WO2016191975A1 - 一种lte带内中继方法、装置及系统 - Google Patents

一种lte带内中继方法、装置及系统 Download PDF

Info

Publication number
WO2016191975A1
WO2016191975A1 PCT/CN2015/080389 CN2015080389W WO2016191975A1 WO 2016191975 A1 WO2016191975 A1 WO 2016191975A1 CN 2015080389 W CN2015080389 W CN 2015080389W WO 2016191975 A1 WO2016191975 A1 WO 2016191975A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
radio bearer
allocation information
base station
bearer resource
Prior art date
Application number
PCT/CN2015/080389
Other languages
English (en)
French (fr)
Inventor
彭翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15893638.5A priority Critical patent/EP3294038B1/en
Priority to PCT/CN2015/080389 priority patent/WO2016191975A1/zh
Priority to CN201580001230.2A priority patent/CN107535010B/zh
Publication of WO2016191975A1 publication Critical patent/WO2016191975A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to a Long Term Evolution (LTE) in-band relay method, apparatus, and system.
  • LTE Long Term Evolution
  • the Relay Network defined by the R3 standard of the 3rd Generation Partnership Project (3GPP) includes two logical nodes: a host base station (English Donor eNodeB, referred to as DeNB) and a relay station (English Relay Node, RN for short).
  • the DeNB supports the relay feature-related functions on the basis of the common eNodeB (the eNB for short).
  • the DeNB also supports the access to the RN while accessing the common user equipment (English User Equipment, UE for short).
  • the backhaul traffic carrying the RN is logically divided into two parts: a relay user equipment RN-UE and a relay base station RN-eNB.
  • the RN-eNB includes a standard eNB full function and a relay enhancement function, and the RN-eNB can be used for accessing common UEs in the coverage area, and A common UE establishes an access link; the RN-UE includes a part of the standard UE and a relay enhancement function, and the RN-UE accesses the DeNB, and establishes an LTE air interface bearer to provide a backhaul link for the RN-eNB. If the RN's backhaul link and the access link use the same frequency band, it is called an in-band relay; if the RN's backhaul link and the access link use different frequency bands, it is called an out-of-band relay.
  • the 3GPP R10 standard defines a Time Division Multiplexing (TDM) method to avoid mutual interference between an in-band Relay backhaul link and an access link. Specifically, the time division half-duplex mode is adopted.
  • TDM Time Division Multiplexing
  • the RN-UE receives the data of the DeNB
  • the RN-eNB sends the data to the RN-eNB.
  • the normal UE sends data; in the uplink direction, only one of the following two actions occurs at the same time: the RN-UE transmits data to the DeNB, and the RN-eNB receives data of the normal UE.
  • the RN-eNB cannot send data to the normal UE under it, that is, the RN-eNB cannot send at all.
  • the physical downlink control channel (English Physical Link Control Channel, PDCCH for short), therefore, the normal UE belonging to this RN-eNB does not receive the PDCCH and may not work normally.
  • the 3GPP standard defines a Multicast Broadcast Multicast Network (MBSFN) subframe.
  • MMSFN Multicast Broadcast Multicast Network
  • the DeNB and the RN-eNB simultaneously transmit their respective The PDCCH, which resides in the DeNB and the RN-eNB, receives the PDCCH transmitted by the DeNB and the RN-eNB, respectively.
  • the DeNB transmits data to the RN-UE using the remaining 11 symbols, while the RN-eNB turns off the transmit power during this time.
  • the RN-eNB needs to turn off the transmit power in the last 11 symbols of the MBSFN subframe, hardware modifications are needed for the existing RN-eNB to support this function, thereby increasing the cost; in addition, some old LTE terminals do not support MBSFN subframes, causing normal communication.
  • the embodiment of the present invention provides an LTE in-band relay method, device, and system.
  • the technical solution is as follows:
  • an embodiment of the present invention provides an LTE in-band relay method, where the method includes:
  • the first relay station receives the allocation information sent by the host base station, where the allocation information is used to indicate the first radio bearer resource occupied by the first backhaul link in a scheduling period, where the first backhaul link is the first a link between a relay station and the donor base station;
  • the first relay station communicates with the first user equipment by using the second radio bearer resource in the scheduling period, where the first user equipment is a user equipment that is served by the first relay station, and the second radio
  • the bearer resource is a radio bearer resource different from the first radio bearer resource in a predetermined frequency band.
  • the first relay station receives the allocation information sent by the host base station, including:
  • the radio bearer resource occupied by the relay physical downlink control channel is a part of radio bearer resources in the predetermined frequency band.
  • the radio bearer resource occupied by the relay physical downlink control channel is a radio bearer resource at both ends in the predetermined frequency band.
  • the allocation information is specifically used to indicate that the first backhaul link occupies the first radio bearer resource in one scheduling period after the preset delay time.
  • the preset delay time is greater than or equal to 1 millisecond and the preset delay time is less than or equal to 8 milliseconds.
  • the first relay station includes a relay base station and a relay user equipment, and the relay base station is connected to the relay user equipment through a communication interface.
  • the receiving, by the first relay station, the allocation information sent by the host base station includes:
  • the relay user equipment receives the allocation information sent by the host base station, and sends the allocation information to the relay base station;
  • Communicating with the first user equipment by using the second radio bearer resource in the scheduling period including:
  • the relay base station performs communication with the first user equipment by using the second radio bearer resource in the scheduling period.
  • the allocation information is further used to indicate a third radio bearer resource occupied by the at least one second backhaul link in the scheduling period, where the second backhaul chain The path is a link between the second relay station and the host base station, and the second relay station is a relay station that accesses the host base station except the first relay station, the second wireless The bearer resource is different from the third radio bearer resource.
  • an embodiment of the present invention further provides an LTE in-band relay method, where the method includes:
  • the first baseband transmits the first radio bearer resource occupied by the scheduling period in the predetermined frequency band, where the first backhaul link is the first base station and the first access to the host base station. a link between relay sites;
  • the host base station sends the allocation information to the first relay station, where the allocation information is used to indicate the first radio bearer resource occupied by the first backhaul link in the scheduling period.
  • the host base station allocates, for a first backhaul link, a first radio bearer resource that is occupied in a scheduling period in a predetermined frequency band, including:
  • the host base station periodically according to the amount of data and service priority on the first backhaul link At least one of the first radio bearer resources allocated for the first backhaul link within one scheduling period after the preset delay time.
  • the sending the allocation information to the first relay station includes:
  • the radio bearer resource occupied by the relay physical downlink control channel is a part of the radio bearer resources in the predetermined frequency band, by using the relay physical downlink control channel to send the allocation information to the first relay station.
  • the radio bearer resource occupied by the relay physical downlink control channel is a radio bearer resource at both ends in the predetermined frequency band.
  • the allocation information is further used to indicate a third radio bearer resource occupied by the at least one second backhaul link in the scheduling period, where the second backhaul chain
  • the path is a link between the host base station and the second relay station, and the second relay station is a relay station other than the first relay station that accesses the host base station.
  • an embodiment of the present invention further provides an LTE in-band relay device, where the device includes:
  • the receiving module is configured to receive the allocation information sent by the host base station, where the allocation information is used to indicate the first radio bearer resource occupied by the first backhaul link in a scheduling period, where the first backhaul link is the first a link between the relay station and the donor base station;
  • a scheduling module configured to communicate with the first user equipment by using the second radio bearer resource in the scheduling period, where the first user equipment is a user equipment that is served by the first relay station, and the second radio bearer
  • the resource is a radio bearer resource different from the first radio bearer resource in a predetermined frequency band.
  • the receiving module is specifically configured to:
  • the relay physical downlink control channel And receiving, by the relay physical downlink control channel, the allocation information sent by the host base station, where the radio bearer resource occupied by the relay physical downlink control channel is a part of the radio bearer resources in the predetermined frequency band.
  • the radio bearer resource occupied by the relay physical downlink control channel is a radio bearer resource at both ends in the predetermined frequency band.
  • the allocation information is specifically used to indicate that the first backhaul link occupies the first radio bearer resource in one scheduling period after the preset delay time.
  • the preset delay time is greater than or equal to 1 millisecond and the preset delay time is less than or equal to 8 milliseconds.
  • the LTE in-band relay device is the first relay station, and the first relay station includes a relay base station and a relay user equipment, and the relay base station And the relay user equipment is connected through a communication interface, where the relay user equipment includes the receiving module, and the relay base station includes the scheduling module.
  • the relay user equipment is configured to receive allocation information sent by a base station, and send the allocation information to the relay base station;
  • the relay base station is configured to use the second radio bearer resource to communicate with the first user equipment in the scheduling period.
  • the allocation information is further used to indicate a third radio bearer resource occupied by the at least one second backhaul link in the scheduling period, where the second backhaul chain The path is a link between the second relay station and the host base station, and the second relay station is a relay station that accesses the host base station except the first relay station, the second wireless The bearer resource is different from the third radio bearer resource.
  • an embodiment of the present invention provides an LTE in-band relay device, where the device includes:
  • An allocating module configured to allocate a first radio bearer resource occupied by a scheduling period in a predetermined frequency band, where the first backhaul link is a host base station and a second access to the host base station a link between relay sites;
  • a sending module configured to send the allocation information to the first relay station, where the allocation information is used to indicate the first radio bearer resource occupied by the first backhaul link in the scheduling period.
  • the allocating module is specifically configured to:
  • the sending module is specifically configured to:
  • the radio bearer resource occupied by the relay physical downlink control channel is a part of the radio bearer resources in the predetermined frequency band, by using the relay physical downlink control channel to send the allocation information to the first relay station.
  • the radio bearer resource occupied by the relay physical downlink control channel is a radio bearer resource at both ends in the predetermined frequency band.
  • the allocation information is further used to indicate a third radio bearer resource occupied by the at least one second backhaul link in the scheduling period, where the second backhaul chain Road And being a link between the host base station and the second relay station, where the second relay station is a relay station other than the first relay station that accesses the host base station.
  • an embodiment of the present invention further provides an LTE in-band relay device, where the device includes at least one processor, at least one memory, a first transceiver, a second transceiver, and a bus system, the at least one a processor, at least one memory, a first transceiver, a second transceiver are in communication via the bus system, the at least one memory for storing computer execution instructions, the at least one processor executing when the apparatus is operational The computer executes instructions stored by the memory, specifically for:
  • the second transceiver Controlling, by the second transceiver, the second radio bearer resource to communicate with the first user equipment in the scheduling period, where the first user equipment is a user equipment that is served by the first relay station, and the second The radio bearer resource is a radio bearer resource different from the first radio bearer resource in a predetermined frequency band.
  • the at least one processor is specifically configured to:
  • the first transceiver is configured to receive the allocation information sent by the host base station by using a relay physical downlink control channel, where the radio bearer resource occupied by the relay physical downlink control channel is a part of the radio bearer resources in the predetermined frequency band.
  • the radio bearer resource occupied by the relay physical downlink control channel is a radio bearer resource at both ends in the predetermined frequency band.
  • the allocation information is specifically used to indicate that the first backhaul link occupies the first radio bearer resource in one scheduling period after the preset delay time.
  • the preset delay time is greater than or equal to 1 millisecond and the preset delay time is less than or equal to 8 milliseconds.
  • the at least one processor includes at least one first processor and at least one second processor
  • the at least one memory includes a first memory and a second memory
  • the bus system includes a first bus and a second bus
  • the apparatus includes a relay base station and a relay user equipment, the relay base station including the first processor, the first memory, the first transceiver, the first bus, and a first communication interface, The first processor, the first memory, the first transceiver, and the first communication interface pass the Communicating with a first bus, the relay user equipment comprising the second processor, the second memory, the second transceiver, the second bus, and a second communication interface, the second processor The second memory, the second transceiver, and the second communication interface are communicated by the second bus, and the first communication interface and the second communication interface are connected;
  • the at least one first processor is configured to control, by the first transceiver, the allocation information sent by the host base station;
  • the at least one second processor is configured to control the second transceiver to communicate with the first user equipment by using the second radio bearer resource in the scheduling period.
  • the second processor is specifically configured to: control the second communications interface to send the allocation information to the relay base station by using the first communications interface.
  • the allocation information is further used to indicate a third radio bearer resource occupied by the at least one second backhaul link in the scheduling period, where the second backhaul chain The path is a link between the second relay station and the host base station, and the second relay station is a relay station that accesses the host base station except the first relay station, the second wireless The bearer resource is different from the third radio bearer resource.
  • an embodiment of the present invention provides an LTE in-band relay device, where the device includes at least one processor, a memory, a transceiver, and a bus system, where the at least one processor, the memory, and the transceiver pass the Communicating with a bus system for storing computer execution instructions, the at least one processor executing the computer executed instructions stored by the memory when the device is running, specifically for
  • the transceiver is configured to send allocation information to the first relay station, where the allocation information is used to indicate the first radio bearer resource occupied by the first backhaul link in the scheduling period.
  • the at least one processor is specifically configured to:
  • the at least one processor is specifically configured to:
  • the radio bearer resource occupied by the relay physical downlink control channel is a part of radio bearer resources in the predetermined frequency band.
  • the radio bearer resource occupied by the relay physical downlink control channel is a radio bearer resource at both ends in the predetermined frequency band.
  • the allocation information is further used to indicate a third radio bearer resource occupied by the at least one second backhaul link in the scheduling period, where the second backhaul chain
  • the path is a link between the host base station and the second relay station, and the second relay station is a relay station other than the first relay station that accesses the host base station.
  • an embodiment of the present invention further provides a storage medium for storing one or more computer programs, the one or more computer programs including program code, when the computer program is running, the program code Used to perform the above LTE in-band relay method.
  • an embodiment of the present invention further provides a storage medium for storing one or more computer programs, the one or more computer programs including program code, when the computer program is running, the program code Used to perform the above LTE in-band relay method.
  • the ninth aspect, the embodiment of the present invention further provides an LTE in-band relay system, where the system includes:
  • a host base station configured to allocate, for a first backhaul link, a first radio bearer resource occupied in a scheduling period in a predetermined frequency band, where the first backhaul link is the host base station and accessing the host base station Linking between the first relay stations; transmitting, to the first relay station, allocation information, where the allocation information is used to indicate the first radio bearer resource occupied by the first backhaul link in the scheduling period ;
  • the first relay station is configured to receive the allocation information sent by the host base station, and communicate with the first user equipment by using the second radio bearer resource in the scheduling period, where the first user equipment is The first relay station provides a serving user equipment, and the second radio bearer resource is a radio bearer resource different from the first radio bearer resource in a predetermined frequency band.
  • the first relay station is specifically configured to:
  • the relay physical downlink control channel And receiving, by the relay physical downlink control channel, the allocation information sent by the host base station, where the radio bearer resource occupied by the relay physical downlink control channel is a part of the radio bearer resources in the predetermined frequency band.
  • the radio bearer resource occupied by the relay physical downlink control channel is a radio bearer resource at both ends in the predetermined frequency band.
  • the allocation information is specifically used to indicate that the first backhaul link occupies the first radio bearer resource in one scheduling period after the preset delay time.
  • the first relay station receives the allocation information sent by the host station, and communicates with the first user equipment by using the second radio bearer resource in the scheduling period, where the allocation information is used to indicate that the first backhaul link occupies the first one in a scheduling period.
  • a radio bearer resource where the first backhaul link is a link between the host station and the first relay station, and the second radio bearer resource is a radio bearer resource different from the first radio bearer resource in the first frequency band, so that the first
  • the access link and the backhaul link of a relay station use different radio bearer resources for data transmission, so that the access link and the backhaul link can be used simultaneously without interference, and the MBSFN subframe is no longer needed.
  • the transmission does not require changes to the relay user equipment, which reduces the cost and greatly solves the compatibility problem of the equipment.
  • FIG. 1 is an application scenario provided by an embodiment of the present invention
  • FIG. 2 is a flowchart of an LTE in-band relay method according to an embodiment of the present invention
  • FIG. 3 is a flowchart of an LTE in-band relay method according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a subframe according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of using RB resources according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of an LTE in-band relay method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of an LTE in-band relay method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of an LTE in-band relay method according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an LTE in-band relay apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a first RN according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another first RN according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of an LTE in-band relay apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an LTE in-band relay device according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of an LTE in-band relay apparatus according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of an LTE in-band relay device according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of an LTE in-band relay system according to an embodiment of the present invention.
  • the scenario is a Relay networking, including a DeNB 10, an RN 20, a first UE 30 accessing the RN 20, and a second UE 40 accessing the DeNB 10.
  • the DeNB 10 also supports the RN 20 access and supports the backhaul traffic of the RN 20 while supporting the access of the second UE 40.
  • the RN 20 is logically divided into two parts: an RN-UE and an RN-eNB: the RN-eNB can access the first UE 30 in the coverage, establish an access link with the first UE 30, and the RN-UE accesses the DeNB 10 And establishing an LTE air interface bearer to provide a backhaul link for the RN-eNB.
  • the first UE 30 and the second UE 40 all refer to terminal devices on the user side.
  • one or more RNs 20 can be accessed by one DeNB 10.
  • FIG. 2 is a flowchart of an LTE in-band relay method, which may be performed by an RN in a Relay network (that is, a first RN). Referring to FIG. 2, the method includes:
  • Step 101 The first RN receives the allocation information sent by the DeNB, where the allocation information is used to indicate the first radio bearer (English Radio Bear, RB for short) resources occupied by the first backhaul link in one scheduling period, and the first backhaul chain
  • the path is the link between the first RN and the DeNB.
  • the length of the scheduling period may be 1 ms, that is, the length of one subframe.
  • a subframe is defined by two aspects: the time domain and the frequency domain.
  • the time domain is composed of symbols
  • the frequency domain is composed of radio bearer resources (ie, subcarriers).
  • the radio bearer resources occupied by the first backhaul link indicated in the allocation information are also in the period of the subframe length, because the DeNB usually allocates radio bearer resources for the accessed devices (including the RN and the UE) in each subframe.
  • Step 102 The first RN communicates with the first UE by using the second RB resource in the scheduling period, where the first UE is a UE served by the first RN, and the second RB resource is different from the first RB resource in the predetermined frequency band. RB resources.
  • the first RN communicating with the first UE includes: establishing an access link with the first UE by using the second RB resource, and then performing data transmission and the like.
  • the predetermined frequency band refers to the working frequency band of the DeNB.
  • the first frequency band is used later. Explain the alternative.
  • the first backhaul link may occupy RB resources at both ends of the first frequency band, and may occupy one or more RB resources at each end; and the access link occupies the RB in the middle of the first frequency band. Resources.
  • the first RN receives the allocation information sent by the DeNB, and uses the second RB resource to communicate with the first UE in the scheduling period, where the allocation information is used to indicate that the first backhaul link is after the preset delay time.
  • a first RB resource that is occupied by a first RB resource in a scheduling period, and the second RB resource is a RB resource different from the first RB resource in the first frequency band, thereby
  • the access link and the backhaul link of the first RN are respectively transmitted by using different RB resources, so that the access link and the backhaul link can be used simultaneously without interference, and the MBSFN subframe is no longer needed.
  • the transmission does not require changes to the RN-eNB, which reduces the cost and greatly solves the compatibility problem of the device.
  • FIG. 3 is a flowchart of an LTE in-band relay method, which may be performed by an RN (ie, a first RN) in a Relay network, and specifically describes how to receive an allocation sent by a DeNB in the method.
  • RN ie, a first RN
  • FIG. 3 includes:
  • Step 201 The first RN receives the allocation information sent by the DeNB by using a relay physical downlink control channel (English Relay-PDCCH, R-PDCCH for short), and the allocation information is used to indicate that the first backhaul link is after a preset delay time.
  • the first radio bearer (English Radio Bear, RB for short) resource occupied by the scheduling period, and the first backhaul link is a link between the first RN and the DeNB.
  • the first radio resource indicated by the allocation information is preset, because the DeNB needs to transmit the allocation information to the first RN for a certain period of time, in order to ensure that the first RN can normally use the radio bearer resource indicated by the allocation information.
  • the first backhaul link after the delay time is allocated.
  • the preset delay time can be set according to actual conditions, for example, the preset delay time is greater than or equal to 1 millisecond and the preset delay time is less than or equal to 8 milliseconds.
  • the length of the scheduling period may be 1 ms, that is, the length of one subframe.
  • one subframe is defined by two aspects: time domain (time) and frequency domain (frequency).
  • the time domain is composed of symbols
  • the frequency domain is composed of radio bearer resources (ie, subcarriers).
  • the radio bearer resources occupied by the first backhaul link indicated in the allocation information are also in the period of the subframe length, because the DeNB usually allocates radio bearer resources for the accessed devices (including the RN and the UE) in each subframe.
  • the transmission link between the devices occupies one or more radio bearer resources in the frequency domain (band), for example, the first backhaul link occupies the radio bearer resources at both ends in the illustrated frequency domain.
  • the access link occupies the radio bearer resources in the middle of the illustrated frequency domain.
  • the DeNB and the RN-eNB send control signaling to the accessing ordinary UE through the PDCCH, and send data to the normal UE through the Physical Downlink Shared Channel (English PDSCH).
  • the DeNB sends control signaling to the RN-UE through the R-PDCCH, and the foregoing allocation information may be included in the control signaling.
  • the control signaling sent by the DeNB to the RN-UE further includes a modulation and coding manner and the like.
  • the R-PDCCH and the RB resources occupied by the PDCCH are independent of each other, but the R-PDCCH may occupy part of the RB resources of the PDSCH for transmission.
  • the first 1-3 symbols of one subframe are used as the PDCCH, and all RB resources in one symbol after the PDCCH are used as the R-PDCCH.
  • the R-PDCCH may be adopted.
  • the RB resources occupied by the R-PDCCH are all RB resources in the first frequency band, and are specifically all RB resources in a specified symbol in one subframe.
  • the radio bearer resource occupied by the R-PDCCH is a part of radio bearer resources in the first frequency band, and is specifically a part of symbols in a subframe other than the symbol used by the PDCCH.
  • Wireless bearer resources For example, the first 1-3 symbols in one subframe are used as the PDCCH, and among the remaining symbols in the subframe, 1-2 (or other numbers) RB resources are used as the R-PDCCH.
  • the RB resources occupied by the R-PDCCH are RB resources at both ends in the first frequency band, and one or more RB resources may be occupied at each end.
  • the modulation information is used to transmit the allocated information at the same time to the RB resources at both ends of the frequency band, thereby avoiding data loss or error caused by signal interference when one RB resource is transmitted, and reducing the influence of signal interference on the transmission.
  • the R-PDCCH may occupy the same majority RB resources at both ends of the first frequency band.
  • the DeNB sends control signaling to the accessed UE1 (ordinary UE) through the PDCCH, and the RN-eNB passes The PDCCH sends control signaling to the accessed UE2 (ordinary UE).
  • the DeNB sends the allocation information to the RN-UE through the RB resources at both ends in the frequency band (the RB resources in the A frame in the figure).
  • the RN-eNB communicates with the UE2 by using the BD resource in the right side (the middle of the band) in the figure, and in the subframe, the first backhaul link
  • the RB resources occupying the two shaded parts (both ends of the band) on the left side of the figure.
  • the allocation information is further used to indicate that at least one second backhaul link is occupied in a scheduling period.
  • a third RB resource, the second backhaul link is a link between the DeNB and the second RN, and the second RN is a RN other than the first RN that accesses the DeNB, the second RB resource and the third RB
  • the resources are different, so as to avoid interference between the first RN and the second backhaul link when communicating with the UE accessing the first RN.
  • Step 202 The first RN communicates with the first UE by using the second RB resource in the scheduling period, where the first UE is a UE served by the first RN, and the second RB resource is different from the first RB resource in the first frequency band. RB resources.
  • the first RN communicating with the first UE includes: establishing an access link with the first UE by using the second RB resource, and then performing data transmission and the like.
  • the first backhaul link may occupy RB resources at both ends of the first frequency band, and may occupy one or more RB resources at each end; and the access link occupies the RB in the middle of the first frequency band.
  • Resources Specifically, as shown in FIG. 4, the RB resources indicated by the shaded portions at both ends of the frequency band may be used as the first backhaul link, and the RB resources indicated by the shaded portions in the middle of the frequency band may serve as the access link.
  • the first backhaul link can occupy the same plurality of RB resources at both ends of the frequency band, for example, four ends at each end shown in FIG.
  • the first RN receives the allocation information sent by the DeNB, and uses the second RB resource to communicate with the first UE in the scheduling period, where the allocation information is used to indicate that the first backhaul link is after the preset delay time.
  • a first RB resource that is occupied by a first RB resource in a scheduling period, and the second RB resource is a RB resource different from the first RB resource in the first frequency band, thereby
  • the access link and the backhaul link of the first RN are respectively transmitted by using different RB resources, so that the access link and the backhaul link can be used simultaneously without interference, and the MBSFN subframe is no longer needed.
  • the transmission does not require changes to the RN-eNB, which reduces the cost and greatly solves the compatibility problem of the device.
  • FIG. 6 is a flowchart of an LTE in-band relay method, which may be performed by a DeNB in a Relay network. Referring to FIG. 6, the method includes:
  • Step 301 The DeNB allocates a first RB resource occupied in a scheduling period for the first backhaul link in the first frequency band, where the first backhaul link is a link between the DeNB and the first RN that accesses the DeNB.
  • the first radio resource indicated by the allocation information is preset, because the DeNB needs to transmit the allocation information to the first RN for a certain period of time, in order to ensure that the first RN can normally use the radio bearer resource indicated by the allocation information.
  • the first backhaul link after the delay time is allocated.
  • the length of the scheduling period may be 1 ms, that is, the length of one subframe.
  • a subframe is defined by two aspects: time domain and frequency domain.
  • the time domain is composed of symbols, and the frequency domain is supported by radio bearers.
  • the source ie, subcarrier
  • the radio bearer resources occupied by the first backhaul link indicated in the allocation information are also in the period of the subframe length, because the DeNB usually allocates radio bearer resources for the accessed devices (including the RN and the UE) in each subframe.
  • Step 302 The DeNB sends the allocation information to the first RN, where the allocation information is used to indicate the first RB resource occupied by the first backhaul link in the scheduling period, and the first RN uses the second RB resource and the first UE in the scheduling period.
  • the first UE is a UE served by the first RN
  • the second RB resource is an RB resource different from the first RB resource in a predetermined frequency band.
  • the first RB resource occupied by the scheduling period is allocated by the DeNB, and then the allocation information is sent to the first RN, and the allocation information is used to indicate that the first backhaul link is in the preset delay.
  • the first RB resource that is occupied by the first RN in the scheduling period, the first RN is the UE that is served by the first RN, and the second RB resource is RB resources different from the first RB resource in the predetermined frequency band, so that the access link and the backhaul link of the relay station respectively use different RB resources for data transmission, so that the access link and the backhaul link can be simultaneously used.
  • FIG. 7 is a flowchart of an LTE in-band relay method, which may be performed by a DeNB in a Relay network, and specifically describes how to allocate RB resources and how to send allocation information in the method, as shown in FIG. 7 , the method includes:
  • Step 401 The DeNB periodically allocates the first RB occupied in a scheduling period after the preset delay time to the first backhaul link according to at least one of the data amount and the service priority on the first backhaul link.
  • the first backhaul link is a link between the DeNB and the first RN accessing the DeNB.
  • the first RB resource is allocated to the first backhaul link according to the data volume and the service priority of the first backhaul link, and the data volume and the access chain of the data to be transmitted on the first backhaul link are compared.
  • the access link is a link between the DeNB and the second UE, and the first UE is a UE served by the DeNB.
  • the DeNB periodically allocates the RB resources occupied by the scheduling period for the first backhaul link, so the period here is related to the length of the scheduling period, and the allocated action is
  • the semi-static configuration implemented by the MBSFN subframe is fixed in the prior art (that is, the MBSFN subframe length is fixed and the symbols occupied by the transceiver are also fixed)
  • real-time allocation of RB resources can be based on service requirements. This is done to avoid wasting resources caused by static allocation.
  • the DeNB needs to transmit the allocation information to the first RN for a certain period of time, in order to ensure that the first RN can normally use the radio bearer resource indicated by the allocation information, the first radio bearer resource indicated by the allocation information is preset.
  • the first backhaul link after the delay time is allocated.
  • the preset delay time is related to factors such as the transmission delay between the DeNB and the RN-eNB and the RN-eNB and the RN-UE.
  • the preset delay time can be set according to actual conditions, for example, the preset delay time is greater than or equal to 1 millisecond and preset.
  • the delay time is less than or equal to 8 milliseconds.
  • the length of the scheduling period may be 1 ms, that is, the length of one subframe.
  • a subframe is defined by two aspects: the time domain and the frequency domain.
  • the time domain is composed of symbols
  • the frequency domain is composed of radio bearer resources (ie, subcarriers).
  • the radio bearer resources occupied by the first backhaul link indicated in the allocation information are also in the period of the subframe length, because the DeNB usually allocates radio bearer resources for the accessed devices (including the RN and the UE) in each subframe.
  • Step 402 The DeNB sends the allocation information to the first RN by using the R-PDCCH, where the allocation information is used to indicate the first RB resource occupied by the first backhaul link in the scheduling period, and the first RN uses the second RB resource in the scheduling period.
  • the first UE is a UE served by the first RN
  • the second RB resource is an RB resource different from the first RB resource in a predetermined frequency band.
  • the first 1-3 symbols of one subframe are used as the PDCCH, and all RB resources in one symbol after the PDCCH are used as the R-PDCCH.
  • the R-PDCCH may be adopted.
  • the RB resources occupied by the R-PDCCH are all RB resources in the first frequency band, and are specifically all RB resources in a specified symbol in one subframe.
  • the radio bearer resource occupied by the R-PDCCH is a part of radio bearer resources in the first frequency band, and is specifically a part of symbols in a subframe other than the symbol used by the PDCCH.
  • Wireless bearer resources For example, the first 1-3 symbols in one subframe are used as the PDCCH, and among the remaining symbols in the subframe, 1-2 (or other numbers) RB resources are used as the R-PDCCH.
  • the RB resources occupied by the R-PDCCH are RB resources at both ends in the first frequency band, and one or more RB resources may be occupied at each end.
  • the allocation information is simultaneously transmitted by using RB resources at both ends in the frequency band, thereby avoiding adopting one Data loss or error caused by signal interference during RB resource transmission reduces the impact of signal interference on transmission.
  • the R-PDCCH may occupy the same majority RB resources at both ends of the first frequency band.
  • the allocation information is further used to indicate a third RB resource that is occupied by the at least one second backhaul link in a scheduling period after the preset delay time, where the second backhaul link is between the DeNB and the second RN.
  • a second RN is a RN other than the first RN, and the second RB resource is different from the third RB resource, so as to prevent the first RN from communicating with the UE accessing the first RN and the second RN.
  • the backhaul link creates interference.
  • the first RB resource occupied by the DeNB is allocated to the first backhaul link in a scheduling period after the preset delay time, and then the allocation information is sent to the first RN, and the allocation information is used to indicate the first backhaul.
  • the first RB resource occupied by the link in a scheduling period after the preset delay time the first RN communicates with the first UE by using the second RB resource in the scheduling period, where the first UE is the UE served by the first RN.
  • the second RB resource is an RB resource different from the first RB resource in the predetermined frequency band, so that the access link and the backhaul link of the relay station respectively use different RB resources for data transmission, and thus the access chain can be simultaneously used.
  • the path and the backhaul link do not cause interference, and the MBSFN subframe is no longer needed for transmission, and the MBSFN subframe is not needed for transmission, and the RN-eNB is not required to be modified, thereby reducing the cost and greatly solving the problem.
  • Device compatibility issues are not present.
  • FIG. 8 is a flowchart of an LTE in-band relay method, which may be performed by a DeNB and a RN in a Relay network, and in which the RN (ie, the first RN) includes an RN-eNB and Two parts of the RN-UE, wherein the RN-eNB is connected to the RN-UE.
  • the method includes:
  • Step 501 The first RB resource occupied by the DeNB in a scheduling period after the preset delay time is allocated to the first backhaul link in the first frequency band, where the first backhaul link is the first RN of the DeNB and the access DeNB. The link between.
  • the step 501 may include: the DeNB periodically allocates, within a scheduling period after the preset delay time, the first backhaul link according to at least one of the data amount and the service priority on the first backhaul link.
  • the allocating the first RB resource to the first backhaul link according to the data volume and the service priority of the first backhaul link refers to comparing the data volume of the data to be transmitted on the first backhaul link with the access of the DeNB.
  • the idle RB resource is preferentially allocated for the first backhaul link.
  • the access link is DeNB With the link between the second UE, the first UE is a UE served by the DeNB.
  • the DeNB may periodically allocate the RB resources occupied by the scheduling period for the first backhaul link, so the period here is related to the length of the scheduling period, and the allocated action occurs in real time, compared to the current
  • the semi-static configuration implemented by the MBSFN subframe that is, the MBSFN subframe length is fixed, and the symbols occupied by the transceiver are also fixed
  • the real-time allocation of the RB resources can be performed according to service requirements, and the static allocation is avoided. Waste of resources.
  • the DeNB since the DeNB needs to transmit the allocation information to the first RN for a certain period of time, in order to ensure that the first RN can normally use the radio bearer resource indicated by the allocation information, the first radio bearer resource indicated by the allocation information is allocated. It is assigned for the first backhaul link after the preset delay time.
  • the preset delay time is related to factors such as the transmission delay between the DeNB and the RN-eNB and the RN-eNB and the RN-UE.
  • the preset delay time can be set according to actual conditions, for example, the preset delay time is greater than or equal to 1 millisecond and preset. The delay time is less than or equal to 8 milliseconds.
  • the length of the scheduling period may be 1 ms, that is, the length of one subframe.
  • a subframe is defined by two aspects: the time domain and the frequency domain.
  • the time domain is composed of symbols
  • the frequency domain is composed of radio bearer resources (ie, subcarriers).
  • the radio bearer resources occupied by the first backhaul link indicated in the allocation information are also in the period of the subframe length, because the DeNB usually allocates radio bearer resources for the accessed devices (including the RN and the UE) in each subframe.
  • Step 502 The DeNB sends the allocation information to the first RN.
  • the RN-UE in the first RN receives the allocation information sent by the DeNB.
  • the allocation information can also carry the current time as well as the scheduling period.
  • the allocation information is further used to indicate a third RB resource that is occupied by the at least one second backhaul link in the scheduling period, where the second backhaul link is a link between the DeNB and the second RN, and the second RN is Other RNs other than the first RN that access the DeNB.
  • the DeNB sends the allocation information to the first RN, and may include: the allocation information that is sent to the first RN by using the R-PDCCH.
  • the RN-UE in the first RN receives the allocation information sent by the DeNB, and may include: the RN-UE in the first RN receives the allocation information sent by the DeNB by using the R-PDCCH.
  • the RB resources occupied by the R-PDCCH are RB resources at both ends in the first frequency band, and one or more RB resources can be occupied at each end.
  • the modulation information is used to transmit the allocated information at the same time to the RB resources at both ends of the frequency band, thereby avoiding data loss or error caused by signal interference when one RB resource is transmitted, and reducing the influence of signal interference on the transmission.
  • Step 503 The RN-UE sends the allocation information to the RN-eNB in the first RN.
  • the step 503 may include: the RN-UE sends the allocation information to the RN-eNB in the first RN through a custom interface, where the custom interface includes but is not limited to a bus interface or a local area network interface.
  • the RN-UE and the RN-eNB may be two independent devices, or two chips in the same device box, or two modules on one chip.
  • the RN-eNB may be a normal UE that includes a relay enhancement function, where the relay enhancement function includes, but is not limited to, a QOS function, which is used to allocate different transmission resources for different priority services, and correspondingly, the RN-eNB may also include a Relay enhancement function. Ordinary eNB.
  • Step 504 The RN-eNB performs the communication with the first UE by using the second RB resource in the scheduling period, where the first UE is the UE served by the first RN, and the second RB resource is different from the first RB resource in the first frequency band. RB resources.
  • the first RN communicating with the first UE includes: establishing an access link with the first UE by using the second RB resource, and then performing data transmission and the like.
  • the second RB resource is further different from the third RB resource, so as to prevent the first RN from interfering with the second backhaul link when communicating with the UE accessing the first RN.
  • the first RN receives the allocation information sent by the DeNB, and uses the second RB resource to communicate with the first UE in the scheduling period, where the allocation information is used to indicate that the first backhaul link is after the preset delay time.
  • a first RB resource that is occupied by a first RB resource in a scheduling period, and the second RB resource is a RB resource different from the first RB resource in the first frequency band, thereby
  • the access link and the backhaul link of the first RN are respectively transmitted by using different RB resources, so that the access link and the backhaul link can be used simultaneously without interference, and the MBSFN subframe is no longer needed.
  • the transmission does not require changes to the RN-eNB, which reduces the cost and greatly solves the compatibility problem of the device.
  • FIG. 9 is a schematic structural diagram of an LTE in-band relay device, which is a first RN or integrated on a first RN, and is used to perform the LTE in-band relay method corresponding to FIG. 2, 3 or 8 , see FIG. 9, the device includes:
  • the receiving module 601 is configured to receive the allocation information sent by the DeNB, where the allocation information is used to indicate the first RB resource occupied by the first backhaul link in a scheduling period, where the first backhaul link is between the first RN and the DeNB. Link.
  • the length of the scheduling period may be 1 ms, that is, the length of one subframe.
  • a subframe is defined by two aspects: time domain and frequency domain.
  • the time domain is composed of symbols
  • the frequency domain is composed of radio bearer resources (ie, subcarriers). composition.
  • the radio bearer resources occupied by the first backhaul link indicated in the allocation information are also in the period of the subframe length, because the DeNB usually allocates radio bearer resources for the accessed devices (including the RN and the UE) in each subframe.
  • the scheduling module 602 is configured to use the second RB resource to communicate with the first UE in the scheduling period, where the first UE is a UE served by the first RN, and the second RB resource is different from the first RB resource in the predetermined frequency band. RB resources.
  • the scheduling module 602 establishes an access link with the first UE by using the second RB resource, and then performs data transmission.
  • the first backhaul link may occupy RB resources at both ends of the first frequency band, and may occupy one or more RB resources at each end; and the access link occupies the RB in the middle of the first frequency band. Resources.
  • the receiving module 601 is specifically configured to:
  • the allocation information transmitted by the DeNB is received through the R-PDCCH.
  • the first 1-3 symbols of one subframe are used as the PDCCH, and all RB resources in one symbol after the PDCCH are used as the R-PDCCH.
  • the R-PDCCH may be adopted.
  • the RB resources occupied by the R-PDCCH are all RB resources in the first frequency band, and are specifically all RB resources in a specified symbol in one subframe.
  • the radio bearer resource occupied by the R-PDCCH is a part of radio bearer resources in the first frequency band, and is specifically a part of symbols in a subframe other than the symbol used by the PDCCH.
  • Wireless bearer resources For example, the first 1-3 symbols in one subframe are used as the PDCCH, and among the remaining symbols in the subframe, 1-2 (or other numbers) RB resources are used as the R-PDCCH.
  • the RB resources occupied by the R-PDCCH may be RB resources at both ends in the first frequency band, and one or more RB resources may be occupied at each end.
  • the modulation information is used to transmit the allocated information at the same time to the RB resources at both ends of the frequency band, thereby avoiding data loss or error caused by signal interference when one RB resource is transmitted, and reducing the influence of signal interference on the transmission.
  • the LTE in-band relay device may be the first RN, and the first RN includes the RN-eNB and the RN-UE, and the RN-eNB is connected to the RN-UE.
  • the RN-eNB includes a scheduling module 602.
  • the RN-UE is configured to receive allocation information sent by the DeNB, and send the allocation information to RN-eNB;
  • the RN-eNB is configured to use the second RB resource to communicate with the first UE in a scheduling period.
  • the allocation information is further used to indicate a third RB resource that is occupied by the at least one second backhaul link in the scheduling period, where the second backhaul link is a link between the DeNB and the second RN, and the second RN is The second RB resource is different from the third RB resource, and the first RN is prevented from interfering with the second backhaul link when communicating with the UE accessing the first RN.
  • the RN-UE sends the allocation information to the RN-eNB in the first RN through a custom interface, including but not limited to a bus interface or a local area network interface.
  • the RN-UE 61 and the RN-eNB 62 are two independent parts.
  • the RN-UE 61 and the RN-eNB 62 may be two independent devices.
  • a specific function chip is respectively configured in the two devices, and the function chip in the RN-UE 61 is used as the receiving module 601, RN- The function chip in the eNB 62 is used as the scheduling module 602.
  • the RN-UE 61 and the RN-eNB 62 may also be two chips in the same device box. In this case, specific functional modules are respectively configured in the two chips, and the function modules in the RN-UE 61 are used as the function modules.
  • the receiving module 601, the functional modules in the RN-eNB 62 are used as the scheduling module 602.
  • the RN-UE 61 and the RN-eNB 62 may also be two functional modules on one chip. In this case, specific hardware circuits are respectively configured in the two functional modules, and the hardware circuits in the RN-UE 61 are used as The receiving module 601, the hardware circuit in the RN-eNB 62 is used as the scheduling module 602.
  • some hardware may be shared between the RN-UE 61 and the RN-eNB 62, for example, as shown in the figure, the RN-UE 61 and the RN-eNB 62.
  • Components such as processor 6A and memory 6B are shared; and RN-UE 61 and RN-eNB 62 are also provided with separate hardware components, such as first transceiver 6C in RN-UE 61, and RN-eNB 62.
  • the second transceiver 6D, the first transceiver 6C and the second transceiver 6D may be used as the aforementioned receiving module 601 and scheduling module 602, respectively.
  • the corresponding software may be stored in the above device, chip or function module, so that corresponding functions are generated during the execution of the software, so as to implement the receiving module 601 and the scheduling module 602.
  • the allocation information is used to indicate that the first backhaul link is scheduled after the preset delay time.
  • a first RB resource occupied by the first RB resource is a link between the first RN and the DeNB
  • the second RB resource is a RB resource different from the first RB resource in the first frequency band, so that the first RB resource
  • the access link and the backhaul link of an RN use different RB resources for data transmission.
  • the transmission can use both the access link and the backhaul link without interference, and the MBSFN subframe is no longer needed for transmission, and the RN-eNB is not required to be modified, thereby reducing the cost and greatly solving the device. Compatibility issue.
  • FIG. 12 is a schematic structural diagram of an LTE in-band relay device, which is a DeNB or integrated on a DeNB, and is used to perform the LTE in-band relay method corresponding to FIG. 6, 7, or 8.
  • the device is shown in FIG. include:
  • the allocating module 701 is configured to allocate, in the first frequency band, a first RB resource occupied in a scheduling period, where the first backhaul link is a chain between the DeNB and the first RN that accesses the DeNB. road.
  • the sending module 702 is configured to send the allocation information to the first RN, where the allocation information is used to indicate the first RB resource that is occupied by the first backhaul link in the scheduling period, and the first RN uses the second RB resource and the A UE communicates, the first UE is a UE served by the first RN, and the second RB resource is an RB resource different from the first RB resource in a predetermined frequency band.
  • the allocating module 701 is specifically configured to: the DeNB periodically allocates one of a preset delay time to the first backhaul link according to at least one of the amount of data and the service priority on the first backhaul link. The first RB resource occupied during the scheduling period.
  • the first RB resource is allocated to the first backhaul link according to the data volume and the service priority of the first backhaul link, and the data volume and the access chain of the data to be transmitted on the first backhaul link are compared.
  • the access link is a link between the DeNB and the second UE, and the first UE is a UE served by the DeNB.
  • the DeNB periodically allocates the RB resources occupied by the scheduling period for the first backhaul link, so the period here is related to the length of the scheduling period, and the allocated action occurs in real time, compared to the current
  • the semi-static configuration implemented by the MBSFN subframe that is, the MBSFN subframe length is fixed, and the symbols occupied by the transceiver are also fixed
  • the real-time allocation of the RB resources can be performed according to service requirements, and the static allocation is avoided. Waste of resources.
  • the first radio resource indicated by the allocation information is preset, because the DeNB needs to transmit the allocation information to the first RN for a certain period of time, in order to ensure that the first RN can normally use the radio bearer resource indicated by the allocation information.
  • the first backhaul link after the delay time is allocated.
  • the delay time is related to factors such as the transmission delay between the DeNB and the RN-eNB and the RN-eNB and the RN-UE.
  • the preset delay time can be set according to the actual situation. For example, the preset delay time is greater than or equal to 1 millisecond and the preset delay time is preset. Less than or equal to 8 milliseconds.
  • the length of the scheduling period may be 1 ms, that is, the length of one subframe.
  • a subframe is defined by two aspects: the time domain and the frequency domain.
  • the time domain is composed of symbols
  • the frequency domain is composed of radio bearer resources (ie, subcarriers).
  • the radio bearer resources occupied by the first backhaul link indicated in the allocation information are also in the period of the subframe length, because the DeNB usually allocates radio bearer resources for the accessed devices (including the RN and the UE) in each subframe.
  • the allocation information is further used to indicate a third RB resource that is occupied by the at least one second backhaul link in a scheduling period after the preset delay time, where the second backhaul link is between the DeNB and the second RN.
  • a second RN is a RN other than the first RN, and the second RB resource is different from the third RB resource, so as to prevent the first RN from communicating with the UE accessing the first RN and the second RN.
  • the backhaul link creates interference.
  • the sending module 702 is specifically configured to: allocate information that is sent to the first RN by using the R-PDCCH.
  • the first 1-3 symbols of one subframe are used as the PDCCH, and all RB resources in one symbol after the PDCCH are used as the R-PDCCH.
  • the R-PDCCH may be adopted.
  • the RB resources occupied by the R-PDCCH are all RB resources in the first frequency band, and are specifically all RB resources in a specified symbol in one subframe.
  • the radio bearer resource occupied by the R-PDCCH is a part of radio bearer resources in the first frequency band, and is specifically a part of symbols in a subframe other than the symbol used by the PDCCH.
  • Wireless bearer resources For example, the first 1-3 symbols in one subframe are used as the PDCCH, and among the remaining symbols in the subframe, 1-2 (or other numbers) RB resources are used as the R-PDCCH.
  • the RB resources occupied by the R-PDCCH are RB resources at both ends in the first frequency band, and one or more RB resources may be occupied at each end.
  • the modulation information is used to transmit the allocated information at the same time to the RB resources at both ends of the frequency band, thereby avoiding data loss or error caused by signal interference when one RB resource is transmitted, and reducing the influence of signal interference on the transmission.
  • the LTE in-band relay device may be a DeNB.
  • the allocation module 701 and the sending module 702 may be two independent function chips.
  • the distribution module 701 and the transmission module 702 can also be disposed in the same chip, and the distribution module 701 and the transmission module 702 are two functional modules configured in the chip.
  • the distribution module 701 and the transmission module 702 can also be disposed in the same function module, and the distribution module 701 and the transmission module 702 are two functional hardware circuits configured in the function module.
  • the corresponding software may be stored in the above chip or function module, so that corresponding functions are generated during the execution of the software to implement the receiving module 601 and the scheduling module 602.
  • the embodiment of the present invention allocates a first RB resource that is occupied in a scheduling period to the first backhaul link, and then sends the allocation information to the first RN, where the allocation information is used to indicate that the first backhaul link is at a preset delay time.
  • the first RB resource that is occupied by the first RN in the scheduling period the first RN communicates with the first UE by using the second RB resource in the scheduling period, where the first UE is the UE served by the first RN, and the second RB resource is scheduled.
  • the RB resources in the frequency band are different from the first RB resources, so that the access link and the backhaul link of the relay station respectively use different RB resources for data transmission, so that the access link and the backhaul link can be used simultaneously. No interference is generated, and MBSFN subframes are no longer needed for transmission, and MBSFN subframes are not needed for transmission.
  • the RN-eNB is not required to be modified, the cost is reduced, and the compatibility problem of the device is also greatly solved.
  • FIG. 13 is a schematic structural diagram of an LTE in-band relay device.
  • the device includes: at least one processor 801, at least one memory 802, a first transceiver 803, a second transceiver 804, and a bus system 805.
  • the at least one processor 801, the at least one memory 802, the first transceiver 803, and the second transceiver 804 are in communication through the bus system 805; the first transceiver 803 is configured to communicate with the DeNB, and the second transceiver 804 is configured to communicate with the first UE; at least one memory 802 is configured to store computer execution instructions, and when the device is running, the at least one processor 801 executes the computer execution instructions stored by the at least one memory 802 to cause the device to execute as shown in FIG. 2. 3 or the LTE in-band relay method corresponding to FIG. 8.
  • the at least one processor 801 is specifically configured to:
  • RB resources
  • At least one processor is specifically configured to:
  • the RB resource occupied by the R-PDCCH is a part of RB resources in a predetermined frequency band.
  • the RB resource occupied by the R-PDCCH is an RB resource at both ends in a predetermined frequency band.
  • the allocation information is specifically used to indicate the first RB resource occupied by the first backhaul link in one scheduling period after the preset delay time.
  • the preset delay time is greater than or equal to 1 millisecond and the preset delay time is less than or equal to 8 milliseconds.
  • the at least one processor 801 includes at least one first processor and at least one second processor
  • the at least one memory 802 includes a first memory and a second memory
  • the bus system 805 includes a first bus and a second bus.
  • the LTE in-band relay apparatus includes an RN-eNB 81 and an RN-UE 82.
  • the RN-eNB 81 includes at least one first processor 811, a first memory 812, a first transceiver 803, a first bus 814, and The first communication interface 815, the first processor 811, the first memory 812, the first transceiver 803, and the first communication interface 815 are in communication via a first bus 814, and the first memory 812 is configured to store computer execution instructions when the RN- When the eNB 81 is running, the at least one first processor 811 executes computer execution instructions stored by the first memory 812 to cause the RN-eNB 81 to perform the LTE in-band relay method corresponding to FIG.
  • the RN-UE 82 includes at least one second processor 821, a second memory 822, a second transceiver 804, a second bus 824, and a second communication interface 825, a second processor 821, a second memory 822, and a second transceiver. 804 and second communication interface 825 are in communication via second bus 824 for storing computer execution instructions, and when RN-UE 82 is running, at least one second processor 821 is executing computer execution stored in second memory 822 The instructions are such that the RN-UE 82 performs the LTE in-band relay method corresponding to FIG. 2, FIG. 3 or FIG.
  • the first communication interface 815 and the second communication interface 825 are connected.
  • the at least one first processor 811 is configured to control the first transceiver 803 to receive the allocation information sent by the DeNB;
  • the at least one second processor 821 is configured to control the second transceiver 804 to communicate with the first UE by using the second RB resource in the scheduling period.
  • the second processor 821 is specifically configured to: control the second communication interface 825 to send the allocation information to the RN-eNB 81 through the first communication interface 815.
  • the allocation information is further used to indicate a third RB resource that is occupied by the at least one second backhaul link in the scheduling period, and the second backhaul link is a link between the second RN and the DeNB.
  • the second RN is a RN other than the first RN that accesses the DeNB, and the second RB resource is different from the third RB resource.
  • the allocation information is used to indicate that the first backhaul link is scheduled after the preset delay time.
  • a first RB resource occupied by the first RB resource is a link between the first RN and the DeNB
  • the second RB resource is a RB resource different from the first RB resource in the first frequency band, so that the first RB resource
  • the access link and the backhaul link of an RN use different RB resources for data transmission, so that the access link and the backhaul link can be used simultaneously without interference, and the MBSFN subframe is no longer needed for transmission.
  • There is no need to modify the RN-eNB which reduces the cost and greatly solves the compatibility problem of the device.
  • the device includes: at least one processor 901, a memory 902, a transceiver 903, and a bus system 904, the at least one processor 901, and a memory.
  • the 902 and the transceiver 903 are in communication with the bus system 904; the transceiver 903 is configured to communicate with the first RN; the memory 902 is configured to store computer execution instructions, and the processor 901 executes the computer execution of the memory 902 storage when the device is running
  • the instructions are such that the apparatus performs the LTE in-band relay method corresponding to FIG. 6, 7, or FIG.
  • the at least one processor 901 is specifically configured to allocate, for a first backhaul link, a first RB resource that is occupied in a scheduling period in a predetermined frequency band, where the first backhaul link is the DeNB and the access DeNB. a link between RNs;
  • the control transceiver 903 sends the allocation information to the first RN, where the allocation information is used to indicate the first RB resource occupied by the first backhaul link in the scheduling period.
  • the at least one processor 901 is specifically configured to:
  • the first RB resource occupied in one scheduling period after the preset delay time is allocated to the first backhaul link periodically according to at least one of the amount of data and the service priority on the first backhaul link.
  • the at least one processor 901 is specifically configured to:
  • the control transceiver 903 transmits the allocation information to the first RN through the R-PDCCH, and the RB resource occupied by the R-PDCCH is a partial RB resource in a predetermined frequency band.
  • the RB resource occupied by the R-PDCCH is an RB resource at both ends in a predetermined frequency band.
  • the allocation information is further used to indicate a third RB resource that is occupied by the at least one second backhaul link in the scheduling period, and the second backhaul link is a link between the DeNB and the second RN.
  • First The two RNs are other RNs than the first RN that access the DeNB.
  • the embodiment of the present invention allocates a first RB resource that is occupied in a scheduling period to the first backhaul link, and then sends the allocation information to the first RN, where the allocation information is used to indicate that the first backhaul link is at a preset delay time.
  • the first RB resource that is occupied by the first RN in the scheduling period the first RN communicates with the first UE by using the second RB resource in the scheduling period, where the first UE is the UE served by the first RN, and the second RB resource is scheduled.
  • the RB resources in the frequency band are different from the first RB resources, so that the access link and the backhaul link of the relay station respectively use different RB resources for data transmission, so that the access link and the backhaul link can be used simultaneously. No interference is generated, and MBSFN subframes are no longer needed for transmission, and MBSFN subframes are not needed for transmission.
  • the RN-eNB is not required to be modified, the cost is reduced, and the compatibility problem of the device is also greatly solved.
  • the embodiment of the present invention further provides a storage medium for storing one or more computer programs, the one or more computer programs including program code, and when the computer program is running, the program code is used to execute as shown in FIG. 2, 3 or 8 corresponding LTE in-band relay methods.
  • the embodiment of the invention further provides a storage medium for storing one or more computer programs, the one or more computer programs including program code, and when the computer program is running, the program code is used to execute as shown in FIG. 6, 7 or 8 corresponding LTE in-band relay methods.
  • FIG. 16 is a schematic structural diagram of an LTE in-band relay system.
  • the system includes: a DeNB 1001 and a first RN 1002, where the DeNB 1001 is configured to perform the LTE band corresponding to FIG. 6, 7 or FIG.
  • the internal relay method, the first RN 1002 is configured to perform the LTE in-band relay method corresponding to FIG. 2, FIG. 3 or FIG.
  • the first RN receives the allocation information sent by the DeNB, and uses the second RB resource to communicate with the first UE in the scheduling period, where the allocation information is used to indicate that the first backhaul link is after the preset delay time.
  • a first RB resource that is occupied by a first RB resource in a scheduling period, and the second RB resource is a RB resource different from the first RB resource in the first frequency band, thereby
  • the access link and the backhaul link of the first RN are respectively transmitted by using different RB resources, so that the access link and the backhaul link can be used simultaneously without interference, and the MBSFN subframe is no longer needed.
  • the transmission does not require changes to the RN-eNB, which reduces the cost and greatly solves the compatibility problem of the device.

Abstract

本发明公开了一种LTE带内中继方法、装置及系统,属于移动通信技术领域。所述方法包括:第一中继站点接收宿主基站发送的分配信息,所述分配信息用于指示第一回传链路在一个调度周期内占用的第一无线承载资源,所述第一回传链路为所述宿主基站与所述第一中继站点之间的链路;在所述调度周期内采用第二无线承载资源与第一用户设备通信,所述第一用户设备为由所述第一中继站点提供服务的用户设备,所述第二无线承载资源为预定的频段内与所述第一无线承载资源不同的无线承载资源。

Description

一种LTE带内中继方法、装置及系统 技术领域
本发明涉及移动通信技术领域,特别涉及一种长期演进技术(英文Long Term Evolution,简称LTE)带内中继方法、装置及系统。
背景技术
随着移动通信技术的不断发展,频谱资源已经变得格外紧张。根据现有的频谱资源分配方案,剩余的大部分频谱资源处在较高频段。高频段的频谱资源的路损和穿透损都较大,很难实现好的覆盖,而中继技术(英文Relay)则可以很好地解决高频段的覆盖问题。
第三代合作伙伴计划(英文3rd Generation Partnership Project,简称3GPP)R10标准定义的Relay组网包含宿主基站(英文Donor eNodeB,简称DeNB)和中继站点(英文Relay Node,简称RN)两个逻辑节点。DeNB是在普通基站(英文eNodeB,简称eNB)的基础上增加了对Relay特性相关功能的支持,DeNB在接入普通用户设备(英文User Equipment,简称UE)的同时,也支持接入RN,并承载RN的回传流量。RN逻辑上划分为中继用户设备RN-UE和中继基站RN-eNB两部分:RN-eNB包含标准eNB完整功能和Relay增强功能,RN-eNB可供覆盖范围内的普通UE接入,与普通UE建立接入链路;RN-UE包含了标准UE的部分功能和Relay增强功能,RN-UE接入DeNB,并建立LTE空口承载为RN-eNB提供回传链路。若RN的回传链路和接入链路使用相同的频段,则称为带内Relay;若RN的回传链路和接入链路使用不同的频段,则称为带外Relay。
很明显,带内Relay的回传链路和接入链路占用的总频谱小于带外Relay,即频谱效率高于带外Relay。但带内Relay需要解决回传链路和接入链路之间的干扰问题。3GPP R10标准定义了一种时分复用(英文Time Division Multiplexing,简称TDM)的方式来避免带内Relay回传链路和接入链路之间的相互干扰。具体是采用时分半双工的工作模式,在下行方向上,同一时刻仅有下述两个动作中的一个发生:RN-UE接收DeNB的数据,RN-eNB向其下的 普通UE发数据;在上行方向上,同一时刻仅有下述两个动作中的一个发生:RN-UE向DeNB发送数据,RN-eNB接收普通UE的数据。
但在时分半双工的工作模式下,如果下行回传链路工作时(RN-UE接收DeNB的数据),RN-eNB则无法向其下的普通UE发数据,即RN-eNB完全不能发送物理下行控制信道(英文Physical Downlink Control Channel,简称PDCCH),因此属于这个RN-eNB的普通UE没有收到PDCCH,可能无法正常工作。
为此,3GPP标准定义了多播/组播单频网络(英文Multimedia Broadcast multicast service Single Frequency Network,简称MBSFN)子帧,在这个子帧的前3个符号,DeNB和RN-eNB同时发送各自的PDCCH,驻留在DeNB和RN-eNB下普通UE分别接收DeNB和RN-eNB发送的PDCCH。而DeNB利用剩下的11个符号向RN-UE发送数据,同时RN-eNB在此时间内关闭发射功率。
由于RN-eNB在MBSFN子帧的后11个符号需要关闭发射功率,因此对于现有的RN-eNB需要进行硬件改动,以支持此功能,从而提高了成本;另外,部分老旧LTE终端不支持MBSFN子帧,造成无法正常通信。
发明内容
为了解决现有技术中MBSFN子帧带来的硬件设备不支持等问题,本发明实施例提供了一种LTE带内中继方法、装置及系统。所述技术方案如下:
第一方面,本发明实施例提供了一种LTE带内中继方法,所述方法包括:
第一中继站点接收宿主基站发送的分配信息,所述分配信息用于指示第一回传链路在一个调度周期内占用的第一无线承载资源,所述第一回传链路为所述第一中继站点与所述宿主基站之间的链路;
所述第一中继站点在所述调度周期内采用第二无线承载资源与第一用户设备通信,所述第一用户设备为由所述第一中继站点提供服务的用户设备,所述第二无线承载资源为预定的频段内与所述第一无线承载资源不同的无线承载资源。
在本发明实施例的一种实现方式中,所述第一中继站点接收宿主基站发送的分配信息,包括:
所述第一中继站点通过中继物理下行控制信道接收所述宿主基站发送的 分配信息,所述中继物理下行控制信道占用的无线承载资源为所述预定频段内的部分无线承载资源。
在本发明实施例的另一种实现方式中,所述中继物理下行控制信道占用的无线承载资源为所述预定的频段内处于两端的无线承载资源。
在本发明实施例的另一种实现方式中,所述分配信息具体用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一无线承载资源。
在本发明实施例的另一种实现方式中,所述预设延迟时间大于或等于1毫秒且所述预设延迟时间小于或等于8毫秒。
在本发明实施例的另一种实现方式中,所述第一中继站点包括中继基站和中继用户设备,所述中继基站与所述中继用户设备通过通信接口相连接。
在本发明实施例的另一种实现方式中,所述第一中继站点接收宿主基站发送的分配信息,包括:
所述中继用户设备接收宿主基站发送的分配信息,并将所述分配信息发送给所述中继基站;
在所述调度周期内采用第二无线承载资源与第一用户设备通信,包括:
所述中继基站在所述调度周期内采用第二无线承载资源与所述第一用户设备进行通信。
在本发明实施例的另一种实现方式中,所述分配信息还用于指示至少一条第二回传链路在所述调度周期内占用的第三无线承载资源,所述第二回传链路为第二中继站点与所述宿主基站之间的链路,所述第二中继站点为接入所述宿主基站的除所述第一中继站点之外的其他中继站点,所述第二无线承载资源与所述第三无线承载资源不同。
第二方面,本发明实施例还提供了一种LTE带内中继方法,所述方法包括:
宿主基站在预定的频段内为第一回传链路分配一个调度周期内占用的第一无线承载资源,所述第一回传链路为所述宿主基站与接入所述宿主基站的第一中继站点之间的链路;
所述宿主基站向所述第一中继站点发送分配信息,所述分配信息用于指示所述第一回传链路在所述调度周期内占用的第一无线承载资源。
在本发明实施例的一种实现方式中,所述宿主基站在预定的频段内为第一回传链路分配一个调度周期内占用的第一无线承载资源,包括:
所述宿主基站周期性地根据所述第一回传链路上的数据量和业务优先级 中的至少一个,为所述第一回传链路分配预设延迟时间后的一个调度周期内占用的第一无线承载资源。
在本发明实施例的另一种实现方式中,所述向所述第一中继站点发送分配信息,包括:
通过中继物理下行控制信道向所述第一中继站点发送的分配信息,所述中继物理下行控制信道占用的无线承载资源为所述预定频段内的部分无线承载资源。
在本发明实施例的另一种实现方式中,所述中继物理下行控制信道占用的无线承载资源为所述预定的频段内处于两端的无线承载资源。
在本发明实施例的另一种实现方式中,所述分配信息还用于指示至少一条第二回传链路在所述调度周期内占用的第三无线承载资源,所述第二回传链路为所述宿主基站与第二中继站点之间的链路,所述第二中继站点为接入所述宿主基站的除所述第一中继站点之外的其他中继站点。
第三方面,本发明实施例还提供了一种LTE带内中继装置,所述装置包括:
接收模块,用于接收宿主基站发送的分配信息,所述分配信息用于指示第一回传链路在一个调度周期内占用的第一无线承载资源,所述第一回传链路为第一中继站点与所述宿主基站之间的链路;
调度模块,用于在所述调度周期内采用第二无线承载资源与第一用户设备通信,所述第一用户设备为由所述第一中继站点提供服务的用户设备,所述第二无线承载资源为预定的频段内与所述第一无线承载资源不同的无线承载资源。
在本发明实施例的一种实现方式中,所述接收模块,具体用于:
通过中继物理下行控制信道接收所述宿主基站发送的分配信息,所述中继物理下行控制信道占用的无线承载资源为所述预定频段内的部分无线承载资源。
在本发明实施例的另一种实现方式中,所述中继物理下行控制信道占用的无线承载资源为所述预定的频段内处于两端的无线承载资源。
在本发明实施例的另一种实现方式中,所述分配信息具体用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一无线承载资源。
在本发明实施例的另一种实现方式中,所述预设延迟时间大于或等于1毫秒且所述预设延迟时间小于或等于8毫秒。
在本发明实施例的另一种实现方式中,所述LTE带内中继装置为所述第一中继站点,所述第一中继站点包括中继基站和中继用户设备,所述中继基站与所述中继用户设备通过通信接口相连接,所述中继用户设备包括所述接收模块,所述中继基站包括所述调度模块。
在本发明实施例的另一种实现方式中,所述中继用户设备,用于接收宿主基站发送的分配信息,并将所述分配信息发送给所述中继基站;
所述中继基站,用于在所述调度周期内采用第二无线承载资源与所述第一用户设备进行通信。
在本发明实施例的另一种实现方式中,所述分配信息还用于指示至少一条第二回传链路在所述调度周期内占用的第三无线承载资源,所述第二回传链路为第二中继站点与所述宿主基站之间的链路,所述第二中继站点为接入所述宿主基站的除所述第一中继站点之外的其他中继站点,所述第二无线承载资源与所述第三无线承载资源不同。
第四方面,本发明实施例提供了一种LTE带内中继装置,所述装置包括:
分配模块,用于在预定的频段内为第一回传链路分配一个调度周期内占用的第一无线承载资源,所述第一回传链路为宿主基站与接入所述宿主基站的第一中继站点之间的链路;
发送模块,用于向所述第一中继站点发送分配信息,所述分配信息用于指示所述第一回传链路在所述调度周期内占用的第一无线承载资源。
在本发明实施例的一种实现方式中,所述分配模块,具体用于:
周期性地根据所述第一回传链路上的数据量和业务优先级中的至少一个,为所述第一回传链路分配预设延迟时间后的一个调度周期内占用的第一无线承载资源。
在本发明实施例的另一种实现方式中,所述发送模块,具体用于:
通过中继物理下行控制信道向所述第一中继站点发送的分配信息,所述中继物理下行控制信道占用的无线承载资源为所述预定频段内的部分无线承载资源。
在本发明实施例的另一种实现方式中,所述中继物理下行控制信道占用的无线承载资源为所述预定的频段内处于两端的无线承载资源。
在本发明实施例的另一种实现方式中,所述分配信息还用于指示至少一条第二回传链路在所述调度周期内占用的第三无线承载资源,所述第二回传链路 为所述宿主基站与第二中继站点之间的链路,所述第二中继站点为接入所述宿主基站的除所述第一中继站点之外的其他中继站点。
第五方面,本发明实施例还提供了一种LTE带内中继装置,所述装置包括至少一个处理器、至少一个存储器、第一收发器、第二收发器和总线系统,所述至少一个处理器、至少一个存储器、第一收发器、第二收发器通过所述总线系统相通信,所述至少一个存储器用于存储计算机执行指令,当所述装置运行时,所述至少一个处理器执行所述存储器存储的所述计算机执行指令,具体用于:
控制所述第一收发器接收宿主基站发送的分配信息,所述分配信息用于指示第一回传链路在一个调度周期内占用的第一无线承载资源,所述第一回传链路为所述第一中继站点与所述宿主基站之间的链路;
控制所述第二收发器在所述调度周期内采用第二无线承载资源与第一用户设备通信,所述第一用户设备为由所述第一中继站点提供服务的用户设备,所述第二无线承载资源为预定的频段内与所述第一无线承载资源不同的无线承载资源。
在本发明实施例的一种实现方式中,所述至少一个处理器具体用于:
控制所述第一收发器通过中继物理下行控制信道接收所述宿主基站发送的分配信息,所述中继物理下行控制信道占用的无线承载资源为所述预定频段内的部分无线承载资源。
在本发明实施例的另一种实现方式中,所述中继物理下行控制信道占用的无线承载资源为所述预定的频段内处于两端的无线承载资源。
在本发明实施例的另一种实现方式中,所述分配信息具体用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一无线承载资源。
在本发明实施例的另一种实现方式中,所述预设延迟时间大于或等于1毫秒且所述预设延迟时间小于或等于8毫秒。
在本发明实施例的另一种实现方式中,所述至少一个处理器包括至少一个第一处理器和至少一个第二处理器,所述至少一个存储器包括第一存储器和第二存储器,所述总线系统包括第一总线和第二总线,
所述装置包括中继基站和中继用户设备,所述中继基站包括所述第一处理器、所述第一存储器、所述第一收发器、所述第一总线和第一通信接口,所述第一处理器、所述第一存储器、所述第一收发器和所述第一通信接口通过所述 第一总线相通信,所述中继用户设备包括所述第二处理器、所述第二存储器、所述第二收发器、所述第二总线和第二通信接口,所述第二处理器、所述第二存储器、所述第二收发器和所述第二通信接口通过所述第二总线相通信,所述第一通信接口和所述第二通信接口相连接;
所述至少一个第一处理器,用于控制所述第一收发器接收宿主基站发送的分配信息;
所述至少一个第二处理器,用于控制所述第二收发器在所述调度周期内采用第二无线承载资源与第一用户设备通信。
在本发明实施例的另一种实现方式中,所述第二处理器具体用于:控制所述第二通信接口将所述分配信息通过所述第一通信接口发送给所述中继基站。
在本发明实施例的另一种实现方式中,所述分配信息还用于指示至少一条第二回传链路在所述调度周期内占用的第三无线承载资源,所述第二回传链路为第二中继站点与所述宿主基站之间的链路,所述第二中继站点为接入所述宿主基站的除所述第一中继站点之外的其他中继站点,所述第二无线承载资源与所述第三无线承载资源不同。
第六方面,本发明实施例提供了一种LTE带内中继装置,所述装置包括至少一个处理器、存储器、收发器和总线系统,所述至少一个处理器、存储器、收发器通过所述总线系统相通信,所述存储器用于存储计算机执行指令,当所述装置运行时,所述至少一个处理器执行所述存储器存储的所述计算机执行指令,具体用于
在预定的频段内为第一回传链路分配一个调度周期内占用的第一无线承载资源,所述第一回传链路为所述宿主基站与接入所述宿主基站的第一中继站点之间的链路;
控制所述收发器向所述第一中继站点发送分配信息,所述分配信息用于指示所述第一回传链路在所述调度周期内占用的第一无线承载资源。
在本发明实施例的一种实现方式中,所述至少一个处理器具体用于:
周期性地根据所述第一回传链路上的数据量和业务优先级中的至少一个,为所述第一回传链路分配预设延迟时间后的一个调度周期内占用的第一无线承载资源。
在本发明实施例的另一种实现方式中,所述至少一个处理器具体用于:
控制所述收发器通过中继物理下行控制信道向所述第一中继站点发送的 分配信息,所述中继物理下行控制信道占用的无线承载资源为所述预定频段内的部分无线承载资源。
在本发明实施例的另一种实现方式中,所述中继物理下行控制信道占用的无线承载资源为所述预定的频段内处于两端的无线承载资源。
在本发明实施例的另一种实现方式中,所述分配信息还用于指示至少一条第二回传链路在所述调度周期内占用的第三无线承载资源,所述第二回传链路为所述宿主基站与第二中继站点之间的链路,所述第二中继站点为接入所述宿主基站的除所述第一中继站点之外的其他中继站点。
第七方面,本发明实施例还提供了一种存储介质,用于存储一个或多个计算机程序,所述一个或多个计算机程序包括程序代码,当所述计算机程序运行时,所述程序代码用于执行上述LTE带内中继方法。
第八方面,本发明实施例还提供了一种存储介质,用于存储一个或多个计算机程序,所述一个或多个计算机程序包括程序代码,当所述计算机程序运行时,所述程序代码用于执行上述LTE带内中继方法。
第九方面,本发明实施例还提供了一种LTE带内中继系统,所述系统包括:
宿主基站,用于在预定的频段内为第一回传链路分配一个调度周期内占用的第一无线承载资源,所述第一回传链路为所述宿主基站与接入所述宿主基站的第一中继站点之间的链路;向所述第一中继站点发送分配信息,所述分配信息用于指示所述第一回传链路在所述调度周期内占用的第一无线承载资源;
所述第一中继站点,用于接收所述宿主基站发送的所述分配信息;在所述调度周期内采用第二无线承载资源与第一用户设备通信,所述第一用户设备为由所述第一中继站点提供服务的用户设备,所述第二无线承载资源为预定的频段内与所述第一无线承载资源不同的无线承载资源。
在本发明实施例的一种实现方式中,所述第一中继站点,具体用于:
通过中继物理下行控制信道接收所述宿主基站发送的分配信息,所述中继物理下行控制信道占用的无线承载资源为所述预定频段内的部分无线承载资源。
在本发明实施例的另一种实现方式中,所述中继物理下行控制信道占用的无线承载资源为所述预定的频段内处于两端的无线承载资源。
在本发明实施例的另一种实现方式中,所述分配信息具体用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一无线承载资源。
本发明实施例提供的技术方案带来的有益效果是:
第一中继站点接收宿主站点发送的分配信息,并在调度周期内采用第二无线承载资源与第一用户设备通信,分配信息用于指示第一回传链路在一个调度周期内占用的第一无线承载资源,第一回传链路为宿主站点与第一中继站点之间的链路,而第二无线承载资源为第一频段内与第一无线承载资源不同的无线承载资源,从而使得第一中继站点的接入链路和回传链路分别采用不同的无线承载资源进行数据传输,因而可以同时使用接入链路和回传链路而不产生干扰,同时不再需要使用MBSFN子帧进行传输,不需要对中继用户设备进行改动,减少了成本,同时也大大解决了设备的兼容问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的应用场景;
图2是本发明实施例提供的一种LTE带内中继方法的流程图;
图3是本发明实施例提供的一种LTE带内中继方法的流程图;
图4是本发明实施例提供的一种子帧结构示意图;
图5是本发明实施例提供的一种RB资源使用示意图;
图6是本发明实施例提供的一种LTE带内中继方法的流程图;
图7是本发明实施例提供的一种LTE带内中继方法的流程图;
图8是本发明实施例提供的一种LTE带内中继方法的流程图;
图9是本发明实施例提供的一种LTE带内中继装置的结构示意图;
图10是本发明实施例提供的一种第一RN的结构示意图;
图11是本发明实施例提供的另一种第一RN的结构示意图;
图12是本发明实施例提供的一种LTE带内中继装置的结构示意图;
图13是本发明实施例提供的一种LTE带内中继装置的结构示意图;
图14是本发明实施例提供的一种LTE带内中继装置的结构示意图;
图15是本发明实施例提供的一种LTE带内中继装置的结构示意图;
图16是本发明实施例提供的一种LTE带内中继系统的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
为了便于实施例的描述,下面先简单介绍一下本发明实施例的应用场景。参见图1,该场景为Relay组网,包括DeNB 10、RN 20、接入在RN 20下的第一UE 30和接入在DeNB 10下的第二UE 40。其中,DeNB 10在支持第二UE 40接入的同时,也支持RN 20接入,并承载RN 20的回传流量。RN 20逻辑上划分为RN-UE和RN-eNB两部分:RN-eNB可供覆盖范围内的第一UE 30接入,与第一UE 30建立接入链路;RN-UE接入DeNB 10,并建立LTE空口承载为RN-eNB提供回传链路。
其中,第一UE 30和第二UE 40均是指用户侧的终端设备。
在本发明实施例中,一个DeNB 10下可以接入一个或多个RN 20。
上述应用场景中的设备和连接关系仅作为举例,本发明实施例对此不做限制。
图2提供了一种LTE带内中继方法的流程图,该方法可以由Relay组网中的RN(也即后文第一RN)来执行,参见图2,该方法包括:
步骤101:第一RN接收DeNB发送的分配信息,分配信息用于指示第一回传链路在一个调度周期内占用的第一无线承载(英文Radio Bear,简称RB)资源,第一回传链路为第一RN与DeNB之间的链路。
在本发明实施例中,调度周期的长度可以是1ms,也即一个子帧的长度。一个子帧由时域和频域两个方面定义,时域由符号组成,频域则由无线承载资源(即子载波)组成。由于DeNB通常会在每个子帧内为接入的设备(包括RN和UE)分配无线承载资源,所以分配信息中指示的第一回传链路占用的无线承载资源也以子帧长度为周期。
步骤102:第一RN在调度周期内采用第二RB资源与第一UE通信,第一UE为由第一RN提供服务的UE,第二RB资源为预定的频段内与第一RB资源不同的RB资源。
其中,第一RN与第一UE通信包括:采用第二RB资源与第一UE建立接入链路,然后进行数据传输等。
预定的频段是指DeNB的工作频段,为了方便阅读,后文采用第一频段作 为替代进行说明。
在本发明实施例中,第一回传链路可以占用第一频段两端的RB资源,且在每一端均可以占用一个或多个RB资源;而接入链路则占用第一频段中部的RB资源。
本发明实施例中,第一RN接收DeNB发送的分配信息,并在调度周期内采用第二RB资源与第一UE通信,分配信息用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一RB资源,第一回传链路为第一RN与DeNB之间的链路,而第二RB资源为第一频段内与第一RB资源不同的RB资源,从而使得第一RN的接入链路和回传链路分别采用不同的RB资源进行数据传输,因而可以同时使用接入链路和回传链路而不产生干扰,同时不再需要使用MBSFN子帧进行传输,不需要对RN-eNB进行改动,减少了成本,同时也大大解决了设备的兼容问题。
图3提供了一种LTE带内中继方法的流程图,该方法可以由Relay组网中的RN(也即第一RN)来执行,并且在该方法中具体记载了如何接收DeNB发送的分配信息,参见图3,该方法包括:
步骤201:第一RN通过中继物理下行控制信道(英文Relay-PDCCH,简称R-PDCCH)接收DeNB发送的分配信息,分配信息用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一无线承载(英文Radio Bear,简称RB)资源,第一回传链路为第一RN与DeNB之间的链路。
具体地,由于DeNB将分配信息发送到第一RN需要一定的时间,为了保证第一RN可以正常使用分配信息所指示的无线承载资源,所以分配信息所指示的第一无线承载资源是为预设延迟时间之后的第一回传链路所分配的。预设延迟时间可以根据实际情况设置,例如预设延迟时间大于或等于1毫秒且预设延迟时间小于或等于8毫秒。
在本发明实施例中,调度周期的长度可以是1ms,也即一个子帧的长度。如图4所示,一个子帧由时域(时间)和频域(频率)两个方面定义,时域由符号组成,频域则由无线承载资源(即子载波)组成。由于DeNB通常会在每个子帧内为接入的设备(包括RN和UE)分配无线承载资源,所以分配信息中指示的第一回传链路占用的无线承载资源也以子帧长度为周期。
另外,如图4所示,设备之间的传输链路占用频域(频段)内的一个或多个无线承载资源,例如第一回传链路占用图示频域内处于两端的无线承载资源, 而接入链路则占用图示频域内处于中部的无线承载资源。
在Relay技术中,DeNB和RN-eNB通过PDCCH向接入的普通UE发送控制信令,通过物理下行共享信道(英文Physical Downlink Shared Channel,英文PDSCH)向普通UE发送数据。DeNB通过R-PDCCH向RN-UE发送控制信令,上述分配信息可以包含在控制信令中,除此之外,DeNB向RN-UE发送的控制信令还包括调制编码方式等等内容。
R-PDCCH与PDCCH占用的RB资源相互独立,但R-PDCCH可以占用部分PDSCH的RB资源进行传输。
在现有技术中,通常一个子帧的前1~3个符号作为PDCCH,PDCCH后的一个符号内的所有RB资源作为R-PDCCH,在本发明的一种实现方式中,R-PDCCH可以采用现有同样的方式,即R-PDCCH占用的RB资源为第一频段内的所有RB资源,具体为一个子帧中指定符号内的所有RB资源。
而在本发明实施例的另一种实现方式中,R-PDCCH占用的无线承载资源为第一频段内的部分无线承载资源,具体为一个子帧中除PDCCH所用的符号以外的符号中的部分无线承载资源。例如,采用一个子帧中前1~3个符号作为PDCCH,而在该子帧的剩余符号中,采用其中的1-2个(或其他个数)RB资源作为R-PDCCH。
作为一种优选的实现方式,R-PDCCH占用的RB资源为第一频段内处于两端的RB资源,且在每一端均可以占用一个或多个RB资源。通过调制编码将分配信息同时采用频段内处于两端的RB资源进行传输,从而避免采用一个RB资源传输时信号干扰造成的数据丢失或错误问题,减小了信号干扰对传输的影响。在具体实现时,R-PDCCH可以在第一频段的两端占用同样多数目的RB资源。
具体地,如图5所示,在一个子帧的前3个符号中(图中B框内RB资源),DeNB通过PDCCH向接入的UE1(普通UE)发送控制信令,RN-eNB通过PDCCH向接入的UE2(普通UE)发送控制信令。在该子帧后续的符号中,DeNB通过频段内处于两端的RB资源(图中A框内RB资源)向RN-UE发送分配信息。在Xms(即前述预设延迟时间)后的子帧内,RN-eNB采用图中右侧阴影部分(频段中部)RB资源与UE2进行通信,而在此子帧内,第一回传链路占用图中左侧两处阴影部分(频段两端)的RB资源。
进一步地,分配信息还用于指示至少一条第二回传链路在调度周期内占用 的第三RB资源,第二回传链路为DeNB与第二RN之间的链路,第二RN为接入DeNB的除第一RN之外的其他RN,第二RB资源与第三RB资源不同,从而避免第一RN与接入第一RN的UE通信时与第二回传链路产生干扰。
步骤202:第一RN在调度周期内采用第二RB资源与第一UE通信,第一UE为由第一RN提供服务的UE,第二RB资源为第一频段内与第一RB资源不同的RB资源。
其中,第一RN与第一UE通信包括:采用第二RB资源与第一UE建立接入链路,然后进行数据传输等。
在本发明实施例中,第一回传链路可以占用第一频段两端的RB资源,且在每一端均可以占用一个或多个RB资源;而接入链路则占用第一频段中部的RB资源。具体可以如图4所示,处在频段两端的阴影部分表示的RB资源可以作为第一回传链路,而处在频段中部的阴影部分表示的RB资源可作为接入链路。在具体实现时,第一回传链路可以在频段的两端占用同样多数目的RB资源,例如图4所示的每端4个。
本发明实施例中,第一RN接收DeNB发送的分配信息,并在调度周期内采用第二RB资源与第一UE通信,分配信息用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一RB资源,第一回传链路为第一RN与DeNB之间的链路,而第二RB资源为第一频段内与第一RB资源不同的RB资源,从而使得第一RN的接入链路和回传链路分别采用不同的RB资源进行数据传输,因而可以同时使用接入链路和回传链路而不产生干扰,同时不再需要使用MBSFN子帧进行传输,不需要对RN-eNB进行改动,减少了成本,同时也大大解决了设备的兼容问题。
图6提供了一种LTE带内中继方法的流程图,该方法可以由Relay组网中的DeNB来执行,参见图6,该方法包括:
步骤301:DeNB在第一频段内为第一回传链路分配一个调度周期内占用的第一RB资源,第一回传链路为DeNB与接入DeNB的第一RN之间的链路。
具体地,由于DeNB将分配信息发送到第一RN需要一定的时间,为了保证第一RN可以正常使用分配信息所指示的无线承载资源,所以分配信息所指示的第一无线承载资源是为预设延迟时间之后的第一回传链路所分配的。
在本发明实施例中,调度周期的长度可以是1ms,也即一个子帧的长度。一个子帧由时域和频域两个方面定义,时域由符号组成,频域则由无线承载资 源(即子载波)组成。由于DeNB通常会在每个子帧内为接入的设备(包括RN和UE)分配无线承载资源,所以分配信息中指示的第一回传链路占用的无线承载资源也以子帧长度为周期。
步骤302:DeNB向第一RN发送分配信息,分配信息用于指示第一回传链路在调度周期内占用的第一RB资源,第一RN在调度周期内采用第二RB资源与第一UE通信,第一UE为由第一RN提供服务的UE,第二RB资源为预定的频段内与第一RB资源不同的RB资源。
本发明实施例通过DeNB为第一回传链路分配一个调度周期内占用的第一RB资源,然后将分配信息发送给第一RN,分配信息用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一RB资源,第一RN在调度周期内采用第二RB资源与第一UE通信,第一UE为由第一RN提供服务的UE,第二RB资源为预定的频段内与第一RB资源不同的RB资源从而使得中继站点的接入链路和回传链路分别采用不同的RB资源进行数据传输,因而可以同时使用接入链路和回传链路而不产生干扰,同时不再需要使用MBSFN子帧进行传输,同时不需要使用MBSFN子帧进行传输,不需要对RN-eNB进行改动,减少了成本,同时也大大解决了设备的兼容问题。
图7提供了一种LTE带内中继方法的流程图,该方法可以由Relay组网中的DeNB来执行,并且在该方法中具体记载了如何分配RB资源及如何发送分配信息,参见图7,该方法包括:
步骤401:DeNB周期性地根据第一回传链路上的数据量和业务优先级中的至少一个,为第一回传链路分配预设延迟时间后的一个调度周期内占用的第一RB资源,第一回传链路为DeNB与接入DeNB的第一RN之间的链路。
具体地,根据第一回传链路的数据量和业务优先级为第一回传链路分配第一RB资源是指,比较第一回传链路上待传输数据的数据量与接入链路上待传输数据的数据量,和/或比较第一回传链路的业务优先级与接入链路的业务优先级,然后根据现有的RB分配策略进行分配。例如当第一回传链路的业务优先级大于第二UE对应的接入链路的业务优先级时,优先为第一回传链路分配空闲的RB资源。其中,接入链路为DeNB与第二UE间的链路,第一UE为由DeNB提供服务的UE。
进一步地,上述分配过程中DeNB周期性地为第一回传链路分配调度周期所占用的RB资源,所以这里的周期与调度周期长短相关,且分配的动作是实 时发生的,相比于现有技术中通过MBSFN子帧实现的半静态配置(即MBSFN子帧长度固定,且收发所占的符号也固定)而言,实时性地分配RB资源可以根据业务需求进行,避免了静态分配产生的资源浪费。
容易知道,上述RB资源分配方法仅作为举例,并不构成对本发明的限制。
进一步地,由于DeNB将分配信息发送到第一RN需要一定的时间,为了保证第一RN可以正常使用分配信息所指示的无线承载资源,所以分配信息所指示的第一无线承载资源是为预设延迟时间之后的第一回传链路所分配的。预设延迟时间与DeNB与RN-eNB及RN-eNB和RN-UE间的传输时延等因素有关,预设延迟时间可以根据实际情况设置,例如预设延迟时间大于或等于1毫秒且预设延迟时间小于或等于8毫秒。
在本发明实施例中,调度周期的长度可以是1ms,也即一个子帧的长度。一个子帧由时域和频域两个方面定义,时域由符号组成,频域则由无线承载资源(即子载波)组成。由于DeNB通常会在每个子帧内为接入的设备(包括RN和UE)分配无线承载资源,所以分配信息中指示的第一回传链路占用的无线承载资源也以子帧长度为周期。
步骤402:DeNB通过R-PDCCH向第一RN发送分配信息,分配信息用于指示第一回传链路在调度周期内占用的第一RB资源,第一RN在调度周期内采用第二RB资源与第一UE通信,第一UE为由第一RN提供服务的UE,第二RB资源为预定的频段内与第一RB资源不同的RB资源。
在现有技术中,通常一个子帧的前1~3个符号作为PDCCH,PDCCH后的一个符号内的所有RB资源作为R-PDCCH,在本发明的一种实现方式中,R-PDCCH可以采用现有同样的方式,即R-PDCCH占用的RB资源为第一频段内的所有RB资源,具体为一个子帧中指定符号内的所有RB资源。
而在本发明实施例的另一种实现方式中,R-PDCCH占用的无线承载资源为第一频段内的部分无线承载资源,具体为一个子帧中除PDCCH所用的符号以外的符号中的部分无线承载资源。例如,采用一个子帧中前1~3个符号作为PDCCH,而在该子帧的剩余符号中,采用其中的1-2个(或其他个数)RB资源作为R-PDCCH。
作为一种优选的实现方式,R-PDCCH占用的RB资源为第一频段内处于两端的RB资源,且在每一端均可以占用一个或多个RB资源。通过调制编码将分配信息同时采用频段内处于两端的RB资源进行传输,从而避免采用一个 RB资源传输时信号干扰造成的数据丢失或错误问题,减小了信号干扰对传输的影响。在具体实现时,R-PDCCH可以在第一频段的两端占用同样多数目的RB资源。
进一步地,分配信息还用于指示至少一条第二回传链路在预设延迟时间后的一个调度周期内占用的第三RB资源,第二回传链路为DeNB与第二RN之间的链路,第二RN为接入DeNB的除第一RN之外的其他RN,第二RB资源与第三RB资源不同,从而避免第一RN与接入第一RN的UE通信时与第二回传链路产生干扰。
本发明实施例通过DeNB为第一回传链路分配预设延迟时间后的一个调度周期内占用的第一RB资源,然后将分配信息发送给第一RN,分配信息用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一RB资源,第一RN在调度周期内采用第二RB资源与第一UE通信,第一UE为由第一RN提供服务的UE,第二RB资源为预定的频段内与第一RB资源不同的RB资源从而使得中继站点的接入链路和回传链路分别采用不同的RB资源进行数据传输,因而可以同时使用接入链路和回传链路而不产生干扰,同时不再需要使用MBSFN子帧进行传输,同时不需要使用MBSFN子帧进行传输,不需要对RN-eNB进行改动,减少了成本,同时也大大解决了设备的兼容问题。
图8提供了一种LTE带内中继方法的流程图,该方法可以由Relay组网中的DeNB和RN共同来执行,并且在该方法中RN(也即第一RN)包括RN-eNB和RN-UE两个部分,其中RN-eNB与RN-UE连接,参见图8,该方法包括:
步骤501:DeNB在第一频段内为第一回传链路分配预设延迟时间后的一个调度周期内占用的第一RB资源,第一回传链路为DeNB与接入DeNB的第一RN之间的链路。
具体地,步骤501可以包括:DeNB周期性地根据第一回传链路上的数据量和业务优先级中的至少一个,为第一回传链路分配预设延迟时间后的一个调度周期内占用的第一RB资源。其中,根据第一回传链路的数据量和业务优先级为第一回传链路分配第一RB资源是指,比较第一回传链路上待传输数据的数据量与DeNB的接入链路上待传输数据的数据量,和/或比较第一回传链路的业务优先级与接入链路的业务优先级,然后根据现有的RB分配策略进行分配。例如当第一回传链路的业务优先级大于第二UE对应的接入链路的业务优先级时,优先为第一回传链路分配空闲的RB资源。其中,接入链路为DeNB 与第二UE间的链路,第一UE为由DeNB提供服务的UE。
进一步地,上述分配过程中DeNB可以周期性地为第一回传链路分配调度周期所占用的RB资源,所以这里的周期与调度周期长短相关,且分配的动作实时发生的,相比于现有技术中通过MBSFN子帧实现的半静态配置(即MBSFN子帧长度固定,且收发所占的符号也固定)而言,实时性地分配RB资源可以根据业务需求进行,避免了静态分配产生的资源浪费。
在本发明实施例中,由于DeNB将分配信息发送到第一RN需要一定的时间,为了保证第一RN可以正常使用分配信息所指示的无线承载资源,所以分配信息所指示的第一无线承载资源是为预设延迟时间之后的第一回传链路所分配的。预设延迟时间与DeNB与RN-eNB及RN-eNB和RN-UE间的传输时延等因素有关,预设延迟时间可以根据实际情况设置,例如预设延迟时间大于或等于1毫秒且预设延迟时间小于或等于8毫秒。
在本发明实施例中,调度周期的长度可以是1ms,也即一个子帧的长度。一个子帧由时域和频域两个方面定义,时域由符号组成,频域则由无线承载资源(即子载波)组成。由于DeNB通常会在每个子帧内为接入的设备(包括RN和UE)分配无线承载资源,所以分配信息中指示的第一回传链路占用的无线承载资源也以子帧长度为周期。
步骤502:DeNB向第一RN发送分配信息;第一RN中的RN-UE接收DeNB发送的分配信息。
容易知道,分配信息还可以携带当前时间以及调度周期的时间。
进一步地,分配信息还用于指示至少一条第二回传链路在调度周期内占用的第三RB资源,第二回传链路为DeNB与第二RN之间的链路,第二RN为接入DeNB的除第一RN之外的其他RN。
具体地,DeNB向第一RN发送分配信息,可以包括:通过R-PDCCH向第一RN发送的分配信息。
具体地,第一RN中的RN-UE接收DeNB发送的分配信息,可以包括:第一RN中的RN-UE通过R-PDCCH接收DeNB发送的分配信息。
其中,R-PDCCH占用的RB资源为第一频段内处于两端的RB资源,且在每一端均可以占用一个或多个RB资源。通过调制编码将分配信息同时采用频段内处于两端的RB资源进行传输,从而避免采用一个RB资源传输时信号干扰造成的数据丢失或错误问题,减小了信号干扰对传输的影响。
步骤503:RN-UE将分配信息发送给第一RN中的RN-eNB。
具体地,步骤503可以包括:RN-UE通过自定义接口将分配信息发送给第一RN中的RN-eNB,自定义接口包括但不限于总线接口或局域网接口。
在具体实现时,RN-UE和RN-eNB可以是两个独立的设备,也可以是同一个设备箱内的两个芯片,也可以是一个芯片上的两个模块。RN-UE可以是包含Relay增强功能的普通UE,其中Relay增强功能包括但不限于QOS功能,用于为不同优先级的业务分配不同的传输资源,相应地RN-eNB也可以是包含Relay增强功能的普通eNB。
步骤504:RN-eNB在调度周期内采用第二RB资源与第一UE通信进行,第一UE为由第一RN提供服务的UE,第二RB资源为第一频段内与第一RB资源不同的RB资源。
其中,第一RN与第一UE通信包括:采用第二RB资源与第一UE建立接入链路,然后进行数据传输等。
进一步地,第二RB资源还与第三RB资源不同,从而避免第一RN与接入第一RN的UE通信时与第二回传链路产生干扰。
本发明实施例中,第一RN接收DeNB发送的分配信息,并在调度周期内采用第二RB资源与第一UE通信,分配信息用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一RB资源,第一回传链路为第一RN与DeNB之间的链路,而第二RB资源为第一频段内与第一RB资源不同的RB资源,从而使得第一RN的接入链路和回传链路分别采用不同的RB资源进行数据传输,因而可以同时使用接入链路和回传链路而不产生干扰,同时不再需要使用MBSFN子帧进行传输,不需要对RN-eNB进行改动,减少了成本,同时也大大解决了设备的兼容问题。
图9提供了一种LTE带内中继装置的结构示意图,该装置为第一RN或集成在第一RN上,用于执行图2、3或8对应的LTE带内中继方法,参见图9,该装置包括:
接收模块601,用于接收DeNB发送的分配信息,分配信息用于指示第一回传链路在一个调度周期内占用的第一RB资源,第一回传链路为第一RN与DeNB之间的链路。
其中,调度周期的长度可以是1ms,也即一个子帧的长度。一个子帧由时域和频域两个方面定义,时域由符号组成,频域则由无线承载资源(即子载波) 组成。由于DeNB通常会在每个子帧内为接入的设备(包括RN和UE)分配无线承载资源,所以分配信息中指示的第一回传链路占用的无线承载资源也以子帧长度为周期。
调度模块602,用于在调度周期内采用第二RB资源与第一UE通信,第一UE为由第一RN提供服务的UE,第二RB资源为预定的频段内与第一RB资源不同的RB资源。
其中,调度模块602与第一UE通信时,采用第二RB资源与第一UE建立接入链路,然后进行数据传输。
在本发明实施例中,第一回传链路可以占用第一频段两端的RB资源,且在每一端均可以占用一个或多个RB资源;而接入链路则占用第一频段中部的RB资源。
在本发明实施例的一种实现方式中,接收模块601,具体用于:
通过R-PDCCH接收DeNB发送的分配信息。
在现有技术中,通常一个子帧的前1~3个符号作为PDCCH,PDCCH后的一个符号内的所有RB资源作为R-PDCCH,在本发明的一种实现方式中,R-PDCCH可以采用现有同样的方式,即R-PDCCH占用的RB资源为第一频段内的所有RB资源,具体为一个子帧中指定符号内的所有RB资源。
而在本发明实施例的另一种实现方式中,R-PDCCH占用的无线承载资源为第一频段内的部分无线承载资源,具体为一个子帧中除PDCCH所用的符号以外的符号中的部分无线承载资源。例如,采用一个子帧中前1~3个符号作为PDCCH,而在该子帧的剩余符号中,采用其中的1-2个(或其他个数)RB资源作为R-PDCCH。
作为一种优选的实现方式,R-PDCCH占用的RB资源可以为第一频段内处于两端的RB资源,且在每一端均可以占用一个或多个RB资源。通过调制编码将分配信息同时采用频段内处于两端的RB资源进行传输,从而避免采用一个RB资源传输时信号干扰造成的数据丢失或错误问题,减小了信号干扰对传输的影响。
在本发明实施例中,LTE带内中继装置可以为第一RN,第一RN包括RN-eNB和RN-UE,RN-eNB与RN-UE连接,具体实现可以是:RN-UE包括接收模块601,RN-eNB包括调度模块602。
具体地,RN-UE,用于接收DeNB发送的分配信息,并将分配信息发送给 RN-eNB;
RN-eNB,用于在调度周期内采用第二RB资源与第一UE进行通信。
进一步地,分配信息还用于指示至少一条第二回传链路在调度周期内占用的第三RB资源,第二回传链路为DeNB与第二RN之间的链路,第二RN为接入DeNB的除第一RN之外的其他RN,第二RB资源与第三RB资源不同,从而避免第一RN与接入第一RN的UE通信时与第二回传链路产生干扰。
其中,RN-UE通过自定义接口将分配信息发送给第一RN中的RN-eNB,自定义接口包括但不限于总线接口或局域网接口。
如图10所示,在本发明实施例的一种实现方式中,RN-UE 61和RN-eNB 62为互相独立的两个部分。例如,RN-UE 61和RN-eNB 62可以是两个独立的设备,此时在两个设备中分别配置有具体的功能芯片,RN-UE 61中的功能芯片用作接收模块601,RN-eNB 62中的功能芯片用作调度模块602。又例如,RN-UE 61和RN-eNB 62也可以是同一个设备箱内的两个芯片,此时在两个芯片中分别配置有具体的功能模块,RN-UE 61中的功能模块用作接收模块601,RN-eNB 62中的功能模块用作调度模块602。再例如,RN-UE 61和RN-eNB 62也可以是一个芯片上的两个功能模块,此时在两个功能模块中分别配置有具体的硬件电路,RN-UE 61中的硬件电路用作接收模块601,RN-eNB 62中的硬件电路用作调度模块602。
如图11所示,在本发明实施例的另一种实现方式中,RN-UE 61和RN-eNB 62之间可以共用部分硬件,例如如图所示,RN-UE 61和RN-eNB 62共用处理器6A和存储器6B等部件;而RN-UE 61和RN-eNB 62中也设有各自独立的硬件部分,如RN-UE 61中的第一收发器6C,RN-eNB 62中的第二收发器6D,第一收发器6C和第二收发器6D可以分别用作前述接收模块601和调度模块602。
当然还可以在上述设备、芯片或者功能模块中存储对应的软件,使得软件执行过程中产生对应的功能,以实现接收模块601和调度模块602。
本发明实施例中,通过接收DeNB发送的分配信息,并在调度周期内采用第二RB资源与第一UE通信,分配信息用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一RB资源,第一回传链路为第一RN与DeNB之间的链路,而第二RB资源为第一频段内与第一RB资源不同的RB资源,从而使得第一RN的接入链路和回传链路分别采用不同的RB资源进行数据传 输,因而可以同时使用接入链路和回传链路而不产生干扰,同时不再需要使用MBSFN子帧进行传输,不需要对RN-eNB进行改动,减少了成本,同时也大大解决了设备的兼容问题。
图12提供了一种LTE带内中继装置的结构示意图,该装置为DeNB或集成在DeNB上,用于执行图6、7或8对应的LTE带内中继方法,参见图12,该装置包括:
分配模块701,用于在第一频段内为第一回传链路分配一个调度周期内占用的第一RB资源,第一回传链路为DeNB与接入DeNB的第一RN之间的链路。
发送模块702,用于向第一RN发送分配信息,分配信息用于指示第一回传链路在调度周期内占用的第一RB资源,第一RN在调度周期内采用第二RB资源与第一UE通信,第一UE为由第一RN提供服务的UE,第二RB资源为预定的频段内与第一RB资源不同的RB资源。
进一步地,分配模块701,具体用于:DeNB周期性地根据第一回传链路上的数据量和业务优先级中的至少一个,为第一回传链路分配预设延迟时间后的一个调度周期内占用的第一RB资源。
具体地,根据第一回传链路的数据量和业务优先级为第一回传链路分配第一RB资源是指,比较第一回传链路上待传输数据的数据量与接入链路上待传输数据的数据量,和/或比较第一回传链路的业务优先级与接入链路的业务优先级,然后根据现有的RB分配策略进行分配。例如当第一回传链路的业务优先级大于第二UE对应的接入链路的业务优先级时,优先为第一回传链路分配空闲的RB资源。其中,接入链路为DeNB与第二UE间的链路,第一UE为由DeNB提供服务的UE。
进一步地,上述分配过程中DeNB周期性地为第一回传链路分配调度周期所占用的RB资源,所以这里的周期与调度周期长短相关,且分配的动作是实时发生的,相比于现有技术中通过MBSFN子帧实现的半静态配置(即MBSFN子帧长度固定,且收发所占的符号也固定)而言,实时性地分配RB资源可以根据业务需求进行,避免了静态分配产生的资源浪费。
具体地,由于DeNB将分配信息发送到第一RN需要一定的时间,为了保证第一RN可以正常使用分配信息所指示的无线承载资源,所以分配信息所指示的第一无线承载资源是为预设延迟时间之后的第一回传链路所分配的。预设 延迟时间与DeNB与RN-eNB及RN-eNB和RN-UE间的传输时延等因素有关,预设延迟时间可以根据实际情况设置,例如预设延迟时间大于或等于1毫秒且预设延迟时间小于或等于8毫秒。
在本发明实施例中,调度周期的长度可以是1ms,也即一个子帧的长度。一个子帧由时域和频域两个方面定义,时域由符号组成,频域则由无线承载资源(即子载波)组成。由于DeNB通常会在每个子帧内为接入的设备(包括RN和UE)分配无线承载资源,所以分配信息中指示的第一回传链路占用的无线承载资源也以子帧长度为周期。
进一步地,分配信息还用于指示至少一条第二回传链路在预设延迟时间后的一个调度周期内占用的第三RB资源,第二回传链路为DeNB与第二RN之间的链路,第二RN为接入DeNB的除第一RN之外的其他RN,第二RB资源与第三RB资源不同,从而避免第一RN与接入第一RN的UE通信时与第二回传链路产生干扰。
具体地,发送模块702,具体用于:通过R-PDCCH向第一RN发送的分配信息。
在现有技术中,通常一个子帧的前1~3个符号作为PDCCH,PDCCH后的一个符号内的所有RB资源作为R-PDCCH,在本发明的一种实现方式中,R-PDCCH可以采用现有同样的方式,即R-PDCCH占用的RB资源为第一频段内的所有RB资源,具体为一个子帧中指定符号内的所有RB资源。
而在本发明实施例的另一种实现方式中,R-PDCCH占用的无线承载资源为第一频段内的部分无线承载资源,具体为一个子帧中除PDCCH所用的符号以外的符号中的部分无线承载资源。例如,采用一个子帧中前1~3个符号作为PDCCH,而在该子帧的剩余符号中,采用其中的1-2个(或其他个数)RB资源作为R-PDCCH。
作为一种优选的实现方式,R-PDCCH占用的RB资源为第一频段内处于两端的RB资源,且在每一端均可以占用一个或多个RB资源。通过调制编码将分配信息同时采用频段内处于两端的RB资源进行传输,从而避免采用一个RB资源传输时信号干扰造成的数据丢失或错误问题,减小了信号干扰对传输的影响。
在本发明实施例中,LTE带内中继装置可以为DeNB。
在具体实现时,分配模块701和发送模块702可以是两个独立的功能芯片。 分配模块701和发送模块702也可以设置在同一个芯片中,分配模块701和发送模块702为芯片中配置的两个功能模块。分配模块701和发送模块702也可以设置在同一个功能模块内,分配模块701和发送模块702为功能模块中配置的两个功能硬件电路。当然还可以在上述芯片或者功能模块中存储对应的软件,使得软件执行过程中产生对应的功能,以实现接收模块601和调度模块602。
本发明实施例通过为第一回传链路分配一个调度周期内占用的第一RB资源,然后将分配信息发送给第一RN,分配信息用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一RB资源,第一RN在调度周期内采用第二RB资源与第一UE通信,第一UE为由第一RN提供服务的UE,第二RB资源为预定的频段内与第一RB资源不同的RB资源从而使得中继站点的接入链路和回传链路分别采用不同的RB资源进行数据传输,因而可以同时使用接入链路和回传链路而不产生干扰,同时不再需要使用MBSFN子帧进行传输,同时不需要使用MBSFN子帧进行传输,不需要对RN-eNB进行改动,减少了成本,同时也大大解决了设备的兼容问题。
图13提供了一种LTE带内中继装置的结构示意图,参见图13,该装置包括:至少一个处理器801、至少一个存储器802、第一收发器803、第二收发器804和总线系统805,所述至少一个处理器801、至少一个存储器802、第一收发器803、第二收发器804通过所述总线系统805相通信;第一收发器803用于与DeNB进行通信,第二收发器804用于与第一UE进行通信;至少一个存储器802用于存储计算机执行指令,当装置运行时,至少一个处理器801执行至少一个存储器802存储的计算机执行指令,以使装置执行如图2、3或图8所对应的LTE带内中继方法。
具体地,至少一个处理器801具体用于:
控制第一收发器803接收DeNB发送的分配信息,分配信息用于指示第一回传链路在一个调度周期内占用的第一RB资源,第一回传链路为第一RN与DeNB之间的链路;
控制第二收发器804在调度周期内采用第二RB资源与第一UE通信,第一UE为由第一RN提供服务的UE,第二RB资源为预定的频段内与第一RB资源不同的RB资源。
进一步地,至少一个处理器具体用于:
控制第一收发器803通过R-PDCCH接收DeNB发送的分配信息, R-PDCCH占用的RB资源为预定频段内的部分RB资源。
在本发明实施例中,R-PDCCH占用的RB资源为预定的频段内处于两端的RB资源。
在本发明实施例中,分配信息具体用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一RB资源。
在本发明实施例中,预设延迟时间大于或等于1毫秒且预设延迟时间小于或等于8毫秒。
具体地,至少一个处理器801包括至少一个第一处理器和至少一个第二处理器,至少一个存储器802包括第一存储器和第二存储器,总线系统805包括第一总线和第二总线,
参见图14,LTE带内中继装置包括RN-eNB 81和RN-UE 82,RN-eNB 81包括至少一个第一处理器811、第一存储器812、第一收发器803、第一总线814和第一通信接口815,第一处理器811、第一存储器812、第一收发器803和第一通信接口815通过第一总线814相通信,第一存储器812用于存储计算机执行指令,当RN-eNB 81运行时,至少一个第一处理器811执行第一存储器812存储的计算机执行指令,以使RN-eNB 81执行如图2、3或图8所对应的LTE带内中继方法。RN-UE 82包括至少一个第二处理器821、第二存储器822、第二收发器804、第二总线824和第二通信接口825,第二处理器821、第二存储器822、第二收发器804和第二通信接口825通过第二总线824相通信,第二存储器822用于存储计算机执行指令,当RN-UE 82运行时,至少一个第二处理器821执行第二存储器822存储的计算机执行指令,以使RN-UE 82执行如图2、3或图8所对应的LTE带内中继方法。其中,第一通信接口815和第二通信接口825相连接。
更具体地,至少一个第一处理器811,用于控制第一收发器803接收DeNB发送的分配信息;
至少一个第二处理器821,用于控制第二收发器804在所述调度周期内采用第二RB资源与第一UE通信。
进一步地,第二处理器821具体用于:控制第二通信接口825将分配信息通过第一通信接口815发送给RN-eNB 81。
在本发明实施例中,分配信息还用于指示至少一条第二回传链路在调度周期内占用的第三RB资源,第二回传链路为第二RN与DeNB之间的链路,第 二RN为接入DeNB的除第一RN之外的其他RN,第二RB资源与第三RB资源不同。
本发明实施例中,通过接收DeNB发送的分配信息,并在调度周期内采用第二RB资源与第一UE通信,分配信息用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一RB资源,第一回传链路为第一RN与DeNB之间的链路,而第二RB资源为第一频段内与第一RB资源不同的RB资源,从而使得第一RN的接入链路和回传链路分别采用不同的RB资源进行数据传输,因而可以同时使用接入链路和回传链路而不产生干扰,同时不再需要使用MBSFN子帧进行传输,不需要对RN-eNB进行改动,减少了成本,同时也大大解决了设备的兼容问题。
图15提供了一种LTE带内中继装置的结构示意图,参见图15,该装置包括:至少一个处理器901、存储器902、收发器903和总线系统904,所述至少一个处理器901、存储器902和收发器903通过所述总线系统904相通信;收发器903用于与第一RN进行通信;存储器902用于存储计算机执行指令,当装置运行时,处理器901执行存储器902存储的计算机执行指令,以使装置执行如图6、7或图8所对应的LTE带内中继方法。
具体地,至少一个处理器901具体用于:在预定的频段内为第一回传链路分配一个调度周期内占用的第一RB资源,第一回传链路为DeNB与接入DeNB的第一RN之间的链路;
控制收发器903向第一RN发送分配信息,分配信息用于指示第一回传链路在调度周期内占用的第一RB资源。
进一步地,至少一个处理器901具体用于:
周期性地根据第一回传链路上的数据量和业务优先级中的至少一个,为第一回传链路分配预设延迟时间后的一个调度周期内占用的第一RB资源。
进一步地,至少一个处理器901具体用于:
控制收发器903通过R-PDCCH向第一RN发送的分配信息,R-PDCCH占用的RB资源为预定频段内的部分RB资源。
在本发明实施例中,R-PDCCH占用的RB资源为预定的频段内处于两端的RB资源。
在本发明实施例中,分配信息还用于指示至少一条第二回传链路在调度周期内占用的第三RB资源,第二回传链路为DeNB与第二RN之间的链路,第 二RN为接入DeNB的除第一RN之外的其他RN。
本发明实施例通过为第一回传链路分配一个调度周期内占用的第一RB资源,然后将分配信息发送给第一RN,分配信息用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一RB资源,第一RN在调度周期内采用第二RB资源与第一UE通信,第一UE为由第一RN提供服务的UE,第二RB资源为预定的频段内与第一RB资源不同的RB资源从而使得中继站点的接入链路和回传链路分别采用不同的RB资源进行数据传输,因而可以同时使用接入链路和回传链路而不产生干扰,同时不再需要使用MBSFN子帧进行传输,同时不需要使用MBSFN子帧进行传输,不需要对RN-eNB进行改动,减少了成本,同时也大大解决了设备的兼容问题。
本发明实施例还提供了一种存储介质,用于存储一个或多个计算机程序,一个或多个计算机程序包括程序代码,当计算机程序运行时,程序代码用于执行如图2、3或图8所对应的LTE带内中继方法。
本发明实施例还提供了一种存储介质,用于存储一个或多个计算机程序,一个或多个计算机程序包括程序代码,当计算机程序运行时,程序代码用于执行如图6、7或图8所对应的LTE带内中继方法。
图16提供了一种LTE带内中继系统的结构示意图,参见图16,该系统包括:DeNB 1001和第一RN 1002,DeNB 1001用于执行如图6、7或图8所对应的LTE带内中继方法,第一RN 1002用于执行如图2、3或图8所对应的LTE带内中继方法。
本发明实施例中,第一RN接收DeNB发送的分配信息,并在调度周期内采用第二RB资源与第一UE通信,分配信息用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一RB资源,第一回传链路为第一RN与DeNB之间的链路,而第二RB资源为第一频段内与第一RB资源不同的RB资源,从而使得第一RN的接入链路和回传链路分别采用不同的RB资源进行数据传输,因而可以同时使用接入链路和回传链路而不产生干扰,同时不再需要使用MBSFN子帧进行传输,不需要对RN-eNB进行改动,减少了成本,同时也大大解决了设备的兼容问题。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的 保护范围之内。

Claims (30)

  1. 一种LTE带内中继方法,其特征在于,所述方法包括:
    第一中继站点接收宿主基站发送的分配信息,所述分配信息用于指示第一回传链路在一个调度周期内占用的第一无线承载资源,所述第一回传链路为所述第一中继站点与所述宿主基站之间的链路;
    所述第一中继站点在所述调度周期内采用第二无线承载资源与第一用户设备通信,所述第一用户设备为由所述第一中继站点提供服务的用户设备,所述第二无线承载资源为预定的频段内与所述第一无线承载资源不同的无线承载资源。
  2. 根据权利要求1所述的方法,其特征在于,所述第一中继站点接收宿主基站发送的分配信息,包括:
    所述第一中继站点通过中继物理下行控制信道接收所述宿主基站发送的分配信息,所述中继物理下行控制信道占用的无线承载资源为所述预定频段内的部分无线承载资源。
  3. 根据权利要求2所述的方法,其特征在于,所述中继物理下行控制信道占用的无线承载资源为所述预定的频段内处于两端的无线承载资源。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述分配信息具体用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一无线承载资源。
  5. 根据权利要求4所述的方法,其特征在于,所述预设延迟时间大于或等于1毫秒且所述预设延迟时间小于或等于8毫秒。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一中继站点包括中继基站和中继用户设备,所述中继基站与所述中继用户设备通过通信接口相连接。
  7. 根据权利要求6所述的方法,其特征在于,所述第一中继站点接收宿主基站发送的分配信息,包括:
    所述中继用户设备接收宿主基站发送的分配信息,并将所述分配信息发送给所述中继基站;
    在所述调度周期内采用第二无线承载资源与第一用户设备通信,包括:
    所述中继基站在所述调度周期内采用第二无线承载资源与所述第一用户设 备进行通信。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述分配信息还用于指示至少一条第二回传链路在所述调度周期内占用的第三无线承载资源,所述第二回传链路为第二中继站点与所述宿主基站之间的链路,所述第二中继站点为接入所述宿主基站的除所述第一中继站点之外的其他中继站点,所述第二无线承载资源与所述第三无线承载资源不同。
  9. 一种LTE带内中继方法,其特征在于,所述方法包括:
    宿主基站在预定的频段内为第一回传链路分配一个调度周期内占用的第一无线承载资源,所述第一回传链路为所述宿主基站与接入所述宿主基站的第一中继站点之间的链路;
    所述宿主基站向所述第一中继站点发送分配信息,所述分配信息用于指示所述第一回传链路在所述调度周期内占用的第一无线承载资源。
  10. 根据权利要求9所述的方法,其特征在于,所述宿主基站在预定的频段内为第一回传链路分配一个调度周期内占用的第一无线承载资源,包括:
    所述宿主基站周期性地根据所述第一回传链路上的数据量和业务优先级中的至少一个,为所述第一回传链路分配预设延迟时间后的一个调度周期内占用的第一无线承载资源。
  11. 根据权利要求9或10所述的方法,其特征在于,所述向所述第一中继站点发送分配信息,包括:
    通过中继物理下行控制信道向所述第一中继站点发送的分配信息,所述中继物理下行控制信道占用的无线承载资源为所述预定频段内的部分无线承载资源。
  12. 根据权利要求11所述的方法,其特征在于,所述中继物理下行控制信道占用的无线承载资源为所述预定的频段内处于两端的无线承载资源。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述分配信息还用于指示至少一条第二回传链路在所述调度周期内占用的第三无线承载资源,所述第二回传链路为所述宿主基站与第二中继站点之间的链路,所述第二中继站点为接入所述宿主基站的除所述第一中继站点之外的其他中继站点。
  14. 一种LTE带内中继装置,其特征在于,所述装置包括:
    接收模块,用于接收宿主基站发送的分配信息,所述分配信息用于指示第一回传链路在一个调度周期内占用的第一无线承载资源,所述第一回传链路为 第一中继站点与所述宿主基站之间的链路;
    调度模块,用于在所述调度周期内采用第二无线承载资源与第一用户设备通信,所述第一用户设备为由所述第一中继站点提供服务的用户设备,所述第二无线承载资源为预定的频段内与所述第一无线承载资源不同的无线承载资源。
  15. 根据权利要求14所述的装置,其特征在于,所述接收模块,具体用于:
    通过中继物理下行控制信道接收所述宿主基站发送的分配信息,所述中继物理下行控制信道占用的无线承载资源为所述预定频段内的部分无线承载资源。
  16. 根据权利要求15所述的装置,其特征在于,所述中继物理下行控制信道占用的无线承载资源为所述预定的频段内处于两端的无线承载资源。
  17. 根据权利要求14-16任一项所述的装置,其特征在于,所述分配信息具体用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一无线承载资源。
  18. 根据权利要求17所述的装置,其特征在于,所述预设延迟时间大于或等于1毫秒且所述预设延迟时间小于或等于8毫秒。
  19. 根据权利要求14-18任一项所述的装置,其特征在于,所述LTE带内中继装置为所述第一中继站点,所述第一中继站点包括中继基站和中继用户设备,所述中继基站与所述中继用户设备通过通信接口相连接,所述中继用户设备包括所述接收模块,所述中继基站包括所述调度模块。
  20. 根据权利要求19所述的装置,其特征在于,所述中继用户设备,用于接收宿主基站发送的分配信息,并将所述分配信息发送给所述中继基站;
    所述中继基站,用于在所述调度周期内采用第二无线承载资源与所述第一用户设备进行通信。
  21. 根据权利要求14-20任一项所述的装置,其特征在于,所述分配信息还用于指示至少一条第二回传链路在所述调度周期内占用的第三无线承载资源,所述第二回传链路为第二中继站点与所述宿主基站之间的链路,所述第二中继站点为接入所述宿主基站的除所述第一中继站点之外的其他中继站点,所述第二无线承载资源与所述第三无线承载资源不同。
  22. 一种LTE带内中继装置,其特征在于,所述装置包括:
    分配模块,用于在预定的频段内为第一回传链路分配一个调度周期内占用的第一无线承载资源,所述第一回传链路为宿主基站与接入所述宿主基站的第一中继站点之间的链路;
    发送模块,用于向所述第一中继站点发送分配信息,所述分配信息用于指示所述第一回传链路在所述调度周期内占用的第一无线承载资源。
  23. 根据权利要求22所述的装置,其特征在于,所述分配模块,具体用于:
    周期性地根据所述第一回传链路上的数据量和业务优先级中的至少一个,为所述第一回传链路分配预设延迟时间后的一个调度周期内占用的第一无线承载资源。
  24. 根据权利要求22或23所述的装置,其特征在于,所述发送模块,具体用于:
    通过中继物理下行控制信道向所述第一中继站点发送的分配信息,所述中继物理下行控制信道占用的无线承载资源为所述预定频段内的部分无线承载资源。
  25. 根据权利要求24所述的装置,其特征在于,所述中继物理下行控制信道占用的无线承载资源为所述预定的频段内处于两端的无线承载资源。
  26. 根据权利要求23-25任一项所述的装置,其特征在于,所述分配信息还用于指示至少一条第二回传链路在所述调度周期内占用的第三无线承载资源,所述第二回传链路为所述宿主基站与第二中继站点之间的链路,所述第二中继站点为接入所述宿主基站的除所述第一中继站点之外的其他中继站点。
  27. 一种LTE带内中继系统,其特征在于,所述系统包括:
    宿主基站,用于在预定的频段内为第一回传链路分配一个调度周期内占用的第一无线承载资源,所述第一回传链路为所述宿主基站与接入所述宿主基站的第一中继站点之间的链路;向所述第一中继站点发送分配信息,所述分配信息用于指示所述第一回传链路在所述调度周期内占用的第一无线承载资源;
    所述第一中继站点,用于接收所述宿主基站发送的所述分配信息;在所述调度周期内采用第二无线承载资源与第一用户设备通信,所述第一用户设备为由所述第一中继站点提供服务的用户设备,所述第二无线承载资源为预定的频段内与所述第一无线承载资源不同的无线承载资源。
  28. 根据权利要求27所述的系统,其特征在于,所述第一中继站点,具体用于:
    通过中继物理下行控制信道接收所述宿主基站发送的分配信息,所述中继物理下行控制信道占用的无线承载资源为所述预定频段内的部分无线承载资源。
  29. 根据权利要求28所述的系统,其特征在于,所述中继物理下行控制信 道占用的无线承载资源为所述预定的频段内处于两端的无线承载资源。
  30. 根据权利要求27-30任一项所述的系统,其特征在于,所述分配信息具体用于指示第一回传链路在预设延迟时间后的一个调度周期内占用的第一无线承载资源。
PCT/CN2015/080389 2015-05-29 2015-05-29 一种lte带内中继方法、装置及系统 WO2016191975A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15893638.5A EP3294038B1 (en) 2015-05-29 2015-05-29 Lte inband relay method and device
PCT/CN2015/080389 WO2016191975A1 (zh) 2015-05-29 2015-05-29 一种lte带内中继方法、装置及系统
CN201580001230.2A CN107535010B (zh) 2015-05-29 2015-05-29 一种lte带内中继方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/080389 WO2016191975A1 (zh) 2015-05-29 2015-05-29 一种lte带内中继方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2016191975A1 true WO2016191975A1 (zh) 2016-12-08

Family

ID=57439961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080389 WO2016191975A1 (zh) 2015-05-29 2015-05-29 一种lte带内中继方法、装置及系统

Country Status (3)

Country Link
EP (1) EP3294038B1 (zh)
CN (1) CN107535010B (zh)
WO (1) WO2016191975A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634792A (zh) * 2017-09-04 2018-01-26 上海华为技术有限公司 一种接入回传共站干扰抑制的方法、设备及网络设备
WO2019192046A1 (zh) * 2018-04-04 2019-10-10 Oppo广东移动通信有限公司 一种资源分配方法及装置、计算机存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149699A (zh) * 2018-02-11 2019-08-20 成都华为技术有限公司 一种资源配置方法及节点
CN110351747B (zh) 2018-04-04 2024-03-01 北京三星通信技术研究有限公司 用于配置中继节点的方法和设备
WO2019194596A1 (en) * 2018-04-04 2019-10-10 Samsung Electronics Co., Ltd. Method and apparatus for configuring a relay node
CN110474733B (zh) * 2018-05-11 2022-07-12 维沃移动通信有限公司 资源指示方法、网络侧设备及中继站
CN111836367A (zh) * 2019-04-16 2020-10-27 上海华为技术有限公司 一种带内中继方法、中继设备和网络设备
CN112153666B (zh) * 2019-06-27 2024-01-30 上海华为技术有限公司 通信方法、中继设备、宿主基站及计算机存储介质
CN112153671B (zh) * 2019-06-29 2024-05-03 上海华为技术有限公司 一种数据传输方法以及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013961A (zh) * 2009-11-05 2011-04-13 大唐移动通信设备有限公司 一种发送上行反馈信息的方法、系统和设备
CN102082642A (zh) * 2010-04-30 2011-06-01 大唐移动通信设备有限公司 回程链路上的控制信令发送及检测方法、系统和设备
CN102217212A (zh) * 2008-11-12 2011-10-12 摩托罗拉移动公司 无线通信系统内的中继操作中的资源共享
CN103338520A (zh) * 2008-07-03 2013-10-02 高通股份有限公司 无线通信中的机会中继调度
CN103814532A (zh) * 2011-09-23 2014-05-21 华为技术有限公司 混合带内/带外中继

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101611300B1 (ko) * 2009-04-21 2016-04-11 엘지전자 주식회사 전송 지시자를 이용한 중계기 통신 기법
CA2765797A1 (en) * 2009-06-16 2010-12-23 Interdigital Patent Holdings, Inc. Method and apparatus for synchronous harq operation and interference avoidance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103338520A (zh) * 2008-07-03 2013-10-02 高通股份有限公司 无线通信中的机会中继调度
CN102217212A (zh) * 2008-11-12 2011-10-12 摩托罗拉移动公司 无线通信系统内的中继操作中的资源共享
CN102013961A (zh) * 2009-11-05 2011-04-13 大唐移动通信设备有限公司 一种发送上行反馈信息的方法、系统和设备
CN102082642A (zh) * 2010-04-30 2011-06-01 大唐移动通信设备有限公司 回程链路上的控制信令发送及检测方法、系统和设备
CN103814532A (zh) * 2011-09-23 2014-05-21 华为技术有限公司 混合带内/带外中继

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3294038A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634792A (zh) * 2017-09-04 2018-01-26 上海华为技术有限公司 一种接入回传共站干扰抑制的方法、设备及网络设备
WO2019192046A1 (zh) * 2018-04-04 2019-10-10 Oppo广东移动通信有限公司 一种资源分配方法及装置、计算机存储介质
CN111972019A (zh) * 2018-04-04 2020-11-20 Oppo广东移动通信有限公司 一种资源分配方法及装置、计算机存储介质

Also Published As

Publication number Publication date
EP3294038A1 (en) 2018-03-14
EP3294038B1 (en) 2021-02-24
CN107535010A (zh) 2018-01-02
CN107535010B (zh) 2020-02-14
EP3294038A4 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
WO2016191975A1 (zh) 一种lte带内中继方法、装置及系统
US11212782B2 (en) Control signaling for wireless communication
EP2406998B1 (en) System and method for assigning resources to a relay
JP6161712B2 (ja) 時分割複信セルのキャリアアグリゲーションによる動作のための方法および装置
US9954658B2 (en) Sub-carrier allocation in a wireless communication system using relays
US8761104B2 (en) Method and apparatus for transmitting load information among nodes in a radio system
US8958809B2 (en) Hybrid coordinated scheduling scheme for use in a radio access network
EP2543219B1 (en) Method, apparatus and user equipment for use in a mobile communications system comprising a relay node
WO2017163545A1 (ja) デバイス・ツー・デバイス通信を制御するための装置および方法
JP7038815B2 (ja) 通信方法および通信デバイス
US10172139B2 (en) Routing and interference coordination in self-backhauling wireless mesh networks
KR20130065002A (ko) 단말간 직접 통신 제어 방법
JP6106079B2 (ja) 送信装置、受信装置、送信方法、及び受信方法
JP5709884B2 (ja) 基地局、端末、送信方法、及び受信方法
US9084237B2 (en) Method and apparatus for processing a data transmission conflict of a relay-node
CN109479267A (zh) 半静态传输方法及装置
WO2016150348A1 (en) System and method for multi-mode multi-spectrum relays
CN110061764B (zh) 基于noma和中继技术的协作d2d传输方案
KR20120049845A (ko) 릴레이 시스템에서 통신을 수행하는 방법 및 장치
US20120250604A1 (en) Apparatus and method for communication
WO2014044058A1 (zh) 数据传输方法及系统、宏基站、小基站与用户设备
CN111836367A (zh) 一种带内中继方法、中继设备和网络设备
WO2011038614A1 (zh) 下行数据发送方法及系统和中继节点
WO2020227906A1 (en) Mapping of bearer identification into ipv6 architecture
CN115580946A (zh) 一种信号转发方法、装置、电子设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015893638

Country of ref document: EP