WO2016190730A1 - Régulateur de débit et appareil à eau chaude muni dudit régulateur - Google Patents

Régulateur de débit et appareil à eau chaude muni dudit régulateur Download PDF

Info

Publication number
WO2016190730A1
WO2016190730A1 PCT/NL2016/050194 NL2016050194W WO2016190730A1 WO 2016190730 A1 WO2016190730 A1 WO 2016190730A1 NL 2016050194 W NL2016050194 W NL 2016050194W WO 2016190730 A1 WO2016190730 A1 WO 2016190730A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
shut
valve
flow
flow controller
Prior art date
Application number
PCT/NL2016/050194
Other languages
English (en)
Inventor
Peter Jan Cool
Original Assignee
Intergas Heating Assets B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NL2015218A external-priority patent/NL2015218B1/nl
Application filed by Intergas Heating Assets B.V. filed Critical Intergas Heating Assets B.V.
Priority to RU2017134511A priority Critical patent/RU2709857C2/ru
Priority to CA2980262A priority patent/CA2980262A1/fr
Priority to US15/557,965 priority patent/US10288317B2/en
Priority to JP2017549234A priority patent/JP7224761B2/ja
Priority to EP16722416.1A priority patent/EP3271664A1/fr
Priority to UAA201710099A priority patent/UA123307C2/uk
Priority to KR1020177030122A priority patent/KR102399228B1/ko
Publication of WO2016190730A1 publication Critical patent/WO2016190730A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • F16K11/044Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with movable valve members positioned between valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/184Preventing harm to users from exposure to heated water, e.g. scalding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/325Control of valves of by-pass valves

Definitions

  • the invention relates to a flow controller for a hot water appliance and to a hot water appliance, more particularly a high-power hot water appliance, provided with such a flow controller.
  • Such high-power hot water appliances are for instance applied to supply hot channel water to a tap in a kitchen or to provide hot water to showers.
  • the use of such (high-power) hot water appliances presents several challenges.
  • hot water appliances for such facilities are cascaded, i.e. connected to each other in a parallel circuit. According to the requirement, one or more hot water appliances are coupled or uncoupled by means of shut-off valves.
  • the invention now has for its object to provide a flow controller and a hot water appliance of the above described type provided therewith which overcomes at least one of the stated challenges.
  • a flow controller for a hot water appliance comprising:
  • - a housing comprising at least three channels
  • a branching chamber which is arranged in the housing and in which the at least three channels debouch and in which a shut-off valve is arranged with which at least two of the three channels can be closed and left clear;
  • shut-off valve has an adjustment range with a first extreme position in which a first channel and a second channel of the at least three channels arc in flow connection with each other via the branching chamber and in which the first channel and a third channel of the at least three channels are substantially closed off from each other.
  • the shut-off valve When in the case of such a flow controller the shut-off valve is moved away from the first extreme position, the closure between the first and third channels is gradually opened, whereby fluid can flow via the branching chamber into the third channel.
  • the flow controller can hereby allow selective flow of fluid via the third channel while the first and second channels can remain in flow connection with each other via the branching chamber.
  • a flow controller which can temporarily guide a part of the fluid via a bypass conduit.
  • the shut-off valve lies in the first extreme position against the wall of the branching chamber and closes off the third channel from the branching chamber, while a fluid can however flow via the branching chamber from the first channel to the second channel, or vice versa.
  • the third channel is on the one hand effectively closed while throughflow of fluid from the first channel via the branching chamber to the second channel, or vice versa, can take place substantially unobstructed.
  • the shut-off valve comprises two sealing sides, wherein:
  • a first scaling side of the shut-off valve lies against the wall of the branching chamber and closes off the third channel from the branching chamber;
  • a second sealing side of the shut-off valve lies against the wall of the branching chamber and closes off the first channel from the branching chamber, whereby the supply of fluid via the first channel to the branching chamber is substantially blocked.
  • shut-off valve By providing the shut-off valve with two sealing sides, each configured to provide a seal in an associated extreme position, two opposite outflows of channels, an outflow of the first channel and an outflow of the third channel respectively, can be closed off from the branching chamber with one shut-off valve.
  • a flow controller which in the second extreme position can temporarily block a supply of fluid via the first channel.
  • the flow controller can hereby temporarily uncouple a hot water appliance from a parallel circuit, this providing a solution to the second challenge stated in the introduction. It is noted that the flow controller according to this embodiment with a single shut-off valve provides a solution to the first and second challenges stated in the introduction, while at least two separate shut-off valves were necessary for this purpose in the prior art.
  • This embodiment moreover provides a greatly simplified control: the channels are opened and closed in predictable manner by moving the shut-off valve at a predetermined speed from the one extreme position to the other extreme position. From the second extreme position to the first extreme position the bypass conduit is only opened temporarily and it is possible to determine in advance how much fluid is admitted via the third channel to the bypass conduit. A desired characteristic for the throughflow can be achieved with the design of the channel around the shut- off valve.
  • the first, second and third channels are at least largely, more preferably substantially fully closable in the second extreme position of the adjustment range of the shut-off valve.
  • some leakage flow may continue between the first channel and the second channel, and this can even be desirable.
  • a small leakage flow of cold water through a first - at that moment not heating - hot water appliance can thus be easily compensated by having a second hot water appliance heat the water slightly more so that the mixture from the hot water appliances in parallel connection supplies water at the desired water temperature.
  • By maintaining a small leakage flow large pressure differences, which exert load on the shut-off valve and other parts, can be prevented. It therefore suffices for some applications that the throughflow between the first and second channels can be at least greatly reduced, or 'constricted' .
  • first, second and third channel may be substantially fully closable with the shut-off valve. Because a 'constricted' position can likewise be set therewith, this embodiment which can achieve full closure is recommended.
  • the shut-off valve moves in the branching chamber between the first and second extreme positions substantially transversely of the outflow of the second channel, and this outflow of the second channel into the branching chamber is left clear by the shut-off valve.
  • the shut-off valve can hereby close off two opposite outflows of channels, an outflow of the first channel and an outflow of the third channel respectively, from the branching chamber while the second channel remains in connection with the branching chamber over this adjustment range.
  • the first, second and third channels are brought into flow connection with each other over a first part of the adjustment range during movement thereover from the second extreme position in the direction of the first extreme position, and their relative flow via the branching chamber is increased over the adjustment range away from the second extreme position.
  • the throughflow between the first channel and the second channel is hereby controllable and can be reduced, or 'constricted' , when required. In the case of a high pre-pressure of the water it is thus possible to prevent so rapid a flow through the appliance that the outflow temperature desired by the user cannot be achieved. By reducing the throughflow in such a case it is possible to guarantee that the desired outflow temperature of the water is attainable.
  • a sub-flow of fluid simultaneously also runs via the branching chamber to the third channel.
  • the first, second and third channels are in flow connection with each other over a second part of the adjustment range and the throughflow via the branching chamber between the first and the second channel is further increased over the further adjustment range in the direction of the first extreme position, while the throughflow via the branching chamber between the first and the third channel is decreased over the further adjustment range in the direction of the first extreme position.
  • the throughflow between the first channel and the second channel is hereby further controllable, while on the other hand the flow of fluid from the branching chamber to the third channel in the second part of the adjustment range can be reduced, and even fully closed off.
  • the transition between the first part of the adjustment range and the second part of the adjustment range lies in the range of 35 -65 , and more preferably in the range 40%-60% of the adjustment range of the shut-off valve.
  • the heat exchanger becomes more powerful, it will also be desirable to be able to supply more cold water via the bypass conduit.
  • a bypass in the above stated range is sufficient for the most common (high-power) hot water appliances.
  • the volume flow from the first channel is divided at the transition between the first part of the adjustment range and the second part of the adjustment range substantially proportionally over the second and the third channel.
  • shut-off valve of the flow controller is adjustable via a drivable screw spindle, a reliable and properly controllable system is obtained.
  • the screw spindle is provided with a pitch and, in combination with the rotatable driving of the spindle, an accurate movement of the shut-off valve can be realized.
  • the driving can for instance take place with an electric motor, more particularly with a stepping motor.
  • the shut-off valve is manufactured according to yet another preferred embodiment from a corrosion-resistant metal, more preferably from brass.
  • the invention further relates to a hot water appliance, comprising:
  • the first channel is a feed channel
  • the second channel is a first discharge channel which is in flow connection with the inlet channel of the heat exchanger
  • the third channel is a second discharge channel which is in flow connection with a bypass channel
  • bypass channel is in flow connection with the outlet channel of the heat exchanger so that, depending on a position of the shut-off valve in the branching chamber of the flow controller, water from the outlet channel of the heat exchanger and the bypass channel is mixable and dischargeable in mixed state via a water outflow of the hot water appliance.
  • the heat of the heat exchanger can have via temperature changes an adverse effect on the temperature changes on the sealing of the shut-off valve of the flow controller, and more limescale formation will moreover take place on the hot side, it is nevertheless possible to envisage that for specific applications the flow controller will be mounted on the hot side of the heat exchanger. Because the flow controller is located closer to the outlet of the heat exchanger, the cold water need cover less distance and a direct control can therefore be realized. It is noted that the branching chamber functions here as mixing chamber. According to an alternative
  • the invention therefore also relates to a hot water appliance comprising:
  • the first channel is a discharge channel
  • the second channel is a feed channel which is in flow connection with the outlet channel of the heat exchanger
  • the third channel is a feed channel which is in flow connection with a bypass channel
  • bypass channel is in flow connection with the outlet channel of the heat exchanger so that, depending on a position of the shut-off valve of the flow controller, water from the outlet channel of the heat exchanger and the bypass channel is mixable in the branching chamber and dischargeable in mixed state via a water outflow of the hot water appliance.
  • the hot water appliance further comprises at least one temperature sensor for determining the temperature of the water leaving the heat exchanger, and an electronic controller configured to drive the shut-off valve subject to the water temperature using a drive means, more particularly an electric motor.
  • Figure 1 is a schematic view of a hot water appliance with a flow controller according to the invention
  • Figure 2 is a cross-sectional view of a flow controller according to the invention, wherein the shut-off valve is in a first extreme position
  • Figures 3 A-3B are schematic views of respectively the first extreme position of Figure 2, an intermediate position and a second extreme position;
  • Figure 4 shows a diagram which plots the flows through the different channels against the position of the shut-off valve.
  • Hot water appliance 2 shown in figure 1 comprises a heat exchanger 4 with an inlet channel 6 for water to be heated and an outlet channel 8 with which heated water is discharged.
  • the temperature of this water can be properly controlled.
  • the motionless hot water in heat exchanger 4 can reach undesirably high temperatures. If hot water is drawn off again shortly thereafter, this water can have become so hot that it causes a risk of burn injury when it comes into contact with the skin of a user.
  • Hot water appliance 2 is provided with a bypass channel 10 with which cold water can be guided directly to outlet channel 8 of hot water appliance 2.
  • This cold water can be admixed here to hot water coming from hot water appliance 2.
  • cold water can thus be briefly admixed to the hot water in outlet channel 8, thereby preventing this water from being delivered at an undesirably high temperature to a user.
  • a bypass channel 10 is per se known from the prior art, but the invention provides a particularly advantageous flow controller 1 , which in the shown embodiment is arranged on the cold water side in cold water feed 12 of hot water appliance 2.
  • Bypass channel 10 is coupled to outlet channel 8 of the heat exchanger and the mixed water can be discharged via hot water discharge 14 of hot water appliance 2 to a water consumer, such as a shower or tap.
  • the temperature can be determined by arranging a temperature sensor 38 close to the hot water side of heat exchanger 4, for instance at the position of discharge 14.
  • An electronic controller 40 then controls a shut-off valve 26 in flow controller 1 subject to the measured temperature, whereby control can take place by means of feedback.
  • the advantage of a feedback control is that (almost) no model-based knowledge of the overall system is required. As a result the exact characteristic of the shut-off valve is not critical.
  • An alternative embodiment (not shown) comprises a temperature sensor arranged in cold water feed 12. With this temperature sensor changes in the temperature of the water supplied via cold water feed 12 can be measured and on the basis hereof the electronic controller 40 can compensate in advance via a feed-forward control.
  • hot water appliance 2 is provided with a flow sensor 42 with which the desired flow is sensed (and so also switch-on or switch-off).
  • the flow and the temperature difference over hot water appliance 2 are parameters for the load, on the basis of which electronic controller 40 can optimally control the combustion process in hot water appliance 2.
  • the cold water temperature and the desired hot water temperature do after all determine the net power to be generated.
  • the electronic controller can determine the optimal settings.
  • flow controller 1 is shown in a first extreme position of shut-off valve 26.
  • Flow controller 1 has a housing 16 in which are arranged a first channel 20, a second channel 22 and a third channel 24 which all debouch in a common branching chamber 18.
  • the shut-off valve 26 lies with a first side 28 thereof against a wall of branching chamber 18 and thereby closes off third channel 24 from branching chamber 18.
  • fluid in particular water, can flow freely from first channel 20 via branching chamber 18 to second channel 22, or vice versa.
  • first channel 20 is a feed channel and second channel 22 is a first discharge channel which is in flow connection via branching chamber 1 8 with inlet channel 6 of heat exchanger 4.
  • Third channel 24 is a second discharge channel which is in flow connection with a bypass channel 10, wherein bypass channel 10 is in flow connection with outlet channel 8 of heat exchanger 4 so that, depending on a position of shut-off valve 26 in branching chamber 18 of flow controller 1, water from outlet channel 8 of heat exchanger 4 and bypass channel 10 are mixable and dischargeable in mixed state via a water discharge 14 of hot water appliance 2.
  • Shut-off valve 26 further has a second side 32 with which shut-off valve 26 is arrangeable in a closing manner against the wall of branching chamber 18 such that the outflow of first channel 22 is closed off from branching chamber 18.
  • first side 28 is provided with a first seal 30.
  • a second seal (not shown) can if desired be provided in the sealing surface 34 of second side 32.
  • Shut-off valve 26 is adjustable over an adjustment range V, for which purpose a spindle is applied in the shown embodiment which is rotatably drivable in a rotation direction R via an electronic controller 40 and an electric motor, more particularly a stepping motor (not shown).
  • the construction further comprises a spring 44.
  • the adjustment range V is bounded by two extreme positions. In the first extreme position (figures 2 and 3A) of adjustment range V of shut-off valve 26 the first sealing side 28 of shut-off valve 26 lies against the wall of branching chamber 18 and closes off third channel 24 from branching chamber 18.
  • Figure 3B shows an intermediate position located between the two extreme positions which divides the adjustment range into a first part and a second part.
  • the fluid supplied via first channel 20 is divided over second channel 22 and third channel 24.
  • Movement through the first part of the adjustment range takes place from the second extreme position (figure 3C) in the direction of the first extreme position (figure 3A) and into the intermediate position shown in figure 3B. Movement through the second part of the adjustment range takes place from the intermediate position shown in figure 3B in the direction of the first extreme position (figure 3A).
  • Figure 3C shows a situation in which no flow is taking place, and thereby forms a rest position, which is for instance utilized to temporarily uncouple a hot water appliance 2 from a parallel circuit with a plurality of hot water appliances.
  • first channel 20, second channel 22 and third channel 24 are brought into flow connection with each other and their relative flow via branching chamber 18 over the adjustment range away from the second extreme position (figure 3C) is increased.
  • the flow between first channel 20 and second channel 22 can hereby be controlled, and can be reduced, or 'constricted' , as required.
  • a sub-flow of fluid increasing in volume also runs at the same time via branching chamber 18 to third channel 24.
  • first channel 20, second channel 22 and third channel 24 arc in flow connection with each other via branching chamber 18 and the flow between first channel 20 and second channel 22 is further increased over the further adjustment range in the direction of the first extreme position while the flow via branching chamber 18 between first channel 20 and third channel 24 over the further adjustment range in the direction of the first extreme position (figure 3A) is reduced.
  • the flow between first channel 20 and second channel 22 can hereby be further controlled, while on the other hand the flow of fluid from branching chamber 18 to third channel 24 in the second part of the adjustment range can be reduced and even fully closed off.
  • bypass conduit 10 is an important parameter for the application of such a How controller 1 in a hot water appliance 2 (figure 1).
  • the length and the diameter can be adapted such that the internal volume of bypass conduit 10 between flow controller 1 and outlet channel 8 of heat exchanger 4 is such that a cold flow of water comes together optimally with an (excessively) hot water flow from heat exchanger 4 so that these water flows can mix and the temperature thereof can be effectively reduced so as to at least prevent the danger of being burned.
  • figure 4 shows the flow through the different channels in a graph.
  • the flow 4' through heat exchanger 4 is the flow which runs via second channel 22, while the flow 10' through bypass channel 10 corresponds to the flow through third channel 24.
  • the situations associated with figures 3A, 3B and 3C are designated in the graph with references ⁇ , ⁇ and IIIC.
  • the throughflow F in litres per minute is plotted along the left vertical axis.
  • the horizontal axis indicates the valve setting in steps and the pre -pressure P is plotted in bar along the right vertical axis.
  • flow curve 4' and flow F through third channel 24 are substantially equal, i.e. the fluid supplied via first channel 20 is divided substantially equally.
  • FIG 4 Also shown in figure 4 is the pre -pressure (curve 11) of the fluid, for instance of a water mains system. It can clearly be seen that in the fully closed situation of figure 3C (see IIIC in figure 4; throughflow F is zero) the pre -pressure is at a maximum. In order to reduce the load on shut-off valve 26 it is possible to opt to allow a leakage flow, this resulting in a reduction of the pre- prcssurc.
  • the steps of a stepping motor Plotted on the horizontal axis of figure 4 are the steps of a stepping motor.
  • the stepping motor has 2600 steps, whereby a precise control is possible.
  • Such a precise control is particularly important for the bypass function, i.e. the flow through bypass channel 10.
  • the geometry is designed such that from IIIC to IIIA the first 2000 steps of the stepping motor (i.e. the steps from 2600 to 600 in figure 4) control the flow 10' through bypass channel 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Multiple-Way Valves (AREA)

Abstract

La présente invention concerne un régulateur de débit pour un appareil à eau chaude, le régulateur comportant : un boîtier comprenant au moins trois canaux ; une chambre de distribution placée dans le boîtier et dans laquelle les trois canaux débouchent et une vanne d'arrêt est disposée, au moins deux des trois canaux pouvant être fermés et dégagés avec ladite vanne ; la vanne d'arrêt ayant une plage de régulation avec une première position extrême dans laquelle un premier canal et un deuxième canal choisis parmi les trois canaux sont en liaison d'écoulement l'un avec l'autre par l'intermédiaire de la chambre de distribution et dans laquelle le premier canal et un troisième canal choisis parmi les trois canaux sont sensiblement isolés l'un de l'autre. L'invention concerne également un appareil à eau chaude muni d'un tel régulateur de débit.
PCT/NL2016/050194 2015-03-20 2016-03-21 Régulateur de débit et appareil à eau chaude muni dudit régulateur WO2016190730A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2017134511A RU2709857C2 (ru) 2015-03-20 2016-03-21 Нагреватель водопроводной воды и способ подачи горячей водопроводной воды потребителю
CA2980262A CA2980262A1 (fr) 2015-03-20 2016-03-21 Regulateur de debit et appareil a eau chaude muni dudit regulateur
US15/557,965 US10288317B2 (en) 2015-03-20 2016-03-21 Flow controller and a hot water appliance provided therewith
JP2017549234A JP7224761B2 (ja) 2015-03-20 2016-03-21 流量制御装置及びそれを用いた温水器具
EP16722416.1A EP3271664A1 (fr) 2015-03-20 2016-03-21 Régulateur de débit et appareil à eau chaude muni dudit régulateur
UAA201710099A UA123307C2 (uk) 2015-03-20 2016-03-21 Регулятор витрати і оснащений ним водонагрівник
KR1020177030122A KR102399228B1 (ko) 2015-03-20 2016-03-21 유동 제어기 및 이 유동 제어기가 제공된 온수 기구

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
NL2014498 2015-03-20
NL2014498 2015-03-20
NL2015218 2015-07-24
NL2015218A NL2015218B1 (nl) 2015-03-20 2015-07-24 Doorstroomregelaar en een daarmee voorzien warmwatertoestel.

Publications (1)

Publication Number Publication Date
WO2016190730A1 true WO2016190730A1 (fr) 2016-12-01

Family

ID=55967381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2016/050194 WO2016190730A1 (fr) 2015-03-20 2016-03-21 Régulateur de débit et appareil à eau chaude muni dudit régulateur

Country Status (1)

Country Link
WO (1) WO2016190730A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2557156A1 (de) * 1975-11-27 1977-06-02 Lins Albert Ventil, insbesondere mischventil fuer warmwasserversorgungsanlage
JPS54134334U (fr) * 1978-03-10 1979-09-18
US5119988A (en) * 1990-06-28 1992-06-09 Joachim Fiedrich Hydronic heating water temperature control system
JPH07317927A (ja) * 1994-05-25 1995-12-08 Matsushita Electric Ind Co Ltd 給湯装置
DE29722208U1 (de) * 1996-12-10 1998-02-26 Appliance Components Ltd., Maidenhead, Berkshire Verteilerventil
WO1998025086A1 (fr) * 1996-12-04 1998-06-11 Mcintosh Douglas S Dispositif de commande de fluide avec fonction modulatrice
EP1321700A2 (fr) * 2001-12-19 2003-06-25 Honeywell Ag Soupape pour fluides
EP1967935A1 (fr) * 2007-03-05 2008-09-10 Esbe Ab Soupape thermique à voies multiples
WO2012118432A1 (fr) * 2011-03-03 2012-09-07 Ta Hydronics Ab Vanne à actionneur
EP2628984A1 (fr) * 2012-02-15 2013-08-21 Fugas Spa Soupape de dérivation à trois voies améliorée

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2557156A1 (de) * 1975-11-27 1977-06-02 Lins Albert Ventil, insbesondere mischventil fuer warmwasserversorgungsanlage
JPS54134334U (fr) * 1978-03-10 1979-09-18
US5119988A (en) * 1990-06-28 1992-06-09 Joachim Fiedrich Hydronic heating water temperature control system
JPH07317927A (ja) * 1994-05-25 1995-12-08 Matsushita Electric Ind Co Ltd 給湯装置
WO1998025086A1 (fr) * 1996-12-04 1998-06-11 Mcintosh Douglas S Dispositif de commande de fluide avec fonction modulatrice
DE29722208U1 (de) * 1996-12-10 1998-02-26 Appliance Components Ltd., Maidenhead, Berkshire Verteilerventil
EP1321700A2 (fr) * 2001-12-19 2003-06-25 Honeywell Ag Soupape pour fluides
EP1967935A1 (fr) * 2007-03-05 2008-09-10 Esbe Ab Soupape thermique à voies multiples
WO2012118432A1 (fr) * 2011-03-03 2012-09-07 Ta Hydronics Ab Vanne à actionneur
EP2628984A1 (fr) * 2012-02-15 2013-08-21 Fugas Spa Soupape de dérivation à trois voies améliorée

Similar Documents

Publication Publication Date Title
EP1840427B1 (fr) Ensemble vanne d'eau
JP2022003275A (ja) 流量制御装置及びそれを用いた温水器具
GB2549601A (en) Water heater
WO2016190730A1 (fr) Régulateur de débit et appareil à eau chaude muni dudit régulateur
JP2013124519A (ja) 湯水混合水栓装置
CN207112003U (zh) 一种燃气热水器专用的恒温出水结构
CN205689881U (zh) 出水管
CN205350430U (zh) 一种流量控制阀
CN212962183U (zh) 电热水器
IE20140241A1 (en) An instantaneous electric water heater and a heat recovery shower system
JP5936076B2 (ja) モータ駆動制御弁
JP5870844B2 (ja) 貯湯式給湯機
JP6323373B2 (ja) 貯湯式給湯機
JP5950955B2 (ja) 給湯装置用分配弁
CN108006949B (zh) 电热水器及其恒温控制装置
JP6138550B2 (ja) 熱源装置
CN214008264U (zh) 一种防余热烫伤的即热式电热水龙头
GB2428285A (en) Instantaneous water heater control
JPH08110094A (ja) 4ポート弁及び4ポート弁を使用する高温差湯機能付給湯器
JPS62108936A (ja) 給湯装置
CN115468309A (zh) 燃气热水器恒温控制方法
JPH04208321A (ja) 自動給湯装置
RU2503504C2 (ru) Способ регулирования разности температур водно-термического душа и устройство для его осуществления
JP2730230B2 (ja) 給湯機
CN113865079A (zh) 电热水器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16722416

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15557965

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2980262

Country of ref document: CA

Ref document number: 2017549234

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016722416

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017134511

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 20177030122

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201710099

Country of ref document: UA