WO2016192041A1 - 一种石脑油的转化方法 - Google Patents

一种石脑油的转化方法 Download PDF

Info

Publication number
WO2016192041A1
WO2016192041A1 PCT/CN2015/080591 CN2015080591W WO2016192041A1 WO 2016192041 A1 WO2016192041 A1 WO 2016192041A1 CN 2015080591 W CN2015080591 W CN 2015080591W WO 2016192041 A1 WO2016192041 A1 WO 2016192041A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
carbon atoms
molecular sieve
product
stream
Prior art date
Application number
PCT/CN2015/080591
Other languages
English (en)
French (fr)
Inventor
谢鹏
李铭芝
徐云鹏
刘广业
刘中民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to EP15893697.1A priority Critical patent/EP3305748A4/en
Priority to PCT/CN2015/080591 priority patent/WO2016192041A1/zh
Priority to US15/578,831 priority patent/US10538711B2/en
Publication of WO2016192041A1 publication Critical patent/WO2016192041A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G51/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only
    • C10G51/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only
    • C10G51/04Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only including only thermal and catalytic cracking steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/04Thermal processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/22Higher olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Definitions

  • the application relates to a naphtha conversion process and belongs to the field of petrochemical industry.
  • Catalytic cracking is characterized by low reaction temperatures and high selectivity. However, its conversion to low carbon hydrocarbons is low. At present, when the reported technology uses cycloalkyl and intermediate naphtha as raw materials, the yield of the product produced by one-way conversion is insufficient to compete with hydrothermal cracking. This is also the main reason why catalytic cracking technology has been developed for many years, and the industrial application of naphtha catalytic cracking to olefin technology has not been realized so far. In addition, the catalyst using molecular sieve as the active component, under the reaction conditions, the high-temperature steam causes the molecular sieve framework aluminum to gradually escape, and the catalyst activity gradually decreases, thereby causing the technical problem that the reactant conversion rate is lowered.
  • a method for converting naphtha by using naphtha The combination of catalytic cracking and high temperature steam cracking processes produces low carbon olefins, aromatics and high octane gasoline. This process significantly increases the yield of high value products and reduces the yield of low value products; at the same time, overall energy consumption can be reduced since most of the reactants are converted in lower temperature catalytic cracking.
  • the feed containing naphtha is passed into the first reaction zone, and reacted with a catalyst containing molecular sieves at a reaction temperature of 580 ° C to 700 ° C, and the reaction product is separated to obtain a stream I and a product I;
  • step b) the water vapor and the stream I obtained in step a) are passed into the second reaction zone, the water vapor cracking reaction is carried out at a reaction temperature of 780 ° C to 870 ° C, after the reaction to obtain the product III;
  • the stream I comprises an alkane having 2 to 5 carbon atoms
  • the product I includes an olefin having 2 to 12 carbon atoms, an aromatic hydrocarbon having 6 to 12 carbon atoms, and an alkane having 6 to 12 carbon atoms;
  • the product III includes a low carbon olefin having 2 to 4 carbon atoms and an aromatic hydrocarbon having 6 to 8 carbon atoms.
  • reaction product of the first reaction zone is separated to obtain stream I and product I, and the remainder is by-product I.
  • By-product I mainly contains hydrogen and methane.
  • reaction product III The reaction product of the second reaction zone is separated to give product III, and the remainder is by-product III.
  • By-product III mainly contains hydrogen and methane.
  • the olefin of the product I having 2 to 12 carbon atoms it is mainly a low-carbon olefin having 2 to 4 carbon atoms.
  • aromatic hydrocarbons having 6 to 12 carbon atoms in the product I mainly aromatic hydrocarbons having 6 to 8 carbon atoms.
  • alkanes having 6 to 12 carbon atoms in the product I mainly are isoparaffins and branched paraffins.
  • the main components in the product I have high economic value.
  • the lower olefin having 2 to 4 carbon atoms and the aromatic hydrocarbon having 6 to 8 carbon atoms in the product I can be regarded as important chemicals
  • the raw materials; the isoparaffins in the product I, the branched cycloalkanes, and the aromatic hydrocarbons having 9 to 12 carbon atoms can be used for the production of high-octane gasoline.
  • the process of the present application allows the feedstock naphtha to react to obtain more of the above high value products.
  • the catalytic cracking reaction is characterized by low reaction temperature and good selectivity, but low conversion of alkanes with 2 to 5 carbon atoms; steam cracking is characterized by high conversion of reactants, but low selectivity and simultaneous reaction. High temperature and high energy consumption.
  • the two cracking methods are selectively combined, and the advantages of the two cracking methods are respectively utilized, so that the reactants are first subjected to catalytic cracking reaction in the first reaction zone at a lower reaction temperature, and most of the materials are selected. The resulting product is subjected to steam cracking of the remaining components suitable for steam cracking in the second reaction zone, and the reaction product is exported or stored.
  • an alkane having 2 to 5 carbon atoms including ethane, propane, butane and pentane
  • the advantage of conversion especially in terms of selectivity.
  • the alkane having 2 to 5 carbon atoms in the reaction product of the first reaction zone is separated and subjected to steam cracking, and the products thereof are mainly low-carbon olefins and light aromatic hydrocarbons, and the economic value is much larger than the alkane having 2 to 5 carbon atoms. .
  • the present application changes the prior art understanding of the application of water vapor cracking, selectively only to alkane groups having a low economic value, low yield, and difficulty in catalytic conversion of 2 to 5 carbon atoms.
  • Partial steam cracking with only a small increase in energy consumption, converts most of the components with low economic value into products of high economic value, and uses low-value components in a more suitable and efficient way. The conversion to high-value components has greatly improved the economic advantage.
  • alkanes include paraffins and cycloalkanes.
  • the "low carbon olefin having 2 to 4 carbon atoms” includes ethylene, propylene, 1-butene, 2-butene, isobutylene, and 1,3-butadiene, and is abbreviated as a lower olefin.
  • an aromatic hydrocarbon having 6 to 8 carbon atoms includes benzene (Benzene), toluene (Toluene) and xylene (Xylene).
  • naphtha includes whole-distilled naphtha and/or partial fraction naphtha
  • typical partial fraction naphtha includes naphtha from the initial boiling point to 150 ° C (abbreviated as IBP-150 ° C) Naphtha with an initial boiling point of 180 ° C (abbreviated as IBP-180 ° C).
  • a method for converting naphtha by combining a catalytic cracking of naphtha with a high temperature steam cracking process to produce a low carbon olefin and an aromatic hydrocarbon. This process significantly increases the yield of high value products and reduces the yield of low value products; at the same time, overall energy consumption can be reduced since most of the reactants are converted in lower temperature catalytic cracking.
  • step b) the water vapor and the stream I obtained in step a) are passed into the second reaction zone, the water vapor cracking reaction is carried out at a reaction temperature of 780 ° C to 870 ° C, after the reaction to obtain the product III;
  • the stream I comprises an alkane having 2 to 5 carbon atoms
  • the stream II includes an alkane having 6 to 12 carbon atoms and an olefin having 5 to 12 carbon atoms;
  • the product II includes a low carbon olefin having 2 to 4 carbon atoms and an aromatic hydrocarbon having 6 to 8 carbon atoms;
  • the product III includes a low carbon olefin having 2 to 4 carbon atoms and an aromatic hydrocarbon having 6 to 8 carbon atoms.
  • reaction product of the first reaction zone is separated to obtain stream I, stream II and product II, and the remainder is by-product II.
  • By-product II mainly contains hydrogen, methane and aromatic hydrocarbons having more than 8 carbon atoms.
  • the low carbon olefin having 2 to 4 carbon atoms and the aromatic hydrocarbon having 6 to 8 carbon atoms have high economic value and can be used as important chemical raw materials.
  • the method of the present application can react the raw material naphtha. More of the above high value products are obtained.
  • an alkane having a carbon number of not less than 6 and an olefin having a carbon number of not less than 5 may be further converted into a lower value olefin and a light aromatic hydrocarbon, but
  • the steam cracking reaction is generally less selective (relative to catalytic cracking) and therefore not suitable for steam cracking.
  • the present application combines catalytic cracking and steam cracking to utilize the advantages of the two cracking methods, respectively, so that the reactants are first subjected to a catalytic cracking reaction at a lower reaction temperature in the first reaction zone, most of which The material is highly selective to generate high-value reaction products.
  • materials suitable for catalytic cracking are re-delivered to the catalytic reactor for refining, and materials suitable for steam cracking are subjected to high-temperature steam cracking, reaction product output or Store.
  • the first reaction zone is subjected to catalytic cracking and is separated, wherein in addition to the steam cracking of the alkane having 2 to 5 carbon atoms, the alkane and carbon having 6 to 12 carbon atoms are also used.
  • the olefin having an atomic number of 5 to 12 is returned to the first reaction zone to continue catalytic cracking and converted into a higher value lower olefin and light aromatic hydrocarbon.
  • the present application changes the prior art knowledge of the application of refining and steam cracking, and selectively only alkane groups having 2 to 5 carbon atoms with low economic value, low yield, and difficult catalytic conversion.
  • Partial steam cracking in the case of only a small increase in energy consumption, most of the components with low economic value are converted into products with high economic value; selectively only for alkanes with 6 to 12 carbon atoms And carbon
  • the olefins having a sub-number of 5 to 12 are subjected to catalytic cracking and refining, and the low-value product suitable for catalytic cracking is further converted into a higher value product.
  • the technical solution of the present application adopts a technical means for different treatment modes for components with different reaction characteristics, and converts low-value components into high-value components by a more suitable and more efficient method, thereby greatly improving economic advantages. .
  • the lower limit of the reaction temperature range of the first reaction zone in the step a) is selected from the group consisting of 600 ° C, 640 ° C, and 670 ° C, and the upper limit is selected from the group consisting of 720 ° C, 700 ° C, 680 ° C, and 670 ° C.
  • the reaction temperature of the first reaction zone in the step a) is from 640 ° C to 680 ° C.
  • said step a) of naphtha feed WHSV range of the first reaction zone is selected from the lower limit of 0.5h -1, 0.8h -1, 1.0h -1 , 1.2h -1, the upper limit of 2.5 is selected from h -1 , 1.6h -1 , 1.4h -1 , 1.2h -1 , 1.0h -1 .
  • the step a) the weight space velocity of the naphtha in the feed in the first reaction zone is 0.5 to 2.5 h -1 .
  • water may be involved, or catalytic cracking may be carried out without water. In the catalytic cracking reaction, the feed does not add water vapor.
  • the feed of the first reaction zone of step a) consists of naphtha.
  • the first reaction zone comprises at least one fixed bed reactor. Further preferably, The first reaction zone includes a fixed bed catalytic reaction zone that provides the heat required for the reaction by external heating.
  • a catalyst for use in a first reaction zone of the process having excellent naphtha one-way reaction performance, and more suitable for naphtha and carbon atoms not less than
  • the system of 5 olefins and carbon atoms having a carbon number of not less than 6 alkanes simultaneously has strong water vapor stability.
  • the molecular sieve is a hydrogen type ZSM-5 molecular sieve.
  • the hydrogen type molecular sieve is obtained by molecular sieve exchange by ammonium ion exchange and calcination.
  • the molecular sieve is a molecular sieve obtained by modifying at least one of the lanthanoid elements and/or the phosphorus element.
  • the mass percentage of the lanthanoid element in the modified molecular sieve is not less than 6% by weight of the oxide; the mass percentage of the phosphorus element in the modified molecular sieve is The oxide P 2 O 5 is not less than 3%.
  • the mass percentage of the lanthanoid element in the modified molecular sieve is not less than 9% by weight of the oxide; the mass percentage of the phosphorus element in the modified molecular sieve, It is not less than 4% in terms of oxide P 2 O 5 .
  • the molecular sieve is a molecular sieve modified by cerium element and phosphorus element; wherein the mass percentage of cerium element in the modified molecular sieve is oxide In the case of La 2 O 3 , it is 6 to 12%; the mass percentage of phosphorus in the modified molecular sieve is 3 to 10% based on the oxide P 2 O 5 .
  • the molecular sieve is a hydrogen type ZSM-5 molecular sieve modified by a cerium element and a phosphorus element; wherein the mass percentage of cerium element in the modified molecular sieve The content is 6 to 12% in terms of oxide La 2 O 3 ; and the mass percentage of phosphorus in the modified molecular sieve is 3 to 10% based on the oxide P 2 O 5 .
  • the catalyst in the catalyst containing the molecular sieve in the step a) consists of a modified molecular sieve and alumina.
  • the modified molecular sieve has a mass percentage of not less than 60% by weight in the catalyst.
  • the modified molecular sieve has a mass percentage in the catalyst of not less than 75 wt%.
  • the residence time of II in the second reaction zone is from 0.2 second to 0.5 second. Still more preferably, the second reaction zone temperature ranges from 820 °C to 850 °C.
  • the method provided by the present application has the advantages of low reaction temperature and high selectivity for catalytic cracking, and the advantage of steam cracking for the conversion of 2 to 5 alkanes.
  • the method provided by the present application has a higher yield of high value products and lower energy consumption.
  • FIG. 1 is a schematic flow chart of an embodiment of the present application.
  • FIG. 2 is a schematic flow chart of an embodiment of the present application.
  • Figure 3 is a graph showing the change of low-carbon olefins in the reaction product of the catalyst CAT-2 # in the absence of anhydrous steam in Example 7.
  • Figure 4 is a graph showing the change of the lower olefins in the reaction product on the catalyst CAT-1 # in Example 8 as a function of the reaction time.
  • Figure 5 is a graph showing the change of the lower olefins in the reaction product on the catalyst CAT-2 # in Example 9 as a function of the reaction time.
  • Figure 6 is a graph showing changes in the low-carbon olefins in the reaction product on the catalyst CAT-3 # in Example 10 as a function of the reaction time.
  • reaction product was analyzed by on-line gas chromatography.
  • gas chromatograph was tested by Agilent's 7890A, Agilent's HP-5 capillary column.
  • catalyst CAT-2 # Take 80g sample Z-2 # and 20g alumina mixed, add 40ml 3% dilute nitric acid to stir and knead, then extrude the strip, then dry at 120 °C, roast at 650 °C, then obtain the catalyst, which is recorded as catalyst CAT-2 # .
  • the mass percentage of the sample Z-2 # in the catalyst CAT-2 # was 80%, and the mass percentage of alumina was 20%.
  • the reaction scheme is shown in Figure 1.
  • the feed naphtha (IBP-180 ° C) and water vapor are first introduced into the first reaction zone.
  • the first reaction zone is a fixed bed reactor packed with 10 g of catalyst CAT-2 # .
  • the reaction was carried out at a reaction temperature of 670 ° C, and the reaction product obtained after the reaction in the first reaction zone was separated to obtain a stream I, a product I and a by-product I.
  • the stream I includes an alkane having 2 to 5 carbon atoms
  • the product I includes an olefin having 2 to 12 carbon atoms, an aromatic hydrocarbon having 6 to 12 carbon atoms, and an alkane having 6 to 12 carbon atoms.
  • Stream I and steam are passed into a steam cracking reactor of the second reaction zone for steam cracking reaction, and the second reaction zone is a tube furnace reactor, and the obtained product III is reacted with a fixed bed of the first reaction zone.
  • the chemical product in product I is mixed.
  • the product III obtained in the second reaction zone includes a lower olefin having 2 to 4 carbon atoms and an aromatic hydrocarbon having 6 to 8 carbon atoms, and the remainder is by-product III.
  • BTX refers to light aromatics, including Benzene, Toluene and Xylene.
  • Example 7 Catalyst CAT-2# The first reaction zone was reacted without water vapor.
  • the reaction scheme was the same as in Example 4 except that no water vapor was added to the first reaction zone, and the reaction scheme is shown in FIG.
  • the results of the reaction of naphtha (IBP-180 ° C) at 670 ° C are shown in Table 3.
  • BTX refers to light aromatics, including Benzene, Toluene and Xylene.
  • Examples 8-10 were used to carry out naphtha reaction using catalytic cracking refining on different catalysts.
  • the process is shown in Figure 2.
  • the feed naphtha (IBP-150 ° C) and water vapor are first passed into the first reaction zone.
  • the first reaction zone of Example 8, Example 9 and Example 10 were loaded with 10 g of fixed beds of catalysts CAT-1 # , Catalyst CAT-2 # and Catalyst CAT-3 # prepared in Examples 1, 2 and 3, respectively.
  • the reactors are all fixed bed reactors.
  • the reaction product obtained after the reaction in the first reaction zone is separated to obtain stream I, stream II, product II and by-product II.
  • stream I comprises an alkane having 2 to 5 carbon atoms
  • stream II comprises an alkane having 6 to 12 carbon atoms and an olefin having 5 to 12 carbon atoms
  • product II comprises a low carbon number of 2 to 4 A carbon olefin, an aromatic hydrocarbon having 6 to 8 carbon atoms; and the remainder being a by-product II.
  • the fixed bed reactor in which the stream II is returned to the first reaction zone continues the catalytic cracking reaction.
  • Stream I and steam are passed into a steam cracking reactor of the second reaction zone for steam cracking reaction, and the second reaction zone is a tube furnace reactor, and the obtained product III is reacted with a fixed bed of the first reaction zone.
  • the products obtained by the device are all used as chemical products.
  • the product III obtained in the second reaction zone includes a lower olefin having 2 to 4 carbon atoms and an aromatic hydrocarbon having 6 to 8 carbon atoms, and the remainder is by-product III.
  • BTX refers to light aromatics, including Benzene, Toluene and Xylene.
  • C 6 to 12 alkane means an alkane having 6 to 12 carbon atoms.
  • the naphtha undergoes a catalytic cracking reaction in the first reaction zone, a steam cracking recovery of the stream I, and a catalytic refining of the stream 2, and the total yield of the chemical products on the different catalysts can reach 83-85%.
  • Example 4 are graphs showing changes in the low-carbon olefins in the primary catalytic reaction product with reaction time in Example 8, Example 9, and Example 10, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本申请公开了一种石脑油的转化方法,将石脑油催化裂解与低碳烷烃水蒸气裂解、高碳烷烃和高碳烯烃催化裂解结合,制取低碳烯烃、轻质芳烃和高辛烷值汽油。该方法显著提高了高价值产物的产率,降低了低价值产物的产率;同时,由于大部分反应物在温度较低的催化裂解中进行了转化,总体上可以降低能耗。

Description

一种石脑油的转化方法 技术领域
本申请涉及一种石脑油转化工艺,属于石油化工领域。
背景技术
石脑油高温水蒸气裂解制乙烯、丙烯等化工产品是一个巨大的石化产业。每年有数以亿吨的石脑油用于此过程。水蒸气裂解技术经过多年的发展已经达到很高水平,它的转化率高,经过一次反应,产物的产率就可以达到较高的水平。其缺点是选择性差,产物中有大量的甲烷生成,反应温度高,能耗高。有鉴于此,几十年来人们一直在开发催化裂解制烯烃技术,用于石脑油和其它合适原料的裂解制低碳烯烃。
催化裂解的特点是反应温度较低,选择性高。但是它对低碳烃的转化率低。目前,报导的技术以环烷基和中间基石脑油为原料时,其单程转化所生产的产物产率,不足以与水热裂解竞争。这也是催化裂解技术开发了很多年,而至今未能实现石脑油催化裂解制烯烃技术工业化应用的主要原因。此外采用分子筛为活性组分的催化剂,在反应条件下,由于高温水蒸气使分子筛骨架铝逐渐脱出,催化剂活性逐渐下降,从而导致反应物转化率下降的技术难题也没有解决。
发明内容
根据本申请的一个方面,提供了一种石脑油的转化方法,通过将石脑油 的催化裂解和高温水蒸气裂解工艺相结合,制取低碳烯烃、芳烃和高辛烷值汽油。该方法显著提高了高价值产物的产率,降低了低价值产物的产率;同时,由于大部分反应物在温度较低的催化裂解中进行了转化,总体上可以降低能耗。
所述石脑油的转化方法,其特征在于,至少包括以下步骤:
a)将含有石脑油的进料通入第一反应区,在580℃~700℃的反应温度下与含有分子筛的催化剂接触反应,反应产物经分离得到物流I和产品I;
b)将水蒸汽和步骤a)中所得物流I通入第二反应区,在780℃~870℃的反应温度下进行水蒸气裂解反应,反应后得到产品III;
所述物流I包括碳原子数为2~5的烷烃;
所述产品I包括碳原子数为2~12的烯烃、碳原子数为6~12的芳烃和碳原子数为6~12的烷烃;
所述产品III包括碳原子数为2~4的低碳烯烃、碳原子数为6~8的芳烃。
所述第一反应区的反应产物经分离后得到物流I和产品I,余下的为副产物I。副产物I主要含有氢气和甲烷。
所述第二反应区的反应产物经分离后得到产品III,余下的为副产物III。副产物III主要含有氢气和甲烷。
所述产品I中碳原子数为2~12的烯烃中,主要是碳原子数为2~4的低碳烯烃。所述产品I中碳原子数为6~12的芳烃中,主要是碳原子数为6~8的芳烃。所述产品I中碳原子数为6~12的烷烃中,主要是异构烷烃和含有支链的环烷烃。所述产品I中的主要组份均具有较高的经济价值。所述产品I中碳原子数为2~4的低碳烯烃和碳原子数为6~8的芳烃可作为重要的化工 原料;所述产品I中的异构烷烃、含支链的环烷烃、碳原子数为9~12的芳烃均可以用于生产高辛烷值汽油。本申请的方法可以使原料石脑油反应得到较多的上述高价值产物。
催化裂解的反应特点是反应温度较低、选择性好,但是对碳原子数为2~5的烷烃转化率低;水蒸气裂解的特点是反应物转化率高,但选择性较低,同时反应温度高、能耗高。本申请把这两种裂解方法有选择地结合起来,分别运用两种裂解方法的优势方面,使反应物首先在第一反应区于较低的反应温度下进行催化裂解反应,大部分物料高选择性的生成产物,将余下的适合水蒸气裂解的组份在第二反应区进行水蒸气裂解,反应产物输出或储存。其中,碳原子数为2~5的烷烃,包括乙烷、丙烷、丁烷和戊烷,其难以在催化裂解反应中有效转化,同时经济价值很低,但在水蒸气裂解反应中却能表现出转化优势,尤其是选择性方面。分离出第一反应区的反应产物中碳原子数为2~5的烷烃,进行水蒸气裂解,其产物主要是低碳烯烃和轻质芳烃,经济价值远大于碳原子数为2~5的烷烃。同时由于第一反应区反应产物中碳原子数为2~5的烷烃总量较少,因此第二反应区水蒸气裂解需要的能耗并不大。综上所述,本申请改变了现有技术中对于水蒸气裂解的应用方面的认识,有选择地仅对经济价值较低、产量少、难以催化转化的碳原子数为2~5的烷烃组份进行水蒸气裂解,在仅增加了少量能耗的情况下,将经济价值很低的组份大部分转化为经济价值很高的产物,用更适合且更有效率的方法将低价值组份转化为高价值组份,总体上大幅提高了经济优势。
本申请中,“烷烃”包括链烷烃和环烷烃。
本申请中,“碳原子数为2~4的低碳烯烃”包括乙烯、丙烯、1-丁烯、2-丁烯、异丁烯、1,3-丁二烯,简称为低碳烯烃。
本申请中,“碳原子数为6~8的芳烃”,简称轻质芳烃或BTX,包括苯(Benzene)、甲苯(Toluene)和二甲苯(Xylene)。
本申请中,“石脑油”包括全馏分石脑油和/或部分馏分石脑油,典型的部分馏分石脑油包括初馏点至150℃的石脑油(简写为IBP-150℃)、初馏点至180℃的石脑油(简写为IBP-180℃)。
根据本申请的又一个方面,提供了一种石脑油的转化方法,通过将石脑油的催化裂解和高温水蒸气裂解工艺相结合,制取低碳烯烃和芳烃。该方法显著提高了高价值产物的产率,降低了低价值产物的产率;同时,由于大部分反应物在温度较低的催化裂解中进行了转化,总体上可以降低能耗。
所述石脑油的转化方法,其特征在于,至少包括以下步骤:
a)将含有石脑油的进料通入第一反应区,在580℃~700℃的反应温度下与含有分子筛的催化剂接触反应,反应后经分离得到物流I、物流II、产品II;
b)将水蒸汽和步骤a)中所得物流I通入第二反应区,在780℃~870℃的反应温度下进行水蒸气裂解反应,反应后得到产品III;
c)将步骤a)所得物流II返回所述第一反应区;
所述物流I包括碳原子数为2~5的烷烃;
所述物流II包括碳原子数为6~12的烷烃、碳原子数为5~12的烯烃;
所述产品II包括碳原子数为2~4的低碳烯烃、碳原子数为6~8的芳烃;
所述产品III包括碳原子数为2~4的低碳烯烃、碳原子数为6~8的芳烃。
所述第一反应区的反应产物经分离得到物流I、物流II和产品II,余下的为副产物II。副产物II主要含有氢气、甲烷和碳原子数大于8的芳烃。
所述碳原子数为2~4的低碳烯烃、碳原子数为6~8的芳烃均具有较高的经济价值,均可作为重要的化工原料,本申请的方法可以使原料石脑油反应得到较多的上述高价值产物。
第一反应区催化裂解的反应产物中,碳原子数不小于6的烷烃和碳原子数不小于5的烯烃,还可以进一步转化为价值更高的低碳烯烃和轻质芳烃,但由于分子中的碳原子数较多时,进行水蒸气裂解反应通常选择性较低(相对于催化裂解),因此并不适合水蒸气裂解。如前所述,本申请把催化裂解和水蒸气裂解结合起来,分别运用两种裂解方法的优势方面,使反应物首先在第一反应区于较低的反应温度下进行催化裂解反应,大部分物料高选择性的生成高价值的反应产物,余下的反应产物中,将适合催化裂解的物料重新输送到催化反应器回炼,将适合水蒸气裂解的物料进行高温水蒸气裂解,反应产品输出或储存。在本申请的一种实施方式中,第一反应区催化裂解后经分离,其中除碳原子数为2~5的烷烃进行水蒸气裂解外,还将碳原子数为6~12的烷烃和碳原子数为5~12的烯烃返回第一反应区继续进行催化裂解,转化为价值更高的低碳烯烃和轻质芳烃。因此,本申请改变了现有技术中对于回炼和水蒸气裂解的应用方面的认识,有选择地仅对经济价值很低、产量少、难以催化转化的碳原子数为2~5的烷烃组份进行水蒸气裂解,在仅增加了少量能耗的情况下,将经济价值很低的组份大部分转化为经济价值很高的产物;有选择地仅对碳原子数为6~12的烷烃和碳原 子数为5~12的烯烃进行催化裂解回炼,将适合催化裂解的低价值产物进一步转化为价值更高的产物。本申请的技术方案,采用针对不同反应特性的组份进行不同处理方式的技术手段,用更适合且更有效率的方法将低价值组份转化为高价值组份,总体上大幅提高了经济优势。
优选地,所述步骤a)中第一反应区的反应温度范围下限选自600℃、640℃、670℃,上限选自720℃、700℃、680℃、670℃。进一步优选地,所述步骤a)中第一反应区的反应温度为640℃~680℃。
优选地,所述步骤a)第一反应区的进料中石脑油的重量空速范围下限选自0.5h-1、0.8h-1、1.0h-1、1.2h-1,上限选自2.5h-1、1.6h-1、1.4h-1、1.2h-1、1.0h-1。进一步优选地,所述步骤a)第一反应区中进料中石脑油的重量空速为0.5~2.5h-1
所述步骤a)第一反应区的进料中可以含有水,所述进料中水与石脑油的重量比水/石脑油的比值范围下限选自0、0.14、0.33、0.6、1,上限选自0.6、1、1.25、1.5。进一步优选地,所述进料中水与石脑油的重量比水/石脑油=0~1.5。更进一步优选地,所述进料中水与石脑油的重量比水/石脑油=0~1.25。催化裂解过程中,可以有水参与,也可以在无水的情况下进行催化裂解。在催化裂解反应中,进料不添加水蒸气,其优势是,在没有水蒸气存在的情况下,分子筛就不会因为高温水热脱骨架铝而失去活性中心,催化剂的寿命将极大的延长。此外,能耗降低,污水减少。作为一个优选地实施方式,所述步骤a)第一反应区的进料由石脑油组成。
优选地,所述第一反应区包括至少一个固定床反应器。进一步优选地, 所述第一反应区包括一个固定床催化反应区,通过外部加热的方式提供反应所需热量。
根据本申请的一个优选地实施方式,提供了用于所述方法中第一反应区的催化剂,该催化剂具备优异的石脑油单程反应性能,同时更适用于石脑油与碳原子数不小于5的烯烃和碳原子数不小于6烷烃同时反应的体系,还具备较强的水蒸气稳定性。
优选地,所述步骤a)中含有分子筛的催化剂中,分子筛为氢型ZSM-5分子筛。所述氢型分子筛由分子筛经过铵离子交换、焙烧得到。
优选地,所述步骤a)中含有分子筛的催化剂中,分子筛为经镧系元素中的至少一种和/或磷元素改性得到的分子筛。进一步优选地,所述改性分子筛中,镧系元素在改性分子筛中的质量百分含量,以氧化物计,不低于6%;磷元素在改性分子筛中的质量百分含量,以氧化物P2O5计,不低于3%。更进一步优选地,所述改性分子筛中,镧系元素在改性分子筛中的质量百分含量,以氧化物计,不低于9%;磷元素在改性分子筛中的质量百分含量,以氧化物P2O5计,不低于4%。
作为一个优选地实施方式,所述步骤a)中含有分子筛的催化剂中,分子筛为经过镧元素和磷元素改性的分子筛;其中,镧元素在改性分子筛中的质量百分含量,以氧化物La2O3计,为6~12%;磷元素在改性分子筛中的质量百分含量,以氧化物P2O5计,为3~10%。
作为一个优选地实施方式,所述步骤a)中含有分子筛的催化剂中,分子筛为经过镧元素和磷元素改性的氢型ZSM-5分子筛;其中,镧元素在改性分子筛中的质量百分含量,以氧化物La2O3计,为6~12%;磷元素在改 性分子筛中的质量百分含量,以氧化物P2O5计,为3~10%。
优选地,所述步骤a)中含有分子筛的催化剂中,分子筛的硅铝摩尔比SiO2/Al2O3=20~200。
优选地,所述步骤a)中含有分子筛的催化剂中催化剂由改性分子筛和氧化铝组成。进一步优选地,改性分子筛在催化剂中的质量百分含量不低于60wt%。更进一步优选地,改性分子筛在催化剂中的质量百分含量不低于75wt%。
作为一个优选地实施方式,所述步骤c)中进入第二反应区的水与物流II的重量比水/物流II=0.3~0.5;第二反应区温度范围800℃~850℃;水与物流II在第二反应区的停留时间为0.2秒~0.5秒。更进一步优选地,第二反应区温度范围820℃~850℃。
本申请能产生的有益效果包括:
1)本申请所提供的方法,兼具催化裂解的反应温度低、选择性高的优势,以及水蒸气裂解对于为2~5的烷烃的转化优势。
2)本申请所提供的方法,高价值产物的产率更高,同时能耗更低。
附图说明
图1为本申请一种实施方式的流程示意图。
图2为本申请一种实施方式的流程示意图。
图3为实施例7中催化剂CAT-2#上进料无水蒸气时的反应产物中低碳烯烃随反应时间的变化图。
图4为实施例8中催化剂CAT-1#上的反应产物中低碳烯烃随反应时间的变化图。
图5为实施例9中催化剂CAT-2#上的反应产物中低碳烯烃随反应时间的变化图。
图6为实施例10中催化剂CAT-3#上的反应产物中低碳烯烃随反应时间的变化图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料和催化剂均通过商业途径购买,其中ZSM-5分子筛购买自南开大学催化剂厂。本申请实施中使用的石脑油组分如下表1所示:
表1
Figure PCTCN2015080591-appb-000001
本申请的实施例中分析方法如下:
反应产物由在线气相色谱分析。气相色谱为安捷伦公司的7890A,安捷伦公司的HP-5毛细管柱检测。
本申请的实施例中“产率”计算方法如下:
产率=目标产物生成量/石脑油进料量×100%
本申请的实施例中“(乙烯+丙烯+丁烯)的选择性”计算方法如下:
(乙烯+丙烯+丁烯)的选择性=(乙烯+丙烯+丁烯)/(氢气+碳原子数为1~4的烃类)×100%
本申请的实施例中,产率以及选择性都基于重量进行计算。
实施例1催化剂CAT-1#的制备
改性分子筛Z-1#的制备
采用浸渍法制备改性分子筛,具体为:将硅铝比SiO2/Al2O3(摩尔比)=30的氢型ZSM-5分子筛84g浸渍于100ml浓度为0.74mol/L的La(NO3)3溶液中,再于120℃烘干,550℃焙烧,然后再将焙烧后的固体浸渍于100g浓度为4wt%的磷酸溶液中,再于120℃烘干,550℃焙烧,得到的改性分子筛记为样品Z-1#。样品Z-1#中:La2O3的质量百分含量为12%,P2O5的质量百分含量为4%。
催化剂CAT-1#的制备
取75g样品Z-1#和25克氧化铝混合,加入30ml 3%稀硝酸搅拌捏合,然后挤条成型,再于120℃烘干,650℃焙烧,即得成型催化剂,记为催化剂CAT-1#。催化剂CAT-1#中样品Z-1#的质量百分含量为75%,氧化铝的质量百分含量为25%。
实施例2催化剂CAT-2#的制备
改性分子筛Z-2#的制备
将硅铝比SiO2/Al2O3(摩尔比)=50的氢型ZSM-5分子筛84g浸渍于 100ml浓度为0.74mol/L的La(NO3)3溶液中,再于120℃烘干,550℃焙烧,然后再将焙烧后的固体浸渍于100g浓度为4wt%的磷酸溶液中,再于120℃烘干,550℃焙烧,得到的改性分子筛记为样品Z-2#。样品Z-2#中:La2O3的质量百分含量为12%,P2O5的质量百分含量为4%。
催化剂CAT-2#的制备
取80g样品Z-2#和20g氧化铝混合,加入40ml 3%稀硝酸搅拌捏合,然后挤条成型,再于120℃烘干,650℃焙烧,即得成型催化剂,记为催化剂CAT-2#。催化剂CAT-2#中样品Z-2#的质量百分含量为80%,氧化铝的质量百分含量为20%。
实施例3催化剂CAT-3#的制备
改性分子筛Z-3#的制备
将硅铝比SiO2/Al2O3(摩尔比)=100的氢型ZSM-5分子筛87g浸渍于100ml浓度为0.56mol/L的La(NO3)3溶液中,再于120℃烘干,550℃焙烧,然后再将焙烧后的固体浸渍于100g浓度为4wt%的磷酸溶液中,再于120℃烘干,550℃焙烧,得到的改性分子筛记为样品Z-3#。样品Z-3#中:La2O3的质量百分含量为9%,P2O5的质量百分含量为4%。
催化剂CAT-3#制备
取80g样品Z-3#和20克氧化铝混合,加入80ml 3%稀硝酸搅拌捏合,然后挤条成型,再于120℃烘干,650℃焙烧,即得成型催化剂,记为催化剂CAT-3#。催化剂CAT-3#中样品Z-3#的质量百分含量为80%,氧化铝的质量百分含量为20%。
实施例4~6催化剂CAT-2#上石脑油的反应
反应流程如图1所示,先将进料石脑油(IBP-180℃)和水蒸汽通入第一反应区,第一反应区为装填10g催化剂CAT-2#的固定床反应器,在反应温度670℃下进行反应,第一反应区反应后得到的反应产物经分离得到物流I、产品I和副产物I。其中物流I包括碳原子数为2~5的烷烃,产品I包括碳原子数为2~12的烯烃、碳原子数为6~12的芳烃和碳原子数为6~12的烷烃,剩下的为副产物I。将物流I和水蒸汽通入第二反应区的水蒸气裂解反应器中,进行水蒸气裂解反应,第二反应区为管式炉反应器,得到的产品III与第一反应区的固定床反应器得到的产品I中的化工产品混合。其中第二反应区得到的产品III包括碳原子数为2~4的低碳烯烃、碳原子数为6~8的芳烃,剩下的为副产物III。
反应条件和产率见表2所示。
表2催化剂CAT-2#上石脑油(IBP-180℃)的反应条件及产率
Figure PCTCN2015080591-appb-000002
Figure PCTCN2015080591-appb-000003
Figure PCTCN2015080591-appb-000004
a:表中产率均为重量百分产率。
b:BTX是指轻质芳烃,包括苯(Benzene)、甲苯(Toluene)和二甲苯(Xylene)。
从表2中数据可知,在670℃反应温度下,石脑油经过一次催化裂解反应和产物中碳原子数2~5烷烃进行水蒸气裂解回炼。最终化工产品(低碳烯烃+BTX)和高辛烷值汽油(分离出BTX后的其余液体产品)的总产率 高达87~88%。
实施例7催化剂CAT-2#上第一反应区不含水蒸气进行反应
反应流程同实施例4,只是第一反应区没加水蒸气,反应流程图如图1所示。石脑油(IBP-180℃)在670℃条件下的反应结果列于表3。
表3催化剂CAT-2#上石脑油不添加水的反应条件和产率
Figure PCTCN2015080591-appb-000005
Figure PCTCN2015080591-appb-000006
a:表中产率均为重量百分产率。
b:BTX是指轻质芳烃,包括苯(Benzene)、甲苯(Toluene)和二甲苯(Xylene)。
可以看出,第一反应区的催化裂解反应不添加水蒸气时,选择性有所下降,甲烷产率有所上升,但是催化裂解产物中“低碳烯烃+BTX”的产率反而有所上升,这是因为没有水蒸气时,催化剂的活性高一些,反应物转化率提高导致的。由于催化裂解反应的选择性下降,导致目标产物总产率下降,但是仍然高达80%。
催化反应产物中低碳烯烃随反应时间的变化见图3。
实施例8~10在不同催化剂上进行采用催化裂解回炼的石脑油反应
其流程如图2所示,先将进料石脑油(IBP-150℃)和水蒸汽通入第一反应区。实施例8、实施例9和实施例10中的第一反应区分别装填10g实施例1、2和3中制备的催化剂CAT-1#、催化剂CAT-2#和催化剂CAT-3#的固定床反应器,均为固定床反应器。第一反应区反应后得到的反应产物经分离得到物流I、物流II、产品II和副产物II。其中物流I包括碳原子数为2~5的烷烃;物流II包括包括碳原子数为6~12的烷烃和碳原子数为5~12的烯烃;产品II包括碳原子数为2~4的低碳烯烃、碳原子数为6~8的芳烃;剩下的为副产物II。将物流II返回第一反应区的固定床反应器继续进行催化裂解反应。将物流I和水蒸汽通入第二反应区的水蒸气裂解反应器中,进行水蒸气裂解反应,第二反应区为管式炉反应器,得到的产品III与第一反应区的固定床反应器得到的产品II均作为化工产品。其中第二反应区得到的产品III包括碳原子数为2~4的低碳烯烃和碳原子数为6~8的芳烃,剩下的为副产物III。
反应温度、水与石脑油(IBP-150℃)的重量比、进料中石脑油的空速 见表4,其余条件同实施例4。石脑油(IBP-150℃)在不同催化剂上的反应结果列于表4。
表4实施例8~10不同催化剂上的反应条件和产率
Figure PCTCN2015080591-appb-000007
Figure PCTCN2015080591-appb-000008
Figure PCTCN2015080591-appb-000009
a:表中产率均为重量百分产率。
b:BTX是指轻质芳烃,包括苯(Benzene)、甲苯(Toluene)和二甲苯(Xylene)。
c:C6~12烷烃是指碳原子数为6~12的烷烃。
石脑油经过第一反应区的催化裂解反应,物流I的水蒸气裂解回炼和物流2的催化回炼,不同催化剂上化工产品的总产率可以达到83~85%。
图4、图5和图6分别是实施例8、实施例9和实施例10中,一次催化反应产物中低碳烯烃随反应时间的变化图。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

  1. 一种石脑油的转化方法,其特征在于,至少包括以下步骤:
    a)将含有石脑油的进料通入第一反应区,在580℃~700℃的反应温度下与含有分子筛的催化剂接触反应,反应产物经分离得到物流I和产品I;
    b)将水蒸汽和步骤a)中所得物流I通入第二反应区,在780℃~870℃的反应温度下进行水蒸气裂解反应,反应后得到产品III;
    所述物流I包括碳原子数为2~5的烷烃;
    所述产品I包括碳原子数为2~12的烯烃、碳原子数为6~12的芳烃和碳原子数为6~12的烷烃;
    所述产品III包括碳原子数为2~4的低碳烯烃、碳原子数为6~8的芳烃。
  2. 一种石脑油的转化方法,其特征在于,至少包括以下步骤:
    a)将含有石脑油的进料通入第一反应区,在580℃~700℃的反应温度下与含有分子筛的催化剂接触反应,反应产物经分离得到物流I、物流II和产品II;
    b)将水蒸汽和步骤a)中所得物流I通入第二反应区,在780℃~870℃的反应温度下进行水蒸气裂解反应,反应后得到产品III;
    c)将步骤a)所得物流II返回所述第一反应区;
    所述物流I包括碳原子数为2~5的烷烃;
    所述物流II包括碳原子数为6~12的烷烃、碳原子数为5~12的烯烃;
    所述产品II包括碳原子数为2~4的低碳烯烃、碳原子数为6~8的芳烃;
    所述产品III包括碳原子数为2~4的低碳烯烃、碳原子数为6~8的芳烃。
  3. 根据权利要求1或2所述的方法,其特征在于,所述步骤a)中第一反应区的反应温度为640℃~680℃。
  4. 根据权利要求1或2所述的方法,其特征在于,所述步骤a)第一反应区进料中石脑油的重量空速为0.5h-1~2.5h-1
  5. 根据权利要求1或2所述的方法,其特征在于,所述步骤a)的进料中还含有水蒸汽,所述进料中水蒸气与石脑油的重量比水蒸汽/石脑油=0~1.5。
  6. 根据权利要求1或2所述的方法,其特征在于,所述步骤a)中含有分子筛的催化剂中,分子筛为氢型ZSM-5分子筛。
  7. 根据权利要求1或2所述的方法,其特征在于,所述步骤a)中含有分子筛的催化剂中,分子筛为经镧系元素中的至少一种和/或磷元素改性得到的分子筛。
  8. 根据权利要求1或2所述的方法,其特征在于,所述步骤a)中含有分子筛的催化剂中,分子筛为经过镧元素和磷元素改性的分子筛;其中,镧元素在改性分子筛中的质量百分含量,以氧化物La2O3计,为6~12%;磷元素在改性分子筛中的质量百分含量,以氧化物P2O5计,为3~10%。
  9. 根据权利要求1或2所述的方法,其特征在于,所述步骤a)中含有分子筛的催化剂中,分子筛的硅铝摩尔比SiO2/Al2O3=20~200。
  10. 根据权利要求1或2所述的方法,其特征在于,所述步骤b)中进入第二反应区的水蒸汽与物流II的重量比水/物流II=0.2~0.5;第二反应区温度范围800℃~850℃;水与物流II在第二反应区的停留时间为0.2秒~0.5 秒。
PCT/CN2015/080591 2015-06-02 2015-06-02 一种石脑油的转化方法 WO2016192041A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15893697.1A EP3305748A4 (en) 2015-06-02 2015-06-02 PROCESS FOR CONVERTING NAPHTHA
PCT/CN2015/080591 WO2016192041A1 (zh) 2015-06-02 2015-06-02 一种石脑油的转化方法
US15/578,831 US10538711B2 (en) 2015-06-02 2015-06-02 Process for converting naphtha

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/080591 WO2016192041A1 (zh) 2015-06-02 2015-06-02 一种石脑油的转化方法

Publications (1)

Publication Number Publication Date
WO2016192041A1 true WO2016192041A1 (zh) 2016-12-08

Family

ID=57439927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080591 WO2016192041A1 (zh) 2015-06-02 2015-06-02 一种石脑油的转化方法

Country Status (3)

Country Link
US (1) US10538711B2 (zh)
EP (1) EP3305748A4 (zh)
WO (1) WO2016192041A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112513229A (zh) * 2018-07-27 2021-03-16 沙特基础工业全球技术公司 从宽程沸点石脑油产生轻质烯烃和芳香族化合物的方法
CN115869988A (zh) * 2022-12-02 2023-03-31 厦门大学 一种石脑油催化裂解制低碳烯烃催化剂及其制备方法
US11851621B2 (en) 2019-07-31 2023-12-26 Sabic Global Technologies B.V. Naphtha catalytic cracking process

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104604B1 (fr) * 2019-12-16 2022-04-22 Ifp Energies Now Dispositif et procédé de production d’oléfines légères et d’aromatiques par craquage catalytique.
FR3104605B1 (fr) 2019-12-16 2022-04-22 Ifp Energies Now Dispositif et procédé de production d’oléfines légères par craquage catalytique et vapocraquage.
US11365358B2 (en) * 2020-05-21 2022-06-21 Saudi Arabian Oil Company Conversion of light naphtha to enhanced value products in an integrated two-zone reactor process
CN113717748B (zh) * 2021-11-02 2022-02-08 山东百联化工有限公司 一种石脑油裂解装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1395609A (zh) * 2000-01-12 2003-02-05 金属技术股份有限公司 由烃类生产c2和c3烯烃的方法
CN1651363A (zh) * 2004-01-14 2005-08-10 凯洛格·布朗及鲁特有限公司 用于烯烃的综合催化裂化和蒸汽热解方法
CN1665911A (zh) * 2002-05-23 2005-09-07 托塔尔石油化学产品研究弗吕公司 烯烃生产
CN101362669A (zh) * 2007-08-09 2009-02-11 中国石油化工股份有限公司 一种制取乙烯、丙烯和芳烃的催化转化方法
CN102795958A (zh) * 2011-05-27 2012-11-28 中国石油化工股份有限公司 一种以石脑油为原料生产芳烃和乙烯的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706654A (en) * 1969-11-12 1972-12-19 Gulf Research Development Co Fluid catalytic cracking processes and means
US4137151A (en) * 1977-02-25 1979-01-30 Chevron Research Company Hydrocarbon conversion with cracking catalyst having co-combustion promoters lanthanum and iron
US5523502A (en) * 1993-11-10 1996-06-04 Stone & Webster Engineering Corp. Flexible light olefins production
US5856607A (en) * 1996-05-03 1999-01-05 Amoco Corporation Process for production of ethylbenzene frome dilute ethylene streams
DE19805915C1 (de) 1998-02-13 1999-09-23 Ruhr Oel Gmbh Verfahren zum Cracken von Kohlenwasserstoffen
US20020003103A1 (en) * 1998-12-30 2002-01-10 B. Erik Henry Fluid cat cracking with high olefins prouduction
US6835863B2 (en) * 1999-07-12 2004-12-28 Exxonmobil Oil Corporation Catalytic production of light olefins from naphtha feed
ES2913654T3 (es) 2004-03-08 2022-06-03 China Petroleum & Chem Corp Procedimiento de FCC con dos zonas de reacción
US20100010279A1 (en) * 2004-04-02 2010-01-14 Ranjit Kumar Catalyst Compositions Comprising Metal Phosphate Bound Zeolite and Methods of Using Same to Catalytically Crack Hydrocarbons
CA2539231C (en) * 2006-03-10 2013-08-13 Baojian Shen Catalyst composition for treating heavy feedstocks
CN102531821B (zh) 2010-12-28 2015-03-25 中国科学院大连化学物理研究所 采用改性zsm-5分子筛催化剂催化甲醇耦合石脑油催化裂解反应的方法
US20150174559A1 (en) * 2013-12-19 2015-06-25 Basf Corporation Phosphorus-Modified FCC Catalysts
US10160922B2 (en) * 2015-11-23 2018-12-25 Uop Llc Processes and apparatuses for production of olefins

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1395609A (zh) * 2000-01-12 2003-02-05 金属技术股份有限公司 由烃类生产c2和c3烯烃的方法
CN1665911A (zh) * 2002-05-23 2005-09-07 托塔尔石油化学产品研究弗吕公司 烯烃生产
CN1651363A (zh) * 2004-01-14 2005-08-10 凯洛格·布朗及鲁特有限公司 用于烯烃的综合催化裂化和蒸汽热解方法
CN101362669A (zh) * 2007-08-09 2009-02-11 中国石油化工股份有限公司 一种制取乙烯、丙烯和芳烃的催化转化方法
CN102795958A (zh) * 2011-05-27 2012-11-28 中国石油化工股份有限公司 一种以石脑油为原料生产芳烃和乙烯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3305748A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112513229A (zh) * 2018-07-27 2021-03-16 沙特基础工业全球技术公司 从宽程沸点石脑油产生轻质烯烃和芳香族化合物的方法
US11807819B2 (en) 2018-07-27 2023-11-07 Sabic Global Technologies B.V. Process of producing light olefins and aromatics from wide range boiling point naphtha
US11851621B2 (en) 2019-07-31 2023-12-26 Sabic Global Technologies B.V. Naphtha catalytic cracking process
CN115869988A (zh) * 2022-12-02 2023-03-31 厦门大学 一种石脑油催化裂解制低碳烯烃催化剂及其制备方法

Also Published As

Publication number Publication date
US10538711B2 (en) 2020-01-21
EP3305748A4 (en) 2019-01-23
US20180163147A1 (en) 2018-06-14
EP3305748A1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
WO2016192041A1 (zh) 一种石脑油的转化方法
TWI629255B (zh) 將石蠟轉換成烯烴的製程及用於其中的催化劑
JP3707607B2 (ja) エチレンおよびプロピレンの製造方法
AU2014380443B2 (en) Catalyst and method for aromatization of C3-C4 gases, light hydrocarbon fractions and aliphatic alcohols, as well as mixtures thereof
JP5873570B2 (ja) メタノール及び/又はジメチルエーテルとc4液化ガスの混合転換によりパラキシレンを製造するための触媒及びその製造方法と使用
US10414701B2 (en) Production of alkylate from light alkanes
US20110270009A1 (en) Catalytic cracking process of a stream of hydrocarbons for maximization of light olefins
JP2681223B2 (ja) 変性モルデナイトをベースとする触媒を用いるアルキルベンゼンの製造方法
Gerzeliev et al. Ethylbenzene synthesis and benzene transalkylation with diethylbenzenes on zeolite catalysts
TW201016641A (en) Process for production of olefin, and production apparatus for same
US9783468B2 (en) Method for producing an aromatic hydrocarbon with an oxygenate as raw material
EP3015445B1 (en) A method for producing an aromatic hydrocarbon with an oxygenate as raw material
CN103121892A (zh) 由烷烃生产低碳烯烃的方法
CN103058814B (zh) 一种由液化气生产芳烃和烯烃的方法
CN106221786B (zh) 一种石脑油的转化方法
RU2009140666A (ru) Способ получения высокооктанового бензина и/или ароматических углеводородов с низким содержанием бензола
Zhu et al. Two new on-purpose processes enhancing propene production: catalytic cracking of C 4 alkenes to propene and metathesis of ethene and 2-butene to propene
US6034020A (en) Zeolite-based catalyst material, the preparation thereof and the use thereof
CN103121891A (zh) 生产低碳烯烃的方法
Li et al. Selective peroxidation of isobutane with molecular oxygen over molybdenum oxide catalyst for direct synthesis of di-tert-butyl peroxide
Al-Ghamdi Oxygen-free propane oxidative dehydrogenation over vanadium oxide catalysts: reactivity and kinetic modelling
EP3936588A1 (en) Methods for producing ethylene and propylene from naphtha
KR101795851B1 (ko) 이산화탄소를 이용한 저탄소 화합물로부터의 방향족화 화합물 제조방법
JP5916882B2 (ja) プロピレン生成を最大化するためのブテン類メタセシスプロセスの混相操作
RU2715390C1 (ru) Катализатор переработки этан-этиленовой фракции нефтезаводских газов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15578831

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015893697

Country of ref document: EP