WO2016194185A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2016194185A1
WO2016194185A1 PCT/JP2015/066088 JP2015066088W WO2016194185A1 WO 2016194185 A1 WO2016194185 A1 WO 2016194185A1 JP 2015066088 W JP2015066088 W JP 2015066088W WO 2016194185 A1 WO2016194185 A1 WO 2016194185A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion device
refrigeration cycle
superheat degree
cycle apparatus
compressor
Prior art date
Application number
PCT/JP2015/066088
Other languages
French (fr)
Japanese (ja)
Inventor
秀弥 平野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/066088 priority Critical patent/WO2016194185A1/en
Publication of WO2016194185A1 publication Critical patent/WO2016194185A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus that controls an opening degree of a throttle device provided in a refrigerant circuit based on a target superheat degree.
  • the refrigeration cycle apparatus includes, for example, a compressor, a condenser, a throttling device, and an evaporator, and includes a refrigerant circuit configured by connecting these via a refrigerant pipe.
  • the refrigeration cycle apparatus controls the opening degree of the throttle device so that the superheat degree of the refrigerant supplied to the suction side of the compressor becomes a preset value (target superheat degree) (for example, Patent Document 1).
  • target superheat degree is determined from the viewpoint of the energy efficiency of the refrigeration cycle apparatus and the liquid back.
  • the degree of superheat on the suction side of the compressor is too high, it is assumed that the amount of refrigerant passing through the evaporator is reduced accordingly, and the energy efficiency of the refrigeration cycle apparatus is reduced. Further, when the degree of superheat on the suction side of the compressor is too low, the amount of liquid refrigerant supplied to the suction side of the compressor increases, and the possibility that the compressor will fail increases. Therefore, in the refrigeration cycle device, when the degree of superheat is greater than the target superheat degree, the opening degree of the expansion device is increased, and when the degree of superheat is smaller than the target superheat degree, the opening degree of the expansion device is decreased. Control is taking place.
  • the expansion device of the refrigeration cycle apparatus determines the capacity of the expansion device in consideration of, for example, the circulation amount of the refrigerant in the refrigerant circuit when operating at the maximum capacity.
  • the larger the capacity of the expansion device the greater the change in the refrigerant state (pressure, etc.) before and after the opening degree control of the expansion device, and the greater the influence on the degree of superheat. This influence on the degree of superheat becomes more remarkable as the refrigeration cycle apparatus is operated at a lower capacity. This is because the opening degree control of the expansion device needs to be finely adjusted as the engine is operated at a lower capacity.
  • the operation of the expansion device is not stable when the superheat degree is brought close to the target superheat degree when operating at a low capacity. For example, when operating at a lower capacity, if the opening degree of the expansion device is increased so as to bring the superheat degree closer to the target superheat degree, the superheat degree greatly exceeds the target superheat degree, and the expansion device is opened. The degree will be reduced.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus that can ensure the operational stability of the expansion device.
  • a refrigeration cycle apparatus includes a compressor, a condenser connected to a discharge side of the compressor, a first flow path connected to a downstream side of the condenser in a refrigerant flow direction, and a first flow A branch portion including a plurality of second flow paths branched from the path; a throttle device provided in each second flow path; and a downstream side of the plurality of second flow paths in the refrigerant flow direction.
  • the evaporator connected to the downstream side in the refrigerant flow direction of the junction, and the other connected to the suction side of the compressor.
  • a control device that performs opening degree control of the device.
  • the first flow path connected to the downstream side of the condenser in the refrigerant flow direction, and a branch portion including a plurality of second flow paths branched from the first flow path And a throttle device provided in each second flow path, and a merging portion connected to the downstream side in the refrigerant flow direction of the plurality of second flow paths,
  • the operational stability of the diaphragm device can be ensured over a wide range.
  • FIG. 1A is a refrigerant circuit configuration diagram of a refrigeration cycle apparatus 100 according to the present embodiment.
  • a schematic configuration of the refrigeration cycle apparatus 100 will be described with reference to FIG. 1A.
  • the refrigeration cycle apparatus 100 can be applied to, for example, a refrigeration apparatus and an air conditioner.
  • a case where the refrigeration cycle apparatus 100 is a refrigeration apparatus will be described as an example.
  • the refrigeration cycle apparatus 100 includes a compressor 1 that is used to convey a refrigerant, a condenser 2 that condenses the refrigerant, a throttling device 3 that depressurizes the refrigerant, and an evaporator 4 that evaporates the refrigerant. .
  • the refrigeration cycle apparatus 100 includes a branch portion 5 that branches the refrigerant that has flowed out of the condenser 2 and a junction portion 6 where the refrigerant branched by the branch portion 5 joins.
  • the refrigeration cycle apparatus 100 includes a blower 2 ⁇ / b> A that supplies air to the condenser 2 and a blower 4 ⁇ / b> A that supplies air to the evaporator 4.
  • the refrigeration cycle apparatus 100 includes a pressure sensor 11 that detects the pressure of refrigerant flowing on the suction side of the compressor 1, a temperature sensor 12 that detects the temperature of refrigerant flowing on the suction side of the compressor 1, and a pressure signal from the pressure sensor 11. And a control device 10 that calculates the degree of superheat using the temperature signal of the temperature sensor 12 and controls the opening degree of the expansion device 3 based on the calculated degree of superheat.
  • the compressor 1 compresses and discharges a gas refrigerant to high temperature and high pressure.
  • the compressor 1 has a refrigerant discharge side connected to the condenser 2 and a refrigerant suction side connected to the evaporator 4.
  • the condenser 2 (heat radiator) has an upstream side connected to the discharge side of the compressor 1 and a downstream side connected to the branch portion 5.
  • the condenser 2 can be constituted by, for example, a heat exchanger that exchanges heat between refrigerant and air.
  • the expansion device 3 depressurizes the refrigerant, and can be constituted by, for example, an electronic expansion valve that can adjust the opening degree.
  • the expansion device 3 includes a plurality of devices.
  • the aperture device 3 includes an aperture device 3A and an aperture device 3B.
  • the case where the refrigeration cycle apparatus 100 includes two throttle devices will be described as an example.
  • the present invention is not limited to this, and may be, for example, three or more.
  • the evaporator 4 evaporates the refrigerant into the gas refrigerant in the first connection state and the second connection state.
  • the evaporator 4 can be comprised with the heat exchanger which heat-exchanges a refrigerant
  • the branch portion 5 branches the refrigerant that has flowed out of the condenser 2.
  • the branch portion 5 can be constituted by a refrigerant pipe or the like.
  • the branch portion 5 includes a first flow path 5A whose upstream side is connected to the condenser 2, and a second flow path 5B1 and a second flow path 5B2 branched from the first flow path 5A.
  • 2nd flow path 5B1 and 2nd flow path 5B2 the upstream side is connected to 5 A of 1st flow paths, and the downstream side is connected to the junction part 6.
  • the second flow path 5B1 is provided with the expansion device 3A
  • the second flow path 5B2 is provided with the expansion device 3B.
  • the number of second flow paths corresponding to the number of expansion devices is provided.
  • the second flow path includes a second flow path 5B1 and a second flow path 5B2.
  • the junction 6 is a portion through which the refrigerant that has passed through the expansion device 3 flows.
  • the merging portion 6 has an upstream side connected to the second flow path 5B1 and the second flow path 5B2, and a downstream side connected to the evaporator 4.
  • the blower 2A is attached to the condenser 2, and the blower 4A is attached to the evaporator 4.
  • the refrigeration cycle apparatus 100 is an air conditioner, for example, the blower 2A is mounted on the outdoor unit together with the condenser 2, and the blower 4A is mounted on the indoor unit together with the evaporator 4.
  • the blower 2 ⁇ / b> A is used to supply air to the condenser 2 and promote heat exchange between the refrigerant flowing through the condenser 2 and air.
  • the blower 4 ⁇ / b> A is used to supply air to the evaporator 4 and promote heat exchange between the refrigerant flowing through the evaporator 4 and the air.
  • the pressure sensor 11 is a sensor provided in a refrigerant pipe connected to the suction side of the compressor 1, for example.
  • the pressure sensor 11 detects the pressure of the refrigerant flowing on the suction side of the compressor 1.
  • the pressure sensor 11 outputs a pressure signal to the control device 10.
  • the temperature sensor 12 is provided, for example, in a refrigerant pipe connected to the suction side of the compressor 1.
  • the temperature sensor 12 detects the temperature of the refrigerant flowing on the suction side of the compressor 1.
  • the temperature sensor 12 outputs a temperature signal to the control device 10.
  • the control device 10 is connected to the pressure sensor 11 and the temperature sensor 12, and can be configured by, for example, a microcomputer.
  • the control device 10 can calculate the degree of superheat on the suction side of the compressor 1 based on the pressure signal of the pressure sensor 11 and the temperature signal of the temperature sensor 12. And the control apparatus 10 performs opening degree control of the expansion
  • FIG. 1B is an explanatory diagram of the control device 10 included in the refrigeration cycle apparatus 100 according to the present embodiment.
  • the configuration and the like of the control device 10 will be described in detail with reference to FIG. 1B.
  • the control device 10 uses information related to the load required for the refrigeration cycle device 100 to cool the cooling target when determining the opening degree of the expansion device 3.
  • the control device 10 uses the degree of superheat on the suction side of the compressor 1 as information related to the load. For example, since the first target superheat degree X1 and the expansion device 3A are associated with each other, when the superheat degree on the suction side of the compressor 1 is equal to or less than the first target superheat degree X1, the expansion device 3A is Will open.
  • the expansion device 3B since the expansion device 3B is associated with the second target superheat degree X2 that is larger than the first target superheat degree X1, it does not open even if the superheat degree reaches the first target superheat degree X1. Even when the expansion device 3A is fully opened, the increase in the superheat degree continues, and when the superheat degree reaches the second target superheat degree X2, the expansion device 3B is opened. That is, if the expansion of the capacity of the refrigeration cycle apparatus 100 cannot be covered only by opening the expansion device 3A, the expansion device 3B is also opened.
  • the control device 10 includes a superheat degree calculation unit 10A that calculates the degree of superheat, a target superheat degree switching unit 10B1 that determines the opening degree of the expansion device 3, and an opening / closing operation that calculates the opening / closing operation frequency of the expansion devices 3A and 3B.
  • An operation frequency calculation unit 10B2 and a storage unit 10C in which information such as a target superheat degree is stored in advance are provided.
  • the control device 10 includes a throttle device control unit 10D that controls the opening degree of the throttle device 3, a compressor control unit 10E that controls the compressor 1, and a blower that controls the blower 2A and the blower 4A. And a control unit 10F.
  • the superheat degree calculation unit 10 ⁇ / b> A calculates the superheat degree on the suction side of the compressor 1 based on the pressure signal of the pressure sensor 11 and the temperature signal of the temperature sensor 12.
  • the superheat degree calculated by the superheat degree calculation unit 10A is used by the target superheat degree switching unit 10B1.
  • the target superheat degree switching unit 10B1 has a function of switching a target superheat degree preset in each expansion device 3.
  • the target superheat degree switching unit 10B1 sets the one that operates based on the first target superheat degree X1 as the expansion device 3A, and restricts the one that operates based on the second target superheat degree X2.
  • Device 3B is set.
  • the target superheat degree switching unit 10B1 uses the second target superheat degree X2 when the superheat degree calculated by the superheat degree calculation unit 10A increases and reaches the second target superheat degree X2, and It is decided to use both the diaphragm device 3A and the diaphragm device 3B. At this time, the opening degree of the expansion device 3A is fully open. Therefore, the target superheat degree switching unit 10B1 determines the opening degree of the expansion device 3B so that the superheat degree calculated by the superheat degree calculation unit 10A becomes the second target superheat degree X2.
  • the opening / closing operation frequency calculation unit 10B2 calculates the frequency of the opening / closing operation by the expansion device 3A and the expansion device 3B. For example, when the opening degree of the expansion device 3A changes once, the opening / closing operation frequency calculation unit 10B2 adds once as the number of operations of the expansion device 3A.
  • the target superheat degree switching unit 10B1 opens the expansion devices 3A and 3B so that the opening / closing operation frequency of the expansion device 3A calculated by the open / close operation frequency calculation unit 10B2 and the opening / closing operation frequency of the expansion device 3B are leveled. Determine the degree.
  • the expansion device 3A set to the first target superheat degree X1 is the expansion device 3B set to the second target superheat degree X2. Open before. For this reason, unless the switching of the target superheat degree is performed for each expansion device 3, only the frequency of use of the expansion device 3A increases, and the expansion device 3A is likely to break down.
  • the target superheat degree switching unit 10B1 performs switching such as setting the expansion device 3A to the second target superheat degree X2 and setting the expansion device 3B to the first target superheat degree X1 at a preset timing. This is performed to suppress the failure of the expansion device 3. As a result, the frequency of opening / closing operation of the expansion device 3A only increases, and it is possible to avoid a failure due to concentration of a load on the expansion device 3A.
  • the target superheat degree corresponding to each expansion device 3 is stored in advance in the storage unit 10C.
  • two target superheat degrees first target superheat degree X1 and second target superheat degree X2 are stored.
  • the storage unit 10C also stores information related to the opening / closing operation of the diaphragm device 3A and the diaphragm device 3B.
  • the expansion device control unit 10D performs opening degree control of the expansion device 3A and the expansion device 3B so that the target superheat degree switching unit 10B1 reaches the target superheat degree set in each expansion device 3.
  • the expansion device control unit 10D controls, for example, an actuator that drives the valve body of the expansion device 3.
  • the expansion device control unit 10D adjusts the expansion device 3 so that the difference between the preset target superheat degree and the superheat degree calculated by the superheat degree calculation unit 10A becomes small. Execute the opening control.
  • the opening degree control of the expansion device 3A is executed based on the difference between the superheat degree and the first target superheat degree X1. Further, when the superheat degree reaches the second target superheat degree X2, the opening degree control of the expansion device 3B is executed based on the difference between the superheat degree and the second target superheat degree X2.
  • the control software for the diaphragm apparatus 3A and the control software for the diaphragm apparatus 3B are the same. Therefore, if the difference between the superheat degree and the target superheat degree is the same, the opening degree is the same.
  • the compressor control unit 10E controls the number of revolutions of the compressor 1 according to the capacity required by the refrigeration cycle apparatus 100.
  • the blower control unit 10 ⁇ / b> F controls the rotation speeds of the blower 2 ⁇ / b> A and the blower 4 ⁇ / b> A according to the capacity required for the refrigeration cycle apparatus 100.
  • FIG. 2 is an explanatory diagram of the relationship between the change in the degree of superheat of the refrigeration cycle apparatus 100 according to the present embodiment and the opening degree of the expansion device 3.
  • the vertical axis indicates the degree of superheat on the suction side of the compressor 1
  • the horizontal axis indicates the capacity of the refrigeration cycle apparatus 100. That is, the curve in FIG. 2A shows the change in the degree of superheat when the capacity of the refrigeration cycle apparatus 100 is increased with time.
  • the vertical axis indicates the opening degree of the expansion device 3B
  • the horizontal axis is the same as that in FIG.
  • FIG. 2C the vertical axis indicates the opening of the expansion device 3A, and the horizontal axis is the same as in FIG.
  • the X1 in FIG. 2A indicates a first target superheat degree X1.
  • the first target superheat degree X1 is a superheat degree set for the expansion device 3A.
  • the second target superheat degree X2 is a superheat degree set for the expansion device 3B.
  • the control device 10 executes the opening degree control of the expansion device 3A so that the superheat degree does not deviate from the first target superheat degree X1. If the capacity of the refrigeration cycle apparatus 100 increases, the control device 10 increases the opening of the expansion device 3A so that the superheat degree does not exceed the first target superheat degree X1. Go.
  • the control device 10 executes the opening degree control of the expansion device 3B so that the superheat degree does not depart from the second target superheat degree X2.
  • the degree of superheat is greater than the first target degree of superheat X1, and the expansion device 3A remains fully open. Therefore, if the capacity of the refrigeration cycle apparatus 100 increases, the control device 10 increases the opening degree of the expansion device 3B so that the superheat degree exceeds the second target superheat degree X2. Therefore, the opening degree of the expansion device 3B is increased.
  • a plurality of target superheat degrees are set according to the capacity required for the refrigeration cycle apparatus 100.
  • the required capacity is a load required for the refrigeration cycle apparatus 100 to cool the object to be cooled.
  • this load increases as the temperature of the cooling target increases.
  • the user inputs a temperature controller or the like and sets the temperature to be cooled to be changed from the first temperature to the second temperature.
  • the refrigeration cycle apparatus 100 increases the capacity so that the temperature to be cooled can be lowered from the first temperature to the second temperature.
  • the control device 10 In order to increase the capacity of the refrigeration cycle apparatus 100, for example, when the rotational speed of the compressor 1 is increased, the control device 10 also increases the degree of superheat on the suction side of the compressor 1 and increases the opening degree of the expansion device 3. Execute control to Actually, the rotational speed of the blower 4A may be changed, but here, for convenience of explanation, a case where the rotational speed of the compressor 1 is increased when the capacity of the refrigeration cycle apparatus 100 is increased will be described.
  • the control apparatus 10 first increases only the opening degree of the expansion device 3A and keeps the expansion device 3B closed. This is because the control device 10 sets the first target superheat degree X1 for the expansion device 3A, and sets the second target superheat degree X2 larger than the first target superheat degree X1 for the expansion device 3B. This is because.
  • the control device 10 further increases the rotation speed of the compressor 1 and further increases the opening of the expansion device 3A, for example, in order to further increase the capacity of the refrigeration cycle device 100. Increase (see area A in FIG. 2).
  • the opening degree of the expansion device 3A is controlled such that the calculated superheat degree is equal to the preset first target superheat degree X1.
  • the case where not only the expansion device 3A but also the expansion device 3B is opened is a case where the calculated superheat degree reaches a second target superheat degree X2 which is larger than the first target superheat degree X1 (FIG. 2). (See area C).
  • the opening degree of the expansion device 3A and the expansion device 3B increases with time in the process of increasing the capacity of the refrigeration cycle apparatus 100.
  • capacitance of a expansion apparatus is large and fine adjustment of a superheat degree is carried out.
  • the refrigeration cycle apparatus 100 includes the branching unit 5, the expansion device 3, and the merging unit 6, and can stabilize the opening / closing operation.
  • the operation when the capacity of the refrigeration cycle apparatus 100 is increased has been mainly described.
  • the operation when the capacity is decreased is reversed. That is, in the case where the expansion device 3A is fully opened and the opening degree of the expansion device 3B is controlled, if the capacity is reduced, the expansion device 3B is closed and the expansion device 3B is fully closed. Reduce the opening of 3A.
  • FIG. 3 is an explanatory diagram of the operation and the like when the refrigeration cycle apparatus 100 according to the present embodiment changes the target superheat degree of the expansion device 3.
  • 3 (a) corresponds to FIG. 2 (a)
  • FIG. 3 (b) corresponds to FIG. 2 (b)
  • FIG. 3 (c) corresponds to FIG. 2 (c). That is, in FIG. 3A, the vertical axis indicates the degree of superheat on the suction side of the compressor 1, and the horizontal axis indicates the capacity of the refrigeration cycle apparatus 100. That is, the curve of FIG. 3A shows the change in the degree of superheat when the capacity of the refrigeration cycle apparatus 100 is increased with time.
  • FIG. 3A shows the change in the degree of superheat when the capacity of the refrigeration cycle apparatus 100 is increased with time.
  • the vertical axis indicates the opening degree of the expansion device 3B, and the horizontal axis is the same as that in FIG.
  • the vertical axis indicates the opening of the expansion device 3A
  • the horizontal axis is the same as FIG. 3A.
  • the opening / closing operation frequency calculation unit 10B2 calculates the frequency of the opening / closing operation of the expansion device 3A and the expansion device 3B. Then, the target superheat degree switching unit 10B1 is configured so that the opening / closing operation frequency of the expansion device 3A calculated by the opening / closing operation frequency calculation unit 10B2 and the opening / closing operation frequency of the expansion device 3B are equalized.
  • the target superheat degree of 3B is set. That is, when the opening / closing operation frequency of the expansion device 3A having a low target superheat degree increases, the control device 10 changes the target superheat degree of the expansion device 3A to a larger one. That is, the first target superheat degree X1 is set in the expansion device 3B, and the second target superheat degree X2 is set in the expansion device 3A.
  • the controller 10 first increases only the opening of the expansion device 3B and closes the expansion device 3A.
  • the control device 10 further increases the rotation speed of the compressor 1 and further increases the opening of the expansion device 3B, for example, in order to further increase the capacity of the refrigeration cycle device 100. Increase (see area A in FIG. 3).
  • the opening degree of the expansion device 3B is controlled so that the calculated superheat degree is equal to the preset first target superheat degree X1.
  • FIG. 4 is an explanatory diagram of operations and the like when the normal operation throttle device (throttle device 3A) of Modification 1 of the refrigeration cycle apparatus 100 according to the present embodiment fails.
  • FIG. 5 is an explanatory diagram of the operation and the like of the backup diaphragm device (throttle device 3B) of a modification of the refrigeration cycle apparatus 100 according to the present embodiment.
  • 4 (a) and 5 (a) correspond to FIG. 2 (a)
  • FIG. 4 (b) and FIG. 5 (b) correspond to FIG. 2 (b)
  • FIG. 4 (c) and FIG. (C) corresponds to FIG. 2 (c). That is, in FIG. 4A and FIG.
  • the vertical axis indicates the degree of superheat on the suction side of the compressor 1, and the horizontal axis indicates the capacity of the refrigeration cycle apparatus 100.
  • the curve of Fig.4 (a) and Fig.5 (a) has shown the change of the superheat degree when the capability of the refrigerating-cycle apparatus 100 is increased with time.
  • the vertical axis indicates the opening degree of the expansion device 3B, and the horizontal axis is the same as in FIGS. 4 (a) and 5 (a).
  • 4 (c) and 5 (c) the vertical axis indicates the opening of the expansion device 3A, and the horizontal axis is the same as in FIGS. 4 (a) and 5 (a).
  • the device used for normal operation is the expansion device 3A
  • the device used for backup is the expansion device 3B.
  • the opening degree of the expansion device 3A is controlled so that the superheat degree becomes the first target superheat degree X1.
  • the calculated degree of superheat increases (see area D in FIG. 5A).
  • the control device 10 determines that the expansion device 3A has failed and executes the opening degree control of the expansion device 3B.
  • the expansion device 3B performs opening degree control so that the calculated target superheat degree becomes the second target superheat degree X2 (see area E in FIG. 5A).
  • the control device 10 of the refrigeration cycle apparatus 100 determines the failure of the expansion device 3A based on the calculated superheat degree and the second target superheat degree X2. For this reason, the cost increase of the refrigeration cycle apparatus 100 can be suppressed.
  • FIG. 6 is a refrigerant circuit configuration diagram of Modification 2 of the refrigeration cycle apparatus 100 according to the present embodiment.
  • a modification 2 of the refrigeration cycle apparatus 100 will be described with reference to FIG.
  • the second modification is different from the refrigeration cycle apparatus 100 according to the present embodiment in that the second flow path 5B3 is added to the branching section 5 and the expansion device 3C is added to the expansion device 3.
  • Other configurations are the same.
  • the opening / closing operations of the expansion device 3A and the expansion device 3B are the same as those of the refrigeration cycle apparatus 100 according to the present embodiment.
  • the refrigeration cycle apparatus 100 includes a compressor 1, a condenser 2 connected to the discharge side of the compressor 1, and a first flow connected to the downstream side of the condenser 2 in the refrigerant flow direction.
  • a branch section 5 including a path 5A, a second flow path 5B1 and a second flow path 5B2 branched from the first flow path 5A, and a throttling device 3 provided in each second flow path;
  • the merging portion 6 connected to the downstream side in the refrigerant flow direction of the second flow path 5B1 and the second flow path 5B2, and one is connected to the downstream side in the refrigerant flow direction of the merging section 6, and the other is the compressor 1.
  • the evaporator 4 connected to the suction side of the compressor 1 and the control device 10 for controlling the opening degree of each expansion device 3 based on the target superheat degree on the suction side of the compressor 1 are provided.
  • FIG. 7 is a refrigerant circuit configuration diagram of a conventional refrigeration cycle apparatus 200.
  • FIG. 8 is an explanatory diagram of the relationship between the change in the degree of superheat of the conventional refrigeration cycle apparatus 200 and the opening of the expansion device.
  • FIG. 8A corresponds to FIG. 2A
  • FIG. 8B corresponds to FIG. 2B and FIG.
  • the horizontal axis represents time, unlike FIGS.
  • the conventional refrigeration cycle apparatus 200 has a configuration in which one expansion device 3 is arranged for one evaporator 4. Therefore, the opening / closing operation of the expansion device 3 is not stable in a state where the load generated in the cooling target is small and the rotation speed of the compressor 1 is low. Specifically, the capacity of the expansion device 3 is increased so that the single expansion device 3 can cover the maximum capacity of the refrigeration cycle apparatus 200. Therefore, when the opening degree of the expansion device 3 is adjusted, the influence of the degree of superheat tends to be large.
  • the expansion device 3 when the expansion device 3 performs the opening degree control in the state where the refrigeration cycle apparatus 200 is operating with a low capacity, the degree of superheat tends to greatly deviate from the target degree of superheat ( (See arrow AR1 in FIG. 8A). For example, for this reason, the expansion device 3 executes control for reducing the opening degree even though the opening degree is increased, and the operation is not stable (see the arrow AR2 in FIG. 8B).
  • the refrigeration cycle apparatus 100 according to the present embodiment has the above-described configuration, it is possible to ensure the operational stability of the expansion device 3 in a wide range of operating capacity of the refrigeration cycle apparatus 100. it can.
  • both the expansion device 3A and the expansion device 3B are set to one target superheat degree and the same control software is used.
  • the superheat degree cannot be finely adjusted as in the conventional refrigeration cycle apparatus.
  • a means for setting both the expansion device 3A and the expansion device 3B to one target superheat degree and providing individual control software for each of the expansion device 3A and the expansion device 3B can be considered. That is, individual control software is provided for each expansion device 3 so that the operation of each expansion device 3 is not necessarily the same, so that the superheat degree can be finely adjusted. However, in this case, individual control software is required for each combination of the diaphragm devices 3. Here, the combination is determined by the capacity, specifications, number, etc. of the diaphragm device 3.
  • the control software executes, for example, calculation such as how to set the opening degree of the expansion device 3 at a certain degree of superheat.
  • a plurality of target superheat degrees (first target superheat degree X1 and second target superheat degree X2) are provided to be shifted, and each target superheat degree is set for each expansion device. ing. For this reason, it is possible to finely adjust the superheat degree only by providing one control software. Thereby, refrigeration cycle apparatus 100 concerning this embodiment can aim at unification of control software used for control device 10, and can control an increase in cost.
  • the control device 10 of the refrigeration cycle apparatus 100 is configured such that the number of the expansion devices 3 to be opened varies depending on the target degree of superheat. For example, when the target superheat degree is the first target superheat degree X1, the expansion device 3A or the expansion device 3B is opened, and when the target superheat degree is the second target superheat degree X2, Both the diaphragm device 3A and the diaphragm device 3B are opened. More specifically, the control device 10 of the refrigeration cycle apparatus 100 according to the present embodiment includes a target superheat degree (first target superheat degree X1 and second target superheat degree) used for execution of opening / closing control of the expansion device 3.
  • a target superheat degree first target superheat degree X1 and second target superheat degree
  • the number of the expansion devices 3 that are opened differs depending on the magnitude of the target superheat degree. For example, when the expansion device 3A executes control based on the first target superheat degree X1, and the expansion device 3B executes control based on the second target superheat degree X2, the control device 10 As the rotational speed of the compressor 1 increases, first, the compressor 3A is opened.
  • the superheat degree reaches the first target superheat degree X1 as the rotation speed of the compressor 1 increases, but the throttle device is gradually increased so that the superheat degree does not exceed the first target superheat degree X1.
  • the expansion device 3B is fully closed. Even when the expansion device 3A is fully opened, if the heating degree increases, the expansion device 3B is then opened. That is, the control device 10 opens the expansion device 3B when the superheat degree reaches the second target superheat degree X2, and the control device 10 sets the expansion device 3B so that the superheat degree does not exceed the second target superheat degree X2. Increase the opening.
  • the control device 10 of the refrigeration cycle apparatus 100 switches the target superheat degree set for each expansion device 3 so that the opening / closing operation frequency of each expansion device 3 is leveled. Is. That is, when considering the case of gradually increasing the capacity of the refrigeration cycle apparatus 100, the expansion device 3A set to the first target superheat degree X1 is the throttle set to the second target superheat degree X2. Open before device 3B. For this reason, unless switching of the target superheat degree is performed for each expansion device 3, only the use frequency of the expansion device 3A increases, and the possibility that the expansion device 3A breaks down increases.
  • the refrigeration cycle apparatus 100 executes, for example, setting the expansion device 3A to the second target superheat degree X2, setting the expansion device 3B to the first target superheat degree X1, and the like. It is possible to suppress the failure of the diaphragm device 3.
  • the control device 10 of the refrigeration cycle apparatus 100 calculates the opening / closing operation frequency of each expansion device 3 when the compressor 1 is stopped, and switches the target superheat degree from among the plurality of expansion devices. Is determined.
  • the control device 10 of the refrigeration cycle apparatus 100 according to the present embodiment calculates the opening / closing operation frequency of the expansion device 3A and the expansion device 3B, and the timing of the compressor 1 is reflected as the timing to reflect the calculated opening / closing operation frequency. The stop time is used.
  • the target superheat degree of the expansion device 3A and the target superheat degree of the expansion device 3B are interchanged, and the operating frequencies of the expansion device 3A and the expansion device 3B are leveled at an appropriate timing. be able to.
  • the control device 10 of the refrigeration cycle apparatus 100 opens or closes another throttling device that is fully closed or fully open after fully opening or closing one of the plurality of throttling devices.
  • the expansion devices 3 have the same capacity.
  • the control device 10 opens the expansion device 3B after fully opening the expansion device 3A. As described above, since one of the throttling devices 3 is fully opened and the other throttling devices 3 are opened, it is possible to avoid performing calculations for determining the opening degrees of the plurality of throttling devices 3 in parallel. And the calculation load of the control device 10 can be suppressed.
  • the refrigeration cycle apparatus 100 includes at least two or more normal operation throttle devices that are used during normal operation, and at least one backup throttle device that is closed during normal operation, When at least one of the normal operation throttle devices fails and cannot be opened, the control device 10 opens the backup throttle device and continues the operation of the compressor 1. Thereby, the refrigeration cycle apparatus 100 can continue the operation without the emergency stop of the compressor 1 even if any of the expansion devices 3 breaks down.
  • the refrigeration cycle apparatus 100 further includes a temperature sensor 12 that detects a temperature on the suction side of the compressor 1 and a pressure sensor 11 that detects a pressure on the suction side of the compressor 1, and includes a control device 10.
  • the pressure signal of the pressure sensor 11 and the temperature signal of the temperature sensor 12 are output, and the opening degree control of each expansion device 3 is executed based on the target superheat degree and the superheat degree based on the pressure signal and the temperature signal.
  • the control device 10 calculates the degree of superheat based on the pressure signal from the pressure sensor 11 and the temperature signal from the temperature sensor 12.
  • the expansion device 3A in which the first target superheat degree X1 is set is opened, and the second target superheat degree X2 is reached.
  • the expansion device 3B set to the second target superheat degree X2 is also opened.
  • the opening / closing operation frequency calculation unit 10B2 automatically calculates the opening / closing operation frequency of the expansion device 3 and switches the target degree of superheat set in each expansion device 3. It is not limited to that. An administrator of the refrigeration cycle apparatus 100 may be able to manually switch each target superheat degree set in each expansion device 3 as appropriate.
  • the control device 10 may calculate the size of the operating rate of each expansion device 3.
  • this Embodiment demonstrated the case where the opening / closing operation frequency of each expansion device 3 was calculated when the compressor 1 stopped, it is not limited to it.
  • the timing when the compressor 1 stops it may be a timing for every operation of the refrigeration cycle apparatus 100, a timing for each day, or a timing for each month.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The purpose of the present invention is to provide a refrigeration cycle device which is capable of ensuring the operational stability of a throttle device. The refrigeration cycle device (100) according to the present invention is equipped with: a compressor (1); a condenser (2) which is connected to the discharge side of the compressor; a branch portion (5) which includes a first flow path (5A) connected to the downstream side of the condenser in the refrigerant flow direction and a plurality of second flow paths (5B1, 5B2) branching off from the first flow path; throttle devices (3) which are provided to the second flow paths; a merging portion (6) which is connected to the downstream side of the plurality of second flow paths in the refrigerant flow direction; an evaporator (4), one side of which is connected to the downstream side of the merging portion in the refrigerant flow direction, and the other side of which is connected to the intake side of the compressor; and a control device (10) which controls the opening of each of the throttle devices on the basis of the target superheat degree on the intake side of the compressor.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷凍サイクル装置に関し、特に、冷媒回路に設けられた絞り装置の開度を目標過熱度に基づいて制御する冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus that controls an opening degree of a throttle device provided in a refrigerant circuit based on a target superheat degree.
 冷凍サイクル装置は、たとえば、圧縮機と、凝縮器と、絞り装置と、蒸発器とを含み、これらが冷媒配管で接続されて構成された冷媒回路を備えている。ここで、冷凍サイクル装置は、圧縮機の吸入側に供給される冷媒の過熱度が、予め設定された値(目標過熱度)になるように絞り装置の開度を制御している(たとえば、特許文献1参照)。目標過熱度は、冷凍サイクル装置のエネルギー効率及び液バック等の観点から決定されている。 The refrigeration cycle apparatus includes, for example, a compressor, a condenser, a throttling device, and an evaporator, and includes a refrigerant circuit configured by connecting these via a refrigerant pipe. Here, the refrigeration cycle apparatus controls the opening degree of the throttle device so that the superheat degree of the refrigerant supplied to the suction side of the compressor becomes a preset value (target superheat degree) (for example, Patent Document 1). The target superheat degree is determined from the viewpoint of the energy efficiency of the refrigeration cycle apparatus and the liquid back.
 たとえば、圧縮機の吸入側の過熱度が高すぎる場合には、その分、蒸発器の冷媒通過量が低下していることが想定され、冷凍サイクル装置のエネルギー効率が低下する。また、圧縮機の吸入側の過熱度が低すぎる場合には、圧縮機の吸入側への液冷媒供給量が増加し、圧縮機が故障する可能性が高まる。
 したがって、冷凍サイクル装置では、過熱度が目標過熱度よりも大きい場合には、絞り装置の開度を大きくし、過熱度が目標過熱度よりも小さい場合には、絞り装置の開度を小さくする制御が行われている。
For example, when the degree of superheat on the suction side of the compressor is too high, it is assumed that the amount of refrigerant passing through the evaporator is reduced accordingly, and the energy efficiency of the refrigeration cycle apparatus is reduced. Further, when the degree of superheat on the suction side of the compressor is too low, the amount of liquid refrigerant supplied to the suction side of the compressor increases, and the possibility that the compressor will fail increases.
Therefore, in the refrigeration cycle device, when the degree of superheat is greater than the target superheat degree, the opening degree of the expansion device is increased, and when the degree of superheat is smaller than the target superheat degree, the opening degree of the expansion device is decreased. Control is taking place.
 ここで、冷凍サイクル装置の絞り装置は、たとえば、最大能力で運転しているときの冷媒回路中の冷媒の循環量を考慮し、絞り装置の容量を決定している。 Here, the expansion device of the refrigeration cycle apparatus determines the capacity of the expansion device in consideration of, for example, the circulation amount of the refrigerant in the refrigerant circuit when operating at the maximum capacity.
特開2001-263831号公報JP 2001-263831 A
 冷凍サイクル装置の最大能力が大きいほど最大能力で運転しているときの冷媒循環量は増大し、冷媒回路にはより容量が大きい絞り装置が設けられる。ここで、絞り装置は容量が大きいほど、絞り装置の開度制御の前後での冷媒の状態(圧力など)の変化が大きくなり、過熱度への影響も大きくなる。この過熱度への影響は、冷凍サイクル装置が低めの能力で運転しているほどより顕著になる。低めの能力で運転しているときほど、絞り装置の開度制御は微調整が必要となるためである。 The greater the maximum capacity of the refrigeration cycle device, the greater the amount of refrigerant circulating when operating at the maximum capacity, and the refrigerant circuit is provided with a throttle device having a larger capacity. Here, the larger the capacity of the expansion device, the greater the change in the refrigerant state (pressure, etc.) before and after the opening degree control of the expansion device, and the greater the influence on the degree of superheat. This influence on the degree of superheat becomes more remarkable as the refrigeration cycle apparatus is operated at a lower capacity. This is because the opening degree control of the expansion device needs to be finely adjusted as the engine is operated at a lower capacity.
 すなわち、従来の冷凍サイクル装置では、低めの能力で運転しているときに過熱度を目標過熱度に近づけるにあたって絞り装置の動作が安定しないという課題がある。たとえば、低めの能力で運転しているときにおいて、過熱度を目標過熱度に近づけようと絞り装置の開度を大きくしたとすると、過熱度が目標過熱度を大きく上回ってしまい、絞り装置の開度を小さくすることになってしまう。 That is, in the conventional refrigeration cycle apparatus, there is a problem that the operation of the expansion device is not stable when the superheat degree is brought close to the target superheat degree when operating at a low capacity. For example, when operating at a lower capacity, if the opening degree of the expansion device is increased so as to bring the superheat degree closer to the target superheat degree, the superheat degree greatly exceeds the target superheat degree, and the expansion device is opened. The degree will be reduced.
 本発明は、上記のような課題を解決するためになされたもので、絞り装置の動作安定性を確保することができる冷凍サイクル装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus that can ensure the operational stability of the expansion device.
 本発明に係る冷凍サイクル装置は、圧縮機と、圧縮機の吐出側に接続された凝縮器と、凝縮器の冷媒流れ方向の下流側に接続された第1の流路、及び第1の流路から分岐している複数の第2の流路を含む分岐部と、各第2の流路に設けられた絞り装置と、複数の第2の流路の冷媒流れ方向の下流側に接続された合流部と、一方が合流部の冷媒流れ方向の下流側に接続され、他方が圧縮機の吸入側に接続された蒸発器と、圧縮機の吸入側の目標過熱度に基づいて、各絞り装置の開度制御を実行する制御装置と、を備えたものである。 A refrigeration cycle apparatus according to the present invention includes a compressor, a condenser connected to a discharge side of the compressor, a first flow path connected to a downstream side of the condenser in a refrigerant flow direction, and a first flow A branch portion including a plurality of second flow paths branched from the path; a throttle device provided in each second flow path; and a downstream side of the plurality of second flow paths in the refrigerant flow direction. Based on the target superheat degree on the suction side of the compressor, the evaporator connected to the downstream side in the refrigerant flow direction of the junction, and the other connected to the suction side of the compressor. And a control device that performs opening degree control of the device.
 本発明に係る冷凍サイクル装置では、凝縮器の冷媒流れ方向の下流側に接続された第1の流路、及び第1の流路から分岐している複数の第2の流路を含む分岐部と、各第2の流路に設けられた絞り装置と、複数の第2の流路の冷媒流れ方向の下流側に接続された合流部とを備えているため、冷凍サイクル装置の運転能力の広範囲で、絞り装置の動作安定性を確保することができる。 In the refrigeration cycle apparatus according to the present invention, the first flow path connected to the downstream side of the condenser in the refrigerant flow direction, and a branch portion including a plurality of second flow paths branched from the first flow path And a throttle device provided in each second flow path, and a merging portion connected to the downstream side in the refrigerant flow direction of the plurality of second flow paths, The operational stability of the diaphragm device can be ensured over a wide range.
本発明の実施の形態に係る冷凍サイクル装置の冷媒回路構成図である。It is a refrigerant circuit block diagram of the refrigerating cycle device concerning an embodiment of the invention. 本発明の実施の形態に係る冷凍サイクル装置が備える制御装置の説明図である。It is explanatory drawing of the control apparatus with which the refrigerating-cycle apparatus which concerns on embodiment of this invention is provided. 本発明の実施の形態に係る冷凍サイクル装置の過熱度の変化と絞り装置の開度との関係等の説明図である。It is explanatory drawing, such as the relationship between the change of the superheat degree of the refrigerating-cycle apparatus which concerns on embodiment of this invention, and the opening degree of an expansion apparatus. 本発明の実施の形態に係る冷凍サイクル装置が絞り装置の目標過熱度を変更したときの動作等の説明図である。It is explanatory drawing, such as operation | movement when the refrigeration cycle apparatus which concerns on embodiment of this invention changes the target superheat degree of an expansion | swelling apparatus. 本発明の実施の形態に係る冷凍サイクル装置の変形例1の通常運転用の絞り装置が故障したときの動作等の説明図である。It is explanatory drawing, such as operation | movement when the diaphragm | throttle device for normal operation of the modification 1 of the refrigerating-cycle apparatus which concerns on embodiment of this invention fails. 本発明の実施の形態に係る冷凍サイクル装置の変形例1のバックアップ用の絞り装置の動作等の説明図である。It is explanatory drawing, such as operation | movement of the expansion apparatus for backup of the modification 1 of the refrigerating-cycle apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る冷凍サイクル装置の変形例2の冷媒回路構成図である。It is a refrigerant circuit block diagram of the modification 2 of the refrigeration cycle apparatus which concerns on embodiment of this invention. 従来の冷凍サイクル装置の冷媒回路構成図である。It is a refrigerant circuit block diagram of the conventional refrigeration cycle apparatus. 従来の冷凍サイクル装置の過熱度の変化と絞り装置の開度との関係等の説明図である。It is explanatory drawing, such as the relationship between the change of the superheat degree of the conventional refrigeration cycle apparatus, and the opening degree of an expansion | swelling apparatus.
 以下、本発明に係る冷凍サイクル装置の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、図1Aなどを含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the refrigeration cycle apparatus according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. In addition, in the following drawings including FIG. 1A and the like, the relationship between the sizes of the constituent members may be different from the actual ones.
実施の形態.
 図1Aは、本実施の形態に係る冷凍サイクル装置100の冷媒回路構成図である。図1Aを参照して冷凍サイクル装置100の概要構成について説明する。
 冷凍サイクル装置100は、たとえば、冷凍装置及び空気調和装置などに適用することができる。本実施の形態では、冷凍サイクル装置100が冷凍装置である場合を一例に説明する。
Embodiment.
FIG. 1A is a refrigerant circuit configuration diagram of a refrigeration cycle apparatus 100 according to the present embodiment. A schematic configuration of the refrigeration cycle apparatus 100 will be described with reference to FIG. 1A.
The refrigeration cycle apparatus 100 can be applied to, for example, a refrigeration apparatus and an air conditioner. In the present embodiment, a case where the refrigeration cycle apparatus 100 is a refrigeration apparatus will be described as an example.
[冷凍サイクル装置100の構成]
 冷凍サイクル装置100は、冷媒を搬送するのに利用される圧縮機1と、冷媒を凝縮する凝縮器2と、冷媒を減圧させる絞り装置3と、冷媒を蒸発させる蒸発器4とを備えている。また、冷凍サイクル装置100は、凝縮器2から流出した冷媒を分岐する分岐部5と、分岐部5で分岐した冷媒が合流する合流部6とを備えている。さらに、冷凍サイクル装置100は、凝縮器2に空気を供給する送風機2Aと、蒸発器4に空気を供給する送風機4Aとを備えている。
[Configuration of refrigeration cycle apparatus 100]
The refrigeration cycle apparatus 100 includes a compressor 1 that is used to convey a refrigerant, a condenser 2 that condenses the refrigerant, a throttling device 3 that depressurizes the refrigerant, and an evaporator 4 that evaporates the refrigerant. . In addition, the refrigeration cycle apparatus 100 includes a branch portion 5 that branches the refrigerant that has flowed out of the condenser 2 and a junction portion 6 where the refrigerant branched by the branch portion 5 joins. Furthermore, the refrigeration cycle apparatus 100 includes a blower 2 </ b> A that supplies air to the condenser 2 and a blower 4 </ b> A that supplies air to the evaporator 4.
 冷凍サイクル装置100は、圧縮機1の吸入側を流れる冷媒の圧力を検出する圧力センサ11と、圧縮機1の吸入側を流れる冷媒の温度を検出する温度センサ12と、圧力センサ11の圧力信号及び温度センサ12の温度信号を用いて過熱度を算出し、算出される過熱度に基づいて絞り装置3の開度などを制御する制御装置10とを備えている。 The refrigeration cycle apparatus 100 includes a pressure sensor 11 that detects the pressure of refrigerant flowing on the suction side of the compressor 1, a temperature sensor 12 that detects the temperature of refrigerant flowing on the suction side of the compressor 1, and a pressure signal from the pressure sensor 11. And a control device 10 that calculates the degree of superheat using the temperature signal of the temperature sensor 12 and controls the opening degree of the expansion device 3 based on the calculated degree of superheat.
 圧縮機1は、ガス冷媒を高温、高圧に圧縮して吐出するものである。圧縮機1は、冷媒の吐出側が凝縮器2に接続され、冷媒の吸入側が蒸発器4に接続されている。
 凝縮器2(放熱器)は、上流側が圧縮機1の吐出側に接続され、下流側が分岐部5に接続されている。凝縮器2は、たとえば、冷媒と空気とを熱交換させる熱交換器で構成することができる。
 絞り装置3は、冷媒を減圧させるものであり、たとえば、開度を調整することができる電子式膨張弁などで構成することができる。本実施の形態に係る冷凍サイクル装置100は、絞り装置3が、複数のものから構成されている。すなわち、絞り装置3は、絞り装置3A及び絞り装置3Bとを含む。本実施の形態では、冷凍サイクル装置100が2つの絞り装置を備えている場合を一例として説明するが、それに限定されるものではなく、たとえば、3つ以上であってもよい。
 蒸発器4は、第1の接続状態及び第2の接続状態のときに冷媒を蒸発させてガス冷媒にするものである。蒸発器4は、たとえば、冷媒と空気とを熱交換させる熱交換器で構成することができる。
The compressor 1 compresses and discharges a gas refrigerant to high temperature and high pressure. The compressor 1 has a refrigerant discharge side connected to the condenser 2 and a refrigerant suction side connected to the evaporator 4.
The condenser 2 (heat radiator) has an upstream side connected to the discharge side of the compressor 1 and a downstream side connected to the branch portion 5. The condenser 2 can be constituted by, for example, a heat exchanger that exchanges heat between refrigerant and air.
The expansion device 3 depressurizes the refrigerant, and can be constituted by, for example, an electronic expansion valve that can adjust the opening degree. In the refrigeration cycle apparatus 100 according to the present embodiment, the expansion device 3 includes a plurality of devices. That is, the aperture device 3 includes an aperture device 3A and an aperture device 3B. In the present embodiment, the case where the refrigeration cycle apparatus 100 includes two throttle devices will be described as an example. However, the present invention is not limited to this, and may be, for example, three or more.
The evaporator 4 evaporates the refrigerant into the gas refrigerant in the first connection state and the second connection state. The evaporator 4 can be comprised with the heat exchanger which heat-exchanges a refrigerant | coolant and air, for example.
 分岐部5は、凝縮器2から流出した冷媒を分岐させるものである。分岐部5は冷媒配管などで構成することができる。分岐部5は、上流側が凝縮器2に接続された第1の流路5Aと、第1の流路5Aから分岐している第2の流路5B1及び第2の流路5B2とを含む。第2の流路5B1及び第2の流路5B2は、上流側が第1の流路5Aに接続され、下流側が合流部6に接続されている。
 第2の流路5B1には、絞り装置3Aが設けられ、第2の流路5B2には、絞り装置3Bが設けられている。なお、冷凍サイクル装置100には、第2の流路が、絞り装置の数に対応する数だけ設けられている。本実施の形態では、絞り装置が2つ設けられているので、第2の流路は、第2の流路5B1及び第2の流路5B2を含む。
The branch portion 5 branches the refrigerant that has flowed out of the condenser 2. The branch portion 5 can be constituted by a refrigerant pipe or the like. The branch portion 5 includes a first flow path 5A whose upstream side is connected to the condenser 2, and a second flow path 5B1 and a second flow path 5B2 branched from the first flow path 5A. As for 2nd flow path 5B1 and 2nd flow path 5B2, the upstream side is connected to 5 A of 1st flow paths, and the downstream side is connected to the junction part 6. FIG.
The second flow path 5B1 is provided with the expansion device 3A, and the second flow path 5B2 is provided with the expansion device 3B. In the refrigeration cycle apparatus 100, the number of second flow paths corresponding to the number of expansion devices is provided. In the present embodiment, since two expansion devices are provided, the second flow path includes a second flow path 5B1 and a second flow path 5B2.
 合流部6は、絞り装置3を通過した冷媒が流れる部分である。合流部6は、上流側が第2の流路5B1及び第2の流路5B2に接続され、下流側が蒸発器4に接続されている。 The junction 6 is a portion through which the refrigerant that has passed through the expansion device 3 flows. The merging portion 6 has an upstream side connected to the second flow path 5B1 and the second flow path 5B2, and a downstream side connected to the evaporator 4.
 送風機2Aは凝縮器2に付設され、送風機4Aが蒸発器4に付設されているものである。冷凍サイクル装置100がたとえば空気調和装置である場合には、送風機2Aは凝縮器2とともに室外機に搭載され、送風機4Aは蒸発器4とともに室内機に搭載される。送風機2Aは、凝縮器2に空気を供給して凝縮器2を流れる冷媒と空気との熱交換を促進するのに利用される。また、送風機4Aは、蒸発器4に空気を供給して蒸発器4を流れる冷媒と空気との熱交換を促進するのに利用される。 The blower 2A is attached to the condenser 2, and the blower 4A is attached to the evaporator 4. When the refrigeration cycle apparatus 100 is an air conditioner, for example, the blower 2A is mounted on the outdoor unit together with the condenser 2, and the blower 4A is mounted on the indoor unit together with the evaporator 4. The blower 2 </ b> A is used to supply air to the condenser 2 and promote heat exchange between the refrigerant flowing through the condenser 2 and air. The blower 4 </ b> A is used to supply air to the evaporator 4 and promote heat exchange between the refrigerant flowing through the evaporator 4 and the air.
 圧力センサ11は、たとえば、圧縮機1の吸入側に接続された冷媒配管に設けられているセンサである。圧力センサ11は、圧縮機1の吸入側を流れる冷媒の圧力を検出する。圧力センサ11は、制御装置10に圧力信号を出力する。
 温度センサ12は、たとえば、圧縮機1の吸入側に接続された冷媒配管に設けられているものである。温度センサ12は、圧縮機1の吸入側を流れる冷媒の温度を検出する。温度センサ12は、制御装置10に温度信号を出力する。
 制御装置10は、圧力センサ11及び温度センサ12に接続されているものであり、たとえば、マイコンなどで構成することができる。制御装置10は、圧力センサ11の圧力信号及び温度センサ12の温度信号に基づいて圧縮機1の吸入側の過熱度を算出することができる。そして、制御装置10は、過熱度が、予め設定されている目標過熱度になるように絞り装置3の開度制御を実行する。
The pressure sensor 11 is a sensor provided in a refrigerant pipe connected to the suction side of the compressor 1, for example. The pressure sensor 11 detects the pressure of the refrigerant flowing on the suction side of the compressor 1. The pressure sensor 11 outputs a pressure signal to the control device 10.
The temperature sensor 12 is provided, for example, in a refrigerant pipe connected to the suction side of the compressor 1. The temperature sensor 12 detects the temperature of the refrigerant flowing on the suction side of the compressor 1. The temperature sensor 12 outputs a temperature signal to the control device 10.
The control device 10 is connected to the pressure sensor 11 and the temperature sensor 12, and can be configured by, for example, a microcomputer. The control device 10 can calculate the degree of superheat on the suction side of the compressor 1 based on the pressure signal of the pressure sensor 11 and the temperature signal of the temperature sensor 12. And the control apparatus 10 performs opening degree control of the expansion | swelling apparatus 3 so that a superheat degree becomes the preset target superheat degree.
[制御装置10の構成]
 図1Bは、本実施の形態に係る冷凍サイクル装置100が備える制御装置10の説明図である。図1Bを参照して制御装置10の構成等について詳しく説明する。
 制御装置10は、絞り装置3の開度の決定にあたり、冷凍サイクル装置100が冷却対象を冷却するのに要する負荷に関連する情報を用いる。本実施の形態では、制御装置10は、その負荷に関連する情報として、圧縮機1の吸入側の過熱度を用いる。たとえば、第1の目標過熱度X1と絞り装置3Aとが対応付けられているため、圧縮機1の吸入側の過熱度が第1の目標過熱度X1以下である場合には、絞り装置3Aが開くことになる。一方、絞り装置3Bは、第1の目標過熱度X1よりも大きい第2の目標過熱度X2に対応付けられているため、過熱度が第1の目標過熱度X1に至っても、開かない。絞り装置3Aが全開になっても、過熱度の上昇が続き、過熱度が第2の目標過熱度X2に至ると絞り装置3Bが開くことになる。つまり、冷凍サイクル装置100の能力アップに対して、絞り装置3Aを開くだけでは賄えなくなると、絞り装置3Bも開くことになる。
[Configuration of Control Device 10]
FIG. 1B is an explanatory diagram of the control device 10 included in the refrigeration cycle apparatus 100 according to the present embodiment. The configuration and the like of the control device 10 will be described in detail with reference to FIG. 1B.
The control device 10 uses information related to the load required for the refrigeration cycle device 100 to cool the cooling target when determining the opening degree of the expansion device 3. In the present embodiment, the control device 10 uses the degree of superheat on the suction side of the compressor 1 as information related to the load. For example, since the first target superheat degree X1 and the expansion device 3A are associated with each other, when the superheat degree on the suction side of the compressor 1 is equal to or less than the first target superheat degree X1, the expansion device 3A is Will open. On the other hand, since the expansion device 3B is associated with the second target superheat degree X2 that is larger than the first target superheat degree X1, it does not open even if the superheat degree reaches the first target superheat degree X1. Even when the expansion device 3A is fully opened, the increase in the superheat degree continues, and when the superheat degree reaches the second target superheat degree X2, the expansion device 3B is opened. That is, if the expansion of the capacity of the refrigeration cycle apparatus 100 cannot be covered only by opening the expansion device 3A, the expansion device 3B is also opened.
 制御装置10は、過熱度を算出する過熱度算出部10Aと、絞り装置3の開度等を決定する目標過熱度切替部10B1と、絞り装置3A及び絞り装置3Bの開閉動作頻度を算出する開閉動作頻度算出部10B2と、目標過熱度等の情報が予め記憶されている記憶部10Cとを備えている。
 また、制御装置10は、絞り装置3の開度制御を実行する絞り装置制御部10Dと、圧縮機1の制御を実行する圧縮機制御部10Eと、送風機2A及び送風機4Aの制御を実行する送風機制御部10Fとを備えている。
The control device 10 includes a superheat degree calculation unit 10A that calculates the degree of superheat, a target superheat degree switching unit 10B1 that determines the opening degree of the expansion device 3, and an opening / closing operation that calculates the opening / closing operation frequency of the expansion devices 3A and 3B. An operation frequency calculation unit 10B2 and a storage unit 10C in which information such as a target superheat degree is stored in advance are provided.
Further, the control device 10 includes a throttle device control unit 10D that controls the opening degree of the throttle device 3, a compressor control unit 10E that controls the compressor 1, and a blower that controls the blower 2A and the blower 4A. And a control unit 10F.
 過熱度算出部10Aは、圧力センサ11の圧力信号及び温度センサ12の温度信号に基づいて圧縮機1の吸入側の過熱度を算出する。過熱度算出部10Aで算出される過熱度は、目標過熱度切替部10B1で用いられる。 The superheat degree calculation unit 10 </ b> A calculates the superheat degree on the suction side of the compressor 1 based on the pressure signal of the pressure sensor 11 and the temperature signal of the temperature sensor 12. The superheat degree calculated by the superheat degree calculation unit 10A is used by the target superheat degree switching unit 10B1.
 目標過熱度切替部10B1は、各絞り装置3に予め設定されている目標過熱度を切り替える機能を有するものである。本実施の形態では、目標過熱度切替部10B1は、第1の目標過熱度X1に基づいて動作するものを絞り装置3Aと設定し、第2の目標過熱度X2に基づいて動作するものを絞り装置3Bと設定している。 The target superheat degree switching unit 10B1 has a function of switching a target superheat degree preset in each expansion device 3. In the present embodiment, the target superheat degree switching unit 10B1 sets the one that operates based on the first target superheat degree X1 as the expansion device 3A, and restricts the one that operates based on the second target superheat degree X2. Device 3B is set.
 一方、目標過熱度切替部10B1は、過熱度算出部10Aの算出される過熱度が上昇していき第2の目標過熱度X2に至ると、第2の目標過熱度X2を用いること、及び、絞り装置3A及び絞り装置3Bの両方を用いることを決定する。このとき、絞り装置3Aの開度は全開となっている。したがって、目標過熱度切替部10B1は、過熱度算出部10Aが算出される過熱度が、第2の目標過熱度X2になるように絞り装置3Bの開度を決定する。 On the other hand, the target superheat degree switching unit 10B1 uses the second target superheat degree X2 when the superheat degree calculated by the superheat degree calculation unit 10A increases and reaches the second target superheat degree X2, and It is decided to use both the diaphragm device 3A and the diaphragm device 3B. At this time, the opening degree of the expansion device 3A is fully open. Therefore, the target superheat degree switching unit 10B1 determines the opening degree of the expansion device 3B so that the superheat degree calculated by the superheat degree calculation unit 10A becomes the second target superheat degree X2.
 開閉動作頻度算出部10B2は、絞り装置3A及び絞り装置3Bが開閉動作の頻度を算出するものである。開閉動作頻度算出部10B2は、たとえば、絞り装置3Aが開度を1回変えた場合に、絞り装置3Aの動作回数として1回加える。 The opening / closing operation frequency calculation unit 10B2 calculates the frequency of the opening / closing operation by the expansion device 3A and the expansion device 3B. For example, when the opening degree of the expansion device 3A changes once, the opening / closing operation frequency calculation unit 10B2 adds once as the number of operations of the expansion device 3A.
 目標過熱度切替部10B1は、開閉動作頻度算出部10B2の算出した絞り装置3Aの開閉動作頻度と絞り装置3Bの開閉動作頻度とが平準化されるように、絞り装置3A及び絞り装置3Bの開度を決定する。冷凍サイクル装置100の能力を徐々に増加させていく場合について考えると、第1の目標過熱度X1に設定されている絞り装置3Aは、第2の目標過熱度X2に設定されている絞り装置3Bよりも先に開く。このため、各絞り装置3ごとに目標過熱度の切り替えを実行しないと、絞り装置3Aの使用頻度ばかりが増大し、絞り装置3Aが故障しやすくなる。そこで、目標過熱度切替部10B1は、予め設定されたタイミングで、絞り装置3Aを第2の目標過熱度X2に設定し、絞り装置3Bを第1の目標過熱度X1に設定する等の切り替えを実行し、絞り装置3が故障することを抑制している。これにより、絞り装置3Aばかりの開閉動作頻度が上昇してしまい、絞り装置3Aに負担が集中して故障などすることを回避することができる。 The target superheat degree switching unit 10B1 opens the expansion devices 3A and 3B so that the opening / closing operation frequency of the expansion device 3A calculated by the open / close operation frequency calculation unit 10B2 and the opening / closing operation frequency of the expansion device 3B are leveled. Determine the degree. Considering the case of gradually increasing the capacity of the refrigeration cycle apparatus 100, the expansion device 3A set to the first target superheat degree X1 is the expansion device 3B set to the second target superheat degree X2. Open before. For this reason, unless the switching of the target superheat degree is performed for each expansion device 3, only the frequency of use of the expansion device 3A increases, and the expansion device 3A is likely to break down. Therefore, the target superheat degree switching unit 10B1 performs switching such as setting the expansion device 3A to the second target superheat degree X2 and setting the expansion device 3B to the first target superheat degree X1 at a preset timing. This is performed to suppress the failure of the expansion device 3. As a result, the frequency of opening / closing operation of the expansion device 3A only increases, and it is possible to avoid a failure due to concentration of a load on the expansion device 3A.
 記憶部10Cには、各々の絞り装置3に対応する目標過熱度が予め記憶されている。本実施の形態では、2つの絞り装置(絞り装置3A及び絞り装置3B)が設けられているため、2つの目標過熱度(第1の目標過熱度X1及び第2の目標過熱度X2)が記憶部10Cに記憶されている。記憶部10Cには、絞り装置3A及び絞り装置3Bの開閉動作をしたことに関連する情報も格納されている。 The target superheat degree corresponding to each expansion device 3 is stored in advance in the storage unit 10C. In the present embodiment, since two expansion devices (the expansion device 3A and the expansion device 3B) are provided, two target superheat degrees (first target superheat degree X1 and second target superheat degree X2) are stored. Stored in the unit 10C. The storage unit 10C also stores information related to the opening / closing operation of the diaphragm device 3A and the diaphragm device 3B.
 絞り装置制御部10Dは、目標過熱度切替部10B1が各絞り装置3に設定している目標過熱度になるように、絞り装置3A及び絞り装置3Bの開度制御を実行するものである。これにより、冷凍サイクル装置100のエネルギー効率の低下を回避しながら、圧縮機1に液バックが生じて圧縮機1が故障することを回避している。絞り装置制御部10Dは、たとえば、絞り装置3の弁体を駆動するアクチュエーター等を制御する。
 絞り装置制御部10Dは、予め設定されている制御ソフトに基づいて、予め設定されている目標過熱度と過熱度算出部10Aで算出される過熱度との差が小さくなるように絞り装置3の開度制御を実行する。例えば、過熱度が第1の目標過熱度X1以下であれば、過熱度と第1の目標過熱度X1との差に基づいて、絞り装置3Aの開度制御を実行する。また、過熱度が第2の目標過熱度X2に至ると、過熱度と第2の目標過熱度X2との差に基づいて、絞り装置3Bの開度制御を実行する。なお、本実施の形態において、絞り装置制御部10Dは、絞り装置3Aの制御ソフトと絞り装置3Bの制御ソフトとが同じである。したがって、過熱度と目標過熱度との差が同じであれば、開度についても同じである。
The expansion device control unit 10D performs opening degree control of the expansion device 3A and the expansion device 3B so that the target superheat degree switching unit 10B1 reaches the target superheat degree set in each expansion device 3. Thus, while avoiding a decrease in energy efficiency of the refrigeration cycle apparatus 100, a liquid back is generated in the compressor 1 and the compressor 1 is prevented from malfunctioning. The expansion device control unit 10D controls, for example, an actuator that drives the valve body of the expansion device 3.
Based on the control software set in advance, the expansion device control unit 10D adjusts the expansion device 3 so that the difference between the preset target superheat degree and the superheat degree calculated by the superheat degree calculation unit 10A becomes small. Execute the opening control. For example, if the superheat degree is equal to or less than the first target superheat degree X1, the opening degree control of the expansion device 3A is executed based on the difference between the superheat degree and the first target superheat degree X1. Further, when the superheat degree reaches the second target superheat degree X2, the opening degree control of the expansion device 3B is executed based on the difference between the superheat degree and the second target superheat degree X2. In the present embodiment, in the diaphragm control unit 10D, the control software for the diaphragm apparatus 3A and the control software for the diaphragm apparatus 3B are the same. Therefore, if the difference between the superheat degree and the target superheat degree is the same, the opening degree is the same.
 圧縮機制御部10Eは、冷凍サイクル装置100で要求されている能力に応じて、圧縮機1の回転数を制御するものである。送風機制御部10Fは、冷凍サイクル装置100で要求されている能力に応じて、送風機2A及び送風機4Aの回転数を制御するものである。 The compressor control unit 10E controls the number of revolutions of the compressor 1 according to the capacity required by the refrigeration cycle apparatus 100. The blower control unit 10 </ b> F controls the rotation speeds of the blower 2 </ b> A and the blower 4 </ b> A according to the capacity required for the refrigeration cycle apparatus 100.
[冷凍サイクル装置100の動作説明1]
 図2は、本実施の形態に係る冷凍サイクル装置100の過熱度の変化と絞り装置3の開度との関係等の説明図である。図2(a)は、縦軸が圧縮機1の吸入側の過熱度を示し、横軸が冷凍サイクル装置100の能力を示している。すなわち、図2(a)の曲線は、時間とともに冷凍サイクル装置100の能力を増大させていったときの過熱度の変化を示している。図2(b)は、縦軸が絞り装置3Bの開度を示し、横軸は図2(a)と同様である。図2(c)は、縦軸が絞り装置3Aの開度を示し、横軸は図2(a)と同様である。
[Operation Description 1 of Refrigeration Cycle Device 100]
FIG. 2 is an explanatory diagram of the relationship between the change in the degree of superheat of the refrigeration cycle apparatus 100 according to the present embodiment and the opening degree of the expansion device 3. In FIG. 2A, the vertical axis indicates the degree of superheat on the suction side of the compressor 1, and the horizontal axis indicates the capacity of the refrigeration cycle apparatus 100. That is, the curve in FIG. 2A shows the change in the degree of superheat when the capacity of the refrigeration cycle apparatus 100 is increased with time. In FIG. 2B, the vertical axis indicates the opening degree of the expansion device 3B, and the horizontal axis is the same as that in FIG. In FIG. 2C, the vertical axis indicates the opening of the expansion device 3A, and the horizontal axis is the same as in FIG.
 図2(a)のX1は第1の目標過熱度X1を示している。第1の目標過熱度X1は、絞り装置3Aに対して設定された過熱度である。第2の目標過熱度X2は、絞り装置3Bに対して設定された過熱度である。制御装置10は、過熱度が第1の目標過熱度X1に至ると、過熱度が第1の目標過熱度X1から離れないように絞り装置3Aの開度制御を実行する。冷凍サイクル装置100の能力が増加していくのであれば、過熱度が第1の目標過熱度X1を超えて大きくなっていかないように、制御装置10は、絞り装置3Aの開度を大きくしていく。
 また、制御装置10は、過熱度が第2の目標過熱度X2に至ると、過熱度が第2の目標過熱度X2から離れないように絞り装置3Bの開度制御を実行する。このとき、過熱度は、第1の目標過熱度X1よりも大きく、絞り装置3Aについては全開のままである。したがって、冷凍サイクル装置100の能力が増加していくのであれば、制御装置10は、絞り装置3Bの開度を大きくすることで、過熱度が第2の目標過熱度X2を超えて大きくなっていかないように、絞り装置3Bの開度を大きくしていく。
X1 in FIG. 2A indicates a first target superheat degree X1. The first target superheat degree X1 is a superheat degree set for the expansion device 3A. The second target superheat degree X2 is a superheat degree set for the expansion device 3B. When the superheat degree reaches the first target superheat degree X1, the control device 10 executes the opening degree control of the expansion device 3A so that the superheat degree does not deviate from the first target superheat degree X1. If the capacity of the refrigeration cycle apparatus 100 increases, the control device 10 increases the opening of the expansion device 3A so that the superheat degree does not exceed the first target superheat degree X1. Go.
Further, when the degree of superheat reaches the second target superheat degree X2, the control device 10 executes the opening degree control of the expansion device 3B so that the superheat degree does not depart from the second target superheat degree X2. At this time, the degree of superheat is greater than the first target degree of superheat X1, and the expansion device 3A remains fully open. Therefore, if the capacity of the refrigeration cycle apparatus 100 increases, the control device 10 increases the opening degree of the expansion device 3B so that the superheat degree exceeds the second target superheat degree X2. Therefore, the opening degree of the expansion device 3B is increased.
 制御装置10は、冷凍サイクル装置100に要求されている能力に応じて複数の目標過熱度が設定されている。ここで、要求されている能力とは、冷凍サイクル装置100が冷却対象を冷却するのに要する負荷である。たとえば、冷却対象の温度が高いほど、この負荷は増大することになる。
 たとえば、ユーザーが温度コントローラー等を入力し、冷却対象の温度を第1の温度から第2の温度に変更するように設定したとする。冷却対象の温度を第1の温度から第2の温度に下げることができるように、冷凍サイクル装置100は、能力を増大させる。制御装置10は、冷凍サイクル装置100の能力を増大させるために、たとえば圧縮機1の回転数を増大させると、圧縮機1の吸入側の過熱度も増大し、絞り装置3の開度を大きくする制御を実行する。実際には、送風機4Aの回転数も変化させる場合があるが、ここでは、説明の便宜上、冷凍サイクル装置100の能力を増大させるにあたり、圧縮機1の回転数を増大させる場合について説明する。
In the control device 10, a plurality of target superheat degrees are set according to the capacity required for the refrigeration cycle apparatus 100. Here, the required capacity is a load required for the refrigeration cycle apparatus 100 to cool the object to be cooled. For example, this load increases as the temperature of the cooling target increases.
For example, it is assumed that the user inputs a temperature controller or the like and sets the temperature to be cooled to be changed from the first temperature to the second temperature. The refrigeration cycle apparatus 100 increases the capacity so that the temperature to be cooled can be lowered from the first temperature to the second temperature. In order to increase the capacity of the refrigeration cycle apparatus 100, for example, when the rotational speed of the compressor 1 is increased, the control device 10 also increases the degree of superheat on the suction side of the compressor 1 and increases the opening degree of the expansion device 3. Execute control to Actually, the rotational speed of the blower 4A may be changed, but here, for convenience of explanation, a case where the rotational speed of the compressor 1 is increased when the capacity of the refrigeration cycle apparatus 100 is increased will be described.
 制御装置10は、冷凍サイクル装置100の能力を増大させる過程において、まず最初に絞り装置3Aの開度だけを大きくし、絞り装置3Bについては閉のままとしている。これは、制御装置10は、絞り装置3Aに対して第1の目標過熱度X1が設定され、絞り装置3Bに対して第1の目標過熱度X1より大きい第2の目標過熱度X2が設定されているためである。冷却対象を冷却するのに要する負荷が大きいと、制御装置10は、冷凍サイクル装置100の能力をさらに大きくするため、たとえば圧縮機1の回転数をさらに増大させ、絞り装置3Aの開度をさらに大きくする(図2のエリアA参照)。絞り装置3Aの開度は、算出される過熱度と予め設定されている第1の目標過熱度X1とが等しくなるように制御される。 In the process of increasing the capacity of the refrigeration cycle apparatus 100, the control apparatus 10 first increases only the opening degree of the expansion device 3A and keeps the expansion device 3B closed. This is because the control device 10 sets the first target superheat degree X1 for the expansion device 3A, and sets the second target superheat degree X2 larger than the first target superheat degree X1 for the expansion device 3B. This is because. When the load required to cool the object to be cooled is large, the control device 10 further increases the rotation speed of the compressor 1 and further increases the opening of the expansion device 3A, for example, in order to further increase the capacity of the refrigeration cycle device 100. Increase (see area A in FIG. 2). The opening degree of the expansion device 3A is controlled such that the calculated superheat degree is equal to the preset first target superheat degree X1.
 ここで、絞り装置3Aの開度が全開に至っても、圧縮機1の回転数がさらに増大すると、蒸発器4から圧縮機1の吸入側へ流入する冷媒の温度及び圧力がともに上昇していき、圧縮機1の吸入側の過熱度が上昇することになる(図2のエリアB参照)。 Here, even if the opening degree of the expansion device 3A is fully opened, when the rotation speed of the compressor 1 further increases, both the temperature and pressure of the refrigerant flowing from the evaporator 4 to the suction side of the compressor 1 increase. As a result, the degree of superheat on the suction side of the compressor 1 increases (see area B in FIG. 2).
 絞り装置3Aだけでなく絞り装置3Bも開く場合というのは、算出される過熱度が、第1の目標過熱度X1よりも大きい第2の目標過熱度X2に至っている場合である(図2のエリアC参照)。 The case where not only the expansion device 3A but also the expansion device 3B is opened is a case where the calculated superheat degree reaches a second target superheat degree X2 which is larger than the first target superheat degree X1 (FIG. 2). (See area C).
 図2のエリアA及び図2のエリアCに示すように、冷凍サイクル装置100が能力を増大していく過程において、絞り装置3A及び絞り装置3Bの開度は、時間とともに増大してく。仮に、冷凍サイクル装置100が、絞り装置3Aの容量及び絞り装置3Bの容量を合わせた一つの絞り装置を備えている態様(図7参照)では、絞り装置の容量が大きくて過熱度の微調整がきかず、絞り装置の開閉動作が安定しない可能性がある(図8参照)。本実施の形態に係る冷凍サイクル装置100では、分岐部5、絞り装置3及び合流部6を備え、開閉動作の安定化を図ることができるようになっている。 As shown in area A of FIG. 2 and area C of FIG. 2, the opening degree of the expansion device 3A and the expansion device 3B increases with time in the process of increasing the capacity of the refrigeration cycle apparatus 100. Temporarily, in the aspect (refer FIG. 7) with which the refrigerating-cycle apparatus 100 is equipped with one expansion device which match | combined the capacity | capacitance of 3 A of expansion apparatuses, and the capacity | capacitance of the expansion apparatus 3B (refer FIG. 7), the capacity | capacitance of a expansion apparatus is large and fine adjustment of a superheat degree is carried out. There is a possibility that the opening / closing operation of the expansion device is not stable (see FIG. 8). The refrigeration cycle apparatus 100 according to the present embodiment includes the branching unit 5, the expansion device 3, and the merging unit 6, and can stabilize the opening / closing operation.
 なお、本実施の形態では、冷凍サイクル装置100の能力を増大させていくときの動作について中心に説明したが、能力を低下させていくときの動作は、逆になる。つまり、絞り装置3Aを全開とし、絞り装置3Bの開度を制御している場合において、能力を低下させるのであれば、絞り装置3Bを閉じていき、絞り装置3Bが全閉となると、絞り装置3Aの開度を小さくしていく。 In the present embodiment, the operation when the capacity of the refrigeration cycle apparatus 100 is increased has been mainly described. However, the operation when the capacity is decreased is reversed. That is, in the case where the expansion device 3A is fully opened and the opening degree of the expansion device 3B is controlled, if the capacity is reduced, the expansion device 3B is closed and the expansion device 3B is fully closed. Reduce the opening of 3A.
[冷凍サイクル装置100の動作説明2]
 図3は、本実施の形態に係る冷凍サイクル装置100が絞り装置3の目標過熱度を変更したときの動作等の説明図である。図3(a)は図2(a)に対応し、図3(b)は図2(b)に対応し、図3(c)は図2(c)に対応している。すなわち、図3(a)は、縦軸が圧縮機1の吸入側の過熱度を示し、横軸が冷凍サイクル装置100の能力を示している。すなわち、図3(a)の曲線は、時間とともに冷凍サイクル装置100の能力を増大させていったときの過熱度の変化を示している。図3(b)は、縦軸が絞り装置3Bの開度を示し、横軸が図3(a)と同様である。図3(c)は、縦軸が絞り装置3Aの開度を示し、横軸が図3(a)と同様である。
[Operation description 2 of refrigeration cycle apparatus 100]
FIG. 3 is an explanatory diagram of the operation and the like when the refrigeration cycle apparatus 100 according to the present embodiment changes the target superheat degree of the expansion device 3. 3 (a) corresponds to FIG. 2 (a), FIG. 3 (b) corresponds to FIG. 2 (b), and FIG. 3 (c) corresponds to FIG. 2 (c). That is, in FIG. 3A, the vertical axis indicates the degree of superheat on the suction side of the compressor 1, and the horizontal axis indicates the capacity of the refrigeration cycle apparatus 100. That is, the curve of FIG. 3A shows the change in the degree of superheat when the capacity of the refrigeration cycle apparatus 100 is increased with time. In FIG. 3B, the vertical axis indicates the opening degree of the expansion device 3B, and the horizontal axis is the same as that in FIG. In FIG. 3C, the vertical axis indicates the opening of the expansion device 3A, and the horizontal axis is the same as FIG. 3A.
 開閉動作頻度算出部10B2は、絞り装置3A及び絞り装置3Bが開閉動作の頻度を算出している。そして、目標過熱度切替部10B1は、開閉動作頻度算出部10B2の算出される絞り装置3Aの開閉動作頻度と絞り装置3Bの開閉動作頻度とが平準化されるように、絞り装置3A及び絞り装置3Bの目標過熱度を設定している。すなわち、制御装置10は、目標過熱度が低い絞り装置3Aの開閉動作頻度が上昇すると、絞り装置3Aの目標過熱度を大きいもの変更する。つまり、第1の目標過熱度X1は絞り装置3Bに設定され、第2の目標過熱度X2は絞り装置3Aに設定されることになる。 The opening / closing operation frequency calculation unit 10B2 calculates the frequency of the opening / closing operation of the expansion device 3A and the expansion device 3B. Then, the target superheat degree switching unit 10B1 is configured so that the opening / closing operation frequency of the expansion device 3A calculated by the opening / closing operation frequency calculation unit 10B2 and the opening / closing operation frequency of the expansion device 3B are equalized. The target superheat degree of 3B is set. That is, when the opening / closing operation frequency of the expansion device 3A having a low target superheat degree increases, the control device 10 changes the target superheat degree of the expansion device 3A to a larger one. That is, the first target superheat degree X1 is set in the expansion device 3B, and the second target superheat degree X2 is set in the expansion device 3A.
 制御装置10は、冷凍サイクル装置100の能力を増大させる過程において、まず最初に絞り装置3Bの開度だけを大きくし、絞り装置3Aを閉じておく。冷却対象を冷却するのに要する負荷が大きいと、制御装置10は、冷凍サイクル装置100の能力をさらに大きくするため、たとえば圧縮機1の回転数をさらに増大させ、絞り装置3Bの開度をさらに大きくする(図3のエリアA参照)。絞り装置3Bの開度は、算出される過熱度と予め設定されている第1の目標過熱度X1とが等しくなるように制御される。 In the process of increasing the capacity of the refrigeration cycle apparatus 100, the controller 10 first increases only the opening of the expansion device 3B and closes the expansion device 3A. When the load required for cooling the object to be cooled is large, the control device 10 further increases the rotation speed of the compressor 1 and further increases the opening of the expansion device 3B, for example, in order to further increase the capacity of the refrigeration cycle device 100. Increase (see area A in FIG. 3). The opening degree of the expansion device 3B is controlled so that the calculated superheat degree is equal to the preset first target superheat degree X1.
 ここで、絞り装置3Bの開度が全開に至っても、圧縮機1の回転数がさらに増大すると、蒸発器4から圧縮機1の吸入側へ流入する冷媒の温度及び圧力がともに上昇していき、圧縮機1の吸入側の過熱度が上昇することになる(図3のエリアB参照)。圧縮機1の吸入側の過熱度が上昇しすぎると、冷凍サイクル装置100のエネルギー効率が低下するため、制御装置10は、絞り装置3Aを開く。 Here, even if the opening degree of the expansion device 3B is fully opened, if the rotation speed of the compressor 1 further increases, both the temperature and pressure of the refrigerant flowing from the evaporator 4 to the suction side of the compressor 1 increase. As a result, the degree of superheat on the suction side of the compressor 1 increases (see area B in FIG. 3). If the superheat degree on the suction side of the compressor 1 increases too much, the energy efficiency of the refrigeration cycle apparatus 100 decreases, so the control device 10 opens the expansion device 3A.
[本実施の形態に係る冷凍サイクル装置100の変形例1]
 図4は、本実施の形態に係る冷凍サイクル装置100の変形例1の通常運転用の絞り装置(絞り装置3A)が故障したときの動作等の説明図である。図5は、本実施の形態に係る冷凍サイクル装置100の変形例のバックアップ用の絞り装置(絞り装置3B)の動作等の説明図である。
 図4(a)及び図5(a)は図2(a)に対応し、図4(b)及び図5(b)は図2(b)に対応し、図4(c)及び図5(c)は図2(c)に対応している。すなわち、図4(a)及び図5(a)は、縦軸が圧縮機1の吸入側の過熱度を示し、横軸が冷凍サイクル装置100の能力を示している。そして、図4(a)及び図5(a)の曲線は、時間とともに冷凍サイクル装置100の能力を増大させていったときの過熱度の変化を示している。図4(b)及び図5(b)は、縦軸が絞り装置3Bの開度を示し、横軸が図4(a)及び図5(a)と同様である。図4(c)及び図5(c)は、縦軸が絞り装置3Aの開度を示し、横軸が図4(a)及び図5(a)と同様である。
[Variation 1 of refrigeration cycle apparatus 100 according to the present embodiment]
FIG. 4 is an explanatory diagram of operations and the like when the normal operation throttle device (throttle device 3A) of Modification 1 of the refrigeration cycle apparatus 100 according to the present embodiment fails. FIG. 5 is an explanatory diagram of the operation and the like of the backup diaphragm device (throttle device 3B) of a modification of the refrigeration cycle apparatus 100 according to the present embodiment.
4 (a) and 5 (a) correspond to FIG. 2 (a), FIG. 4 (b) and FIG. 5 (b) correspond to FIG. 2 (b), and FIG. 4 (c) and FIG. (C) corresponds to FIG. 2 (c). That is, in FIG. 4A and FIG. 5A, the vertical axis indicates the degree of superheat on the suction side of the compressor 1, and the horizontal axis indicates the capacity of the refrigeration cycle apparatus 100. And the curve of Fig.4 (a) and Fig.5 (a) has shown the change of the superheat degree when the capability of the refrigerating-cycle apparatus 100 is increased with time. 4 (b) and 5 (b), the vertical axis indicates the opening degree of the expansion device 3B, and the horizontal axis is the same as in FIGS. 4 (a) and 5 (a). 4 (c) and 5 (c), the vertical axis indicates the opening of the expansion device 3A, and the horizontal axis is the same as in FIGS. 4 (a) and 5 (a).
 変形例1では、絞り装置3A及び絞り装置3Bの一方が故障することを想定している。すなわち、絞り装置3A及び絞り装置3Bの一方が故障すると、開閉動作を行えなくなる場合がある。したがって、図4に示すように、通常運転用に用いるものを絞り装置3Aし、バックアップ用として用いるものを絞り装置3Bとしている。
 図4に示すように、通常運転では、絞り装置3Aだけが開度制御が実行され、バックアップ用の絞り装置3Bは全閉である。絞り装置3Aは、過熱度が、第1の目標過熱度X1になるように開度制御される。
 図5に示すように、絞り装置3Aが故障すると、算出される過熱度が上昇していく(図5(a)のエリアD参照)。そして、制御装置10は、算出される過熱度が、第2の目標過熱度X2に至ると絞り装置3Aが故障したと判定し、絞り装置3Bの開度制御を実行する。絞り装置3Bは、算出される目標過熱度が第2の目標過熱度X2になるように開度制御が実行される(図5(a)のエリアE参照)。
In the first modification, it is assumed that one of the diaphragm device 3A and the diaphragm device 3B fails. That is, when one of the expansion device 3A and the expansion device 3B fails, the opening / closing operation may not be performed. Therefore, as shown in FIG. 4, the device used for normal operation is the expansion device 3A, and the device used for backup is the expansion device 3B.
As shown in FIG. 4, in normal operation, only the expansion device 3A performs opening degree control, and the backup expansion device 3B is fully closed. The opening degree of the expansion device 3A is controlled so that the superheat degree becomes the first target superheat degree X1.
As shown in FIG. 5, when the expansion device 3A breaks down, the calculated degree of superheat increases (see area D in FIG. 5A). Then, when the calculated degree of superheat reaches the second target superheat degree X2, the control device 10 determines that the expansion device 3A has failed and executes the opening degree control of the expansion device 3B. The expansion device 3B performs opening degree control so that the calculated target superheat degree becomes the second target superheat degree X2 (see area E in FIG. 5A).
 この変形例1では、絞り装置3Aの故障があっても冷凍サイクル装置100の運転を継続することができるだけでなく、絞り装置3Aの故障を検出するセンサ等の機器を別途設けなくてもよい。つまり、変形例に係る冷凍サイクル装置100の制御装置10は、算出される過熱度と第2の目標過熱度X2とに基づいて、絞り装置3Aの故障を判定している。このため、冷凍サイクル装置100のコストアップを抑制することができる。 In the first modification, not only can the operation of the refrigeration cycle apparatus 100 be continued even if there is a failure in the expansion device 3A, but a device such as a sensor for detecting the failure in the expansion device 3A need not be provided separately. That is, the control device 10 of the refrigeration cycle apparatus 100 according to the modified example determines the failure of the expansion device 3A based on the calculated superheat degree and the second target superheat degree X2. For this reason, the cost increase of the refrigeration cycle apparatus 100 can be suppressed.
[本実施の形態に係る冷凍サイクル装置100の変形例2]
 図6は、本実施の形態に係る冷凍サイクル装置100の変形例2の冷媒回路構成図である。図6を参照して冷凍サイクル装置100の変形例2について説明する。変形例2では、分岐部5に第2の流路5B3が追加され、絞り装置3に絞り装置3Cが追加されている点で、本実施の形態に係る冷凍サイクル装置100とは異なっている。その他の構成については同様である。
 なお、変形例2に係る冷凍サイクル装置100は、絞り装置3A及び絞り装置3Bの開閉動作も、本実施の形態に係る冷凍サイクル装置100と同様である。
[Variation 2 of refrigeration cycle apparatus 100 according to the present embodiment]
FIG. 6 is a refrigerant circuit configuration diagram of Modification 2 of the refrigeration cycle apparatus 100 according to the present embodiment. A modification 2 of the refrigeration cycle apparatus 100 will be described with reference to FIG. The second modification is different from the refrigeration cycle apparatus 100 according to the present embodiment in that the second flow path 5B3 is added to the branching section 5 and the expansion device 3C is added to the expansion device 3. Other configurations are the same.
In the refrigeration cycle apparatus 100 according to the second modification, the opening / closing operations of the expansion device 3A and the expansion device 3B are the same as those of the refrigeration cycle apparatus 100 according to the present embodiment.
 変形例1では、通常運転時に開閉する絞り装置の数が一つであった。そこで、変形例2では、通常運転時に開閉する絞り装置を複数としている。これにより、本実施の形態に係る冷凍サイクル装置100と同様に絞り装置3の開閉動作を安定化させながら、変形例2のようなバックアップ動作もすることができる。 In Modification 1, the number of throttle devices that open and close during normal operation was one. Therefore, in the second modification, a plurality of throttle devices are opened and closed during normal operation. Thereby, like the refrigeration cycle apparatus 100 according to the present embodiment, it is possible to perform a backup operation as in Modification 2 while stabilizing the opening / closing operation of the expansion device 3.
[本実施の形態に係る冷凍サイクル装置100の有する効果]
 本実施の形態に係る冷凍サイクル装置100は、圧縮機1と、圧縮機1の吐出側に接続された凝縮器2と、凝縮器2の冷媒流れ方向の下流側に接続された第1の流路5A、及び第1の流路5Aから分岐している第2の流路5B1及び第2の流路5B2を含む分岐部5と、各第2の流路に設けられた絞り装置3と、第2の流路5B1及び第2の流路5B2の冷媒流れ方向の下流側に接続された合流部6と、一方が合流部6の冷媒流れ方向の下流側に接続され、他方が圧縮機1の吸入側に接続された蒸発器4と、圧縮機1の吸入側の目標過熱度に基づいて、各絞り装置3の開度を制御する制御装置10と、を備えたものである。
[Effects of refrigeration cycle apparatus 100 according to the present embodiment]
The refrigeration cycle apparatus 100 according to the present embodiment includes a compressor 1, a condenser 2 connected to the discharge side of the compressor 1, and a first flow connected to the downstream side of the condenser 2 in the refrigerant flow direction. A branch section 5 including a path 5A, a second flow path 5B1 and a second flow path 5B2 branched from the first flow path 5A, and a throttling device 3 provided in each second flow path; The merging portion 6 connected to the downstream side in the refrigerant flow direction of the second flow path 5B1 and the second flow path 5B2, and one is connected to the downstream side in the refrigerant flow direction of the merging section 6, and the other is the compressor 1. The evaporator 4 connected to the suction side of the compressor 1 and the control device 10 for controlling the opening degree of each expansion device 3 based on the target superheat degree on the suction side of the compressor 1 are provided.
 図7は、従来の冷凍サイクル装置200の冷媒回路構成図である。図8は、従来の冷凍サイクル装置200の過熱度の変化と絞り装置の開度との関係等の説明図である。図8(a)は図2(a)に対応し、図8(b)は図2(b)及び図2(c)に対応している。なお、図8では、説明の便宜上、図2~図5とは異なり、横軸を時間としている。
 図7及び図8に示すように、従来の冷凍サイクル装置200は、一つの蒸発器4に対して1つの絞り装置3が配置されている構成である。したがって、冷却対象で発生している負荷が小さく、圧縮機1の回転数が低い状態において、絞り装置3の開閉動作が安定しない。具体的には、一つの絞り装置3で、冷凍サイクル装置200の最大能力を賄うことができるよう絞り装置3の容量を大きくしている。したがって、絞り装置3の開度を調整したときに、過熱度の影響も大きくでてしまいやすい。
FIG. 7 is a refrigerant circuit configuration diagram of a conventional refrigeration cycle apparatus 200. FIG. 8 is an explanatory diagram of the relationship between the change in the degree of superheat of the conventional refrigeration cycle apparatus 200 and the opening of the expansion device. FIG. 8A corresponds to FIG. 2A, and FIG. 8B corresponds to FIG. 2B and FIG. In FIG. 8, for convenience of explanation, the horizontal axis represents time, unlike FIGS.
As shown in FIGS. 7 and 8, the conventional refrigeration cycle apparatus 200 has a configuration in which one expansion device 3 is arranged for one evaporator 4. Therefore, the opening / closing operation of the expansion device 3 is not stable in a state where the load generated in the cooling target is small and the rotation speed of the compressor 1 is low. Specifically, the capacity of the expansion device 3 is increased so that the single expansion device 3 can cover the maximum capacity of the refrigeration cycle apparatus 200. Therefore, when the opening degree of the expansion device 3 is adjusted, the influence of the degree of superheat tends to be large.
 図8に示すように、冷凍サイクル装置200が、低めの能力で運転している状態において、絞り装置3が開度制御を実行すると、目標過熱度に対して過熱度が大きく外れてしまいやすい(図8(a)の矢印AR1参照)。たとえば、このため、絞り装置3は、開度を大きくしたのに、開度を小さくする制御を実行することになり、動作が安定しない(図8(b)の矢印AR2参照)。
 しかし、上述のように、本実施の形態に係る冷凍サイクル装置100は、上記構成を備えているため、冷凍サイクル装置100の運転能力の広範囲で、絞り装置3の動作安定性を確保することができる。
As shown in FIG. 8, when the expansion device 3 performs the opening degree control in the state where the refrigeration cycle apparatus 200 is operating with a low capacity, the degree of superheat tends to greatly deviate from the target degree of superheat ( (See arrow AR1 in FIG. 8A). For example, for this reason, the expansion device 3 executes control for reducing the opening degree even though the opening degree is increased, and the operation is not stable (see the arrow AR2 in FIG. 8B).
However, as described above, since the refrigeration cycle apparatus 100 according to the present embodiment has the above-described configuration, it is possible to ensure the operational stability of the expansion device 3 in a wide range of operating capacity of the refrigeration cycle apparatus 100. it can.
 仮に、絞り装置3A及び絞り装置3Bの両方を一つの目標過熱度に設定し、同じ制御ソフトを用いる場合を考える。この場合には、絞り装置3A及び絞り装置3Bが、同じ動作をすることになるので、従来の冷凍サイクル装置と同様に、過熱度の微調整ができないことになる。 Suppose that both the expansion device 3A and the expansion device 3B are set to one target superheat degree and the same control software is used. In this case, since the expansion device 3A and the expansion device 3B perform the same operation, the superheat degree cannot be finely adjusted as in the conventional refrigeration cycle apparatus.
 そこで、絞り装置3A及び絞り装置3Bの両方を一つの目標過熱度に設定し、絞り装置3A及び絞り装置3Bのそれぞれについて個別の制御ソフトを設ける手段も考えられる。つまり、各絞り装置3の動作が必ずしも同じにならないように各絞り装置3に対して個別の制御ソフトを設け、過熱度の微調整ができるようにするということである。しかし、この場合には、絞り装置3の組み合わせごとに個別の制御ソフトが必要になる。ここで、組み合わせとは、絞り装置3の容量、仕様、個数等によって定まる。また、制御ソフトとは、たとえば、ある過熱度のときには、絞り装置3の開度をどのように設定する等の演算を実行するものである。
 本実施の形態に係る冷凍サイクル装置100では、複数の目標過熱度(第1の目標過熱度X1と第2の目標過熱度X2)をずらして設け、各絞り装置に各目標過熱度を設定している。このため、一つの制御ソフトを設けるだけでも、過熱度の微調整をすることができる。これにより、本実施の形態に係る冷凍サイクル装置100は、制御装置10に用いる制御ソフトの統一化を図ることができ、コストアップを抑制することができる。
Therefore, a means for setting both the expansion device 3A and the expansion device 3B to one target superheat degree and providing individual control software for each of the expansion device 3A and the expansion device 3B can be considered. That is, individual control software is provided for each expansion device 3 so that the operation of each expansion device 3 is not necessarily the same, so that the superheat degree can be finely adjusted. However, in this case, individual control software is required for each combination of the diaphragm devices 3. Here, the combination is determined by the capacity, specifications, number, etc. of the diaphragm device 3. The control software executes, for example, calculation such as how to set the opening degree of the expansion device 3 at a certain degree of superheat.
In the refrigeration cycle apparatus 100 according to the present embodiment, a plurality of target superheat degrees (first target superheat degree X1 and second target superheat degree X2) are provided to be shifted, and each target superheat degree is set for each expansion device. ing. For this reason, it is possible to finely adjust the superheat degree only by providing one control software. Thereby, refrigeration cycle apparatus 100 concerning this embodiment can aim at unification of control software used for control device 10, and can control an increase in cost.
 本実施の形態に係る冷凍サイクル装置100の制御装置10は、開とする絞り装置3の数が、目標過熱度の大きさに応じて異なるように構成されているものである。例えば、目標過熱度が第1の目標過熱度X1となっている場合には、絞り装置3A又は絞り装置3Bが開き、目標過熱度が第2の目標過熱度X2となっている場合には、絞り装置3A及び絞り装置3Bの両方を開く。より詳細には、本実施の形態に係る冷凍サイクル装置100の制御装置10には、絞り装置3の開閉制御の実行に用いる目標過熱度(第1の目標過熱度X1及び第2の目標過熱度X2)が、各絞り装置(絞り装置3A及び絞り装置3B)ごとに設定されているものである。このため、上述のように、目標過熱度の大きさに応じて開となる絞り装置3の数が異なる。
 たとえば、絞り装置3Aについては、第1の目標過熱度X1に基づく制御を実行し、絞り装置3Bについては、第2の目標過熱度X2に基づく制御を実行する場合には、制御装置10は、圧縮機1の回転数の増大とともに、まず、絞り装置3Aから開くことになる。つまり、圧縮機1の回転数の増大とともに過熱度が第1の目標過熱度X1に至るが、その過熱度が第1の目標過熱度X1を超えて大きくなっていかないように、徐々に絞り装置3Aの開度を大きくしていく。なお、このとき過熱度は、第2の目標過熱度X2より小さいため、絞り装置3Bについては、全閉となっている。
 そして、絞り装置3Aを全開がなった段階においても、加熱度が上昇していくと、次に、絞り装置3Bが開くことになる。つまり、制御装置10は、過熱度が第2の目標過熱度X2に至ると絞り装置3Bを開き、過熱度が第2の目標過熱度X2を超えて大きくなっていかないように、絞り装置3Bの開度を大きくしていく。このようにすることで、絞り装置3A及び絞り装置3Bの開閉動作が複雑化することを回避することができる。
The control device 10 of the refrigeration cycle apparatus 100 according to the present embodiment is configured such that the number of the expansion devices 3 to be opened varies depending on the target degree of superheat. For example, when the target superheat degree is the first target superheat degree X1, the expansion device 3A or the expansion device 3B is opened, and when the target superheat degree is the second target superheat degree X2, Both the diaphragm device 3A and the diaphragm device 3B are opened. More specifically, the control device 10 of the refrigeration cycle apparatus 100 according to the present embodiment includes a target superheat degree (first target superheat degree X1 and second target superheat degree) used for execution of opening / closing control of the expansion device 3. X2) is set for each diaphragm device (the diaphragm device 3A and the diaphragm device 3B). For this reason, as described above, the number of the expansion devices 3 that are opened differs depending on the magnitude of the target superheat degree.
For example, when the expansion device 3A executes control based on the first target superheat degree X1, and the expansion device 3B executes control based on the second target superheat degree X2, the control device 10 As the rotational speed of the compressor 1 increases, first, the compressor 3A is opened. That is, the superheat degree reaches the first target superheat degree X1 as the rotation speed of the compressor 1 increases, but the throttle device is gradually increased so that the superheat degree does not exceed the first target superheat degree X1. Increase the opening of 3A. At this time, since the superheat degree is smaller than the second target superheat degree X2, the expansion device 3B is fully closed.
Even when the expansion device 3A is fully opened, if the heating degree increases, the expansion device 3B is then opened. That is, the control device 10 opens the expansion device 3B when the superheat degree reaches the second target superheat degree X2, and the control device 10 sets the expansion device 3B so that the superheat degree does not exceed the second target superheat degree X2. Increase the opening. By doing in this way, it can avoid that the opening / closing operation | movement of the diaphragm | throttle device 3A and the diaphragm | throttle device 3B becomes complicated.
 本実施の形態に係る冷凍サイクル装置100の制御装置10は、各絞り装置3の開閉動作頻度が平準化されるように、各絞り装置3ごとに設定されている目標過熱度の切り替えを実行するものである。
 すなわち、冷凍サイクル装置100の能力を徐々に増加させていく場合について考えると、第1の目標過熱度X1に設定されている絞り装置3Aは、第2の目標過熱度X2に設定されている絞り装置3Bよりも先に開く。このため、各絞り装置3ごとに目標過熱度の切り替えを実行しないと、絞り装置3Aの使用頻度ばかりが増大していき、絞り装置3Aが故障する可能性が高まる。そこで、本実施の形態に係る冷凍サイクル装置100は、例えば、絞り装置3Aを第2の目標過熱度X2に設定し、絞り装置3Bを第1の目標過熱度X1に設定する等を実行し、絞り装置3が故障することを抑制することができる。
The control device 10 of the refrigeration cycle apparatus 100 according to the present embodiment switches the target superheat degree set for each expansion device 3 so that the opening / closing operation frequency of each expansion device 3 is leveled. Is.
That is, when considering the case of gradually increasing the capacity of the refrigeration cycle apparatus 100, the expansion device 3A set to the first target superheat degree X1 is the throttle set to the second target superheat degree X2. Open before device 3B. For this reason, unless switching of the target superheat degree is performed for each expansion device 3, only the use frequency of the expansion device 3A increases, and the possibility that the expansion device 3A breaks down increases. Therefore, the refrigeration cycle apparatus 100 according to the present embodiment executes, for example, setting the expansion device 3A to the second target superheat degree X2, setting the expansion device 3B to the first target superheat degree X1, and the like. It is possible to suppress the failure of the diaphragm device 3.
 本実施の形態に係る冷凍サイクル装置100の制御装置10は、圧縮機1が停止した場合に、各絞り装置3の開閉動作頻度を算出し、複数の前記絞り装置の中から目標過熱度の切り替えを実行する絞り装置3を決定するものである。本実施の形態に係る冷凍サイクル装置100の制御装置10は、絞り装置3A及び絞り装置3Bの開閉動作頻度を算出しているが、その算出した開閉動作頻度を反映させるタイミングとして、圧縮機1の停止時を用いている。圧縮機1が運転を再開したときには、絞り装置3Aの目標過熱度と絞り装置3Bの目標過熱度とが入れ替わっており、適切なタイミングで、絞り装置3A及び絞り装置3Bの動作頻度を平準化することができる。 The control device 10 of the refrigeration cycle apparatus 100 according to the present embodiment calculates the opening / closing operation frequency of each expansion device 3 when the compressor 1 is stopped, and switches the target superheat degree from among the plurality of expansion devices. Is determined. The control device 10 of the refrigeration cycle apparatus 100 according to the present embodiment calculates the opening / closing operation frequency of the expansion device 3A and the expansion device 3B, and the timing of the compressor 1 is reflected as the timing to reflect the calculated opening / closing operation frequency. The stop time is used. When the compressor 1 resumes operation, the target superheat degree of the expansion device 3A and the target superheat degree of the expansion device 3B are interchanged, and the operating frequencies of the expansion device 3A and the expansion device 3B are leveled at an appropriate timing. be able to.
 本実施の形態に係る冷凍サイクル装置100の制御装置10は、複数の絞り装置の一つを全開又は全閉にしてから、全閉又は全開である他の絞り装置を開く又は閉じる。また、本実施の形態に係る冷凍サイクル装置100は、各絞り装置3は、同一の容量である。制御装置10は、絞り装置3Aを全開にしてから、絞り装置3Bを開くようにしている。このように、いずれかの絞り装置3を全開にしてから、他の絞り装置3を開くようにしているので、並列的に複数の絞り装置3の開度を決定する演算をすることを回避することができ、制御装置10の演算負荷を抑制することができる。 The control device 10 of the refrigeration cycle apparatus 100 according to the present embodiment opens or closes another throttling device that is fully closed or fully open after fully opening or closing one of the plurality of throttling devices. In the refrigeration cycle apparatus 100 according to the present embodiment, the expansion devices 3 have the same capacity. The control device 10 opens the expansion device 3B after fully opening the expansion device 3A. As described above, since one of the throttling devices 3 is fully opened and the other throttling devices 3 are opened, it is possible to avoid performing calculations for determining the opening degrees of the plurality of throttling devices 3 in parallel. And the calculation load of the control device 10 can be suppressed.
 本実施の形態に係る冷凍サイクル装置100は、通常運転時に用いられる少なくとも2つ以上の通常運転用の絞り装置と、通常運転時には閉じている少なくとも1つ以上のバックアップ用の絞り装置とを備え、制御装置10は、通常運転用の絞り装置の少なくとも1つが故障して開かなくなると、バックアップ用の絞り装置を開き、圧縮機1の運転を継続する。これにより、冷凍サイクル装置100は、絞り装置3のいずれかが故障しても、圧縮機1を緊急停止する必要はなく、運転を継続することができる。 The refrigeration cycle apparatus 100 according to the present embodiment includes at least two or more normal operation throttle devices that are used during normal operation, and at least one backup throttle device that is closed during normal operation, When at least one of the normal operation throttle devices fails and cannot be opened, the control device 10 opens the backup throttle device and continues the operation of the compressor 1. Thereby, the refrigeration cycle apparatus 100 can continue the operation without the emergency stop of the compressor 1 even if any of the expansion devices 3 breaks down.
 本実施の形態に係る冷凍サイクル装置100は、圧縮機1の吸入側の温度を検出する温度センサ12と、圧縮機1の吸入側の圧力を検出する圧力センサ11とをさらに備え、制御装置10は、圧力センサ11の圧力信号及び温度センサ12の温度信号が出力され、目標過熱度と、圧力信号及び前記温度信号に基づく過熱度と、に基づいて各絞り装置3の開度制御を実行するものである。例えば、制御装置10は、圧力センサ11の圧力信号及び温度センサ12の温度信号に基づいて過熱度を算出する。そして、この算出した過熱度が、第1の目標過熱度X1に至ると第1の目標過熱度X1が設定されている絞り装置3Aが開かれることになり、第2の目標過熱度X2に至ると第2の目標過熱度X2に設定されている絞り装置3Bも開かれることになる。 The refrigeration cycle apparatus 100 according to the present embodiment further includes a temperature sensor 12 that detects a temperature on the suction side of the compressor 1 and a pressure sensor 11 that detects a pressure on the suction side of the compressor 1, and includes a control device 10. The pressure signal of the pressure sensor 11 and the temperature signal of the temperature sensor 12 are output, and the opening degree control of each expansion device 3 is executed based on the target superheat degree and the superheat degree based on the pressure signal and the temperature signal. Is. For example, the control device 10 calculates the degree of superheat based on the pressure signal from the pressure sensor 11 and the temperature signal from the temperature sensor 12. Then, when the calculated superheat degree reaches the first target superheat degree X1, the expansion device 3A in which the first target superheat degree X1 is set is opened, and the second target superheat degree X2 is reached. The expansion device 3B set to the second target superheat degree X2 is also opened.
 なお、本実施の形態では、自動的に開閉動作頻度算出部10B2が絞り装置3の開閉動作頻度を算出し、各絞り装置3に設定する各目標過熱度を切り替える態様について説明しているが、それに限定されるものではない。冷凍サイクル装置100の管理者などが、適宜、手動で各絞り装置3に設定する各目標過熱度を切り替えることができるものであってもよい。 In the present embodiment, the opening / closing operation frequency calculation unit 10B2 automatically calculates the opening / closing operation frequency of the expansion device 3 and switches the target degree of superheat set in each expansion device 3. It is not limited to that. An administrator of the refrigeration cycle apparatus 100 may be able to manually switch each target superheat degree set in each expansion device 3 as appropriate.
 また、本実施の形態では、開閉動作頻度算出部10B2が絞り装置3の開閉動作頻度を算出する態様について説明したが、それに限定されるものではない。たとえば、制御装置10は、各絞り装置3の稼働率の大小を算出するものであってもよい。
 また、本実施の形態では、圧縮機1が停止した場合に、各絞り装置3の開閉動作頻度を算出する場合について説明したが、それに限定されるものではない。圧縮機1が停止するタイミング以外にも、冷凍サイクル装置100の運転毎のタイミングであってもよいし、日ごとのタイミングであってもよいし、月ごとのタイミングであってもよい。
In the present embodiment, the mode in which the opening / closing operation frequency calculation unit 10B2 calculates the opening / closing operation frequency of the expansion device 3 has been described. However, the present invention is not limited to this. For example, the control device 10 may calculate the size of the operating rate of each expansion device 3.
Moreover, although this Embodiment demonstrated the case where the opening / closing operation frequency of each expansion device 3 was calculated when the compressor 1 stopped, it is not limited to it. In addition to the timing when the compressor 1 stops, it may be a timing for every operation of the refrigeration cycle apparatus 100, a timing for each day, or a timing for each month.
 1 圧縮機、2 凝縮器、2A 送風機、3 絞り装置、3A 絞り装置、3B 絞り装置、3C 絞り装置、4 蒸発器、4A 送風機、5 分岐部、5A 第1の流路、5B1 第2の流路、5B2 第2の流路、5B3 第2の流路、6 合流部、10 制御装置、10A 過熱度算出部、10B1 目標過熱度切替部、10B2 開閉動作頻度算出部、10C 記憶部、10D 絞り装置制御部、10E 圧縮機制御部、10F 送風機制御部、11 圧力センサ、12 温度センサ、100 冷凍サイクル装置、200 冷凍サイクル装置、X1 第1の目標過熱度、X2 第2の目標過熱度。 1 compressor, 2 condenser, 2A blower, 3 throttling device, 3A throttling device, 3B throttling device, 3C throttling device, 4 evaporator, 4A blower, 5 branching section, 5A first flow path, 5B1 second flow Path, 5B2, second flow path, 5B3, second flow path, 6 confluence section, 10 control device, 10A superheat degree calculation section, 10B1 target superheat degree switching section, 10B2, open / close operation frequency calculation section, 10C storage section, 10D throttle Device control unit, 10E compressor control unit, 10F blower control unit, 11 pressure sensor, 12 temperature sensor, 100 refrigeration cycle device, 200 refrigeration cycle device, X1 first target superheat degree, X2 second target superheat degree.

Claims (9)

  1.  圧縮機と、
     前記圧縮機の吐出側に接続された凝縮器と、
     前記凝縮器の冷媒流れ方向の下流側に接続された第1の流路、及び前記第1の流路から分岐している複数の第2の流路を含む分岐部と、
     に設けられた絞り装置と、
     前記各第2の流路複数の第2の流路の冷媒流れ方向の下流側に接続された合流部と、
     一方が前記合流部の冷媒流れ方向の下流側に接続され、他方が前記圧縮機の吸入側に接続された蒸発器と、
     前記圧縮機の吸入側の目標過熱度に基づいて、各絞り装置の開度制御を実行する制御装置と、
     を備えた
     冷凍サイクル装置。
    A compressor,
    A condenser connected to the discharge side of the compressor;
    A branch portion including a first flow path connected to the downstream side of the condenser in the refrigerant flow direction, and a plurality of second flow paths branched from the first flow path;
    An aperture device provided in
    A merging portion connected to the downstream side in the refrigerant flow direction of the second flow paths of the second flow paths,
    An evaporator, one of which is connected to the downstream side in the refrigerant flow direction of the junction, and the other is connected to the suction side of the compressor;
    Based on the target superheat degree on the suction side of the compressor, a control device that performs opening control of each expansion device;
    A refrigeration cycle apparatus comprising:
  2.  前記制御装置は、
     開とする前記絞り装置の数が、前記目標過熱度の大きさに応じて異なるように構成されている
     請求項1に記載の冷凍サイクル装置。
    The controller is
    The refrigeration cycle apparatus according to claim 1, wherein the number of expansion devices to be opened is configured to be different according to the magnitude of the target superheat degree.
  3.  前記制御装置には、
     前記絞り装置の開閉制御の実行に用いる前記目標過熱度が、各絞り装置ごとに設定されている
     請求項2に記載の冷凍サイクル装置。
    In the control device,
    The refrigeration cycle apparatus according to claim 2, wherein the target superheat degree used for execution of opening / closing control of the expansion device is set for each expansion device.
  4.  前記制御装置は、
     各絞り装置の開閉動作頻度が平準化されるように、各絞り装置ごとに設定されている前記目標過熱度の切り替えを実行する
     請求項3に記載の冷凍サイクル装置。
    The controller is
    The refrigeration cycle apparatus according to claim 3, wherein switching of the target superheat degree set for each expansion device is executed so that the opening / closing operation frequency of each expansion device is leveled.
  5.  前記制御装置は、
     前記圧縮機が停止した場合に、
     各絞り装置の開閉動作頻度を算出し、複数の前記絞り装置の中から前記目標過熱度の切り替えを実行する前記絞り装置を決定する
     請求項4に記載の冷凍サイクル装置。
    The controller is
    When the compressor stops,
    The refrigeration cycle apparatus according to claim 4, wherein the open / close operation frequency of each expansion device is calculated, and the expansion device that performs switching of the target superheat degree is determined from among the plurality of expansion devices.
  6.  前記制御装置は、
     前記複数の絞り装置の一つを全開又は全閉にしてから、全閉又は全開である他の前記絞り装置を開く又は閉じる開閉制御を実行する
     請求項1~5のいずれか一項に記載の冷凍サイクル装置。
    The controller is
    The open / close control for opening or closing another throttle device that is fully closed or fully open is performed after one of the plurality of throttle devices is fully open or fully closed. Refrigeration cycle equipment.
  7.  各絞り装置は、同一の容量である
     請求項6に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to claim 6, wherein the expansion devices have the same capacity.
  8.  通常運転時に用いられる少なくとも2つ以上の通常運転用の前記絞り装置と、
     通常運転時には閉じている少なくとも1つ以上のバックアップ用の前記絞り装置とを備え、
     前記制御装置は、
     通常運転用の前記絞り装置の少なくとも1つが故障して開かなくなると、
     バックアップ用の前記絞り装置を開き、前記圧縮機の運転を継続する
     請求項1~7のいずれか一項に記載の冷凍サイクル装置。
    At least two or more throttle devices for normal operation used during normal operation;
    And at least one backup device for backup that is closed during normal operation,
    The controller is
    If at least one of the throttle devices for normal operation fails and cannot be opened,
    The refrigeration cycle apparatus according to any one of claims 1 to 7, wherein the throttle device for backup is opened and the operation of the compressor is continued.
  9.  前記圧縮機の吸入側の温度を検出する温度センサと、
     前記圧縮機の吸入側の圧力を検出する圧力センサとをさらに備え、
     前記制御装置は、
     前記圧力センサの圧力信号及び前記温度センサの温度信号が出力され、
     前記目標過熱度と、前記圧力信号及び前記温度信号に基づく過熱度と、に基づいて各絞り装置の開度制御を実行する
     請求項1~8のいずれか一項に記載の冷凍サイクル装置。
    A temperature sensor for detecting the temperature on the suction side of the compressor;
    A pressure sensor for detecting the pressure on the suction side of the compressor,
    The controller is
    The pressure signal of the pressure sensor and the temperature signal of the temperature sensor are output,
    The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein opening control of each expansion device is executed based on the target superheat degree and the superheat degree based on the pressure signal and the temperature signal.
PCT/JP2015/066088 2015-06-03 2015-06-03 Refrigeration cycle device WO2016194185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066088 WO2016194185A1 (en) 2015-06-03 2015-06-03 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066088 WO2016194185A1 (en) 2015-06-03 2015-06-03 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2016194185A1 true WO2016194185A1 (en) 2016-12-08

Family

ID=57440412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066088 WO2016194185A1 (en) 2015-06-03 2015-06-03 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2016194185A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211099A (en) * 2016-05-23 2017-11-30 株式会社鷺宮製作所 Refrigerator
WO2020144843A1 (en) * 2019-01-11 2020-07-16 三菱電機株式会社 Air-conditioning apparatus

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181271U (en) * 1985-04-27 1986-11-12
JPS6288256U (en) * 1985-11-22 1987-06-05
JPS6373060A (en) * 1986-09-13 1988-04-02 ダイキン工業株式会社 Refrigerator
JPH02146466A (en) * 1988-11-28 1990-06-05 Mitsubishi Electric Corp Refrigerant circuit
JPH03217771A (en) * 1990-01-22 1991-09-25 Sanyo Electric Co Ltd Air conditioner
WO2003064940A1 (en) * 2002-01-28 2003-08-07 Toshiba Carrier Corporation Air conditioner
JP2006525907A (en) * 2003-05-09 2006-11-16 クノール−ブレームス レール システムス (ユーケー) リミテッド Braking control system for railway vehicles
US20080289346A1 (en) * 2004-08-09 2008-11-27 Linde Kaeltetechanik Gmbh & Co. Kg Refrigeration Circuit and Method of Operating a Refrigeration Circuit
JP2010501826A (en) * 2006-09-01 2010-01-21 チャンジョ 21 シーオー.,エルティディ. Air conditioner for communication equipment
JP2010230274A (en) * 2009-03-27 2010-10-14 Mitsubishi Electric Corp Drying heater for bathroom and method of controlling drying heater for bathroom
JP2012251730A (en) * 2011-06-03 2012-12-20 Azbil Corp Room pressure control system
JP2013002740A (en) * 2011-06-17 2013-01-07 Saginomiya Seisakusho Inc Electronic expansion valve control device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181271U (en) * 1985-04-27 1986-11-12
JPS6288256U (en) * 1985-11-22 1987-06-05
JPS6373060A (en) * 1986-09-13 1988-04-02 ダイキン工業株式会社 Refrigerator
JPH02146466A (en) * 1988-11-28 1990-06-05 Mitsubishi Electric Corp Refrigerant circuit
JPH03217771A (en) * 1990-01-22 1991-09-25 Sanyo Electric Co Ltd Air conditioner
WO2003064940A1 (en) * 2002-01-28 2003-08-07 Toshiba Carrier Corporation Air conditioner
JP2006525907A (en) * 2003-05-09 2006-11-16 クノール−ブレームス レール システムス (ユーケー) リミテッド Braking control system for railway vehicles
US20080289346A1 (en) * 2004-08-09 2008-11-27 Linde Kaeltetechanik Gmbh & Co. Kg Refrigeration Circuit and Method of Operating a Refrigeration Circuit
JP2010501826A (en) * 2006-09-01 2010-01-21 チャンジョ 21 シーオー.,エルティディ. Air conditioner for communication equipment
JP2010230274A (en) * 2009-03-27 2010-10-14 Mitsubishi Electric Corp Drying heater for bathroom and method of controlling drying heater for bathroom
JP2012251730A (en) * 2011-06-03 2012-12-20 Azbil Corp Room pressure control system
JP2013002740A (en) * 2011-06-17 2013-01-07 Saginomiya Seisakusho Inc Electronic expansion valve control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211099A (en) * 2016-05-23 2017-11-30 株式会社鷺宮製作所 Refrigerator
WO2020144843A1 (en) * 2019-01-11 2020-07-16 三菱電機株式会社 Air-conditioning apparatus

Similar Documents

Publication Publication Date Title
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
US11181304B2 (en) Chilling unit and temperature control system using water circulation
EP2792959B1 (en) Outdoor unit and air-conditioning device
JP5132354B2 (en) Air conditioner
JP6545252B2 (en) Refrigeration cycle device
WO2014038469A1 (en) Engine-driven heat pump chiller
US20210180802A1 (en) Air-conditioning system
US20200318849A1 (en) Air conditioning system and control method therof
WO2019053876A1 (en) Air conditioning device
JP2001280669A (en) Refrigerating cycle device
JP6068121B2 (en) Air conditioner
JP5872052B2 (en) Air conditioner
JP2018091540A (en) Air conditioner
WO2016194185A1 (en) Refrigeration cycle device
JP6672619B2 (en) Air conditioning system
JP6448780B2 (en) Air conditioner
JP2013002749A (en) Air conditioning device
JP2017009269A5 (en)
JP2014119150A (en) Air conditioner
JP5754627B2 (en) Fluid cooling method and fluid cooling device
JP7195449B2 (en) Outdoor unit and refrigeration cycle equipment
JP2017101844A (en) Air conditioner
JP6704513B2 (en) Refrigeration cycle equipment
JP2005291555A (en) Air conditioner
WO2017199384A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP