WO2016192320A1 - 一种盾构隧道连续梁式抗浮结构 - Google Patents

一种盾构隧道连续梁式抗浮结构 Download PDF

Info

Publication number
WO2016192320A1
WO2016192320A1 PCT/CN2015/094756 CN2015094756W WO2016192320A1 WO 2016192320 A1 WO2016192320 A1 WO 2016192320A1 CN 2015094756 W CN2015094756 W CN 2015094756W WO 2016192320 A1 WO2016192320 A1 WO 2016192320A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield tunnel
uplift
continuous beam
floating structure
tunnel
Prior art date
Application number
PCT/CN2015/094756
Other languages
English (en)
French (fr)
Inventor
肖明清
龚彦峰
鲁志鹏
何应道
孙峰
龙凡
蒋喆
梁艳
Original Assignee
中铁第四勘察设计院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201520376378.1U external-priority patent/CN204690805U/zh
Priority claimed from CN201510298906.0A external-priority patent/CN104895122B/zh
Application filed by 中铁第四勘察设计院集团有限公司 filed Critical 中铁第四勘察设计院集团有限公司
Publication of WO2016192320A1 publication Critical patent/WO2016192320A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D31/00Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/10Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against soil pressure or hydraulic pressure
    • E02D31/12Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against soil pressure or hydraulic pressure against upward hydraulic pressure

Definitions

  • the invention relates to the field of shield tunnels, in particular to a shield tunnel continuous beam anti-floating structure.
  • the anti-floating design of shield tunnel is an important design part of shield tunnel, which directly affects the design of the tunnel and the determination of the construction scale.
  • the anti-floating design of the shield tunnel is to satisfy the buoyancy of the shield tunnel than the buoyancy, and leave a certain Safety factor requirements.
  • the anti-floating design of the shield tunnel needs to meet the requirements of anti-floating stability, and its formula is as follows:
  • Gk the anti-buoy force of the tunnel, consisting of the buoyancy provided by the tunnel's own weight, weight or other measures
  • Fw the buoyancy value of the tunnel
  • Kw The anti-floating safety factor is calculated according to the most unfavorable situation. When the lateral friction of the formation is not taken into account, it is taken as 1.05. When considering the lateral friction of the formation, according to the geological and hydrogeological conditions of different areas, 1.10 ⁇ 1.15 can be used.
  • the internal structure of the shield tunnel during construction period has not been completed. Only the segment lining structure, the problem of the floating of the segment during the shield construction may be caused by various factors.
  • the shield resistance during the construction period Floating is generally a temporary measure to solve the anti-floating problem of the tunnel through measures such as temporary pressure inside the tunnel or on the ground.
  • the buoyancy of the tunnel will also change due to the change of the groundwater level during the long-term operation.
  • the part of the tunnel is shallow, the tunnel will not meet the anti-floating stability requirements.
  • the shield tunnel is shallowly covered:
  • the anti-floating measures can increase the anti-floating force and can not fully meet the safety requirements of anti-floating stability.
  • the object of the present invention is to overcome the deficiencies of the above background art and to provide a shield tunnel continuous beam anti-floating structure which can fully meet the requirements of anti-floating stability and low cost.
  • the present invention provides a shield tunnel continuous beam anti-floating structure, comprising a plurality of caps arranged longitudinally along a shield tunnel, all of which are disposed laterally above the shield tunnel.
  • Each of the pedestals is provided with an uplift pile for fixing, and a lower surface of the pedestal and a top upper surface of the shield tunnel are provided between the pedestal and the uplift pile a stratum reinforcement layer integrated with the shield tunnel.
  • the cap and the uplift pile are arranged at a certain distance along the longitudinal direction of the shield tunnel, and the high compressive stratum of the base of the cap to the arch of the shield tunnel is reinforced (ie, the stratum reinforcement layer), so that the shield tunnel and the stratum are strengthened.
  • the layer, the uplift pile and the cap form a continuous beam-type overall anti-floating structure, so that the shield tunnel lining structure between the caps allows a certain upward deformation under the action of the buoyancy, thereby fully utilizing the shield tunnel itself.
  • the stratum reinforcement layer itself has a large self-weight, so the addition of the stratum reinforcement layer can also play a certain anti-floating effect.
  • the anti-floating structure is arranged along the shield tunnel section, the pile and the uplift pile are provided.
  • the amount of engineering of the floating measures is greatly reduced, thereby greatly reducing the cost; moreover, the position of the cap and the uplift pile can be determined in combination with the ground conditions, thereby reducing the impact of the construction on the surrounding environment.
  • the spacing D between the lateral centerlines of the adjacent two of the pedestals is 20 to 40 m.
  • the transverse centerlines of all of the caps are perpendicular to the vertical plane in which the central axis of the shield tunnel is located.
  • the shield tunnel is a two-way tunnel, and three sets of the uplift piles are respectively disposed under the same deck, and three sets of the uplift piles are respectively disposed on two sides and the middle of the two-way tunnel.
  • the number of uplift piles in each set of the uplift piles is 2, and the uplift piles in each set of the uplift piles are also arranged along the longitudinal interval of the shield tunnel.
  • a cushion layer for leveling is provided between the upper surface of the formation reinforcement layer and the lower surface of the platform.
  • the distance d between the uplift pile and the shield tunnel is 1 to 2 m.
  • the distance d between the uplift pile and the shield tunnel is designed to be between 1 and 2 m, so as to make the uplift pile close to the shield tunnel as much as possible, so that the size of the pile cap and the stratum reinforcement layer can be reduced, thereby further Reduce the amount of construction.
  • the reinforcing bars in the top of the uplift pile are anchored into the pedestal.
  • the uplift pile can form a whole with the cap, thereby ensuring the strength of the structure and also improving the anti-floating ability of the structure.
  • the diameter of the lower portion of the uplift pile is larger than the diameter of the upper portion.
  • the strength of the formation reinforcement layer is 1 to 2 MPa.
  • the uplift pile is a jet grouting pile or a mixing pile.
  • a jet grouting pile or a mixing pile By selecting a jet grouting pile or a mixing pile, the strength of the uplift pile can be improved, thereby further improving the anti-floating ability of the structure.
  • the stratum reinforcement layer is not easily deformed, so that the uplift deformation of the shield tunnel can be controlled, thereby further improving the anti-floating ability of the structure;
  • the force transmission between the cap and the shield tunnel can be better and more direct. More direct and better use of the anti-floating ability of the structure;
  • the uplift pile can form a whole with the cap, thus ensuring the strength of the structure and also improving the anti-floating ability of the structure;
  • the diameter of the lower part of the uplift pile is larger than the diameter of the upper part, the fixing effect of the uplift pile can be improved, thereby further improving the anti-floating ability of the structure;
  • the uplift pile is close to the shield tunnel, so that the size of the pile cap and the stratum reinforcement layer can be reduced, thereby Further reducing the amount of construction;
  • the position of the cap and the uplift pile can also be determined in combination with the ground conditions, thereby reducing the impact of the construction on the surrounding environment;
  • the strength of the uplift pile can be improved, thereby further improving the anti-floating ability of the structure.
  • the invention fully demonstrates that the advantages are: fully satisfying the requirements of anti-floating stability, simple structure, low cost and little influence of construction on the surrounding environment.
  • FIG. 1 is a schematic perspective view of the present invention
  • Figure 2 is a schematic view showing another perspective of the present invention.
  • Figure 3 is a schematic cross-sectional view taken along line A-A of Figure 2;
  • the working well or platform 1 the shield tunnel 2, the cap 3, the uplift pile 4, the stratum reinforcement layer 5, the mat layer 6.
  • a shield tunnel continuous beam anti-floating structure provided by the embodiment includes a plurality of caps 3 arranged longitudinally along the shield tunnel 2, and all of the caps 3 are laterally disposed at Above the shield tunnel 2, and the transverse centerlines of all the caps 3 are perpendicular to the vertical plane where the central axis of the shield tunnel 2 is located; each of the caps 3 is respectively provided below
  • the group is used for the fixed uplift pile 4, the number of the group of the uplift piles 4 under the same deck 3 is the total number of the shield tunnels 2 plus 1, and all the group uplift piles under the same deck 3 4 correspondingly disposed on both sides of the shield tunnel 2, and two adjacent shield tunnels 2 share a group of uplift piles 4, and the number of uplift piles 4 in each group of uplift piles 4 is at least 1.
  • the uplift piles 4 of each group of uplift piles 4 are also arranged longitudinally along the shield tunnel 2, and the distance d between the uplift piles 4 and the shield tunnel 2 is 1-2 m;
  • the steel bar in the top end of the uplift pile 4 is anchored into the platform 3, the diameter of the lower part of the uplift pile 4 is larger than the diameter of the upper part; the lower surface of the pile 3 and the shield tunnel
  • a formation reinforcement layer 5 for integrally connecting the cap 3, the uplift pile 4 and the shield tunnel 2 is provided between the top upper surfaces of the road 2, and the strength of the formation reinforcement layer 5 is 1. ⁇ 2MPa.
  • the shield tunnel 2 By arranging the cap 3 and the uplift pile 4 at a certain distance along the longitudinal direction of the shield tunnel 2, and reinforcing the high compressive stratum of the bottom of the cap 3 to the arch portion of the shield tunnel 2 (ie, the stratum reinforcement layer 5),
  • the shield tunnel 2, the stratum reinforcement layer 5, the uplift pile 4 and the cap 3 together form a continuous beam-type overall anti-floating structure, so that the shield tunnel lining structure between the caps 3 allows a certain force under the buoyancy force.
  • the upward deformation makes full use of the longitudinal bending and shear resistance of the shield tunnel 2 itself, and the anti-floating ability of the cap 3 and the uplift pile 4 itself, so that the anti-floating structure can easily satisfy the shield.
  • the anti-floating stability requirement of the tunnel is formed; in addition, since the added stratum reinforcement layer 5 itself has a large self-weight, the addition of the stratum reinforcement layer 5 can also exert a certain anti-floating effect; meanwhile, since the anti-floating structure is along
  • the shield tunnel is provided in sections 3 and the uplift pile 4, so the engineering amount of the anti-floating measures is greatly reduced, thereby greatly reducing the cost; and, by designing the strength of the formation reinforcement layer 5 at 1 to 2 MPa So that the formation reinforcement layer 5 is not easily deformed, so that the shield can be controlled Constructing the amount of upward deformation of the tunnel 2, thereby further improving the anti-floating ability of the structure; and, by designing the transverse centerline of the cap 3 to be perpendicular to the vertical plane of the central axis of the shield tunnel 2, In this way, the force transmission between the bearing platform 3 and the shield tunnel 2 can be better and more directly, so that the anti-floating ability of the structure can be more directly and better utilized; and further, the top of the
  • the spacing D between the lateral centerlines of the adjacent two of the caps 3 is 20 to 40 m.
  • the spacing between the transverse centerline of the working platform or station 1 closest to the working well or platform 1 at the end of the shield tunnel 2 and the transverse centerline of the working well or platform 1 is also D.
  • the spacing D needs to be determined according to the calculation and combined with the ground construction conditions, as follows:
  • the longitudinal equivalent stiffness model of the shield tunnel 2 is established, and the cap 3, the uplift pile 4 and the stratum reinforcement layer 5 are formed.
  • the continuous beam fulcrum is simulated as a tension spring, and the stiffness of the tension spring can be taken according to the elastic modulus of the formation reinforcement layer 5 (the elastic modulus of the formation reinforcement layer 5 can be taken as the 28-day unconfined compressive strength of 100-150.
  • the calculation model is calculated by adjusting the spacing of the caps 3 until the deformation and force control of the tunnel structure, the cap 3 and the stratum reinforcement layer 5 are within a reasonable range, that is, the lining opening of the shield tunnel segment lining is satisfied.
  • the misalignment between the rings does not exceed 15mm
  • the shear and tensile strength of the bolt does not exceed the design value
  • the lining structure should meet the strength and deformation requirements.
  • the cap 3 should be perpendicular to the centerline of the shield tunnel 2 as far as possible
  • the uplift pile 4 should be as close as possible to the shield tunnel 2 with a clear distance of not less than 1 m.
  • the shield tunnel 2 is a two-way tunnel, and three sets of the uplift piles 4 are respectively disposed under the same deck 3, and three sets of the uplift piles 4 are respectively disposed on both sides and in the middle of the two-way tunnel.
  • the number of the uplift piles 4 in the set of uplift piles 4 is two.
  • the uplift piles 4 in each set of the uplift piles 4 are also arranged longitudinally along the shield tunnel 2.
  • a cushion layer 6 for leveling is disposed between the upper surface of the formation reinforcement layer 5 and the lower surface of the cap 3.
  • the uplift pile 4 is a jet grouting pile or a mixing pile. By selecting a jet grouting pile or a mixing pile, the strength of the uplift pile 4 can be improved, thereby further improving the anti-floating ability of the structure.
  • the anti-pile pile 4 is constructed first, and the bottom stratum reinforcement construction (ie the construction of the stratum reinforcement layer 5) is completed;
  • caps 3 and the anti-pick piles 4 shall be checked according to the geological and hydrological conditions and the structural design of the shield tunnel 2 to ensure the anti-floating stability requirements of the tunnel structure, and the deformation and stress of the structure are allowed. Within the value;
  • the applicable shield tunnel 2 is not limited in diameter.
  • the invention firstly arranges the cap 3 and the uplift pile 4 at a certain distance along the longitudinal direction of the shield tunnel 2, and reinforces the high compressive stratum of the bottom of the cap 3 to the arch of the shield tunnel 2 (ie, the stratum reinforcement layer 5 ), the shield tunnel 2, the stratum reinforcement layer 5, the uplift pile 4 and the cap 3 together form a continuous beam type overall anti-floating structure, so that the shield tunnel lining structure between the caps 3 is under the buoyancy Allowing a certain upward deformation, thereby making full use of the longitudinal bending and shear resistance of the shield tunnel 2 itself, together with the anti-floating ability of the cap 3 and the uplift pile 4 itself, making the anti-floating structure easy It can meet the anti-floating stability requirements of the shield tunnel; in addition, since the added stratum reinforcement layer 5 itself has a large self-weight, the addition of the stratum reinforcement layer 5 can also play a certain anti-floating effect;
  • the structure is that the cap 3 and the uplift pile 4 are arranged along the shield tunnel 3, so the

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

一种盾构隧道连续梁式抗浮结构,包括沿盾构隧道(2)纵向间隔布置的承台(3),承台(3)横向设置在盾构隧道(2)的上方,每个承台(3)的下方分别设有用于固定的抗拔桩(4),承台(3)下表面与盾构隧道(2)的顶部上表面之间设有用于将承台(3)、抗拔桩(4)和盾构隧道(2)连成一体的地层加固层(5)。

Description

一种盾构隧道连续梁式抗浮结构 技术领域
本发明涉及一种盾构隧道领域,特别涉及一种盾构隧道连续梁式抗浮结构。
背景技术
盾构隧道抗浮设计是盾构隧道的重要设计部分,直接影响隧道的线路设计和建设规模的确定,盾构隧道抗浮设计即是满足盾构隧道抗浮力大于上浮力,并留有一定的安全系数的要求。具体地,盾构隧道抗浮设计需满足抗浮稳定性要求,其公式如下:
Figure PCTCN2015094756-appb-000001
式中:Gk——隧道抗浮力,由隧道自重、压重或其它措施提供的抗浮力组成;
      Fw——隧道浮力作用值;
      Kw——抗浮稳定安全系数,按最不利情况验算,当不计地层侧摩阻力时取1.05;当计及地层侧摩阻力时,根据不同地区的地质和水文地质条件,可采用1.10~1.15。
在实际施工时,盾构隧道施工期内部结构尚未完成,只有管片衬砌结构,盾构推进施工中的管片上浮问题可能由多种因素引起,当抗浮力不够时,施工期的盾构抗浮一般是采取临时措施,通过隧道内部或地面的临时压重等措施解决隧道的抗浮问题。盾构隧道运营期结构全部完成后,在长期运营过程中由于地下水位变化,隧道的上浮力也是变化的,当隧道的局部覆土较浅时,会导致隧道不满足抗浮稳定性要求。引起盾构隧道覆土较浅的情况有以下几种:
(1)受建设条件限制,如盾构隧道穿越道路、水沟等情况;
(2)隧道穿越如长江等河道,为防洪需要,要求盾构工作井与堤防留有足够的距离;
(3)大直径盾构隧道的每延米造价低于明挖深基坑,为节省工程投资延长盾构隧道长度。
针对盾构隧道浅覆土的情况,为了满足盾构隧道长期运营过程中的抗浮稳定性安全要求,需要采取其它辅助抗浮措施。目前,较为常用的抗浮措施有:
(1)地面堆载压重,该抗浮措施在长期运营过程中受地面条件限制一般难以实现;
(2)利用盾构隧道内的无用空间填充混凝土或其它配重材料,增加隧道自重,但由于盾构隧道的内部空间是有限的,因此隧道内增加的配重也不一定能完全克服上浮力的增加,某些情况下仍无法满足抗浮稳定性安全要求;
(3)在整个盾构隧道的上方加设门式框架结构,增加隧道压重,该抗浮措施的工程量较大,成本较高;
(4)盾构隧道内部结构上开孔,设置小型抗拔桩或抗浮锚杆,并安装防水装置,该抗浮措施能够增加的抗浮力较小,不能完全满足抗浮稳定性安全要求。
因此,现有的几种抗浮措施在实际施工时均存在各自的问题,无法满足实际施工需要。
发明内容
本发明的目的是为了克服上述背景技术的不足,提供一种能完全满足抗浮稳定性要求且成本低的盾构隧道连续梁式抗浮结构。
为了实现以上目的,本发明提供的一种盾构隧道连续梁式抗浮结构,包括沿盾构隧道纵向间隔布置的若干个承台,所有所述承台均横向设置在所述盾构隧道的上方,每个所述承台的下方分别设有用于固定的抗拔桩,所述承台下表面与所述盾构隧道的顶部上表面之间设有用于将所述承台、所述抗拔桩和所述盾构隧道连成一体的地层加固层。通过沿盾构隧道纵向每隔一定距离布置承台和抗拔桩,并对承台底面至盾构隧道拱部的高压缩性地层进行加固(即地层加固层),使得盾构隧道、地层加固层、抗拔桩和承台共同形成连续梁式的整体抗浮结构,这样,承台之间的盾构隧道衬砌结构在上浮力作用下允许一定的向上变形,从而充分利用了盾构隧道本身的纵向抗弯、抗剪能力,再加上承台和抗拔桩本身的抗浮能力,使得本抗浮结构很容易地就能满足盾构隧道的抗浮稳定性要求;并且,由于加设地层加固层本身自重也较大,所以加设地层加固层还能起到一定的抗浮作用;同时,由于本抗浮结构是沿盾构隧道分段设置承台和抗拔桩,所以本抗浮措施的工程量大为降低,从而大大地降低了成本;而且,承台和抗拔桩设置的位置还可结合地面条件确定,进而减少了施工对周边环境的影响。
在上述方案中,相邻两所述承台的横向中心线之间的间距D为20~40m。
在上述方案中,所有所述承台中距离所述盾构隧道端头处的工作井或站台最近的一 个的横向中心线与所述工作井或站台的横向中心线之间的间距也为D。
在上述方案中,所有所述承台的横向中心线与所述盾构隧道的中心轴线所在的竖直平面垂直。通过将承台的横向中心线设计成与盾构隧道的中心轴线所在的竖直平面垂直,这样,承台与盾构隧道之间能更好、更直接地发生力的传递,从而能更直接、更好的发挥本结构的抗浮能力。
在上述方案中,所述盾构隧道为双向隧道,同一所述承台的下方分别设有三组所述抗拔桩,三组所述抗拔桩分别布置在所述双向隧道的两侧和中间,每组所述抗拔桩中抗拔桩的数量为2,每组所述抗拔桩中抗拔桩也沿所述盾构隧道纵向间隔布置。
在上述方案中,所述地层加固层上表面与所述承台下表面之间设有用于找平的垫层。
在上述方案中,所述抗拔桩与所述盾构隧道之间的距离d为1~2m。通过将抗拔桩与盾构隧道之间的距离d设计在1~2m之间,以尽量使抗拔桩靠近盾构隧道,这样,能减小承台和地层加固层的尺寸,从而更进一步地减小施工量。
在上述方案中,所述抗拔桩顶端内的钢筋锚入所述承台中。通过将抗拔桩顶端内的钢筋锚入承台中,这样抗拔桩能与承台形成一个整体,从而保证了本结构的强度,也有利于提高本结构的抗浮能力。
在上述方案中,所述抗拔桩下部的直径大于上部的直径。通过将抗拔桩下部的直径设计成比上部的直径大,这样能提高抗拔桩的固定效果,从而更进一步地提高了本结构的抗浮能力。
在上述方案中,所述地层加固层的强度为1~2MPa。通过将地层加固层的强度设计在1~2MPa,使地层加固层不易变形,这样,能控制盾构隧道的上浮变形量,从而进一步地提高了本结构的抗浮能力。
在上述方案中,所述抗拔桩为旋喷桩或搅拌桩。通过选用旋喷桩或搅拌桩,这样能提高抗拔桩的强度,从而更进一步地提高本结构的抗浮能力。
本发明提供的技术方案带来的有益效果是:
1、通过沿盾构隧道纵向每隔一定距离布置承台和抗拔桩,并对承台底面至盾构隧道拱部的高压缩性地层进行加固(即地层加固层),使得盾构隧道、地层加固层、抗拔桩和承台共同形成连续梁式的整体抗浮结构,这样,承台之间的盾构隧道衬砌结构在上浮力 作用下允许一定的向上变形,从而充分利用了盾构隧道本身的纵向抗弯、抗剪能力,再加上承台和抗拔桩本身的抗浮能力,使得本抗浮结构很容易地就能满足盾构隧道的抗浮稳定性要求;
2、由于加设地层加固层本身自重也较大,所以加设地层加固层还能起到一定的抗浮作用;
3、由于本抗浮结构是沿盾构隧道分段设置承台和抗拔桩,所以本抗浮措施的工程量大为降低,从而大大地降低了成本;
4、通过将地层加固层的强度设计在1~2MPa,使地层加固层不易变形,这样,能控制盾构隧道的上浮变形量,从而进一步地提高了本结构的抗浮能力;
5、通过将承台的横向中心线设计成与盾构隧道的中心轴线所在的竖直平面垂直,这样,承台与盾构隧道之间能更好、更直接地发生力的传递,从而能更直接、更好的发挥本结构的抗浮能力;
6、通过将抗拔桩顶端内的钢筋锚入承台中,这样抗拔桩能与承台形成一个整体,从而保证了本结构的强度,也有利于提高本结构的抗浮能力;
7、通过将抗拔桩下部的直径设计成比上部的直径大,这样能提高抗拔桩的固定效果,从而更进一步地提高了本结构的抗浮能力;
8、通过将抗拔桩与盾构隧道之间的距离d设计在1~2m之间,以尽量使抗拔桩靠近盾构隧道,这样,能减小承台和地层加固层的尺寸,从而更进一步地减小施工量;
9、承台和抗拔桩设置的位置还可结合地面条件确定,进而减少了施工对周边环境的影响;
10、通过选用旋喷桩或搅拌桩,这样能提高抗拔桩的强度,从而更进一步地提高本结构的抗浮能力。
本发明与现有技术对比,充分显示其优越性在于:能完全满足抗浮稳定性要求、结构简单、造价低且施工对周边环境的影响小等。
附图说明
图1是本发明的一视角结构示意图;
图2是本发明的另一视角结构示意图;
图3是沿图2中A-A线的剖面结构示意图。
图中,工作井或站台1,盾构隧道2,承台3,抗拔桩4,地层加固层5,垫层6。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例:如图1所示,本实施例提供的一种盾构隧道连续梁式抗浮结构,包括沿盾构隧道2纵向间隔布置的若干个承台3,所有所述承台3均横向设置在所述盾构隧道2的上方,且所有所述承台3的横向中心线与所述盾构隧道2的中心轴线所在的竖直平面垂直;每个所述承台3的下方分别设有若干组用于固定的抗拔桩4,同一所述承台3下方的抗拔桩4的组数为所述盾构隧道2的总数加1,同一所述承台3下方的所有组抗拔桩4分别对应布置在所述盾构隧道2的两侧,且相邻两所述盾构隧道2共用一组抗拔桩4,每组抗拔桩4中抗拔桩4的数量至少为1,且每组抗拔桩4中的抗拔桩4也沿所述盾构隧道2纵向间隔布置,所述抗拔桩4与所述盾构隧道2之间的距离d为1~2m;所述抗拔桩4顶端内的钢筋锚入所述承台3中,所述抗拔桩4下部的直径大于上部的直径;所述承台3下表面与所述盾构隧道2的顶部上表面之间设有用于将所述承台3、所述抗拔桩4和所述盾构隧道2连成一体的地层加固层5,所述地层加固层5的强度为1~2MPa。
通过沿盾构隧道2纵向每隔一定距离布置承台3和抗拔桩4,并对承台3底面至盾构隧道2拱部的高压缩性地层进行加固(即地层加固层5),使得盾构隧道2、地层加固层5、抗拔桩4和承台3共同形成连续梁式的整体抗浮结构,这样,承台3之间的盾构隧道衬砌结构在上浮力作用下允许一定的向上变形,从而充分利用了盾构隧道2本身的纵向抗弯、抗剪能力,再加上承台3和抗拔桩4本身的抗浮能力,使得本抗浮结构很容易地就能满足盾构隧道的抗浮稳定性要求;另外,由于加设地层加固层5本身自重也较大,所以加设地层加固层5还能起到一定的抗浮作用;同时,由于本抗浮结构是沿盾构隧道3分段设置承台3和抗拔桩4,所以本抗浮措施的工程量大为降低,从而大大地降低了成本;并且,通过将地层加固层5的强度设计在1~2MPa,使地层加固层5不易变形,这样,能控制盾构隧道2的上浮变形量,从而进一步地提高了本结构的抗浮能力;而且,通过将承台3的横向中心线设计成与盾构隧道2的中心轴线所在的竖直平面垂直, 这样,承台3与盾构隧道2之间能更好、更直接地发生力的传递,从而能更直接、更好的发挥本结构的抗浮能力;再且,通过将抗拔桩4顶端内的钢筋锚入承台3中,这样抗拔桩4能与承台3形成一个整体,从而保证了本结构的强度,也有利于提高本结构的抗浮能力;接着,通过将抗拔桩4下部的直径设计成比上部的直径大,这样能提高抗拔桩4的固定效果,从而更进一步地提高了本结构的抗浮能力;再接着,通过将抗拔桩4与盾构隧道2之间的距离d设计在1~2m之间,以尽量使抗拔桩4靠近盾构隧道2,这样,能减小承台3和地层加固层5的尺寸,从而更进一步地减小施工量;最后,承台3和抗拔桩4设置的位置还可结合地面条件确定,进而减少了施工对周边环境的影响。
相邻两所述承台3的横向中心线之间的间距D为20~40m。所有所述承台3中距离所述盾构隧道2端头处的工作井或站台1最近的一个的横向中心线与所述工作井或站台1的横向中心线之间的间距也为D。该间距D需要根据计算并结合地面施工条件确定,具体如下:
首先,扣除抗浮力后计算得出盾构隧道2纵向的剩余上浮力;然后,建立盾构隧道2纵向等效刚度连续梁模型,将承台3、抗拔桩4和地层加固层5形成的连续梁支点模拟成拉压弹簧,该拉压弹簧的刚度可按地层加固层5的弹性模量取值(地层加固层5的弹性模量可取其28天无侧限抗压强度的100~150倍);最后,通过调整承台3的间距对计算模型进行试算,直至隧道结构、承台3和地层加固层5的变形和受力控制在合理范围,即满足盾构隧道管片衬砌张开量不超过8mm、环间错位不超过15mm、螺栓的抗剪和抗拉强度未超过设计值、衬砌结构应满足强度和变形要求即可。另外,承台3应尽量垂直于盾构隧道2的中心线,抗拔桩4应尽量靠近盾构隧道2,其净距不小于1m。
上述盾构隧道2为双向隧道,同一所述承台3的下方分别设有三组所述抗拔桩4,三组所述抗拔桩4分别布置在所述双向隧道的两侧和中间,每组所述抗拔桩4中抗拔桩4的数量为2。每组所述抗拔桩4中的抗拔桩4也沿所述盾构隧道2纵向间隔布置。所述地层加固层5上表面与所述承台3下表面之间设有用于找平的垫层6。所述抗拔桩4为旋喷桩或搅拌桩。通过选用旋喷桩或搅拌桩,这样能提高抗拔桩4的强度,从而更进一步地提高本结构的抗浮能力。
本发明的具体施工过程如下:
(1)在盾构隧道2掘进至承台3和抗拔桩4设置区域之前,先施工抗拨桩4,并完成承台底地层加固施工(即地层加固层5的施工);
(2)开挖基坑,浇筑垫层6,施工承台3,并将抗拨桩4内的钢筋锚入承台3中,所述钢筋锚入长度满足构造要求;
(3)盾构隧道2掘进通过承台3和抗拔桩4,拼装盾构隧道2的隧道管片;
(4)盾构隧道2掘进过程中或者贯通后,施工内部结构。
另外,本发明的技术要求如下:
(1)承台3和抗拨桩4的尺寸、布置方式应根据地质、水文条件和盾构隧道2结构设计进行验算,保证隧道结构抗浮稳定性要求,且结构的变形和受力在允许值内;
(2)承台3和抗拨桩4的布置应在地面具有施工条件,且对周边环境的影响较小;
(3)适用的盾构隧道2直径不限。
本发明首先通过沿盾构隧道2纵向每隔一定距离布置承台3和抗拔桩4,并对承台3底面至盾构隧道2拱部的高压缩性地层进行加固(即地层加固层5),使得盾构隧道2、地层加固层5、抗拔桩4和承台3共同形成连续梁式的整体抗浮结构,这样,承台3之间的盾构隧道衬砌结构在上浮力作用下允许一定的向上变形,从而充分利用了盾构隧道2本身的纵向抗弯、抗剪能力,再加上承台3和抗拔桩4本身的抗浮能力,使得本抗浮结构很容易地就能满足盾构隧道的抗浮稳定性要求;另外,由于加设地层加固层5本身自重也较大,所以加设地层加固层5还能起到一定的抗浮作用;同时,由于本抗浮结构是沿盾构隧道3分段设置承台3和抗拔桩4,所以本抗浮措施的工程量大为降低,从而大大地降低了成本;并且,通过将地层加固层5的强度设计在1~2MPa,使地层加固层5不易变形,这样,能控制盾构隧道2的上浮变形量,从而进一步地提高了本结构的抗浮能力;而且,通过将承台3的横向中心线设计成与盾构隧道2的中心轴线所在的竖直平面垂直,这样,承台3与盾构隧道2之间能更好、更直接地发生力的传递,从而能更直接、更好的发挥本结构的抗浮能力;再且,通过将抗拔桩4顶端内的钢筋锚入承台3中,这样抗拔桩4能与承台3形成一个整体,从而保证了本结构的强度,也有利于提高本结构的抗浮能力;接着,通过将抗拔桩4下部的直径设计成比上部的直径大,这样能提高抗拔桩4的固定效果,从而更进一步地提高了本结构的抗浮能力;再接着,通过将抗拔 桩4与盾构隧道2之间的距离d设计在1~2m之间,以尽量使抗拔桩4靠近盾构隧道2,这样,能减小承台3和地层加固层5的尺寸,从而更进一步地减小施工量;又接着,承台3和抗拔桩4设置的位置还可结合地面条件确定,进而减少了施工对周边环境的影响;最后,通过选用旋喷桩或搅拌桩,这样能提高抗拔桩4的强度,从而更进一步地提高本结构的抗浮能力。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种盾构隧道连续梁式抗浮结构,其特征在于,包括沿盾构隧道(2)纵向间隔布置的若干个承台(3),所有所述承台(3)均横向设置在所述盾构隧道(2)的上方,每个所述承台(3)的下方分别设有用于固定的抗拔桩(4),所述承台(3)下表面与所述盾构隧道(2)的顶部上表面之间设有用于将所述承台(3)、所述抗拔桩(4)和所述盾构隧道(2)连成一体的地层加固层(5)。
  2. 根据权利要求1所述的一种盾构隧道连续梁式抗浮结构,其特征在于,相邻两所述承台(3)的横向中心线之间的间距D为20~40m。
  3. 根据权利要求2所述的一种盾构隧道连续梁式抗浮结构,其特征在于,所有所述承台(3)中距离所述盾构隧道(2)端头处的工作井或站台(1)最近的一个的横向中心线与所述工作井或站台(1)的横向中心线之间的间距也为D。
  4. 根据权利要求1所述的一种盾构隧道连续梁式抗浮结构,其特征在于,所有所述承台(3)的横向中心线与所述盾构隧道(2)的中心轴线所在的竖直平面垂直。
  5. 根据权利要求1所述的一种盾构隧道连续梁式抗浮结构,其特征在于,所述盾构隧道(2)为双向隧道,同一所述承台(3)的下方分别设有三组所述抗拔桩(4),三组所述抗拔桩(4)分别布置在所述双向隧道的两侧和中间,每组所述抗拔桩(4)中抗拔桩(4)的数量为2,每组所述抗拔桩(4)中抗拔桩(4)也沿所述盾构隧道(2)纵向间隔布置。
  6. 根据权利要求1所述的一种盾构隧道连续梁式抗浮结构,其特征在于,所述地层加固层(5)上表面与所述承台(3)下表面之间设有用于找平的垫层(6)。
  7. 根据权利要求1所述的一种盾构隧道连续梁式抗浮结构,其特征在于,所述抗拔桩(4)与所述盾构隧道(2)之间的距离d为1~2m。
  8. 根据权利要求1所述的一种盾构隧道连续梁式抗浮结构,其特征在于,所述抗拔桩(4)顶端内的钢筋锚入所述承台(3)中。
  9. 根据权利要求1所述的一种盾构隧道连续梁式抗浮结构,其特征在于,所述抗拔桩(4)下部的直径大于上部的直径。
  10. 根据权利要求1所述的一种盾构隧道连续梁式抗浮结构,其特征在于,所述地层加固层(5)的强度为1~2MPa。
PCT/CN2015/094756 2015-06-03 2015-11-17 一种盾构隧道连续梁式抗浮结构 WO2016192320A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510298906.0 2015-06-03
CN201520376378.1U CN204690805U (zh) 2015-06-03 2015-06-03 一种盾构隧道连续梁式抗浮结构
CN201510298906.0A CN104895122B (zh) 2015-06-03 2015-06-03 一种盾构隧道的施工方法
CN201520376378.1 2015-06-03

Publications (1)

Publication Number Publication Date
WO2016192320A1 true WO2016192320A1 (zh) 2016-12-08

Family

ID=57440115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094756 WO2016192320A1 (zh) 2015-06-03 2015-11-17 一种盾构隧道连续梁式抗浮结构

Country Status (1)

Country Link
WO (1) WO2016192320A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109083157A (zh) * 2018-09-28 2018-12-25 浙江工业大学 一种滑裂面加固装置及其施工方法
CN109208937A (zh) * 2018-10-26 2019-01-15 中铁第勘察设计院集团有限公司 地铁车站既有结构未预留抗浮条件的榫槽体系及施工方法
CN110241863A (zh) * 2019-07-06 2019-09-17 福建省水利水电勘测设计研究院 软土基坑开挖过程管廊变形控制装置及其控制方法
CN111222275A (zh) * 2020-01-07 2020-06-02 河海大学 一种脱出盾尾的管片环上浮、错台精细化模型的建立方法
CN111411997A (zh) * 2020-05-20 2020-07-14 浙江省交通规划设计研究院有限公司 一种盾构管片错台矫正装置及方法
CN111680350A (zh) * 2020-06-08 2020-09-18 中铁十四局集团大盾构工程有限公司 盾构隧道的安全评估方法、装置和计算机可读存储介质
CN111827368A (zh) * 2020-06-04 2020-10-27 中铁第四勘察设计院集团有限公司 一种地下结构抗浮设计方法
CN111877411A (zh) * 2020-08-10 2020-11-03 大连理工大学 一种地下空间承重柱体用cc3/3型辅助抗浮装置
CN112627233A (zh) * 2020-12-04 2021-04-09 中国电建集团华东勘测设计研究院有限公司 一种软土地区地下工程永临结合结构抗浮体系及施工方法
CN113718859A (zh) * 2021-09-15 2021-11-30 中国五冶集团有限公司 医院建筑的医疗设备基础抗浮锚杆防水结构及施工方法
CN114352288A (zh) * 2021-12-30 2022-04-15 南京工大交通科学研究院(滁州)有限公司 一种盾构近距离上穿既有盾构隧道施工结构及施工方法
CN114541487A (zh) * 2022-03-22 2022-05-27 北京市地质工程有限责任公司 一种建筑物抗浮结构及施工方法
CN114809106A (zh) * 2022-04-08 2022-07-29 中铁建设集团南方工程有限公司 一种既有隧道的组合式保护结构的施工方法
CN117587858A (zh) * 2023-11-29 2024-02-23 陕西建工集团股份有限公司 一种既有地铁隧道上方加卸载过程隧道变形控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1641114A (zh) * 2004-01-17 2005-07-20 上海市城市建设设计研究院 一种在运营隧道上方进行深大基坑施工的方法及防变形结构
CN200985518Y (zh) * 2006-12-20 2007-12-05 上海市第一建筑有限公司 门式抗浮结构
KR20090011442A (ko) * 2007-07-26 2009-02-02 (주)동명기술공단종합건축사사무소 쉬트 파일을 이용한 터널 굴착 공법 및 이에 의한 터널구조물
JP2009084919A (ja) * 2007-10-01 2009-04-23 Kajima Corp 地盤の掘削方法
CN104533434A (zh) * 2014-12-28 2015-04-22 上海隧道工程股份有限公司 超浅覆土矩形隧道的构建方法
CN104895122A (zh) * 2015-06-03 2015-09-09 中铁第四勘察设计院集团有限公司 一种盾构隧道连续梁式抗浮结构
CN204690805U (zh) * 2015-06-03 2015-10-07 中铁第四勘察设计院集团有限公司 一种盾构隧道连续梁式抗浮结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1641114A (zh) * 2004-01-17 2005-07-20 上海市城市建设设计研究院 一种在运营隧道上方进行深大基坑施工的方法及防变形结构
CN200985518Y (zh) * 2006-12-20 2007-12-05 上海市第一建筑有限公司 门式抗浮结构
KR20090011442A (ko) * 2007-07-26 2009-02-02 (주)동명기술공단종합건축사사무소 쉬트 파일을 이용한 터널 굴착 공법 및 이에 의한 터널구조물
JP2009084919A (ja) * 2007-10-01 2009-04-23 Kajima Corp 地盤の掘削方法
CN104533434A (zh) * 2014-12-28 2015-04-22 上海隧道工程股份有限公司 超浅覆土矩形隧道的构建方法
CN104895122A (zh) * 2015-06-03 2015-09-09 中铁第四勘察设计院集团有限公司 一种盾构隧道连续梁式抗浮结构
CN204690805U (zh) * 2015-06-03 2015-10-07 中铁第四勘察设计院集团有限公司 一种盾构隧道连续梁式抗浮结构

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109083157A (zh) * 2018-09-28 2018-12-25 浙江工业大学 一种滑裂面加固装置及其施工方法
CN109208937A (zh) * 2018-10-26 2019-01-15 中铁第勘察设计院集团有限公司 地铁车站既有结构未预留抗浮条件的榫槽体系及施工方法
CN110241863A (zh) * 2019-07-06 2019-09-17 福建省水利水电勘测设计研究院 软土基坑开挖过程管廊变形控制装置及其控制方法
CN110241863B (zh) * 2019-07-06 2024-04-16 福建省水利水电勘测设计研究院有限公司 软土基坑开挖过程管廊变形控制装置及其控制方法
CN111222275A (zh) * 2020-01-07 2020-06-02 河海大学 一种脱出盾尾的管片环上浮、错台精细化模型的建立方法
CN111222275B (zh) * 2020-01-07 2022-08-02 河海大学 一种脱出盾尾的管片环上浮、错台精细化模型的建立方法
CN111411997A (zh) * 2020-05-20 2020-07-14 浙江省交通规划设计研究院有限公司 一种盾构管片错台矫正装置及方法
CN111827368A (zh) * 2020-06-04 2020-10-27 中铁第四勘察设计院集团有限公司 一种地下结构抗浮设计方法
CN111680350A (zh) * 2020-06-08 2020-09-18 中铁十四局集团大盾构工程有限公司 盾构隧道的安全评估方法、装置和计算机可读存储介质
CN111680350B (zh) * 2020-06-08 2024-02-27 中铁十四局集团大盾构工程有限公司 盾构隧道的安全评估方法、装置和计算机可读存储介质
CN111877411A (zh) * 2020-08-10 2020-11-03 大连理工大学 一种地下空间承重柱体用cc3/3型辅助抗浮装置
CN112627233A (zh) * 2020-12-04 2021-04-09 中国电建集团华东勘测设计研究院有限公司 一种软土地区地下工程永临结合结构抗浮体系及施工方法
CN113718859A (zh) * 2021-09-15 2021-11-30 中国五冶集团有限公司 医院建筑的医疗设备基础抗浮锚杆防水结构及施工方法
CN114352288A (zh) * 2021-12-30 2022-04-15 南京工大交通科学研究院(滁州)有限公司 一种盾构近距离上穿既有盾构隧道施工结构及施工方法
CN114352288B (zh) * 2021-12-30 2024-04-16 南京工大交通科学研究院(滁州)有限公司 一种盾构近距离上穿既有盾构隧道施工结构及施工方法
CN114541487A (zh) * 2022-03-22 2022-05-27 北京市地质工程有限责任公司 一种建筑物抗浮结构及施工方法
CN114809106B (zh) * 2022-04-08 2023-06-13 中铁建设集团南方工程有限公司 一种既有隧道的组合式保护结构的施工方法
CN114809106A (zh) * 2022-04-08 2022-07-29 中铁建设集团南方工程有限公司 一种既有隧道的组合式保护结构的施工方法
CN117587858A (zh) * 2023-11-29 2024-02-23 陕西建工集团股份有限公司 一种既有地铁隧道上方加卸载过程隧道变形控制方法
CN117587858B (zh) * 2023-11-29 2024-04-26 陕西建工集团股份有限公司 一种既有地铁隧道上方加卸载过程隧道变形控制方法

Similar Documents

Publication Publication Date Title
WO2016192320A1 (zh) 一种盾构隧道连续梁式抗浮结构
CN105696602A (zh) 一种用于加深开挖的复合桩锚支护方法和结构
CN110004973B (zh) 一种防山体滑坡保护挡土墙
CN204690805U (zh) 一种盾构隧道连续梁式抗浮结构
CN103215889A (zh) 一种用于较差地质条件的拱桥基础及其施工方法
CN104895122B (zh) 一种盾构隧道的施工方法
CN113123233B (zh) 一种锚碇设计及施工方法
CN104612142B (zh) 一种基于复合柔性桩的整体式桥台桥梁构造及其施工方法
CN204435407U (zh) 一种斜柱群锚式岩石基础
CN108978705A (zh) 预制混凝土挡土墙系统
CN206157496U (zh) 中低速磁浮交通工程单线填方地段桩基复合式承轨梁结构
CN108330986A (zh) 桩后反压减弯型桩板支护结构及施工方法
CN206127736U (zh) 中低速磁浮双线填方地段桩基复合分幅式承轨梁过渡段结构
CN206157495U (zh) 中低速磁浮双线填方地段桩基复合分幅式承轨梁结构
CN206157483U (zh) 中低速磁浮交通工程双线填方地段桩基托梁式承轨梁结构
CN108589738A (zh) 半重力坝式基坑围护结构及其施工方法
CN105569055A (zh) 一种防止山体滑坡的结构
CN111676740B (zh) 路堑地段无砟轨道抗上拱路基结构的施工及设计方法
CN204898700U (zh) 一种桥梁基础结构
CN208201886U (zh) 一种基坑复合桩墙的支护结构
CN209538213U (zh) 下穿隧道船槽结构
CN206157481U (zh) 中低速磁浮双线挖方地段桩基复合分幅式承轨梁过渡段结构
CN206157490U (zh) 中低速磁浮双线填方地段桩基托梁分幅式承轨梁结构
CN206902721U (zh) 一种基坑支护体系
CN205742292U (zh) 一种对新建地下工程下方既有隧道的保护结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017/1104.1

Country of ref document: KZ

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893964

Country of ref document: EP

Kind code of ref document: A1