that the upper surface of the surface protective layer 57 (the upper surface in FIG. 9) is higher than the upper surface of the metal film 87. From the viewpoint of ease of processing, the thickness of the surface protective layer 57 is preferably 30 ⁇ m or less.
  • the surface protective layer 57 is formed after the source electrode 80, the test electrode 81, and the gate electrode 82 are formed and before the metal film 87 is formed.
  • the plating film as the metal film 87 does not grow on the portion of the source electrode 80, the test electrode 81, and the gate electrode 82 that is covered with the surface protective layer 57.
  • the step of forming the surface protective layer 57 is performed before the stress test described above. As a result, the MOSFET 102 is protected by the surface protective layer 57 from disturbance that may occur in the stress test.
  • the surface protective layer 57 is formed as follows, for example. First, polyimide is applied. Thereafter, a pattern of the surface protective layer 57 is formed by patterning using photolithography. Next, the polyimide is cured by heat treatment at a temperature of 150 ° C. to 500 ° C.
  • the metal film 87 grows so as to connect the source electrode 80 or the test electrode 81 and the gate electrode 82. Is more reliably prevented. Thereby, the distance between the source electrode 80 or the test electrode 81 and the gate electrode 82 can be further reduced. Therefore, the chip size can be further reduced. Thereby, the manufacturing cost can be reduced.
  • the surface protective layer 57 When the surface protective layer 57 is made of an organic material, the surface protective layer 57 can be formed at a relatively low temperature. Thereby, damage caused by heat applied to the structure before the formation of the surface protective layer 57 can be suppressed.
  • the surface protective layer 57 by providing the surface protective layer 57, an unintended short circuit between the source electrode 80 or the test electrode 81 and the gate electrode 82 can be prevented.
  • the electrode is stretched by a disturbance such as a scratch at the boundary between the source electrode 80 or the test electrode 81 and the gate electrode 82, the short circuit as described above may occur without the surface protective layer 57.
  • the electrode layout of the MOSFET provided with the surface protective layer 57 is not limited to that shown in FIG. 8, and may be, for example, that shown in FIG.
  • the surface protective layer 57 is provided, for example, on a portion of the gate electrode 82 that is close to the test electrode 81. Thereby, the gate electrode 82 and the test electrode 81 are prevented from being short-circuited by the metal film 87.
  • a wiring region extending from the third probe electrode portion 82P is provided in the gate electrode 82 as shown in FIG. 8, for example. Other configurations may be used.
  • the metal film 87 is formed by a deposition method through a shadow mask as follows.
  • the shadow mask has an opening corresponding to the pattern of the metal film 87.
  • the shadow mask is a metal plate made of, for example, stainless steel.
  • the shadow mask is overlaid on the MOSFET being created.
  • the shadow mask opening includes a region that spans both the source electrode 80 and the test electrode 81 (FIG. 1).
  • a metal thin film is deposited corresponding to the pattern of the opening by a deposition method such as sputtering or vapor deposition in a vacuum atmosphere. Thereby, a metal film 87 is formed.
  • the pattern of the metal film 87 in plan view can be arbitrarily determined by the pattern of the opening of the shadow mask. Therefore, first, even if the distance between the source electrode 80 and the test electrode 81 is large, the source metal electrode film 87S that connects the source electrode 80 and the test electrode 81 can be formed. By increasing the distance between the source electrode 80 and the test electrode 81, it is possible to suppress a decrease in manufacturing yield due to the occurrence of poor separation between the source electrode 80 and the test electrode 81. Therefore, manufacturing cost can be reduced.
  • the metal film 87 can be formed only on an arbitrary portion of the exposed portions of the source electrode 80, the test electrode 81, and the gate electrode 82. Therefore, part of the source electrode 80, the test electrode 81, and the gate electrode 82 can be left exposed even when the MOSFET is completed.
  • This exposed portion can be used as a terminal portion for establishing electrical connection with the outside of the MOSFET.
  • This terminal part can be used, for example, as a part for connecting a bonding wire for electrical connection with the outside of the MOSFET.
  • the metal film 87 is formed only in the vicinity of the separation region between the source electrode 80 and the test electrode 81, for example.
  • the material of the metal film 87 may not be suitable as a material for the terminal portion. Therefore, the material of the metal film 87 can be more freely selected from various metal materials different from the materials of the source electrode 80, the test electrode 81, and the gate electrode 82.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the first conductivity type is p-type and the second conductivity type is n-type. It may be a type. In this case, the above-described content of the potential level is also opposite.
  • the Schottky electrode 75 and the source electrode 80 may be made of the same material. In this case, the Schottky electrode 75 and the source electrode 80 can be formed collectively.
  • the MOSFET has been described as the semiconductor device.
  • a material other than an oxide may be used as the material of the gate insulating film.
  • the semiconductor device may be a MISFET (Metal Insulator Semiconductor Field Effect Transistor) other than the MOSFET.
  • the semiconductor device is not limited to the MISFET, and may be another unipolar transistor with a built-in unipolar diode.
  • the unipolar transistor may be, for example, a JFET (Junction Field Effect Transistor).
  • the SBD is incorporated in the unipolar transistor, but instead of incorporating the SBD element, a diode characteristic capable of conducting unipolar current to the drift layer 20 between the first well regions 30 is provided as a source.
  • the electrode 80 may have.
  • an FET having a channel characteristic that allows energization only in the direction from the source to the drain while an off potential is applied to the gate may be used. That is, a structure in which an n-type channel region is formed on the channel region sandwiched between the source region 40 and the drift layer 20 in the first well region 30 may be used.
  • the source electrode 80 is made higher than the drain electrode 85 even if no voltage is applied to the gate electrode portion 60. Unipolar energization is possible in the direction from the drain to the drain. Note that the channel region may be formed by epitaxial growth or ion implantation.
  • silicon carbide is used as the wide band gap semiconductor that is the material of the drift layer 20, but other wide band gap semiconductors may be used.
  • a wide-gap semiconductor having a recombination energy larger than that of silicon, not limited to silicon carbide, may generate crystal defects when a forward current flows through the parasitic pn diode.
  • a wide band gap semiconductor is defined as a semiconductor having a band gap of about twice the band gap of silicon (1.12 eV), for example. If the purpose of the inspection or stress test is not related to the generation of the crystal defect, the material of the drift layer can be any semiconductor.
  • connection with an electrically low resistance is referred to as an “ohmic connection”, and a structure for realizing the connection is referred to as an “ohmic contact portion” or an “ohmic electrode”.
  • Connection with low resistance means, for example, a connection having a contact resistance of 100 ⁇ cm 2 or less, and it is not necessary to satisfy a narrowly defined ohmic characteristic having perfect linearity as a current / voltage characteristic.
  • the SBD element and the MOSFET element are provided in the active region surrounded by the termination region.
  • other semiconductor elements may be formed in the active region.
  • the second electrode located in the termination region can be provided separately from the first electrode located in the active region.
  • An inspection or stress test on the termination region by applying a potential different from the potential of the first electrode to the second electrode can be performed using the second electrode before forming the metal electrode film.
  • the current flowing through the active region can be suppressed. Therefore, in the inspection or stress test, first, the amount of heat generated in the active region becomes smaller. Accordingly, since a larger current can be used, the inspection or the stress test can be performed in a shorter time.
  • the influence on the active region by the inspection or the stress test is suppressed. This makes it difficult for the semiconductor characteristics to vary due to the inspection or the stress test. As described above, the time for the inspection or stress test can be shortened, and fluctuations in the semiconductor characteristics due to the inspection or stress test can be suppressed. Further, the first electrode and the second electrode are short-circuited with low impedance by the metal electrode film straddling the first electrode and the second electrode. Such a connection method can be applied to various applications as a method of short-circuiting a plurality of electrodes with a low impedance after giving a test or stress test with different potentials in a state where a plurality of electrodes are separated from each other, Benefit from low cost and high speed operation.
  • each of the first electrode and the second electrode is disposed in the active region and the termination region.
  • the locations where the first electrode and the second electrode are disposed are other than these. There may be.
  • an inspection or a stress test by applying a potential different from the potential of the first electrode to the second electrode can be performed using the second electrode before forming the metal electrode film.
  • the current flowing in the vicinity of the first electrode can be suppressed. Therefore, in the inspection or stress test, first, the amount of heat generated in the vicinity of the first electrode becomes smaller. Accordingly, since a larger current can be used, the inspection or the stress test can be performed in a shorter time.
  • the influence on the vicinity of the first electrode due to the inspection or the stress test is suppressed. This makes it difficult for the semiconductor characteristics to vary due to the inspection or the stress test. As described above, the time for the inspection or stress test can be shortened, and fluctuations in the semiconductor characteristics due to the inspection or stress test can be suppressed. Further, the first electrode and the second electrode are short-circuited with low impedance by the metal electrode film connecting the first side surface of the first electrode and the second side surface of the second electrode facing each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

This semiconductor device (101) has, when viewed in plan, an active region (R1) and a termination region (R2) that is in a region different from the active region (R1). The semiconductor device (101) comprises a first electrode (80), a second electrode (81) and a metal electrode film (87S). The first electrode (80) is arranged in the active region (R1). The second electrode (81) is arranged in the termination region (R2), and is separated from the first electrode (80). The metal electrode film (87S) electrically connects the first electrode (80) and the second electrode (81).

Description

半導体装置および半導体装置の製造方法Semiconductor device and manufacturing method of semiconductor device
 本発明は、半導体装置および半導体装置の製造方法に関するものである。 The present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
 炭化珪素(SiC)を用いたpnダイオードに順方向電流を流し続けると順方向電圧が増加することが知られている(例えば、下記の非特許文献1参照)。これは、pnダイオードを通して注入された少数キャリアが多数キャリアと再結合する際の再結合エネルギーにより、炭化珪素基板に存在する基底面転位などを起点として、面欠陥である三角積層欠陥(ショックレー型積層欠陥ともいう)が結晶中に拡張するためと考えられている(例えば、下記の非特許文献2参照)。pnダイオードの順方向電圧の増加は、三角積層欠陥が電流の流れを阻害するためと考えられる。順方向電圧のこの増加は信頼性の劣化を引き起こし得る。 It is known that the forward voltage increases when a forward current continues to flow through a pn diode using silicon carbide (SiC) (for example, see Non-Patent Document 1 below). This is due to the recombination energy when minority carriers injected through the pn diode recombine with the majority carriers, starting from basal plane dislocations existing in the silicon carbide substrate, and so on. This is considered to be due to the fact that the stacking fault is also expanded into the crystal (for example, see Non-Patent Document 2 below). The increase in the forward voltage of the pn diode is thought to be because the triangular stacking fault hinders the flow of current. This increase in forward voltage can cause reliability degradation.
 このような順方向電圧シフトは、炭化珪素を用いたMOSFET(Metal Oxide Semiconductor Field Effect Transistor)でも同様に発生するとの報告がある(例えば、下記の非特許文献3参照)。MOSFET構造はソース・ドレイン間に寄生pnダイオード(ボディダイオード)を有しており、順方向電流がこのボディダイオードに流れると、pnダイオードと同様の信頼性劣化を引き起こす。MOSFETチップに還流ダイオードとして、低い順方向電圧を有するショットキーバリアダイオードチップが並列接続される場合、この問題は軽減される。しかしながら、ダイオードが外付けされると、装置の部品点数が増加してしまう。一方、還流ダイオードとしての機能のすべてまたは一部をMOSFETのボディダイオードが担う場合、上述した信頼性劣化がMOSFETチップに及び得る。 There is a report that such a forward voltage shift occurs in a similar manner in a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) using silicon carbide (for example, see Non-Patent Document 3 below). The MOSFET structure has a parasitic pn diode (body diode) between the source and the drain, and when a forward current flows through the body diode, reliability degradation similar to that of the pn diode is caused. This problem is alleviated when a Schottky barrier diode chip having a low forward voltage is connected in parallel as a free wheel diode to the MOSFET chip. However, when a diode is externally attached, the number of parts of the device increases. On the other hand, when the MOSFET body diode is responsible for all or part of the function as a freewheeling diode, the above-described reliability degradation can reach the MOSFET chip.
 この問題に対応する方法として、例えば、下記の特許文献1において言及されているように、pnダイオード構造に順方向電流を長時間流し、この前後における順方向電圧の変化を測定する、ストレス試験がある。ストレス試験において劣化の大きい素子を製品から排除(スクリーニング)することで、より高い信頼性を確保することができる。劣化有無を判定するために着目される順方向電圧の変動量は、積層欠陥の面積に比例する。この面積の拡張速度は、pnダイオードを通して注入される少数キャリアの積算量におおよそ比例する。この積算量は、電流の大きさと、電流を流す時間とに依存する。短時間で試験を終えることを意図して電流が過度に大きくされると、ダイオード素子が過度に発熱することで、チップまたは試験装置が損傷してしまうことがある。一方で、電流を小さくすると、試験に長時間を要し、その結果、チップコストが増大するなど、実用上の問題が生じる。 As a method for dealing with this problem, for example, as mentioned in the following Patent Document 1, a stress test is performed in which a forward current is passed through a pn diode structure for a long time and a change in forward voltage before and after this is measured. is there. Higher reliability can be ensured by excluding (screening) elements with large deterioration from the product in the stress test. The amount of fluctuation in the forward voltage that is noticed for determining the presence or absence of deterioration is proportional to the area of the stacking fault. The expansion rate of this area is approximately proportional to the integrated amount of minority carriers injected through the pn diode. This integrated amount depends on the magnitude of the current and the time during which the current is applied. If the current is excessively increased in order to finish the test in a short time, the diode or the test apparatus may be damaged due to excessive heat generation of the diode element. On the other hand, when the current is reduced, a long time is required for the test, and as a result, there are practical problems such as an increase in chip cost.
 一方、MOSFETなどユニポーラ型トランジスタとしての半導体チップには、還流ダイオードとして、上述したように信頼性劣化につながり得るpnダイオードに代わり、多数キャリアのみで通電するダイオード、すなわちユニポーラ型ダイオード、を内蔵させることが可能である。例えば、下記の特許文献2および3では、MOSFETのユニットセル内にユニポーラ型ダイオードとしてSBD(Schottky Barrier Diode)が内蔵されている。ユニポーラ型トランジスタの活性領域としてのユニットセル内に、ボディダイオードの動作電圧よりも低い動作電圧を有するユニポーラ型ダイオードが内蔵されることで、実使用時において活性領域内のボディダイオードに順方向電流が流れないようにすることができる。これにより活性領域の特性劣化を抑制することができる。 On the other hand, in a semiconductor chip as a unipolar transistor such as a MOSFET, a diode that conducts electricity only by majority carriers, that is, a unipolar diode, is incorporated as a freewheeling diode in place of a pn diode that can lead to reliability deterioration as described above. Is possible. For example, in Patent Documents 2 and 3 below, a SBD (Schottky Barrier Diode) is built in a MOSFET unit cell as a unipolar diode. A unipolar diode having an operating voltage lower than the operating voltage of the body diode is built in the unit cell as the active region of the unipolar transistor, so that a forward current is supplied to the body diode in the active region in actual use. It can be prevented from flowing. Thereby, characteristic deterioration of the active region can be suppressed.
 しかしながら、活性領域以外の領域、特に活性領域の周りの終端領域、には、寄生ダイオードが存在するものの、当該領域の構造または機能に鑑み、ユニポーラ型ダイオードを配置することができない箇所がある。この箇所に基底面転位など起点が存在すると、三角積層欠陥が拡張することでトランジスタの特性が劣化してしまう。具体的には、ソース・ドレイン電流を通電した際の電圧降下が大きくなる。その結果、実使用時に熱暴走することで素子破壊に至る可能性が懸念される。このため、たとえユニポーラ型トランジスタにSBDが内蔵されていても、ストレス試験によるスクリーニングには有用性がある。ここでSBDの動作電圧は寄生ダイオードの動作電圧よりも低くされていることから、ストレス試験に用いられるストレス電流の大部分は主に、試験が必要な寄生ダイオードではなく、内蔵SBDを通ってしまう。内蔵SBDを通る電流も、素子の発熱を引き起こすジュール熱の発生原因となる。よって、素子の発熱に起因したチップまたは評価設備の熱損傷を防ぐことができる程度に、ストレス電流を小さくする必要がある。この結果、試験時間が長くなってしまう。 However, in regions other than the active region, particularly in the termination region around the active region, there are places where unipolar diodes cannot be placed in view of the structure or function of the region, although parasitic diodes exist. If a starting point such as a basal plane dislocation exists at this location, the triangular stacking fault expands and the characteristics of the transistor deteriorate. Specifically, the voltage drop when the source / drain current is applied increases. As a result, there is a concern that the device may be destroyed due to thermal runaway during actual use. For this reason, even if the SBD is incorporated in the unipolar transistor, it is useful for screening by a stress test. Here, since the operating voltage of the SBD is lower than the operating voltage of the parasitic diode, most of the stress current used for the stress test mainly passes through the built-in SBD, not the parasitic diode that needs to be tested. . The current passing through the built-in SBD also causes Joule heat that causes the element to generate heat. Therefore, it is necessary to reduce the stress current to such an extent that thermal damage of the chip or the evaluation facility due to the heat generation of the element can be prevented. As a result, the test time becomes long.
 さらに、ストレス電流が活性領域に流れる量が多い場合、活性領域中の寄生pnダイオードにも電流が流れ始める。その結果、本来ストレス試験が不要な活性領域で積層欠陥が生成する。この積層欠陥はMOSFETの順方向電圧を変動させることがある。順方向電圧が仕様から外れたものが除去される場合、チップの製造歩留まりが低くなる。 Furthermore, when the amount of stress current flowing through the active region is large, current begins to flow through the parasitic pn diode in the active region. As a result, stacking faults are generated in the active region that originally does not require a stress test. This stacking fault may cause the forward voltage of the MOSFET to fluctuate. If the forward voltage out of specification is removed, the chip manufacturing yield will be low.
 以上のように、ユニポーラ型ダイオードが内蔵されたトランジスタにおいて、そのスクリーニングのためのストレス試験に長時間を要するという課題があった。またストレス試験に起因したトランジスタ特性の変動が大きいという課題があった。これらの課題の原因となる三角積層欠陥の生成は、SiCについてよく知られているが、その他のワイドバンドギャップ半導体においても生じ得るものである。 As described above, a transistor having a built-in unipolar diode has a problem that a stress test for screening requires a long time. In addition, there is a problem in that the transistor characteristics greatly vary due to the stress test. The generation of triangular stacking faults that cause these problems is well known for SiC, but can also occur in other wide bandgap semiconductors.
 このような問題に対して本発明者らは、活性領域においてドリフト層上に設けられた第1ウェル領域と、終端領域においてドリフト層上に設けられた第2ウェル領域との両方に電気的に接続されたソース電極を形成する前に、活性領域中の第1ウェル領域と、終端領域中の第2ウェル領域とのそれぞれに接続された第1および第2電極を設けることを検討してきた。上記ストレス電流を第1電極ではなく第2電極のみに流すことにより、ストレス電流は主に第1ウェル領域ではなく第2ウェル領域に流れる。これによりストレス電流は主に活性領域ではなく終端領域に選択的に流れる。よって、試験されているチップ中の発熱量を抑えつつ、終端領域において第2ウェル領域とドリフト層とによって形成されるpnダイオードへのストレス電流密度を増大させることができる。これにより、必要となるスクリーニング時間を短縮することができる。また、スクリーニングの際に活性領域の特性が変動することを抑制することで、歩留り低減を抑制することができる。それによりスクリーニングコストを低減することで、安価なチップが実現される。 In order to solve such a problem, the present inventors have electrically connected both the first well region provided on the drift layer in the active region and the second well region provided on the drift layer in the termination region. Prior to forming the connected source electrode, it has been considered to provide first and second electrodes connected to each of the first well region in the active region and the second well region in the termination region. By causing the stress current to flow only to the second electrode instead of the first electrode, the stress current mainly flows to the second well region, not the first well region. As a result, the stress current selectively flows mainly in the termination region, not in the active region. Therefore, it is possible to increase the stress current density to the pn diode formed by the second well region and the drift layer in the termination region while suppressing the amount of heat generated in the chip being tested. Thereby, the required screening time can be shortened. Moreover, yield reduction can be suppressed by suppressing fluctuations in the characteristics of the active region during screening. Thereby, an inexpensive chip is realized by reducing the screening cost.
 実使用時には、第1電極と第2電極とが短絡されていることが好ましい。この短絡がなされないことで第2ウェル領域の電位が適切にソース電位(第1電極の電位)に保たれないと、スイッチング動作のときなどに第2ウェル領域に高電位が発生し得る。この高電位が第2ウェル領域上の絶縁膜を破壊することが懸念される。よってストレス試験後に第1電極と第2電極との間を接続することが望まれる。 In actual use, the first electrode and the second electrode are preferably short-circuited. If the potential of the second well region is not properly maintained at the source potential (the potential of the first electrode) due to the short circuit not being performed, a high potential can be generated in the second well region during a switching operation or the like. There is a concern that this high potential destroys the insulating film on the second well region. Therefore, it is desirable to connect between the first electrode and the second electrode after the stress test.
 上述したような、活性領域にユニポーラ型ダイオードを内蔵させたユニポーラ型トランジスタにおいてのみならず、一般に半導体装置において、検査またはストレス試験を行った後に、複数の電極間を接続することが必要な場合がある。例えば下記の特許文献4では、まず複数の半導体素子の検査が行われることで、良品の半導体素子と不良品の半導体素子とが判別される。その後、良品の半導体素子のソース電極パッドのみがソース電極端子にワイヤーボンディングにより接続される。これにより、複数の半導体素子を有する半導体装置を、高い歩留まりを確保しつつ、低コストで製造することができる。しかしながら、ワイヤーボンディングで接続する方法では、以下の2つの問題が生じる。 As described above, not only in a unipolar transistor in which a unipolar diode is incorporated in an active region, but also in a semiconductor device, it may be necessary to connect a plurality of electrodes after performing an inspection or a stress test. is there. For example, in Patent Document 4 described below, first, a plurality of semiconductor elements are inspected, whereby a good semiconductor element and a defective semiconductor element are discriminated. Thereafter, only the source electrode pad of the non-defective semiconductor element is connected to the source electrode terminal by wire bonding. Thereby, a semiconductor device having a plurality of semiconductor elements can be manufactured at a low cost while ensuring a high yield. However, the following two problems occur in the method of connecting by wire bonding.
 第1にチップコストが増大する。ワイヤーボンディングを行うためにはパッド領域は比較的大きなサイズを要する。このパッド領域は、活性領域ではなく、素子としての本来の機能を有するユニットセルを配置することができる領域ではない。このため、ワイヤーボンディング用のパッド領域を設けると、所定の素子抵抗を有するチップのサイズが大きくなってしまう。チップサイズが大きくなるほどコストが増大し、この問題は、炭化珪素などのワイドバンドギャップ半導体から作られた単結晶基板を用いる場合に特に顕著となる。また、多くのボンディングワイヤーを打つことが必要となる場合もあり、その場合、プロセスコストが増大する。 First, the chip cost increases. In order to perform wire bonding, the pad area requires a relatively large size. This pad region is not an active region, and is not a region where a unit cell having an original function as an element can be disposed. For this reason, if a pad region for wire bonding is provided, the size of a chip having a predetermined element resistance is increased. The cost increases as the chip size increases, and this problem is particularly noticeable when a single crystal substrate made of a wide band gap semiconductor such as silicon carbide is used. In addition, it may be necessary to hit a large number of bonding wires, which increases process costs.
 第2に、ボンディングワイヤーの寄生インピーダンスに起因した問題が生じ得る。例えば、上述した第1および第2電極間の接続がワイヤーボンディングによって行われる場合は、終端領域と活性領域との間が単一のソース電極で接続される場合と異なり、終端領域と活性領域との間が大きな寄生インダクタンスを介して接続されることとなる。寄生インダクタンスは、ボンディングワイヤーが長いほど、また各ボンディングワイヤーが細くボンディングワイヤーの本数が少ないほど、大きくなる。この寄生インピーダンスに起因して、第2ウェル領域の電位がソース電位と乖離する。例えば半導体装置の過渡応答時に、第2電極に流れるソース電流または変位電流が時間的に変化した際、寄生インダクタンス(Ls)と電流の時間変化(di/dt)との積に応じた逆起電力が発生することで、第2ウェル領域の電位がソース電位から乖離し、それにより様々な問題が引き起こされる。具体的には、第2ウェル領域上の絶縁膜が破壊されたり、寄生インダクタンスと半導体中の寄生容量とが組み合わさることで発振が生じたりし得る。このため、寄生インダクタンスが大きい場合はスイッチング速度を低く抑えなければならないという問題が生じる。電力用半導体装置ではスイッチング速度が低いほどスイッチング損失が大きい傾向があるため、スイッチング速度の制約は電力損失の増大にもつながり得る。 Second, problems can arise due to the parasitic impedance of the bonding wire. For example, when the connection between the first and second electrodes is performed by wire bonding, the termination region and the active region are different from the case where the termination region and the active region are connected by a single source electrode. Are connected via a large parasitic inductance. The parasitic inductance increases as the bonding wires are longer, and as each bonding wire is thinner and the number of bonding wires is smaller. Due to this parasitic impedance, the potential of the second well region deviates from the source potential. For example, when the source current or displacement current flowing through the second electrode changes with time during the transient response of the semiconductor device, the counter electromotive force according to the product of the parasitic inductance (Ls) and the time change of the current (di / dt). Occurrence of the potential causes the potential of the second well region to deviate from the source potential, thereby causing various problems. Specifically, the insulating film on the second well region may be destroyed, or oscillation may occur due to a combination of parasitic inductance and parasitic capacitance in the semiconductor. For this reason, when the parasitic inductance is large, there arises a problem that the switching speed must be kept low. In a power semiconductor device, the switching loss tends to increase as the switching speed is low. Therefore, the restriction on the switching speed may lead to an increase in power loss.
 一方、下記の特許文献5では、複数の半導体チップを形成し、所望の特性を実現することができないと判断された不良チップ領域の電極が絶縁性の材料からなるマスク部によって覆われる。それ以外の領域においては、絶縁保護層内を貫通する配線層によって、電極間が相互に接続される。この技術では、絶縁保護層の形成と、絶縁保護層を貫通する開口部を形成するための、フォトリソグラフィーおよびエッチングによるパターニングとが必要となる。このためプロセスコストが増大する。さらに、絶縁保護層の形成工程には一般に高い温度への加熱が必要となることから、既に形成された構造に対して悪影響を与えることがあり、特に、形成済みの電極の酸化を引き起こすことがある。またエッチング工程が電極に悪影響を与えることがあり、特に、ウェットエッチングのエッチング液が電極に与える悪影響が懸念され得る。また配線層が貫通孔を通る構造によっては、寄生インピーダンスが問題となり得る。 On the other hand, in Patent Document 5 below, a plurality of semiconductor chips are formed, and an electrode in a defective chip area determined to be unable to realize desired characteristics is covered with a mask portion made of an insulating material. In other regions, the electrodes are connected to each other by a wiring layer penetrating the insulating protective layer. This technique requires formation of an insulating protective layer and patterning by photolithography and etching to form an opening that penetrates the insulating protective layer. This increases the process cost. In addition, since the process of forming the insulating protective layer generally requires heating to a high temperature, it may adversely affect the already formed structure, and in particular may cause oxidation of the formed electrode. is there. In addition, the etching process may adversely affect the electrode, and in particular, there may be a concern that the wet etching etchant may adversely affect the electrode. Further, depending on the structure in which the wiring layer passes through the through hole, parasitic impedance can be a problem.
 本発明は以上のような課題を解決するためになされたものであり、その一の目的は、複数の電極の電位を異なるものとする工程を伴う検査またはストレス試験を行った後にこれらの電極同士を低インピーダンスで短絡接続することができる半導体装置を提供することである。 The present invention has been made to solve the above-described problems, and one object of the present invention is to perform an inspection or a stress test involving a process of making the potentials of a plurality of electrodes different from each other, and then the electrodes are connected to each other. Is to provide a semiconductor device that can be short-circuited with low impedance.
 本発明の一の局面に従う半導体装置は、平面視において、活性領域と、活性領域とは別の領域に終端領域とを有するものである。半導体装置は、第1電極と、第2電極と、金属電極膜とを有する。第1電極は活性領域に配置されている。第2電極は、終端領域に配置されており、第1電極とは分離されている。金属電極膜は第1電極と第2電極とを電気的に接続している。 The semiconductor device according to one aspect of the present invention has an active region and a termination region in a region different from the active region in plan view. The semiconductor device has a first electrode, a second electrode, and a metal electrode film. The first electrode is disposed in the active region. The second electrode is disposed in the termination region and is separated from the first electrode. The metal electrode film electrically connects the first electrode and the second electrode.
 本発明の他の局面に従う半導体装置は、第1電極と、第2電極と、金属電極膜とを有する。第1電極は第1側面を有する。第2電極は、第1電極から平面視において分離されており、第1側面に対向する第2側面を有する。金属電極膜は第1電極の第1側面と第2電極の第2側面との間をつないでいる。 A semiconductor device according to another aspect of the present invention includes a first electrode, a second electrode, and a metal electrode film. The first electrode has a first side surface. The second electrode is separated from the first electrode in plan view, and has a second side surface facing the first side surface. The metal electrode film connects between the first side surface of the first electrode and the second side surface of the second electrode.
 本発明の半導体装置の製造方法は、次の工程を有する。第1電極と、第1電極から分離された第2電極とが形成される。第1電極へ所定の電位が加えられる。第2電極へ第1電極の電位と異なる電位が加えられる。第2電極へ第1電極の電位と異なる電位が加えられた後に、第1電極と第2電極とを電気的に接続する金属電極膜が形成される。 The method for manufacturing a semiconductor device of the present invention includes the following steps. A first electrode and a second electrode separated from the first electrode are formed. A predetermined potential is applied to the first electrode. A potential different from the potential of the first electrode is applied to the second electrode. After a potential different from the potential of the first electrode is applied to the second electrode, a metal electrode film that electrically connects the first electrode and the second electrode is formed.
 本発明の一の局面に従う半導体装置によれば、活性領域に位置する第1電極とは別に、終端領域に位置する第2電極が設けられる。第2電極へ第1電極の電位と異なる電位を加えることによる終端領域に対する検査またはストレス試験を、第2電極を用いて行うことができる。これにより活性領域に流れる電流を抑制することができる。よって検査またはストレス試験において、第1に、活性領域における発熱量がより小さくなる。よって、より大きな電流を用いることが可能となるので、検査またはストレス試験をより短時間で行うことができる。第2に、検査またはストレス試験による活性領域への影響が抑制される。これにより、検査またはストレス試験に起因した半導体特性の変動が生じにくくなる。以上から、検査またはストレス試験の時間を短くすることができ、また検査またはストレス試験に起因した半導体特性の変動を抑えることができる。また、第1電極および第2電極の間をまたがる金属電極膜によって第1電極および第2電極の間が低インピーダンスで短絡接続される。 According to the semiconductor device according to one aspect of the present invention, the second electrode located in the termination region is provided separately from the first electrode located in the active region. An inspection or stress test on the termination region by applying a potential different from the potential of the first electrode to the second electrode can be performed using the second electrode. Thereby, the current flowing through the active region can be suppressed. Therefore, in the inspection or stress test, first, the amount of heat generated in the active region becomes smaller. Accordingly, since a larger current can be used, the inspection or the stress test can be performed in a shorter time. Secondly, the influence on the active region by the inspection or the stress test is suppressed. This makes it difficult for the semiconductor characteristics to vary due to the inspection or the stress test. As described above, the time for the inspection or stress test can be shortened, and fluctuations in the semiconductor characteristics due to the inspection or stress test can be suppressed. Further, the first electrode and the second electrode are short-circuited with low impedance by the metal electrode film straddling the first electrode and the second electrode.
 本発明の他の局面に従う半導体装置によれば、第2電極へ第1電極の電位と異なる電位を加えることによる検査またはストレス試験を、金属電極膜の形成前に第2電極を用いて行うことができる。これにより第1電極の近傍領域に流れる電流を抑制することができる。よって検査またはストレス試験において、第1に、第1電極の近傍領域における発熱量がより小さくなる。よって、より大きな電流を用いることが可能となるので、検査またはストレス試験をより短時間で行うことができる。第2に、検査またはストレス試験による第1電極の近傍領域への影響が抑制される。これにより、検査またはストレス試験に起因した半導体特性の変動が生じにくくなる。以上から、検査またはストレス試験の時間を短くすることができ、また検査またはストレス試験に起因した半導体特性の変動を抑えることができる。また、互いに対向する第1電極の第1側面と第2電極の第2側面との間をつなぐ金属電極膜によって、第1電極および第2電極の間が低インピーダンスで短絡接続される。 According to the semiconductor device according to another aspect of the present invention, the inspection or stress test by applying a potential different from the potential of the first electrode to the second electrode is performed using the second electrode before forming the metal electrode film. Can do. As a result, the current flowing in the vicinity of the first electrode can be suppressed. Therefore, in the inspection or stress test, first, the amount of heat generated in the vicinity of the first electrode becomes smaller. Accordingly, since a larger current can be used, the inspection or the stress test can be performed in a shorter time. Second, the influence on the vicinity of the first electrode due to the inspection or the stress test is suppressed. This makes it difficult for the semiconductor characteristics to vary due to the inspection or the stress test. As described above, the time for the inspection or stress test can be shortened, and fluctuations in the semiconductor characteristics due to the inspection or stress test can be suppressed. Further, the first electrode and the second electrode are short-circuited with low impedance by the metal electrode film connecting the first side surface of the first electrode and the second side surface of the second electrode facing each other.
 本発明の半導体装置の製造方法によれば、第2電極へ第1電極の電位と異なる電位を加えることによる検査またはストレス試験を、金属電極膜の形成前に第2電極を用いて行うことができる。これにより第1電極の近傍領域に流れる電流を抑制することができる。よって検査またはストレス試験において、第1に、第1電極の近傍領域における発熱量がより小さくなる。よって、より大きな電流を用いることが可能となるので、検査またはストレス試験をより短時間で行うことができる。第2に、検査またはストレス試験による第1電極の近傍領域への影響が抑制される。これにより、検査またはストレス試験に起因した半導体特性の変動が生じにくくなる。以上から、検査またはストレス試験の時間を短くすることができ、また検査またはストレス試験に起因した半導体特性の変動を抑えることができる。また、第1電極および第2電極の間をまたがる金属電極膜によって第1電極および第2電極の間が低インピーダンスで短絡接続される。 According to the method for manufacturing a semiconductor device of the present invention, an inspection or stress test by applying a potential different from the potential of the first electrode to the second electrode can be performed using the second electrode before forming the metal electrode film. it can. As a result, the current flowing in the vicinity of the first electrode can be suppressed. Therefore, in the inspection or stress test, first, the amount of heat generated in the vicinity of the first electrode becomes smaller. Accordingly, since a larger current can be used, the inspection or the stress test can be performed in a shorter time. Second, the influence on the vicinity of the first electrode due to the inspection or the stress test is suppressed. This makes it difficult for the semiconductor characteristics to vary due to the inspection or the stress test. As described above, the time for the inspection or stress test can be shortened, and fluctuations in the semiconductor characteristics due to the inspection or stress test can be suppressed. Further, the first electrode and the second electrode are short-circuited with low impedance by the metal electrode film straddling the first electrode and the second electrode.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
特開2004-289023号公報JP 2004-289023 A 特開2003-017701号公報JP 2003-017701 A 国際公開第2014/038110号International Publication No. 2014/038110 特開2010-251772号公報JP 2010-251772 A 特開2013-149805号公報JP 2013-149805 A
本発明の実施の形態1における半導体装置の構成を概略的に示す平面図である。1 is a plan view schematically showing a configuration of a semiconductor device in a first embodiment of the present invention. 図1の線II-IIに沿う概略的な部分断面図である。FIG. 2 is a schematic partial sectional view taken along line II-II in FIG. 本発明の実施の形態1における半導体装置の製造方法の一工程を概略的に示す平面図である。It is a top view which shows roughly 1 process of the manufacturing method of the semiconductor device in Embodiment 1 of this invention. 比較例の半導体装置の構成を概略的に示す平面図である。It is a top view which shows roughly the structure of the semiconductor device of a comparative example. 図3の線V-Vに沿う概略的な部分断面図である。FIG. 5 is a schematic partial sectional view taken along line VV in FIG. 3. 図3の線VI-VIに沿う概略的な部分断面図である。FIG. 4 is a schematic partial sectional view taken along line VI-VI in FIG. 3. 図2の変形例を示す部分断面図である。It is a fragmentary sectional view which shows the modification of FIG. 本発明の実施の形態2における半導体装置の構成を概略的に示す平面図である。It is a top view which shows roughly the structure of the semiconductor device in Embodiment 2 of this invention. 図8の線IX-IXに沿う概略的な部分断面図である。FIG. 9 is a schematic partial cross-sectional view taken along line IX-IX in FIG. 8.
 以下、図面に基づいて本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <実施の形態1>
 (構成)
 図1および図2を参照して、はじめに本実施の形態のMOSFET101(半導体装置)の構成について説明する。MOSFET101は、平面視において、活性領域R1(図2)と、活性領域R1とは別に終端領域R2とを有する。活性領域R1にはユニットセルが周期的に配置されている。各ユニットセルには、半導体素子としてMOSFET素子が設けられている。またMOSFET101は、詳しくは後述するが、SBDが内蔵されたものである。終端領域R2には、上記ユニットセルが配置されていない。終端領域R2は典型的には、活性領域R1と基板10の外端(図2における右端)との間に配置されており、MOSFET101の耐圧特性を高めるための構成が設けられている。終端領域R2は、好ましくは活性領域R1を囲んでおり、より好ましくは終端領域R1を完全に囲んでいる。
<Embodiment 1>
(Constitution)
First, the configuration of MOSFET 101 (semiconductor device) of the present embodiment will be described with reference to FIGS. MOSFET 101 has an active region R1 (FIG. 2) and a termination region R2 in addition to the active region R1 in plan view. Unit cells are periodically arranged in the active region R1. Each unit cell is provided with a MOSFET element as a semiconductor element. Further, the MOSFET 101 has a built-in SBD, which will be described in detail later. The unit cell is not arranged in the termination region R2. The termination region R2 is typically disposed between the active region R1 and the outer end (right end in FIG. 2) of the substrate 10, and is provided with a configuration for improving the breakdown voltage characteristics of the MOSFET 101. The termination region R2 preferably surrounds the active region R1, and more preferably completely surrounds the termination region R1.
 MOSFET101は、n型(第1導電型)を有する基板10(半導体基板)と、基板10上の半導体層と、ゲート絶縁膜50と、フィールド絶縁膜52と、層間絶縁膜55と、ソース電極80(第1電極)と、試験電極81(第2電極)と、金属膜87と、ゲート電極82(分離電極)と、オーミック電極79と、ドレイン電極85(第3電極)とを有する。上記半導体層は、n型を有するドリフト層20と、p型(第1導電型と異なる第2導電型)を有する複数の第1ウェル領域30と、p型を有する第2ウェル領域31と、n型を有するソース領域40と、p型を有するJTE(Junction Termination Extension)領域37とを含む。 The MOSFET 101 includes an n-type (first conductivity type) substrate 10 (semiconductor substrate), a semiconductor layer on the substrate 10, a gate insulating film 50, a field insulating film 52, an interlayer insulating film 55, and a source electrode 80. (First electrode), test electrode 81 (second electrode), metal film 87, gate electrode 82 (separation electrode), ohmic electrode 79, and drain electrode 85 (third electrode). The semiconductor layer includes an n-type drift layer 20, a plurality of first well regions 30 having a p-type (second conductivity type different from the first conductivity type), a second well region 31 having a p-type, A source region 40 having an n-type and a JTE (Junction Termination Extension) region 37 having a p-type are included.
 基板10は、半導体からなり、例えば、4Hのポリタイプを有する炭化珪素からなる。基板10の不純物濃度はドリフト層20の不純物濃度よりも高いことが好ましい。基板10の一方面(図2における上面)の面方位は、例えば、(0001)面から4°程度傾斜した面である。 The substrate 10 is made of a semiconductor, for example, silicon carbide having a 4H polytype. The impurity concentration of the substrate 10 is preferably higher than the impurity concentration of the drift layer 20. The surface orientation of one surface (upper surface in FIG. 2) of the substrate 10 is, for example, a surface inclined by about 4 ° from the (0001) surface.
 ドレイン電極85は基板10の他方面(図2における下面)上に、オーミック電極79を介して設けられている。オーミック電極79は基板10の下面に接している。これによりドレイン電極85は基板10に電気的にオーミック接続されている。 The drain electrode 85 is provided on the other surface (the lower surface in FIG. 2) of the substrate 10 via an ohmic electrode 79. The ohmic electrode 79 is in contact with the lower surface of the substrate 10. Thus, the drain electrode 85 is electrically ohmically connected to the substrate 10.
 ドリフト層20は基板10上に設けられている。ドリフト層20は、ワイドバンドギャップ半導体から作られており、本実施の形態においては、六方晶系の結晶構造を有する炭化珪素から作られている。なお本実施の形態においては、基板10上の半導体層全体が、ワイドバンドギャップ半導体としての炭化珪素から作られている。すなわち半導体層は炭化珪素層である。 The drift layer 20 is provided on the substrate 10. Drift layer 20 is made of a wide band gap semiconductor. In the present embodiment, drift layer 20 is made of silicon carbide having a hexagonal crystal structure. In the present embodiment, the entire semiconductor layer on substrate 10 is made of silicon carbide as a wide band gap semiconductor. That is, the semiconductor layer is a silicon carbide layer.
 複数の第1ウェル領域30は、活性領域R1に配置されており、ドリフト層20上に互いに分離されて設けられている。これにより、半導体層上において互いに隣り合う第1ウェル領域30の間に、ドリフト層20からなる第1離間領域21または第2離間領域22が設けられている。第1離間領域21および第2離間領域22は、例えば交互に配置されている。なおドリフト層20上において複数の第1ウェル領域30は、図2に示すような一の平面における断面視において互いに分離されて設けられていればよく、これら複数の第1ウェル領域30はこの断面視以外の箇所で互いにつながっていてもよい。 The plurality of first well regions 30 are disposed in the active region R1 and are provided on the drift layer 20 so as to be separated from each other. Accordingly, the first separation region 21 or the second separation region 22 made of the drift layer 20 is provided between the first well regions 30 adjacent to each other on the semiconductor layer. For example, the first separation region 21 and the second separation region 22 are alternately arranged. On the drift layer 20, the plurality of first well regions 30 may be provided so as to be separated from each other in a sectional view in one plane as shown in FIG. They may be connected to each other at places other than vision.
 ソース領域40は、半導体層の表層部において、第1ウェル領域30の各々の上に設けられている。ソース領域40の深さは第1ウェル領域30の深さよりも浅く、ソース領域40は第1ウェル領域30によってドリフト層20から分離されている。ソース領域40にn型を付与するための導電型不純物(ドナー不純物)としては、例えば窒素(N)が用いられる。 The source region 40 is provided on each of the first well regions 30 in the surface layer portion of the semiconductor layer. The depth of the source region 40 is shallower than the depth of the first well region 30, and the source region 40 is separated from the drift layer 20 by the first well region 30. For example, nitrogen (N) is used as a conductive impurity (donor impurity) for imparting n-type to the source region 40.
 第1ウェル領域30は、MOSFET101において周期的に設けられるユニットセルのそれぞれに配置されている。よって複数の第1ウェル領域30が周期的に配置されている。第1ウェル領域30の各々は、半導体層の表層部においてソース領域40と第2離間領域22との間にp型の第1高濃度領域35を有する。第1高濃度領域35は、第1ウェル領域30の他の領域の不純物濃度に比してより高い不純物濃度を有する。よって第1高濃度領域35は第1ウェル領域30中の他の部分よりも低い電気抵抗を有する。 The first well region 30 is disposed in each of unit cells provided periodically in the MOSFET 101. Therefore, the plurality of first well regions 30 are periodically arranged. Each of the first well regions 30 has a p-type first high concentration region 35 between the source region 40 and the second separation region 22 in the surface layer portion of the semiconductor layer. The first high concentration region 35 has a higher impurity concentration than the impurity concentration of other regions of the first well region 30. Therefore, the first high concentration region 35 has a lower electrical resistance than other portions in the first well region 30.
 第2ウェル領域31は、活性領域R1の周囲の終端領域R2に配置されており、ドリフト層20上において複数の第1ウェル領域30から分離されて設けられている。第1ウェル領域30と第2ウェル領域31との間の離間領域の幅は、第1離間領域21の幅とおおよそ同程度である。第2ウェル領域31の面積は単一の第1ウェル領域30の面積よりも大きい。第2ウェル領域31は、平面レイアウトにおいてソース電極80よりも外側(図2における右側)へ張り出している。第2ウェル領域31は、半導体層の表層部に位置する第2高濃度領域36を有する。第2高濃度領域36は、第2ウェル領域31の他の領域の不純物濃度に比してより高い不純物濃度を有する。よって第2高濃度領域36は第2ウェル領域31中の他の部分よりも低い電気抵抗を有する。 The second well region 31 is disposed in the termination region R2 around the active region R1, and is provided on the drift layer 20 so as to be separated from the plurality of first well regions 30. The width of the separation region between the first well region 30 and the second well region 31 is approximately the same as the width of the first separation region 21. The area of the second well region 31 is larger than the area of the single first well region 30. The second well region 31 projects outward from the source electrode 80 (on the right side in FIG. 2) in the planar layout. The second well region 31 has a second high concentration region 36 located in the surface layer portion of the semiconductor layer. The second high concentration region 36 has a higher impurity concentration than the impurity concentration of other regions of the second well region 31. Therefore, the second high concentration region 36 has a lower electrical resistance than other portions in the second well region 31.
 第2ウェル領域31は、第1ウェル領域30と同じ種類の導電型不純物による、同様の濃度プロファイルを有していることが好ましく、この場合、第1ウェル領域30および第2ウェル領域31を同時に形成することができる。また第2高濃度領域36は、第1高濃度領域35と同じ種類の導電型不純物による、同様の濃度プロファイルを有していることが好ましく、この場合、第1高濃度領域35および36を同時に形成することができる。第1ウェル領域30および第2ウェル領域31にp型を付与するための導電型不純物(アクセプタ不純物)としては、例えばアルミニウム(Al)が用いられる。 The second well region 31 preferably has the same concentration profile due to the same type of conductive impurities as the first well region 30. In this case, the first well region 30 and the second well region 31 are simultaneously formed. Can be formed. The second high concentration region 36 preferably has the same concentration profile due to the same type of conductive impurities as the first high concentration region 35. In this case, the first high concentration regions 35 and 36 are simultaneously formed. Can be formed. As a conductive impurity (acceptor impurity) for imparting p-type to the first well region 30 and the second well region 31, for example, aluminum (Al) is used.
 JTE領域37は、第2ウェル領域31の外周側(図2における右側)に配置されており、第2ウェル領域31とつながっている。JTE領域37は、第2ウェル領域31の不純物濃度よりも低い不純物濃度を有する。 The JTE region 37 is arranged on the outer peripheral side (the right side in FIG. 2) of the second well region 31 and is connected to the second well region 31. The JTE region 37 has an impurity concentration lower than that of the second well region 31.
 ゲート絶縁膜50は、第1ウェル領域30上に設けられており、ソース領域40と第1離間領域21との間で第1ウェル領域30に跨っている。ゲート絶縁膜50は、酸化珪素から作られていることが好ましく、例えば熱酸化膜である。 The gate insulating film 50 is provided on the first well region 30 and straddles the first well region 30 between the source region 40 and the first separation region 21. The gate insulating film 50 is preferably made of silicon oxide, for example, a thermal oxide film.
 ゲート電極82は、ゲート電極部60と、ゲート電極部60に接するゲート配線層82wとを有する。ゲート電極部60は、ゲート絶縁膜50上に設けられており、ゲート絶縁膜50を介してソース領域40と第1離間領域21との間で第1ウェル領域30に跨っている。この構成により、第1ウェル領域30のうち第1離間領域21とソース領域40との間でゲート絶縁膜50を介してゲート電極部60と対向する部分がチャネル領域としての機能を有する。チャネル領域は、ゲート電極部60の電位の制御によってMOSFET101がオン状態とされた際に反転層が形成される領域である。ゲート配線層82wの材料の抵抗率は、ゲート電極部60の材料の抵抗率よりも低いことが好ましい。ゲート電極82はソース電極80および試験電極81と電気的に絶縁されている。言い換えれば、ゲート電極82はソース電極80および試験電極81と短絡されていない。 The gate electrode 82 has a gate electrode part 60 and a gate wiring layer 82 w in contact with the gate electrode part 60. The gate electrode portion 60 is provided on the gate insulating film 50 and straddles the first well region 30 between the source region 40 and the first separation region 21 via the gate insulating film 50. With this configuration, a portion of the first well region 30 that faces the gate electrode portion 60 through the gate insulating film 50 between the first separation region 21 and the source region 40 functions as a channel region. The channel region is a region where an inversion layer is formed when the MOSFET 101 is turned on by controlling the potential of the gate electrode unit 60. The resistivity of the material of the gate wiring layer 82w is preferably lower than the resistivity of the material of the gate electrode portion 60. The gate electrode 82 is electrically insulated from the source electrode 80 and the test electrode 81. In other words, the gate electrode 82 is not short-circuited with the source electrode 80 and the test electrode 81.
 フィールド絶縁膜52は終端領域R2において半導体層上に設けられている。よってフィールド絶縁膜52は、第1ウェル領域30から分離されて第2ウェル領域31上に設けられている。フィールド絶縁膜52の厚さはゲート絶縁膜50の厚さよりも大きい。フィールド絶縁膜52はゲート絶縁膜50の外周側に配置されている。ゲート電極部60は、フィールド絶縁膜52上へ延びた部分を有する。図2に示す構成においては、フィールド絶縁膜52はゲート絶縁膜50の外周端と接する内周端を有する。フィールド絶縁膜52の内周端は、第2高濃度領域36の活性領域R1側の端部よりも、活性領域R1に近い方が好ましい。これは、ゲート絶縁膜50が第2高濃度領域36上にまで形成されると、第2高濃度領域36が高い不純物濃度を有することに起因して、形成されるゲート絶縁膜50の絶縁特性が第2高濃度領域36上において低くなるためである。なおフィールド絶縁膜52の内周端は、第2ウェル領域31の平面視内、すなわち第2ウェル領域31上にあることが好ましい。 The field insulating film 52 is provided on the semiconductor layer in the termination region R2. Therefore, the field insulating film 52 is provided on the second well region 31 separately from the first well region 30. The thickness of the field insulating film 52 is larger than the thickness of the gate insulating film 50. The field insulating film 52 is disposed on the outer peripheral side of the gate insulating film 50. Gate electrode portion 60 has a portion extending onto field insulating film 52. In the configuration shown in FIG. 2, the field insulating film 52 has an inner peripheral end in contact with the outer peripheral end of the gate insulating film 50. The inner peripheral edge of the field insulating film 52 is preferably closer to the active region R1 than the end of the second high concentration region 36 on the active region R1 side. This is because, when the gate insulating film 50 is formed up to the second high concentration region 36, the second high concentration region 36 has a high impurity concentration, and therefore, the insulating characteristics of the gate insulating film 50 to be formed. This is because the value becomes lower on the second high concentration region 36. The inner peripheral edge of the field insulating film 52 is preferably in a plan view of the second well region 31, that is, on the second well region 31.
 層間絶縁膜55は、ゲート絶縁膜50およびフィールド絶縁膜52上に設けられたゲート電極部60を覆っている。層間絶縁膜55は酸化珪素から作られていることが好ましい。層間絶縁膜55には、終端領域R2においてゲート電極部60を露出するゲートコンタクトホール95が設けられている。ゲートコンタクトホール95においてゲート電極部60にゲート電極82のゲート配線層82wが接続されている。ゲートコンタクトホール95と、ゲート電極82のゲート配線層82wとは、平面レイアウトにおいて第2ウェル領域31に包含されている。これは、ドレイン電極85に印加される高電圧をソース電位に維持された第2ウェル領域31が遮蔽することで、ドレイン電圧に対して格段に低い電位を有するゲート配線層82wの下部にある絶縁膜(図2の構成においてはフィールド絶縁膜52)に高電圧が印加されるのを防ぐためである。 The interlayer insulating film 55 covers the gate electrode portion 60 provided on the gate insulating film 50 and the field insulating film 52. Interlayer insulating film 55 is preferably made of silicon oxide. The interlayer insulating film 55 is provided with a gate contact hole 95 exposing the gate electrode portion 60 in the termination region R2. The gate wiring layer 82 w of the gate electrode 82 is connected to the gate electrode portion 60 in the gate contact hole 95. The gate contact hole 95 and the gate wiring layer 82w of the gate electrode 82 are included in the second well region 31 in the planar layout. This is because the high voltage applied to the drain electrode 85 is shielded by the second well region 31 maintained at the source potential, so that the insulation under the gate wiring layer 82w having a remarkably low potential with respect to the drain voltage. This is to prevent a high voltage from being applied to the film (the field insulating film 52 in the configuration of FIG. 2).
 ゲート絶縁膜50および層間絶縁膜55を有する絶縁層には活性領域コンタクトホール90が設けられている。活性領域コンタクトホール90は、半導体層の活性領域R1の表面を部分的に露出しており、具体的には、ソース領域40の一部と、第1高濃度領域35と、第2離間領域22とを露出している。フィールド絶縁膜52および層間絶縁膜55を有する絶縁層には終端領域試験電極コンタクトホール92が設けられている。終端領域試験電極コンタクトホール92は、半導体層の終端領域R2の表面を部分的に露出しており、本実施の形態においては、第2ウェル領域31の第2高濃度領域36を部分的に露出している。 An active region contact hole 90 is provided in the insulating layer having the gate insulating film 50 and the interlayer insulating film 55. The active region contact hole 90 partially exposes the surface of the active region R1 of the semiconductor layer. Specifically, a part of the source region 40, the first high concentration region 35, and the second separation region 22 are exposed. And exposed. A termination region test electrode contact hole 92 is provided in the insulating layer having the field insulating film 52 and the interlayer insulating film 55. Termination region test electrode contact hole 92 partially exposes the surface of termination region R2 of the semiconductor layer. In the present embodiment, second high concentration region 36 of second well region 31 is partially exposed. is doing.
 ソース電極80は、ゲート絶縁膜50、ゲート電極部60および層間絶縁膜55を有する構造上に設けられている。ソース電極80は、活性領域R1に配置されており、平面レイアウトにおいて活性領域R1を包含している。ソース電極80は、ショットキー電極75と、第1オーミックコンタクト部70と、ソース配線層80wとを含む。ショットキー電極75と第1オーミックコンタクト部70とはソース配線層80wによって互いに短絡されている。ソース電極80は層間絶縁膜55上において、終端領域R2側に側面S1(第1側面)を有する。 The source electrode 80 is provided on a structure having the gate insulating film 50, the gate electrode portion 60, and the interlayer insulating film 55. The source electrode 80 is disposed in the active region R1, and includes the active region R1 in a planar layout. The source electrode 80 includes a Schottky electrode 75, a first ohmic contact portion 70, and a source wiring layer 80w. Schottky electrode 75 and first ohmic contact portion 70 are short-circuited to each other by source wiring layer 80w. The source electrode 80 has a side surface S1 (first side surface) on the termination region R2 side on the interlayer insulating film 55.
 ショットキー電極75は、活性領域コンタクトホール90の底に配置されており、第1ウェル領域30の間におけるドリフト層20に接続されている。言い換えれば、ショットキー電極75は、第2離間領域22においてドリフト層20に接している。これによりソース電極80は第2離間領域22においてドリフト層20にショットキー接続されている。この構成によりショットキー電極75は、ドレイン電極85との間でユニポーラ通電が可能なダイオード特性を示す。すなわちMOSFET101の活性領域R1にはSBDが内蔵されている。よってソース電極80は、第1ウェル領域30の間においてドリフト層20へユニポーラ通電が可能なダイオード特性を有している。このSBDの拡散電位は、ドリフト層20と第1ウェル領域30とによるpn接合の拡散電位よりも低い。ショットキー電極75は、第2離間領域22の表面を包含していることが好ましいが、包含していなくてもよい。一方、MOSFET101の終端領域R2にはSBDが内蔵されていない。 The Schottky electrode 75 is disposed at the bottom of the active region contact hole 90 and is connected to the drift layer 20 between the first well regions 30. In other words, the Schottky electrode 75 is in contact with the drift layer 20 in the second separation region 22. Thus, the source electrode 80 is Schottky connected to the drift layer 20 in the second separation region 22. With this configuration, the Schottky electrode 75 exhibits a diode characteristic that allows unipolar conduction with the drain electrode 85. That is, the SBD is incorporated in the active region R1 of the MOSFET 101. Therefore, the source electrode 80 has a diode characteristic that allows unipolar current flow to the drift layer 20 between the first well regions 30. The diffusion potential of this SBD is lower than the diffusion potential of the pn junction formed by the drift layer 20 and the first well region 30. The Schottky electrode 75 preferably includes the surface of the second separation region 22, but may not include it. On the other hand, no SBD is built in the termination region R2 of the MOSFET 101.
 第1オーミックコンタクト部70は、活性領域コンタクトホール90の底に配置されており、ソース領域40に接している。これによりソース電極80はソース領域40と電気的にオーミック接続されている。第1オーミックコンタクト部70は活性領域コンタクトホール90内において第1ウェル領域30の第1高濃度領域35にも接している。これによりソース電極80は第1ウェル領域30の第1高濃度領域35とオーミック接続されている。第1オーミックコンタクト部70が第1高濃度領域35と接することで、第1オーミックコンタクト部70と第1ウェル領域30との間の電子または正孔の授受がより容易となる。 The first ohmic contact portion 70 is disposed at the bottom of the active region contact hole 90 and is in contact with the source region 40. As a result, the source electrode 80 is electrically ohmically connected to the source region 40. The first ohmic contact portion 70 is also in contact with the first high concentration region 35 of the first well region 30 in the active region contact hole 90. Thus, the source electrode 80 is ohmically connected to the first high concentration region 35 of the first well region 30. Since the first ohmic contact portion 70 is in contact with the first high concentration region 35, transfer of electrons or holes between the first ohmic contact portion 70 and the first well region 30 becomes easier.
 試験電極81はゲート電極82およびソース電極80から分離されている。試験電極81は、第3オーミックコンタクト部72と、試験配線層81wとを有している。第3オーミックコンタクト部72は、終端領域試験電極コンタクトホール92の底に配置されており、第2ウェル領域31の第2高濃度領域36に接している。これにより第3オーミックコンタクト部72は第2ウェル領域31の第2高濃度領域36と電気的にオーミック接続している。この構成により試験電極81は、第2ウェル領域31に接し、かつ第2ウェル領域31とオーミック接続されている。なお、ここでいうオーミック接続とは、第2ウェル領域31と試験電極81との間で電子および正孔の授受が容易に行える程度の電気的特性を示す接続のことをいう。平面レイアウトにおいて、試験電極81は、終端領域R2に配置されており、好ましくは活性領域R1をできるだけ完全に囲んでいるが、完全に囲んでいなくてもよい。フィールド絶縁膜52とゲート絶縁膜50との境界は、終端領域試験電極コンタクトホール92よりも活性領域R1に近い箇所に位置している。その結果、終端領域試験電極コンタクトホール92は、層間絶縁膜55だけではなくフィールド絶縁膜52も貫いている。よって第3オーミックコンタクト部72は、フィールド絶縁膜52に設けられた終端領域試験電極コンタクトホール92内に配置されている。層間絶縁膜55上において試験電極81は活性領域R1側に、ソース電極80の側面S1に対向する側面S2(第2側面)を有する。 The test electrode 81 is separated from the gate electrode 82 and the source electrode 80. The test electrode 81 has a third ohmic contact portion 72 and a test wiring layer 81w. The third ohmic contact portion 72 is disposed at the bottom of the termination region test electrode contact hole 92 and is in contact with the second high concentration region 36 of the second well region 31. As a result, the third ohmic contact portion 72 is electrically ohmically connected to the second high concentration region 36 of the second well region 31. With this configuration, the test electrode 81 is in contact with the second well region 31 and is ohmically connected to the second well region 31. The ohmic connection here refers to a connection exhibiting electrical characteristics such that electrons and holes can be easily exchanged between the second well region 31 and the test electrode 81. In the planar layout, the test electrode 81 is arranged in the termination region R2, and preferably surrounds the active region R1 as completely as possible, but does not have to be completely surrounded. The boundary between the field insulating film 52 and the gate insulating film 50 is located closer to the active region R1 than the termination region test electrode contact hole 92. As a result, the termination region test electrode contact hole 92 penetrates not only the interlayer insulating film 55 but also the field insulating film 52. Therefore, the third ohmic contact portion 72 is disposed in the termination region test electrode contact hole 92 provided in the field insulating film 52. On the interlayer insulating film 55, the test electrode 81 has a side surface S2 (second side surface) facing the side surface S1 of the source electrode 80 on the active region R1 side.
 第2高濃度領域36は、第3オーミックコンタクト部72の直下のみならず、第2ウェル領域31内の広範囲に渡って延伸されている。これは第2ウェル領域31のチップ平面方向の抵抗、すなわちシート抵抗、を下げる働きを有する。第2高濃度領域36は、MOSFET101のスイッチング動作時に第2ウェル領域31内部の電位が変動することに起因して第2ウェル領域31の上にあるゲート絶縁膜50またはフィールド絶縁膜52が破壊することを防ぐ役割を果たす。例えばMOSFET101のターンオフ動作時に、ドレイン電極85の電位が急激に増大することにより、第2ウェル領域31およびドリフト層20の間のpn接合にかかる逆バイアスが急激に増大する。このとき第2ウェル領域31内では、アクセプタの空乏化に伴い放出された正孔が、第2ウェル領域31内をチップ平面方向に移動し、終端領域試験電極コンタクトホール92を通って、0Vに接地されたソース電極80の方へ排出される。これが変位電流であり、スイッチング速度が増大するほど大きくなる。変位電流の大きさと電流経路の抵抗との積に応じた電圧分だけ、第2ウェル領域31の各場所の電位が増大する。これを低減し、第2ウェル領域31上の絶縁膜の破壊を防ぐためには、上述したように第2高濃度領域36を広範囲に形成することが好ましい。 The second high concentration region 36 extends not only directly under the third ohmic contact portion 72 but also over a wide range in the second well region 31. This serves to lower the resistance of the second well region 31 in the chip plane direction, that is, the sheet resistance. In the second high-concentration region 36, the gate insulating film 50 or the field insulating film 52 over the second well region 31 is destroyed due to a change in potential inside the second well region 31 during the switching operation of the MOSFET 101. It plays a role to prevent that. For example, during the turn-off operation of the MOSFET 101, the reverse bias applied to the pn junction between the second well region 31 and the drift layer 20 rapidly increases due to the potential of the drain electrode 85 rapidly increasing. At this time, in the second well region 31, holes released due to acceptor depletion move in the second well region 31 in the chip plane direction, pass through the termination region test electrode contact hole 92, and become 0V. It is discharged toward the grounded source electrode 80. This is the displacement current, which increases as the switching speed increases. The potential at each location in the second well region 31 increases by a voltage corresponding to the product of the magnitude of the displacement current and the resistance of the current path. In order to reduce this and prevent the breakdown of the insulating film on the second well region 31, it is preferable to form the second high concentration region 36 over a wide range as described above.
 なお、第2ウェル領域31上には、n型の領域が形成されていてもよい。つまり、第2ウェル領域31と第2ウェル領域31の上方にある絶縁膜との間にn型領域が配設されていてもよい。 Note that an n-type region may be formed on the second well region 31. That is, the n-type region may be disposed between the second well region 31 and the insulating film above the second well region 31.
 金属膜87は、ソース金属電極膜87S(金属電極膜)およびゲート金属電極膜87Gを有する。金属膜87は、本実施の形態においては、めっき膜である。ソース金属電極膜87Sはソース電極80および試験電極81の各々を少なくとも部分的に覆っている。ソース金属電極膜87Sは、ソース電極80および試験電極81上にまたがることによって、ソース電極80と試験電極81とを電気的に接続している。ソース金属電極膜87Sはソース電極80の側面S1と試験電極81の側面S2との間をつないでいる。ゲート金属電極膜87Gはゲート電極82を少なくとも部分的に覆っている。ソース金属電極膜87Sとゲート金属電極膜87Gとは互いに分離されている。よって、ゲート金属電極膜87Gに覆われたゲート電極80は、ソース金属電極膜87Sに覆われたソース電極80および試験電極81から電気的に分離された電極(分離電極)である。なお、ソース金属電極膜87Sはソースパッドとして用いられ、ゲート金属電極膜87Gはゲートパッドとして用いられる。 The metal film 87 includes a source metal electrode film 87S (metal electrode film) and a gate metal electrode film 87G. The metal film 87 is a plating film in the present embodiment. The source metal electrode film 87S at least partially covers each of the source electrode 80 and the test electrode 81. The source metal electrode film 87 </ b> S extends over the source electrode 80 and the test electrode 81 to electrically connect the source electrode 80 and the test electrode 81. The source metal electrode film 87 </ b> S connects the side surface S <b> 1 of the source electrode 80 and the side surface S <b> 2 of the test electrode 81. The gate metal electrode film 87G at least partially covers the gate electrode 82. The source metal electrode film 87S and the gate metal electrode film 87G are separated from each other. Therefore, the gate electrode 80 covered with the gate metal electrode film 87G is an electrode (separation electrode) electrically separated from the source electrode 80 and the test electrode 81 covered with the source metal electrode film 87S. The source metal electrode film 87S is used as a source pad, and the gate metal electrode film 87G is used as a gate pad.
 図1を参照して、MOSFET101の上面には、ソース電極80と、試験電極81と、ゲート電極82とが設けられている。これらの電極は互いに分離されている。本実施の形態においては、ソース電極80および試験電極81は、平面視において(図1の視野における2次元的レイアウトにおいて)互いに分離されている。ただし、層間絶縁膜55上に露出されている領域のソース電極80と試験電極81とが互いに分離されていればよく、積層方向においてこれらの電極が、例えば層間絶縁膜55の一部を介して互いに重複していてもよい。すなわち、ソース金属電極膜87Sを形成する前の段階において、ソース電極80と試験電極81とが、電気的に絶縁されていればよい。 Referring to FIG. 1, a source electrode 80, a test electrode 81, and a gate electrode 82 are provided on the upper surface of MOSFET 101. These electrodes are separated from each other. In the present embodiment, the source electrode 80 and the test electrode 81 are separated from each other in a plan view (in a two-dimensional layout in the field of view of FIG. 1). However, it is only necessary that the source electrode 80 and the test electrode 81 in the region exposed on the interlayer insulating film 55 are separated from each other, and these electrodes are, for example, interposed via a part of the interlayer insulating film 55 in the stacking direction. They may overlap each other. That is, it is only necessary that the source electrode 80 and the test electrode 81 are electrically insulated before the source metal electrode film 87S is formed.
 ソース電極80と試験電極81との間の最短距離、言い換えれば側面S1およびS2(図2)間の最短距離、は1μm以上100μm以下であることが好ましい。この距離が1μm未満の場合、ソース電極80と試験電極81とが適切に分離されないプロセス不良が発生する可能性が高くなる。望ましくは、ソース電極80の厚さの半分よりも大きいことが望ましい。なお、ここでいうソース電極80の厚さとは、層間絶縁膜55上に形成された部分のソース電極80の厚さとする。またこの距離が100μm以下の場合、比較的小さな厚さのソース金属電極膜87Sであっても、ソース金属電極膜87Sのめっき成長時に、側面S1から成長する部分と、側面S2から成長する部分とがつながりやすくなる。すなわち、ソース電極80と試験電極81との間がつながりやすくなる。より好ましくは、この距離は、ソース金属電極膜87Sの膜厚の2倍よりも小さくされる。 The shortest distance between the source electrode 80 and the test electrode 81, in other words, the shortest distance between the side surfaces S1 and S2 (FIG. 2) is preferably 1 μm or more and 100 μm or less. When this distance is less than 1 μm, there is a high possibility that a process failure in which the source electrode 80 and the test electrode 81 are not properly separated will occur. Desirably, the thickness is larger than half of the thickness of the source electrode 80. Here, the thickness of the source electrode 80 is the thickness of the portion of the source electrode 80 formed on the interlayer insulating film 55. When the distance is 100 μm or less, even if the source metal electrode film 87S has a relatively small thickness, a portion that grows from the side surface S1 and a portion that grows from the side surface S2 during the plating growth of the source metal electrode film 87S Become easier to connect. That is, the source electrode 80 and the test electrode 81 are easily connected. More preferably, this distance is smaller than twice the film thickness of the source metal electrode film 87S.
 ソース電極80と試験電極81とは、MOSFET101内の至る所で十分に近接していることが好ましい。これにより、MOSFET101内の至る所で、側面S1およびS2(図2)の間の距離が十分に小さくなる。よってソース金属電極膜87Sの成長時に、側面S1から成長する部分と、側面S2から成長する部分とが、MOSFET101内の至る所でつながりやすくなる。すなわち、ソース電極80と試験電極81との間がMOSFET101内の至る所でつながりやすくなる。ソース電極80と試験電極81との間がMOSFET101内の至る所でつながっている場合、ソース電極80と試験電極81との間の寄生インピーダンスは極めて小さく、両者を単一のソース電極とみなすことができる。 It is preferable that the source electrode 80 and the test electrode 81 are sufficiently close to each other in the MOSFET 101. Thus, the distance between the side surfaces S1 and S2 (FIG. 2) is sufficiently small everywhere in the MOSFET 101. Therefore, when the source metal electrode film 87S is grown, the portion grown from the side surface S1 and the portion grown from the side surface S2 are easily connected everywhere in the MOSFET 101. That is, the source electrode 80 and the test electrode 81 are easily connected everywhere in the MOSFET 101. When the source electrode 80 and the test electrode 81 are connected everywhere in the MOSFET 101, the parasitic impedance between the source electrode 80 and the test electrode 81 is extremely small, and both can be regarded as a single source electrode. it can.
 ただし、ソース電極80と試験電極81とは、MOSFET101の少なくとも一部の箇所においてソース金属電極膜87Sによって接続されていればよく、MOSFET101の一部の箇所において、ソース電極80と試験電極81との間の距離が大きいことに起因して両者が分離されていてもよい。 However, the source electrode 80 and the test electrode 81 may be connected by the source metal electrode film 87 </ b> S at at least a part of the MOSFET 101, and the source electrode 80 and the test electrode 81 may be connected at a part of the MOSFET 101. Both may be separated due to the large distance between them.
 ゲート電極82とソース電極80または試験電極81との間の最短距離は、ソース電極80と試験電極81との間の最短距離よりも大きくされる。これにより、ゲート金属電極膜87Gとソース金属電極膜87Sとの接触を、より容易に避けることができる。 The shortest distance between the gate electrode 82 and the source electrode 80 or the test electrode 81 is made larger than the shortest distance between the source electrode 80 and the test electrode 81. As a result, contact between the gate metal electrode film 87G and the source metal electrode film 87S can be more easily avoided.
 平面視において、ソース電極80は試験電極81よりも大きい。これにより、半導体素子であるMOSFET素子として機能する面積を広くすることができる。好ましくは、試験電極81よりもソース電極80が2倍以上大きい。 The source electrode 80 is larger than the test electrode 81 in plan view. Thereby, the area which functions as a MOSFET element which is a semiconductor element can be widened. Preferably, the source electrode 80 is twice or more larger than the test electrode 81.
 試験電極81は、ソース電極80およびゲート電極82の間に位置する部分を有することが好ましい。これにより、平面レイアウトにおいて、ソース電極80と試験電極81との間がゲート電極82によって隔てられないようにすることができる。よってソース金属電極膜87Sによってソース電極80と試験電極81との間をより広い範囲でつなぐことができる。 The test electrode 81 preferably has a portion located between the source electrode 80 and the gate electrode 82. Thus, the source electrode 80 and the test electrode 81 can be prevented from being separated by the gate electrode 82 in the planar layout. Therefore, the source metal electrode film 87S can connect the source electrode 80 and the test electrode 81 in a wider range.
 試験電極81には第1プローブ用電極部81Pが設けられている。「プローブ用電極部」は、電極のうちプローブ用電極部としての機能を有する領域、すなわちプローブ針を当てることができる程度に十分な大きさを有する領域であり、30μm四方以上の大きさを有することが好ましい。図1の平面視においては、試験電極81は、第1プローブ用電極部81Pと、プローブ用電極部の幅よりも小さい幅で線状に延在している部分とを有する。試験電極81のうち第1プローブ用電極部81P以外の部分の幅を上記のように小さくすることにより、試験電極81が設けられる終端領域R2(図2)の大きさを抑えることができる。これにより、MOSFET101のオン抵抗などの装置性能に直結する活性領域R1の大きさを保ちつつ、チップサイズを抑えることができる。なおプローブ用電極部の形状は図1に示すものに限定されるものではなく、試験電極81に平面視において30μm四方以上の領域があれば、この領域がプローブ用電極部としての機能を有する。 The test electrode 81 is provided with a first probe electrode portion 81P. The “probe electrode portion” is a region of the electrode that has a function as a probe electrode portion, that is, a region that is large enough to allow contact with a probe needle, and has a size of 30 μm square or more. It is preferable. In the plan view of FIG. 1, the test electrode 81 has a first probe electrode portion 81P and a portion extending linearly with a width smaller than the width of the probe electrode portion. By reducing the width of the portion of the test electrode 81 other than the first probe electrode portion 81P as described above, the size of the termination region R2 (FIG. 2) where the test electrode 81 is provided can be suppressed. As a result, the chip size can be suppressed while maintaining the size of the active region R1 directly connected to the device performance such as the on-resistance of the MOSFET 101. The shape of the probe electrode portion is not limited to that shown in FIG. 1. If the test electrode 81 has a region of 30 μm square or more in plan view, this region functions as a probe electrode portion.
 なおソース電極80には第2プローブ用電極部80Pが設けられていることが好ましい。またゲート電極82には第3プローブ用電極部82Pが設けられていることが好ましい。ソース電極80およびゲート電極82は、典型的には30μm四方以上の領域を有するので、通常、第2プローブ用電極部80Pおよび第3プローブ用電極部82Pが設けられていると言える。 The source electrode 80 is preferably provided with a second probe electrode portion 80P. The gate electrode 82 is preferably provided with a third probe electrode portion 82P. Since the source electrode 80 and the gate electrode 82 typically have a region of 30 μm square or more, it can be said that the second probe electrode portion 80P and the third probe electrode portion 82P are usually provided.
 詳細は後述するが、金属膜87の形成前に試験電極81にドレイン電極85を上回る電位を印加することで、第2ウェル領域31とドリフト層20との間に形成される寄生pnダイオードに高密度のストレス電流を流すストレス試験が行われる。この電位印加のためにプローブ針が当てられることで生じたプローブ痕を第1プローブ用電極部81Pは有している。 Although details will be described later, a high potential is applied to the parasitic pn diode formed between the second well region 31 and the drift layer 20 by applying a potential higher than the drain electrode 85 to the test electrode 81 before the metal film 87 is formed. A stress test is conducted to pass a stress current of density. The first probe electrode portion 81 </ b> P has a probe mark generated by applying a probe needle to apply this potential.
 (製造方法)
 図3を参照して、MOSFET101(図2)を得るためには、金属膜87を有しない製造途中の半製品101Pがまず形成される。
(Production method)
Referring to FIG. 3, in order to obtain MOSFET 101 (FIG. 2), semi-finished product 101 </ b> P that does not have metal film 87 is first formed.
 まず基板10の一方面上に半導体層が形成される。なお、この半導体層は、そのままドリフト層20となる部分を含む層である。具体的には、化学気相堆積(Chemical Vapor Deposition:CVD)法により、1×1015cm-3~1×1017cm-3の不純物濃度でドナー不純物が添加された炭化珪素が5μm~50μm程度の厚さで基板10上にエピタキシャル成長させられる。 First, a semiconductor layer is formed on one surface of the substrate 10. This semiconductor layer is a layer including a portion that becomes the drift layer 20 as it is. Specifically, silicon carbide doped with a donor impurity at an impurity concentration of 1 × 10 15 cm −3 to 1 × 10 17 cm −3 by a chemical vapor deposition (CVD) method is 5 μm to 50 μm. It is epitaxially grown on the substrate 10 with a thickness of about.
 次に、半導体層の表面にフォトレジストなどにより注入マスクが形成される。この注入マスクを用いて選択的に、アクセプタ不純物としてAlがイオン注入される。このとき、Alのイオン注入の深さは半導体層の厚さを超えない0.5μm~3μm程度とされる。また、イオン注入されるAlの不純物濃度は、1×1017cm-3~1×1019cm-3の範囲で半導体層のドナー濃度より多いものとされる。その後、注入マスクが除去される。本工程によりAlがイオン注入された領域が第1ウェル領域30および第2ウェル領域31となる。よって第1ウェル領域30および第2ウェル領域31は一括して形成され得る。 Next, an implantation mask is formed on the surface of the semiconductor layer with a photoresist or the like. Using this implantation mask, Al ions are selectively implanted as acceptor impurities. At this time, the depth of Al ion implantation is about 0.5 μm to 3 μm which does not exceed the thickness of the semiconductor layer. Further, the impurity concentration of Al to be ion-implanted is higher than the donor concentration of the semiconductor layer in the range of 1 × 10 17 cm −3 to 1 × 10 19 cm −3 . Thereafter, the implantation mask is removed. The regions into which Al is ion-implanted by this step become the first well region 30 and the second well region 31. Therefore, the first well region 30 and the second well region 31 can be formed together.
 次に、半導体層の表面にフォトレジストなどにより、別の注入マスクが形成される。この注入マスクを用いて選択的に、アクセプタ不純物としてAlがイオン注入される。このとき、Alのイオン注入の深さは半導体層の厚さを超えない0.5μm~3μm程度とされる。また、イオン注入されるAlの不純物濃度は、1×1016cm-3~1×1018cm-3の範囲で半導体層の第1の不純物濃度より高く、かつ第1ウェル領域30のAl濃度よりも低いものとされる。その後、注入マスクが除去される。本工程によりAlがイオン注入された領域がJTE領域37となる。 Next, another implantation mask is formed on the surface of the semiconductor layer with a photoresist or the like. Using this implantation mask, Al ions are selectively implanted as acceptor impurities. At this time, the depth of Al ion implantation is about 0.5 μm to 3 μm which does not exceed the thickness of the semiconductor layer. Further, the impurity concentration of Al to be ion-implanted is higher than the first impurity concentration of the semiconductor layer in the range of 1 × 10 16 cm −3 to 1 × 10 18 cm −3 and the Al concentration of the first well region 30. Lower than that. Thereafter, the implantation mask is removed. A region into which Al is ion-implanted by this step becomes the JTE region 37.
 次に、半導体層の表面にフォトレジストなどにより、別の注入マスクが形成される。この注入マスクを用いて選択的に、ドナー不純物であるNがイオン注入される。Nのイオン注入深さは第1ウェル領域30の厚さより浅くされる。また、イオン注入されたNの不純物濃度は、1×1018cm-3~1×1021cm-3の範囲で第1ウェル領域30のアクセプタ濃度を超えるものとされる。本工程でNが注入された領域のうちn型を示す領域がソース領域40となる。 Next, another implantation mask is formed on the surface of the semiconductor layer with a photoresist or the like. N, which is a donor impurity, is selectively ion-implanted using this implantation mask. The ion implantation depth of N is shallower than the thickness of the first well region 30. Further, the impurity concentration of the ion-implanted N exceeds the acceptor concentration of the first well region 30 in the range of 1 × 10 18 cm −3 to 1 × 10 21 cm −3 . Of the regions implanted with N in this step, the n-type region is the source region 40.
 次に、半導体層の表面にフォトレジストなどにより、別の注入マスクが形成される。この注入マスクを用いてアクセプタ不純物であるAlがイオン注入される。その後、注入マスクが除去される。本工程によってAlが注入された領域が第1高濃度領域35および36となる。アクセプタ不純物のイオン注入は、第1高濃度領域35および36を低抵抗化する目的で、基板10または半導体層を150℃以上に加熱しながら行われることが好ましい。 Next, another implantation mask is formed on the surface of the semiconductor layer with a photoresist or the like. Al, which is an acceptor impurity, is ion-implanted using this implantation mask. Thereafter, the implantation mask is removed. The regions into which Al is implanted by this step become the first high concentration regions 35 and 36. The ion implantation of the acceptor impurity is preferably performed while heating the substrate 10 or the semiconductor layer to 150 ° C. or higher for the purpose of reducing the resistance of the first high concentration regions 35 and 36.
 上述したイオン注入工程の順番は任意である。次に、熱処理装置によって、アルゴン(Ar)ガスなどの不活性ガス雰囲気中で1300~1900℃、30秒~1時間のアニールが行われる。これにより、イオン注入された導電型不純物が電気的に活性化される。半導体層のうち、不純物イオンが注入されていないn型の領域がドリフト層20に相当する。 The order of the ion implantation steps described above is arbitrary. Next, annealing is performed at 1300 to 1900 ° C. for 30 seconds to 1 hour in an inert gas atmosphere such as argon (Ar) gas by a heat treatment apparatus. As a result, the ion-implanted conductive impurities are electrically activated. Of the semiconductor layer, an n-type region into which impurity ions are not implanted corresponds to the drift layer 20.
 続いて、活性領域R1にほぼ対応した位置以外の領域に、膜厚が0.5~2μm程度の二酸化珪素膜からなるフィールド絶縁膜52が形成される。例えば、フィールド絶縁膜52をCVD法により全面に形成した後、活性領域R1にほぼ対応した位置のフィールド絶縁膜52が、フォトリソグラフィー技術およびエッチング技術を用いて除去される。 Subsequently, a field insulating film 52 made of a silicon dioxide film having a thickness of about 0.5 to 2 μm is formed in a region other than the position substantially corresponding to the active region R1. For example, after the field insulating film 52 is formed on the entire surface by the CVD method, the field insulating film 52 at a position substantially corresponding to the active region R1 is removed by using a photolithography technique and an etching technique.
 続いて、フィールド絶縁膜52に覆われていない炭化珪素表面を熱酸化することにより、酸化珪素からなる所望の厚さのゲート絶縁膜50が形成される。次に、ゲート絶縁膜50の上に、導電性を有する多結晶珪素膜が減圧CVD法により形成され、この膜をパターニングすることによりゲート電極部60が形成される。続いて層間絶縁膜55が減圧CVD法により形成される。続いて、半導体層のうち第1オーミックコンタクト部70が形成されることになる部分を露出する開口部が、層間絶縁膜55およびゲート絶縁膜50に形成される。また半導体層のうち第3オーミックコンタクト部72が形成されることになる部分を露出する開口部が、層間絶縁膜55およびフィールド絶縁膜52に形成される。 Subsequently, by thermally oxidizing the surface of the silicon carbide not covered with the field insulating film 52, a gate insulating film 50 having a desired thickness made of silicon oxide is formed. Next, a polycrystalline silicon film having conductivity is formed on the gate insulating film 50 by low pressure CVD, and the gate electrode portion 60 is formed by patterning this film. Subsequently, an interlayer insulating film 55 is formed by a low pressure CVD method. Subsequently, an opening that exposes a portion of the semiconductor layer where the first ohmic contact portion 70 is to be formed is formed in the interlayer insulating film 55 and the gate insulating film 50. In addition, an opening that exposes a portion of the semiconductor layer where the third ohmic contact 72 is to be formed is formed in the interlayer insulating film 55 and the field insulating film 52.
 次に、スパッタ法などによりニッケル(Ni)を主成分とする金属層が形成される。続いてこの膜に対して600℃~1100℃の温度での熱処理が行なわれる。これにより上記開口部内において炭化珪素層と金属層との間にシリサイドが形成される。続いて金属層のうちシリサイド化されずに残留した部分が除去される。この除去は、例えば、硫酸、硝酸、塩酸のいずれか、またはこれらと過酸化水素水との混合液などによるウェットエッチングにより行い得る。以上により第1オーミックコンタクト部70および第3オーミックコンタクト部72が形成される。 Next, a metal layer mainly composed of nickel (Ni) is formed by sputtering or the like. Subsequently, the film is heat-treated at a temperature of 600 ° C. to 1100 ° C. Thereby, silicide is formed between the silicon carbide layer and the metal layer in the opening. Subsequently, the remaining portion of the metal layer that is not silicided is removed. This removal can be performed, for example, by wet etching using any one of sulfuric acid, nitric acid, hydrochloric acid, or a mixed solution of these with hydrogen peroxide. Thus, the first ohmic contact part 70 and the third ohmic contact part 72 are formed.
 続いて、基板10の下面に、Niを主成分とする金属層が形成される。この金属層を熱処理することにより、基板10の裏側にオーミック電極79が形成される。 Subsequently, a metal layer mainly composed of Ni is formed on the lower surface of the substrate 10. The ohmic electrode 79 is formed on the back side of the substrate 10 by heat-treating the metal layer.
 次に、フォトレジストなどを用いたパターニング技術により、第2離間領域22上のゲート絶縁膜50および層間絶縁膜55と、ゲートコンタクトホール95が設けられる位置の層間絶縁膜55とが除去される。除去する方法としては、SBD界面となる炭化珪素表面にダメージを与えないウェットエッチングが好ましい。 Next, the gate insulating film 50 and the interlayer insulating film 55 on the second separation region 22 and the interlayer insulating film 55 at the position where the gate contact hole 95 is provided are removed by a patterning technique using a photoresist or the like. As a removal method, wet etching that does not damage the silicon carbide surface that becomes the SBD interface is preferable.
 続いて、スパッタ法などにより、ショットキー電極75が堆積される。堆積される材料は、チタン(Ti)、モリブデン(Mo)またはニッケル(Ni)が好ましい。 Subsequently, a Schottky electrode 75 is deposited by sputtering or the like. The deposited material is preferably titanium (Ti), molybdenum (Mo) or nickel (Ni).
 その後、ここまで処理してきた基板10の表面にスパッタ法または蒸着法によりAlなどの配線金属層を形成し、これがフォトリソグラフィー技術により所定の形状に加工される。これにより、第1オーミックコンタクト部70とショットキー電極75とに接触するソース配線層80wと、第3オーミックコンタクト部72に接触する試験配線層81wと、ゲート電極部60に接触するゲート配線層82wとが形成される。さらに、基板10の下面に形成されたオーミック電極79の表面上に、金属層であるドレイン電極85が形成される。 Thereafter, a wiring metal layer such as Al is formed on the surface of the substrate 10 processed so far by sputtering or vapor deposition, and this is processed into a predetermined shape by photolithography. Accordingly, the source wiring layer 80w that contacts the first ohmic contact portion 70 and the Schottky electrode 75, the test wiring layer 81w that contacts the third ohmic contact portion 72, and the gate wiring layer 82w that contacts the gate electrode portion 60. And are formed. Further, a drain electrode 85 that is a metal layer is formed on the surface of the ohmic electrode 79 formed on the lower surface of the substrate 10.
 以上により、基板10と、基板10上の上述した半導体層と、ゲート絶縁膜50と、フィールド絶縁膜52と、層間絶縁膜55と、ソース電極80と、試験電極81と、ゲート電極82と、ドレイン電極85とを有する、MOSFET101の半製品101Pが形成される。半製品101Pにおいて、第1プローブ用電極部81P、第2プローブ用電極部80Pおよび第3プローブ用電極部82P(図1)は表面に露出されている。 As described above, the substrate 10, the above-described semiconductor layer on the substrate 10, the gate insulating film 50, the field insulating film 52, the interlayer insulating film 55, the source electrode 80, the test electrode 81, the gate electrode 82, A semi-finished product 101P of the MOSFET 101 having the drain electrode 85 is formed. In the semi-finished product 101P, the first probe electrode portion 81P, the second probe electrode portion 80P, and the third probe electrode portion 82P (FIG. 1) are exposed on the surface.
 次にこの半製品101Pに対してストレス試験が行われる。この目的で、ソース電極80へ所定の電位が加えられ、試験電極81へソース電極80の電位と異なる電位が加えられる。具体的には、ドレイン電極85に対して試験電極81の電位を高めることで、第2ウェル領域31およびドリフト層20によるpn接合に順方向バイアスが与えられる。この電位印加のために、試験電極81の第1プローブ用電極部81P(図1)にプローブ針が接触させられる。このとき、プローブ針と第1プローブ用電極部81Pとの接触抵抗を低減するためにプローブ針を第1プローブ用電極部81P中にめり込ませる必要があり、その結果、第1プローブ用電極部81Pにはプローブ痕が形成される。ここで、プローブ痕とは、第1プローブ用電極部81Pの表面にプローブ針がめり込んだ形跡のことであり、例えば第1プローブ用電極部81Pの表面形状が凹凸になっている状態を示す。このとき、第1プローブ用電極部81Pには、第1プローブ用電極部81Pよりも下層におけるパターン形状、すなわち段差によって形成される表面凹凸が形成される場合があるが、第1プローブ用電極部81Pよりも下層におけるパターン形状に依存しない第1プローブ用電極部81Pの表面凹凸がプローブ痕である。 Next, a stress test is performed on the semi-finished product 101P. For this purpose, a predetermined potential is applied to the source electrode 80, and a potential different from the potential of the source electrode 80 is applied to the test electrode 81. Specifically, by increasing the potential of the test electrode 81 with respect to the drain electrode 85, a forward bias is applied to the pn junction formed by the second well region 31 and the drift layer 20. In order to apply this potential, the probe needle is brought into contact with the first probe electrode portion 81P (FIG. 1) of the test electrode 81. At this time, in order to reduce the contact resistance between the probe needle and the first probe electrode portion 81P, the probe needle needs to be sunk into the first probe electrode portion 81P. As a result, the first probe electrode Probe marks are formed on the portion 81P. Here, the probe trace is a trace in which the probe needle is indented into the surface of the first probe electrode portion 81P. For example, the surface shape of the first probe electrode portion 81P is uneven. At this time, the first probe electrode part 81P may be formed with a pattern shape in a lower layer than the first probe electrode part 81P, that is, surface irregularities formed by steps, but the first probe electrode part The surface irregularities of the first probe electrode portion 81P that do not depend on the pattern shape in the lower layer than 81P are probe marks.
 上記のストレス試験において、試験電極81およびドレイン電極85の間に加えられる電圧は、ソース電極80およびドレイン電極85の間の電圧よりも低くされる。言い換えれば、ソース電極80の電位は試験電極81の電位よりも低くされる。好ましくは、ソース電極80の電位はドレイン電極85の電位に対して寄生pnダイオードの拡散電位を超えない電位とされる。ソース電極80の電位は、外部から電位を与えることなくフローティング電位とされてもよい。その場合においても、ソース電極80の電位は、試験電極81の電位とドレイン電極85の電位との間の電位となるため、試験電極81の電位よりも低くなる。 In the above stress test, the voltage applied between the test electrode 81 and the drain electrode 85 is set lower than the voltage between the source electrode 80 and the drain electrode 85. In other words, the potential of the source electrode 80 is made lower than the potential of the test electrode 81. Preferably, the potential of the source electrode 80 is set to a potential that does not exceed the diffusion potential of the parasitic pn diode with respect to the potential of the drain electrode 85. The potential of the source electrode 80 may be a floating potential without applying a potential from the outside. Even in that case, the potential of the source electrode 80 is between the potential of the test electrode 81 and the potential of the drain electrode 85, and thus is lower than the potential of the test electrode 81.
 上記のように電位が印加されることで、第1ウェル領域30とドリフト層20との間に形成された寄生pnダイオードに比して、第2ウェル領域31とドリフト層20との間に形成された寄生pnダイオードに優先的にストレス電流が流れる。なお上記の電位印加の際に、ゲート電極82の電位は、試験電極81と同等か、または、チャネルを確実にオフにするために試験電極81よりも低い電位とされることが好ましい。 When a potential is applied as described above, it is formed between the second well region 31 and the drift layer 20 as compared with the parasitic pn diode formed between the first well region 30 and the drift layer 20. A stress current flows preferentially to the parasitic pn diode formed. When applying the above potential, the potential of the gate electrode 82 is preferably equal to that of the test electrode 81 or lower than that of the test electrode 81 in order to reliably turn off the channel.
 第2ウェル領域31とドリフト層20との間に形成された寄生pnダイオードにストレス電流が印加されている際に、この寄生pnダイオードの箇所に、基底面転位など、欠陥の起点が存在すると、三角積層欠陥が拡張する。欠陥の拡張は、ソース電極80または試験電極81と、ドレイン電極85との間の通電特性に影響を与える。 When a stress current is applied to the parasitic pn diode formed between the second well region 31 and the drift layer 20, if a defect origin such as a basal plane dislocation exists at the parasitic pn diode, Triangular stacking faults expand. The extension of the defects affects the current-carrying characteristics between the source electrode 80 or the test electrode 81 and the drain electrode 85.
 このストレス試験を行った後、各電極間の通電特性が測定され、異常のある製品は排除される。すなわち、複数の半製品101Pが形成された後に、これらに対して、ストレス試験によるスクリーニングが行われる。通電特性は抵抗値または耐圧特性であってもよい。例えば試験電極81とドレイン電極85との間に電流を流し、電圧降下の大きい素子が排除される。また同様の測定をストレス試験前にも行っておき、ストレス試験前後での特性変動量から、排除の必要有無が判定されてもよい。 After conducting this stress test, the current-carrying characteristics between each electrode are measured, and abnormal products are excluded. That is, after a plurality of semi-finished products 101P are formed, screening by a stress test is performed on these. The energization characteristic may be a resistance value or a withstand voltage characteristic. For example, a current is passed between the test electrode 81 and the drain electrode 85, and elements having a large voltage drop are eliminated. Further, the same measurement may be performed before the stress test, and the necessity of exclusion may be determined from the characteristic fluctuation amount before and after the stress test.
 再び図2を参照して、上記のように寄生pnダイオードへ通電ストレスを加えた後、金属膜87が、メッキ法により形成される。好ましくは、めっき法は無電界めっき法である。無電界めっき法では、金属膜87は、露出されたソース電極80、試験電極81およびゲート電極82に選択的に形成される。 Referring again to FIG. 2, after applying energizing stress to the parasitic pn diode as described above, the metal film 87 is formed by a plating method. Preferably, the plating method is an electroless plating method. In the electroless plating method, the metal film 87 is selectively formed on the exposed source electrode 80, test electrode 81, and gate electrode 82.
 めっき法を用いることにより金属膜87は、ソース電極80、試験電極81およびゲート電極82から等方的に成長する。すなわち金属膜87は、ソース電極80、試験電極81およびゲート電極82の上面上においてのみならず側面上にも成長する。このため、互いの距離が近接されたソース電極80の側面S1と試験電極81の側面S2との間では、両者の側面に形成されためっき膜の成長表面同士が接触することで、側面S1と側面S2との間をつなぐ金属膜87が形成される。一方、ソース電極80および試験電極81の各々とゲート電極82との間の距離は、ソース電極80と試験電極81との間の距離よりも大きい。このため、ソース電極80および試験電極81の各々とゲート電極82とが金属膜87によって短絡されることはない。言い換えれば、金属膜87は、互いに分離されたソース金属電極膜87Sおよびゲート金属電極膜87Gとして形成される。 The metal film 87 isotropically grows from the source electrode 80, the test electrode 81, and the gate electrode 82 by using the plating method. That is, the metal film 87 grows not only on the upper surfaces of the source electrode 80, the test electrode 81 and the gate electrode 82 but also on the side surfaces. For this reason, between the side surface S1 of the source electrode 80 and the side surface S2 of the test electrode 81 that are close to each other, the growth surfaces of the plating films formed on both side surfaces come into contact with each other, A metal film 87 is formed to connect the side surface S2. On the other hand, the distance between each of the source electrode 80 and the test electrode 81 and the gate electrode 82 is larger than the distance between the source electrode 80 and the test electrode 81. Therefore, each of the source electrode 80 and the test electrode 81 and the gate electrode 82 are not short-circuited by the metal film 87. In other words, the metal film 87 is formed as a source metal electrode film 87S and a gate metal electrode film 87G which are separated from each other.
 無電界めっき法で形成される金属膜87の材料は、Al、Cu、NiまたはAuなどが好ましい。金属膜87の膜厚は、ソース電極80と試験電極81との間をつなぐために、ソース電極80と試験電極81との間の距離の半分よりも大きい必要がある。一方で、この膜厚は加工の容易性の点から20μm以下であることが望ましい。 The material of the metal film 87 formed by the electroless plating method is preferably Al, Cu, Ni or Au. The film thickness of the metal film 87 needs to be larger than half the distance between the source electrode 80 and the test electrode 81 in order to connect the source electrode 80 and the test electrode 81. On the other hand, this film thickness is desirably 20 μm or less from the viewpoint of ease of processing.
 以上によりMOSFET101が得られる。 Thus, MOSFET 101 is obtained.
 (実使用時における還流動作)
 ソース電極80の電位がドレイン電極85の電位を上回った際、MOSFET101は還流動作を行う。活性領域R1においては、内蔵SBDに電流が流れるため、第1ウェル領域30とドリフト層20とによって形成されるpnダイオードには順方向電流が流れない。一方、終端領域R2においては、SBDが内蔵されていないため、第2ウェル領域31とドリフト層20とによって形成されるpnダイオードに順方向電流が流れる。
(Reflux operation during actual use)
When the potential of the source electrode 80 exceeds the potential of the drain electrode 85, the MOSFET 101 performs a reflux operation. In the active region R1, since a current flows through the built-in SBD, no forward current flows through the pn diode formed by the first well region 30 and the drift layer 20. On the other hand, since no SBD is built in the termination region R2, a forward current flows through the pn diode formed by the second well region 31 and the drift layer 20.
 なお、終端領域R2において第2ウェル領域31とドリフト層20とによって形成されるpnダイオードの箇所に、基底面転位など、欠陥の起点が存在したとすると、三角積層欠陥が拡張することでトランジスタの特性が劣化してしまう。本実施の形態のMOSFET101は、上述したスクリーニングを経ているため、このような特性劣化が生じにくい。 If a defect origin such as a basal plane dislocation exists at the location of the pn diode formed by the second well region 31 and the drift layer 20 in the termination region R2, the triangular stacking fault expands, so that the transistor The characteristics will deteriorate. Since MOSFET 101 of the present embodiment has undergone the screening described above, such characteristic deterioration is unlikely to occur.
 (比較例)
 比較例のMOSFET199(図4~図6)は、上述した試験電極81を有しない。このため、ストレス試験における電位の印加はソース電極80を用いて行わなければならない。ここで、ソース電極80は、pnダイオードよりも動作電圧の低いSBDが内蔵された活性領域R1にも接触している。このためストレス電流のうち大部分が、ストレス試験を必要としない活性領域R1に流れてしまう。活性領域R1に内蔵されたSBDを通電した電流も、デバイス内の電圧降下に応じたジュール熱を発生することで、素子の発熱を引き起こす。この発熱によるチップまた評価設備の熱損傷を防ぐために、通電する電流量を抑える必要がある。その結果、終端領域R2において第2ウェル領域31とドリフト層20とによって形成されるpnダイオードへのストレス電流密度が低くなる。よってストレス試験に要する時間が長くなってしまう。
(Comparative example)
The comparative MOSFET 199 (FIGS. 4 to 6) does not have the test electrode 81 described above. For this reason, the potential application in the stress test must be performed using the source electrode 80. Here, the source electrode 80 is also in contact with the active region R1 in which the SBD having a lower operating voltage than the pn diode is built. For this reason, most of the stress current flows into the active region R1 that does not require a stress test. The current flowing through the SBD built in the active region R1 also generates Joule heat corresponding to the voltage drop in the device, thereby causing the element to generate heat. In order to prevent thermal damage to the chip or evaluation equipment due to this heat generation, it is necessary to suppress the amount of current to be applied. As a result, the stress current density to the pn diode formed by the second well region 31 and the drift layer 20 in the termination region R2 is reduced. Therefore, the time required for the stress test becomes long.
 さらに、ストレス電流が活性領域R1に流れる量が多い場合、活性領域R1において第1ウェル領域30とドリフト層20との間で形成される寄生pnダイオードにも電流が流れ始める。これは、SBDの電流密度が増えるに従って、第2離間領域22で生じる電圧降下が大きくなることで、pnダイオードにかかる順方向電圧が増大するためである。その結果、本来ストレス試験が不要な活性領域R1で積層欠陥が生成し、それによりMOSFET199の順方向電圧などが変わってしまうことが起こりうる。そのような製品がスクリーニングによって除外されると、製造歩留りが低下してしまう。 Furthermore, when the amount of stress current flowing through the active region R1 is large, current also starts to flow through the parasitic pn diode formed between the first well region 30 and the drift layer 20 in the active region R1. This is because the forward voltage applied to the pn diode increases as the voltage drop generated in the second separation region 22 increases as the current density of the SBD increases. As a result, stacking faults may be generated in the active region R1 that originally does not require a stress test, which may change the forward voltage of the MOSFET 199 and the like. If such products are excluded by screening, the manufacturing yield will be reduced.
 (効果)
 本実施の形態によれば、活性領域R1に位置する第1ウェル領域30に接するソース電極80とは別に、終端領域R2に位置する第2ウェル領域31に電気的に接続された試験電極81が設けられる。第2ウェル領域31およびドリフト層20によるpn接合に順方向バイアスを印加するストレス試験は、金属膜87の形成前に試験電極81を用いて行われる。これにより活性領域R1に流れるストレス電流を抑制することができる。よって、第1に、ストレス試験中の活性領域R1における発熱量がより小さくなる。よって、より大きな電流をストレス試験に用いることが可能となるので、ストレス試験をより短時間で行うことができる。第2に、ストレス試験中の活性領域R1における積層欠陥の生成が抑制される。これにより、ストレス試験に起因したトランジスタ特性の変動が生じにくくなる。以上から、ストレス試験の時間を短くすることができ、またストレス試験に起因したトランジスタ特性の変動を抑えることができる。
(effect)
According to the present embodiment, the test electrode 81 electrically connected to the second well region 31 located in the termination region R2 is separated from the source electrode 80 in contact with the first well region 30 located in the active region R1. Provided. A stress test in which a forward bias is applied to the pn junction formed by the second well region 31 and the drift layer 20 is performed using the test electrode 81 before the metal film 87 is formed. Thereby, the stress current flowing through the active region R1 can be suppressed. Therefore, first, the amount of heat generated in the active region R1 during the stress test becomes smaller. Therefore, since a larger current can be used for the stress test, the stress test can be performed in a shorter time. Second, the generation of stacking faults in the active region R1 during the stress test is suppressed. This makes it difficult for the transistor characteristics to vary due to the stress test. As described above, the stress test time can be shortened, and fluctuations in transistor characteristics due to the stress test can be suppressed.
 第1プローブ用電極部81Pにより、外部からストレス電流を容易に印加することができる。特に、ストレス電流を印加するためのプローブ針を容易に当てることができる。第1プローブ用電極部81Pがプローブ痕を有することにより、ストレス電流が既に印加済みであることを識別することができる。 A stress current can be easily applied from the outside by the first probe electrode portion 81P. In particular, a probe needle for applying a stress current can be easily applied. When the first probe electrode portion 81P has a probe mark, it can be identified that a stress current has already been applied.
 上記ストレス試験後、ソース電極80および試験電極81の間がソース金属電極膜87Sにより短絡されることで、第2ウェル領域31の電位がフローティング電位となることが避けられ、具体的にはソース電極80とほぼ同電位にされる。これにより、第2ウェル領域31上のゲート絶縁膜50およびフィールド絶縁膜52に高電圧が印加されるのを防ぐことができる。 After the stress test, the source electrode 80 and the test electrode 81 are short-circuited by the source metal electrode film 87S, so that the potential of the second well region 31 is prevented from becoming a floating potential. Specifically, the source electrode 80 and almost the same potential. Thereby, it is possible to prevent a high voltage from being applied to the gate insulating film 50 and the field insulating film 52 on the second well region 31.
 ソース電極80および試験電極81の間の短絡接続のために、これらにまたがるソース金属電極膜87Sが用いられる。これにより、ボンディングワイヤーが用いられる場合と比して、短絡接続のインピーダンスを低くすることができる。インピーダンスの低減は、MOSFET101の高速動作のために特に有利である。また、ソース電極80および試験電極81の間の短絡接続のためにワイヤーボンディング用の領域を確保する必要がないので、チップサイズがより小さくなる。これにより製造コストを低減することができる。 For the short-circuit connection between the source electrode 80 and the test electrode 81, a source metal electrode film 87S extending over these is used. Thereby, compared with the case where a bonding wire is used, the impedance of a short circuit connection can be made low. Impedance reduction is particularly advantageous for high speed operation of MOSFET 101. Further, since it is not necessary to secure an area for wire bonding for the short-circuit connection between the source electrode 80 and the test electrode 81, the chip size is further reduced. Thereby, manufacturing cost can be reduced.
 ソース金属電極膜87Sは、互いに対向するソース電極80の側面S1(第1側面)と試験電極81の側面S2(第2側面)との間をつないでいる。これによりソース電極80と試験電極81とが短距離で接続されるので、短絡接続のインピーダンスをより低くすることができる。またこの短絡接続のための電気的経路は、互いに対向するソース電極の側面S1と試験電極の側面S2との間に設けられる。これにより、この電気的経路を配置するためのコンタクトホール、およびこのコンタクトホールが設けられる絶縁膜を形成する必要がない。よって製造プロセスが簡素化されるので、MOSFET101の製造コストを低減することができる。 The source metal electrode film 87S connects between the side surface S1 (first side surface) of the source electrode 80 and the side surface S2 (second side surface) of the test electrode 81 facing each other. Thereby, since the source electrode 80 and the test electrode 81 are connected at a short distance, the impedance of the short-circuit connection can be further reduced. The electrical path for this short-circuit connection is provided between the side surface S1 of the source electrode and the side surface S2 of the test electrode facing each other. Thereby, there is no need to form a contact hole for arranging the electrical path and an insulating film provided with the contact hole. Therefore, since the manufacturing process is simplified, the manufacturing cost of MOSFET 101 can be reduced.
 ソース金属電極膜87Sは、めっき法によって形成される。これにより、ソース電極80および試験電極81の各々とゲート電極82との間の最短距離を十分に大きくしておけば、ゲート電極82に接しないソース金属電極膜87Sをパターニング工程なしに形成することができる。 The source metal electrode film 87S is formed by a plating method. Thus, if the shortest distance between each of the source electrode 80 and the test electrode 81 and the gate electrode 82 is sufficiently large, the source metal electrode film 87S that does not contact the gate electrode 82 can be formed without the patterning step. Can do.
 (変形例)
 図7を参照して、変形例のMOSFET101a(半導体装置)においては、フィールド絶縁膜52および層間絶縁膜55を有する絶縁層に終端領域ソース電極コンタクトホール91が設けられている。終端領域ソース電極コンタクトホール91は、半導体層の終端領域R2の表面を部分的に露出しており、本実施の形態においては、第2ウェル領域31の第2高濃度領域36を部分的に露出している。終端領域ソース電極コンタクトホール91は終端領域試験電極コンタクトホール92よりも、より活性領域R1近くに配置されている。
(Modification)
Referring to FIG. 7, in MOSFET 101 a (semiconductor device) of the modification, termination region source electrode contact hole 91 is provided in the insulating layer having field insulating film 52 and interlayer insulating film 55. Termination region source electrode contact hole 91 partially exposes the surface of termination region R2 of the semiconductor layer, and in the present embodiment, second high concentration region 36 of second well region 31 is partially exposed. is doing. Termination region source electrode contact hole 91 is arranged closer to active region R1 than termination region test electrode contact hole 92.
 またMOSFET101aにおいては、ソース電極80は第2オーミックコンタクト部71を含む。第2オーミックコンタクト部71はソース配線層80wによってショットキー電極75および第1オーミックコンタクト部70の各々と短絡されている。第2オーミックコンタクト部71は、終端領域ソース電極コンタクトホール91の底に配置されており、第2ウェル領域31の第2高濃度領域36とオーミック接続している。これによりソース電極80は第2ウェル領域31の第2高濃度領域36とオーミック接続されている。第2オーミックコンタクト部71が第2高濃度領域36と接することで、第2オーミックコンタクト部71と第2ウェル領域31との間の電子または正孔の授受がより容易となる。 In the MOSFET 101 a, the source electrode 80 includes a second ohmic contact portion 71. Second ohmic contact portion 71 is short-circuited to each of Schottky electrode 75 and first ohmic contact portion 70 by source wiring layer 80w. The second ohmic contact portion 71 is disposed at the bottom of the termination region source electrode contact hole 91 and is in ohmic contact with the second high concentration region 36 of the second well region 31. Thus, the source electrode 80 is ohmically connected to the second high concentration region 36 of the second well region 31. Since the second ohmic contact portion 71 is in contact with the second high-concentration region 36, transfer of electrons or holes between the second ohmic contact portion 71 and the second well region 31 becomes easier.
 本変形例によれば、試験電極81が設けられていない箇所においても、終端領域ソース電極コンタクトホール91を介した電気的接続によって、第2ウェル領域31の電位をソース電極80の電位に、より近づけることができる。このことは、図1と異なり試験電極81がソース電極80を完全に囲んでいない場合に、特に有用である。 According to the present modification, the potential of the second well region 31 is further increased to the potential of the source electrode 80 by electrical connection via the termination region source electrode contact hole 91 even in a location where the test electrode 81 is not provided. You can get closer. This is particularly useful when the test electrode 81 does not completely surround the source electrode 80, unlike FIG.
 なお本変形例によっても、図2の構成には及ばないものの、ストレス試験中に活性領域R1を流れる電流を抑制する効果が得られる。なぜならば、金属膜87形成前のストレス試験時における試験電極81とソース電極80との間の電気的経路である第2ウェル領域31(特にその第2高濃度領域36)のシート抵抗は、金属膜87のシート抵抗に比して格段に高く、よって試験電極81から活性領域R1の方へ漏れるストレス電流は十分に小さくされ得るためである。 It should be noted that this modification also has the effect of suppressing the current flowing through the active region R1 during the stress test, although it does not reach the configuration of FIG. This is because the sheet resistance of the second well region 31 (particularly the second high-concentration region 36), which is an electrical path between the test electrode 81 and the source electrode 80 during the stress test before the metal film 87 is formed, is a metal resistance. This is because the stress current leaking from the test electrode 81 toward the active region R1 can be made sufficiently small compared to the sheet resistance of the film 87.
 平面レイアウトにおいて、終端領域ソース電極コンタクトホール91は活性領域R1をできるだけ完全に囲むように形成され、それに沿って試験電極81も活性領域R1をできるだけ完全に囲むように形成されることが好ましい。 In the planar layout, the termination region source electrode contact hole 91 is preferably formed so as to completely surround the active region R1, and the test electrode 81 is preferably formed so as to surround the active region R1 as completely as possible.
 なお、本実施の形態では第2ウェル領域31は活性領域R1を完全に囲んでいるが、囲んでいなくてもよい。図1に示されるように、第2ウェル領域31はゲート電極82のうち、第3プローブ用電極部82Pの下方に形成されていればよく、活性領域R1とは別の領域に形成されていればよい。 In the present embodiment, the second well region 31 completely surrounds the active region R1, but may not be surrounded. As shown in FIG. 1, the second well region 31 may be formed below the third probe electrode portion 82P in the gate electrode 82, and may be formed in a region different from the active region R1. That's fine.
 また、本実施の形態では活性領域R1にはプレーナ型のMOSFETセルが配置されているが、トレンチ型のMOSFETが配置されていてもよい。 In this embodiment, a planar MOSFET cell is disposed in the active region R1, but a trench MOSFET may be disposed.
 さらに、MOSFETセルの構造は、多角形であっても櫛型であってもよい。 Furthermore, the structure of the MOSFET cell may be polygonal or comb-shaped.
 本実施の形態では、活性領域R1にはユニポーラ型デバイスとしてMOSFETセルが配置された場合を説明したが、活性領域R1にはショットキーバリアダイオードが配設されていてもよい。すなわち、本実施の形態に係る半導体装置の別の例として、半導体装置がショットキーバリアダイオードであってもよい。この場合、活性領域R1にはMOSFETセルが配置されず、ショットキーバリアダイオードが形成される。終端領域R2には、電界緩和領域としてJTEやFLR(Field Limiting Ring)などのp型領域が形成され、ショットキーバリアダイオードのアノード電極とp型領域の少なくとも一部とが電気的に接続される。このp型領域が第2ウェル領域31に相当するため、本実施の形態と同様の効果が得られる。 In the present embodiment, the case where a MOSFET cell is disposed as a unipolar device in the active region R1 has been described. However, a Schottky barrier diode may be disposed in the active region R1. That is, as another example of the semiconductor device according to the present embodiment, the semiconductor device may be a Schottky barrier diode. In this case, no MOSFET cell is arranged in the active region R1, and a Schottky barrier diode is formed. In the termination region R2, a p-type region such as JTE or FLR (Field Limiting Ring) is formed as an electric field relaxation region, and the anode electrode of the Schottky barrier diode and at least a part of the p-type region are electrically connected. . Since this p-type region corresponds to the second well region 31, the same effect as in the present embodiment can be obtained.
 <実施の形態2>
 図8を参照して、本実施の形態のMOSFET102(半導体装置)のゲート電極82は、平面視において、第3プローブ用電極部82Pとしての領域(図1のゲート電極82全体に対応)に加えて、第3プローブ用電極部82Pの幅よりも小さい幅で第3プローブ用電極部82Pから終端領域R2を線状に延在している配線領域を有する。
<Embodiment 2>
Referring to FIG. 8, gate electrode 82 of MOSFET 102 (semiconductor device) of the present embodiment is added to a region (corresponding to the entire gate electrode 82 in FIG. 1) as third probe electrode portion 82P in plan view. Thus, the terminal area R2 has a wiring area extending linearly from the third probe electrode section 82P with a width smaller than the width of the third probe electrode section 82P.
 さらに図9を参照して、MOSFET102は、ゲート電極82上に部分的に形成された表面保護層57を有する。表面保護層57は、ゲート電極82のうち、第3プローブ用電極部82Pのように外部との電気的なコンタクトを要する部分を露出しており、かつ第3プローブ用電極部82Pから延びる配線領域を覆っていることが好ましい。なお表面保護層57は、ソース電極80および試験電極81の各々を少なくとも部分的に露出しており、好ましくはソース電極80および試験電極81から離れて設けられている。 Further, referring to FIG. 9, MOSFET 102 has a surface protective layer 57 partially formed on gate electrode 82. The surface protective layer 57 exposes a portion of the gate electrode 82 that requires electrical contact with the outside, such as the third probe electrode portion 82P, and extends from the third probe electrode portion 82P. It is preferable to cover. The surface protective layer 57 exposes each of the source electrode 80 and the test electrode 81 at least partially, and is preferably provided apart from the source electrode 80 and the test electrode 81.
 表面保護層57は絶縁体からなる。表面保護層57の材料は、500℃以下の温度で形成可能なものであることが好ましい。具体的には、表面保護層57の材料は、有機物が好ましく、特にポリイミドが好ましい。 The surface protective layer 57 is made of an insulator. The material of the surface protective layer 57 is preferably one that can be formed at a temperature of 500 ° C. or lower. Specifically, the material of the surface protective layer 57 is preferably an organic material, and particularly preferably polyimide.
 金属膜87は、本実施の形態においては、ソース電極80と試験電極81とゲート電極82とのうち表面保護層57によって覆われていない部分にのみ選択的に形成されている。 In the present embodiment, the metal film 87 is selectively formed only on a portion of the source electrode 80, the test electrode 81, and the gate electrode 82 that is not covered with the surface protective layer 57.
 表面保護層57の厚さは、表面保護層57の上面(図9における上面)が金属膜87の上面よりも高くなるように選択されることが好ましい。加工の容易性の点からは、表面保護層57の厚さは30μm以下が好ましい。 The thickness of the surface protective layer 57 is preferably selected so that the upper surface of the surface protective layer 57 (the upper surface in FIG. 9) is higher than the upper surface of the metal film 87. From the viewpoint of ease of processing, the thickness of the surface protective layer 57 is preferably 30 μm or less.
 MOSFET102の製造方法においては、ソース電極80、試験電極81およびゲート電極82の形成後、かつ金属膜87の形成前に、表面保護層57が形成される。その後の金属膜87の形成において、ソース電極80、試験電極81およびゲート電極82のうち表面保護層57により覆われた部分には、金属膜87としてのめっき膜が成長しない。好ましくは、表面保護層57を形成する工程は、前述したストレス試験前に行われる。これにより、ストレス試験において生じ得る外乱から表面保護層57によってMOSFET102が保護される。 In the manufacturing method of the MOSFET 102, the surface protective layer 57 is formed after the source electrode 80, the test electrode 81, and the gate electrode 82 are formed and before the metal film 87 is formed. In the subsequent formation of the metal film 87, the plating film as the metal film 87 does not grow on the portion of the source electrode 80, the test electrode 81, and the gate electrode 82 that is covered with the surface protective layer 57. Preferably, the step of forming the surface protective layer 57 is performed before the stress test described above. As a result, the MOSFET 102 is protected by the surface protective layer 57 from disturbance that may occur in the stress test.
 表面保護層57は、例えば次のように形成される。まずポリイミドが塗布される。その後、フォトリソグラフィーを用いたパターニングにより、表面保護層57のパターンが形成される。次に、150℃から500℃の温度による加熱処理によってポリイミドが硬化される。 The surface protective layer 57 is formed as follows, for example. First, polyimide is applied. Thereafter, a pattern of the surface protective layer 57 is formed by patterning using photolithography. Next, the polyimide is cured by heat treatment at a temperature of 150 ° C. to 500 ° C.
 なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。 Since the configuration other than the above is substantially the same as the configuration of the first embodiment described above, the same or corresponding elements are denoted by the same reference numerals, and description thereof is not repeated.
 本実施の形態によれば、金属膜87の形成前に表面保護層57が設けられることにより、ソース電極80または試験電極81とゲート電極82との間をつなぐように金属膜87が成長することが、より確実に防止される。これによりソース電極80または試験電極81とゲート電極82との間の距離をより小さくすることができる。よってチップのサイズをより小さくすることができる。それにより製造コストを低減することができる。 According to the present embodiment, by providing the surface protective layer 57 before the metal film 87 is formed, the metal film 87 grows so as to connect the source electrode 80 or the test electrode 81 and the gate electrode 82. Is more reliably prevented. Thereby, the distance between the source electrode 80 or the test electrode 81 and the gate electrode 82 can be further reduced. Therefore, the chip size can be further reduced. Thereby, the manufacturing cost can be reduced.
 表面保護層57が有機物からなる場合、表面保護層57を比較的低温で形成することができる。これにより、表面保護層57の形成前の構造へ加わる、熱に起因したダメージを抑えることができる。 When the surface protective layer 57 is made of an organic material, the surface protective layer 57 can be formed at a relatively low temperature. Thereby, damage caused by heat applied to the structure before the formation of the surface protective layer 57 can be suppressed.
 また表面保護層57が設けられることにより、ソース電極80または試験電極81とゲート電極82との間の意図しない短絡を防止することができる。ソース電極80または試験電極81とゲート電極82との境界の領域で電極にひっかき傷が入るなどといった外乱によって電極が引き伸ばされた場合、表面保護層57がないと上記のような短絡が生じ得る。 Further, by providing the surface protective layer 57, an unintended short circuit between the source electrode 80 or the test electrode 81 and the gate electrode 82 can be prevented. When the electrode is stretched by a disturbance such as a scratch at the boundary between the source electrode 80 or the test electrode 81 and the gate electrode 82, the short circuit as described above may occur without the surface protective layer 57.
 なお表面保護層57が設けられたMOSFETの電極レイアウトは、図8に示すものに限定されるわけではなく、例えば図1に示すものであってもよい。この場合、表面保護層57は、例えば、ゲート電極82のうち試験電極81に近接する部分の上に設けられる。それにより、ゲート電極82と試験電極81とが金属膜87によって短絡することが防止される。逆に、表面保護層57が設けられない場合(すなわち実施の形態1)の電極レイアウトとして、例えば図8に示すように、第3プローブ用電極部82Pから延びる配線領域がゲート電極82に設けられた構成が用いられてもよい。 It should be noted that the electrode layout of the MOSFET provided with the surface protective layer 57 is not limited to that shown in FIG. 8, and may be, for example, that shown in FIG. In this case, the surface protective layer 57 is provided, for example, on a portion of the gate electrode 82 that is close to the test electrode 81. Thereby, the gate electrode 82 and the test electrode 81 are prevented from being short-circuited by the metal film 87. Conversely, as an electrode layout in the case where the surface protective layer 57 is not provided (that is, the first embodiment), a wiring region extending from the third probe electrode portion 82P is provided in the gate electrode 82 as shown in FIG. 8, for example. Other configurations may be used.
 <実施の形態3>
 本実施の形態では、めっき法に代わり、以下のように、シャドウマスクを介した堆積法によって金属膜87を形成する。
<Embodiment 3>
In the present embodiment, instead of the plating method, the metal film 87 is formed by a deposition method through a shadow mask as follows.
 まずシャドウマスクが準備される。シャドウマスクは、金属膜87のパターンに対応した開口部を有する。シャドウマスクは、例えばステンレスから作られた金属板である。 First, a shadow mask is prepared. The shadow mask has an opening corresponding to the pattern of the metal film 87. The shadow mask is a metal plate made of, for example, stainless steel.
 次にシャドウマスクが、作成途中のMOSFETに重ね合わされる。この重ね合わせにおいて、シャドウマスクの開口部は、ソース電極80および試験電極81(図1)の両方にまたがる領域を含む。 Next, the shadow mask is overlaid on the MOSFET being created. In this overlay, the shadow mask opening includes a region that spans both the source electrode 80 and the test electrode 81 (FIG. 1).
 次に、真空雰囲気下で、スパッタ法または蒸着法などの堆積法により、開口部のパターンに対応して金属薄膜が堆積される。これにより金属膜87が形成される。 Next, a metal thin film is deposited corresponding to the pattern of the opening by a deposition method such as sputtering or vapor deposition in a vacuum atmosphere. Thereby, a metal film 87 is formed.
 なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。 Since the configuration other than the above is substantially the same as the configuration of the first embodiment described above, the same or corresponding elements are denoted by the same reference numerals, and description thereof is not repeated.
 本実施の形態によれば、実施の形態1と異なり、平面視における金属膜87のパターンをシャドウマスクの開口部のパターンによって任意に定めることができる。これにより、第1に、ソース電極80と試験電極81との間の距離が大きくても、ソース電極80と試験電極81とをつなぐソース金属電極膜87Sを形成することができる。ソース電極80と試験電極81との間の距離を大きくすることにより、ソース電極80と試験電極81との分離不良の発生に起因した製造歩留まりの低下を抑えることができる。よって製造コストを低減することができる。 According to the present embodiment, unlike the first embodiment, the pattern of the metal film 87 in plan view can be arbitrarily determined by the pattern of the opening of the shadow mask. Thereby, first, even if the distance between the source electrode 80 and the test electrode 81 is large, the source metal electrode film 87S that connects the source electrode 80 and the test electrode 81 can be formed. By increasing the distance between the source electrode 80 and the test electrode 81, it is possible to suppress a decrease in manufacturing yield due to the occurrence of poor separation between the source electrode 80 and the test electrode 81. Therefore, manufacturing cost can be reduced.
 第2に、ソース電極80、試験電極81およびゲート電極82のうち露出されている部分のうち、任意の部分にだけ金属膜87を形成することができる。よって、ソース電極80、試験電極81およびゲート電極82の一部を、MOSFETの完成時点においても露出されたままとすることができる。この露出された部分を、MOSFET外部との電気的接続を取るための端子部として用いることができる。この端子部は、例えば、MOSFET外部との電気的接続のためのボンディングワイヤーを接続する部分として用いることができる。この場合、金属膜87は、例えば、ソース電極80と試験電極81との分離領域の近傍にのみ形成される。このような端子部が設けられる場合、金属膜87の材料は、端子部の材料として適していなくてもよい。よって金属膜87の材料を、ソース電極80、試験電極81およびゲート電極82の材料と異なる様々な金属材料の中からより自由に選択し得る。 Second, the metal film 87 can be formed only on an arbitrary portion of the exposed portions of the source electrode 80, the test electrode 81, and the gate electrode 82. Therefore, part of the source electrode 80, the test electrode 81, and the gate electrode 82 can be left exposed even when the MOSFET is completed. This exposed portion can be used as a terminal portion for establishing electrical connection with the outside of the MOSFET. This terminal part can be used, for example, as a part for connecting a bonding wire for electrical connection with the outside of the MOSFET. In this case, the metal film 87 is formed only in the vicinity of the separation region between the source electrode 80 and the test electrode 81, for example. When such a terminal portion is provided, the material of the metal film 87 may not be suitable as a material for the terminal portion. Therefore, the material of the metal film 87 can be more freely selected from various metal materials different from the materials of the source electrode 80, the test electrode 81, and the gate electrode 82.
 なお上記各実施の形態においては第1導電型がn型とされかつ第2導電型がp型とされているが、反対に、第1導電型がp型とされかつ第2導電型がn型とされてもよい。この場合、電位の高低について前述した内容も反対となる。 In each of the above embodiments, the first conductivity type is n-type and the second conductivity type is p-type. Conversely, the first conductivity type is p-type and the second conductivity type is n-type. It may be a type. In this case, the above-described content of the potential level is also opposite.
 また上記各実施の形態において、ショットキー電極75およびソース電極80が同じ材料で作られてもよい。この場合、ショットキー電極75およびソース電極80が一括して形成され得る。 In each of the above embodiments, the Schottky electrode 75 and the source electrode 80 may be made of the same material. In this case, the Schottky electrode 75 and the source electrode 80 can be formed collectively.
 また上記各実施の形態においては半導体装置としてMOSFETについて説明したが、ゲート絶縁膜の材料として酸化物以外の材料が用いられてもよい。言い換えれば、半導体装置はMOSFET以外のMISFET(Metal Insulator Semiconductor Field Effect Transistor)であってもよい。また半導体装置はMISFETに限定されるものではなく、ユニポーラ型ダイオードを内蔵した他のユニポーラ型トランジスタであってもよい。ユニポーラ型トランジスタは、例えば、JFET(Junction Field Effect Transistor)であってもよい。 In each of the above embodiments, the MOSFET has been described as the semiconductor device. However, a material other than an oxide may be used as the material of the gate insulating film. In other words, the semiconductor device may be a MISFET (Metal Insulator Semiconductor Field Effect Transistor) other than the MOSFET. The semiconductor device is not limited to the MISFET, and may be another unipolar transistor with a built-in unipolar diode. The unipolar transistor may be, for example, a JFET (Junction Field Effect Transistor).
 また上記各実施の形態においてはユニポーラ型トランジスタにSBDが内蔵されているが、SBD素子が内蔵される代わりに、第1ウェル領域30の間においてドリフト層20へユニポーラ通電が可能なダイオード特性をソース電極80が有してもよい。具体的には、SBDを内蔵する代わりに、例えば、ゲートにオフ電位が与えられた状態でソースからドレインへの方向のみの通電を許容するチャネル特性を有するFETが用いられてもよい。すなわち、第1ウェル領域30のうち、ソース領域40とドリフト層20との間に挟まれるチャネル領域上にn型のチャネル領域を形成した構造を用いてもよい。第1ウェル領域30とゲート絶縁膜50との間にチャネル領域が形成されるため、ゲート電極部60に電圧が印加されない場合でも、ソース電極80の電位をドレイン電極85よりも高くすることによってソースからドレインへの方向へユニポーラ通電が可能となる。なお、チャネル領域は、エピタキシャル成長によって形成されてもよいし、イオン注入によって形成されてもよい。 In each of the above embodiments, the SBD is incorporated in the unipolar transistor, but instead of incorporating the SBD element, a diode characteristic capable of conducting unipolar current to the drift layer 20 between the first well regions 30 is provided as a source. The electrode 80 may have. Specifically, instead of incorporating the SBD, for example, an FET having a channel characteristic that allows energization only in the direction from the source to the drain while an off potential is applied to the gate may be used. That is, a structure in which an n-type channel region is formed on the channel region sandwiched between the source region 40 and the drift layer 20 in the first well region 30 may be used. Since a channel region is formed between the first well region 30 and the gate insulating film 50, the source electrode 80 is made higher than the drain electrode 85 even if no voltage is applied to the gate electrode portion 60. Unipolar energization is possible in the direction from the drain to the drain. Note that the channel region may be formed by epitaxial growth or ion implantation.
 また上記各実施の形態においてはドリフト層20の材料であるワイドバンドギャップ半導体として炭化珪素が用いられるが、他のワイドバンドギャップ半導体が用いられてもよい。炭化珪素に限らず、シリコンの再結合エネルギーよりも大きい再結合エネルギーを有するワイドギャップ半導体では、寄生pnダイオードに順方向電流が流れた場合に結晶欠陥が生成することが考えられる。ワイドバンドギャップ半導体は、例えば、シリコンのバンドギャップ(1.12eV)の2倍程度のバンドギャップを有する半導体として定義される。なお検査またはストレス試験の目的が上記結晶欠陥の生成に関連したものではない場合は、ドリフト層の材料は任意の半導体であり得る。 Further, in each of the above embodiments, silicon carbide is used as the wide band gap semiconductor that is the material of the drift layer 20, but other wide band gap semiconductors may be used. A wide-gap semiconductor having a recombination energy larger than that of silicon, not limited to silicon carbide, may generate crystal defects when a forward current flows through the parasitic pn diode. A wide band gap semiconductor is defined as a semiconductor having a band gap of about twice the band gap of silicon (1.12 eV), for example. If the purpose of the inspection or stress test is not related to the generation of the crystal defect, the material of the drift layer can be any semiconductor.
 本明細書では電気的に低抵抗での接続を「オーミック接続」と称し、それを実現するための構造を「オーミックコンタクト部」または「オーミック電極」と称する。「低抵抗での接続」とは、例えば、100Ωcm以下の接触抵抗を有する接続を意味するものであり、電流・電圧特性として完全な線形性を有する狭義のオーミック特性が満たされる必要はない。 In this specification, a connection with an electrically low resistance is referred to as an “ohmic connection”, and a structure for realizing the connection is referred to as an “ohmic contact portion” or an “ohmic electrode”. “Connection with low resistance” means, for example, a connection having a contact resistance of 100 Ωcm 2 or less, and it is not necessary to satisfy a narrowly defined ohmic characteristic having perfect linearity as a current / voltage characteristic.
 上記各実施の形態においては終端領域に囲まれた活性領域にSBD素子およびMOSFET素子が設けられている場合について説明したが、活性領域に形成される半導体素子はこれら以外であってもよい。そのような場合であっても、活性領域に位置する第1電極とは別に、終端領域に位置する第2電極を設けることができる。第2電極へ第1電極の電位と異なる電位を加えることによる終端領域に対する検査またはストレス試験を、金属電極膜の形成前に第2電極を用いて行うことができる。これにより活性領域に流れる電流を抑制することができる。よって検査またはストレス試験において、第1に、活性領域における発熱量がより小さくなる。よって、より大きな電流を用いることが可能となるので、検査またはストレス試験をより短時間で行うことができる。第2に、検査またはストレス試験による活性領域への影響が抑制される。これにより、検査またはストレス試験に起因した半導体特性の変動が生じにくくなる。以上から、検査またはストレス試験の時間を短くすることができ、また検査またはストレス試験に起因した半導体特性の変動を抑えることができる。また、第1電極および第2電極の間をまたがる金属電極膜によって第1電極および第2電極の間が低インピーダンスで短絡接続される。このような接続方法は、複数の電極間を分離した状態で異なる電位による検査またはストレス試験を与えた上で複数の電極を低インピーダンスで短絡する方法として、様々な用途に適用することができ、低コストおよび高速動作のメリットを享受することができる。 In each of the above-described embodiments, the case where the SBD element and the MOSFET element are provided in the active region surrounded by the termination region has been described. However, other semiconductor elements may be formed in the active region. Even in such a case, the second electrode located in the termination region can be provided separately from the first electrode located in the active region. An inspection or stress test on the termination region by applying a potential different from the potential of the first electrode to the second electrode can be performed using the second electrode before forming the metal electrode film. Thereby, the current flowing through the active region can be suppressed. Therefore, in the inspection or stress test, first, the amount of heat generated in the active region becomes smaller. Accordingly, since a larger current can be used, the inspection or the stress test can be performed in a shorter time. Secondly, the influence on the active region by the inspection or the stress test is suppressed. This makes it difficult for the semiconductor characteristics to vary due to the inspection or the stress test. As described above, the time for the inspection or stress test can be shortened, and fluctuations in the semiconductor characteristics due to the inspection or stress test can be suppressed. Further, the first electrode and the second electrode are short-circuited with low impedance by the metal electrode film straddling the first electrode and the second electrode. Such a connection method can be applied to various applications as a method of short-circuiting a plurality of electrodes with a low impedance after giving a test or stress test with different potentials in a state where a plurality of electrodes are separated from each other, Benefit from low cost and high speed operation.
 また上記各実施の形態においては第1電極および第2電極のそれぞれが活性領域および終端領域に配置されている場合について説明したが、第1電極および第2電極が配置される箇所はこれら以外であってもよい。そのような場合であっても、第2電極へ第1電極の電位と異なる電位を加えることによる検査またはストレス試験を、金属電極膜の形成前に第2電極を用いて行うことができる。これにより第1電極の近傍領域に流れる電流を抑制することができる。よって検査またはストレス試験において、第1に、第1電極の近傍領域における発熱量がより小さくなる。よって、より大きな電流を用いることが可能となるので、検査またはストレス試験をより短時間で行うことができる。第2に、検査またはストレス試験による第1電極の近傍領域への影響が抑制される。これにより、検査またはストレス試験に起因した半導体特性の変動が生じにくくなる。以上から、検査またはストレス試験の時間を短くすることができ、また検査またはストレス試験に起因した半導体特性の変動を抑えることができる。また、互いに対向する第1電極の第1側面と第2電極の第2側面との間をつなぐ金属電極膜によって、第1電極および第2電極の間が低インピーダンスで短絡接続される。 In each of the above-described embodiments, the case where each of the first electrode and the second electrode is disposed in the active region and the termination region has been described. However, the locations where the first electrode and the second electrode are disposed are other than these. There may be. Even in such a case, an inspection or a stress test by applying a potential different from the potential of the first electrode to the second electrode can be performed using the second electrode before forming the metal electrode film. As a result, the current flowing in the vicinity of the first electrode can be suppressed. Therefore, in the inspection or stress test, first, the amount of heat generated in the vicinity of the first electrode becomes smaller. Accordingly, since a larger current can be used, the inspection or the stress test can be performed in a shorter time. Second, the influence on the vicinity of the first electrode due to the inspection or the stress test is suppressed. This makes it difficult for the semiconductor characteristics to vary due to the inspection or the stress test. As described above, the time for the inspection or stress test can be shortened, and fluctuations in the semiconductor characteristics due to the inspection or stress test can be suppressed. Further, the first electrode and the second electrode are short-circuited with low impedance by the metal electrode film connecting the first side surface of the first electrode and the second side surface of the second electrode facing each other.
 本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 In the present invention, it is possible to freely combine the respective embodiments within the scope of the invention, and to appropriately modify and omit the respective embodiments. Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
 R1 活性領域、R2 終端領域、10 基板(半導体基板)、20 ドリフト層、21 第1離間領域、22 第2離間領域、30 第1ウェル領域、31 第2ウェル領域、35 第1高濃度領域、36 第2高濃度領域、40 ソース領域、50 ゲート絶縁膜、52 フィールド絶縁膜、55 層間絶縁膜、57 表面保護層、60 ゲート電極部、70 第1オーミックコンタクト部、71 第2オーミックコンタクト部、72 第3オーミックコンタクト部、75 ショットキー電極、79 オーミック電極、80 ソース電極(第1電極)、80P 第2プローブ用電極部、80w ソース配線層、81w 試験配線層、82w ゲート配線層、81 試験電極(第2電極)、81P 第1プローブ用電極部、82 ゲート電極(分離電極)、82P 第3プローブ用電極部、85 ドレイン電極(第3電極)、87 金属膜、87G ゲート金属電極膜、87S ソース金属電極膜(金属電極膜)、89 配線部、90 活性領域コンタクトホール、91 終端領域ソース電極コンタクトホール、92 終端領域試験電極コンタクトホール、95 ゲートコンタクトホール、101,101a,102 MOSFET(半導体装置)、101P 半製品。 R1 active region, R2 termination region, 10 substrate (semiconductor substrate), 20 drift layer, 21 first separation region, 22 second separation region, 30 first well region, 31 second well region, 35 first high concentration region, 36, second high concentration region, 40 source region, 50 gate insulating film, 52 field insulating film, 55 interlayer insulating film, 57 surface protective layer, 60 gate electrode portion, 70 first ohmic contact portion, 71 second ohmic contact portion, 72 3rd ohmic contact, 75 Schottky electrode, 79 ohmic electrode, 80 source electrode (first electrode), 80P second probe electrode, 80w source wiring layer, 81w test wiring layer, 82w gate wiring layer, 81 test Electrode (second electrode), 81P first probe electrode, 82 gate Electrode (separation electrode), 82P third probe electrode section, 85 drain electrode (third electrode), 87 metal film, 87G gate metal electrode film, 87S source metal electrode film (metal electrode film), 89 wiring section, 90 active Area contact hole, 91 termination area source electrode contact hole, 92 termination area test electrode contact hole, 95 gate contact hole, 101, 101a, 102 MOSFET (semiconductor device), 101P semi-finished product.

Claims (16)

  1.  平面視において、活性領域(R1)と、前記活性領域(R1)とは別の領域に終端領域(R2)とを有する半導体装置(101、101a、102)であって、
     前記活性領域(R1)に配置された第1電極(80)と、
     前記終端領域(R2)に配置され、前記第1電極(80)とは分離された第2電極(81)と、
     前記第1電極(80)と前記第2電極(81)とを電気的に接続する金属電極膜(87S)と
    を備える、半導体装置(101、101a、102)。
    A semiconductor device (101, 101a, 102) having an active region (R1) and a termination region (R2) in a region different from the active region (R1) in plan view,
    A first electrode (80) disposed in the active region (R1);
    A second electrode (81) disposed in the termination region (R2) and separated from the first electrode (80);
    A semiconductor device (101, 101a, 102) comprising a metal electrode film (87S) that electrically connects the first electrode (80) and the second electrode (81).
  2.  前記終端領域(R2)は前記活性領域(R1)を囲んでいる、請求項1に記載の半導体装置(101、101a、102)。 The semiconductor device (101, 101a, 102) according to claim 1, wherein the termination region (R2) surrounds the active region (R1).
  3.  第1側面(S1)を有する第1電極(80)と、
     前記第1電極(80)から平面視において分離され、前記第1側面(S1)に対向する第2側面(S2)を有する第2電極(81)と、
     前記第1電極(80)の前記第1側面(S1)と前記第2電極(81)の前記第2側面(S2)との間をつなぐ金属電極膜(87S)と
    を備える、半導体装置(101、101a、102)。
    A first electrode (80) having a first side surface (S1);
    A second electrode (81) having a second side surface (S2) separated from the first electrode (80) in plan view and facing the first side surface (S1);
    A semiconductor device (101) comprising a metal electrode film (87S) that connects between the first side surface (S1) of the first electrode (80) and the second side surface (S2) of the second electrode (81). , 101a, 102).
  4.  前記第2電極(81)に設けられたプローブ用電極部はプローブ痕を有する、請求項1から3のいずれか1項に記載の半導体装置(101、101a、102)。 The semiconductor device (101, 101a, 102) according to any one of claims 1 to 3, wherein the probe electrode portion provided on the second electrode (81) has a probe mark.
  5.  前記平面視において前記プローブ用電極部は30μm四方の領域を含む、請求項4に記載の半導体装置(101、101a、102)。 5. The semiconductor device (101, 101 a, 102) according to claim 4, wherein the probe electrode portion includes a 30 μm square region in the plan view.
  6.  前記平面視において前記第1電極(80)は前記第2電極(81)よりも大きい、請求項1から5のいずれか1項に記載の半導体装置(101、101a、102)。 The semiconductor device (101, 101a, 102) according to any one of claims 1 to 5, wherein the first electrode (80) is larger than the second electrode (81) in the plan view.
  7.  前記第1電極(80)と前記第2電極(81)との間の最短距離は前記金属電極膜(87S)の膜厚の2倍よりも小さい、請求項1から6のいずれか1項に記載の半導体装置(101、101a、102)。 The shortest distance between the first electrode (80) and the second electrode (81) is smaller than twice the film thickness of the metal electrode film (87S), according to any one of claims 1 to 6. The semiconductor device described (101, 101a, 102).
  8.  前記第1電極(80)および前記第2電極(81)から分離された分離電極(82)と、
     前記分離電極(82)上に部分的に形成され、絶縁体からなる表面保護層(57)と
    をさらに備える、請求項1から7のいずれか1項に記載の半導体装置(102)。
    A separation electrode (82) separated from the first electrode (80) and the second electrode (81);
    The semiconductor device (102) according to any one of claims 1 to 7, further comprising a surface protective layer (57) formed partially on the separation electrode (82) and made of an insulator.
  9.  前記表面保護層(57)は有機物からなる、請求項8に記載の半導体装置(102)。 The semiconductor device (102) according to claim 8, wherein the surface protective layer (57) is made of an organic material.
  10.  第1導電型を有する半導体基板(10)と、
     前記半導体基板(10)上に設けられ、ワイドバンドギャップ半導体から作られ、前記第1導電型を有するドリフト層(20)と、
     前記ドリフト層(20)上に設けられ、前記第1導電型と異なる第2導電型を有する複数の第1ウェル領域(30)と、
     前記第1ウェル領域(30)の各々の上に設けられ、前記第1ウェル領域(30)によって前記ドリフト層(20)から分離され、前記第1導電型を有するソース領域(40)と、
     前記第1ウェル領域(30)とゲート絶縁膜(50)を介して対向する分離電極(82)と、
     前記ドリフト層(20)上に設けられ、前記第2導電型を有する少なくとも1つの第2ウェル領域(31)と、
     前記半導体基板(10)に電気的に接続された第3電極(85)と
    をさらに備え、
     前記第1電極(80)は、前記ソース領域(40)と電気的に接続されたオーミックコンタクト部(70)を有し、
     前記第2電極(81)は、前記第2ウェル領域(31)に電気的に接続され、かつ、前記第1電極(80)から分離されている、
    請求項1から7のいずれか1項に記載の半導体装置(101、101a、102)。
    A semiconductor substrate (10) having a first conductivity type;
    A drift layer (20) provided on the semiconductor substrate (10), made of a wide bandgap semiconductor and having the first conductivity type;
    A plurality of first well regions (30) provided on the drift layer (20) and having a second conductivity type different from the first conductivity type;
    A source region (40) provided on each of the first well regions (30), separated from the drift layer (20) by the first well region (30) and having the first conductivity type;
    An isolation electrode (82) opposed to the first well region (30) through a gate insulating film (50);
    At least one second well region (31) provided on the drift layer (20) and having the second conductivity type;
    A third electrode (85) electrically connected to the semiconductor substrate (10),
    The first electrode (80) has an ohmic contact part (70) electrically connected to the source region (40),
    The second electrode (81) is electrically connected to the second well region (31) and separated from the first electrode (80).
    The semiconductor device (101, 101a, 102) according to any one of claims 1 to 7.
  11.  前記第1電極(80)は、前記複数の第1ウェル領域(30)の間における前記ドリフト層(20)に接続され、かつ、前記第3電極(85)との間でユニポーラ通電が可能なダイオード特性を示すショットキー電極(75)を有する、請求項10に記載の半導体装置(101、101a、102)。 The first electrode (80) is connected to the drift layer (20) between the plurality of first well regions (30), and can be unipolarly energized with the third electrode (85). The semiconductor device (101, 101a, 102) according to claim 10, comprising a Schottky electrode (75) exhibiting diode characteristics.
  12.  前記第1ウェル領域(30)と前記ゲート絶縁膜(50)との間に、前記第1導電型のチャネル領域を備える、請求項10または11に記載の半導体装置(101、101a、102)。 The semiconductor device (101, 101a, 102) according to claim 10 or 11, comprising the channel region of the first conductivity type between the first well region (30) and the gate insulating film (50).
  13.  第1電極(80)と、前記第1電極(80)から分離された第2電極(81)とを形成する工程と、
     前記第1電極(80)へ所定の電位を加える工程と、
     前記第2電極(81)へ前記第1電極(80)の電位と異なる電位を加える工程と、
     前記第2電極(81)へ前記第1電極(80)の電位と異なる電位を加える工程の後に、前記第1電極(80)と前記第2電極(81)とを電気的に接続する金属電極膜(87S)を形成する工程と
    を備える、半導体装置(101、101a、102)の製造方法。
    Forming a first electrode (80) and a second electrode (81) separated from the first electrode (80);
    Applying a predetermined potential to the first electrode (80);
    Applying a potential different from the potential of the first electrode (80) to the second electrode (81);
    A metal electrode that electrically connects the first electrode (80) and the second electrode (81) after applying a potential different from the potential of the first electrode (80) to the second electrode (81). Forming a film (87S). A method for manufacturing a semiconductor device (101, 101a, 102).
  14.  前記金属電極膜(87S)を形成する工程は、めっき法によって行われる、請求項13に記載の半導体装置(101、101a、102)の製造方法。 The method of manufacturing a semiconductor device (101, 101a, 102) according to claim 13, wherein the step of forming the metal electrode film (87S) is performed by a plating method.
  15.  前記金属電極膜(87S)を形成する工程は、シャドウマスクを介した堆積法によって行われる、請求項13に記載の半導体装置(101、101a、102)の製造方法。 The method of manufacturing a semiconductor device (101, 101a, 102) according to claim 13, wherein the step of forming the metal electrode film (87S) is performed by a deposition method through a shadow mask.
  16.  第1導電型を有する半導体基板(10)と、前記半導体基板(10)上に設けられ、ワイドバンドギャップ半導体から作られ、前記第1導電型を有するドリフト層(20)と、前記ドリフト層(20)上に設けられ、前記第1導電型と異なる第2導電型を有する複数の第1ウェル領域(30)と、前記第1ウェル領域(30)の各々の上に設けられ、前記第1ウェル領域(30)によって前記ドリフト層(20)から分離され、前記第1導電型を有するソース領域(40)と、前記第1ウェル領域(30)とゲート絶縁膜(50)を介して対向する分離電極(82)と、前記ドリフト層(20)上に設けられ、前記第2導電型を有する少なくとも1つの第2ウェル領域(31)と、前記半導体基板(10)に電気的に接続された第3電極(85)と、を形成する工程をさらに備え、
     前記第1電極(80)は、前記ソース領域(40)に電気的に接続され、かつ、前記第3電極(85)との間で、前記複数の第1ウェル領域(30)の間における前記ドリフト層(20)を介してユニポーラ通電が可能なダイオード特性を有し、
     前記第2電極(81)は、前記第2ウェル領域(31)に電気的に接続され、かつ、前記第1電極(80)から分離されており、
     前記第2電極(81)へ前記第1電極(80)の電位と異なる電位を加える工程は、前記第2電極(81)と前記第3電極(85)との間に、前記第1電極(80)と前記第3電極(85)との間の電圧よりも低い電圧を加える工程を含む、
    請求項13から15のいずれか1項に記載の半導体装置(101、101a、102)の製造方法。
    A semiconductor substrate (10) having a first conductivity type, a drift layer (20) provided on the semiconductor substrate (10) and made of a wide band gap semiconductor, having the first conductivity type, and the drift layer ( 20) provided on each of a plurality of first well regions (30) having a second conductivity type different from the first conductivity type and the first well regions (30), and The source region (40) separated from the drift layer (20) by the well region (30) and having the first conductivity type is opposed to the first well region (30) via the gate insulating film (50). An isolation electrode (82) and at least one second well region (31) provided on the drift layer (20) and having the second conductivity type, and electrically connected to the semiconductor substrate (10) Third electrode (8 ) And further comprises a step of forming a
    The first electrode (80) is electrically connected to the source region (40), and between the plurality of first well regions (30) between the third electrode (85) and the first electrode (80). It has a diode characteristic that allows unipolar conduction through the drift layer (20),
    The second electrode (81) is electrically connected to the second well region (31) and separated from the first electrode (80);
    The step of applying a potential different from the potential of the first electrode (80) to the second electrode (81) includes the first electrode (85) between the second electrode (81) and the third electrode (85). 80) and applying a voltage lower than the voltage between the third electrode (85),
    The method for manufacturing a semiconductor device (101, 101a, 102) according to any one of claims 13 to 15.
PCT/JP2016/055982 2015-06-04 2016-02-29 Semiconductor device and method for manufacturing semiconductor device WO2016194419A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-113871 2015-06-04
JP2015113871A JP2018120879A (en) 2015-06-04 2015-06-04 Semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2016194419A1 true WO2016194419A1 (en) 2016-12-08

Family

ID=57441150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055982 WO2016194419A1 (en) 2015-06-04 2016-02-29 Semiconductor device and method for manufacturing semiconductor device

Country Status (2)

Country Link
JP (1) JP2018120879A (en)
WO (1) WO2016194419A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110337725A (en) * 2017-02-24 2019-10-15 三菱电机株式会社 Manufacturing silicon carbide semiconductor device and power-converting device
CN111201611A (en) * 2017-09-08 2020-05-26 克里公司 Power switching device with high DV/DT capability and method of making such device
CN111480239A (en) * 2017-12-19 2020-07-31 三菱电机株式会社 Silicon carbide semiconductor device and power conversion device
WO2023157626A1 (en) * 2022-02-16 2023-08-24 ローム株式会社 Semiconductor device
DE112018001001B4 (en) 2017-02-24 2024-06-13 Mitsubishi Electric Corporation SILICON CARBIDE SEMICONDUCTOR DEVICE AND POWER CONVERTER

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017701A (en) * 2001-07-04 2003-01-17 Denso Corp Semiconductor device
JP2007318031A (en) * 2006-05-29 2007-12-06 Central Res Inst Of Electric Power Ind Manufacturing method of silicon carbide semiconductor element
JP2010050211A (en) * 2008-08-20 2010-03-04 Denso Corp Method of manufacturing semiconductor device
WO2010125661A1 (en) * 2009-04-30 2010-11-04 三菱電機株式会社 Semiconductor device and method for manufacturing the same
JP2015065250A (en) * 2013-09-25 2015-04-09 富士電機株式会社 Method and device for inspecting silicon carbide semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017701A (en) * 2001-07-04 2003-01-17 Denso Corp Semiconductor device
JP2007318031A (en) * 2006-05-29 2007-12-06 Central Res Inst Of Electric Power Ind Manufacturing method of silicon carbide semiconductor element
JP2010050211A (en) * 2008-08-20 2010-03-04 Denso Corp Method of manufacturing semiconductor device
WO2010125661A1 (en) * 2009-04-30 2010-11-04 三菱電機株式会社 Semiconductor device and method for manufacturing the same
JP2015065250A (en) * 2013-09-25 2015-04-09 富士電機株式会社 Method and device for inspecting silicon carbide semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110337725A (en) * 2017-02-24 2019-10-15 三菱电机株式会社 Manufacturing silicon carbide semiconductor device and power-converting device
CN110337725B (en) * 2017-02-24 2022-08-05 三菱电机株式会社 Silicon carbide semiconductor device and power conversion device
US11646369B2 (en) 2017-02-24 2023-05-09 Mitsubishi Electric Corporation Silicon carbide semiconductor device having a conductive layer formed above a bottom surface of a well region so as not to be in ohmic connection with the well region and power converter including the same
DE112018001001B4 (en) 2017-02-24 2024-06-13 Mitsubishi Electric Corporation SILICON CARBIDE SEMICONDUCTOR DEVICE AND POWER CONVERTER
CN111201611A (en) * 2017-09-08 2020-05-26 克里公司 Power switching device with high DV/DT capability and method of making such device
CN111201611B (en) * 2017-09-08 2023-08-22 沃孚半导体公司 Power switching device with high DV/DT capacity and method for manufacturing such a device
CN111480239A (en) * 2017-12-19 2020-07-31 三菱电机株式会社 Silicon carbide semiconductor device and power conversion device
CN111480239B (en) * 2017-12-19 2023-09-15 三菱电机株式会社 Silicon carbide semiconductor device and power conversion device
WO2023157626A1 (en) * 2022-02-16 2023-08-24 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2018120879A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6058228B1 (en) Semiconductor device and manufacturing method of semiconductor device
JP5940235B1 (en) Semiconductor device
US8492836B2 (en) Power semiconductor device
KR101230680B1 (en) Semiconductor device and method for manufacturing the same
US8564028B2 (en) Low on-resistance wide band gap semiconductor device and method for producing the same
JP6641488B2 (en) Semiconductor device
JP6702911B2 (en) Semiconductor device and manufacturing method thereof
JP6719090B2 (en) Semiconductor element
JP5692227B2 (en) Power semiconductor device
JP5321377B2 (en) Power semiconductor device
KR20120125401A (en) Power semiconductor device and method for manufacturing same
JP6560444B2 (en) Semiconductor device
KR20130023278A (en) Power semiconductor device
JP2018206873A (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
WO2016194419A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2015095578A (en) Semiconductor device and manufacturing method of the same
US10164083B2 (en) Silicon carbide semiconductor device and manufacturing method therefor
JP6589263B2 (en) Semiconductor device
JP2021044274A (en) Semiconductor device
WO2024028996A1 (en) Silicon carbide semiconductor device, power module device, power conversion device, and mobile body
JP2021150451A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP