WO2016190373A1 - Curable resin composition and method for producing same - Google Patents

Curable resin composition and method for producing same Download PDF

Info

Publication number
WO2016190373A1
WO2016190373A1 PCT/JP2016/065513 JP2016065513W WO2016190373A1 WO 2016190373 A1 WO2016190373 A1 WO 2016190373A1 JP 2016065513 W JP2016065513 W JP 2016065513W WO 2016190373 A1 WO2016190373 A1 WO 2016190373A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
curable resin
meth
acrylate
inorganic oxide
Prior art date
Application number
PCT/JP2016/065513
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 和徳
雄太 村上
佳一郎 井上
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to JP2017520792A priority Critical patent/JP6826528B2/en
Priority to KR1020177030840A priority patent/KR20170129944A/en
Publication of WO2016190373A1 publication Critical patent/WO2016190373A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to a curable resin composition and a method for producing the same. Specifically, the present invention relates to a curable resin composition that provides a cured product having excellent transparency and high hardness, and a method for producing the same.
  • display devices such as a liquid crystal display and a touch panel display provided with a film having a hard coat film as a protective layer on the surface are rapidly spreading.
  • electronic devices such as smartphones and tablet terminals equipped with a touch panel that is operated by directly touching the screen with a finger or a pen are remarkably widespread, and such devices are required to improve the hardness of the touch panel surface.
  • a resin such as PET or acrylic that is safer and lighter than glass.
  • these resins have a drawback in that they are inferior in hardness to glass.
  • the ultraviolet curable resin composition produced by this method has a problem that the content of silica particles is limited from the viewpoint of the transparency of the cured product, and the desired film hardness cannot be obtained.
  • JP 2000-264621 A JP2015-86103A Japanese Patent Laid-Open No. 2015-36402
  • An object of the present invention is to provide a curable resin composition capable of providing a cured product having excellent transparency and high hardness, and a method for producing the same.
  • the present invention contains an inorganic oxide (A) and a polyfunctional (meth) acrylate (B), the content of the inorganic oxide (A) is 25 to 80% by weight, and the curable resin composition Curable resin composition (C), wherein the total light transmittance is 90% or more and satisfies the following relational expression (1); and inorganic oxide (A) and polyfunctional (meth) acrylate (B) is a method for producing a curable resin composition (C), which comprises an inorganic alkoxide (a1), a metal inorganic, in a polyfunctional (meth) acrylate (B) in the presence of a catalyst (b).
  • the curable resin composition of the present invention has an effect that it can provide a cured product having excellent transparency and high hardness. Even if the curable resin composition of the present invention contains a large amount of fine particles of inorganic oxide such as silica, the transparency is not impaired and a cured product having high hardness can be obtained. According to the method for producing a curable resin composition of the present invention, it is possible to produce a curable resin composition that can provide a cured product having excellent transparency and high hardness.
  • the curable resin composition (C) of the present invention contains an inorganic oxide (A) and a polyfunctional (meth) acrylate (B), and the content of the inorganic oxide (A) is 25 to 80% by weight. And the total light transmittance of the curable resin composition is 90% or more.
  • the curable resin composition (C) of the present invention further satisfies the following relational expression (1). T ⁇ 91-1.25 ⁇ W / 100 (1) [Wherein, W represents the content (% by weight) of the inorganic oxide (A) in the curable resin composition, and T represents the total light transmittance (%) of the curable resin composition. ]
  • examples of the inorganic oxide (A) include inorganic oxides such as silica, zirconium, titanium, hafnium, zinc, aluminum, gallium, indium, germanium, and tin. 1 type may be sufficient as an inorganic oxide (A), and 2 or more types may be sufficient as it.
  • the content of the inorganic oxide (A) in the curable resin composition (C) of the present invention is 25 to 80% by weight, preferably 30 to 70% by weight. More preferably 30 to 60% by weight.
  • the hardness of the cured product is insufficient, and when it exceeds 80% by weight, the transparency of the cured product is deteriorated.
  • the said content is defined as those totals.
  • the inorganic oxide (A) preferably has a hydroxyl group, and the inorganic oxide (A) is selected from the group consisting of an inorganic alkoxide (a1), a metal inorganic acid salt (a2) and an inorganic chloride (a3). It is preferable that it is a hydrolysis-condensation product of the inorganic oxide precursor (a) of a kind or more, and as such a hydrolysis-condensation product, in the polyfunctional (meth) acrylate (B), in the presence of the catalyst (b). Obtained by reacting water with at least one inorganic oxide precursor (a) selected from the group consisting of inorganic alkoxide (a1), metal inorganic acid salt (a2) and inorganic chloride (a3) Is more preferable.
  • the polyfunctional (meth) acrylate (B) contained in the curable resin composition (C) of the present invention has at least 2, preferably 3-6 (meth) acryloyl groups from the viewpoint of the hardness of the cured product.
  • Polyfunctional (meth) acrylates having the following are preferred.
  • the polyfunctional (meth) acrylate (B) the following di (meth) acrylate (B1), trivalent or higher (meth) acrylate (B2), polyester (meth) acrylate (B3), urethane ( Examples include (meth) acrylate (B4), epoxy (meth) acrylate (B5), (meth) acryloyl group-modified butadiene polymer (B6), and (meth) acryloyl group-modified dimethylpolysiloxane polymer (B7).
  • di (meth) acrylate (B1) polyoxyalkylene (alkylene having 2 to 4 carbon atoms) [number average molecular weight 106 to 3,000 (hereinafter, the number average molecular weight is determined by gel permeation chromatography (GPC)). )] Means a number average molecular weight by the method, abbreviated as Mn.)] Di (meth) acrylate (B11): polyethylene glycol (preferably Mn 100 to 800, more preferably Mn 300 to 500), polypropylene glycol (preferably Mn 100 To 500, more preferably Mn 150 to 300) and polytetramethylene glycol (preferably Mn 400 to 1000, more preferably Mn 500 to 800).
  • the di (meth) acrylate (B1) is an alkylene oxide of a dihydric phenol compound (hereinafter, “alkylene oxide” is abbreviated as AO) (2 to 30 mol) of an adduct di (meth) acrylate: 2 Of polyhydric phenol compounds [monocyclic phenols (catechol, resorcinol, hydroquinone, etc.), condensed polycyclic phenols (dihydroxynaphthalene, etc.), bisphenol compounds (bisphenol A, -F, -S, etc.)] [resorcinol ethylene oxide ( EO) 4 mol adduct di (meth) acrylate, dihydroxynaphthalene propylene oxide (PO) 4 mol adduct di (meth) acrylate, bisphenol A, -F or -S, EO 2 mol, or PO 4 mol each addition Di (meth) acrylate of Door and the like.
  • AO alkylene oxide
  • di (meth) acrylate (B1) examples include di (meth) acrylates of aliphatic dihydric alcohols having 2 to 30 carbon atoms: each di (meth) acrylate of neopentyl glycol and 1,6-hexanediol.
  • Di (meth) acrylate (B1) di (meth) acrylate of dihydric alcohol containing 6-30 carbon atoms: di (meth) acrylate of dimethyloltricyclodecane, di (meth) acrylate of cyclohexanedimethanol And di (meth) acrylate of hydrogenated bisphenol A.
  • di (meth) acrylate (B1) hydroxyl groups such as di (meth) acrylate of polyhydric alcohol having 3 to 40 carbon atoms: trimethylolpropane EO 3 mol adduct di (meth) acrylate, pentaerythritol di (meth) acrylate, etc.
  • numerator is also mentioned.
  • Examples of the trivalent or higher (meth) acrylate (B2) include polyhydric alcohols having 3 to 40 carbon atoms and poly (meth) acrylates of AO adducts thereof: Trimethylolpropane tri (meth) acrylate, glycerol tri (meth) acrylate, trimethylolpropane EO3 mol or PO3 mol adduct tri (meth) acrylate, glycerol EO3 mol or PO3 mol adduct tri (meta) ) Acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol EO 4 mol adduct tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (Meth) acrylate, dipentaery
  • the polyfunctional (meth) acrylate (B) preferably has a reactive group ( ⁇ ) that reacts with a hydroxyl group in the inorganic oxide (A) to form a chemical bond.
  • the trivalent or higher (meth) acrylate (B21) having a hydroxyl group as the reactive group ( ⁇ ) in the molecule is an ester reaction product of a polyhydric alcohol and acrylic acid or methacrylic acid. Having at least one of the above.
  • Examples of the trivalent or higher (meth) acrylate (B21) having a hydroxyl group in the molecule include, for example, pentaerythritol tri (meth) acrylate; pentaerythritol EO adduct tri (meth) acrylate; dipentaerythritol Penta (meth) acrylate, tetra (meth) acrylate of dipentaerythritol, tri (meth) acrylate of dipentaerythritol, penta (meth) acrylate of EO adduct of dipentaerythritol; poly (meth) acrylate of tripentaerythritol Etc.
  • ester reactions of polyhydric alcohols with acrylic acid or methacrylic acid are generally not chemically equivalent and are polyfunctional (meth) acrylates having different numbers of ester bonds (ie, the number of hydroxyl groups) ( A mixture of B) is obtained.
  • a mixture of B is obtained.
  • the pentaacrylate or hydroxyl group of dipentaerythritol having 1 hydroxyl group is usually used.
  • Two dipentaerythritol tetraacrylates are also by-produced and become a mixture thereof.
  • Such a mixture can also be used as the polyfunctional (meth) acrylate (B) of the present invention.
  • the polyester (meth) acrylate (B3) includes a plurality of ester bonds and five or more (meth) acryloyl groups obtained by esterification of a polycarboxylic acid, a polyhydric alcohol, and an ester-forming (meth) acryloyl group-containing compound. Examples thereof include polyester (meth) acrylates having a Mn of 150 or more and a Mn of 4,000 or less.
  • polyvalent carboxylic acid examples include aliphatic polycarboxylic acids [for example, malonic acid, maleic acid (anhydride), adipic acid, sebacic acid, succinic acid, acid anhydride reaction products (dipentaerythritol and maleic anhydride). Acid reactants)], cycloaliphatic polycarboxylic acids [eg cyclohexanedicarboxylic acid, tetrahydro (anhydride) phthalic acid, methyltetrahydro (anhydride) phthalic acid] and aromatic polycarboxylic acids [eg isophthalic acid, terephthalic acid Phthalic acid (anhydride)].
  • aliphatic polycarboxylic acids for example, malonic acid, maleic acid (anhydride), adipic acid, sebacic acid, succinic acid, acid anhydride reaction products (dipentaerythritol and maleic anhydride). Acid reactants)]
  • Examples of the polyhydric alcohol include ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol and the like.
  • Examples of the ester-forming (meth) acryloyl group-containing compound include acrylic acid, methacrylic acid, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and the like.
  • urethane (meth) acrylate (B4) Mn400 or more having a plurality of urethane bonds and two or more (meth) acryloyl groups obtained by urethanization reaction of polyisocyanate, polyol, and hydroxyl group-containing (meth) acrylate
  • urethane (meth) acrylate having Mn of 5,000 or less can be mentioned.
  • polyisocyanate examples include aliphatic polyisocyanate [hexamethylene diisocyanate and the like], aromatic (aliphatic) polyisocyanate [2,4- or 2,6-tolylene diisocyanate, 1,5-naphthalene diisocyanate, xylylene diisocyanate, and the like. And cycloaliphatic polyisocyanates [isophorone diisocyanate, 4,4′-methylenebis (cyclohexyl isocyanate) and the like].
  • polyol examples include ethylene glycol, 1,4-butanediol, neopentyl glycol, polyether polyol, polycaprolactone polyol, polyester polyol, polycarbonate polyol, and polytetramethylene glycol.
  • hydroxyl group-containing (meth) acrylate examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and the like.
  • Examples of the epoxy (meth) acrylate (B5) include an epoxy (meth) acrylate having a Mn of 400 or more and a Mn of 5,000 or less obtained by a reaction between a polyvalent (2 to 4 valent) epoxide and (meth) acrylic acid.
  • Examples of the (meth) acryloyl group-modified butadiene polymer (B6) include polybutadiene poly (meth) acrylate (Mn 500 to 500,000) having a (meth) acryloyl group in the main chain and / or side chain.
  • (Meth) acryloyl group-modified dimethylpolysiloxane polymer (B7) includes dimethylpolysiloxane poly (meth) acrylate having Mn of 300 to 20,000 having (meth) acryloyl group in the main chain and / or side chain.
  • the above (B1) to (B7) may be used alone or in combination of two or more.
  • (B1) to (B7) from the viewpoint of the hardness of the cured product, (B2) to (B7) are preferable, and (B2) and (B4) are more preferable.
  • monofunctional (meth) acrylate may be used in combination.
  • the polyfunctional (meth) acrylate (B) in the present invention more preferably contains a polyfunctional (meth) acrylate (B) having a reactive group ( ⁇ ) capable of reacting with a hydroxyl group.
  • the content of the polyfunctional (meth) acrylate having a reactive group ( ⁇ ) in the polyfunctional (meth) acrylate (B) is preferably 50 mol% or more, more preferably 90 mol% or more.
  • the polyfunctional (meth) acrylate (B) is more preferably a polyfunctional (meth) acrylate (B) having a reactive group ( ⁇ ).
  • Examples of the reactive group ( ⁇ ) capable of reacting with a hydroxyl group include a hydroxyl group, a carboxyl group, an amino group, a thiol group, a sulfonic acid group, a phosphoric acid group, and an amide group.
  • the reactive group ( ⁇ ) reacts with the hydroxyl group in the inorganic oxide (A), and a chemical bond is generated at the organic-inorganic interface, so that high hardness is exhibited.
  • a hydroxyl group, a carboxyl group, and a phosphate group are preferred, a hydroxyl group or a carboxyl group is more preferred, and a hydroxyl group is most preferred.
  • the polyfunctional (meth) acrylate (B) contains a polyfunctional (meth) acrylate having a reactive group ( ⁇ ) capable of reacting with a hydroxyl group, and is an inorganic oxide.
  • (A) has a hydroxyl group, and at least a part of the reactive group ( ⁇ ) in the polyfunctional (meth) acrylate (B) reacts with at least a part of the hydroxyl group in the inorganic oxide (A) to react with the chemistry. Bonding is preferred.
  • the content of the polyfunctional (meth) acrylate (B) is hardness and transparency. In view of the above, it is usually 20 to 75% by weight, preferably 25 to 70% by weight, and more preferably 30 to 60% by weight.
  • the said content is defined as those totals.
  • the total light transmittance of the curable resin composition (C) of the present invention is 90% or more.
  • the total light transmittance in the present invention is determined in accordance with JIS-K7105 by sandwiching the curable resin composition between two slides as described in detail in the measurement method of the examples. Measure with JIS-K7105
  • An object of the present invention is to provide a curable resin composition that is excellent in transparency and can provide a cured product having high hardness.
  • the content of the inorganic oxide (A) Increasing the value has a contradictory relationship of impairing transparency. Therefore, the curable resin composition (C) of the present invention satisfies the following relational expression (1) regarding the content of the inorganic oxide (A) and the total light transmittance of the curable resin composition.
  • W represents the content (% by weight) of the inorganic oxide (A) in the curable resin composition
  • T represents the total light transmittance (%) of the curable resin composition.
  • fine particles of general inorganic oxide for example, silica fine particles are mixed with the polyfunctional (meth) acrylate (B).
  • the content of the silica fine particles is to be increased more than 25% by weight, the transparency tends to be impaired.
  • the curable resin composition (C) of the present invention in the polyfunctional (meth) acrylate (B), in the presence of the catalyst (b), the inorganic alkoxide (a1), the metal inorganic acid salt ( It is preferable to include a step of obtaining inorganic oxide (A) by reacting one or more inorganic oxide precursors (a) selected from the group consisting of a2) and inorganic chloride (a3) with water.
  • the inorganic oxide (A) contained in the curable resin composition (C) of the present invention thus reacts the inorganic oxide precursor (a) with water in the polyfunctional (meth) acrylate (B).
  • the inorganic oxide (A) is excellent in compatibility with the polyfunctional (meth) acrylate (B).
  • the curable resin composition contains the inorganic oxide (A) thus obtained, the hardness of the cured product is increased.
  • the inorganic oxide (A) is obtained by the above method, the cured product can be obtained even if the content of the inorganic oxide (A) in the curable resin composition (C) is 25 to 80% by weight. Is excellent in transparency.
  • the curable resin composition (C) of the present invention is not produced by mixing the inorganic oxide (A) with the polyfunctional (meth) acrylate (B), but the inorganic oxide precursor (a) and water.
  • the hydrolysis condensate of the inorganic oxide precursor (a) produced by reacting in the polyfunctional (meth) acrylate (B) in the presence of the catalyst (b) is preferably used as the inorganic oxide (A).
  • the inorganic oxide (A) is a hydrolyzate of one or more inorganic oxide precursors (a) selected from the group consisting of inorganic alkoxides (a1), metal inorganic acid salts (a2) and inorganic chlorides (a3).
  • a decomposition condensate is preferred.
  • the inorganic oxide (A) which is a hydrolysis-condensation product of the inorganic oxide precursor (a) is preferable because it usually has a hydroxyl group.
  • Examples of the inorganic alkoxide (a1) include silicon alkoxide, zirconium alkoxide, titanium alkoxide, hafnium alkoxide, zinc alkoxide, aluminum alkoxide, gallium alkoxide, indium alkoxide, germanium alkoxide, and tin alkoxide. These may be used alone or in combination of two or more. Among these, silica alkoxide, titanium alkoxide, and zirconium alkoxide are preferable from the viewpoint of hardness.
  • the silica alkoxide is preferably tetraethoxysilane or tetra-n-butoxysilane, and the titanium alkoxide is preferably tetraethoxytitanium or tetra-n-butoxytitanium.
  • Examples of the metal inorganic acid salt (a2) include a combination of a metal such as titanium or zirconium and an inorganic acid such as nitric acid or sulfuric acid.
  • a metal such as titanium or zirconium
  • an inorganic acid such as nitric acid or sulfuric acid.
  • Specific examples include titanium nitrate, titanium oxysulfate, zirconium oxynitrate, and zirconium sulfate. Etc. These may be used alone or in combination of two or more. Of these, titanium tetranitrate, titanium oxysulfate, and zirconium oxynitrate are preferable. These may be used alone or in combination of two or more.
  • Examples of the inorganic chloride (a3) include metal chlorides and nonmetal chlorides, such as titanium tetrachloride, zirconium tetrachloride, hafnium tetrachloride, zinc chloride, aluminum chloride, gallium chloride, indium chloride, tin chloride, and the like. And metal chlorides such as silicon tetrachloride and germanium tetrachloride. These may be used alone or in combination of two or more. Among these, preferred are chlorides such as silicon, titanium and zirconium, specifically silicon tetrachloride, titanium tetrachloride and zirconium tetrachloride.
  • inorganic alkoxides (a1) are preferred.
  • the polyfunctional (meth) acrylate (B) used for production of the inorganic oxide (A) is the same as the polyfunctional (meth) acrylate (B) described above.
  • the polyfunctional (meth) acrylate (B) preferably contains a polyfunctional (meth) acrylate having a reactive group ( ⁇ ) that can react with a hydroxyl group, and has a reactive group ( ⁇ ) that can react with a hydroxyl group. More preferably, it is a functional (meth) acrylate.
  • the inorganic alkoxide (a1), the metal inorganic acid salt (a2) and the inorganic chloride (a3) are formed in the presence of the catalyst (b).
  • the catalyst (b) By reacting one or more inorganic oxide precursors (a) selected from the group with water, the inorganic oxide (A) and the polyfunctional (meth) acrylate (B) are contained, and the polyfunctional (meta ) Producing a curable resin composition in which at least a part of the reactive group ( ⁇ ) in the acrylate (B) and at least a part of the hydroxyl group in the inorganic oxide (A) are reacted and chemically bonded. Can do.
  • Such a curable resin composition is preferable as the curable resin composition (C) of the present invention.
  • the usage-amount of polyfunctional (meth) acrylate (B) in manufacture of an inorganic oxide (A) is not specifically limited,
  • the total weight of an inorganic oxide precursor (a) and a polyfunctional (meth) acrylate (B) is preferably 20 to 75% by weight, more preferably 25 to 70% by weight, still more preferably 30 to 60% by weight.
  • the inorganic oxide precursor (a) and water are preferably reacted in the presence of the catalyst (b), and examples of the catalyst (b) include an acid catalyst (b1) and a base catalyst (b2). Of these, the acid catalyst (b1) is preferred.
  • the amount of the catalyst (b) used may be appropriately selected depending on the type of the catalyst and the like. For example, it is preferable to use 0.1 to 15 parts by weight with respect to 100 parts by weight of the inorganic oxide precursor (a). It is more preferable to use 1 to 10 parts by weight.
  • Examples of the acid catalyst (b1) include inorganic acids and organic acids.
  • Examples of the inorganic acids include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and boric acid.
  • Examples of the organic acid include sulfonic acid (such as p-toluenesulfonic acid), carboxylic acid, hydroxy acid, and oxalic acid.
  • Examples of the base catalyst (b2) include metal hydroxides and organic amines, and examples of the metal hydroxide include sodium hydroxide, potassium hydroxide, and lithium hydroxide.
  • organic amines include aliphatic amines, alicyclic amines, aromatic amines, and heterocyclic amines.
  • aliphatic amine include mono- having 1 to 18 carbon atoms in the alkyl group such as hexylamine, octylamine, methylhexylamine, methyloctylamine, dimethylhexylamine, dimethyloctylamine, dimethyllaurylamine, and dimethylcetylamine, Di- or tri-alkylamines are mentioned.
  • alicyclic amine examples include cycloalkylamine having 4 to 12 carbon atoms in the cycloalkyl group such as cyclobutylamine, cyclohexylamine, cyclopentylamine, cyclooctylamine, N-methylcyclohexylamine, and N-ethylcyclohexylamine, and the like.
  • Examples include alkyl (having 1 to 6 carbon atoms) substituents.
  • aromatic amine examples include aromatic amines having 6 to 18 carbon atoms such as aniline and diphenylamine.
  • heterocyclic amine examples include heterocyclic amines having 4 to 10 carbon atoms such as morpholine.
  • Molar ratio of inorganic oxide precursor (a) to water (inorganic oxide precursor (a) / water) when forming a hydrolyzed condensate of inorganic oxide precursor (a) as inorganic oxide (A) ) Is preferably 2 to 200, more preferably 5 to 150, and still more preferably 10 to 100. If this molar ratio is less than 2, the transparency of the cured product tends to deteriorate, and if it exceeds 200, the hardness of the cured product tends to be insufficient.
  • the water used for hydrolysis of the inorganic oxide precursor (a) in the above reaction may be added all at once, dividedly, or added dropwise.
  • the temperature at which the inorganic oxide (A) is produced by the above reaction is preferably 40 to 80 ° C., more preferably 60 to 70 ° C. When the temperature is 40 ° C. or higher, the reaction rate is increased, and thus productivity is improved. Moreover, polycondensation of the hydrolyzate of an inorganic oxidation precursor (a) can be advanced, without polyfunctional (meth) acrylate superposing
  • the reaction time for producing the inorganic oxide (A) by the above reaction is preferably 30 minutes to 6 hours, more preferably 2 hours to 4 hours.
  • the curable resin composition (C) of the present invention has a total light transmittance of 90% or more, a cured product having excellent transparency can be provided.
  • the haze value of the cured product of the curable resin composition (C) of the present invention is preferably 1% or less. If it exceeds 1%, the transparency of the cured product deteriorates.
  • the haze value of the cured product is measured with a total light transmittance measuring device in accordance with JIS-K7105 for a cured film of the curable resin composition as will be described in detail in the measurement method of the examples.
  • the median diameter d of the inorganic oxide (A) measured by the dynamic light scattering method is preferably 1 to 100 nm, more preferably 10 to 50 nm.
  • the median diameter d of the inorganic oxide (A) exceeds 100 nm, transparency and hardness may be deteriorated, and when it is less than 1 nm, the hardness of the cured product may be insufficient.
  • the curable resin composition (C) contains the inorganic oxide (A) in which the median diameter d of the particles measured by the dynamic light scattering method is in the above range, a cured product having high transparency and hardness can be formed. .
  • composition containing an inorganic oxide (A) obtained by reacting an inorganic oxide precursor (a) with water contains a polyfunctional (meth) acrylate (B) and is used as a curable resin composition (C). can do.
  • the same kind of polyfunctionality as the polyfunctional (meth) acrylate (B) used in the production of the inorganic oxide (A) It is good also as a curable resin composition (C) by further adding and diluting (meth) acrylate (B) or a different kind of (B).
  • the catalyst (b) may or may not be removed from the composition containing the inorganic oxide (A) and the polyfunctional (meth) acrylate (B). You may neutralize.
  • Examples of the energy source used when curing the curable resin composition of the present invention include heat, electron beam, and X-ray.
  • the energy source is also cured, but the photopolymerization initiator (D) is further added. By containing, it can be cured by light irradiation.
  • ultraviolet rays, infrared rays, and visible rays can be used as the rays. Of these, ultraviolet rays and electron beams are preferable from the viewpoints of curability and resin deterioration.
  • the curable resin composition (C) of the present invention is suitably used as an active energy ray-curable resin composition that is cured by active energy rays (ultraviolet rays, electron rays, X rays, etc.) in this way.
  • active energy rays ultraviolet rays, electron rays, X rays, etc.
  • the curable resin composition (C) of the present invention preferably further contains a photopolymerization initiator (D).
  • a photopolymerization initiator (D) added to the curable resin composition (C) of the present invention include a phosphine oxide compound (D1), a benzoylformate compound (D2), a thioxanthone compound (D3), and an oxime.
  • Examples include ester compounds (D4), hydroxybenzoyl compounds (D5), benzophenone compounds (D6), ketal compounds (D7), 1,3 ⁇ aminoalkylphenone compounds (D8), and the like.
  • Examples of the phosphine oxide compound (D1) include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 1,3,5-trimethylbenzoyldiphenylphosphine. Examples include oxides.
  • Examples of the benzoylformate compound (D2) include methylbenzoylformate.
  • Examples of the thioxanthone compound (D3) include isopropyl thioxanthone.
  • Examples of the oxime ester compound (D4) include 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2 -Methylbenzoyl) -9H-carbazol-3-yl]-, 1 (O-acetyloxime) and the like.
  • Examples of the hydroxybenzoyl compound (D5) include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, and benzoin alkyl ether.
  • Examples of the benzophenone compound (D6) include benzophenone.
  • Examples of the ketal compound (D7) include benzyl dimethyl ketal.
  • Examples of the 1,3 ⁇ aminoalkylphenone compound (D8) include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one.
  • photopolymerization initiators (D) from the viewpoint of pencil hardness, (D1), (D5), and (D8) are preferred, and bis (2,4,6-trimethylbenzoyl) is more preferred.
  • -Phenylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 1,3,5-trimethylbenzoyldiphenylphosphine oxide is there.
  • the content of the photopolymerization initiator (D) is curable and transparent. From the viewpoint, it is 0.1 to 10% by weight, preferably 0.2 to 7% by weight.
  • the curable resin composition (C) of the present invention may contain one or more various additives as long as the effects of the present invention are not impaired.
  • the additive include a plasticizer, an organic solvent, a dispersant, an antifoaming agent, a thixotropy imparting agent (thickening agent), a slip agent, an antioxidant, a hindered amine light stabilizer, and an ultraviolet absorber.
  • the curable resin composition (C) of the present invention can be a paint diluted with a solvent as necessary in order to adjust the viscosity to be suitable for coating during coating.
  • the amount of the solvent used is usually 2,000% or less, preferably 10 to 500%, based on the total weight of the curable resin composition.
  • the viscosity of the coating is usually 5 to 5,000 mPa ⁇ s at the temperature during use (usually 5 to 60 ° C.), and preferably 50 to 1,000 mPa ⁇ s from the viewpoint of stable coating.
  • the solvent is not particularly limited as long as it dissolves the resin component in the curable resin composition of the present invention.
  • aromatic hydrocarbons eg toluene, xylene and ethylbenzene
  • esters or ether esters eg ethyl acetate, butyl acetate and methoxybutyl acetate
  • ethers eg diethyl ether, tetrahydrofuran, ethylene glycol monoethyl ether, ethylene Glycol monobutyl ether, monomethyl ether of propylene glycol and monoethyl ether of diethylene glycol
  • ketones eg acetone, methyl ethyl ketone, methyl isobutyl ketone, di-n-butyl ketone and cyclohexanone
  • alcohols eg methanol, ethanol, n- or i-propanol
  • esters, ketones and alcohols having a boiling point of 70 to 100 ° C. are preferable from the viewpoint of smoothness of the coating film and solvent removal efficiency, and more preferable are ethyl acetate, methyl ethyl ketone, i-propanol and mixtures thereof. It is.
  • the curable resin composition (C) of the present invention is diluted with a solvent if necessary, applied to at least a part of at least one side of the substrate, and dried if necessary.
  • a hard coat coating having a cured film can be obtained by curing with irradiation or heat of X-rays or the like.
  • a coating machine bar coater, gravure coater, roll coater (size press roll coater, gate roll coater, etc.), air knife coater, spin coater, blade coater, etc.
  • the coating film thickness is usually 0.5 to 300 ⁇ m as the film thickness after curing and drying.
  • the upper limit is preferably 250 ⁇ m from the viewpoints of drying properties and curability, and the lower limit is preferably 1 ⁇ m from the viewpoints of wear resistance, solvent resistance, and contamination resistance.
  • the transparent substrate examples include those made of resins such as methyl methacrylate (co) polymer, polyethylene terephthalate, polycarbonate, polytriacetyl cellulose, and polycycloolefin.
  • resins such as methyl methacrylate (co) polymer, polyethylene terephthalate, polycarbonate, polytriacetyl cellulose, and polycycloolefin.
  • the curable resin composition (C) of the present invention When the curable resin composition (C) of the present invention is used after being diluted with a solvent, it is preferably dried after coating.
  • the drying method include hot air drying (such as a dryer).
  • the drying temperature is usually 10 to 200 ° C., the upper limit is preferably 150 ° C. from the viewpoint of the smoothness and appearance of the coating film, and the lower limit is preferably 30 ° C. from the viewpoint of the drying speed.
  • UV irradiation devices for example, ultraviolet irradiation devices [model number “VPS / I600”, manufactured by Fusion UV Systems Co., Ltd.] can be used.
  • the lamp to be used include a high-pressure mercury lamp and a metal halide lamp.
  • the irradiation amount of ultraviolet rays is preferably 10 to 10,000 mJ / cm 2 , more preferably 100 to 5,000 mJ / cm 2 from the viewpoint of the curability of the curable resin composition and the flexibility of the cured product.
  • the method for producing a curable resin composition (C) of the present invention is a method for producing a curable resin composition (C) containing an inorganic oxide (A) and a polyfunctional (meth) acrylate (B).
  • the polyfunctional (meth) acrylate (B) in the presence of the catalyst (b), one or more selected from the group consisting of inorganic alkoxide (a1), metal inorganic acid salt (a2) and inorganic chloride (a3)
  • Such a manufacturing method is preferable as a manufacturing method of the curable resin composition (C) of the present invention described above.
  • the step of obtaining the inorganic oxide (A) and preferred embodiments thereof are the same as those in the production of the inorganic oxide (A) described above.
  • the molar ratio of the inorganic oxide precursor (a) / water is preferably 2 to 200, more preferably 5 to 150, and still more preferably 10 to 100.
  • the catalyst (b), the inorganic alkoxide (a1), the metal inorganic acid salt (a2) and the inorganic chloride (a3) used as the inorganic oxide precursor (a) are the same as described above.
  • the inorganic oxide (A) and the polyfunctional (meth) acrylate (B) are the same as those in the curable resin composition (C) described above.
  • the polyfunctional (meth) acrylate (B) preferably contains a polyfunctional (meth) acrylate having a reactive group ( ⁇ ) capable of reacting with a hydroxyl group, and has a reactive group ( ⁇ ) capable of reacting with a hydroxyl group. More preferably, it is a polyfunctional (meth) acrylate.
  • the composition containing the inorganic oxide (A) and the polyfunctional (meth) acrylate (B) obtained in the step of obtaining the inorganic oxide (A) is a curable resin composition of the present invention.
  • (C) can be used.
  • the inorganic oxide (A) and the polyfunctional ( In the composition containing (meth) acrylate (B), polyfunctional (meth) acrylate (B) of the same type as polyfunctional (meth) acrylate (B) used for the production of inorganic oxide (A) or different types (B) may be further added and diluted to obtain a curable resin composition (C).
  • Production Examples 2-6 The inorganic alkoxide (a), catalyst (b) and water shown in Table 1 were reacted in the respective polyfunctional (meth) acrylates (B) in the same manner as in Production Example 1 to give the corresponding inorganic oxides (A- A solution of (meth) acrylates 2) to (A-6) was obtained.
  • Comparative production example 1 The reaction was carried out in the same manner as in Production Example 1 with the number of parts shown in Table 1 to obtain a solution of the corresponding inorganic oxide (A′-1) in (meth) acrylate.
  • This is an inorganic oxide solution for Comparative Example 1 in that monofunctional (meth) acrylate (B′-1) is used.
  • Comparative production example 2 The reaction was carried out in the same manner as in Production Example 1 with the number of parts shown in Table 1 to obtain a solution of the corresponding inorganic oxide (A′-2) in (meth) acrylate. This is the inorganic oxide solution for Comparative Example 2 in terms of the content of inorganic oxide.
  • the raw materials used in Table 1 are as follows.
  • Example 1 In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 103.87 parts of the solution obtained in Production Example 1, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane- 1 part of 1-one (D-2) [trade name “Irgacure 907”, manufactured by BASF Corp.] was added and mixed and stirred at 65 ° C. until uniform, to obtain a curable resin composition (C-1).
  • Example 2 As in Example 1, the solutions obtained in Production Examples 2 to 6 and Comparative Production Examples 1 and 2 and the photopolymerization initiator (D) were uniformly mixed in the number of parts shown in Table 2, and the corresponding curable resin composition was obtained. The products (C-2) to (C-6) and (C′-1) to (C′-2) were obtained. In the solutions obtained in Production Examples 1 to 6 and Comparative Production Examples 1 and 2, the inorganic oxide (A) and the polyfunctional (meth) acrylate (B) (or monofunctional (meth) acrylate (B ′)) were used. The number of copies shown in the above is included.
  • Comparative Examples 3-4 In Comparative Examples 3 and 4, instead of synthesizing the inorganic oxide (A) in the polyfunctional (meth) acrylate (B) as in the above production example, the number of parts shown in Table 2 is a commercially available inorganic oxide. Fine particles (A′-3) are blended in the polyfunctional (meth) acrylate (B) simultaneously with the photopolymerization initiator (D) so as to be 30% by weight and 10% by weight, respectively. '-3) to (C'-4) were obtained.
  • D-1 1,3,5-trimethylbenzoyldiphenylphosphine oxide [trade name “Lucirin TPO”, manufactured by BASF Corporation]
  • D-2) 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one [trade name “Irgacure 907”, manufactured by BASF Corporation]
  • the content of the inorganic oxide (A) in Table 2 is the content (% by weight) of the inorganic oxide (A) in the curable resin composition.
  • the (meth) acrylate solutions of inorganic oxides used for the preparation of the curable resin compositions (C-1) to (C-6) and (C′-1) to (C′-2) are shown in Table 2.
  • polyfunctional (meth) acrylate (B) or monofunctional (meth) acrylate (B ′)
  • (B) is included in parts by weight shown in Table 1.
  • tetraethoxysilane reactants (A-1) to (A-2), tetra-n-butoxytitanium reactant (A-3), tetraethoxysilane reactants (A-4) to (A-6) Are the inorganic oxides (A-1) to (A-6) produced in Production Examples 1 to 6, respectively.
  • the tetraethoxysilane reactants (A′-1) to (A′-2) are inorganic oxides (A′-1) to (A′-2) produced in Comparative Production Examples 1 and 2, respectively.
  • Curable resin compositions (C-1) to (C-6) and (C′-1) to (C′-4) were each diluted with methyl ethyl ketone using a disperser to prepare a non-volatile content of 40%.
  • the diluted liquid of the curable resin composition was applied to one side of a TAC film (triacetyl cellulose film) substrate having a thickness of 40 ⁇ m so that the film thickness after drying and curing was 7 ⁇ m.
  • an ultraviolet irradiation device [model number “VPS / I600”, manufactured by Fusion UV Systems Co., Ltd. same as below. ] was irradiated with ultraviolet rays of 300 mJ / cm 2 under a nitrogen atmosphere to produce a film having a cured film on the surface of the base film.
  • the curable resin compositions of Examples 1 to 6 of the present invention do not impair the transparency of the composition even when containing a large amount of inorganic oxide fine particles, and the cured product has high hardness.
  • the comparative example 1 which uses only a monofunctional acrylate has inferior pencil hardness.
  • Comparative Example 2 in which the content of the inorganic oxide (A) is less than 25% by weight, the pencil hardness is insufficient.
  • Comparative Example 3 obtained by a method of adding commercially available silica fine particles simultaneously with the polyfunctional (meth) acrylate (B) and containing 30% by weight of silica fine particles but not satisfying the relational expression (1) is inferior in transparency. . Therefore, in Comparative Example 4 in which the silica fine particles are reduced to an amount (10% by weight) that can ensure transparency, the pencil hardness is insufficient.
  • the hard coat film having a hard coat film obtained by curing the curable composition of the present invention is excellent in pencil hardness and transparency, the surface hardness of a plastic optical component such as a flat panel display or a touch panel, Suitable for fields with excellent transparency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

A curable resin composition (C) which is characterized by containing an inorganic oxide (A) and a polyfunctional (meth)acrylate (B), and which is also characterized in that: the content of the inorganic oxide (A) is 25-80% by weight; the total light transmittance of this curable resin composition is 90% or more; and relational expression (1) is satisfied. T ≥ 91 - 1.25 × W/100 (1) (In the formula, W represents the content (wt%) of the inorganic oxide (A) in the curable resin composition; and T represents the total light transmittance (%) of the curable resin composition.)

Description

硬化性樹脂組成物およびその製造方法Curable resin composition and method for producing the same
 本発明は硬化性樹脂組成物およびその製造方法に関する。詳しくは、透明性に優れ、高い硬度を有する硬化物を与える硬化性樹脂組成物およびその製造方法に関する。 The present invention relates to a curable resin composition and a method for producing the same. Specifically, the present invention relates to a curable resin composition that provides a cured product having excellent transparency and high hardness, and a method for producing the same.
 近年、ハードコート膜を保護層にしたフィルムを表面に設けた液晶ディスプレイ、タッチパネルディスプレイ等の表示装置が、急速に普及している。特にスマートフォンやタブレット端末など指やペンで画面に直接触れて操作するタッチパネルを備えた電子機器の普及が著しく、このような機器ではタッチパネル表面の硬度向上が求められている。タッチパネルの材質としてはガラスよりも安全かつ軽量なPETやアクリルなどの樹脂の使用が望ましいが、これらの樹脂はガラスよりも硬度が劣るのが欠点である。 In recent years, display devices such as a liquid crystal display and a touch panel display provided with a film having a hard coat film as a protective layer on the surface are rapidly spreading. In particular, electronic devices such as smartphones and tablet terminals equipped with a touch panel that is operated by directly touching the screen with a finger or a pen are remarkably widespread, and such devices are required to improve the hardness of the touch panel surface. As the material of the touch panel, it is desirable to use a resin such as PET or acrylic that is safer and lighter than glass. However, these resins have a drawback in that they are inferior in hardness to glass.
 このため、硬度の高いシリカ微粒子をフィラーとして配合した活性エネルギー線硬化樹脂を主成分とするハードコート層を形成させる方法が知られているが、無機物であるシリカ微粒子は、有機物である活性エネルギー線硬化樹脂のモノマー中では均一に分散し難いため、シリカ微粒子の表面を有機処理することで、分散性を向上させる手法が行われている(特許文献1~3)。 For this reason, there is known a method of forming a hard coat layer mainly composed of an active energy ray-curable resin containing high-hardness silica fine particles as a filler, but inorganic silica fine particles are organic active energy rays. Since it is difficult to uniformly disperse in the monomer of the cured resin, a technique for improving the dispersibility by organically treating the surface of the silica fine particles has been performed (Patent Documents 1 to 3).
 しかし、本手法で作製した紫外線硬化樹脂組成物は、硬化物の透明性の観点からシリカ粒子の含有量に制限があり、所望するフィルム硬度が得られないという課題がある。 However, the ultraviolet curable resin composition produced by this method has a problem that the content of silica particles is limited from the viewpoint of the transparency of the cured product, and the desired film hardness cannot be obtained.
特開2000-264621号公報JP 2000-264621 A 特開2015-86103号公報JP2015-86103A 特開2015-36402号公報Japanese Patent Laid-Open No. 2015-36402
 本発明は透明性に優れ、かつ高い硬度を有する硬化物を与えることができる硬化性樹脂組成物およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a curable resin composition capable of providing a cured product having excellent transparency and high hardness, and a method for producing the same.
 本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。
 すなわち、本発明は、無機酸化物(A)と多官能(メタ)アクリレート(B)とを含有し、無機酸化物(A)の含有量が25~80重量%であり、硬化性樹脂組成物の全光線透過率が90%以上であり、下記の関係式(1)を満足することを特徴とする硬化性樹脂組成物(C);並びに無機酸化物(A)と多官能(メタ)アクリレート(B)とを含有する硬化性樹脂組成物(C)の製造方法であって、多官能(メタ)アクリレート(B)中で、触媒(b)存在下で、無機アルコキシド(a1)、金属無機酸塩(a2)および無機塩化物(a3)からなる群より選ばれる1種以上の無機酸化物前駆体(a)と水とを反応させて無機酸化物(A)を得る工程を含むことを特徴とする硬化性樹脂組成物(C)の製造方法である。
T≧91-1.25×W/100 (1)
[式中、Wは硬化性樹脂組成物中の無機酸化物(A)の含有量(重量%)、Tは硬化性樹脂組成物の全光線透過率(%)を表す。]
The inventors of the present invention have reached the present invention as a result of studies to achieve the above object.
That is, the present invention contains an inorganic oxide (A) and a polyfunctional (meth) acrylate (B), the content of the inorganic oxide (A) is 25 to 80% by weight, and the curable resin composition Curable resin composition (C), wherein the total light transmittance is 90% or more and satisfies the following relational expression (1); and inorganic oxide (A) and polyfunctional (meth) acrylate (B) is a method for producing a curable resin composition (C), which comprises an inorganic alkoxide (a1), a metal inorganic, in a polyfunctional (meth) acrylate (B) in the presence of a catalyst (b). Including a step of obtaining an inorganic oxide (A) by reacting one or more inorganic oxide precursors (a) selected from the group consisting of an acid salt (a2) and an inorganic chloride (a3) with water. It is a manufacturing method of the curable resin composition (C) characterized.
T ≧ 91-1.25 × W / 100 (1)
[Wherein, W represents the content (% by weight) of the inorganic oxide (A) in the curable resin composition, and T represents the total light transmittance (%) of the curable resin composition. ]
 本発明の硬化性樹脂組成物は透明性に優れ、かつ高い硬度を有する硬化物を与えることができるという効果を奏する。本発明の硬化性樹脂組成物は、例えばシリカなどの無機酸化物の微粒子を多量に含有しても透明性が損なわれず、かつ高い硬度を有する硬化物を与えることができる。本発明の硬化性樹脂組成物の製造方法によれば、透明性に優れ、かつ高い硬度を有する硬化物を与えることができる硬化性樹脂組成物を製造することができる。 The curable resin composition of the present invention has an effect that it can provide a cured product having excellent transparency and high hardness. Even if the curable resin composition of the present invention contains a large amount of fine particles of inorganic oxide such as silica, the transparency is not impaired and a cured product having high hardness can be obtained. According to the method for producing a curable resin composition of the present invention, it is possible to produce a curable resin composition that can provide a cured product having excellent transparency and high hardness.
 本発明の硬化性樹脂組成物(C)は、無機酸化物(A)と多官能(メタ)アクリレート(B)とを含有し、無機酸化物(A)の含有量が25~80重量%であり、硬化性樹脂組成物の全光線透過率が90%以上であることを特徴とする。本発明の硬化性樹脂組成物(C)は、さらに下記の関係式(1)を満足する。
T≧91-1.25×W/100 (1)
[式中、Wは硬化性樹脂組成物中の無機酸化物(A)の含有量(重量%)、Tは硬化性樹脂組成物の全光線透過率(%)を表す。]
The curable resin composition (C) of the present invention contains an inorganic oxide (A) and a polyfunctional (meth) acrylate (B), and the content of the inorganic oxide (A) is 25 to 80% by weight. And the total light transmittance of the curable resin composition is 90% or more. The curable resin composition (C) of the present invention further satisfies the following relational expression (1).
T ≧ 91-1.25 × W / 100 (1)
[Wherein, W represents the content (% by weight) of the inorganic oxide (A) in the curable resin composition, and T represents the total light transmittance (%) of the curable resin composition. ]
 硬化物の硬度の観点から、無機酸化物(A)としては、シリカ、ジルコニウム、チタン、ハフニウム、亜鉛、アルミニウム、ガリウム、インジウム、ゲルマニウムおよびスズ等の無機酸化物が挙げられる。無機酸化物(A)は1種であってもよく、2種以上であってもよい。 From the viewpoint of the hardness of the cured product, examples of the inorganic oxide (A) include inorganic oxides such as silica, zirconium, titanium, hafnium, zinc, aluminum, gallium, indium, germanium, and tin. 1 type may be sufficient as an inorganic oxide (A), and 2 or more types may be sufficient as it.
 硬度および透明性のバランスの観点から、本発明の硬化性樹脂組成物(C)中の無機酸化物(A)の含有量は、25~80重量%であり、好ましくは30~70重量%であり、更に好ましくは30~60重量%である。25重量%未満であると硬化物の硬度が不足し、80重量%を超えると、硬化物の透明性が悪化する。無機酸化物(A)に2種以上の化合物が含まれる場合、上記含有量は、それらの合計として定める。 From the viewpoint of balance between hardness and transparency, the content of the inorganic oxide (A) in the curable resin composition (C) of the present invention is 25 to 80% by weight, preferably 30 to 70% by weight. More preferably 30 to 60% by weight. When it is less than 25% by weight, the hardness of the cured product is insufficient, and when it exceeds 80% by weight, the transparency of the cured product is deteriorated. When 2 or more types of compounds are contained in an inorganic oxide (A), the said content is defined as those totals.
 無機酸化物(A)は、水酸基を有することが好ましく、無機酸化物(A)は、無機アルコキシド(a1)、金属無機酸塩(a2)および無機塩化物(a3)からなる群より選ばれる1種以上の無機酸化物前駆体(a)の加水分解縮合物であることが好ましく、このような加水分解縮合物として、多官能(メタ)アクリレート(B)中で、触媒(b)存在下で、無機アルコキシド(a1)、金属無機酸塩(a2)および無機塩化物(a3)からなる群より選ばれる1種以上の無機酸化物前駆体(a)と水とを反応させることにより得られるものがより好ましい。 The inorganic oxide (A) preferably has a hydroxyl group, and the inorganic oxide (A) is selected from the group consisting of an inorganic alkoxide (a1), a metal inorganic acid salt (a2) and an inorganic chloride (a3). It is preferable that it is a hydrolysis-condensation product of the inorganic oxide precursor (a) of a kind or more, and as such a hydrolysis-condensation product, in the polyfunctional (meth) acrylate (B), in the presence of the catalyst (b). Obtained by reacting water with at least one inorganic oxide precursor (a) selected from the group consisting of inorganic alkoxide (a1), metal inorganic acid salt (a2) and inorganic chloride (a3) Is more preferable.
 本発明の硬化性樹脂組成物(C)に含有される多官能(メタ)アクリレート(B)は、硬化物の硬度の観点から、少なくとも2個、好ましくは3~6個の(メタ)アクリロイル基を有する多官能(メタ)アクリレートが好ましい。 The polyfunctional (meth) acrylate (B) contained in the curable resin composition (C) of the present invention has at least 2, preferably 3-6 (meth) acryloyl groups from the viewpoint of the hardness of the cured product. Polyfunctional (meth) acrylates having the following are preferred.
 多官能(メタ)アクリレート(B)として、具体的には、以下のジ(メタ)アクリレート(B1)、3価以上の(メタ)アクリレート(B2)、ポリエステル(メタ)アクリレート(B3)、ウレタン(メタ)アクリレート(B4)、エポキシ(メタ)アクリレート(B5)、(メタ)アクリロイル基変性ブタジエン重合体(B6)、(メタ)アクリロイル基変性ジメチルポリシロキサン重合体(B7)が挙げられる。 Specifically, as the polyfunctional (meth) acrylate (B), the following di (meth) acrylate (B1), trivalent or higher (meth) acrylate (B2), polyester (meth) acrylate (B3), urethane ( Examples include (meth) acrylate (B4), epoxy (meth) acrylate (B5), (meth) acryloyl group-modified butadiene polymer (B6), and (meth) acryloyl group-modified dimethylpolysiloxane polymer (B7).
 ジ(メタ)アクリレート(B1)としては、ポリオキシアルキレン(アルキレンの炭素数は2~4)[数平均分子量106以上かつ3,000以下(以下、数平均分子量はゲルパーミエイションクロマトグラフィー(GPC)法による数平均分子量を意味し、Mnと略記する。)]のジ(メタ)アクリレート(B11):ポリエチレングリコール(好ましくはMn100~800、より好ましくはMn300~500)、ポリプロピレングリコール(好ましくはMn100~500、より好ましくはMn150~300)およびポリテトラメチレングリコール(好ましくはMn400~1000、より好ましくはMn500~800)の各ジ(メタ)アクリレートが挙げられる。 As the di (meth) acrylate (B1), polyoxyalkylene (alkylene having 2 to 4 carbon atoms) [number average molecular weight 106 to 3,000 (hereinafter, the number average molecular weight is determined by gel permeation chromatography (GPC)). )] Means a number average molecular weight by the method, abbreviated as Mn.)] Di (meth) acrylate (B11): polyethylene glycol (preferably Mn 100 to 800, more preferably Mn 300 to 500), polypropylene glycol (preferably Mn 100 To 500, more preferably Mn 150 to 300) and polytetramethylene glycol (preferably Mn 400 to 1000, more preferably Mn 500 to 800).
 また、ジ(メタ)アクリレート(B1)としては、2価フェノール化合物のアルキレンオキサイド(以下、「アルキレンオキサイド」をAOと略記する。)(2~30モル)付加物のジ(メタ)アクリレート:2価フェノール化合物[単環フェノール(カテコール、レゾルシノール、ハイドロキノン等)、縮合多環フェノール(ジヒドロキシナフタレン等)、ビスフェノール化合物(ビスフェノールA、-Fまたは-S等)]のAO付加物[レゾルシノールのエチレンオキサイド(EO)4モル付加物のジ(メタ)アクリレート、ジヒドロキシナフタレンのプロピレンオキサイド(PO)4モル付加物のジ(メタ)アクリレート、ビスフェノールA、-Fまたは-Sの、EO2モル、またはPO4モル各付加物等]の各ジ(メタ)アクリレートが挙げられる。 The di (meth) acrylate (B1) is an alkylene oxide of a dihydric phenol compound (hereinafter, “alkylene oxide” is abbreviated as AO) (2 to 30 mol) of an adduct di (meth) acrylate: 2 Of polyhydric phenol compounds [monocyclic phenols (catechol, resorcinol, hydroquinone, etc.), condensed polycyclic phenols (dihydroxynaphthalene, etc.), bisphenol compounds (bisphenol A, -F, -S, etc.)] [resorcinol ethylene oxide ( EO) 4 mol adduct di (meth) acrylate, dihydroxynaphthalene propylene oxide (PO) 4 mol adduct di (meth) acrylate, bisphenol A, -F or -S, EO 2 mol, or PO 4 mol each addition Di (meth) acrylate of Door and the like.
 ジ(メタ)アクリレート(B1)として、炭素数2~30の脂肪族2価アルコールのジ(メタ)アクリレート:ネオペンチルグリコールおよび1,6-ヘキサンジオールの各ジ(メタ)アクリレートが挙げられる。 Examples of the di (meth) acrylate (B1) include di (meth) acrylates of aliphatic dihydric alcohols having 2 to 30 carbon atoms: each di (meth) acrylate of neopentyl glycol and 1,6-hexanediol.
 ジ(メタ)アクリレート(B1)として、炭素数6~30の脂環含有2価アルコールのジ(メタ)アクリレート:ジメチロールトリシクロデカンのジ(メタ)アクリレート、シクロヘキサンジメタノールのジ(メタ)アクリレートおよび水素化ビスフェノールAのジ(メタ)アクリレートが挙げられる。
 ジ(メタ)アクリレート(B1)として、炭素数3~40の多価アルコールのジ(メタ)アクリレート:トリメチロールプロパンEO3モル付加物ジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート等の水酸基を分子内に有するジ(メタ)アクリレートも挙げられる。
Di (meth) acrylate (B1), di (meth) acrylate of dihydric alcohol containing 6-30 carbon atoms: di (meth) acrylate of dimethyloltricyclodecane, di (meth) acrylate of cyclohexanedimethanol And di (meth) acrylate of hydrogenated bisphenol A.
As di (meth) acrylate (B1), hydroxyl groups such as di (meth) acrylate of polyhydric alcohol having 3 to 40 carbon atoms: trimethylolpropane EO 3 mol adduct di (meth) acrylate, pentaerythritol di (meth) acrylate, etc. The di (meth) acrylate which has in a molecule | numerator is also mentioned.
 3価以上の(メタ)アクリレート(B2)としては、炭素数3~40の多価アルコールおよびそのAO付加物のポリ(メタ)アクリレート:
 トリメチロールプロパントリ(メタ)アクリレート、グリセリンのトリ(メタ)アクリレート、トリメチロールプロパンのEO3モルまたはPO3モル付加物の各トリ(メタ)アクリレート、グリセリンのEO3モルまたはPO3モル付加物の各トリ(メタ)アクリレート、ペンタエリスリトールのトリ(メタ)アクリレート、ペンタエリスリトールのテトラ(メタ)アクリレート、ペンタエリスリトールのEO4モル付加物のテトラ(メタ)アクリレート、ジペンタエリスリトールのテトラ(メタ)アクリレート、ジペンタエリスリトールのペンタ(メタ)アクリレート、ジペンタエリスリトールのヘキサ(メタ)アクリレート、ジペンタエリスリトールのEO付加物のヘキサ(メタ)アクリレート、ジペンタエリスリトールのEO付加物のペンタ(メタ)アクリレート等が挙げられる。
Examples of the trivalent or higher (meth) acrylate (B2) include polyhydric alcohols having 3 to 40 carbon atoms and poly (meth) acrylates of AO adducts thereof:
Trimethylolpropane tri (meth) acrylate, glycerol tri (meth) acrylate, trimethylolpropane EO3 mol or PO3 mol adduct tri (meth) acrylate, glycerol EO3 mol or PO3 mol adduct tri (meta) ) Acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol EO 4 mol adduct tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol EO adduct hexa (meth) acrylate, dipentaerythritol EO adduct Penta (meth) acrylate.
 なお、後述するように、多官能(メタ)アクリレート(B)は、無機酸化物(A)中の水酸基と反応して化学結合を生成する反応性基(α)を有することが好ましい。そして、そのような反応性基(α)としての水酸基を分子内に有する3価以上の(メタ)アクリレート(B21)としては、多価アルコールと、アクリル酸またはメタクリル酸とのエステル反応物で水酸基を1個以上有するものが挙げられる。
 そのような水酸基を分子内に有する3価以上の(メタ)アクリレート(B21)としては、例えば、ペンタエリスリトールのトリ(メタ)アクリレート;ペンタエリスリトールのEO付加物のトリ(メタ)アクリレート;ジペンタエリスリトールのペンタ(メタ)アクリレート、ジペンタエリスリトールのテトラ(メタ)アクリレート、ジペンタエリスリトールのトリ(メタ)アクリレート、ジペンタエリスリトールのEO付加物のペンタ(メタ)アクリレート;トリペンタエリスリトールのポリ(メタ)アクリレートなどが挙げられる。
As will be described later, the polyfunctional (meth) acrylate (B) preferably has a reactive group (α) that reacts with a hydroxyl group in the inorganic oxide (A) to form a chemical bond. The trivalent or higher (meth) acrylate (B21) having a hydroxyl group as the reactive group (α) in the molecule is an ester reaction product of a polyhydric alcohol and acrylic acid or methacrylic acid. Having at least one of the above.
Examples of the trivalent or higher (meth) acrylate (B21) having a hydroxyl group in the molecule include, for example, pentaerythritol tri (meth) acrylate; pentaerythritol EO adduct tri (meth) acrylate; dipentaerythritol Penta (meth) acrylate, tetra (meth) acrylate of dipentaerythritol, tri (meth) acrylate of dipentaerythritol, penta (meth) acrylate of EO adduct of dipentaerythritol; poly (meth) acrylate of tripentaerythritol Etc.
 さらに、多価アルコールと、アクリル酸またはメタクリル酸とのエステル反応では一般に、化学当量的に均一のものではなく、異なったエステル結合の数(すなわち水酸基の数)を有する多官能(メタ)アクリレート(B)の混合物が得られる。例えば、水酸基を6個有するジペンタエリスリトール1モルに6モルのアクリル酸を反応させてジペンタエリスリトールのヘキサアクリレートを製造する際には、通常、水酸基1個を有するジペンタエリスリトールのペンタアクリレートや水酸基2個を有するジペンタエリスリトールのテトラアクリレートも副生し、これらの混合物となる。本発明の多官能(メタ)アクリレート(B)として、このような混合物も使用できる。 Furthermore, ester reactions of polyhydric alcohols with acrylic acid or methacrylic acid are generally not chemically equivalent and are polyfunctional (meth) acrylates having different numbers of ester bonds (ie, the number of hydroxyl groups) ( A mixture of B) is obtained. For example, when producing hexaacrylate of dipentaerythritol by reacting 6 mol of acrylic acid with 1 mol of dipentaerythritol having 6 hydroxyl groups, the pentaacrylate or hydroxyl group of dipentaerythritol having 1 hydroxyl group is usually used. Two dipentaerythritol tetraacrylates are also by-produced and become a mixture thereof. Such a mixture can also be used as the polyfunctional (meth) acrylate (B) of the present invention.
 ポリエステル(メタ)アクリレート(B3)としては、多価カルボン酸と多価アルコールとエステル形成性の(メタ)アクリロイル基含有化合物のエステル化により得られる複数のエステル結合と5個以上の(メタ)アクリロイル基を有するMn150以上かつMn4,000以下のポリエステル(メタ)アクリレートが挙げられる。 The polyester (meth) acrylate (B3) includes a plurality of ester bonds and five or more (meth) acryloyl groups obtained by esterification of a polycarboxylic acid, a polyhydric alcohol, and an ester-forming (meth) acryloyl group-containing compound. Examples thereof include polyester (meth) acrylates having a Mn of 150 or more and a Mn of 4,000 or less.
 上記の多価カルボン酸としては、例えば脂肪族多価カルボン酸[例えばマロン酸、マレイン酸(無水物)、アジピン酸、セバシン酸、コハク酸、酸無水物の反応物(ジペンタエリスリトールと無水マレイン酸の反応物等)]、脂環式多価カルボン酸[例えばシクロヘキサンジカルボン酸、テトラヒドロ(無水)フタル酸、メチルテトラヒドロ(無水)フタル酸]および芳香族多価カルボン酸[例えばイソフタル酸、テレフタル酸、フタル酸(無水物)]が挙げられる。
 多価アルコールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,4-ブチレングリコール等が挙げられる。
 エステル形成性の(メタ)アクリロイル基含有化合物としては、アクリル酸、メタクリル酸、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート等が挙げられる。
Examples of the polyvalent carboxylic acid include aliphatic polycarboxylic acids [for example, malonic acid, maleic acid (anhydride), adipic acid, sebacic acid, succinic acid, acid anhydride reaction products (dipentaerythritol and maleic anhydride). Acid reactants)], cycloaliphatic polycarboxylic acids [eg cyclohexanedicarboxylic acid, tetrahydro (anhydride) phthalic acid, methyltetrahydro (anhydride) phthalic acid] and aromatic polycarboxylic acids [eg isophthalic acid, terephthalic acid Phthalic acid (anhydride)].
Examples of the polyhydric alcohol include ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol and the like.
Examples of the ester-forming (meth) acryloyl group-containing compound include acrylic acid, methacrylic acid, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and the like.
 ウレタン(メタ)アクリレート(B4)としては、ポリイソシアネートと、ポリオールと、水酸基含有(メタ)アクリレートとのウレタン化反応により得られる複数のウレタン結合と2個以上の(メタ)アクリロイル基を有するMn400以上かつMn5,000以下のウレタン(メタ)アクリレートが挙げられる。 As urethane (meth) acrylate (B4), Mn400 or more having a plurality of urethane bonds and two or more (meth) acryloyl groups obtained by urethanization reaction of polyisocyanate, polyol, and hydroxyl group-containing (meth) acrylate In addition, urethane (meth) acrylate having Mn of 5,000 or less can be mentioned.
 上記ポリイソシアネートとしては、例えば脂肪族ポリイソシアネート[ヘキサメチレンジイソシアネート等]、芳香(脂肪)族ポリイソシアネート[2,4-または2,6-トリレンジイソシアネート、1,5-ナフタレンジイソシアネート、キシリレンジイソシアネート等]、脂環式ポリイソシアネート[イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)等]が挙げられる。
 ポリオールとしては、エチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、ポリエーテルポリオール、ポリカプロラクトンポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリテトラメチレングリコール等が挙げられる。
 水酸基含有(メタ)アクリレートとしては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
Examples of the polyisocyanate include aliphatic polyisocyanate [hexamethylene diisocyanate and the like], aromatic (aliphatic) polyisocyanate [2,4- or 2,6-tolylene diisocyanate, 1,5-naphthalene diisocyanate, xylylene diisocyanate, and the like. And cycloaliphatic polyisocyanates [isophorone diisocyanate, 4,4′-methylenebis (cyclohexyl isocyanate) and the like].
Examples of the polyol include ethylene glycol, 1,4-butanediol, neopentyl glycol, polyether polyol, polycaprolactone polyol, polyester polyol, polycarbonate polyol, and polytetramethylene glycol.
Examples of the hydroxyl group-containing (meth) acrylate include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and the like.
 エポキシ(メタ)アクリレート(B5)としては、多価(2~4価)エポキシドと(メタ)アクリル酸の反応により得られるMn400以上かつMn5,000以下のエポキシ(メタ)アクリレート等が挙げられる。 Examples of the epoxy (meth) acrylate (B5) include an epoxy (meth) acrylate having a Mn of 400 or more and a Mn of 5,000 or less obtained by a reaction between a polyvalent (2 to 4 valent) epoxide and (meth) acrylic acid.
 (メタ)アクリロイル基変性ブタジエン重合体(B6)としては、主鎖および/または側鎖に(メタ)アクリロイル基を有するポリブタジエンポリ(メタ)アクリレート(Mn500~500,000)等が挙げられる。 Examples of the (meth) acryloyl group-modified butadiene polymer (B6) include polybutadiene poly (meth) acrylate (Mn 500 to 500,000) having a (meth) acryloyl group in the main chain and / or side chain.
 (メタ)アクリロイル基変性ジメチルポリシロキサン重合体(B7)としては、主鎖および/または側鎖に(メタ)アクリロイル基を有するMn300~20,000のジメチルポリシロキサンポリ(メタ)アクリレートが挙げられる。 (Meth) acryloyl group-modified dimethylpolysiloxane polymer (B7) includes dimethylpolysiloxane poly (meth) acrylate having Mn of 300 to 20,000 having (meth) acryloyl group in the main chain and / or side chain.
 上記(B1)~(B7)は単独で用いても、2種以上を併用してもよい。これら(B1)~(B7)のうち、硬化物の硬度の観点から好ましいのは(B2)~(B7)、さらに好ましいのは(B2)および(B4)である。また、密着性、屈曲性の観点から単官能(メタ)アクリレートを併用しても差し支えない。 The above (B1) to (B7) may be used alone or in combination of two or more. Among these (B1) to (B7), from the viewpoint of the hardness of the cured product, (B2) to (B7) are preferable, and (B2) and (B4) are more preferable. Further, from the viewpoint of adhesion and flexibility, monofunctional (meth) acrylate may be used in combination.
 本発明における多官能(メタ)アクリレート(B)は、水酸基と反応し得る反応性基(α)を有する多官能(メタ)アクリレート(B)を含有していることがより好ましい。多官能(メタ)アクリレート(B)中の反応性基(α)を有する多官能(メタ)アクリレートの含量は、好ましくは50モル%以上、より好ましくは90モル%以上である。本発明においては、多官能(メタ)アクリレート(B)が反応性基(α)を有する多官能(メタ)アクリレート(B)であることが更に好ましい。 The polyfunctional (meth) acrylate (B) in the present invention more preferably contains a polyfunctional (meth) acrylate (B) having a reactive group (α) capable of reacting with a hydroxyl group. The content of the polyfunctional (meth) acrylate having a reactive group (α) in the polyfunctional (meth) acrylate (B) is preferably 50 mol% or more, more preferably 90 mol% or more. In the present invention, the polyfunctional (meth) acrylate (B) is more preferably a polyfunctional (meth) acrylate (B) having a reactive group (α).
 水酸基と反応し得る反応性基(α)としては、水酸基、カルボキシル基、アミノ基、チオール基、スルホン酸基、リン酸基、アミド基などが挙げられる。反応性基(α)は無機酸化物(A)中の水酸基と反応し、有機-無機界面に化学結合が生成するため、高い硬度が発現する。これらの反応性基(α)のうち、水酸基、カルボキシル基、リン酸基が好ましく、水酸基またはカルボキシル基がさらに好ましく、水酸基が最も好ましい。 Examples of the reactive group (α) capable of reacting with a hydroxyl group include a hydroxyl group, a carboxyl group, an amino group, a thiol group, a sulfonic acid group, a phosphoric acid group, and an amide group. The reactive group (α) reacts with the hydroxyl group in the inorganic oxide (A), and a chemical bond is generated at the organic-inorganic interface, so that high hardness is exhibited. Of these reactive groups (α), a hydroxyl group, a carboxyl group, and a phosphate group are preferred, a hydroxyl group or a carboxyl group is more preferred, and a hydroxyl group is most preferred.
 本発明の硬化性樹脂組成物(C)においては、多官能(メタ)アクリレート(B)が水酸基と反応し得る反応性基(α)を有する多官能(メタ)アクリレートを含有し、無機酸化物(A)が水酸基を有し、多官能(メタ)アクリレート(B)中の反応性基(α)の少なくとも一部と無機酸化物(A)中の水酸基の少なくとも一部とが反応して化学結合していることが好ましい。 In the curable resin composition (C) of the present invention, the polyfunctional (meth) acrylate (B) contains a polyfunctional (meth) acrylate having a reactive group (α) capable of reacting with a hydroxyl group, and is an inorganic oxide. (A) has a hydroxyl group, and at least a part of the reactive group (α) in the polyfunctional (meth) acrylate (B) reacts with at least a part of the hydroxyl group in the inorganic oxide (A) to react with the chemistry. Bonding is preferred.
 硬化性樹脂組成物(C)中の無機酸化物(A)および多官能(メタ)アクリレート(B)の合計重量に基づいて、多官能(メタ)アクリレート(B)の含有量は硬度および透明性の観点から、通常、20~75重量%であり、好ましくは25~70重量%であり、より好ましくは30~60重量%である。多官能(メタ)アクリレート(B)に2種以上の化合物が含まれる場合、上記含有量は、それらの合計として定める。 Based on the total weight of the inorganic oxide (A) and the polyfunctional (meth) acrylate (B) in the curable resin composition (C), the content of the polyfunctional (meth) acrylate (B) is hardness and transparency. In view of the above, it is usually 20 to 75% by weight, preferably 25 to 70% by weight, and more preferably 30 to 60% by weight. When 2 or more types of compounds are contained in polyfunctional (meth) acrylate (B), the said content is defined as those totals.
 本発明の硬化性樹脂組成物(C)の全光線透過率は90%以上である。
 なお、本発明における全光線透過率は、実施例の測定方法で詳述するように、2枚のスライドで硬化性樹脂組成物を挟んで、JIS-K7105に準拠し、全光線透過率測定装置で測定する。
The total light transmittance of the curable resin composition (C) of the present invention is 90% or more.
The total light transmittance in the present invention is determined in accordance with JIS-K7105 by sandwiching the curable resin composition between two slides as described in detail in the measurement method of the examples. Measure with
 本発明は、透明性に優れ、かつ高い硬度を有する硬化物を与えることができる硬化性樹脂組成物を提供することが課題であるが、硬度を上げるために無機酸化物(A)の含有量を増やすと、透明性を損なうという相反する関係にある。
 そこで、本発明の硬化性樹脂組成物(C)は、無機酸化物(A)の含有量と硬化性樹脂組成物の全光線透過率に関する下記の関係式(1)を満足する。
An object of the present invention is to provide a curable resin composition that is excellent in transparency and can provide a cured product having high hardness. However, in order to increase the hardness, the content of the inorganic oxide (A) Increasing the value has a contradictory relationship of impairing transparency.
Therefore, the curable resin composition (C) of the present invention satisfies the following relational expression (1) regarding the content of the inorganic oxide (A) and the total light transmittance of the curable resin composition.
T≧91-1.25×W/100 (1)
 なお、関係式(1)中で、Wは硬化性樹脂組成物中の無機酸化物(A)の含有量(重量%)、Tは硬化性樹脂組成物の全光線透過率(%)を表す。
T ≧ 91-1.25 × W / 100 (1)
In relational expression (1), W represents the content (% by weight) of the inorganic oxide (A) in the curable resin composition, and T represents the total light transmittance (%) of the curable resin composition. .
 先に述べたように、硬度を上げるために無機酸化物の含有量を高くする必要があるが、一般の無機酸化物の微粒子、例えばシリカ微粒子を多官能(メタ)アクリレート(B)に混合して分散させようとした場合に、例えばシリカ微粒子の含有量を25重量%より多くしようとすると透明性が損なわれる傾向がある。
 そのため、本発明の硬化性樹脂組成物(C)を製造する際に、多官能(メタ)アクリレート(B)中で、触媒(b)存在下で、無機アルコキシド(a1)、金属無機酸塩(a2)および無機塩化物(a3)からなる群より選ばれる1種以上の無機酸化物前駆体(a)と水とを反応させて、無機酸化物(A)を得る工程を含むことが好ましい。
As described above, in order to increase the hardness, it is necessary to increase the content of the inorganic oxide. However, fine particles of general inorganic oxide, for example, silica fine particles are mixed with the polyfunctional (meth) acrylate (B). When trying to disperse, for example, if the content of the silica fine particles is to be increased more than 25% by weight, the transparency tends to be impaired.
Therefore, when producing the curable resin composition (C) of the present invention, in the polyfunctional (meth) acrylate (B), in the presence of the catalyst (b), the inorganic alkoxide (a1), the metal inorganic acid salt ( It is preferable to include a step of obtaining inorganic oxide (A) by reacting one or more inorganic oxide precursors (a) selected from the group consisting of a2) and inorganic chloride (a3) with water.
 本発明の硬化性樹脂組成物(C)に含有される無機酸化物(A)が、このように多官能(メタ)アクリレート(B)中で無機酸化物前駆体(a)と水とを反応させて製造されたものであると、該無機酸化物(A)は多官能(メタ)アクリレート(B)との相溶性に優れる。硬化性樹脂組成物がこのようにして得られた無機酸化物(A)を含有することにより硬化物の硬度が高くなる。
 また、無機酸化物(A)が上記方法により得られるものであると、硬化性樹脂組成物(C)中の無機酸化物(A)の含量が25~80重量%であっても、硬化物が透明性に優れるものとなる。
The inorganic oxide (A) contained in the curable resin composition (C) of the present invention thus reacts the inorganic oxide precursor (a) with water in the polyfunctional (meth) acrylate (B). The inorganic oxide (A) is excellent in compatibility with the polyfunctional (meth) acrylate (B). When the curable resin composition contains the inorganic oxide (A) thus obtained, the hardness of the cured product is increased.
Further, when the inorganic oxide (A) is obtained by the above method, the cured product can be obtained even if the content of the inorganic oxide (A) in the curable resin composition (C) is 25 to 80% by weight. Is excellent in transparency.
 本発明の硬化性樹脂組成物(C)は、無機酸化物(A)を多官能(メタ)アクリレート(B)と混合して製造するのではなく、無機酸化物前駆体(a)と水を、触媒(b)存在下で、多官能(メタ)アクリレート(B)中で反応させて製造した無機酸化物前駆体(a)の加水分解縮合物を無機酸化物(A)として用いることが好ましい。
 また、無機酸化物(A)は、無機アルコキシド(a1)、金属無機酸塩(a2)および無機塩化物(a3)からなる群より選ばれる1種以上の無機酸化物前駆体(a)の加水分解縮合物であることが好ましい。上記無機酸化物前駆体(a)の加水分解縮合物である無機酸化物(A)は、通常水酸基を有するため好ましい。
The curable resin composition (C) of the present invention is not produced by mixing the inorganic oxide (A) with the polyfunctional (meth) acrylate (B), but the inorganic oxide precursor (a) and water. The hydrolysis condensate of the inorganic oxide precursor (a) produced by reacting in the polyfunctional (meth) acrylate (B) in the presence of the catalyst (b) is preferably used as the inorganic oxide (A). .
In addition, the inorganic oxide (A) is a hydrolyzate of one or more inorganic oxide precursors (a) selected from the group consisting of inorganic alkoxides (a1), metal inorganic acid salts (a2) and inorganic chlorides (a3). A decomposition condensate is preferred. The inorganic oxide (A) which is a hydrolysis-condensation product of the inorganic oxide precursor (a) is preferable because it usually has a hydroxyl group.
 無機アルコキシド(a1)としては、ケイ素アルコキシド、ジルコニウムアルコキシド、チタンアルコキシド、ハフニウムアルコキシド、亜鉛アルコキシド、アルミニウムアルコキシド、ガリウムアルコキシド、インジウムアルコキシド、ゲルマニウムアルコキシド、スズアルコキシドなどが挙げられる。これらは1種のみ用いてもよく、2種以上を組合わせて用いてもよい。
 これらのうち、硬度の観点から好ましいのは、シリカアルコキシド、チタンアルコキシド、ジルコニウムアルコキシドである。シリカアルコキシドとして、好ましくは、テトラエトキシシラン、テトラ-n-ブトキシシランが挙げられ、チタンアルコキシドとして、好ましくはテトラエトキシチタン、テトラ-n-ブトキシチタンが挙げられる。
Examples of the inorganic alkoxide (a1) include silicon alkoxide, zirconium alkoxide, titanium alkoxide, hafnium alkoxide, zinc alkoxide, aluminum alkoxide, gallium alkoxide, indium alkoxide, germanium alkoxide, and tin alkoxide. These may be used alone or in combination of two or more.
Among these, silica alkoxide, titanium alkoxide, and zirconium alkoxide are preferable from the viewpoint of hardness. The silica alkoxide is preferably tetraethoxysilane or tetra-n-butoxysilane, and the titanium alkoxide is preferably tetraethoxytitanium or tetra-n-butoxytitanium.
 金属無機酸塩(a2)としては、チタン、ジルコニウムなどの金属と、硝酸、硫酸などの無機酸の組み合わせが挙げられ、具体例としては、4硝酸チタン、オキシ硫酸チタン、オキシ硝酸ジルコニウム、硫酸ジルコニウムなどが挙げられる。これらは1種のみ用いてもよく、2種以上を組合わせて用いてもよい。
 これらのうち好ましいのは、4硝酸チタン、オキシ硫酸チタン、オキシ硝酸ジルコニウムである。これらは1種のみ用いてもよく、2種以上を組合わせて用いてもよい。
Examples of the metal inorganic acid salt (a2) include a combination of a metal such as titanium or zirconium and an inorganic acid such as nitric acid or sulfuric acid. Specific examples include titanium nitrate, titanium oxysulfate, zirconium oxynitrate, and zirconium sulfate. Etc. These may be used alone or in combination of two or more.
Of these, titanium tetranitrate, titanium oxysulfate, and zirconium oxynitrate are preferable. These may be used alone or in combination of two or more.
 無機塩化物(a3)としては、金属塩化物と非金属塩化物が挙げられ、例えば、4塩化チタン、4塩化ジルコニウム、4塩化ハフニウム、塩化亜鉛、塩化アルミニウム、塩化ガリウム、塩化インジウム、塩化スズなどの金属塩化物と、4塩化ケイ素、4塩化ゲルマニウムなどの非金属塩化物が挙げられる。これらは1種のみ用いてもよく、2種以上を組合わせて用いてもよい。
 これらのうち好ましいのは、ケイ素、チタン、ジルコニウムなどの塩化物が挙げられ、具体的には、4塩化ケイ素、4塩化チタンおよび4塩化ジルコニウムである。
Examples of the inorganic chloride (a3) include metal chlorides and nonmetal chlorides, such as titanium tetrachloride, zirconium tetrachloride, hafnium tetrachloride, zinc chloride, aluminum chloride, gallium chloride, indium chloride, tin chloride, and the like. And metal chlorides such as silicon tetrachloride and germanium tetrachloride. These may be used alone or in combination of two or more.
Among these, preferred are chlorides such as silicon, titanium and zirconium, specifically silicon tetrachloride, titanium tetrachloride and zirconium tetrachloride.
 これらの無機酸化物前駆体(a)のうち、無機アルコキシド(a1)が好ましい。 Of these inorganic oxide precursors (a), inorganic alkoxides (a1) are preferred.
 無機酸化物(A)の製造に使用する多官能(メタ)アクリレート(B)は、上述した多官能(メタ)アクリレート(B)と同じである。多官能(メタ)アクリレート(B)は、水酸基と反応し得る反応性基(α)を有する多官能(メタ)アクリレートを含むことが好ましく、水酸基と反応し得る反応性基(α)を有する多官能(メタ)アクリレートであることがさらに好ましい。反応性基(α)を有する多官能(メタ)アクリレート(B)中で、触媒(b)存在下で、無機アルコキシド(a1)、金属無機酸塩(a2)および無機塩化物(a3)からなる群より選ばれる1種以上の無機酸化物前駆体(a)と水とを反応させることにより、無機酸化物(A)及び、多官能(メタ)アクリレート(B)を含有し、多官能(メタ)アクリレート(B)中の反応性基(α)の少なくとも一部と無機酸化物(A)中の水酸基の少なくとも一部とが反応して化学結合している硬化性樹脂組成物を製造することができる。このような硬化性樹脂組成物は、本発明の硬化性樹脂組成物(C)として好ましい。
 無機酸化物(A)の製造における多官能(メタ)アクリレート(B)の使用量は特に限定されないが、例えば、無機酸化物前駆体(a)及び多官能(メタ)アクリレート(B)の合計重量に対して20~75重量%が好ましく、より好ましくは25~70重量%、さらに好ましくは30~60重量%である。
The polyfunctional (meth) acrylate (B) used for production of the inorganic oxide (A) is the same as the polyfunctional (meth) acrylate (B) described above. The polyfunctional (meth) acrylate (B) preferably contains a polyfunctional (meth) acrylate having a reactive group (α) that can react with a hydroxyl group, and has a reactive group (α) that can react with a hydroxyl group. More preferably, it is a functional (meth) acrylate. In the polyfunctional (meth) acrylate (B) having a reactive group (α), the inorganic alkoxide (a1), the metal inorganic acid salt (a2) and the inorganic chloride (a3) are formed in the presence of the catalyst (b). By reacting one or more inorganic oxide precursors (a) selected from the group with water, the inorganic oxide (A) and the polyfunctional (meth) acrylate (B) are contained, and the polyfunctional (meta ) Producing a curable resin composition in which at least a part of the reactive group (α) in the acrylate (B) and at least a part of the hydroxyl group in the inorganic oxide (A) are reacted and chemically bonded. Can do. Such a curable resin composition is preferable as the curable resin composition (C) of the present invention.
Although the usage-amount of polyfunctional (meth) acrylate (B) in manufacture of an inorganic oxide (A) is not specifically limited, For example, the total weight of an inorganic oxide precursor (a) and a polyfunctional (meth) acrylate (B) The content is preferably 20 to 75% by weight, more preferably 25 to 70% by weight, still more preferably 30 to 60% by weight.
 本発明では、無機酸化物前駆体(a)と水とを触媒(b)存在下で反応させることが好ましく、触媒(b)としては酸触媒(b1)、塩基触媒(b2)が挙げられる。
 これらのうち酸触媒(b1)が好ましい。触媒(b)の使用量は触媒の種類等により適宜選択すればよいが、例えば、無機酸化物前駆体(a)100重量部に対して0.1~15重量部使用することが好ましく、0.1~10重量部使用することがより好ましい。
In the present invention, the inorganic oxide precursor (a) and water are preferably reacted in the presence of the catalyst (b), and examples of the catalyst (b) include an acid catalyst (b1) and a base catalyst (b2).
Of these, the acid catalyst (b1) is preferred. The amount of the catalyst (b) used may be appropriately selected depending on the type of the catalyst and the like. For example, it is preferable to use 0.1 to 15 parts by weight with respect to 100 parts by weight of the inorganic oxide precursor (a). It is more preferable to use 1 to 10 parts by weight.
 酸触媒(b1)としては無機酸と有機酸が挙げられ、無機酸としては、塩酸、硫酸、硝酸、リン酸、ホウ酸が挙げられる。
 有機酸としては、スルホン酸(p-トルエンスルホン酸等)、カルボン酸、ヒドロキシ酸、シュウ酸が挙げられる。
Examples of the acid catalyst (b1) include inorganic acids and organic acids. Examples of the inorganic acids include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and boric acid.
Examples of the organic acid include sulfonic acid (such as p-toluenesulfonic acid), carboxylic acid, hydroxy acid, and oxalic acid.
 塩基触媒(b2)としては金属水酸化物、有機アミンなどが挙げられ、金属水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムが挙げられる。 Examples of the base catalyst (b2) include metal hydroxides and organic amines, and examples of the metal hydroxide include sodium hydroxide, potassium hydroxide, and lithium hydroxide.
 有機アミンとしては、脂肪族アミン、脂環式アミン、芳香族アミン、複素環アミンが挙げられる。
 脂肪族アミンとしては、ヘキシルアミン、オクチルアミン、メチルヘキシルアミン、メチルオクチルアミン、ジメチルヘキシルアミン、ジメチルオクチルアミン、ジメチルラウリルアミンおよびジメチルセチルアミンなどのアルキル基の炭素数が1~18のモノ-、ジ-またはトリ-アルキルアミンが挙げられる。
Examples of organic amines include aliphatic amines, alicyclic amines, aromatic amines, and heterocyclic amines.
Examples of the aliphatic amine include mono- having 1 to 18 carbon atoms in the alkyl group such as hexylamine, octylamine, methylhexylamine, methyloctylamine, dimethylhexylamine, dimethyloctylamine, dimethyllaurylamine, and dimethylcetylamine, Di- or tri-alkylamines are mentioned.
 脂環族アミンとしては、シクロブチルアミン、シクロヘキシルアミン、シクロペンチルアミン、シクロオクチルアミン、N-メチルシクロヘキシルアミンおよびN-エチルシクロヘキシルアミンなどのシクロアルキル基の炭素数が4~12のシクロアルキルアミンおよびこれらのアルキル(炭素数1~6)置換体が挙げられる。 Examples of the alicyclic amine include cycloalkylamine having 4 to 12 carbon atoms in the cycloalkyl group such as cyclobutylamine, cyclohexylamine, cyclopentylamine, cyclooctylamine, N-methylcyclohexylamine, and N-ethylcyclohexylamine, and the like. Examples include alkyl (having 1 to 6 carbon atoms) substituents.
 芳香族アミンとしてはアニリン、ジフェニルアミンなどの炭素数が6~18の芳香族アミンが挙げられる。 Examples of the aromatic amine include aromatic amines having 6 to 18 carbon atoms such as aniline and diphenylamine.
 複素環アミンとしては、モルホリンなどの炭素数が4~10の複素環アミンが挙げられる。 Examples of the heterocyclic amine include heterocyclic amines having 4 to 10 carbon atoms such as morpholine.
 無機酸化物(A)として無機酸化物前駆体(a)の加水分解縮合物を生成させる際の無機酸化物前駆体(a)と水とのモル比(無機酸化物前駆体(a)/水)は、2~200が好ましく、より好ましくは5~150、さらに好ましくは10~100である。
 このモル比が2未満では硬化物の透明性が悪化する傾向にあり、200を超えると硬化物の硬度が不十分となる傾向がある。
Molar ratio of inorganic oxide precursor (a) to water (inorganic oxide precursor (a) / water) when forming a hydrolyzed condensate of inorganic oxide precursor (a) as inorganic oxide (A) ) Is preferably 2 to 200, more preferably 5 to 150, and still more preferably 10 to 100.
If this molar ratio is less than 2, the transparency of the cured product tends to deteriorate, and if it exceeds 200, the hardness of the cured product tends to be insufficient.
 上記反応において無機酸化物前駆体(a)の加水分解に用いる水は、一括で添加しても、分割して添加しても、滴下して添加してもよい。 The water used for hydrolysis of the inorganic oxide precursor (a) in the above reaction may be added all at once, dividedly, or added dropwise.
 上記反応により無機酸化物(A)を製造する際の温度は、40~80℃であることが好ましく、60~70℃であることがより好ましい。温度が40℃以上であると反応速度が速くなるため、生産性が向上する。また、80℃以下であると多官能(メタ)アクリレートが反応系中で重合しポリマー化することなく、無機酸化前駆体(a)の加水分解物の重縮合を進行させることができる。 The temperature at which the inorganic oxide (A) is produced by the above reaction is preferably 40 to 80 ° C., more preferably 60 to 70 ° C. When the temperature is 40 ° C. or higher, the reaction rate is increased, and thus productivity is improved. Moreover, polycondensation of the hydrolyzate of an inorganic oxidation precursor (a) can be advanced, without polyfunctional (meth) acrylate superposing | polymerizing and polymerizing in a reaction system as it is 80 degrees C or less.
 上記反応により無機酸化物(A)を製造する際の反応時間は、30分~6時間であることが好ましく、2時間~4時間であることがより好ましい。 The reaction time for producing the inorganic oxide (A) by the above reaction is preferably 30 minutes to 6 hours, more preferably 2 hours to 4 hours.
 本発明の硬化性樹脂組成物(C)は全光線透過率が90%以上であることから、透明性に優れる硬化物を与えることができる。
 本発明の硬化性樹脂組成物(C)の硬化物のヘイズ値は1%以下であることが好ましい。1%を超えると硬化物の透明性が悪化する。
 なお、硬化物のヘイズ値は、実施例の測定方法で詳述するように、硬化性樹脂組成物の硬化膜のフィルムをJIS-K7105に準拠し、全光線透過率測定装置で測定する。
Since the curable resin composition (C) of the present invention has a total light transmittance of 90% or more, a cured product having excellent transparency can be provided.
The haze value of the cured product of the curable resin composition (C) of the present invention is preferably 1% or less. If it exceeds 1%, the transparency of the cured product deteriorates.
The haze value of the cured product is measured with a total light transmittance measuring device in accordance with JIS-K7105 for a cured film of the curable resin composition as will be described in detail in the measurement method of the examples.
 本発明の硬化性樹脂組成物(C)において、無機酸化物(A)の動的光散乱法で測定された粒子のメジアン径dは、1~100nmであることが好ましく、より好ましくは10~50nmである。無機酸化物(A)のメジアン径dが100nmを超えると、透明性と硬度が悪化する場合があり、1nm未満であると硬化物の硬度が不十分となる場合がある。硬化性樹脂組成物(C)が、動的光散乱法で測定された粒子のメジアン径dが上記範囲である無機酸化物(A)を含有すると、透明性及び硬度が高い硬化物を形成できる。 In the curable resin composition (C) of the present invention, the median diameter d of the inorganic oxide (A) measured by the dynamic light scattering method is preferably 1 to 100 nm, more preferably 10 to 50 nm. When the median diameter d of the inorganic oxide (A) exceeds 100 nm, transparency and hardness may be deteriorated, and when it is less than 1 nm, the hardness of the cured product may be insufficient. When the curable resin composition (C) contains the inorganic oxide (A) in which the median diameter d of the particles measured by the dynamic light scattering method is in the above range, a cured product having high transparency and hardness can be formed. .
 多官能(メタ)アクリレート(B)中で、触媒(b)存在下で、無機アルコキシド(a1)、金属無機酸塩(a2)および無機塩化物(a3)からなる群より選ばれる1種以上の無機酸化物前駆体(a)と水とを反応させて得られる無機酸化物(A)を含む組成物は多官能(メタ)アクリレート(B)を含み、硬化性樹脂組成物(C)として使用することができる。また、無機酸化物(A)の含有量が多くなる場合の透明性を確保するために、無機酸化物(A)の製造に使用した多官能(メタ)アクリレート(B)と同一種類の多官能(メタ)アクリレート(B)または異なる種類の(B)をさらに加えて希釈して、硬化性樹脂組成物(C)としても良い。また、反応後、触媒(b)は、無機酸化物(A)及び多官能(メタ)アクリレート(B)を含む組成物から除去してもよく、除去しなくてもよく、触媒(b)を中和してもよい。 In the polyfunctional (meth) acrylate (B), in the presence of the catalyst (b), at least one selected from the group consisting of inorganic alkoxide (a1), metal inorganic acid salt (a2) and inorganic chloride (a3) The composition containing an inorganic oxide (A) obtained by reacting an inorganic oxide precursor (a) with water contains a polyfunctional (meth) acrylate (B) and is used as a curable resin composition (C). can do. Moreover, in order to ensure transparency when the content of the inorganic oxide (A) increases, the same kind of polyfunctionality as the polyfunctional (meth) acrylate (B) used in the production of the inorganic oxide (A) It is good also as a curable resin composition (C) by further adding and diluting (meth) acrylate (B) or a different kind of (B). Further, after the reaction, the catalyst (b) may or may not be removed from the composition containing the inorganic oxide (A) and the polyfunctional (meth) acrylate (B). You may neutralize.
 本発明の硬化性樹脂組成物を硬化する際に使用されるエネルギー源として、熱、電子線、X線が挙げられ、これらのエネルギー源によっても硬化するが、光重合開始剤(D)をさらに含有させることにより、光の照射により、硬化させることができる。
 この際の光線としては紫外線、赤外線、可視光線が使用できる。
 これらのうち硬化性と樹脂劣化の観点から好ましいのは紫外線と電子線である。本発明の硬化性樹脂組成物(C)は、このように活性エネルギー線(紫外線、電子線、X線等)により硬化する活性エネルギー線硬化性樹脂組成物として好適に使用される。
Examples of the energy source used when curing the curable resin composition of the present invention include heat, electron beam, and X-ray. The energy source is also cured, but the photopolymerization initiator (D) is further added. By containing, it can be cured by light irradiation.
In this case, ultraviolet rays, infrared rays, and visible rays can be used as the rays.
Of these, ultraviolet rays and electron beams are preferable from the viewpoints of curability and resin deterioration. The curable resin composition (C) of the present invention is suitably used as an active energy ray-curable resin composition that is cured by active energy rays (ultraviolet rays, electron rays, X rays, etc.) in this way.
 本発明の硬化性樹脂組成物(C)は、さらに光重合開始剤(D)を含有することが好ましい。
 本発明の硬化性樹脂組成物(C)に添加する光重合開始剤(D)としては、フォスフィンオキサイド系化合物(D1)、ベンゾイルホルメート系化合物(D2)、チオキサントン系化合物(D3)、オキシムエステル系化合物(D4)、ヒドロキシベンゾイル系化合物(D5)、ベンゾフェノン系化合物(D6)、ケタール系化合物(D7)、1,3αアミノアルキルフェノン系化合物(D8)などが挙げられる。
The curable resin composition (C) of the present invention preferably further contains a photopolymerization initiator (D).
Examples of the photopolymerization initiator (D) added to the curable resin composition (C) of the present invention include a phosphine oxide compound (D1), a benzoylformate compound (D2), a thioxanthone compound (D3), and an oxime. Examples include ester compounds (D4), hydroxybenzoyl compounds (D5), benzophenone compounds (D6), ketal compounds (D7), 1,3α aminoalkylphenone compounds (D8), and the like.
 フォスフィンオキサイド系化合物(D1)としては、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、1,3,5-トリメチルベンゾイルジフェニルホスフィンオキサイド等が挙げられる。 Examples of the phosphine oxide compound (D1) include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 1,3,5-trimethylbenzoyldiphenylphosphine. Examples include oxides.
 ベンゾイルホルメート系化合物(D2)としては、メチルベンゾイルホルメート等が挙げられる。 Examples of the benzoylformate compound (D2) include methylbenzoylformate.
 チオキサントン系化合物(D3)としては、イソプロピルチオキサントン等が挙げられる。 Examples of the thioxanthone compound (D3) include isopropyl thioxanthone.
 オキシムエステル系化合物(D4)としては、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1(O-アセチルオキシム)等が挙げられる。 Examples of the oxime ester compound (D4) include 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2 -Methylbenzoyl) -9H-carbazol-3-yl]-, 1 (O-acetyloxime) and the like.
 ヒドロキシベンゾイル系化合物(D5)としては、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインアルキルエーテル等が挙げられる。 Examples of the hydroxybenzoyl compound (D5) include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, and benzoin alkyl ether.
 ベンゾフェノン系化合物(D6)としては、ベンゾフェノン等が挙げられる。 Examples of the benzophenone compound (D6) include benzophenone.
 ケタール系化合物(D7)としては、ベンジルジメチルケタール等が挙げられる。 Examples of the ketal compound (D7) include benzyl dimethyl ketal.
 1,3αアミノアルキルフェノン系化合物(D8)としては、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等が挙げられる。 Examples of the 1,3α aminoalkylphenone compound (D8) include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one.
 これらの光重合開始剤(D)のうち、鉛筆硬度の観点から好ましいのは、(D1)、(D5)、(D8)であり、更に好ましくは、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、1,3,5-トリメチルベンゾイルジフェニルホスフィンオキサイドである。 Of these photopolymerization initiators (D), from the viewpoint of pencil hardness, (D1), (D5), and (D8) are preferred, and bis (2,4,6-trimethylbenzoyl) is more preferred. -Phenylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 1,3,5-trimethylbenzoyldiphenylphosphine oxide is there.
 硬化性樹脂組成物(C)中の無機酸化物(A)および多官能(メタ)アクリレート(B)の合計重量に基づいて、光重合開始剤(D)の含有量は硬化性および透明性の観点から、0.1~10重量%であり、好ましくは0.2~7重量%である。 Based on the total weight of the inorganic oxide (A) and the polyfunctional (meth) acrylate (B) in the curable resin composition (C), the content of the photopolymerization initiator (D) is curable and transparent. From the viewpoint, it is 0.1 to 10% by weight, preferably 0.2 to 7% by weight.
 本発明の硬化性樹脂組成物(C)には、本発明の効果を阻害しない範囲で必要により種々の添加剤を1種または2種以上を含有させてもよい。
 添加剤としては、可塑剤、有機溶剤、分散剤、消泡剤、チクソトロピー性付与剤(増粘剤)、スリップ剤、酸化防止剤、ヒンダードアミン系光安定剤及び紫外線吸収剤が挙げられる。
If necessary, the curable resin composition (C) of the present invention may contain one or more various additives as long as the effects of the present invention are not impaired.
Examples of the additive include a plasticizer, an organic solvent, a dispersant, an antifoaming agent, a thixotropy imparting agent (thickening agent), a slip agent, an antioxidant, a hindered amine light stabilizer, and an ultraviolet absorber.
 本発明の硬化性樹脂組成物(C)は、塗工の際に、塗工に適した粘度に調整するために、必要に応じて溶剤で希釈した塗料とすることができる。
 溶剤の使用量は、該硬化性樹脂組成物の全重量に基づいて通常2,000%以下、好ましくは10~500%である。また、塗料の粘度は、使用時の温度(通常5~60℃)で、通常5~5,000mPa・s、安定塗工の観点から好ましくは50~1,000mPa・sである。
The curable resin composition (C) of the present invention can be a paint diluted with a solvent as necessary in order to adjust the viscosity to be suitable for coating during coating.
The amount of the solvent used is usually 2,000% or less, preferably 10 to 500%, based on the total weight of the curable resin composition. The viscosity of the coating is usually 5 to 5,000 mPa · s at the temperature during use (usually 5 to 60 ° C.), and preferably 50 to 1,000 mPa · s from the viewpoint of stable coating.
 溶剤としては、本発明の硬化性樹脂組成物中の樹脂分を溶解するものであれば特に限定されない。具体的には、芳香族炭化水素(例えばトルエン、キシレンおよびエチルベンゼン)、エステルまたはエーテルエステル(例えば酢酸エチル、酢酸ブチルおよびメトキシブチルアセテート)、エーテル(例えばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールのモノメチルエーテルおよびジエチレングリコールのモノエチルエーテル)、ケトン(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトンおよびシクロヘキサノン)、アルコール(例えばメタノール、エタノール、n-またはi-プロパノール、n-、i-、sec-またはt-ブタノール、2-エチルヘキシルアルコールおよびベンジルアルコール)、アミド(例えばジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等)、スルホキシド(例えばジメチルスルホキシド)、水、およびこれらの2種以上の混合溶剤が挙げられる。
 これらの溶剤のうちコーティング膜の平滑性および溶剤除去の効率の観点から好ましいのは沸点が70~100℃のエステル、ケトンおよびアルコール、さらに好ましいのは酢酸エチル、メチルエチルケトン、i-プロパノールおよびこれらの混合物である。
The solvent is not particularly limited as long as it dissolves the resin component in the curable resin composition of the present invention. Specifically, aromatic hydrocarbons (eg toluene, xylene and ethylbenzene), esters or ether esters (eg ethyl acetate, butyl acetate and methoxybutyl acetate), ethers (eg diethyl ether, tetrahydrofuran, ethylene glycol monoethyl ether, ethylene Glycol monobutyl ether, monomethyl ether of propylene glycol and monoethyl ether of diethylene glycol), ketones (eg acetone, methyl ethyl ketone, methyl isobutyl ketone, di-n-butyl ketone and cyclohexanone), alcohols (eg methanol, ethanol, n- or i-propanol) , N-, i-, sec- or t-butanol, 2-ethylhexyl alcohol and benzyl alcohol ), Amides (e.g. dimethylformamide, dimethylacetamide, N- methylpyrrolidone), sulfoxides (e.g., dimethylsulfoxide), water, and a mixed solvent of two or more thereof.
Among these solvents, esters, ketones and alcohols having a boiling point of 70 to 100 ° C. are preferable from the viewpoint of smoothness of the coating film and solvent removal efficiency, and more preferable are ethyl acetate, methyl ethyl ketone, i-propanol and mixtures thereof. It is.
 本発明の硬化性樹脂組成物(C)は、必要により溶剤で希釈して、基材の少なくとも片面の少なくとも一部に塗布し、必要により乾燥させた後、活性エネルギー線(紫外線、電子線、X線等)の照射や熱により硬化させることにより、硬化膜を有するハードコート被覆物を得ることができる。
 塗工に際しては、例えば塗工機[バーコーター、グラビアコーター、ロールコーター(サイズプレスロールコーター、ゲートロールコーター等)、エアナイフコーター、スピンコーター、ブレードコーター等]が使用できる。
 塗工膜厚は、硬化乾燥後の膜厚として、通常0.5~300μmである。乾燥性、硬化性の観点から好ましい上限は250μmであり、耐摩耗性、耐溶剤性、耐汚染性の観点から好ましい下限は1μmである。
The curable resin composition (C) of the present invention is diluted with a solvent if necessary, applied to at least a part of at least one side of the substrate, and dried if necessary. A hard coat coating having a cured film can be obtained by curing with irradiation or heat of X-rays or the like.
In coating, for example, a coating machine [bar coater, gravure coater, roll coater (size press roll coater, gate roll coater, etc.), air knife coater, spin coater, blade coater, etc.] can be used.
The coating film thickness is usually 0.5 to 300 μm as the film thickness after curing and drying. The upper limit is preferably 250 μm from the viewpoints of drying properties and curability, and the lower limit is preferably 1 μm from the viewpoints of wear resistance, solvent resistance, and contamination resistance.
 上記の透明基材としては、メチルメタクリレート(共)重合物、ポリエチレンテレフタレート、ポリカーボネート、ポリトリアセチルセルロース及びポリシクロオレフィン等の樹脂からなるものが挙げられる。 Examples of the transparent substrate include those made of resins such as methyl methacrylate (co) polymer, polyethylene terephthalate, polycarbonate, polytriacetyl cellulose, and polycycloolefin.
 本発明の硬化性樹脂組成物(C)を溶剤で希釈して使用する場合は、塗工後に乾燥するのが好ましい。乾燥方法としては、例えば熱風乾燥(ドライヤー等)が挙げられる。
 乾燥温度は、通常10~200℃、塗膜の平滑性および外観の観点から好ましい上限は150℃、乾燥速度の観点から好ましい下限は30℃である。
When the curable resin composition (C) of the present invention is used after being diluted with a solvent, it is preferably dried after coating. Examples of the drying method include hot air drying (such as a dryer).
The drying temperature is usually 10 to 200 ° C., the upper limit is preferably 150 ° C. from the viewpoint of the smoothness and appearance of the coating film, and the lower limit is preferably 30 ° C. from the viewpoint of the drying speed.
 本発明の硬化性樹脂組成物(C)を紫外線により硬化させる場合は、種々の紫外線照射装置[例えば、紫外線照射装置[型番「VPS/I600」、フュージョンUVシステムズ(株)製]を使用できる。
 使用するランプとしては、例えば高圧水銀灯及びメタルハライドランプ等が挙げられる。紫外線の照射量は、硬化性樹脂組成物の硬化性及び硬化物の可撓性の観点から好ましくは10~10,000mJ/cm、更に好ましくは100~5,000mJ/cmである。
When the curable resin composition (C) of the present invention is cured with ultraviolet rays, various ultraviolet irradiation devices [for example, ultraviolet irradiation devices [model number “VPS / I600”, manufactured by Fusion UV Systems Co., Ltd.] can be used.
Examples of the lamp to be used include a high-pressure mercury lamp and a metal halide lamp. The irradiation amount of ultraviolet rays is preferably 10 to 10,000 mJ / cm 2 , more preferably 100 to 5,000 mJ / cm 2 from the viewpoint of the curability of the curable resin composition and the flexibility of the cured product.
 本発明の硬化性樹脂組成物(C)の製造方法は、無機酸化物(A)と多官能(メタ)アクリレート(B)とを含有する硬化性樹脂組成物(C)の製造方法であって、多官能(メタ)アクリレート(B)中で、触媒(b)存在下で、無機アルコキシド(a1)、金属無機酸塩(a2)および無機塩化物(a3)からなる群より選ばれる1種以上の無機酸化物前駆体(a)と水とを反応させて無機酸化物(A)を得る工程を含むことを特徴とする。
 このような製造方法は、上述した本発明の硬化性樹脂組成物(C)の製造方法として好ましい。
The method for producing a curable resin composition (C) of the present invention is a method for producing a curable resin composition (C) containing an inorganic oxide (A) and a polyfunctional (meth) acrylate (B). In the polyfunctional (meth) acrylate (B), in the presence of the catalyst (b), one or more selected from the group consisting of inorganic alkoxide (a1), metal inorganic acid salt (a2) and inorganic chloride (a3) A step of obtaining an inorganic oxide (A) by reacting the inorganic oxide precursor (a) with water.
Such a manufacturing method is preferable as a manufacturing method of the curable resin composition (C) of the present invention described above.
 無機酸化物(A)を得る工程及びその好ましい態様は、上述した無機酸化物(A)の製造におけるものと同じである。例えば、無機酸化物前駆体(a)/水のモル比は2~200が好ましく、より好ましくは5~150、さらに好ましくは10~100である。触媒(b)、無機酸化物前駆体(a)として使用される無機アルコキシド(a1)、金属無機酸塩(a2)および無機塩化物(a3)も、上述したものと同じである。 The step of obtaining the inorganic oxide (A) and preferred embodiments thereof are the same as those in the production of the inorganic oxide (A) described above. For example, the molar ratio of the inorganic oxide precursor (a) / water is preferably 2 to 200, more preferably 5 to 150, and still more preferably 10 to 100. The catalyst (b), the inorganic alkoxide (a1), the metal inorganic acid salt (a2) and the inorganic chloride (a3) used as the inorganic oxide precursor (a) are the same as described above.
 無機酸化物(A)及び多官能(メタ)アクリレート(B)は、上述した硬化性樹脂組成物(C)におけるものと同じである。多官能(メタ)アクリレート(B)は、水酸基と反応し得る反応性基(α)を有する多官能(メタ)アクリレートを含有することが好ましく、水酸基と反応し得る反応性基(α)を有する多官能(メタ)アクリレートであることがさらに好ましい。
 反応性基(α)を有する多官能(メタ)アクリレート中で、触媒(b)存在下で、無機アルコキシド(a1)、金属無機酸塩(a2)および無機塩化物(a3)からなる群より選ばれる1種以上の無機酸化物前駆体(a)と水とを反応させて無機酸化物(A)を得る工程を行うと、多官能(メタ)アクリレート(B)及び無機酸化物(A)を含有し、多官能(メタ)アクリレート(B)中の反応性基(α)の少なくとも一部と無機酸化物(A)中の水酸基の少なくとも一部とが反応して化学結合している硬化性樹脂組成物を得ることができる。反応後、触媒(b)は、無機酸化物(A)及び多官能(メタ)アクリレート(B)を含む組成物から除去してもよく、除去しなくてもよく、触媒(b)を中和してもよい。
The inorganic oxide (A) and the polyfunctional (meth) acrylate (B) are the same as those in the curable resin composition (C) described above. The polyfunctional (meth) acrylate (B) preferably contains a polyfunctional (meth) acrylate having a reactive group (α) capable of reacting with a hydroxyl group, and has a reactive group (α) capable of reacting with a hydroxyl group. More preferably, it is a polyfunctional (meth) acrylate.
Selected from the group consisting of inorganic alkoxide (a1), metal inorganic acid salt (a2) and inorganic chloride (a3) in the presence of catalyst (b) in polyfunctional (meth) acrylate having reactive group (α) When the step of obtaining the inorganic oxide (A) by reacting one or more inorganic oxide precursors (a) and water, the polyfunctional (meth) acrylate (B) and the inorganic oxide (A) are obtained. Curability in which at least a part of the reactive group (α) in the polyfunctional (meth) acrylate (B) and at least a part of the hydroxyl group in the inorganic oxide (A) are reacted and chemically bonded. A resin composition can be obtained. After the reaction, the catalyst (b) may or may not be removed from the composition containing the inorganic oxide (A) and the polyfunctional (meth) acrylate (B), and the catalyst (b) is neutralized. May be.
 本発明においては、上記の無機酸化物(A)を得る工程で得られる無機酸化物(A)及び多官能(メタ)アクリレート(B)を含有する組成物は、本発明の硬化性樹脂組成物(C)として使用することができる。また、例えば、硬化性樹脂組成物中の無機酸化物(A)の含有量を調製するために、上記の無機酸化物(A)を得る工程で得られる無機酸化物(A)及び多官能(メタ)アクリレート(B)を含有する組成物に、無機酸化物(A)の製造に使用した多官能(メタ)アクリレート(B)と同一種類の多官能(メタ)アクリレート(B)または異なる種類の(B)をさらに加えて希釈して、硬化性樹脂組成物(C)としても良い。 In the present invention, the composition containing the inorganic oxide (A) and the polyfunctional (meth) acrylate (B) obtained in the step of obtaining the inorganic oxide (A) is a curable resin composition of the present invention. (C) can be used. Moreover, for example, in order to adjust the content of the inorganic oxide (A) in the curable resin composition, the inorganic oxide (A) and the polyfunctional ( In the composition containing (meth) acrylate (B), polyfunctional (meth) acrylate (B) of the same type as polyfunctional (meth) acrylate (B) used for the production of inorganic oxide (A) or different types (B) may be further added and diluted to obtain a curable resin composition (C).
 以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified, “%” represents “% by weight” and “parts” represents “parts by weight”.
製造例1
 撹拌機、冷却管、吹込み管および温度計を備えた反応容器に、ジペンタエリスリトールヘキサアクリレート(B-1)[商品名:ネオマーDA-600、三洋化成工業(株)製]65部、水1.51部およびテトラエトキシシラン(a-1)[商品名:TEOS、東京化成工業(株)製]35部を仕込み30分間攪拌した後、パラトルエンスルホン酸(b-1)2.36部を仕込み、65℃で2時間反応させた。その後、反応容器を減圧にし、空気を吹き込みながら、70℃で2時間トッピングし、無機酸化物(A-1)(テトラエトキシシラン反応物(A-1))のジペンタエリスリトールヘキサアクリレート(B-1)による溶液を得た。
Production Example 1
In a reaction vessel equipped with a stirrer, a cooling tube, a blowing tube and a thermometer, 65 parts of dipentaerythritol hexaacrylate (B-1) [trade name: Neomer DA-600, manufactured by Sanyo Chemical Industries, Ltd.], water 1.51 parts and 35 parts of tetraethoxysilane (a-1) [trade name: TEOS, manufactured by Tokyo Chemical Industry Co., Ltd.] were charged and stirred for 30 minutes, and then 2.36 parts of paratoluenesulfonic acid (b-1). And reacted at 65 ° C. for 2 hours. Thereafter, the reaction vessel was evacuated and topped at 70 ° C. for 2 hours while blowing air, and dipentaerythritol hexaacrylate of inorganic oxide (A-1) (tetraethoxysilane reactant (A-1)) (B— A solution according to 1) was obtained.
製造例2~6
 表1に示す無機アルコキシド(a)と触媒(b)と水をそれぞれの部数で製造例1と同様にして多官能(メタ)アクリレート(B)中で反応させ、対応する無機酸化物(A-2)~(A-6)の(メタ)アクリレートによる溶液を得た。
Production Examples 2-6
The inorganic alkoxide (a), catalyst (b) and water shown in Table 1 were reacted in the respective polyfunctional (meth) acrylates (B) in the same manner as in Production Example 1 to give the corresponding inorganic oxides (A- A solution of (meth) acrylates 2) to (A-6) was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
比較製造例1
 表1に示す部数で、製造例1と同様に反応させ、対応する無機酸化物(A’-1)の(メタ)アクリレートによる溶液を得た。これは、単官能の(メタ)アクリレート(B’-1)を使用する点で、比較例1のための無機酸化物溶液である。
Comparative production example 1
The reaction was carried out in the same manner as in Production Example 1 with the number of parts shown in Table 1 to obtain a solution of the corresponding inorganic oxide (A′-1) in (meth) acrylate. This is an inorganic oxide solution for Comparative Example 1 in that monofunctional (meth) acrylate (B′-1) is used.
比較製造例2
 表1に示す部数で、製造例1と同様に反応させ、対応する無機酸化物(A’-2)の(メタ)アクリレートによる溶液を得た。これは、無機酸化物の含有量の点で、比較例2のための無機酸化物溶液である。
Comparative production example 2
The reaction was carried out in the same manner as in Production Example 1 with the number of parts shown in Table 1 to obtain a solution of the corresponding inorganic oxide (A′-2) in (meth) acrylate. This is the inorganic oxide solution for Comparative Example 2 in terms of the content of inorganic oxide.
 なお、表1中で使用した原料は以下の通りである。
(a1-1):テトラエトキシシラン[商品名「TEOS」、東京化成工業(株)製]
(a1-2):テトラ-n-ブトキシチタン[商品名「B-1」、日本曹達(株)製]
(b-1):p-トルエンスルホン酸[東京化成工業(株)製]
(B-1):ネオマーDA-600[三洋化成工業(株)製、主成分はジペンタエリスリトールヘキサアクリレート(水酸基0個)だが、ジペンタエリスリトールペンタアクリレート(水酸基1個)、ジペンタエリスリトールテトラアクリレート(水酸基2個)も含む。]
(B-2):ETERMER235[長興化学(株)製、主成分はペンタエリスリトールトリアクリレート(水酸基1個)だが、ペンタエリスリトールテトラアクリレート(水酸基0個)、ペンタエリスリトールジアクリレート(水酸基2個)も含む。]
(B-3):ネオマーEA-300[三洋化成工業(株)製、主成分はペンタエリスリトールテトラアクリレート(水酸基0個)だが、ペンタエリスリトールトリアクリレート(水酸基1個)も含む。]
(B-4):ネオマーTA-401[三洋化成工業(株)製、主成分はトリメチロールプロパンEO3モル付加物トリアクリレート(水酸基0個)だが、トリメチロールプロパンEO3モル付加物ジアクリレート(水酸基1個)も含む。]
(B-5):ニューフロンティア MF-001[第一工業製薬(株)製、主成分はジペンタエリスリトールEO付加物ヘキサアクリレート(水酸基0個)だが、ジペンタエリスリトールEO付加物ペンタアクリレート(水酸基1個)も含む。]
(B’-1):フェノキシエチルアクリレート[商品名:ライトアクリレートPO-A、共栄社化学(株)製]
The raw materials used in Table 1 are as follows.
(A1-1): Tetraethoxysilane [trade name “TEOS”, manufactured by Tokyo Chemical Industry Co., Ltd.]
(A1-2): Tetra-n-butoxytitanium [trade name “B-1”, manufactured by Nippon Soda Co., Ltd.]
(B-1): p-Toluenesulfonic acid [manufactured by Tokyo Chemical Industry Co., Ltd.]
(B-1): Neomer DA-600 [manufactured by Sanyo Chemical Industries, Ltd., the main component is dipentaerythritol hexaacrylate (0 hydroxyl groups), but dipentaerythritol pentaacrylate (1 hydroxyl group), dipentaerythritol tetraacrylate Also includes (two hydroxyl groups). ]
(B-2): ETERMER 235 [manufactured by Choko Chemical Co., Ltd., the main component is pentaerythritol triacrylate (one hydroxyl group), but also includes pentaerythritol tetraacrylate (zero hydroxyl group) and pentaerythritol diacrylate (two hydroxyl groups) . ]
(B-3): Neomer EA-300 [manufactured by Sanyo Chemical Industries, Ltd., the main component is pentaerythritol tetraacrylate (0 hydroxyl groups), but also includes pentaerythritol triacrylate (1 hydroxyl group). ]
(B-4): Neomer TA-401 [manufactured by Sanyo Chemical Industries, Ltd., the main component is trimethylolpropane EO 3 mol adduct triacrylate (0 hydroxyl groups), but trimethylolpropane EO 3 mol adduct diacrylate (hydroxyl 1 Also included). ]
(B-5): New Frontier MF-001 [Daiichi Kogyo Seiyaku Co., Ltd., the main component is dipentaerythritol EO adduct hexaacrylate (0 hydroxyl groups), but dipentaerythritol EO adduct pentaacrylate (hydroxyl 1 Also included). ]
(B′-1): Phenoxyethyl acrylate [Brand name: Light acrylate PO-A, manufactured by Kyoeisha Chemical Co., Ltd.]
実施例1
 撹拌機、冷却管および温度計を備えた反応容器に、製造例1で得られた溶液を103.87部、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(D-2)[商品名「イルガキュア907」、BASF社製]3部を加え、65℃で均一になるまで混合攪拌し、硬化性樹脂組成物(C-1)を得た。
Example 1
In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 103.87 parts of the solution obtained in Production Example 1, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane- 1 part of 1-one (D-2) [trade name “Irgacure 907”, manufactured by BASF Corp.] was added and mixed and stirred at 65 ° C. until uniform, to obtain a curable resin composition (C-1).
実施例2~6および比較例1~2
 実施例1と同様に表2に示す部数で、製造例2~6及び比較製造例1~2で得られた各溶液及び光重合開始剤(D)を均一混合させ、対応する硬化性樹脂組成物(C-2)~(C-6)および(C’-1)~(C’-2)を得た。製造例1~6及び比較製造例1~2で得た溶液は、無機酸化物(A)及び多官能(メタ)アクリレート(B)(又は単官能(メタ)アクリレート(B’))を表2に示す部数含むものである。
比較例3~4
 比較例3と4では、上記の製造例のように多官能(メタ)アクリレート(B)中で無機酸化物(A)を合成するのではなく、表2に示す部数で、市販の無機酸化物微粒子(A’-3)を光重合開始剤(D)と同時に多官能(メタ)アクリレート(B)に、それぞれ30重量%と10重量%となるように配合して硬化性樹脂組成物(C’-3)~(C’-4)を得た。
Examples 2-6 and Comparative Examples 1-2
As in Example 1, the solutions obtained in Production Examples 2 to 6 and Comparative Production Examples 1 and 2 and the photopolymerization initiator (D) were uniformly mixed in the number of parts shown in Table 2, and the corresponding curable resin composition was obtained. The products (C-2) to (C-6) and (C′-1) to (C′-2) were obtained. In the solutions obtained in Production Examples 1 to 6 and Comparative Production Examples 1 and 2, the inorganic oxide (A) and the polyfunctional (meth) acrylate (B) (or monofunctional (meth) acrylate (B ′)) were used. The number of copies shown in the above is included.
Comparative Examples 3-4
In Comparative Examples 3 and 4, instead of synthesizing the inorganic oxide (A) in the polyfunctional (meth) acrylate (B) as in the above production example, the number of parts shown in Table 2 is a commercially available inorganic oxide. Fine particles (A′-3) are blended in the polyfunctional (meth) acrylate (B) simultaneously with the photopolymerization initiator (D) so as to be 30% by weight and 10% by weight, respectively. '-3) to (C'-4) were obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表2中で使用した原料は以下の通りである。
(A’-3):シリカ微粒子[商品名「コロイダルシリカMEK-ST」粒径10-15nm メチルエチルケトン(MEK)40%溶液、日産化学工業(株)製]
(D-1):1,3,5-トリメチルベンゾイルジフェニルホスフィンオキシド[商品名「ルシリンTPO」、BASF(株)製]
(D-2):2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン[商品名「イルガキュア907」、BASF(株)製]
(D-3):1-ヒドロキシシクロヘキシルフェニルケトン[商品名「イルガキュア184」、BASF(株)製]
In addition, the raw material used in Table 2 is as follows.
(A′-3): Silica fine particles [trade name “Colloidal silica MEK-ST” particle size 10-15 nm, methyl ethyl ketone (MEK) 40% solution, manufactured by Nissan Chemical Industries, Ltd.]
(D-1): 1,3,5-trimethylbenzoyldiphenylphosphine oxide [trade name “Lucirin TPO”, manufactured by BASF Corporation]
(D-2): 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one [trade name “Irgacure 907”, manufactured by BASF Corporation]
(D-3): 1-hydroxycyclohexyl phenyl ketone [trade name “Irgacure 184”, manufactured by BASF Corporation]
 硬化性樹脂組成物および硬化させて得られたフィルムについて、下記の方法で性能評価を行った。評価結果を表2に示す。表2中の無機酸化物(A)の含有量は、硬化性樹脂組成物中の無機酸化物(A)の含有量(重量%)である。なお、硬化性樹脂組成物(C-1)~(C-6)および(C’-1)~(C’-2)の調製に使用した無機酸化物の(メタ)アクリレート溶液は、表2に示す無機酸化物(A)、多官能(メタ)アクリレート(B)(又は単官能(メタ)アクリレート(B’))に加えて、表1に示す製造例及び比較製造例で使用した水及び触媒(b)を含む。このため硬化性樹脂組成物(C-1)~(C-6)および(C’-1)~(C’-2)も、表2に示す成分に加えて、表1に示す水及び触媒(b)を表1に示す重量部含む。 About the curable resin composition and the film obtained by hardening, performance evaluation was performed by the following method. The evaluation results are shown in Table 2. The content of the inorganic oxide (A) in Table 2 is the content (% by weight) of the inorganic oxide (A) in the curable resin composition. The (meth) acrylate solutions of inorganic oxides used for the preparation of the curable resin compositions (C-1) to (C-6) and (C′-1) to (C′-2) are shown in Table 2. In addition to the inorganic oxide (A), polyfunctional (meth) acrylate (B) (or monofunctional (meth) acrylate (B ′)) shown in Table 1, water used in the production examples and comparative production examples shown in Table 1 and Containing catalyst (b). Therefore, the curable resin compositions (C-1) to (C-6) and (C′-1) to (C′-2) are also added to the components shown in Table 2 and the water and catalyst shown in Table 1. (B) is included in parts by weight shown in Table 1.
 表2中のテトラエトキシシラン反応物(A-1)~(A-2)、テトラ-n-ブトキシチタン反応物(A-3)、テトラエトキシシラン反応物(A-4)~(A-6)は、それぞれ製造例1~6で製造した無機酸化物(A-1)~(A-6)である。テトラエトキシシラン反応物(A’-1)~(A’-2)は、それぞれ比較製造例1~2で製造した無機酸化物(A’-1)~(A’-2)である。 In Table 2, tetraethoxysilane reactants (A-1) to (A-2), tetra-n-butoxytitanium reactant (A-3), tetraethoxysilane reactants (A-4) to (A-6) ) Are the inorganic oxides (A-1) to (A-6) produced in Production Examples 1 to 6, respectively. The tetraethoxysilane reactants (A′-1) to (A′-2) are inorganic oxides (A′-1) to (A′-2) produced in Comparative Production Examples 1 and 2, respectively.
[全光線透過率(硬化性樹脂組成物の透明性)の測定]
 厚さ1mmのスライドガラスの上に、2cm四方を刳り抜いた厚さ100μmのシリコンゴムを置き、刳り抜いた部分に硬化性樹脂組成物を流し込んでもう一枚のスライドガラスで挟み、クリップで両端で固定してJIS-K7105に準拠し、全光線透過率測定装置[商品名「haze-gard dual」、BYK gardner(株)製]を用いて全光線透過率(%)を測定した。
 なお、本発明の硬化性樹脂組成物の全光線透過率は90%以上であることが必要である。
[Measurement of total light transmittance (transparency of curable resin composition)]
Place a 100 mm thick silicon rubber with 2 cm square on a 1 mm thick slide glass, pour the curable resin composition into the hollowed portion and sandwich it with another slide glass, and then attach both ends with clips. In accordance with JIS-K7105, the total light transmittance (%) was measured using a total light transmittance measuring device [trade name “haze-gard dual”, manufactured by BYK Gardner Co., Ltd.].
The total light transmittance of the curable resin composition of the present invention is required to be 90% or more.
<硬化フィルム作製法>
 硬化性樹脂組成物(C-1)~(C-6)および(C’-1)~(C’-4)をそれぞれディスパーザーを用いてメチルエチルケトンで希釈し、不揮発分40%に調製した。
 上記の硬化性樹脂組成物の希釈液を、厚さ40μmのTACフィルム(トリアセチルセルロースフィルム)基材の片面にバーコーターを用い、乾燥硬化後の膜厚が7μmになるように塗布し、70℃で1分間乾燥させた後、紫外線照射装置[型番「VPS/I600」、フュージョンUVシステムズ(株)製。以下同じ。]により、窒素雰囲気下で紫外線を300mJ/cm照射し、基材フィルム表面に硬化膜を有するフィルムを作製した。
<Curing film production method>
Curable resin compositions (C-1) to (C-6) and (C′-1) to (C′-4) were each diluted with methyl ethyl ketone using a disperser to prepare a non-volatile content of 40%.
The diluted liquid of the curable resin composition was applied to one side of a TAC film (triacetyl cellulose film) substrate having a thickness of 40 μm so that the film thickness after drying and curing was 7 μm. After drying at ° C. for 1 minute, an ultraviolet irradiation device [model number “VPS / I600”, manufactured by Fusion UV Systems Co., Ltd. same as below. ] Was irradiated with ultraviolet rays of 300 mJ / cm 2 under a nitrogen atmosphere to produce a film having a cured film on the surface of the base film.
[鉛筆硬度の評価]
 上記の操作で得られた硬化膜を有するフィルムについて、JIS K-5400に準じ、鉛筆硬度を測定した。
 この評価条件で、3H以上が好ましい。
[Evaluation of pencil hardness]
The pencil hardness of the film having a cured film obtained by the above operation was measured according to JIS K-5400.
In this evaluation condition, 3H or more is preferable.
[ヘイズ(フィルムの透明性)の評価]
 上記の操作で得られた硬化膜を有するフィルムについて、JIS-K7105に準拠し、全光線透過率測定装置[商品名「haze-gard dual」、BYK  gardner(株)製]を用いてヘイズ値を測定した。
[Evaluation of haze (transparency of film)]
The film having a cured film obtained by the above operation is measured in accordance with JIS-K7105, using a total light transmittance measuring device [trade name “haze-gard dual”, manufactured by BYK Gardner Co., Ltd.]. It was measured.
 表2の結果から、本発明の実施例1~6の硬化性樹脂組成物は、無機酸化物の微粒子を多量に含有しても組成物の透明性が損なわれず、かつ硬化物は高い硬度を有している。
一方、単官能アクリレートのみを使用している比較例1は鉛筆硬度が劣る。無機酸化物(A)の含有量が25重量%未満である比較例2も鉛筆硬度が不十分である。市販のシリカ微粒子を多官能(メタ)アクリレート(B)と同時に添加する製法で得られ、シリカ微粒子を30重量%含有しているが関係式(1)を満足しない比較例3は透明性が劣る。そこで、シリカ微粒子を透明性を確保できる量(10重量%)までに減らした比較例4では鉛筆硬度が不十分である。
From the results of Table 2, the curable resin compositions of Examples 1 to 6 of the present invention do not impair the transparency of the composition even when containing a large amount of inorganic oxide fine particles, and the cured product has high hardness. Have.
On the other hand, the comparative example 1 which uses only a monofunctional acrylate has inferior pencil hardness. In Comparative Example 2 in which the content of the inorganic oxide (A) is less than 25% by weight, the pencil hardness is insufficient. Comparative Example 3 obtained by a method of adding commercially available silica fine particles simultaneously with the polyfunctional (meth) acrylate (B) and containing 30% by weight of silica fine particles but not satisfying the relational expression (1) is inferior in transparency. . Therefore, in Comparative Example 4 in which the silica fine particles are reduced to an amount (10% by weight) that can ensure transparency, the pencil hardness is insufficient.
 本発明の硬化性組成物を硬化させて得られるハードコート膜を有するハードコートフィルムは、鉛筆硬度および透明性に優れているため、特にプラスチック光学部品、例えばフラットパネルディスプレイ、タッチパネル等の表面硬度、透明性が優れる分野に好適である。 Since the hard coat film having a hard coat film obtained by curing the curable composition of the present invention is excellent in pencil hardness and transparency, the surface hardness of a plastic optical component such as a flat panel display or a touch panel, Suitable for fields with excellent transparency.

Claims (13)

  1.  無機酸化物(A)と多官能(メタ)アクリレート(B)とを含有し、無機酸化物(A)の含有量が25~80重量%であり、硬化性樹脂組成物の全光線透過率が90%以上であり、下記の関係式(1)を満足することを特徴とする硬化性樹脂組成物(C)。
    T≧91-1.25×W/100 (1)
    [式中、Wは硬化性樹脂組成物中の無機酸化物(A)の含有量(重量%)、Tは硬化性樹脂組成物の全光線透過率(%)を表す。]
    The inorganic oxide (A) and the polyfunctional (meth) acrylate (B) are contained, the content of the inorganic oxide (A) is 25 to 80% by weight, and the total light transmittance of the curable resin composition is The curable resin composition (C), which is 90% or more and satisfies the following relational expression (1).
    T ≧ 91-1.25 × W / 100 (1)
    [Wherein, W represents the content (% by weight) of the inorganic oxide (A) in the curable resin composition, and T represents the total light transmittance (%) of the curable resin composition. ]
  2.  多官能(メタ)アクリレート(B)が水酸基と反応し得る反応性基(α)を有する多官能(メタ)アクリレートを含有し、無機酸化物(A)が水酸基を有し、多官能(メタ)アクリレート(B)中の反応性基(α)の少なくとも一部と無機酸化物(A)中の水酸基の少なくとも一部とが反応して化学結合している請求項1記載の硬化性樹脂組成物(C)。 The polyfunctional (meth) acrylate (B) contains a polyfunctional (meth) acrylate having a reactive group (α) capable of reacting with a hydroxyl group, the inorganic oxide (A) has a hydroxyl group, and the polyfunctional (meth) The curable resin composition according to claim 1, wherein at least a part of the reactive group (α) in the acrylate (B) and at least a part of the hydroxyl group in the inorganic oxide (A) are reacted and chemically bonded. (C).
  3.  反応性基(α)が水酸基またはカルボキシル基である請求項2記載の硬化性樹脂組成物(C)。 The curable resin composition (C) according to claim 2, wherein the reactive group (α) is a hydroxyl group or a carboxyl group.
  4.  無機酸化物(A)が、無機アルコキシド(a1)、金属無機酸塩(a2)および無機塩化物(a3)からなる群より選ばれる1種以上の無機酸化物前駆体(a)の加水分解縮合物である請求項1~3いずれか記載の硬化性樹脂組成物(C)。 Hydrolytic condensation of one or more inorganic oxide precursors (a) wherein the inorganic oxide (A) is selected from the group consisting of inorganic alkoxides (a1), metal inorganic acid salts (a2) and inorganic chlorides (a3). The curable resin composition (C) according to any one of claims 1 to 3, which is a product.
  5.  無機アルコキシド(a1)が、ケイ素アルコキシド、ジルコニウムアルコキシド、チタンアルコキシド、ハフニウムアルコキシド、亜鉛アルコキシド、アルミニウムアルコキシド、ガリウムアルコキシド、インジウムアルコキシド、ゲルマニウムアルコキシドおよびスズアルコキシドからなる群から選ばれる1種以上である請求項4記載の硬化性樹脂組成物(C)。 The inorganic alkoxide (a1) is at least one selected from the group consisting of silicon alkoxide, zirconium alkoxide, titanium alkoxide, hafnium alkoxide, zinc alkoxide, aluminum alkoxide, gallium alkoxide, indium alkoxide, germanium alkoxide, and tin alkoxide. The curable resin composition (C) described.
  6.  金属無機酸塩(a2)が、4硝酸チタン、オキシ硫酸チタン、オキシ硝酸ジルコニウムおよび硫酸ジルコニウムからなる群から選ばれる1種以上である請求項4または5記載の硬化性樹脂組成物(C)。 The curable resin composition (C) according to claim 4 or 5, wherein the metal inorganic acid salt (a2) is at least one selected from the group consisting of titanium tetranitrate, titanium oxysulfate, zirconium oxynitrate and zirconium sulfate.
  7.  無機塩化物(a3)が、ケイ素、チタンまたはジルコニウムの塩化物である請求項4~6いずれか記載の硬化性樹脂組成物(C)。 The curable resin composition (C) according to any one of claims 4 to 6, wherein the inorganic chloride (a3) is a chloride of silicon, titanium or zirconium.
  8.  硬化物のヘイズ値が1%以下である請求項1~7いずれか記載の硬化性樹脂組成物(C)。 The curable resin composition (C) according to any one of claims 1 to 7, wherein the cured product has a haze value of 1% or less.
  9.  無機酸化物(A)の動的光散乱法で測定された粒子のメジアン径dが、1~100nmである請求項1~8いずれか記載の硬化性樹脂組成物(C)。 The curable resin composition (C) according to any one of claims 1 to 8, wherein the median diameter d of the inorganic oxide (A) measured by a dynamic light scattering method is 1 to 100 nm.
  10.  さらに光重合開始剤(D)を含有する請求項1~9いずれか記載の硬化性樹脂組成物(C)。 The curable resin composition (C) according to any one of claims 1 to 9, further comprising a photopolymerization initiator (D).
  11.  無機酸化物(A)と多官能(メタ)アクリレート(B)とを含有する硬化性樹脂組成物(C)の製造方法であって、多官能(メタ)アクリレート(B)中で、触媒(b)存在下で、無機アルコキシド(a1)、金属無機酸塩(a2)および無機塩化物(a3)からなる群より選ばれる1種以上の無機酸化物前駆体(a)と水とを反応させて無機酸化物(A)を得る工程を含むことを特徴とする硬化性樹脂組成物(C)の製造方法。 A method for producing a curable resin composition (C) containing an inorganic oxide (A) and a polyfunctional (meth) acrylate (B), wherein the catalyst (b) ) In the presence, one or more inorganic oxide precursors (a) selected from the group consisting of inorganic alkoxide (a1), metal inorganic acid salt (a2) and inorganic chloride (a3) are reacted with water. The manufacturing method of the curable resin composition (C) characterized by including the process of obtaining an inorganic oxide (A).
  12.  多官能(メタ)アクリレート(B)が、水酸基と反応し得る反応性基(α)を有する多官能(メタ)アクリレートを含有する請求項11記載の硬化性樹脂組成物(C)の製造方法。 The method for producing a curable resin composition (C) according to claim 11, wherein the polyfunctional (meth) acrylate (B) contains a polyfunctional (meth) acrylate having a reactive group (α) capable of reacting with a hydroxyl group.
  13.  無機酸化物前駆体(a)/水のモル比が2~200である請求項11または12記載の硬化性樹脂組成物(C)の製造方法。 The method for producing a curable resin composition (C) according to claim 11 or 12, wherein the molar ratio of the inorganic oxide precursor (a) / water is 2 to 200.
PCT/JP2016/065513 2015-05-28 2016-05-25 Curable resin composition and method for producing same WO2016190373A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017520792A JP6826528B2 (en) 2015-05-28 2016-05-25 Curable resin composition and its manufacturing method
KR1020177030840A KR20170129944A (en) 2015-05-28 2016-05-25 Curable resin composition and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015108089 2015-05-28
JP2015-108089 2015-05-28

Publications (1)

Publication Number Publication Date
WO2016190373A1 true WO2016190373A1 (en) 2016-12-01

Family

ID=57394070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065513 WO2016190373A1 (en) 2015-05-28 2016-05-25 Curable resin composition and method for producing same

Country Status (4)

Country Link
JP (1) JP6826528B2 (en)
KR (1) KR20170129944A (en)
TW (1) TWI643892B (en)
WO (1) WO2016190373A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043735A (en) * 2015-08-28 2017-03-02 三洋化成工業株式会社 Process for producing active energy ray-curable composition
JP2018150522A (en) * 2017-03-13 2018-09-27 三洋化成工業株式会社 Photocurable resin composition
JP2021504554A (en) * 2017-11-21 2021-02-15 オルネクス ベルギー エス エー Adhesion-promoting compounds for non-polar substrates

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116821A1 (en) * 2009-03-30 2010-10-14 株式会社 きもと Composition and laminate
JP2011173990A (en) * 2010-02-24 2011-09-08 Teijin Chem Ltd Photocurable resin composition, article having cured film thereof and method for manufacturing the article
JP2012184349A (en) * 2011-03-07 2012-09-27 Teijin Chem Ltd Photocurable resin composition, article having its cured film, and method for producing the same
WO2013161859A1 (en) * 2012-04-27 2013-10-31 地方独立行政法人 大阪市立工業研究所 Metal oxide dispersion, metal oxide dispersion-containing polymerizable composition, and polymerized product of same
WO2013164941A1 (en) * 2012-05-02 2013-11-07 横浜ゴム株式会社 Curable resin composition
JP2016006160A (en) * 2014-05-30 2016-01-14 リケンテクノス株式会社 Active energy ray-curable resin composition and hard coat laminated film using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL129611A0 (en) * 1996-12-05 2000-02-29 Exxon Chemical Patents Inc Dispersible film
JP3915886B2 (en) * 2001-07-30 2007-05-16 荒川化学工業株式会社 Curable composition and coating agent composition containing silica particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116821A1 (en) * 2009-03-30 2010-10-14 株式会社 きもと Composition and laminate
JP2011173990A (en) * 2010-02-24 2011-09-08 Teijin Chem Ltd Photocurable resin composition, article having cured film thereof and method for manufacturing the article
JP2012184349A (en) * 2011-03-07 2012-09-27 Teijin Chem Ltd Photocurable resin composition, article having its cured film, and method for producing the same
WO2013161859A1 (en) * 2012-04-27 2013-10-31 地方独立行政法人 大阪市立工業研究所 Metal oxide dispersion, metal oxide dispersion-containing polymerizable composition, and polymerized product of same
WO2013164941A1 (en) * 2012-05-02 2013-11-07 横浜ゴム株式会社 Curable resin composition
JP2016006160A (en) * 2014-05-30 2016-01-14 リケンテクノス株式会社 Active energy ray-curable resin composition and hard coat laminated film using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043735A (en) * 2015-08-28 2017-03-02 三洋化成工業株式会社 Process for producing active energy ray-curable composition
JP2018150522A (en) * 2017-03-13 2018-09-27 三洋化成工業株式会社 Photocurable resin composition
JP2021504554A (en) * 2017-11-21 2021-02-15 オルネクス ベルギー エス エー Adhesion-promoting compounds for non-polar substrates
JP7273050B2 (en) 2017-11-21 2023-05-12 オルネクス ベルギー エス エー Adhesion promoting compound for non-polar substrates

Also Published As

Publication number Publication date
TWI643892B (en) 2018-12-11
KR20170129944A (en) 2017-11-27
TW201704329A (en) 2017-02-01
JPWO2016190373A1 (en) 2018-03-15
JP6826528B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
US10253156B2 (en) Process for producing dispersion of fine inorganic particles, curable composition containing said dispersion, and cured object obtained therefrom
KR101497409B1 (en) Resin composition
JP4678561B2 (en) Curable resin composition
JP2015078339A (en) Organic-inorganic composite production method, curable composition, curable composition production method, curable composition cured product, hard coat material, and hard coat film
WO2010090116A1 (en) Actinic-energy-ray-curable resin composition for hard coat and use thereof
JP2013173871A (en) Composition, antistatic coating agent, and antistatic laminate
KR20110043444A (en) Uv curable resin composition for hard coat, and hard coated film and hard coated moldings using the same
JP5463120B2 (en) Active energy ray-curable resin composition
JP6965186B2 (en) Photocurable resin composition
WO2016190373A1 (en) Curable resin composition and method for producing same
JP2010235783A (en) Surface-modified silica particle and active energy ray-curable resin composition using the same
JP2001205179A (en) Method for manufacturing hard coat film and hard coat film obtained by the method
JP2013053249A (en) Film coating agent
JP6537934B2 (en) Method of producing active energy ray curable composition
JP2004285111A (en) Alkoxysilane derivative, curable composition and cured product of the same
JP2014084360A (en) Active energy ray-curable undercoat composition, and laminate
JP2009196375A (en) Film having cured coat of radiation-cured type resin composition
JP5211510B2 (en) Antistatic cured film forming coating, antistatic cured film, plastic substrate with antistatic cured film, and method for producing antistatic cured film
JP4320277B2 (en) Organic-inorganic hybrid resin composition, and cured product and article using the same
JP2017128726A (en) Active energy ray-curable composition
JP6849397B2 (en) Photocurable resin composition
JP6722092B2 (en) Composition for inkjet ink
JP6900172B2 (en) Active energy ray-curable resin composition
JP2007231138A (en) Active energy ray curable resin composition for hard coat
JP2003306561A (en) Antistatic hard coating film and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520792

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177030840

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16800077

Country of ref document: EP

Kind code of ref document: A1