WO2016190294A1 - Exhaust gas purifying catalyst, exhaust gas purifying filter using same and exhaust gas purification method - Google Patents

Exhaust gas purifying catalyst, exhaust gas purifying filter using same and exhaust gas purification method Download PDF

Info

Publication number
WO2016190294A1
WO2016190294A1 PCT/JP2016/065268 JP2016065268W WO2016190294A1 WO 2016190294 A1 WO2016190294 A1 WO 2016190294A1 JP 2016065268 W JP2016065268 W JP 2016065268W WO 2016190294 A1 WO2016190294 A1 WO 2016190294A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
silver
catalyst
oxoacid salt
salt
Prior art date
Application number
PCT/JP2016/065268
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 清
榊原 雄二
将嗣 菊川
祐介 新名
優一 祖父江
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2016190294A1 publication Critical patent/WO2016190294A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • B01J27/055Sulfates with alkali metals, copper, gold or silver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust

Definitions

  • the present invention relates to an exhaust gas purification catalyst, an exhaust gas purification filter and an exhaust gas purification method using the same.
  • PM particulate matter
  • a purification filter Diesel Particulate Filter
  • the PM collected by the DPF causes an increase in pressure loss and a decrease in the output of the internal combustion engine. Therefore, the PM is periodically raised to a high temperature (for example, heated to around 650 ° C.), and the PM is burned (oxidized and removed). ) To regenerate the DPF.
  • Patent Document 1 discloses at least one selected from the group consisting of gold, silver, copper, iron, zinc, manganese and rare earth elements as an active component.
  • a PM oxidation catalyst in which an element is supported on an alkaline earth metal hydroxide, oxide, carbonate or sulfate as a carrier component is disclosed.
  • International Publication No. 2007/043442 discloses an oxidation catalyst composed of a carrier made of a complex oxide of cerium and zirconium and Ag or an oxide of Ag carried on the carrier. Yes.
  • Patent Application Laid-Open No. 2007-196135 discloses using an oxidation catalyst obtained by firing boehmite on which silver is supported.
  • the PM oxidation performance of the conventional PM oxidation catalyst as described in Patent Documents 1 to 3 changes depending on the use as described above, the timing for performing the regeneration process of the DPF and the temperature condition at that time are determined. Not only was it difficult to set, but when the catalyst was supported on a base material such as DPF, the base material could be destroyed by heat due to the oxidation of a large amount of PM. As described above, the conventional PM oxidation catalysts as described in Patent Documents 1 to 3 cannot sufficiently exhibit purification performance due to ash accumulation.
  • Patent Document 4 discloses a carrier made of at least one metal salt selected from the group consisting of Ca sulfate and phosphate, and silver carried on the carrier.
  • An exhaust gas purification apparatus including an oxidation catalyst including at least one silver-containing material selected from the group consisting of silver oxide, silver carbonate, silver sulfate, and silver phosphate is disclosed. According to the description of the publication, the exhaust gas purification device capable of sufficiently suppressing the reduction in the oxidation performance of the particulate matter due to the ash deposition and exhibiting the excellent oxidation performance of the particulate matter even after the ash deposition. It is possible to provide.
  • the present invention has been made in view of the above-mentioned problems of the prior art, has a sufficiently high PM oxidation activity, and sufficiently suppresses a reduction in oxidation performance of particulate matter due to ash deposition. It is an object of the present invention to provide an exhaust gas purifying catalyst capable of exhibiting sufficiently high PM oxidation activity even after deposition, an exhaust gas purifying filter and an exhaust gas purifying method using the same.
  • the present inventors have developed a silver oxo acid salt on a carrier containing at least one selected from the group consisting of barium oxo acid salt and strontium oxo acid salt.
  • the exhaust gas purifying catalyst obtained surprisingly has a sufficiently high PM oxidation activity, and further the deterioration of the oxidation performance of the particulate matter due to the accumulation of ash is sufficiently suppressed.
  • the present inventors have found that a sufficiently high PM oxidation activity can be exhibited even in the present invention, and the present invention has been completed.
  • the exhaust gas purifying catalyst of the present invention comprises a carrier containing at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt, and silver oxoacid salt carried on the carrier.
  • the barium oxoacid salt is an oxoacid salt containing at least one selected from the group consisting of boron, phosphorus and sulfur
  • the strontium oxoacid salt is a group consisting of boron, phosphorus and sulfur
  • the barium oxoacid salt is at least one selected from the group consisting of barium sulfate (BaSO 4 ) and barium sulfite (BaSO 3 ), and the strontium oxoacid salt Is preferably at least one selected from the group consisting of strontium sulfate (SrSO 4 ) and strontium sulfite (SrSO 3 ).
  • the silver oxoacid salt is at least one selected from the group consisting of silver sulfate (Ag 2 SO 4 ) and silver sulfite (Ag 2 SO 3 ). Is preferred.
  • the supported amount of the silver oxoacid salt is 0.1 to 50% by mass in terms of metallic silver with respect to the total amount of the carrier and the silver oxoacid salt. Preferably there is.
  • the exhaust gas purification filter of the present invention comprises a breathable base material and the exhaust gas purification catalyst of the present invention supported on the breathable base material.
  • the exhaust gas purification method of the present invention is a method of oxidizing and removing particulate matter (PM) by contacting exhaust gas from an internal combustion engine with the exhaust gas purification catalyst of the present invention.
  • the exhaust gas purification catalyst of the present invention, the exhaust gas purification filter using the exhaust gas purification method, and the exhaust gas purification method have sufficiently high PM oxidation activity and sufficiently reduce the oxidation performance of particulate matter due to ash deposition. Although the reason why it is suppressed and a sufficiently high PM oxidation activity can be exhibited even after ash deposition is not necessarily clear, the present inventors speculate as follows.
  • the exhaust gas-purifying catalyst is a carrier containing at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt, and the silver oxoacid supported on the carrier.
  • the oxygen ion (O 2 ⁇ ) in the oxo acid ion of the silver oxo acid salt contained in the exhaust gas purifying catalyst of the present invention is converted into the silver ion (Ag + ) in the silver oxo acid salt. It is activated by giving electrons to carbon dioxide, and becomes carbon dioxide (CO 2 ) by receiving electrons from particulate matter (PM, mainly carbon: C).
  • the carrier carrying the silver oxo acid salts of cerium oxide the case of a basic support such as a composite oxide containing (ceria CeO 2) or CeO 2, and oxoacid ions of cerium (Ce) ionic bond
  • a basic support such as a composite oxide containing (ceria CeO 2) or CeO 2
  • oxoacid ions of cerium (Ce) ionic bond oxygen is not activated.
  • an acidic carrier such as titanium oxide (titania: TiO 2 ) or tin oxide (SnO 2 )
  • the reduced Ag becomes stable, and thus re-oxidation by O 2 does not proceed.
  • the carrier for the exhaust gas purifying catalyst of the present invention contains at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt.
  • a carrier such as barium (Ba) or strontium Since the oxo acid salt of (Sr) has moderate basicity / acidity, the present inventors infer that the above cycle proceeds without delay.
  • the silver oxoacid salt supported on the carrier of the exhaust gas purifying catalyst of the present invention has a relatively low melting point (for example, 660 ° C. in Ag 2 SO 4 ) and high temperature (temperature at which PM is oxidized). In the region), it is considered that at least a part is in a molten state, and silver ions are dispersed so as to cover the entire surface of the carrier because it has melting properties on the carrier. Therefore, in the exhaust gas purifying catalyst comprising the silver oxoacid salt supported on the carrier, the contact point between Ag ions and PM is remarkably increased, and it becomes possible to obtain higher PM oxidation activity. The present inventors speculate.
  • the silver oxo acid salt has a melting property on the carrier at a high temperature.
  • the carrier having the oxo acid salt of barium (Ba) or strontium (Sr) of the present invention includes calcium sulfate (CaSO 4 ), calcium phosphate (Ca 3 (PO 4 ) 2 , CaHPO 4 , CaH 4 (PO 4 ) 2, etc. ) And the basic / acidity of the ash particles as a main component, the silver oxo acid salt on the carrier melts and the silver oxo acid salt, silver (Ag) or silver ion (Ag + ) can migrate to the ash particles in contact with the catalyst.
  • the exhaust gas purifying catalyst of the present invention a sufficiently high PM oxidation activity can be achieved, and further, the deterioration of the oxidation performance of the particulate matter due to the ash deposition can be sufficiently suppressed.
  • the present inventors infer that it is possible to exhibit a sufficiently high PM oxidation activity even in the case of the above.
  • the present invention has a sufficiently high PM oxidation activity, and the deterioration of the oxidation performance of the particulate matter due to the ash deposition is sufficiently suppressed, and a sufficiently high PM oxidation activity is achieved even after the ash deposition. It is possible to provide an exhaust gas purification catalyst that can be exerted, an exhaust gas purification filter and an exhaust gas purification method using the same.
  • 6 is a graph showing initial 50% PM oxidation temperatures of exhaust gas purifying catalysts obtained in Examples 1 and 2 and Comparative Examples 1 to 6. 6 is a graph showing 50% PM oxidation temperature of exhaust gas purifying catalysts after ash deposition and after ash deposition-heat treatment obtained in Examples 1-2 and Comparative Examples 1-6.
  • the exhaust gas purifying catalyst of the present invention comprises a carrier containing at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt, and silver oxoacid salt supported on the carrier.
  • the barium oxoacid salt is an oxoacid salt containing at least one selected from the group consisting of boron, phosphorus and sulfur
  • the strontium oxoacid salt is selected from the group consisting of boron, phosphorus and sulfur
  • the silver oxoacid salt is an oxoacid salt containing at least one selected from the group consisting of phosphorus and sulfur.
  • the catalyst for exhaust gas purification of the invention can exhibit sufficiently high PM oxidation activity, and further, the deterioration of the oxidation performance of particulate matter due to ash deposition is sufficiently suppressed, and even after ash deposition. It is possible to exhibit a sufficiently high PM oxidation activity. Therefore, the exhaust gas purifying catalyst of the present invention can be suitably employed as a PM oxidation catalyst for purifying exhaust gas by oxidizing and removing particulate matter (PM) in exhaust gas from an internal combustion engine such as a diesel engine. More preferably, the exhaust gas purifying catalyst of the present invention can be employed as a PM oxidation catalyst for diesel.
  • PM particulate matter
  • the carrier according to the present invention is a carrier comprising at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt, wherein the barium oxoacid salt is composed of boron, phosphorus and sulfur. It is necessary that the strontium oxoacid salt includes at least one selected from the group consisting of boron, phosphorus, and sulfur. .
  • the carrier containing at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt is an oxoacid salt containing at least one selected from the group consisting of boron, phosphorus and sulfur. There are no particular restrictions except for certain.
  • the carrier comprising at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt
  • the carrier comprises the barium oxoacid salt and strontium oxoacid salt.
  • the carrier mainly contains at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt, and has the effects of the present invention. It means that it is configured to include other components within a range that does not deteriorate. As other components, other metal oxides and additives used as a carrier for this type of application can be used.
  • the content of at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt in the carrier is 50% by mass or more with respect to 100% by mass of the total mass of the carrier. Is preferable, and it is more preferable that it is 80 mass% or more. If the content of at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt in such a carrier is less than the lower limit, the effects of the present invention tend not to be sufficiently obtained.
  • the oxo acid salt containing boron is not particularly limited, and besides borate (orthoborate), metaborate, tetraborate, perborate, hypoborate, Boronate, borate and the like can be used.
  • borate (orthoborate) and metaborate are preferable from the viewpoint of being stable at high temperatures.
  • the oxo acid salt containing phosphorus is not particularly limited, and specifically, phosphate (orthophosphate), diphosphate (pyrophosphate), polyphosphate (metaphosphate) , Phosphites and the like can be used. Among these, from the viewpoint of being stable at high temperatures, phosphates (orthophosphates), phosphites, and polyphosphates are preferable.
  • the oxo acid salt containing sulfur is not particularly limited. Specifically, in addition to sulfate, sulfite, peroxomonosulfate, thiosulfate, dithionate, disulfite, dithionate , Disulfate, peroxodisulfate, polythionate, and the like can be used. Among these, from the viewpoint of being stable at high temperatures, sulfates and sulfites are preferable, and barium sulfate (BaSO 4 ) or strontium sulfate (SrSO 4 ) is more preferable.
  • the barium oxoacid salt is at least one selected from the group consisting of barium sulfate (BaSO 4 ) and barium sulfite (BaSO 3 ), and the strontium oxo More preferably, the acid salt is at least one selected from the group consisting of strontium sulfate (SrSO 4 ) and strontium sulfite (SrSO 3 ).
  • barium oxoacid salt and strontium oxoacid salt that can be contained in such a support
  • other components other than the barium oxoacid salt and strontium oxoacid salt that can be contained in such a support include, for example, yttrium (Y) and lanthanum from the viewpoint of thermal stability and catalytic activity of the support.
  • La praseodymium
  • Pr cerium
  • Ce cerium
  • Nd neodymium
  • promethium Pm
  • Sm samarium
  • Eu europium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprosium
  • Ho holmium Rare earth
  • Er erbium
  • Tm thulium
  • Yb ytterbium
  • Lu magnesium
  • Mg calcium (Ca), scandium (Sc), vanadium (V), alkali metals
  • An oxide of a metal such as an alkaline earth metal or a transition metal can be used.
  • the specific surface area of such a carrier is not particularly limited, but is preferably 0.5 to 200 m 2 / g, more preferably 1 to 100 m 2 / g. If the specific surface area exceeds the upper limit, the heat resistance of the support itself decreases, so the heat resistance of the catalyst tends to decrease. On the other hand, if the specific surface area is less than the lower limit, the active species (the silver oxoacid salt) is dispersed. Tend to decrease.
  • Such a specific surface area can be calculated as a BET specific surface area from the adsorption isotherm using the BET isotherm adsorption equation.
  • the shape of such a carrier is not particularly limited, but a conventionally known shape such as a ring shape, a spherical shape, a cylindrical shape, or a pellet shape can be used. From the viewpoint that a large amount of active species (the silver oxoacid salt) can be contained in a highly dispersible state, it is preferable to use a particulate material.
  • the average primary particle size of the carrier particles is preferably 1 to 1000 nm, and more preferably 5 to 500 nm.
  • the average primary particle diameter of such a carrier can be measured by calculating from the line width of the powder X-ray diffraction peak using the Scherrer's equation using an X-ray diffractometer. . Alternatively, such an average primary particle size can be calculated by analyzing an image with an electron microscope.
  • the method for producing such a carrier is not particularly limited, but it is known that a carrier containing at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt can be produced. These methods can be used as appropriate. Further, as such a carrier, a commercially available barium oxoacid salt and / or strontium oxoacid salt may be used, and the size may be appropriately adjusted by milling with a ball mill or the like.
  • the silver oxoacid salt according to the present invention is an active species supported on a carrier including at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt, and includes phosphorus and sulfur. It is necessary that the oxoacid salt contains at least one selected from the group consisting of: Such a silver oxo acid salt is not particularly limited except that it is an oxo acid salt containing at least one selected from the group consisting of phosphorus and sulfur. The silver oxo acid salt is not particularly limited as an oxo acid salt containing phosphorus.
  • a phosphate orthophosphate, Ag 3 PO 4
  • a diphosphate Pyrophosphate, Ag 4 P 2 O 7
  • polyphosphate metalphosphate, AgPO 3
  • phosphite and the like
  • phosphate (orthophosphate), phosphite, and metaphosphate are preferable from the viewpoint of being stable at high temperatures, and silver orthophosphate (Ag 3 PO 4 ) is more preferable.
  • the oxo acid salt containing sulfur is not particularly limited.
  • the silver oxoacid salt according to the present invention is an oxoacid similar to the oxoacid salt in the carrier containing at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt. Even a salt may be a different oxoacid salt.
  • the silver oxoacid salt is at least one selected from the group consisting of silver sulfate (Ag 2 SO 4 ) and silver sulfite (Ag 2 SO 3 ). Is more preferable.
  • the supported amount of the silver oxoacid salt used in the exhaust gas purifying catalyst of the present invention is not particularly limited, but metal silver (Ag) with respect to the total amount of the carrier and the silver oxoacid salt. In terms of conversion, it is preferably 0.1 to 50% by mass, and more preferably 1 to 40% by mass. If the amount of the silver oxoacid salt supported is less than the lower limit, the oxidation performance of the particulate matter tends to be not sufficiently advanced. On the other hand, if the amount exceeds the upper limit, the oxidation performance is low. The cost tends to increase because of saturation.
  • the average crystallite size (average primary particle size) of such a silver oxoacid salt is not particularly limited, but is preferably 1 to 500 nm, and more preferably 2 to 100 nm. If the average crystallite size of the silver oxo acid salt is less than the lower limit, it strongly binds to the support and the activity tends to decrease, whereas if it exceeds the upper limit, the number of particles contributing to the reaction decreases, and the activity It tends to decrease.
  • the average crystallite size (average primary particle size) of such a silver oxoacid salt is, for example, from the line width of a powder X-ray diffraction peak using an X-ray diffractometer, Scherrer's equation It can measure by calculating using. Alternatively, such an average crystallite size (average primary particle size) can be calculated by analyzing an image with an electron microscope.
  • the method of supporting the silver oxoacid salt on a carrier containing at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt is not particularly limited, but is a known method.
  • Barium oxoacid salt and strontium oxoacid salt by using a method of coating (including firing if necessary) on a support containing oxygen and a vapor deposition method (for example, chemical vapor deposition, physical vapor deposition, sputter vapor deposition)
  • a method of supporting on a carrier containing at least one selected from the group consisting of can be suitably employed.
  • the exhaust gas-purifying catalyst in the present invention includes a carrier containing at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt, and the silver oxoacid supported on the carrier.
  • a carrier containing at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt, and the silver oxoacid supported on the carrier.
  • a salt and the form thereof is not particularly limited, it may be in the form of a pellet-shaped pellet catalyst or the like and may be supported on a filter such as DPF.
  • the method for producing the exhaust gas purifying catalyst of the present invention is not particularly limited, and a known method can be appropriately used.
  • the catalyst is selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt. It is produced by a step of impregnating a carrier containing at least one kind with an aqueous solution containing ions of the silver oxo acid salt, a step of heating and baking.
  • the solution containing the silver oxoacid salt in a predetermined concentration is at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt. It is possible to employ a method in which a solution containing a predetermined amount of the silver oxo acid salt is impregnated (supported) on the support, and then heated and fired.
  • the heat-firing (firing step) after impregnating such a silver oxo acid salt may be carried out in the air.
  • the firing temperature in such a firing step is preferably 200 to 700 ° C. When such a calcination temperature is lower than the lower limit, it becomes difficult to support the silver oxoacid salt on the support, and there is a tendency that sufficient PM oxidation activity of the exhaust gas purifying catalyst cannot be obtained. If it exceeds, the specific surface area of the support containing at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt tends to decrease, and this tends to decrease the oxidation activity.
  • the firing time is preferably from 0.1 to 100 hours.
  • the exhaust gas purification filter of the present invention comprises a breathable base material (filter) and the exhaust gas purification catalyst of the present invention carried on the breathable base material.
  • Such an exhaust gas purification filter of the present invention is not particularly limited except that the exhaust gas purification catalyst of the present invention is supported on a gas permeable substrate.
  • a known breathable substrate (filter) can be appropriately used.
  • a particulate filter, a monolith filter, a honeycomb filter, a pellet filter examples thereof include a filter, a plate-like filter, and a foamed ceramic filter.
  • PM particulate matter
  • the exhaust gas purifying catalyst of the present invention is supported on a particulate filter.
  • the material of the breathable substrate of such an exhaust gas purification filter is not particularly limited, but a known material can be used as appropriate, for example, cordierite, silicon carbide, mullite, ceramics such as aluminum titanate, Examples thereof include metals such as stainless steel including chrome and aluminum.
  • an exhaust gas purification filter it is preferable to use a filter having pores having an average pore diameter of 1 to 300 ⁇ m. By using a base material having such an average pore diameter, it becomes possible to oxidize and purify the particulate matter more efficiently.
  • a coat layer is preferably formed by the exhaust gas purification catalyst of the present invention, and the thickness of the coat layer is preferably 0.025 to 25 ⁇ m. More preferably, the thickness is from 05 to 10 ⁇ m.
  • the thickness of the coating layer is less than the lower limit, a carrier containing at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt, and a silver oxoacid salt carried on the carrier, The surface of the filter cannot be sufficiently covered with the catalyst provided, and the contact point with the particulate matter tends to be reduced, and it tends to be difficult to provide a sufficiently high oxidation performance.
  • the pores of the filter are blocked by a catalyst comprising a support containing at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt and a silver oxoacid salt supported on the support.
  • a catalyst comprising a support containing at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt and a silver oxoacid salt supported on the support.
  • the amount of the catalyst supported on the breathable base material is not particularly limited, but the amount can be appropriately adjusted according to an internal combustion engine or the like, and the breathable group
  • the amount is preferably 1 to 300 g, more preferably 5 to 100 g, per 1 liter of material volume. If the supported amount is less than the lower limit, it tends to be difficult to exhibit sufficiently high catalyst performance. On the other hand, if the upper limit is exceeded, a catalyst comprising the support and the silver oxoacid salt is used. The pores of the air-permeable base material are clogged, and the pressure loss of the exhaust gas increases, and the engine efficiency tends to decrease.
  • such an exhaust gas purification filter preferably has a porosity of 30 to 80% (more preferably 40 to 65%).
  • porosity refers to the volume ratio of the hollow portion inside the breathable substrate.
  • the porosity is less than the lower limit, the pores tend to be clogged by the particulate matter in the exhaust gas.
  • the porosity exceeds the upper limit, it is difficult to collect the particulate matter in the exhaust gas. The strength of the filter tends to decrease.
  • the method for supporting the exhaust gas purifying catalyst of the present invention on the breathable base material is not particularly limited.
  • the barium oxoacid salt and the strontium oxoacid salt are previously used.
  • a method comprising preparing a catalyst comprising a support containing at least one selected from the group consisting of: and a silver oxoacid salt supported on the support, and supporting the catalyst on a breathable substrate;
  • the barium oxoacid salt and the strontium oxoacid are obtained by carrying out a step of supporting a carrier on a substrate and a step of supporting a silver oxoacid salt on the carrier supported on the breathable substrate.
  • a method of supporting a catalyst comprising a support containing at least one selected from the group consisting of salts and a silver oxoacid salt supported on the support on a filter. Rukoto can.
  • the method for supporting the catalyst, the carrier, and the silver oxo acid salt on the breathable substrate is not particularly limited, and a known method can be appropriately employed.
  • a slurry such as a catalyst or a carrier is prepared, and the slurry is vented.
  • a method of coating (subsequent firing if necessary) on the conductive substrate can be appropriately used.
  • other known components that can be used as a catalyst for oxidizing a particulate material may be appropriately contained within a range not impairing the effects of the present invention.
  • the exhaust gas purification method of the present invention is a method of oxidizing and removing particulate matter (PM) by bringing exhaust gas from an internal combustion engine into contact with the exhaust gas purification catalyst of the present invention.
  • the method for bringing the exhaust gas into contact with the exhaust gas purification catalyst is not particularly limited, and a known method can be adopted as appropriate.
  • the gas discharged from the internal combustion engine A method of bringing the exhaust gas from the internal combustion engine into contact with the exhaust gas purification catalyst by disposing the exhaust gas purification catalyst according to the present invention in a circulating exhaust gas pipe may be adopted.
  • the exhaust gas purifying catalyst of the present invention used in the exhaust gas purifying method of the present invention has a sufficiently high PM oxidation activity, and further, a decrease in the oxidation performance of particulate matter due to ash deposition is sufficiently suppressed, It is possible to exhibit sufficiently high PM oxidation activity even after ash deposition.
  • the particulate matter (PM) in the exhaust gas can be sufficiently removed by oxidation to purify the exhaust gas, and the particulate matter (PM) in the exhaust gas can be sufficiently removed by oxidation after the ash is deposited. It becomes possible to purify.
  • the exhaust gas purification method of the present invention is suitably employed as a method for purifying particulate matter (PM) in exhaust gas discharged from an internal combustion engine such as a diesel engine, for example. Can do.
  • Example 1 Ion-exchanged water is added to barium sulfate (BaSO 4 , manufactured by Wako Pure Chemical Industries, Ltd.), and a small nano-superdispersion machine (manufactured by Kotobuki Kogyo Co., Ltd., trade name “Wet Disperser” Nano-Superdispersion) is used with zirconia beads (diameter 50 ⁇ m). Machine milled with an ultra apex mill “UAM015”) for about 1 hour to obtain a barium sulfate slurry. When the particle size distribution of the obtained barium sulfate slurry was measured, the center particle size was about 0.5 ⁇ m.
  • alumina sol (Nissan Chemical Industry Co., Ltd., trade name “AS-520”, average particle size 10 to 20 nm) corresponding to a solid content of 8% by mass was added to and mixed with the obtained barium sulfate slurry, and cordierite Particulate filter (DPF) base material (manufactured by NGK, diameter 30 mm x length 50 mm, porosity 60%, average pore diameter 30 ⁇ m) was impregnated so as to enter the inside of the partition pores, and then extra with a suction machine The slurry was removed, dried at 110 ° C. for about 3 hours, and then fired in the atmosphere at a firing temperature of 500 ° C. for 5 hours to obtain the base material on which the barium sulfate coating layer was formed.
  • the supported amount (coat amount) of barium sulfate per liter of the base material (DPF) was 33 g / L.
  • the base material on which the barium sulfate coating layer is formed is impregnated with an aqueous solution in which silver sulfate (Ag 2 SO 4 , manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in ion-exchanged water, and the temperature is 110 ° C.
  • the catalyst for exhaust gas purification in a form supported on DPF silica sulfate / barium sulfate (Ag 2 SO 4 / BaSO 4 )
  • DPF silver sulfate / barium sulfate (Ag 2 SO 4 / BaSO 4 )
  • the supported amount of silver sulfate per liter of the base material (DPF) was 7.5 g / L in terms of silver.
  • the supported amount of silver sulfate was 17% by mass in terms of metallic silver with respect to the total amount of the barium sulfate (carrier) and the silver sulfate (silver oxoacid salt).
  • Example 2 Exhaust gas purification catalyst (silver sulfate / strontium sulfate (Ag)) supported by DPF in the same manner as in Example 1 except that strontium sulfate (SrSO 4 , manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of barium sulfate. 2 SO 4 / SrSO 4 ) catalyzed particulate filter).
  • strontium sulfate SrSO 4 , manufactured by Wako Pure Chemical Industries, Ltd.
  • the supported amount (coat amount) of strontium sulfate per liter of the base material (DPF) is 33 g / L
  • the supported amount of silver sulfate per liter of the base material (DPF) is 7.5 g / L in terms of silver.
  • the supported amount of silver sulfate was 17% by mass in terms of metallic silver with respect to the total amount of strontium sulfate (carrier) and silver sulfate (silver oxoacid salt).
  • the center particle size was about 0.7 ⁇ m.
  • an alumina sol corresponding to a solid content of 8% by mass (manufactured by Nissan Chemical Industries, trade name “AS-520”, average particle size of 10 to 20 nm) is added to and mixed with the obtained calcium sulfate slurry.
  • Particulate filter (DPF) base material (manufactured by NGK, diameter 30 mm x length 50 mm, porosity 60%, average pore diameter 30 ⁇ m) was impregnated so as to enter the inside of the partition pores, and then extra with a suction machine The slurry was removed, dried at 110 ° C.
  • the supported amount (coat amount) of calcium sulfate per liter of the base material (DPF) was 33 g / L.
  • the base material on which the calcium sulfate coating layer is formed is impregnated with an aqueous solution in which silver sulfate (Ag 2 SO 4 , manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in ion-exchanged water, and the temperature is 110 ° C.
  • the catalyst for comparison a particulate filter with silver sulfate / calcium sulfate (Ag 2 SO 4 / CaSO 4 ) catalyst
  • the supported amount of silver sulfate per liter of the base material (DPF) was 7.5 g / L in terms of silver.
  • the supported amount of silver sulfate was 17% by mass in terms of metallic silver with respect to the total amount of calcium sulfate and silver sulfate.
  • Example 2 Example 1 was used except that silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of silver sulfate and the base material on which the barium sulfate coating layer was formed was impregnated with an aqueous solution in which the silver nitrate was dissolved.
  • a comparative catalyst particle filter with silver / barium sulfate (Ag / BaSO 4 ) catalyst
  • the center particle size was about 0.5 ⁇ m.
  • the supported amount (coat amount) of barium sulfate per liter of the base material (DPF) was 33 g / L
  • the supported amount of silver per liter of the base material (DPF) was 7.5 g / L.
  • the supported amount of silver was 19% by mass with respect to the total amount of barium sulfate and silver.
  • silver nitrate was decomposed into silver and nitrate ions were removed by firing at 500 ° C. in the atmosphere.
  • the substrate on which a coat layer of ceria (CeO 2 ) was formed was obtained by firing at a firing temperature of 500 ° C. in the atmosphere for 5 hours.
  • the loading amount (coating amount) of ceria per liter of the base material (DPF) was 60 g / L.
  • the base material on which the ceria coat layer is formed is impregnated with an aqueous solution in which silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in ion-exchanged water, dried at 110 ° C. for about 3 hours,
  • a comparative catalyst (a particulate filter with silver / ceria (Ag / CeO 2 ) catalyst) was produced by firing at a firing temperature of 500 ° C. for 5 hours.
  • the amount of silver supported per liter of the base material (DPF) was 7.5 g / L. Further, the supported amount of silver was 11% by mass with respect to the total amount of CeO 2 and silver.
  • DPF particulate filter with silver / ceria
  • the supported amount of silver was 11% by mass with respect to the total amount of CeO 2 and silver.
  • Comparative Example 4 A comparative catalyst (silver / alumina (Ag / Ag /)) was used in the same manner as in Comparative Example 3 except that alumina sol (manufactured by Nissan Chemical Industries, trade name “AS-520”, average particle size 10 to 20 nm) was used instead of ceria sol. Al 2 O 3 ) catalyst particulate filter) was prepared.
  • the amount of alumina supported (coat amount) per 1 L of the substrate (DPF) was 30 g / L, and the amount of silver supported per 1 L of the substrate (DPF) was 7.5 g / L.
  • the amount of silver supported was 20% by mass with respect to the total amount of alumina and silver.
  • Alumina sol (manufactured by Nissan Chemical Industries, trade name “AS-520”, average particle size 10-20 nm) is a cordierite particulate filter (DPF) base material (manufactured by NGK, diameter 30 mm ⁇ length 50 mm, After impregnation so as to enter the inside of the partition pores having a porosity of 60% and an average pore diameter of 30 ⁇ m, the excess slurry is removed with a suction machine, dried at 110 ° C. for about 3 hours, and then fired at 500 ° C. in the atmosphere. By firing at a temperature for 5 hours, the above-mentioned base material on which a coat layer of alumina (Al 2 O 3 ) was formed was obtained. The amount of alumina supported (coat amount) per liter of the base material (DPF) was 30 g / L.
  • DPF cordierite particulate filter
  • a platinum dinitrodiammine nitric acid (Pt (NH 3 ) 2 (NO 2 ) 2 / HNO 3 ) aqueous solution in which platinum is dissolved and palladium are dissolved in the base material on which the alumina coat layer is formed.
  • a predetermined amount of palladium nitrate (Pd (NO 3 ) 2 ) aqueous solution is impregnated, platinum and palladium are supported by a selective adsorption method, dried at 110 ° C. for about 3 hours, and then fired at a firing temperature of 500 ° C. in the atmosphere for 5 hours.
  • a comparative catalyst platinum / palladium / alumina (Pt—Pd / Al 2 O 3 ) catalyst-attached particulate filter
  • the supported amount of platinum and palladium per liter of the base material (DPF) was 0.6 g / L for platinum and 0.3 g / L for palladium.
  • the supported amounts of platinum and palladium were 1.9% by mass for platinum and 0.97% by mass for palladium, respectively, with respect to the total amount of alumina, platinum and palladium.
  • a cordierite particulate filter (DPF) base material (manufactured by NGK, diameter 30 mm x length 50 mm, porosity 60%, average pore diameter 30 ⁇ m) is directly used as a particulate filter for comparison (no catalyst supported) ) using.
  • PM particulate matter generated by using a PM adhesion test combustion particle generator (Combustion Aerosol Standard; CAST, Matter Engineering) is used as air (20 L / min) at room temperature (25 ° C.).
  • the catalyst obtained in Examples 1 and 2 and Comparative Examples 1 to 2 were passed through the particulate filter with catalyst or the particulate filter obtained in Examples 1 to 2 and Comparative Examples 1 to 6 together.
  • the PM was adhered to each of the comparative catalysts obtained in 6 (PM adhesion treatment). Note that the PM adhesion amount was 2 g / L in all cases.
  • a particulate filter with catalyst or particulate filter with PM attached is installed in a fixed bed flow type reactor (product name “CATA-5000”, manufactured by Best Sokki Co., Ltd.), and the catalyst input gas temperature is used as a pretreatment.
  • N 2 gas was supplied at 500 L for 15 minutes at 15 L / min, and then cooled to room temperature.
  • the supply gas was switched to 15 L / min of simulated exhaust gas composed of O 2 (10%), H 2 O (10%) and N 2 (remainder), and from 200 ° C. to 720 ° C. at a rate of temperature increase at 20 ° C./min.
  • the temperature was raised, and the amount of PM oxidation was calculated from the CO 2 and CO concentrations in the output gas from the sample.
  • the temperature at which 50% of the PM adhesion amount was oxidized that is, the 50% PM oxidation temperature was used. It can be said that the lower the 50% PM oxidation temperature, the higher the PM oxidation activity.
  • Table 1 shows the results obtained as described above. Further, as an evaluation result of the PM oxidation activity of the catalyst after ash deposition and ash deposition-heat treatment, the exhaust gas purifying catalyst (catalyst particulate filter with catalyst) obtained in Examples 1 and 2 after ash deposition and ash deposition-heat treatment was obtained. ) And Comparative Examples 1 to 6 are graphs showing the 50% PM oxidation temperature of the comparative catalyst (catalyzed particulate filter or particulate filter) after ash deposition and after ash deposition-heat treatment, as shown in FIG.
  • the particulate filters with catalysts of Examples 1 and 2 and Comparative Examples 1 to 4 have a 50% PM oxidation temperature as compared with the particulate filter of Comparative Example 6. The temperature was lowered. That is, it can be said that these particulate filters with catalyst catalyze PM oxidation.
  • the 50% PM oxidation temperature of the particulate filter with catalyst of Comparative Example 5 is almost the same as that of Comparative Example 6.
  • Pt—Pd / Al 2 O 3 has almost catalytic activity for PM oxidation. It was confirmed not to show.
  • the particulate filter with catalyst of Examples 1 and 2 showed the highest PM oxidation activity among all the samples, and Ag 2 SO 4 supported on BaSO 4 and SrSO 4 supports showed particularly high PM oxidation activity. Expression was confirmed.
  • the 50% PM oxidation temperature of the particulate filter with catalyst of Comparative Examples 2 and 4 is the same for both comparative catalysts after ash deposition and ash deposition-heat treatment. It became substantially the same as Comparative Example 6. That is, it was confirmed that these particulate filters with a catalyst lose catalytic activity once the ash is deposited.
  • the 50% PM oxidation temperature after ash deposition was lower than that of Comparative Example 6, and ash was deposited on the catalyst. It can also be said that it can provide a catalytic action.
  • the catalyzed particulate filters of Examples 1 and 2 showed the highest PM oxidation activity among all samples. This is considered that during the PM oxidation activity test, part of Ag 2 SO 4 supported on the BaSO 4 or SrSO 4 carrier moved to the ash particles and expressed the PM oxidation activity on the ash. Further, the exhaust gas purifying catalyst (particulate filter with catalyst) of Examples 1 and 2 after the ash deposition-heat treatment had higher PM oxidation activity than that after the ash deposition, and almost the same activity as the initial stage. This is presumably because Ag 2 SO 4 further moved to the ash particles by the heat treatment, and the number of active sites that express PM oxidation activity on the ash increased. From the above, it was confirmed that Ag 2 SO 4 supported on BaSO 4 or SrSO 4 carrier has particularly high ash resistance.
  • an exhaust gas purification catalyst in which a silver oxo acid salt is supported on a support containing at least one selected from the group consisting of barium oxo acid salt and strontium oxo acid salt can be sufficiently obtained. It has been confirmed that it has a high level of PM oxidation activity, and that the deterioration of the oxidation performance of the particulate matter due to ash deposition is sufficiently suppressed, and that it exhibits sufficiently high PM oxidation activity even after ash deposition. From this, it was confirmed that the exhaust gas purifying catalyst of the present invention is useful as a catalyst for oxidizing PM.
  • the present invention has a sufficiently high PM oxidation activity, and the deterioration of the oxidation performance of the particulate matter due to the ash deposition is sufficiently suppressed, and even after the ash deposition. It is possible to provide an exhaust gas purification catalyst capable of exhibiting a high degree of PM oxidation activity, an exhaust gas purification filter using the same, and an exhaust gas purification method.
  • the exhaust gas purifying catalyst of the present invention the exhaust gas purifying filter and the exhaust gas purifying method using the same, a PM oxidation catalyst for purifying particulate matter contained in exhaust gas from an internal combustion engine such as a diesel engine, It is particularly useful as the exhaust gas purification filter or exhaust gas purification method used.

Abstract

An exhaust gas purifying catalyst which comprises: a carrier containing at least one salt selected from the group consisting of oxo acid salts of barium and oxo acid salts of strontium; and an oxo acid salt of silver supported by the carrier. The oxo acid salts of barium are oxo acid salts containing at least one substance selected from the group consisting of boron, phosphorus and sulfur; the oxo acid salts of strontium are oxo acid salts containing at least one substance selected from the group consisting of boron, phosphorus and sulfur; and the oxo acid salt of silver is an oxo acid salt containing at least one substance selected from the group consisting of phosphorus and sulfur.

Description

排ガス浄化用触媒、それを用いた排ガス浄化フィルタ及び排ガス浄化方法Exhaust gas purification catalyst, exhaust gas purification filter and exhaust gas purification method using the same
 本発明は、排ガス浄化用触媒、並びにそれを用いた排ガス浄化フィルタ及び排ガス浄化方法に関する。 The present invention relates to an exhaust gas purification catalyst, an exhaust gas purification filter and an exhaust gas purification method using the same.
 内燃機関から排出されるガスには、燃焼により生じた粒子状物質(PM:Particulate Matter)やオイル中の添加剤などからなるアッシュ(Ash)などの有害物質が含まれている。このような有害物質の中でも粒子状物質は動植物に悪影響を及ぼす大気汚染物質として知られている。そのため、内燃機関より排出される排ガス中に含まれる粒子状物質を捕集するために、浄化フィルタ(DPF:Diesel Particulate Filter)が用いられている。DPFで捕集されたPMは圧力損失の上昇を引き起こし、内燃機関の出力低下の原因となるため、定期的に高温に上げ(例えば、650℃付近まで昇温して)PMを燃焼(酸化除去)することにより、DPFの再生を行う。このとき、燃費改善や材料の耐久性向上のため、より低温で再生することが望ましく、DPFにPM酸化触媒を担持することが検討されている。このようなPM酸化触媒として、銀(Ag)を含有する触媒が高いPM酸化活性を示すことが知られている。 Gas discharged from the internal combustion engine contains particulate matter (PM) generated by combustion, toxic substances such as ash made of additives in oil, and the like. Among such harmful substances, particulate substances are known as air pollutants that adversely affect animals and plants. Therefore, a purification filter (DPF: Diesel Particulate Filter) is used to collect particulate matter contained in the exhaust gas discharged from the internal combustion engine. The PM collected by the DPF causes an increase in pressure loss and a decrease in the output of the internal combustion engine. Therefore, the PM is periodically raised to a high temperature (for example, heated to around 650 ° C.), and the PM is burned (oxidized and removed). ) To regenerate the DPF. At this time, in order to improve fuel consumption and material durability, it is desirable to regenerate at a lower temperature, and it has been studied to carry a PM oxidation catalyst on the DPF. As such a PM oxidation catalyst, it is known that a catalyst containing silver (Ag) exhibits high PM oxidation activity.
 このようなPM酸化触媒としては、特開2003-170051号公報(特許文献1)には、活性成分として金、銀、銅、鉄、亜鉛、マンガン及び希土類元素からなる群より選ばれる少なくとも一種の元素が、担体成分としてアルカリ土類金属の水酸化物、酸化物、炭酸塩又は硫酸塩に担持されてなるPM酸化触媒が開示されている。また、国際公開第2007/043442号公報(特許文献2)には、セリウムとジルコニウムの複合酸化物からなる担体と前記担体に担持されたAg又はAgの酸化物とからなる酸化触媒が開示されている。さらに、特開2007-196135号公報(特許文献3)には、銀が担持されたベーマイトを焼成することにより得られる酸化触媒を用いることが開示されている。 As such a PM oxidation catalyst, Japanese Patent Application Laid-Open No. 2003-170051 (Patent Document 1) discloses at least one selected from the group consisting of gold, silver, copper, iron, zinc, manganese and rare earth elements as an active component. A PM oxidation catalyst in which an element is supported on an alkaline earth metal hydroxide, oxide, carbonate or sulfate as a carrier component is disclosed. Further, International Publication No. 2007/043442 (Patent Document 2) discloses an oxidation catalyst composed of a carrier made of a complex oxide of cerium and zirconium and Ag or an oxide of Ag carried on the carrier. Yes. Furthermore, Japanese Patent Application Laid-Open No. 2007-196135 (Patent Document 3) discloses using an oxidation catalyst obtained by firing boehmite on which silver is supported.
 しかしながら、特許文献1~3に記載のような従来のPM酸化触媒においては、使用時にガス中に含まれているアッシュが酸化触媒上に堆積された場合に、そのアッシュにより粒子状物質と酸化触媒との接触が妨げられて粒子状物質の浄化性能が低下していた。また、このようにして粒子状物質の浄化性能が低下した酸化触媒を再生させるためには排ガスを高温とする必要があり、触媒の浄化性能の再生処理に燃料を大量に消費していたことから、特許文献1~3に記載のような従来のPM酸化触媒を用いた場合には内燃機関の燃費の低下を招いてしまうという問題もあった。さらに、特許文献1~3に記載のような従来のPM酸化触媒は、上述のように使用によりPMの酸化性能が変化することから、DPFの再生処理を施す時期やその際の温度条件などを設定することが困難であったばかりか、触媒をDPFなどの基材に担持させていた場合には多量のPMの酸化による熱でその基材が破壊されてしまう場合もあった。このように、特許文献1~3に記載のような従来のPM酸化触媒においては、アッシュの堆積に起因して十分に浄化性能を発揮することができなかった。 However, in the conventional PM oxidation catalyst as described in Patent Documents 1 to 3, when the ash contained in the gas is deposited on the oxidation catalyst at the time of use, the particulate matter and the oxidation catalyst are caused by the ash. As a result, the purification performance of the particulate matter was deteriorated. In addition, in order to regenerate the oxidation catalyst with reduced particulate matter purification performance in this way, the exhaust gas must be heated to a high temperature, and a large amount of fuel was consumed in the regeneration treatment of the catalyst purification performance. Further, when the conventional PM oxidation catalyst as described in Patent Documents 1 to 3 is used, there is a problem that the fuel consumption of the internal combustion engine is reduced. Furthermore, since the PM oxidation performance of the conventional PM oxidation catalyst as described in Patent Documents 1 to 3 changes depending on the use as described above, the timing for performing the regeneration process of the DPF and the temperature condition at that time are determined. Not only was it difficult to set, but when the catalyst was supported on a base material such as DPF, the base material could be destroyed by heat due to the oxidation of a large amount of PM. As described above, the conventional PM oxidation catalysts as described in Patent Documents 1 to 3 cannot sufficiently exhibit purification performance due to ash accumulation.
 また、特開2012-219715号公報(特許文献4)には、Caの硫酸塩及びリン酸塩からなる群より選択される少なくとも1種の金属塩からなる担体と、該担体に担持された銀、酸化銀、炭酸銀、硫酸銀及びリン酸銀からなる群より選択される少なくとも1種である銀含有物質とを備える酸化触媒を備える排ガス浄化装置が開示されている。同公報の記載によれば、アッシュの堆積による粒子状物質の酸化性能の低下が十分に抑制され、アッシュの堆積後においても優れた粒子状物質の酸化性能を発揮することが可能な排ガス浄化装置を提供することが可能となっている。 Japanese Patent Application Laid-Open No. 2012-219715 (Patent Document 4) discloses a carrier made of at least one metal salt selected from the group consisting of Ca sulfate and phosphate, and silver carried on the carrier. An exhaust gas purification apparatus including an oxidation catalyst including at least one silver-containing material selected from the group consisting of silver oxide, silver carbonate, silver sulfate, and silver phosphate is disclosed. According to the description of the publication, the exhaust gas purification device capable of sufficiently suppressing the reduction in the oxidation performance of the particulate matter due to the ash deposition and exhibiting the excellent oxidation performance of the particulate matter even after the ash deposition. It is possible to provide.
 しかしながら、近年は、排ガス浄化用触媒に対する要求特性が益々高まっており、十分に高度なPM酸化活性を有し、しかもアッシュの堆積による粒子状物質の酸化性能の低下が十分に抑制され、アッシュの堆積後においても十分に高度なPM酸化活性を発揮することが可能な排ガス浄化用触媒が求められるようになってきた。 However, in recent years, the required characteristics for exhaust gas purification catalysts have been increasing more and more, have sufficiently high PM oxidation activity, and the deterioration of the oxidation performance of particulate matter due to the accumulation of ash is sufficiently suppressed. An exhaust gas purifying catalyst capable of exhibiting sufficiently high PM oxidation activity even after deposition has been demanded.
特開2003-170051号公報JP 2003-170051 A 国際公開第2007/043442号公報International Publication No. 2007/043442 特開2007-196135号公報JP 2007-196135 A 特開2012-219715号公報JP 2012-219715 A
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、十分に高度なPM酸化活性を有し、しかもアッシュの堆積による粒子状物質の酸化性能の低下が十分に抑制され、アッシュの堆積後においても十分に高度なPM酸化活性を発揮することが可能な排ガス浄化用触媒、それを用いた排ガス浄化フィルタ及び排ガス浄化方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, has a sufficiently high PM oxidation activity, and sufficiently suppresses a reduction in oxidation performance of particulate matter due to ash deposition. It is an object of the present invention to provide an exhaust gas purifying catalyst capable of exhibiting sufficiently high PM oxidation activity even after deposition, an exhaust gas purifying filter and an exhaust gas purifying method using the same.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体に銀のオキソ酸塩を担持させることにより、驚くべきことに得られる排ガス浄化用触媒が十分に高度なPM酸化活性を有し、しかもアッシュの堆積による粒子状物質の酸化性能の低下が十分に抑制され、アッシュの堆積後においても十分に高度なPM酸化活性を発揮することが可能となることを見いだし、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have developed a silver oxo acid salt on a carrier containing at least one selected from the group consisting of barium oxo acid salt and strontium oxo acid salt. As a result of the loading, the exhaust gas purifying catalyst obtained surprisingly has a sufficiently high PM oxidation activity, and further the deterioration of the oxidation performance of the particulate matter due to the accumulation of ash is sufficiently suppressed. The present inventors have found that a sufficiently high PM oxidation activity can be exhibited even in the present invention, and the present invention has been completed.
 すなわち、本発明の排ガス浄化用触媒は、バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体と、該担体に担持されている銀のオキソ酸塩とを備え、前記バリウムのオキソ酸塩が、ホウ素、リン及び硫黄からなる群より選択される少なくとも1種を含むオキソ酸塩であり、前記ストロンチウムのオキソ酸塩が、ホウ素、リン及び硫黄からなる群より選択される少なくとも1種を含むオキソ酸塩であり、前記銀のオキソ酸塩が、リン及び硫黄からなる群より選択される少なくとも1種を含むオキソ酸塩である。 That is, the exhaust gas purifying catalyst of the present invention comprises a carrier containing at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt, and silver oxoacid salt carried on the carrier. The barium oxoacid salt is an oxoacid salt containing at least one selected from the group consisting of boron, phosphorus and sulfur, and the strontium oxoacid salt is a group consisting of boron, phosphorus and sulfur An oxoacid salt containing at least one selected from the above, wherein the silver oxoacid salt is an oxoacid salt containing at least one selected from the group consisting of phosphorus and sulfur.
 本発明の排ガス浄化用触媒においては、前記バリウムのオキソ酸塩が、硫酸バリウム(BaSO)及び亜硫酸バリウム(BaSO)からなる群より選択される少なくとも1種であり、前記ストロンチウムのオキソ酸塩が、硫酸ストロンチウム(SrSO)及び亜硫酸ストロンチウム(SrSO)からなる群より選択される少なくとも1種であることが好ましい。 In the exhaust gas purifying catalyst of the present invention, the barium oxoacid salt is at least one selected from the group consisting of barium sulfate (BaSO 4 ) and barium sulfite (BaSO 3 ), and the strontium oxoacid salt Is preferably at least one selected from the group consisting of strontium sulfate (SrSO 4 ) and strontium sulfite (SrSO 3 ).
 また、本発明の排ガス浄化用触媒においては、前記銀のオキソ酸塩が、硫酸銀(AgSO)及び亜硫酸銀(AgSO)からなる群より選択される少なくとも1種であることが好ましい。 In the exhaust gas purifying catalyst of the present invention, the silver oxoacid salt is at least one selected from the group consisting of silver sulfate (Ag 2 SO 4 ) and silver sulfite (Ag 2 SO 3 ). Is preferred.
 さらに、本発明の排ガス浄化用触媒においては、前記銀のオキソ酸塩の担持量が、前記担体と前記銀のオキソ酸塩との総量に対して金属銀換算で0.1~50質量%であることが好ましい。 Furthermore, in the exhaust gas purifying catalyst of the present invention, the supported amount of the silver oxoacid salt is 0.1 to 50% by mass in terms of metallic silver with respect to the total amount of the carrier and the silver oxoacid salt. Preferably there is.
 本発明の排ガス浄化フィルタは、通気性基材と、該通気性基材に担持されている上記本発明の排ガス浄化用触媒とを備えるものである。 The exhaust gas purification filter of the present invention comprises a breathable base material and the exhaust gas purification catalyst of the present invention supported on the breathable base material.
 また、本発明の排ガス浄化方法は、上記本発明の排ガス浄化用触媒に内燃機関からの排ガスを接触せしめて粒子状物質(PM)を酸化除去する方法である。 The exhaust gas purification method of the present invention is a method of oxidizing and removing particulate matter (PM) by contacting exhaust gas from an internal combustion engine with the exhaust gas purification catalyst of the present invention.
 なお、本発明の排ガス浄化用触媒、それを用いた排ガス浄化フィルタ及び排ガス浄化方法によって、十分に高度なPM酸化活性を有し、しかもアッシュの堆積による粒子状物質の酸化性能の低下が十分に抑制され、アッシュの堆積後においても十分に高度なPM酸化活性を発揮することが可能となる理由は必ずしも定かではないが、本発明者らは以下のように推察する。 The exhaust gas purification catalyst of the present invention, the exhaust gas purification filter using the exhaust gas purification method, and the exhaust gas purification method have sufficiently high PM oxidation activity and sufficiently reduce the oxidation performance of particulate matter due to ash deposition. Although the reason why it is suppressed and a sufficiently high PM oxidation activity can be exhibited even after ash deposition is not necessarily clear, the present inventors speculate as follows.
 すなわち、本発明において、排ガス浄化用触媒は前記バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体と、該担体に担持されている前記銀のオキソ酸塩とを備えており、本発明の排ガス浄化用触媒に含まれる銀のオキソ酸塩のオキソ酸イオン中の酸素イオン(O2-)が、銀のオキソ酸塩中の銀イオン(Ag)に電子を与えることで活性化し、粒子状物質(PM、主に炭素:C)から電子を受けることで二酸化炭素(CO)になる。あるいは、銀のオキソ酸塩中の銀イオン(Ag)が粒子状物質(PM、主に炭素:C)と接触して還元されてメタル状態のAgになり、粒子状物質は酸化されて二酸化炭素(CO)になる。そのあとAg(メタル)は気相中の酸素(O)と接触することで酸化されて再度Agイオンとなり、その酸素からは酸素イオン(O2-)が生成される。このようなPMの酸化処理の一連の反応は下記反応式(1)~(2)で表すことができる。 That is, in the present invention, the exhaust gas-purifying catalyst is a carrier containing at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt, and the silver oxoacid supported on the carrier. The oxygen ion (O 2− ) in the oxo acid ion of the silver oxo acid salt contained in the exhaust gas purifying catalyst of the present invention is converted into the silver ion (Ag + ) in the silver oxo acid salt. It is activated by giving electrons to carbon dioxide, and becomes carbon dioxide (CO 2 ) by receiving electrons from particulate matter (PM, mainly carbon: C). Alternatively, silver ions (Ag + ) in a silver oxo acid salt are reduced to contact with particulate matter (PM, mainly carbon: C) to become Ag in a metal state, and the particulate matter is oxidized and oxidized. It becomes carbon (CO 2 ). After that, Ag (metal) is oxidized by contact with oxygen (O 2 ) in the gas phase to become Ag ions again, and oxygen ions (O 2− ) are generated from the oxygen. Such a series of reactions in the oxidation treatment of PM can be expressed by the following reaction formulas (1) to (2).
  (1) 4Ag+C+2O2-→4Ag+CO
  (2) 4Ag+O→4Ag+2O2-
このようなサイクルにより、銀のオキソ酸塩は粒子状物質(PM)に触媒作用を与えることができるものと本発明者らは推察する。
(1) 4Ag + + C + 2O 2− → 4Ag + CO 2
(2) 4Ag + O 2 → 4Ag + + 2O 2−
By such a cycle, the inventors speculate that silver oxoacid salts can catalyze particulate matter (PM).
 なお、銀のオキソ酸塩を担持した担体が、酸化セリウム(セリア:CeO)やCeOを含む複合酸化物のような塩基性担体の場合は、オキソ酸イオンがセリウム(Ce)イオンと結合してしまうため、酸素が活性化されない。また、酸化チタン(チタニア:TiO)や酸化すず(SnO)などの酸性担体の場合は、還元されたAgが安定になるため、Oによる再酸化が進行しない。 Incidentally, the carrier carrying the silver oxo acid salts of cerium oxide: the case of a basic support such as a composite oxide containing (ceria CeO 2) or CeO 2, and oxoacid ions of cerium (Ce) ionic bond As a result, oxygen is not activated. Further, in the case of an acidic carrier such as titanium oxide (titania: TiO 2 ) or tin oxide (SnO 2 ), the reduced Ag becomes stable, and thus re-oxidation by O 2 does not proceed.
 本発明の排ガス浄化用触媒の担体は、前記バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含むものであり、このような担体のバリウム(Ba)やストロンチウム(Sr)の前記オキソ酸塩は、適度な塩基性/酸性を有するものであるため、上記のサイクルが滞ることなく進行するものと本発明者らは推察する。 The carrier for the exhaust gas purifying catalyst of the present invention contains at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt. Such a carrier such as barium (Ba) or strontium Since the oxo acid salt of (Sr) has moderate basicity / acidity, the present inventors infer that the above cycle proceeds without delay.
 また、本発明の排ガス浄化用触媒の前記担体に担持された前記銀のオキソ酸塩は、融点が比較的に低く(例えば、AgSOでは660℃)、高温(PMが酸化される温度領域)では少なくとも一部が溶融状態になっていると考えられ、担体上で溶融性を有するため銀イオンは担体表面全体を覆うように分散する。そのため、担体に担持された前記銀のオキソ酸塩を備える排ガス浄化用触媒においては、AgイオンとPMとの接触点が著しく増大し、より高度なPM酸化活性を得ることが可能になるものと本発明者らは推察する。 In addition, the silver oxoacid salt supported on the carrier of the exhaust gas purifying catalyst of the present invention has a relatively low melting point (for example, 660 ° C. in Ag 2 SO 4 ) and high temperature (temperature at which PM is oxidized). In the region), it is considered that at least a part is in a molten state, and silver ions are dispersed so as to cover the entire surface of the carrier because it has melting properties on the carrier. Therefore, in the exhaust gas purifying catalyst comprising the silver oxoacid salt supported on the carrier, the contact point between Ag ions and PM is remarkably increased, and it becomes possible to obtain higher PM oxidation activity. The present inventors speculate.
 さらに、本発明の排ガス浄化用触媒においては、上記のように前記銀のオキソ酸塩は高温では担体上で溶融性を有する。本発明のバリウム(Ba)やストロンチウム(Sr)の前記オキソ酸塩を有する担体は、硫酸カルシウム(CaSO)やリン酸カルシウム(Ca(PO、CaHPO、CaH(POなど)を主成分とするアッシュ粒子と塩基性/酸性が比較的に似ているため、担体上の前記銀のオキソ酸塩が溶融して、前記銀のオキソ酸塩、銀(Ag)又は銀イオン(Ag)が触媒と接触しているアッシュ粒子へ移動することが可能である。そして、アッシュ粒子の表面へ移動した前記銀のオキソ酸塩、銀(Ag)又は銀イオン(Ag)は、アッシュ粒子の表面で粒子状物質(PM、主に炭素:C)と接触して、上記のような酸化反応(反応式(1)~(2))を引き起こすことができ、排ガス浄化用触媒やパティキュレートフィルターなどにアッシュが堆積してもPM酸化に触媒作用を与えることが可能となるものと本発明者らは推察する。 Furthermore, in the exhaust gas purifying catalyst of the present invention, as described above, the silver oxo acid salt has a melting property on the carrier at a high temperature. The carrier having the oxo acid salt of barium (Ba) or strontium (Sr) of the present invention includes calcium sulfate (CaSO 4 ), calcium phosphate (Ca 3 (PO 4 ) 2 , CaHPO 4 , CaH 4 (PO 4 ) 2, etc. ) And the basic / acidity of the ash particles as a main component, the silver oxo acid salt on the carrier melts and the silver oxo acid salt, silver (Ag) or silver ion (Ag + ) can migrate to the ash particles in contact with the catalyst. Then, the silver oxoacid salt, silver (Ag) or silver ion (Ag + ) that has moved to the surface of the ash particles comes into contact with particulate matter (PM, mainly carbon: C) on the surface of the ash particles. It is possible to cause the oxidation reaction as described above (reaction formulas (1) to (2)), and it is possible to catalyze PM oxidation even if ash accumulates on exhaust gas purification catalysts and particulate filters. The present inventors speculate that
 これにより、本発明の排ガス浄化用触媒においては、十分に高度なPM酸化活性を達成でき、しかもアッシュの堆積による粒子状物質の酸化性能の低下が十分に抑制することができ、アッシュの堆積後においても十分に高度なPM酸化活性を発揮することが可能になるものと本発明者らは推察する。 As a result, in the exhaust gas purifying catalyst of the present invention, a sufficiently high PM oxidation activity can be achieved, and further, the deterioration of the oxidation performance of the particulate matter due to the ash deposition can be sufficiently suppressed. The present inventors infer that it is possible to exhibit a sufficiently high PM oxidation activity even in the case of the above.
 本発明によれば、十分に高度なPM酸化活性を有し、しかもアッシュの堆積による粒子状物質の酸化性能の低下が十分に抑制され、アッシュの堆積後においても十分に高度なPM酸化活性を発揮することが可能な排ガス浄化用触媒、それを用いた排ガス浄化フィルタ及び排ガス浄化方法を提供することが可能となる。 According to the present invention, it has a sufficiently high PM oxidation activity, and the deterioration of the oxidation performance of the particulate matter due to the ash deposition is sufficiently suppressed, and a sufficiently high PM oxidation activity is achieved even after the ash deposition. It is possible to provide an exhaust gas purification catalyst that can be exerted, an exhaust gas purification filter and an exhaust gas purification method using the same.
実施例1~2及び比較例1~6で得られた排ガス浄化用触媒の初期の50%PM酸化温度を示すグラフである。6 is a graph showing initial 50% PM oxidation temperatures of exhaust gas purifying catalysts obtained in Examples 1 and 2 and Comparative Examples 1 to 6. 実施例1~2及び比較例1~6で得られたアッシュ堆積後及びアッシュ堆積-熱処理後の排ガス浄化用触媒の50%PM酸化温度を示すグラフである。6 is a graph showing 50% PM oxidation temperature of exhaust gas purifying catalysts after ash deposition and after ash deposition-heat treatment obtained in Examples 1-2 and Comparative Examples 1-6.
 以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail on the basis of preferred embodiments thereof.
 [排ガス浄化用触媒]
 先ず、本発明の排ガス浄化用触媒について説明する。本発明の排ガス浄化用触媒は、バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体と、該担体に担持されている銀のオキソ酸塩とを備え、前記バリウムのオキソ酸塩が、ホウ素、リン及び硫黄からなる群より選択される少なくとも1種を含むオキソ酸塩であり、前記ストロンチウムのオキソ酸塩が、ホウ素、リン及び硫黄からなる群より選択される少なくとも1種を含むオキソ酸塩であり、前記銀のオキソ酸塩が、リン及び硫黄からなる群より選択される少なくとも1種を含むオキソ酸塩であるものである。このようなバリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体に、活性種として前記銀のオキソ酸塩を担持されているものとすることによって、本発明の排ガス浄化用触媒は、十分に高度なPM酸化活性を発揮することが可能なものとなり、しかもアッシュの堆積による粒子状物質の酸化性能の低下が十分に抑制され、アッシュの堆積後においても十分に高度なPM酸化活性を発揮することが可能なものとなる。したがって、本発明の排ガス浄化用触媒は、例えば、ディーゼルエンジンなどの内燃機関からの排ガス中の粒子状物質(PM)を酸化除去し排ガスを浄化するPM酸化触媒として好適に採用することができる。より好ましくは、本発明の排ガス浄化用触媒は、ディーゼル用PM酸化触媒として採用することができる。
[Exhaust gas purification catalyst]
First, the exhaust gas purifying catalyst of the present invention will be described. The exhaust gas purifying catalyst of the present invention comprises a carrier containing at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt, and silver oxoacid salt supported on the carrier. The barium oxoacid salt is an oxoacid salt containing at least one selected from the group consisting of boron, phosphorus and sulfur, and the strontium oxoacid salt is selected from the group consisting of boron, phosphorus and sulfur Wherein the silver oxoacid salt is an oxoacid salt containing at least one selected from the group consisting of phosphorus and sulfur. By supporting the silver oxoacid salt as an active species on a carrier containing at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt, The catalyst for exhaust gas purification of the invention can exhibit sufficiently high PM oxidation activity, and further, the deterioration of the oxidation performance of particulate matter due to ash deposition is sufficiently suppressed, and even after ash deposition. It is possible to exhibit a sufficiently high PM oxidation activity. Therefore, the exhaust gas purifying catalyst of the present invention can be suitably employed as a PM oxidation catalyst for purifying exhaust gas by oxidizing and removing particulate matter (PM) in exhaust gas from an internal combustion engine such as a diesel engine. More preferably, the exhaust gas purifying catalyst of the present invention can be employed as a PM oxidation catalyst for diesel.
 (担体)
 本発明にかかる担体は、バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体であり、前記バリウムのオキソ酸塩が、ホウ素、リン及び硫黄からなる群より選択される少なくとも1種を含むオキソ酸塩であり、前記ストロンチウムのオキソ酸塩が、ホウ素、リン及び硫黄からなる群より選択される少なくとも1種を含むオキソ酸塩であることが必要である。このようなバリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体は、ホウ素、リン及び硫黄からなる群より選択される少なくとも1種を含むオキソ酸塩であること以外は特に制限されない。ここで、「バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体」とは、前記担体が前記バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種のみから構成されるもの、或いは、前記担体が前記バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を主として含みかつ本発明の効果を損なわない範囲で他の成分を含み構成されるものであることを意味する。他の成分としては、この種の用途の担体として用いられる他の金属酸化物や添加剤などを用いることができる。後者の場合、担体における前記バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種の含有量は、担体の全質量100質量%に対して50質量%以上であることが好ましく、80質量%以上であることがより好ましい。このような担体におけるバリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種の含有量が前記下限未満では、本発明の効果が十分に得られない傾向にある。
(Carrier)
The carrier according to the present invention is a carrier comprising at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt, wherein the barium oxoacid salt is composed of boron, phosphorus and sulfur. It is necessary that the strontium oxoacid salt includes at least one selected from the group consisting of boron, phosphorus, and sulfur. . The carrier containing at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt is an oxoacid salt containing at least one selected from the group consisting of boron, phosphorus and sulfur. There are no particular restrictions except for certain. Here, “the carrier comprising at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt” means that the carrier comprises the barium oxoacid salt and strontium oxoacid salt. Or the carrier mainly contains at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt, and has the effects of the present invention. It means that it is configured to include other components within a range that does not deteriorate. As other components, other metal oxides and additives used as a carrier for this type of application can be used. In the latter case, the content of at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt in the carrier is 50% by mass or more with respect to 100% by mass of the total mass of the carrier. Is preferable, and it is more preferable that it is 80 mass% or more. If the content of at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt in such a carrier is less than the lower limit, the effects of the present invention tend not to be sufficiently obtained.
 このような担体において、ホウ素を含むオキソ酸塩としては、特に制限されず、ホウ酸塩(オルトホウ酸塩)のほか、メタホウ酸塩、四ホウ酸塩、過ホウ酸塩、次ホウ酸塩、ボロン酸塩、ボリン酸塩などを用いることができる。これらの中でも、高温で安定であるという観点から、ホウ酸塩(オルトホウ酸塩)、メタホウ酸塩であることが好ましい。 In such a carrier, the oxo acid salt containing boron is not particularly limited, and besides borate (orthoborate), metaborate, tetraborate, perborate, hypoborate, Boronate, borate and the like can be used. Among these, borate (orthoborate) and metaborate are preferable from the viewpoint of being stable at high temperatures.
 また、リンを含むオキソ酸塩としては、特に制限されず、具体的には、リン酸塩(オルトリン酸塩)のほか、二リン酸塩(ピロリン酸塩)、ポリリン酸塩(メタリン酸塩)、亜リン酸塩などを用いることができる。これらの中でも、高温で安定であるという観点から、リン酸塩(オルトリン酸塩)、亜リン酸塩、ポリリン酸塩であることが好ましい。 In addition, the oxo acid salt containing phosphorus is not particularly limited, and specifically, phosphate (orthophosphate), diphosphate (pyrophosphate), polyphosphate (metaphosphate) , Phosphites and the like can be used. Among these, from the viewpoint of being stable at high temperatures, phosphates (orthophosphates), phosphites, and polyphosphates are preferable.
 さらに、硫黄を含むオキソ酸塩としては、特に制限されず、具体的には、硫酸塩のほか、亜硫酸塩、ペルオキソ一硫酸塩、チオ硫酸塩、亜ジチオン酸塩、二亜硫酸塩、ジチオン酸塩、二硫酸塩、ペルオキソ二硫酸塩、ポリチオン酸塩などを用いることができる。これらの中でも、高温で安定であるという観点から、硫酸塩、亜硫酸塩であることが好ましく、硫酸バリウム(BaSO)又は硫酸ストロンチウム(SrSO)であることがより好ましい。 Furthermore, the oxo acid salt containing sulfur is not particularly limited. Specifically, in addition to sulfate, sulfite, peroxomonosulfate, thiosulfate, dithionate, disulfite, dithionate , Disulfate, peroxodisulfate, polythionate, and the like can be used. Among these, from the viewpoint of being stable at high temperatures, sulfates and sulfites are preferable, and barium sulfate (BaSO 4 ) or strontium sulfate (SrSO 4 ) is more preferable.
 また、本発明の排ガス浄化用触媒においては、前記バリウムのオキソ酸塩が、硫酸バリウム(BaSO)及び亜硫酸バリウム(BaSO)からなる群より選択される少なくとも1種であり、前記ストロンチウムのオキソ酸塩が、硫酸ストロンチウム(SrSO)及び亜硫酸ストロンチウム(SrSO)からなる群より選択される少なくとも1種であることが更に好ましい。 In the exhaust gas purifying catalyst of the present invention, the barium oxoacid salt is at least one selected from the group consisting of barium sulfate (BaSO 4 ) and barium sulfite (BaSO 3 ), and the strontium oxo More preferably, the acid salt is at least one selected from the group consisting of strontium sulfate (SrSO 4 ) and strontium sulfite (SrSO 3 ).
 さらに、このような担体に含有され得る前記バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩以外の他の成分としては、担体の熱安定性や触媒活性の観点から、例えば、イットリウム(Y)、ランタン(La)、プラセオジウム(Pr)、セリウム(Ce)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、マグネシウム(Mg)、カルシウム(Ca)、スカンジウム(Sc)、バナジウム(V)などの希土類、アルカリ金属、アルカリ土類金属、遷移金属などの金属の酸化物を用いることができる。 Further, other components other than the barium oxoacid salt and strontium oxoacid salt that can be contained in such a support include, for example, yttrium (Y) and lanthanum from the viewpoint of thermal stability and catalytic activity of the support. (La), praseodymium (Pr), cerium (Ce), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium Rare earth such as (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), magnesium (Mg), calcium (Ca), scandium (Sc), vanadium (V), alkali metals, An oxide of a metal such as an alkaline earth metal or a transition metal can be used.
 また、このような担体の比表面積としては、特に制限されないが、好ましくは0.5~200m/gであり、より好ましくは1~100m/gである。前記比表面積が前記上限を超えると、担体自体の耐熱性が低下するため、触媒の耐熱性が低下する傾向にあり、他方、前記下限未満では、活性種(前記銀のオキソ酸塩)の分散性が低下する傾向にある。このような比表面積は、吸着等温線からBET等温吸着式を用いてBET比表面積として算出することができる。 Further, the specific surface area of such a carrier is not particularly limited, but is preferably 0.5 to 200 m 2 / g, more preferably 1 to 100 m 2 / g. If the specific surface area exceeds the upper limit, the heat resistance of the support itself decreases, so the heat resistance of the catalyst tends to decrease. On the other hand, if the specific surface area is less than the lower limit, the active species (the silver oxoacid salt) is dispersed. Tend to decrease. Such a specific surface area can be calculated as a BET specific surface area from the adsorption isotherm using the BET isotherm adsorption equation.
 さらに、このような担体の形状としては、特に制限されないが、リング状、球状、円柱状、ペレット状など、従来公知の形状のものを用いることができる。なお、活性種(前記銀のオキソ酸塩)を分散性の高い状態で多く含有することができるという観点から、粒子状のものを用いることが好ましい。担体が粒子状のものである場合には、前記担体の粒子の平均一次粒子径が1~1000nmの粒子であることが好ましく、5~500nmの粒子であることがより好ましい。なお、このような担体の平均一次粒子径は、X線回折装置を用いて粉末X線回折ピークの線幅からシェラーの式(Scherrer’s equation)を用いて算出することにより測定することができる。あるいは、このような平均一次粒子径は、電子顕微鏡による画像の解析により算出することができる。 Furthermore, the shape of such a carrier is not particularly limited, but a conventionally known shape such as a ring shape, a spherical shape, a cylindrical shape, or a pellet shape can be used. From the viewpoint that a large amount of active species (the silver oxoacid salt) can be contained in a highly dispersible state, it is preferable to use a particulate material. When the carrier is in the form of particles, the average primary particle size of the carrier particles is preferably 1 to 1000 nm, and more preferably 5 to 500 nm. The average primary particle diameter of such a carrier can be measured by calculating from the line width of the powder X-ray diffraction peak using the Scherrer's equation using an X-ray diffractometer. . Alternatively, such an average primary particle size can be calculated by analyzing an image with an electron microscope.
 また、このような担体の製造方法としては、特に制限されないが、前記バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体を製造することが可能な公知の方法を適宜利用することができる。また、このような担体としては市販のバリウムのオキソ酸塩及び/又はストロンチウムのオキソ酸塩などを利用してもよく、ボールミルなどによりミリングして、そのサイズを適宜調整してもよい。 Further, the method for producing such a carrier is not particularly limited, but it is known that a carrier containing at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt can be produced. These methods can be used as appropriate. Further, as such a carrier, a commercially available barium oxoacid salt and / or strontium oxoacid salt may be used, and the size may be appropriately adjusted by milling with a ball mill or the like.
 (銀のオキソ酸塩)
 本発明にかかる銀のオキソ酸塩は、前記バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体に担持されている活性種であって、リン及び硫黄からなる群より選択される少なくとも1種を含むオキソ酸塩であることが必要である。このような前記銀のオキソ酸塩は、リン及び硫黄からなる群より選択される少なくとも1種を含むオキソ酸塩であること以外は特に制限されない。このような銀のオキソ酸塩として、リンを含むオキソ酸塩としては、特に制限されず、具体的には、リン酸塩(オルトリン酸塩、AgPO)のほか、二リン酸塩(ピロリン酸塩、Ag)、ポリリン酸塩(メタリン酸塩、AgPO)、亜リン酸塩などを用いることができる。これらの中でも、高温で安定であるという観点から、リン酸塩(オルトリン酸塩)、亜リン酸塩、メタリン酸塩であることが好ましく、オルトリン酸銀(AgPO)であることがより好ましい。また、硫黄を含むオキソ酸塩としては、特に制限されず、具体的には、硫酸塩のほか、亜硫酸塩、ペルオキソ一硫酸塩、チオ硫酸塩、亜ジチオン酸塩、二亜硫酸塩、ジチオン酸塩、二硫酸塩、ペルオキソ二硫酸塩、ポリチオン酸塩などを用いることができる。これらの中でも、高温で安定であるという観点から、硫酸塩、亜硫酸塩であることが好ましい。なお、このような本発明にかかる銀のオキソ酸塩は、前記バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体におけるオキソ酸塩と同様のオキソ酸塩であっても、異なるオキソ酸塩であってよい。
(Silver oxo acid salt)
The silver oxoacid salt according to the present invention is an active species supported on a carrier including at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt, and includes phosphorus and sulfur. It is necessary that the oxoacid salt contains at least one selected from the group consisting of: Such a silver oxo acid salt is not particularly limited except that it is an oxo acid salt containing at least one selected from the group consisting of phosphorus and sulfur. The silver oxo acid salt is not particularly limited as an oxo acid salt containing phosphorus. Specifically, in addition to a phosphate (orthophosphate, Ag 3 PO 4 ), a diphosphate ( Pyrophosphate, Ag 4 P 2 O 7 ), polyphosphate (metaphosphate, AgPO 3 ), phosphite, and the like can be used. Among these, phosphate (orthophosphate), phosphite, and metaphosphate are preferable from the viewpoint of being stable at high temperatures, and silver orthophosphate (Ag 3 PO 4 ) is more preferable. preferable. The oxo acid salt containing sulfur is not particularly limited. Specifically, in addition to sulfate, sulfite, peroxomonosulfate, thiosulfate, dithionate, disulfite, dithionate , Disulfate, peroxodisulfate, polythionate, and the like can be used. Among these, sulfate and sulfite are preferable from the viewpoint of being stable at high temperatures. The silver oxoacid salt according to the present invention is an oxoacid similar to the oxoacid salt in the carrier containing at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt. Even a salt may be a different oxoacid salt.
 さらに、本発明の排ガス浄化用触媒においては、前記銀のオキソ酸塩が、硫酸銀(AgSO)及び亜硫酸銀(AgSO)からなる群より選択される少なくとも1種であることが更に好ましい。 Furthermore, in the exhaust gas purifying catalyst of the present invention, the silver oxoacid salt is at least one selected from the group consisting of silver sulfate (Ag 2 SO 4 ) and silver sulfite (Ag 2 SO 3 ). Is more preferable.
 このような本発明の排ガス浄化用触媒において用いる前記銀のオキソ酸塩の担持量としては、特に制限されないが、前記担体と前記銀のオキソ酸塩との総量に対して、金属銀(Ag)換算で0.1~50質量%であることが好ましく、1~40質量%であることがより好ましい。このような銀のオキソ酸塩の担持量が前記下限未満では、粒子状物質の酸化性能を十分に高度なものとすることができなくなる傾向にあり、他方、前記上限を超えると、酸化性能が飽和してしまうためコストが高くなる傾向にある。 The supported amount of the silver oxoacid salt used in the exhaust gas purifying catalyst of the present invention is not particularly limited, but metal silver (Ag) with respect to the total amount of the carrier and the silver oxoacid salt. In terms of conversion, it is preferably 0.1 to 50% by mass, and more preferably 1 to 40% by mass. If the amount of the silver oxoacid salt supported is less than the lower limit, the oxidation performance of the particulate matter tends to be not sufficiently advanced. On the other hand, if the amount exceeds the upper limit, the oxidation performance is low. The cost tends to increase because of saturation.
 また、このような銀のオキソ酸塩の平均結晶子径(平均一次粒子径)としては、特に制限されないが、1~500nmであることが好ましく、2~100nmであることがより好ましい。このような銀のオキソ酸塩の平均結晶子径が前記下限未満では担体と強く結合し、活性が低下する傾向にあり、他方、前記上限を超えると反応に寄与する粒子数が減り、活性が低下する傾向にある。なお、このような銀のオキソ酸塩の平均結晶子径(平均一次粒子径)は、例えば、X線回折装置を用いて粉末X線回折ピークの線幅からシェラーの式(Scherrer’s equation)を用いて算出することにより測定することができる。あるいは、このような平均結晶子径(平均一次粒子径)は、電子顕微鏡による画像の解析により算出することができる。 The average crystallite size (average primary particle size) of such a silver oxoacid salt is not particularly limited, but is preferably 1 to 500 nm, and more preferably 2 to 100 nm. If the average crystallite size of the silver oxo acid salt is less than the lower limit, it strongly binds to the support and the activity tends to decrease, whereas if it exceeds the upper limit, the number of particles contributing to the reaction decreases, and the activity It tends to decrease. The average crystallite size (average primary particle size) of such a silver oxoacid salt is, for example, from the line width of a powder X-ray diffraction peak using an X-ray diffractometer, Scherrer's equation It can measure by calculating using. Alternatively, such an average crystallite size (average primary particle size) can be calculated by analyzing an image with an electron microscope.
 さらに、このようなバリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体に銀のオキソ酸塩を担持する方法としては、特に制限されないが、公知の方法を適宜利用することができ、例えば、銀のオキソ酸塩或いはそれらの前駆体の分散液やゾルを用いて、バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体に被覆(その後必要に応じて焼成)する方法や、蒸着法(例えば、化学蒸着法、物理蒸着法、スパッタ蒸着法)などを用いることによりバリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体に担持する方法などを適宜採用することができる。 Further, the method of supporting the silver oxoacid salt on a carrier containing at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt is not particularly limited, but is a known method. For example, at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt using a dispersion or sol of silver oxoacid salt or a precursor thereof. Barium oxoacid salt and strontium oxoacid salt by using a method of coating (including firing if necessary) on a support containing oxygen and a vapor deposition method (for example, chemical vapor deposition, physical vapor deposition, sputter vapor deposition) A method of supporting on a carrier containing at least one selected from the group consisting of can be suitably employed.
 (排ガス浄化用触媒)
 本発明における排ガス浄化用触媒は、前述のバリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体と、該担体に担持されている前述の銀のオキソ酸塩とを備えているものであり、その形態としては、特に制限されないが、ペレット形状のペレット触媒の形態などとしてもよく、DPFなどのフィルタに担持した形態としてもよい。
(Exhaust gas purification catalyst)
The exhaust gas-purifying catalyst in the present invention includes a carrier containing at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt, and the silver oxoacid supported on the carrier. Although it is provided with a salt and the form thereof is not particularly limited, it may be in the form of a pellet-shaped pellet catalyst or the like and may be supported on a filter such as DPF.
 (排ガス浄化用触媒の製造方法)
 本発明の排ガス浄化用触媒の製造方法としては、特に制限されず、公知の方法を適宜利用することができ、例えば、前記バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体に前記銀のオキソ酸塩のイオンなどを含む水溶液を含浸させる工程、加熱し焼成を行う工程により作製される。なお、前記含浸においては、具体的には、前記銀のオキソ酸塩を所定の濃度で含有する溶液を、前記バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体に接触させることにより、所定量の前記銀のオキソ酸塩を含む溶液を前記担体に含浸(担持)させた後、これを加熱し焼成する方法を採用することができる。
(Manufacturing method of exhaust gas purification catalyst)
The method for producing the exhaust gas purifying catalyst of the present invention is not particularly limited, and a known method can be appropriately used. For example, the catalyst is selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt. It is produced by a step of impregnating a carrier containing at least one kind with an aqueous solution containing ions of the silver oxo acid salt, a step of heating and baking. In the impregnation, specifically, the solution containing the silver oxoacid salt in a predetermined concentration is at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt. It is possible to employ a method in which a solution containing a predetermined amount of the silver oxo acid salt is impregnated (supported) on the support, and then heated and fired.
 また、このような銀のオキソ酸塩を含浸させた後における加熱焼成(焼成工程)は大気中で実施してもよい。また、このような焼成工程における焼成温度としては200~700℃が好ましい。このような焼成温度が前記下限未満になると、銀のオキソ酸塩を担体に担持することが困難となり、排ガス浄化用触媒の十分なPM酸化活性が得られなくなる傾向にあり、他方、前記上限を超えると、バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体の比表面積の低下が起こり易くなり、これにより酸化活性が低下してしまう傾向にある。また、焼成時間としては0.1~100時間が好ましい。このような焼成時間が前記下限未満になると銀のオキソ酸塩を担持することが困難となり、得られる排ガス浄化用触媒(PM酸化触媒)の酸化活性が低下する傾向にあり、他方、前記上限を超えてもそれ以上の効果は得られず、触媒を調製するためのコストの増大に繋がる傾向にある。 Further, the heat-firing (firing step) after impregnating such a silver oxo acid salt may be carried out in the air. Further, the firing temperature in such a firing step is preferably 200 to 700 ° C. When such a calcination temperature is lower than the lower limit, it becomes difficult to support the silver oxoacid salt on the support, and there is a tendency that sufficient PM oxidation activity of the exhaust gas purifying catalyst cannot be obtained. If it exceeds, the specific surface area of the support containing at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt tends to decrease, and this tends to decrease the oxidation activity. The firing time is preferably from 0.1 to 100 hours. When such a calcination time is less than the lower limit, it becomes difficult to support the silver oxoacid salt, and the oxidation activity of the resulting exhaust gas purification catalyst (PM oxidation catalyst) tends to decrease. Even if it exceeds, the further effect is not acquired and it exists in the tendency which leads to the increase in the cost for preparing a catalyst.
 [排ガス浄化フィルタ]
 次に、本発明の排ガス浄化フィルタについて説明する。本発明の排ガス浄化フィルタは、通気性基材(フィルタ)と、該通気性基材に担持されている前記本発明の排ガス浄化用触媒とを備えるものである。
[Exhaust gas purification filter]
Next, the exhaust gas purification filter of the present invention will be described. The exhaust gas purification filter of the present invention comprises a breathable base material (filter) and the exhaust gas purification catalyst of the present invention carried on the breathable base material.
 このような本発明の排ガス浄化フィルタとしては、前記本発明の排ガス浄化用触媒を通気性基材に担持せしめてなること以外は特に制限されない。このような排ガス浄化フィルタの通気性基材としては、公知の通気性基材(フィルタ)を適宜利用することができ、例えば、パティキュレートフィルタ、モノリス状のフィルタ、ハニカム状のフィルタ、ペレット状のフィルタ、プレート状のフィルタ、発泡状セラミック製のフィルタなどが挙げられる。なお、前記本発明の排ガス浄化用触媒を通気性基材(フィルタ)に担持した形態のものとする場合においては、より高度な粒子状物質(PM)の酸化性能が得られることから、前記本発明の排ガス浄化用触媒をパティキュレートフィルタに担持した形態のものとすることがより好ましい。 Such an exhaust gas purification filter of the present invention is not particularly limited except that the exhaust gas purification catalyst of the present invention is supported on a gas permeable substrate. As the breathable substrate of such an exhaust gas purification filter, a known breathable substrate (filter) can be appropriately used. For example, a particulate filter, a monolith filter, a honeycomb filter, a pellet filter Examples thereof include a filter, a plate-like filter, and a foamed ceramic filter. When the exhaust gas purifying catalyst of the present invention is supported on a gas permeable substrate (filter), a higher level of particulate matter (PM) oxidation performance can be obtained. More preferably, the exhaust gas purifying catalyst of the present invention is supported on a particulate filter.
 また、このような排ガス浄化フィルタの通気性基材の材質としては、特に制限されないが、公知の材料を適宜利用することができ、例えば、コージエライト、炭化ケイ素、ムライト、チタン酸アルミニウムなどのセラミックス、クロム及びアルミニウムを含むステンレススチールなどの金属などが挙げられる。 In addition, the material of the breathable substrate of such an exhaust gas purification filter is not particularly limited, but a known material can be used as appropriate, for example, cordierite, silicon carbide, mullite, ceramics such as aluminum titanate, Examples thereof include metals such as stainless steel including chrome and aluminum.
 さらに、このような排ガス浄化フィルタとしては、平均細孔径が1~300μmの細孔を有するものを用いることが好ましい。このような平均細孔径を有する基材を用いることで、より効率よく粒子状物質を酸化して浄化することが可能となる。 Further, as such an exhaust gas purification filter, it is preferable to use a filter having pores having an average pore diameter of 1 to 300 μm. By using a base material having such an average pore diameter, it becomes possible to oxidize and purify the particulate matter more efficiently.
 また、このような排ガス浄化フィルタとしては、前記本発明の排ガス浄化用触媒によるコート層が形成されていることが好ましく、そのコート層の厚みは0.025~25μmであることが好ましく、0.05~10μmであることがより好ましい。前記コート層の厚みが前記下限未満では前記バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体と該担体に担持されている銀のオキソ酸塩とを備える触媒によりフィルタの表面を十分に被覆できず、粒子状物質との接触点が減少して十分に高度な酸化性能を付与することが困難となる傾向にあり、他方、前記上限を超えると、前記バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体と該担体に担持されている銀のオキソ酸塩とを備える触媒によりフィルタの細孔が閉塞され、排ガスの圧力損失が増大してエンジン効率が低下する傾向にある。 In addition, as such an exhaust gas purification filter, a coat layer is preferably formed by the exhaust gas purification catalyst of the present invention, and the thickness of the coat layer is preferably 0.025 to 25 μm. More preferably, the thickness is from 05 to 10 μm. When the thickness of the coating layer is less than the lower limit, a carrier containing at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt, and a silver oxoacid salt carried on the carrier, The surface of the filter cannot be sufficiently covered with the catalyst provided, and the contact point with the particulate matter tends to be reduced, and it tends to be difficult to provide a sufficiently high oxidation performance. The pores of the filter are blocked by a catalyst comprising a support containing at least one selected from the group consisting of the barium oxoacid salt and the strontium oxoacid salt and a silver oxoacid salt supported on the support. The pressure loss of exhaust gas increases and the engine efficiency tends to decrease.
 さらに、このような排ガス浄化フィルタとしては、前記通気性基材に担持する前記触媒の量は、特に制限されないが、内燃機関などに応じてその量を適宜調整することができ、前記通気性基材の体積1リットルに対して1~300gであることが好ましく、5~100gであることがより好ましい。このような担持量が前記下限未満では、十分に高度な触媒性能を発揮することが困難となる傾向にあり、他方、前記上限を超えると前記担体と前記銀のオキソ酸塩とを備える触媒により前記通気性基材の細孔が閉塞され、排ガスの圧力損失が増大してエンジン効率が低下する傾向にある。 Further, in such an exhaust gas purification filter, the amount of the catalyst supported on the breathable base material is not particularly limited, but the amount can be appropriately adjusted according to an internal combustion engine or the like, and the breathable group The amount is preferably 1 to 300 g, more preferably 5 to 100 g, per 1 liter of material volume. If the supported amount is less than the lower limit, it tends to be difficult to exhibit sufficiently high catalyst performance. On the other hand, if the upper limit is exceeded, a catalyst comprising the support and the silver oxoacid salt is used. The pores of the air-permeable base material are clogged, and the pressure loss of the exhaust gas increases, and the engine efficiency tends to decrease.
 また、このような排ガス浄化フィルタとしては、気孔率が30~80%(より好ましくは40~65%)であるものが好ましい。ここにいう「気孔率」とは、前記通気性基材内部の空洞部分の体積率をいう。また、このような気孔率が前記下限未満では、排ガス中の粒子状物質により細孔が閉塞し易くなる傾向にあり、他方、前記上限を超えると、排ガス中の粒子状物質を捕集しにくくなるとともにフィルタの強度が低下する傾向にある。 In addition, such an exhaust gas purification filter preferably has a porosity of 30 to 80% (more preferably 40 to 65%). Here, the “porosity” refers to the volume ratio of the hollow portion inside the breathable substrate. In addition, when the porosity is less than the lower limit, the pores tend to be clogged by the particulate matter in the exhaust gas. On the other hand, when the porosity exceeds the upper limit, it is difficult to collect the particulate matter in the exhaust gas. The strength of the filter tends to decrease.
 さらに、このような排ガス浄化フィルタにおいては、前記通気性基材に前記本発明の排ガス浄化用触媒を担持する方法は特に制限されず、例えば、予め前記バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体と該担体に担持されている銀のオキソ酸塩とを備える触媒を調製しておき、それを通気性基材に担持する方法や、通気性基材に対して担体を担持する工程と前記通気性基材に担持された前記担体に対し銀のオキソ酸塩を担持せしめる工程とを実施することにより前記バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体と該担体に担持されている銀のオキソ酸塩とを備える触媒をフィルタに担持する方法などを適宜採用することができる。また、触媒や担体、銀のオキソ酸塩を通気性基材に担持する方法は特に制限されず、公知の方法を適宜採用でき、例えば、触媒又は担体などのスラリーを調製し、そのスラリーを通気性基材に被覆(その後必要に応じて焼成)する方法などを適宜利用することができる。なお、このような排ガス浄化用触媒としては本発明の効果を損なわない範囲において粒子状物質を酸化するための触媒に用いることが可能な公知の他の成分を適宜含有していてもよい。 Further, in such an exhaust gas purifying filter, the method for supporting the exhaust gas purifying catalyst of the present invention on the breathable base material is not particularly limited. For example, the barium oxoacid salt and the strontium oxoacid salt are previously used. A method comprising preparing a catalyst comprising a support containing at least one selected from the group consisting of: and a silver oxoacid salt supported on the support, and supporting the catalyst on a breathable substrate; The barium oxoacid salt and the strontium oxoacid are obtained by carrying out a step of supporting a carrier on a substrate and a step of supporting a silver oxoacid salt on the carrier supported on the breathable substrate. Appropriately adopted is a method of supporting a catalyst comprising a support containing at least one selected from the group consisting of salts and a silver oxoacid salt supported on the support on a filter. Rukoto can. In addition, the method for supporting the catalyst, the carrier, and the silver oxo acid salt on the breathable substrate is not particularly limited, and a known method can be appropriately employed. For example, a slurry such as a catalyst or a carrier is prepared, and the slurry is vented. For example, a method of coating (subsequent firing if necessary) on the conductive substrate can be appropriately used. In addition, as such an exhaust gas purifying catalyst, other known components that can be used as a catalyst for oxidizing a particulate material may be appropriately contained within a range not impairing the effects of the present invention.
 [排ガス浄化方法]
 次に、本発明の排ガス浄化方法について説明する。本発明の排ガス浄化方法は、前記本発明の排ガス浄化用触媒に内燃機関からの排ガスを接触せしめて粒子状物質(PM)を酸化除去する方法である。
[Exhaust gas purification method]
Next, the exhaust gas purification method of the present invention will be described. The exhaust gas purification method of the present invention is a method of oxidizing and removing particulate matter (PM) by bringing exhaust gas from an internal combustion engine into contact with the exhaust gas purification catalyst of the present invention.
 このよう本発明の排ガス浄化方法において、前記排ガス浄化用触媒に排ガスを接触させる方法としては、特に制限されず、公知の方法を適宜採用することができ、例えば、内燃機関から排出されるガスが流通する排ガス管内に上記本発明にかかる排ガス浄化用触媒を配置することにより、排ガス浄化用触媒に対して内燃機関からの排ガスを接触させる方法を採用してもよい。 As described above, in the exhaust gas purification method of the present invention, the method for bringing the exhaust gas into contact with the exhaust gas purification catalyst is not particularly limited, and a known method can be adopted as appropriate. For example, the gas discharged from the internal combustion engine A method of bringing the exhaust gas from the internal combustion engine into contact with the exhaust gas purification catalyst by disposing the exhaust gas purification catalyst according to the present invention in a circulating exhaust gas pipe may be adopted.
 なお、本発明の排ガス浄化方法において用いる前記本発明の排ガス浄化用触媒は、十分に高度なPM酸化活性を有し、しかもアッシュの堆積による粒子状物質の酸化性能の低下が十分に抑制され、アッシュの堆積後においても十分に高度なPM酸化活性を発揮することが可能であり、このような本発明の排ガス浄化用触媒に、例えば、ディーゼルエンジンなどの内燃機関からの排ガスを接触させることで、十分に排ガス中の粒子状物質(PM)を酸化除去し排ガスを浄化することが可能となり、さらに、アッシュの堆積後においても十分に排ガス中の粒子状物質(PM)を酸化除去し排ガスを浄化することが可能となる。このような観点から、本発明の排ガス浄化方法は、例えば、ディーゼルエンジンなどの内燃機関から排出されるような排ガス中の粒子状物質(PM)を浄化するための方法などとして好適に採用することができる。 The exhaust gas purifying catalyst of the present invention used in the exhaust gas purifying method of the present invention has a sufficiently high PM oxidation activity, and further, a decrease in the oxidation performance of particulate matter due to ash deposition is sufficiently suppressed, It is possible to exhibit sufficiently high PM oxidation activity even after ash deposition. By contacting exhaust gas from an internal combustion engine such as a diesel engine with such an exhaust gas purifying catalyst of the present invention, The particulate matter (PM) in the exhaust gas can be sufficiently removed by oxidation to purify the exhaust gas, and the particulate matter (PM) in the exhaust gas can be sufficiently removed by oxidation after the ash is deposited. It becomes possible to purify. From such a point of view, the exhaust gas purification method of the present invention is suitably employed as a method for purifying particulate matter (PM) in exhaust gas discharged from an internal combustion engine such as a diesel engine, for example. Can do.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
 (実施例1)
 硫酸バリウム(BaSO、和光純薬工業社製)にイオン交換水を加え、ジルコニアビーズ(直径50μm)を用いて小型ナノ超分散機(寿工業社製、商品名「湿式分散機「ナノ超分散機 ウルトラアペックスミル」UAM015」)により約1時間ミリングして硫酸バリウムスラリーを得た。得られた硫酸バリウムスラリーの粒度分布を測定したところ、中心粒子径は約0.5μmであった。次いで、得られた硫酸バリウムスラリーに固形分8質量%に相当するアルミナゾル(日産化学工業社製、商品名「AS-520」、平均粒径10~20nm)を添加して混合し、コージェライト製のパティキュレートフィルター(DPF)基材(日本ガイシ社製、直径30mm×長さ50mm、気孔率60%、平均細孔径30μm)の隔壁細孔内部に入り込むように含浸させた後、吸引機で余分なスラリーを除去し、110℃で約3時間乾燥した後、大気中500℃の焼成温度で5時間焼成することにより、硫酸バリウムのコート層が形成された前記基材を得た。前記基材(DPF)の容量1L当たりの硫酸バリウムの担持量(コート量)は33g/Lであった。
(Example 1)
Ion-exchanged water is added to barium sulfate (BaSO 4 , manufactured by Wako Pure Chemical Industries, Ltd.), and a small nano-superdispersion machine (manufactured by Kotobuki Kogyo Co., Ltd., trade name “Wet Disperser” Nano-Superdispersion) is used with zirconia beads (diameter 50 μm). Machine milled with an ultra apex mill “UAM015”) for about 1 hour to obtain a barium sulfate slurry. When the particle size distribution of the obtained barium sulfate slurry was measured, the center particle size was about 0.5 μm. Next, alumina sol (Nissan Chemical Industry Co., Ltd., trade name “AS-520”, average particle size 10 to 20 nm) corresponding to a solid content of 8% by mass was added to and mixed with the obtained barium sulfate slurry, and cordierite Particulate filter (DPF) base material (manufactured by NGK, diameter 30 mm x length 50 mm, porosity 60%, average pore diameter 30 μm) was impregnated so as to enter the inside of the partition pores, and then extra with a suction machine The slurry was removed, dried at 110 ° C. for about 3 hours, and then fired in the atmosphere at a firing temperature of 500 ° C. for 5 hours to obtain the base material on which the barium sulfate coating layer was formed. The supported amount (coat amount) of barium sulfate per liter of the base material (DPF) was 33 g / L.
 次に、この硫酸バリウムのコート層が形成された前記基材に、硫酸銀(AgSO、和光純薬工業社製)をイオン交換水に溶解させた水溶液を含浸させ、110℃の温度条件で約3時間乾燥した後、大気中500℃の焼成温度で5時間焼成することにより、DPFに担持された形態の排ガス浄化用触媒(硫酸銀/硫酸バリウム(AgSO/BaSO)触媒付パティキュレートフィルター)を製造した。なお、前記基材(DPF)の容量1L当たりの硫酸銀の担持量は銀換算で7.5g/Lであった。また、この硫酸銀の担持量は、前記硫酸バリウム(担体)と前記硫酸銀(銀のオキソ酸塩)との総量に対して金属銀換算で17質量%であった。 Next, the base material on which the barium sulfate coating layer is formed is impregnated with an aqueous solution in which silver sulfate (Ag 2 SO 4 , manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in ion-exchanged water, and the temperature is 110 ° C. After drying for about 3 hours under conditions, the catalyst for exhaust gas purification in a form supported on DPF (silver sulfate / barium sulfate (Ag 2 SO 4 / BaSO 4 )) is fired at 500 ° C. in the atmosphere for 5 hours. A particulate filter with a catalyst) was produced. The supported amount of silver sulfate per liter of the base material (DPF) was 7.5 g / L in terms of silver. The supported amount of silver sulfate was 17% by mass in terms of metallic silver with respect to the total amount of the barium sulfate (carrier) and the silver sulfate (silver oxoacid salt).
 (実施例2)
 硫酸バリウムの代わりに硫酸ストロンチウム(SrSO、和光純薬工業社製)を用いた以外は、実施例1と同様にしてDPFに担持された形態の排ガス浄化用触媒(硫酸銀/硫酸ストロンチウム(AgSO/SrSO)触媒付パティキュレートフィルター)を製造した。なお、製造過程で得られた硫酸ストロンチウムスラリーの粒度分布を測定したところ中心粒子径は約0.6μmであった。また、基材(DPF)の容量1L当たりの硫酸ストロンチウムの担持量(コート量)は33g/L、基材(DPF)の容量1L当たりの硫酸銀の担持量は銀換算で7.5g/Lであった。また、この硫酸銀の担持量は、前記硫酸ストロンチウム(担体)と前記硫酸銀(銀のオキソ酸塩)との総量に対して金属銀換算で17質量%であった。
(Example 2)
Exhaust gas purification catalyst (silver sulfate / strontium sulfate (Ag)) supported by DPF in the same manner as in Example 1 except that strontium sulfate (SrSO 4 , manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of barium sulfate. 2 SO 4 / SrSO 4 ) catalyzed particulate filter). When the particle size distribution of the strontium sulfate slurry obtained in the manufacturing process was measured, the center particle size was about 0.6 μm. In addition, the supported amount (coat amount) of strontium sulfate per liter of the base material (DPF) is 33 g / L, and the supported amount of silver sulfate per liter of the base material (DPF) is 7.5 g / L in terms of silver. Met. The supported amount of silver sulfate was 17% by mass in terms of metallic silver with respect to the total amount of strontium sulfate (carrier) and silver sulfate (silver oxoacid salt).
 (比較例1)
 硫酸カルシウム0.5水和物(焼きセツコウ、和光純薬工業社製)を大気中500℃で3時間焼成して得た粉末にイオン交換水を加え、ジルコニアビーズ(直径50μm)を用いて小型ナノ超分散機(寿工業社製、商品名「湿式分散機「ナノ超分散機 ウルトラアペックスミル」UAM015」)により約1時間ミリングして硫酸カルシウムスラリーを得た。得られた硫酸バリウムスラリーの粒度分布を測定したところ、中心粒子径は約0.7μmであった。次いで、得られた硫酸カルシウムスラリーに固形分8質量%に相当するアルミナゾル(日産化学工業社製、商品名「AS-520」、平均粒径10~20nm)を添加して混合し、コージェライト製のパティキュレートフィルター(DPF)基材(日本ガイシ社製、直径30mm×長さ50mm、気孔率60%、平均細孔径30μm)の隔壁細孔内部に入り込むように含浸させた後、吸引機で余分なスラリーを除去し、110℃で約3時間乾燥した後、大気中500℃の焼成温度で5時間焼成することにより、硫酸カルシウムのコート層が形成された前記基材を得た。なお、前記基材(DPF)の容量1L当たりの硫酸カルシウムの担持量(コート量)は33g/Lであった。
(Comparative Example 1)
Calcium sulfate hemihydrate (baked Setsukou, manufactured by Wako Pure Chemical Industries, Ltd.) is calcined in the atmosphere at 500 ° C. for 3 hours, ion-exchanged water is added to the powder, and small size using zirconia beads (diameter 50 μm) A calcium sulfate slurry was obtained by milling for about 1 hour with a nano-superdisperser (manufactured by Kotobuki Kogyo Co., Ltd., trade name “Wet Disperser“ Nano Super Disperser Ultra Apex Mill ”UAM015”). When the particle size distribution of the obtained barium sulfate slurry was measured, the center particle size was about 0.7 μm. Next, an alumina sol corresponding to a solid content of 8% by mass (manufactured by Nissan Chemical Industries, trade name “AS-520”, average particle size of 10 to 20 nm) is added to and mixed with the obtained calcium sulfate slurry. Particulate filter (DPF) base material (manufactured by NGK, diameter 30 mm x length 50 mm, porosity 60%, average pore diameter 30 μm) was impregnated so as to enter the inside of the partition pores, and then extra with a suction machine The slurry was removed, dried at 110 ° C. for about 3 hours, and then fired in the atmosphere at a firing temperature of 500 ° C. for 5 hours to obtain the base material on which the calcium sulfate coating layer was formed. The supported amount (coat amount) of calcium sulfate per liter of the base material (DPF) was 33 g / L.
 次に、この硫酸カルシウムのコート層が形成された前記基材に、硫酸銀(AgSO、和光純薬工業社製)をイオン交換水に溶解させた水溶液を含浸させ、110℃の温度条件で約3時間乾燥した後、大気中500℃の焼成温度で5時間焼成することにより、比較用触媒(硫酸銀/硫酸カルシウム(AgSO/CaSO)触媒付パティキュレートフィルター)を作製した。なお、前記基材(DPF)の容量1L当たりの硫酸銀の担持量は銀換算で7.5g/Lであった。また、この硫酸銀の担持量は、硫酸カルシウムと硫酸銀との総量に対して金属銀換算で17質量%であった。 Next, the base material on which the calcium sulfate coating layer is formed is impregnated with an aqueous solution in which silver sulfate (Ag 2 SO 4 , manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in ion-exchanged water, and the temperature is 110 ° C. After drying for about 3 hours under the conditions, the catalyst for comparison (a particulate filter with silver sulfate / calcium sulfate (Ag 2 SO 4 / CaSO 4 ) catalyst) is manufactured by firing at 500 ° C. in the atmosphere for 5 hours. did. The supported amount of silver sulfate per liter of the base material (DPF) was 7.5 g / L in terms of silver. The supported amount of silver sulfate was 17% by mass in terms of metallic silver with respect to the total amount of calcium sulfate and silver sulfate.
 (比較例2)
 硫酸銀の代わりに硝酸銀(和光純薬工業社製)を用い、硫酸バリウムのコート層が形成された前記基材に前記硝酸銀を溶解させた水溶液を含浸させた以外は、実施例1と同様にして比較用触媒(銀/硫酸バリウム(Ag/BaSO)触媒付パティキュレートフィルター)を作製した。なお、この比較用触媒の作製過程において得られた硫酸バリウムスラリーの粒度分布を測定したところ中心粒子径は約0.5μmであった。また、基材(DPF)の容量1L当たりの硫酸バリウムの担持量(コート量)は33g/L、基材(DPF)の容量1L当たりの銀の担持量は7.5g/Lであった。この銀の担持量は、硫酸バリウムと銀との総量に対して19質量%であった。なお、上記比較用触媒の作製過程において、大気中500℃での焼成により硝酸銀は分解して銀となり、硝酸イオンは除去されていることを確認している。
(Comparative Example 2)
Example 1 was used except that silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of silver sulfate and the base material on which the barium sulfate coating layer was formed was impregnated with an aqueous solution in which the silver nitrate was dissolved. Thus, a comparative catalyst (particulate filter with silver / barium sulfate (Ag / BaSO 4 ) catalyst) was prepared. When the particle size distribution of the barium sulfate slurry obtained in the process of preparing the comparative catalyst was measured, the center particle size was about 0.5 μm. Further, the supported amount (coat amount) of barium sulfate per liter of the base material (DPF) was 33 g / L, and the supported amount of silver per liter of the base material (DPF) was 7.5 g / L. The supported amount of silver was 19% by mass with respect to the total amount of barium sulfate and silver. In the process of preparing the comparative catalyst, it was confirmed that silver nitrate was decomposed into silver and nitrate ions were removed by firing at 500 ° C. in the atmosphere.
 (比較例3)
 セリアゾル(多木化学社製、商品名「ニードラール」、型番「U-15」、CeO含有量15質量%、コロイド粒子径約8nm)を、コージェライト製のパティキュレートフィルター(DPF)基材(日本ガイシ社製、直径30mm×長さ50mm、気孔率60%、平均細孔径30μm)の隔壁細孔内部に入り込むように含浸させた後、吸引機で余分なスラリーを除去し、110℃で約3時間乾燥した後、大気中500℃の焼成温度で5時間焼成することにより、セリア(CeO)のコート層が形成された前記基材を得た。前記基材(DPF)の容量1L当たりのセリアの担持量(コート量)は60g/Lであった。
(Comparative Example 3)
Ceria sol (manufactured by Taki Chemical Co., Ltd., trade name “Nidoral”, model number “U-15”, CeO 2 content 15% by mass, colloidal particle diameter of about 8 nm) and a cordierite particulate filter (DPF) substrate ( After impregnation so as to enter the inside of the partition pores having a diameter of 30 mm × length of 50 mm, porosity of 60%, average pore diameter of 30 μm, manufactured by NGK, Ltd., excess slurry was removed with a suction machine, and about 110 ° C. After drying for 3 hours, the substrate on which a coat layer of ceria (CeO 2 ) was formed was obtained by firing at a firing temperature of 500 ° C. in the atmosphere for 5 hours. The loading amount (coating amount) of ceria per liter of the base material (DPF) was 60 g / L.
 次に、このセリアのコート層が形成された前記基材に、硝酸銀(和光純薬工業社製)をイオン交換水に溶解させた水溶液を含浸させ、110℃で約3時間乾燥した後、大気中500℃の焼成温度で5時間焼成することにより、比較用触媒(銀/セリア(Ag/CeO)触媒付パティキュレートフィルター)を作製した。前記基材(DPF)の容量1L当たりの銀の担持量は7.5g/Lであった。また、この銀の担持量は、CeOと銀との総量に対して11質量%であった。なお、上記比較用触媒の作製過程において、大気中500℃での焼成により硝酸銀は分解して銀となり、硝酸イオンは除去されていることを確認している。 Next, the base material on which the ceria coat layer is formed is impregnated with an aqueous solution in which silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in ion-exchanged water, dried at 110 ° C. for about 3 hours, A comparative catalyst (a particulate filter with silver / ceria (Ag / CeO 2 ) catalyst) was produced by firing at a firing temperature of 500 ° C. for 5 hours. The amount of silver supported per liter of the base material (DPF) was 7.5 g / L. Further, the supported amount of silver was 11% by mass with respect to the total amount of CeO 2 and silver. In the process of preparing the comparative catalyst, it was confirmed that silver nitrate was decomposed into silver and nitrate ions were removed by firing at 500 ° C. in the atmosphere.
 (比較例4)
 セリアゾルの代わりにアルミナゾル(日産化学工業社製、商品名「AS-520」、平均粒径10~20nm)を用いた以外は、比較例3と同様にして比較用触媒(銀/アルミナ(Ag/Al)触媒付パティキュレートフィルター)を作製した。なお、基材(DPF)の容量1L当たりのアルミナの担持量(コート量)は30g/L、基材(DPF)の容量1L当たりの銀の担持量は7.5g/Lであった。また、この銀の担持量は、アルミナと銀との総量に対して20質量%であった。なお、上記比較用触媒の作製過程において、大気中500℃での焼成により硝酸銀は分解して銀となり、硝酸イオンは除去されていることを確認している。
(Comparative Example 4)
A comparative catalyst (silver / alumina (Ag / Ag /)) was used in the same manner as in Comparative Example 3 except that alumina sol (manufactured by Nissan Chemical Industries, trade name “AS-520”, average particle size 10 to 20 nm) was used instead of ceria sol. Al 2 O 3 ) catalyst particulate filter) was prepared. The amount of alumina supported (coat amount) per 1 L of the substrate (DPF) was 30 g / L, and the amount of silver supported per 1 L of the substrate (DPF) was 7.5 g / L. The amount of silver supported was 20% by mass with respect to the total amount of alumina and silver. In the process of preparing the comparative catalyst, it was confirmed that silver nitrate was decomposed into silver and nitrate ions were removed by firing at 500 ° C. in the atmosphere.
 (比較例5)
 アルミナゾル(日産化学工業社製、商品名「AS-520」、平均粒径10~20nm)を、コージェライト製のパティキュレートフィルター(DPF)基材(日本ガイシ社製、直径30mm×長さ50mm、気孔率60%、平均細孔径30μm)の隔壁細孔内部に入り込むように含浸させた後、吸引機で余分なスラリーを除去し、110℃で約3時間乾燥した後、大気中500℃の焼成温度で5時間焼成することにより、アルミナ(Al)のコート層が形成された前記基材を得た。前記基材(DPF)の容量1L当たりのアルミナの担持量(コート量)は30g/Lであった。
(Comparative Example 5)
Alumina sol (manufactured by Nissan Chemical Industries, trade name “AS-520”, average particle size 10-20 nm) is a cordierite particulate filter (DPF) base material (manufactured by NGK, diameter 30 mm × length 50 mm, After impregnation so as to enter the inside of the partition pores having a porosity of 60% and an average pore diameter of 30 μm, the excess slurry is removed with a suction machine, dried at 110 ° C. for about 3 hours, and then fired at 500 ° C. in the atmosphere. By firing at a temperature for 5 hours, the above-mentioned base material on which a coat layer of alumina (Al 2 O 3 ) was formed was obtained. The amount of alumina supported (coat amount) per liter of the base material (DPF) was 30 g / L.
 次に、このアルミナのコート層が形成された前記基材に、白金が溶解している白金ジニトロジアンミン硝酸(Pt(NH(NO/HNO)水溶液及びパラジウムが溶解している硝酸パラジウム(Pd(NO)水溶液を所定量含浸させ、選択吸着法により白金及びパラジウムを担持せしめ、110℃で約3時間乾燥した後、大気中500℃の焼成温度で5時間焼成することにより、比較用触媒(白金-パラジウム/アルミナ(Pt-Pd/Al)触媒付パティキュレートフィルター)を作製した。なお、前記基材(DPF)の容量1L当たりの白金及びパラジウムの担持量は、白金が0.6g/L、パラジウムが0.3g/Lであった。また、この白金及びパラジウムの担持量は、アルミナと白金とパラジウムとの総量に対して、それぞれ白金が1.9質量%、パラジウムが0.97質量%であった。 Next, a platinum dinitrodiammine nitric acid (Pt (NH 3 ) 2 (NO 2 ) 2 / HNO 3 ) aqueous solution in which platinum is dissolved and palladium are dissolved in the base material on which the alumina coat layer is formed. A predetermined amount of palladium nitrate (Pd (NO 3 ) 2 ) aqueous solution is impregnated, platinum and palladium are supported by a selective adsorption method, dried at 110 ° C. for about 3 hours, and then fired at a firing temperature of 500 ° C. in the atmosphere for 5 hours. As a result, a comparative catalyst (platinum / palladium / alumina (Pt—Pd / Al 2 O 3 ) catalyst-attached particulate filter) was produced. The supported amount of platinum and palladium per liter of the base material (DPF) was 0.6 g / L for platinum and 0.3 g / L for palladium. The supported amounts of platinum and palladium were 1.9% by mass for platinum and 0.97% by mass for palladium, respectively, with respect to the total amount of alumina, platinum and palladium.
 (比較例6)
 コージェライト製のパティキュレートフィルター(DPF)基材(日本ガイシ社製、直径30mm×長さ50mm、気孔率60%、平均細孔径30μm)を、比較用のパティキュレートフィルターとしてそのまま(触媒の担持なし)用いた。
(Comparative Example 6)
A cordierite particulate filter (DPF) base material (manufactured by NGK, diameter 30 mm x length 50 mm, porosity 60%, average pore diameter 30 μm) is directly used as a particulate filter for comparison (no catalyst supported) )Using.
 [実施例1~2及び比較例1~6で得られた触媒の特性の評価]
 <PM酸化活性試験>
 前記実施例1~2で得られた排ガス浄化用触媒(触媒付パティキュレートフィルター)及び比較例1~6で得られた比較用触媒(触媒付パティキュレートフィルター又はパティキュレートフィルター)をそれぞれ用いて、以下のようにしてPM酸化活性を測定した。
[Evaluation of characteristics of catalysts obtained in Examples 1 and 2 and Comparative Examples 1 to 6]
<PM oxidation activity test>
Using the exhaust gas-purifying catalyst (catalyst filter with catalyst) obtained in Examples 1 and 2 and the catalyst for comparison (particulate filter with catalyst or particulate filter) obtained in Comparative Examples 1 to 6, respectively, PM oxidation activity was measured as follows.
 すなわち、先ず、PM付着試験燃焼粒子発生器(Combustion Aerosol Standard;CAST、Matter Engineering社製)を用いて発生させた粒子状物質(PM)を、室温(25℃)の空気(20L/分)と一緒に前記実施例1~2及び比較例1~6で得られた触媒付パティキュレートフィルター又はパティキュレートフィルターに通過させることによって、前記実施例1~2で得られた前記触媒及び比較例1~6で得られた前記比較用触媒のそれぞれに前記PMを付着させた(PM付着処理)。なお、PM付着量はいずれも2g/Lとした。 That is, first, particulate matter (PM) generated by using a PM adhesion test combustion particle generator (Combustion Aerosol Standard; CAST, Matter Engineering) is used as air (20 L / min) at room temperature (25 ° C.). The catalyst obtained in Examples 1 and 2 and Comparative Examples 1 to 2 were passed through the particulate filter with catalyst or the particulate filter obtained in Examples 1 to 2 and Comparative Examples 1 to 6 together. The PM was adhered to each of the comparative catalysts obtained in 6 (PM adhesion treatment). Note that the PM adhesion amount was 2 g / L in all cases.
 次に、PMを付着させた触媒付パティキュレートフィルター又はパティキュレートフィルターを固定床流通型反応装置(ベスト測器社製、商品名「CATA-5000」)に設置し、前処理として触媒入ガス温度500℃で15分間、Nガスを15L/分で供給した後、室温まで冷却した。 Next, a particulate filter with catalyst or particulate filter with PM attached is installed in a fixed bed flow type reactor (product name “CATA-5000”, manufactured by Best Sokki Co., Ltd.), and the catalyst input gas temperature is used as a pretreatment. N 2 gas was supplied at 500 L for 15 minutes at 15 L / min, and then cooled to room temperature.
 次いで、供給ガスをO(10%)、HO(10%)及びN(残部)からなる模擬排ガス15L/分に切り替え、20℃/分で昇温速度で200℃から720℃まで昇温し、試料からの出ガス中のCO及びCO濃度からPM酸化量を算出した。PM酸化活性の指標として、PM付着量の50%が酸化したときの温度、すなわち、50%PM酸化温度を使用した。50%PM酸化温度が低いほど、PM酸化活性が高いと言える。 Subsequently, the supply gas was switched to 15 L / min of simulated exhaust gas composed of O 2 (10%), H 2 O (10%) and N 2 (remainder), and from 200 ° C. to 720 ° C. at a rate of temperature increase at 20 ° C./min. The temperature was raised, and the amount of PM oxidation was calculated from the CO 2 and CO concentrations in the output gas from the sample. As an index of the PM oxidation activity, the temperature at which 50% of the PM adhesion amount was oxidized, that is, the 50% PM oxidation temperature was used. It can be said that the lower the 50% PM oxidation temperature, the higher the PM oxidation activity.
 得られた結果を表1に示す。また、初期の触媒のPM酸化活性評価結果として、実施例1~2で得られた初期の排ガス浄化用触媒(触媒付パティキュレートフィルター)及び比較例1~6で得られた初期の比較用触媒(触媒付パティキュレートフィルター又はパティキュレートフィルター)における50%PM酸化温度を示すグラフを図1に示す。 The results obtained are shown in Table 1. In addition, as an evaluation result of the PM oxidation activity of the initial catalyst, the initial exhaust gas purification catalyst (catalyst particulate filter) obtained in Examples 1 and 2 and the initial comparative catalyst obtained in Comparative Examples 1 to 6 were used. A graph showing the 50% PM oxidation temperature in (a particulate filter with a catalyst or a particulate filter) is shown in FIG.
 <耐アッシュ性能試験>
 前記実施例1~2で得られた排ガス浄化用触媒(触媒付パティキュレートフィルター)及び比較例1~6で得られた比較用触媒(触媒付パティキュレートフィルター又はパティキュレートフィルター)をそれぞれ用いて、以下のようにしてアッシュ堆積後及びアッシュ堆積-熱処理後のPM酸化活性を測定した。
<Ash resistance test>
Using the exhaust gas-purifying catalyst (catalyst filter with catalyst) obtained in Examples 1 and 2 and the catalyst for comparison (particulate filter with catalyst or particulate filter) obtained in Comparative Examples 1 to 6, respectively, PM oxidation activity after ash deposition and after ash deposition-heat treatment was measured as follows.
 すなわち、先ず、硫酸カルシウム0.5水和物(和光純薬工業社製、商品名「焼きセッコウ」)を大気中700℃で5時間焼成して模擬アッシュ粉末を得た。この粉末をエアロゾルジェネレータ(PALAS社製、商品名「RGB-1000」)を用いて33L/分の空気に分散させて、そのうちの18L/分の模擬アッシュを含むガスを前記実施例1~2及び比較例1~6で得られた触媒付パティキュレートフィルター又はパティキュレートフィルターに通過させた。処理時間は7時間であった。なお、アッシュ堆積量は、いずれも基材の体積当たり約10.5g/Lであった。 That is, first, calcium sulfate 0.5 hydrate (trade name “baked gypsum” manufactured by Wako Pure Chemical Industries, Ltd.) was fired in the atmosphere at 700 ° C. for 5 hours to obtain a simulated ash powder. This powder was dispersed in 33 L / min of air using an aerosol generator (trade name “RGB-1000” manufactured by PALAS), and the gas containing simulated ash of 18 L / min was used as the above Examples 1-2 and It was passed through the particulate filter with catalyst or the particulate filter obtained in Comparative Examples 1-6. The processing time was 7 hours. The ash deposition amount was about 10.5 g / L per volume of the substrate.
 次に、アッシュ堆積後の前記実施例1~2及び比較例1~6の触媒付パティキュレートフィルター又はパティキュレートフィルターに対して、前記のPM酸化活性試験を同様の条件でそれぞれ実施した。得られた結果を、アッシュ堆積後のPM酸化活性とする。 Next, the PM oxidation activity test was carried out under the same conditions for the catalyst-attached particulate filters or particulate filters of Examples 1-2 and Comparative Examples 1-6 after ash deposition. The obtained result is defined as PM oxidation activity after ash deposition.
 次いで、この試料を1L/分のHO(3%)を含む空気の気流中、600℃の温度条件で5時間熱処理した。そして、さらに前記のPM酸化活性試験を同様の条件でそれぞれ実施した。得られた結果を、アッシュ堆積-熱処理後のPM酸化活性とする。 Next, this sample was heat-treated at 600 ° C. for 5 hours in an air stream containing 1 L / min of H 2 O (3%). And said PM oxidation activity test was further implemented on the same conditions, respectively. The obtained result is defined as PM oxidation activity after ash deposition-heat treatment.
 以上により得られた結果を表1に示す。また、アッシュ堆積後及びアッシュ堆積-熱処理後の触媒のPM酸化活性評価結果として、実施例1~2で得られたアッシュ堆積後及びアッシュ堆積-熱処理後の排ガス浄化用触媒(触媒付パティキュレートフィルター)及び比較例1~6で得られたアッシュ堆積後及びアッシュ堆積-熱処理後の比較用触媒(触媒付パティキュレートフィルター又はパティキュレートフィルター)における50%PM酸化温度を示すグラフを図2に示す。 Table 1 shows the results obtained as described above. Further, as an evaluation result of the PM oxidation activity of the catalyst after ash deposition and ash deposition-heat treatment, the exhaust gas purifying catalyst (catalyst particulate filter with catalyst) obtained in Examples 1 and 2 after ash deposition and ash deposition-heat treatment was obtained. ) And Comparative Examples 1 to 6 are graphs showing the 50% PM oxidation temperature of the comparative catalyst (catalyzed particulate filter or particulate filter) after ash deposition and after ash deposition-heat treatment, as shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <評価結果>
 表1、図1及び2に記載した結果からも明らかなように、本発明の実施例1~2の排ガス浄化用触媒は、十分に高度なPM酸化活性を有し、しかもアッシュの堆積による粒子状物質の酸化性能の低下が十分に抑制され、アッシュの堆積後においても十分に高度なPM酸化活性を発揮することが可能な排ガス浄化用触媒であることが確認された。
<Evaluation results>
As is clear from the results described in Table 1 and FIGS. 1 and 2, the exhaust gas purifying catalysts of Examples 1 and 2 of the present invention have sufficiently high PM oxidation activity and particles due to ash deposition. It has been confirmed that the catalyst is an exhaust gas purifying catalyst that sufficiently suppresses the deterioration of the oxidation performance of the particulate matter and can exhibit sufficiently high PM oxidation activity even after ash deposition.
 なお、図1に記載した結果からも明らかなように、実施例1~2及び比較例1~4の触媒付パティキュレートフィルターでは、比較例6のパティキュレートフィルターと比べて50%PM酸化温度が低温化した。すなわち、これらの触媒付パティキュレートフィルターはPM酸化に触媒作用を与えると言える。一方、比較例5の触媒付パティキュレートフィルターの50%PM酸化温度は比較例6とほぼ同じであり、今回の実験条件ではPt-Pd/AlはPM酸化に対してほとんど触媒活性を示さないことが確認された。また、実施例1~2の触媒付パティキュレートフィルターは、すべての試料の中で最も高いPM酸化活性を示し、BaSOやSrSO担体に担持されたAgSOが特に高いPM酸化活性を発現することが確認された。 As is clear from the results shown in FIG. 1, the particulate filters with catalysts of Examples 1 and 2 and Comparative Examples 1 to 4 have a 50% PM oxidation temperature as compared with the particulate filter of Comparative Example 6. The temperature was lowered. That is, it can be said that these particulate filters with catalyst catalyze PM oxidation. On the other hand, the 50% PM oxidation temperature of the particulate filter with catalyst of Comparative Example 5 is almost the same as that of Comparative Example 6. Under the present experimental conditions, Pt—Pd / Al 2 O 3 has almost catalytic activity for PM oxidation. It was confirmed not to show. Further, the particulate filter with catalyst of Examples 1 and 2 showed the highest PM oxidation activity among all the samples, and Ag 2 SO 4 supported on BaSO 4 and SrSO 4 supports showed particularly high PM oxidation activity. Expression was confirmed.
 また、図2に記載した結果からも明らかなように、比較例2及び4の触媒付パティキュレートフィルターの50%PM酸化温度は、アッシュ堆積後とアッシュ堆積-熱処理後のいずれの比較用触媒も比較例6とほぼ同じになった。すなわち、これらの触媒付パティキュレートフィルターは、一旦アッシュが堆積すると触媒活性を消失することが確認された。一方、実施例1と2及び比較例1と3の触媒付パティキュレートフィルターは、アッシュ堆積後の50%PM酸化温度が比較例6よりも低温化しており、触媒の上にアッシュが堆積しても触媒作用を与えることができると言える。アッシュ堆積後において実施例1及び2の触媒付パティキュレートフィルターは、全ての試料の中で最も高いPM酸化活性を示した。これは、PM酸化活性試験中に、BaSOやSrSO担体に担持されたAgSOの一部がアッシュ粒子へ移動し、アッシュ上でPM酸化活性を発現したものと考えられる。さらに、アッシュ堆積-熱処理後の実施例1及び2の排ガス浄化用触媒(触媒付パティキュレートフィルター)は、アッシュ堆積後よりPM酸化活性が高くなり、ほぼ初期とほぼ同等の活性となった。これは、熱処理によりAgSOがさらにアッシュ粒子へ移動し、アッシュ上でPM酸化活性を発現する活性サイトが多くなったためと考えられる。以上のことから、BaSOやSrSO担体に担持されたAgSOが特に高い耐アッシュ性能を有することが確認された。 Further, as is apparent from the results shown in FIG. 2, the 50% PM oxidation temperature of the particulate filter with catalyst of Comparative Examples 2 and 4 is the same for both comparative catalysts after ash deposition and ash deposition-heat treatment. It became substantially the same as Comparative Example 6. That is, it was confirmed that these particulate filters with a catalyst lose catalytic activity once the ash is deposited. On the other hand, in the particulate filters with catalysts of Examples 1 and 2 and Comparative Examples 1 and 3, the 50% PM oxidation temperature after ash deposition was lower than that of Comparative Example 6, and ash was deposited on the catalyst. It can also be said that it can provide a catalytic action. After ash deposition, the catalyzed particulate filters of Examples 1 and 2 showed the highest PM oxidation activity among all samples. This is considered that during the PM oxidation activity test, part of Ag 2 SO 4 supported on the BaSO 4 or SrSO 4 carrier moved to the ash particles and expressed the PM oxidation activity on the ash. Further, the exhaust gas purifying catalyst (particulate filter with catalyst) of Examples 1 and 2 after the ash deposition-heat treatment had higher PM oxidation activity than that after the ash deposition, and almost the same activity as the initial stage. This is presumably because Ag 2 SO 4 further moved to the ash particles by the heat treatment, and the number of active sites that express PM oxidation activity on the ash increased. From the above, it was confirmed that Ag 2 SO 4 supported on BaSO 4 or SrSO 4 carrier has particularly high ash resistance.
 以上の結果より、バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体に銀のオキソ酸塩を担持させた排ガス浄化用触媒とすることにより、十分に高度なPM酸化活性を有し、しかもアッシュの堆積による粒子状物質の酸化性能の低下が十分に抑制され、アッシュの堆積後においても十分に高度なPM酸化活性を発揮することが確認された。これより、本発明の排ガス浄化用触媒はPMを酸化する触媒として有用であることが確認された。 From the above results, an exhaust gas purification catalyst in which a silver oxo acid salt is supported on a support containing at least one selected from the group consisting of barium oxo acid salt and strontium oxo acid salt can be sufficiently obtained. It has been confirmed that it has a high level of PM oxidation activity, and that the deterioration of the oxidation performance of the particulate matter due to ash deposition is sufficiently suppressed, and that it exhibits sufficiently high PM oxidation activity even after ash deposition. From this, it was confirmed that the exhaust gas purifying catalyst of the present invention is useful as a catalyst for oxidizing PM.
 以上説明したように、本発明によれば、十分に高度なPM酸化活性を有し、しかもアッシュの堆積による粒子状物質の酸化性能の低下が十分に抑制され、アッシュの堆積後においても十分に高度なPM酸化活性を発揮することが可能な排ガス浄化用触媒、それを用いた排ガス浄化フィルタ並びに排ガス浄化方法を提供することが可能となる。 As described above, according to the present invention, the present invention has a sufficiently high PM oxidation activity, and the deterioration of the oxidation performance of the particulate matter due to the ash deposition is sufficiently suppressed, and even after the ash deposition. It is possible to provide an exhaust gas purification catalyst capable of exhibiting a high degree of PM oxidation activity, an exhaust gas purification filter using the same, and an exhaust gas purification method.
 したがって、本発明の排ガス浄化用触媒、それを用いた排ガス浄化フィルタ及び排ガス浄化方法は、ディーゼルエンジンなどの内燃機関からの排ガス中に含まれる粒子状物質を浄化するためのPM酸化触媒、それを用いた排ガス浄化フィルタ又は排ガス浄化方法などとして特に有用である。 Therefore, the exhaust gas purifying catalyst of the present invention, the exhaust gas purifying filter and the exhaust gas purifying method using the same, a PM oxidation catalyst for purifying particulate matter contained in exhaust gas from an internal combustion engine such as a diesel engine, It is particularly useful as the exhaust gas purification filter or exhaust gas purification method used.

Claims (6)

  1.  バリウムのオキソ酸塩及びストロンチウムのオキソ酸塩からなる群より選択される少なくとも1種を含む担体と、該担体に担持されている銀のオキソ酸塩とを備え、
     前記バリウムのオキソ酸塩が、ホウ素、リン及び硫黄からなる群より選択される少なくとも1種を含むオキソ酸塩であり、
     前記ストロンチウムのオキソ酸塩が、ホウ素、リン及び硫黄からなる群より選択される少なくとも1種を含むオキソ酸塩であり、
     前記銀のオキソ酸塩が、リン及び硫黄からなる群より選択される少なくとも1種を含むオキソ酸塩である、
    排ガス浄化用触媒。
    A carrier comprising at least one selected from the group consisting of barium oxoacid salt and strontium oxoacid salt, and a silver oxoacid salt supported on the carrier,
    The barium oxoacid salt is an oxoacid salt containing at least one selected from the group consisting of boron, phosphorus and sulfur,
    The strontium oxoacid salt is an oxoacid salt containing at least one selected from the group consisting of boron, phosphorus and sulfur,
    The silver oxo acid salt is an oxo acid salt containing at least one selected from the group consisting of phosphorus and sulfur.
    Exhaust gas purification catalyst.
  2.  前記バリウムのオキソ酸塩が、硫酸バリウム(BaSO)及び亜硫酸バリウム(BaSO)からなる群より選択される少なくとも1種であり、
     前記ストロンチウムのオキソ酸塩が、硫酸ストロンチウム(SrSO)及び亜硫酸ストロンチウム(SrSO)からなる群より選択される少なくとも1種である、請求項1に記載の排ガス浄化用触媒。
    The barium oxoacid salt is at least one selected from the group consisting of barium sulfate (BaSO 4 ) and barium sulfite (BaSO 3 );
    2. The exhaust gas purifying catalyst according to claim 1, wherein the strontium oxoacid salt is at least one selected from the group consisting of strontium sulfate (SrSO 4 ) and strontium sulfite (SrSO 3 ).
  3.  前記銀のオキソ酸塩が、硫酸銀(AgSO)及び亜硫酸銀(AgSO)からなる群より選択される少なくとも1種である、請求項1又は2に記載の排ガス浄化用触媒。 The exhaust gas purifying catalyst according to claim 1 or 2, wherein the silver oxo acid salt is at least one selected from the group consisting of silver sulfate (Ag 2 SO 4 ) and silver sulfite (Ag 2 SO 3 ). .
  4.  前記銀のオキソ酸塩の担持量が、前記担体と前記銀のオキソ酸塩との総量に対して金属銀換算で0.1~50質量%である、請求項1~3のうちのいずれか一項に記載の排ガス浄化用触媒。 The amount of the silver oxoacid salt supported is 0.1 to 50% by mass in terms of metallic silver based on the total amount of the carrier and the silver oxoacid salt. The exhaust gas purifying catalyst according to one item.
  5.  通気性基材と、該通気性基材に担持されている請求項1~4のうちのいずれか一項に記載の排ガス浄化用触媒とを備える、排ガス浄化フィルタ。 An exhaust gas purification filter comprising a breathable base material and the exhaust gas purification catalyst according to any one of claims 1 to 4 supported on the breathable base material.
  6.  請求項1~4のうちのいずれか一項に記載の排ガス浄化用触媒に内燃機関からの排ガスを接触せしめて粒子状物質(PM)を酸化除去する、排ガス浄化方法。 An exhaust gas purification method in which exhaust gas from an internal combustion engine is brought into contact with the exhaust gas purification catalyst according to any one of claims 1 to 4 to oxidize and remove particulate matter (PM).
PCT/JP2016/065268 2015-05-25 2016-05-24 Exhaust gas purifying catalyst, exhaust gas purifying filter using same and exhaust gas purification method WO2016190294A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015105317A JP6392704B2 (en) 2015-05-25 2015-05-25 PM oxidation catalyst for oxidizing and removing particulate matter (PM) in exhaust gas, exhaust gas purification filter and exhaust gas purification method using the same
JP2015-105317 2015-05-25

Publications (1)

Publication Number Publication Date
WO2016190294A1 true WO2016190294A1 (en) 2016-12-01

Family

ID=57392813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065268 WO2016190294A1 (en) 2015-05-25 2016-05-24 Exhaust gas purifying catalyst, exhaust gas purifying filter using same and exhaust gas purification method

Country Status (2)

Country Link
JP (1) JP6392704B2 (en)
WO (1) WO2016190294A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655075A (en) * 1992-08-07 1994-03-01 Sangi Co Ltd Catalyst for purification of exhaust gas
JPH06198131A (en) * 1992-12-28 1994-07-19 Agency Of Ind Science & Technol Material for removing nitrogen oxide and method for removing nitrogen oxide
JPH09271674A (en) * 1996-04-04 1997-10-21 Toyota Motor Corp Oxidizing catalyst for diesel exhaust gas
JP2003170051A (en) * 2001-12-10 2003-06-17 Nikki Chemcal Co Ltd Catalyst for burning particulate matter and method for removing particulate matter
JP2012219715A (en) * 2011-04-08 2012-11-12 Toyota Central R&D Labs Inc Exhaust gas purification device and exhaust gas purification method using the same
JP2013006170A (en) * 2011-05-20 2013-01-10 Akita Univ Exhaust gas purifying catalyst and carrier
WO2013111457A1 (en) * 2012-01-23 2013-08-01 エヌ・イーケムキャット株式会社 Alumina material containing barium sulfate and exhaust gas purifying catalyst using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655075A (en) * 1992-08-07 1994-03-01 Sangi Co Ltd Catalyst for purification of exhaust gas
JPH06198131A (en) * 1992-12-28 1994-07-19 Agency Of Ind Science & Technol Material for removing nitrogen oxide and method for removing nitrogen oxide
JPH09271674A (en) * 1996-04-04 1997-10-21 Toyota Motor Corp Oxidizing catalyst for diesel exhaust gas
JP2003170051A (en) * 2001-12-10 2003-06-17 Nikki Chemcal Co Ltd Catalyst for burning particulate matter and method for removing particulate matter
JP2012219715A (en) * 2011-04-08 2012-11-12 Toyota Central R&D Labs Inc Exhaust gas purification device and exhaust gas purification method using the same
JP2013006170A (en) * 2011-05-20 2013-01-10 Akita Univ Exhaust gas purifying catalyst and carrier
WO2013111457A1 (en) * 2012-01-23 2013-08-01 エヌ・イーケムキャット株式会社 Alumina material containing barium sulfate and exhaust gas purifying catalyst using same

Also Published As

Publication number Publication date
JP6392704B2 (en) 2018-09-19
JP2016215160A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6402336B2 (en) Ammonia decomposition catalyst
US9254480B2 (en) Oxidation catalyst for exhaust gas purification, method for producing the same, and exhaust gas purification method using the same
RU2698675C2 (en) Inorganic oxide material
JP5565569B2 (en) Exhaust gas purification catalyst
JP2021507804A (en) Exhaust gas purification catalyst
JP6990606B2 (en) Exhaust gas treatment member
US10226755B2 (en) NOx storage reduction catalyst for purifying exhaust gas and exhaust gas purification method using said catalyst
JP2006192365A (en) Catalyst for cleaning exhaust gas from internal-combustion engine, method for manufacturing the catalyst, and exhaust gas-cleaning apparatus
JP2007029768A (en) Regenerating method of catalyst for cleaning exhaust gas
WO2016190294A1 (en) Exhaust gas purifying catalyst, exhaust gas purifying filter using same and exhaust gas purification method
JP5956496B2 (en) Exhaust gas purification catalyst, exhaust gas purification filter and exhaust gas purification method using the same
JP6061406B2 (en) PM oxidation catalyst, exhaust gas purification filter and exhaust gas purification method using the same
JP2007260564A (en) Exhaust gas-purifying catalyst and method for regenerating the same
WO2012090577A1 (en) Particulate combustion catalyst, production method therefor, particulate filter and production method therefor
JP2015047518A (en) Particulate filter with catalyst and production method thereof
JP2017176900A (en) Catalyst for exhaust gas purification and method for producing the same, and exhaust gas purification filter and purification method
JP6741666B2 (en) Exhaust gas purification catalyst
JP2007260568A (en) Catalyst for controlling exhaust gas and its regenerating method
JP2017023999A (en) Catalyst for exhaust purification
JP2015208712A (en) Catalyst for exhaust gas purification and selective reduction method of nitrogen oxide and oxidative removal method of solid carbon ingredient using the same
JP6774654B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2007260567A (en) Catalyst for purifying exhaust gas and its regenerating method
JP2018176054A (en) Exhaust gas purification catalyst, and exhaust gas purification filter, and exhaust gas purification method
KR20240064639A (en) Particulate filter with partially coated catalyst layer
CN117980068A (en) Platinum group metal capturing material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799999

Country of ref document: EP

Kind code of ref document: A1