WO2016192093A1 - 一种电感用高密度新型磁性复合材料 - Google Patents

一种电感用高密度新型磁性复合材料 Download PDF

Info

Publication number
WO2016192093A1
WO2016192093A1 PCT/CN2015/080825 CN2015080825W WO2016192093A1 WO 2016192093 A1 WO2016192093 A1 WO 2016192093A1 CN 2015080825 W CN2015080825 W CN 2015080825W WO 2016192093 A1 WO2016192093 A1 WO 2016192093A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
magnetic composite
density
powder
inductor
Prior art date
Application number
PCT/CN2015/080825
Other languages
English (en)
French (fr)
Inventor
郭雄志
肖强
阮佳林
邱俊
刘志达
罗涛
刘元来
Original Assignee
深圳市铂科磁材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市铂科磁材有限公司 filed Critical 深圳市铂科磁材有限公司
Priority to PCT/CN2015/080825 priority Critical patent/WO2016192093A1/zh
Priority to EP15893749.0A priority patent/EP3306623A4/en
Priority to US15/525,287 priority patent/US20170330662A1/en
Publication of WO2016192093A1 publication Critical patent/WO2016192093A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles

Definitions

  • the invention relates to the technical field of inductance components, in particular to a high-density novel magnetic composite material for inductance.
  • the metal soft magnetic powder core is a new magnetic material with special function of magnetoelectric conversion. It is a magnetic core material produced by a special process using a powder made of metal or alloy soft magnetic material. Soft magnetic materials are widely used in various fields of technology and industry due to their special functions of magnetoelectric conversion. Therefore, metal soft magnetic powder core plays an irreplaceable role in the power electronics industry.
  • China Invention Patent Publication No. CN101552091A discloses a metal powder injection molding inductor and a processing method thereof, which are formed by injecting a composite material mainly composed of a metal soft magnetic powder and a thermosetting binder.
  • This method solves to some extent the disadvantages of high cost of pressing powder core and complicated production and preparation.
  • this method is composed of ordinary thermosetting binder and ferromagnetic powder, and the density of the magnet after curing is low (4.5g/cm 3 ⁇ 5.2g/cm 3 ), low inductance and poor DC bias capability, etc.
  • a high-density new magnetic composite material for inductance in terms of weight percentage, from high temperature resin glue 6 to 12 wt% and magnetic powder 88 to 94wt% composition.
  • the high temperature resin glue is 70 to 80% by weight of the resin glue, and 5 to 10% by weight of the coupling agent.
  • the accelerator is composed of 15 to 20% by weight.
  • the resin glue is a modified epoxy silicone resin.
  • the coupling agent is propyl propyl methyl dimethoxy silane.
  • the accelerator is m-xylylenediamine.
  • the particle size of the magnetic powder is as follows: ⁇ 100 mesh to 200 mesh: 20 ⁇ 30wt%, ⁇ 200 mesh to 500 mesh: 30 to 40wt%, ⁇ 500 mesh: 30 to 50wt%.
  • the magnetic powder is at least one of iron silicon powder, iron powder, iron silicon aluminum powder, iron nickel powder, and iron silicon chromium powder.
  • the inductor has a density of 5.5 to 6.2 g/cm 3 after curing with a high-density novel magnetic composite material, and an initial magnetic permeability of 14 to 35 ⁇ .
  • the integrated inductor core prepared by the magnetic composite material of the invention is simple to produce, and does not require a large press, thereby saving equipment investment;
  • the integrated inductor is prepared by the magnetic composite material of the invention, which reduces the mold loss during the pressing process and reduces the production cost;
  • the integrated inductor is prepared by the magnetic composite material of the invention, and the operation is simple, the magnet of complex shape can be produced, and the super large magnet can be produced.
  • the integrated magnetic inductor is prepared by the magnetic composite material of the invention to form a closed magnetic circuit, and the EMI effect is good.
  • the magnetic composite material of the present invention has a high density of the magnet after curing by a special high-temperature resin glue, and the density thereof can be ensured at 5.5 to 6.2 g/cm 3 , and the inductance value of the prepared inductor is high, and the initial magnetic permeability is obtained. Up to 14 ⁇ .
  • the magnetic composite material of the present invention can withstand higher temperatures and can operate at 180 °C.
  • the magnetic composite material of the invention has high utilization rate, less waste, less dust and meets environmental protection requirements.
  • a method for manufacturing a high-density novel magnetic composite material for an inductor includes the following steps:
  • the magnet After the magnet is molded, it is cured at 130 °C for 2h, the composite density is 6.2g/cm 3 , the initial magnetic permeability can reach 35 ⁇ , and the magnet prepared by the composite material is dense inside, no pores, ensuring the insulation properties between the powders. To reduce eddy current loss between particles.
  • a method for manufacturing a high-density novel magnetic composite material for an inductor includes the following steps:
  • the magnet After the magnet is molded, it is cured at 125 °C for 2.5h, the density of the composite material is 5.9g/cm 3 , the initial magnetic permeability can reach 19 ⁇ , and the magnet prepared by the composite material is dense inside and has no holes to ensure the insulation between the powders. Features to reduce eddy current losses between particles.
  • a method for manufacturing a high-density novel magnetic composite material for an inductor includes the following steps:
  • the magnet After the magnet is molded, it is cured at 140 °C for 1.5h, the composite density is 5.5g/cm 3 , the initial magnetic permeability can reach 14 ⁇ , and the magnet prepared by the composite is dense inside, no pores, ensuring insulation between the powders. Features to reduce eddy current losses between particles.
  • a method for manufacturing a high-density novel magnetic composite material for an inductor includes the following steps:
  • the magnet After the magnet is molded, it is cured at 130 °C for 2h, the composite density is 6.0g/cm 3 , the initial magnetic permeability can reach 26 ⁇ , and the magnet prepared by the composite is dense inside, no pores, ensuring the insulation properties between the powders. To reduce eddy current loss between particles.
  • Example 2 Example 3
  • Example 4 Number of coil turns 30 30 30 30 30
  • Effective magnetic path length l ( cm ) 15.8 15.8 15.8 15.8 15.8 15.8
  • Initial sensitivity L@0A 201.54 269.62 268.64 268.59 269.77

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种电感用高密度新型磁性复合材料,以重量百分比计,由高温树脂胶6∼12wt% 和磁性粉体88∼94wt% 组成;通过本发明的磁性复合材料制备一体电感磁芯生产简单,无需大型压机,节约了设备投入;减少了压制过程中的模具损耗,降低了生产成本;操作简单,可生产复杂形状的磁体,并且可生产超大磁体;形成闭合磁路,EMI效果好;本发明的磁性复合材料通过特殊高温树脂胶的作用,使固化后的磁体密度高,密度可保证在5.5∼6.2g/cm3 ,制备电感器的感量值高,初始磁导率可达14µ以上;本发明的磁性复合材料能够承受较高温度,可在180 ℃环境下工作;本发明的磁性复合材料利用率高,废料少,粉尘少,符合环保要求。

Description

一种电感用高密度新型磁性复合材料 说明书
一种电感用高密度新型磁性复合材料
技术领域
本发明涉及电感元器件技术领域,具体涉及一种电感用高密度新型磁性复合材料。
背景技术
金属软磁粉芯是一种具有磁电转换特种功能的新型磁性材料,它是用金属或合金软磁材料制成的粉末,通过特殊的工艺生产的磁芯材料。软磁材料由于具有磁电转换的特殊功能,从而被广泛的应用于各个科技领域和工业领域中。正因此,金属软磁粉芯在电力电子行业中发挥着不可代替作用。
传统软磁粉芯的生产基本上是通过压机压制而成,压制在制造软磁粉芯方面具有一定的优势,但同样存在一定的缺陷和不足:
1 、压机属于特大型设备,软磁粉芯压制的 1cm2 单位面积压力需 15T 以上,设备投入大,生产成本高;
2 、压制过程中还需要特殊材料制成的模具,对于生产复杂形状的磁芯存在限制,另外模具属于易耗品,价格昂贵,阻碍了磁芯的快速发展;
3 、软磁粉芯经压制后还需进行退火消除内应力,浸润强化,以及倒角等复杂工序,生产效率低,人力成本高;
4 、产品的尺寸受到压力的限制,尺寸较大的产品无法通过压机制备,制约了磁芯向大尺寸发展;
中国发明专利公布号 CN101552091A 公布了一种金属粉末注射成型电感器及其加工方法,其采用金属软磁粉末与热固性粘结剂为主的复合材料注射而成。这种方法一定程度上解决了压制粉芯成本高,生产制备复杂等不足,但此方法是由普通热固性粘结剂与铁磁粉复合而成,存在固化后磁体密度低( 4.5g/cm3 ~ 5.2g/cm3 )、电感低和直流偏置能力差等电磁性能差的缺点。
发明内容
为解决上述技术问题,本发明提供了一种电感用高密度新型磁性复合材料。本发明采用如下技术方案:
一种电感用高密度新型磁性复合材料,以重量百分比计,由高温树脂胶 6 ~ 12wt% 和磁性粉体 88 ~ 94wt% 组成。
进一步的,以重量百分比计,所述高温树脂胶是由树脂胶 70 ~ 80wt% 、偶联剂 5 ~ 10wt% 和促进剂 15 ~ 20wt% 组成。
更进一步的,所述树脂胶为改性环氧硅树脂。
更进一步的,所述偶联剂为巯丙基甲基二甲氧基硅烷。
更进一步的,所述促进剂为间苯二甲二胺。
进一步的,以重量百分比计,所述磁性粉体的粒度配比如下: −100 目~ 200 目: 20 ~ 30wt% , −200 目~ 500 目: 30 ~ 40wt% , −500 目: 30 ~ 50wt% 。
更进一步的,所述磁性粉体为铁硅粉 、铁粉、 铁硅铝粉、铁镍粉和铁硅铬粉中的至少一种。
进一步的,所述的电感用高密度新型磁性复合材料固化后密度在 5.5 ~ 6.2g/cm3 ,初始磁导率为 14 ~ 35 µ 。
与现有技术相比,本发明的有益效果是:
1 、通过本发明的磁性复合材料制备一体电感磁芯生产简单,无需大型压机,节约了设备投入;
2 、通过本发明的磁性复合材料制备一体电感,减少了压制过程中的模具损耗,降低了生产成本;
3 、通过本发明的磁性复合材料制备一体电感,操作简单,可生产复杂形状的磁体,并且可生产超大磁体。
4 、通过本发明的磁性复合材料制备一体电感,形成闭合磁路, EMI 效果好。
5 、本发明的磁性复合材料通过特殊高温树脂胶的作用,使固化后的磁体密度高,其密度可保证在 5.5 ~ 6.2g/cm3 ,制备电感器的感量值高,初始磁导率可达 14µ 以上。
6 、本发明的磁性复合材料能够承受较高温度,可在 180 ℃ 环境下工作。
7 、本发明的磁性复合材料利用率高,废料少,粉尘少,符合环保要求。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例 1
一种电感用高密度新型磁性复合材料的制造方法,包括以下步骤:
1 、配制高温树脂胶:按重量称取改性环氧硅树脂 0.42kg 、巯丙基甲基二甲氧基硅烷 0.06kg 、间苯二甲二胺 0.12kg ,均匀混合 3 分钟,保证各成分均匀分布;
2 、配制磁性粉体:按重量称取 −100 目~ 200 目的铁硅粉 1.88kg 、 −200 目~ 500 目的铁硅粉 2.82kg 、 −500 目的铁硅粉 4.7kg ,粉体均匀混合 30 分钟;
3 、将配置好的高温树脂胶 0.6kg 与配置好的磁性粉体 9.4kg 均匀混合 30 分钟,使铁硅粉表面形成一层均匀的高温树脂胶,以备产生绝缘特性,并且保证混合体能够形成稳定的流动特性;
4 、磁体成型后,在 130 ℃ 固化 2h ,复合材料密度为 6.2g/cm3 ,初始磁导率能达到 35µ ,并且复合材料制备的磁体内部致密,无孔洞,确保粉体之间的绝缘特性,减少颗粒间的涡流损耗。
实施例 2
一种电感用高密度新型磁性复合材料的制造方法,包括以下步骤:
1 、配制高温树脂胶:按重量称取改性环氧硅树脂 0.75kg 、巯丙基甲基二甲氧基硅烷 0.07kg 、间苯二甲二胺 0.18kg ,均匀混合 3 分钟,保证各成分均匀分布;
2 、配制磁性粉体:按重量称取 −100 目~ 200 目的铁硅粉 2.25kg 、 −200 目~ 500 目的铁硅粉 3.15kg 、 −500 目的铁硅粉 3.6kg ,粉体均匀混合 30 分钟;
3 、将配置好的高温树脂胶 1kg 与配置好的磁性粉体 9kg 均匀混合 30 分钟,使铁硅粉表面形成一层均匀的高温树脂胶,以备产生绝缘特性,并且保证混合体能够形成稳定的流动特性;
4 、磁体成型后,在 125 ℃ 固化 2.5h ,复合材料密度为 5.9g/cm3 ,初始磁导率能达到 19µ ,并且复合材料制备的磁体内部致密,无孔洞,确保粉体之间的绝缘特性,减少颗粒间的涡流损耗。
实施例 3
一种电感用高密度新型磁性复合材料的制造方法,包括以下步骤:
1 、配制高温树脂胶:按重量称取改性环氧硅树脂 0.96kg 、巯丙基甲基二甲氧基硅烷 0.06kg 、间苯二甲二胺 0.18kg ,均匀混合 3 分钟,保证各成分均匀分布 ;
2 、配制磁性粉体:按重量称取 −100 目~ 200 目的铁硅粉 2.64kg 、 −200 目~ 500 目的铁硅粉 3.52kg 、 −500 目的铁硅粉 2.64kg ,粉体均匀混合 30 分钟;
3 、将配置好的高温树脂胶 1.2kg 与配置好的磁性粉体 8.8kg 均匀混合 30 分钟,使铁硅粉表面形成一层均匀的高温树脂胶,以备产生绝缘特性,并且保证混合体能够形成稳定的流动特性;
4 、磁体成型后,在 140 ℃ 固化 1.5h ,复合材料密度为 5.5g/cm3 ,初始磁导率能达到 14µ ,并且复合材料制备的磁体内部致密,无孔洞,确保粉体之间的绝缘特性,减少颗粒间的涡流损耗。
实施例 4
一种电感用高密度新型磁性复合材料的制造方法,包括以下步骤:
1 、配制高温树脂胶:按重量称取改性环氧硅树脂 0.7kg 、偶联剂 0.1kg 、促进剂 0.2kg ,均匀混合 3 分钟,保证各成分均匀分布;
2 、配制磁性粉体:按重量称取 −100 目~ 200 目的铁镍粉 1.8kg 、 −200 目~ 500 目的铁镍粉 2.7kg 、 −500 目的铁镍粉 4.5kg ,粉体均匀混合 30 分钟;
3 、将配置好的高温树脂胶 1kg 与配置好的磁性粉体 9kg 均匀混合 30 分钟,使铁镍粉表面形成一层均匀的高温树脂胶,以备产生绝缘特性,并且保证混合体能够形成稳定的流动特性;
4 、磁体成型后,在 130 ℃ 固化 2h ,复合材料密度为 6.0g/cm3 ,初始磁导率能达到 26µ ,并且复合材料制备的磁体内部致密,无孔洞,确保粉体之间的绝缘特性,减少颗粒间的涡流损耗。
利用实施例 1 ~4所述 复合材料 制造相同规格的电感,与现有一体成型制造的电感做电气性能对比测试,得到下表数据:
现有一体成型电感 实施例 1 实施例 2 实施例 3 实施例 4
线圈圈数 30 30 30 30 30
有效磁路长度 l ( cm ) 15.8 15.8 15.8 15.8 15.8
初始感量 L@0A 201.54 269.62 268.64 268.59 269.77
5A 电流下保留的感量值 L@5A 180.26 266.69 265.51 265.54 266.85
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (1)

  1. 1. 一种电感用高密度新型磁性复合材料,其特征在于,以重量百分比计,由高温树脂胶 6 ~ 12wt% 和磁性粉体 88 ~ 94wt% 组成。
    2. 根据权利要求 1 所述的电感用高密度新型磁性复合材料,其特征在于,以重量百分比计,所述高温树脂胶是由树脂胶 70 ~ 80wt% 、偶联剂 5 ~ 10wt% 和促进剂 15 ~ 20wt% 组成。
    3. 根据权利要求 2 所述的电感用高密度新型磁性复合材料,其特征在于,
    所述树脂胶为改性环氧硅树脂。
    4. 根据权利要求 2 所述的电感用高密度新型磁性复合材料,其特征在于,所述偶联剂为巯丙基甲基二甲氧基硅烷。
    5. 根据权利要求 2 所述的电感用高密度新型磁性复合材料,其特征在于,所述促进剂为间苯二甲二胺。
    6. 根据权利要求 1 所述的电感用高密度新型磁性复合材料,其特征在于,以重量百分比计,所述磁性粉体的粒度配比如下: −100 目~ 200 目: 20 ~ 30wt% , −200 目~ 500 目: 30 ~ 40wt% , −500 目: 30 ~ 50wt% 。
    7. 根据权利要求 6 所述的电感用高密度新型磁性复合材料,其特征在于,所述磁性粉体为铁硅粉、铁粉 、 铁硅铝粉、铁镍粉和铁硅铬粉中的至少一种。
    8. 根据权利要求 1 所述的电感用高密度新型磁性复合材料,其特征在于,所述的电感用高密度新型磁性复合材料固化后密度在 5.5 ~ 6.2g/cm3 ,初始磁导率为 14 ~ 35 µ 。
PCT/CN2015/080825 2015-06-04 2015-06-04 一种电感用高密度新型磁性复合材料 WO2016192093A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2015/080825 WO2016192093A1 (zh) 2015-06-04 2015-06-04 一种电感用高密度新型磁性复合材料
EP15893749.0A EP3306623A4 (en) 2015-06-04 2015-06-04 Novel high-density magnetic composite material for inductor
US15/525,287 US20170330662A1 (en) 2015-06-04 2015-06-04 Novel high-density magnetic composite material for inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/080825 WO2016192093A1 (zh) 2015-06-04 2015-06-04 一种电感用高密度新型磁性复合材料

Publications (1)

Publication Number Publication Date
WO2016192093A1 true WO2016192093A1 (zh) 2016-12-08

Family

ID=57439951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080825 WO2016192093A1 (zh) 2015-06-04 2015-06-04 一种电感用高密度新型磁性复合材料

Country Status (3)

Country Link
US (1) US20170330662A1 (zh)
EP (1) EP3306623A4 (zh)
WO (1) WO2016192093A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921220A (zh) * 2021-09-03 2022-01-11 广东省科学院新材料研究所 一种混合软磁粉末及其在软磁粉芯制备中的应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109545505A (zh) * 2018-11-29 2019-03-29 深圳顺络电子股份有限公司 一种高可靠性电感及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375353A (zh) * 2006-02-02 2009-02-25 胜美达集团株式会社 复合磁性薄板及其制造方法
CN104078193A (zh) * 2013-03-29 2014-10-01 三星电机株式会社 电感器和该电感器的制造方法
CN104200981A (zh) * 2014-08-20 2014-12-10 深圳市铂科磁材有限公司 一种电感制造方法
CN104867640A (zh) * 2015-05-29 2015-08-26 深圳市铂科磁材有限公司 一种电感用高密度新型磁性复合材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943793A (en) * 1988-12-27 1990-07-24 General Electric Company Dual-permeability core structure for use in high-frequency magnetic components
EP1396513B1 (en) * 1997-04-21 2005-09-07 Asahi Glass Company, Limited Room temperature-setting composition
JP2002313621A (ja) * 2001-04-17 2002-10-25 Nippon Kayaku Co Ltd シリコーン樹脂組成物、樹脂結合型金属成型部品
JPWO2008123362A1 (ja) * 2007-03-27 2010-07-15 日本ゼオン株式会社 重合性組成物及び成形体
CN102007549A (zh) * 2008-04-15 2011-04-06 东邦亚铅株式会社 复合磁性材料及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375353A (zh) * 2006-02-02 2009-02-25 胜美达集团株式会社 复合磁性薄板及其制造方法
CN104078193A (zh) * 2013-03-29 2014-10-01 三星电机株式会社 电感器和该电感器的制造方法
CN104200981A (zh) * 2014-08-20 2014-12-10 深圳市铂科磁材有限公司 一种电感制造方法
CN104867640A (zh) * 2015-05-29 2015-08-26 深圳市铂科磁材有限公司 一种电感用高密度新型磁性复合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3306623A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921220A (zh) * 2021-09-03 2022-01-11 广东省科学院新材料研究所 一种混合软磁粉末及其在软磁粉芯制备中的应用
CN113921220B (zh) * 2021-09-03 2022-07-29 广东省科学院新材料研究所 一种混合软磁粉末及其在软磁粉芯制备中的应用

Also Published As

Publication number Publication date
EP3306623A1 (en) 2018-04-11
US20170330662A1 (en) 2017-11-16
EP3306623A4 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
CN104867640B (zh) 一种电感用高密度新型磁性复合材料
EP2492031A4 (en) POWDER CORE AND METHOD FOR PRODUCING THE SAME
CN100367421C (zh) 软磁铁硅铝磁粉芯的制造方法
WO2016192093A1 (zh) 一种电感用高密度新型磁性复合材料
CN109877315B (zh) 一种低磁导率铁硅铝磁粉心材及制作磁粉心的方法
GB2454823A (en) Method for the production of powder composite cores and powder composite core
JP6580817B2 (ja) 磁性コアの製造方法
CN106571205B (zh) 低损耗铁硅镍磁粉芯复合材料的制备方法
CN108793756B (zh) 一种用于铁硅铝磁粉芯绝缘包覆的玻璃粉及其制备方法
Yang et al. Effect of molding pressure on structure and properties of ring-shaped bonded NdFeB magnet
KR102126062B1 (ko) 연자성 복합 재료 및 그 제조방법
CN108630374A (zh) 一种电感用软磁性复合材料及其制备方法
WO2016192092A1 (zh) 一种大功率圆环形新型电抗器及其制造方法
CN110453156A (zh) 铁基微纳磁粉材料及其制备方法
CN108878127B (zh) 一种高致密度软磁复合铁芯及其制备方法
CN114078631B (zh) 一种软磁复合材料的制备方法及一种金属磁粉芯
CN101648272B (zh) 陶瓷金属化管壳表面涂镍方法
CN104036903A (zh) 一种铁硅镍磁粉芯的制备方法
CN111477421A (zh) 一种可提升模压电感耐压性能的软磁粉及其制造方法
CN106205936A (zh) 一种高密度电感磁性材料及其制备方法
CN112712991A (zh) 一种FeSiAl/Ni复合磁粉芯及其制备方法
WO2020017887A1 (ko) 산화철 자성 분말 및 이의 제조방법
CN108788136B (zh) 一种三壳层铁硅基软磁复合材料及其制备方法
CN108538560A (zh) 一种粘结钕铁硼磁体及快速固化制备方法
CN105330255A (zh) 一种不易碎陶瓷制品及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893749

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15525287

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015893749

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE