JP6061406B2 - PM oxidation catalyst, exhaust gas purification filter and exhaust gas purification method using the same - Google Patents

PM oxidation catalyst, exhaust gas purification filter and exhaust gas purification method using the same Download PDF

Info

Publication number
JP6061406B2
JP6061406B2 JP2015028462A JP2015028462A JP6061406B2 JP 6061406 B2 JP6061406 B2 JP 6061406B2 JP 2015028462 A JP2015028462 A JP 2015028462A JP 2015028462 A JP2015028462 A JP 2015028462A JP 6061406 B2 JP6061406 B2 JP 6061406B2
Authority
JP
Japan
Prior art keywords
silver
exhaust gas
catalyst
phosphoric acid
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015028462A
Other languages
Japanese (ja)
Other versions
JP2015199061A5 (en
JP2015199061A (en
Inventor
将嗣 菊川
将嗣 菊川
山崎 清
清 山崎
祐介 新名
祐介 新名
優一 祖父江
優一 祖父江
大河原 誠治
誠治 大河原
幸二 仙田
幸二 仙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2015028462A priority Critical patent/JP6061406B2/en
Priority to PCT/JP2015/058850 priority patent/WO2015151920A1/en
Priority to RU2016142710A priority patent/RU2652113C1/en
Priority to DE112015001661.9T priority patent/DE112015001661B4/en
Priority to BR112016022596A priority patent/BR112016022596A2/en
Publication of JP2015199061A publication Critical patent/JP2015199061A/en
Publication of JP2015199061A5 publication Critical patent/JP2015199061A5/ja
Application granted granted Critical
Publication of JP6061406B2 publication Critical patent/JP6061406B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1817Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/70Non-metallic catalysts, additives or dopants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、排ガス浄化用触媒、それを用いた排ガス浄化フィルタ及び排ガス浄化方法に関する。   The present invention relates to an exhaust gas purification catalyst, an exhaust gas purification filter using the same, and an exhaust gas purification method.

内燃機関から排出されるガスには、燃焼により生じた粒子状物質(PM:Particulate Matter)やオイル中の添加剤等からなるアッシュ(Ash)等の有害物質が含まれている。このような有害物質の中でも粒子状物質は動植物に悪影響を及ぼす大気汚染物質として知られている。そのため、内燃機関より排出される排ガス中に含まれる粒子状物質を捕集するために、浄化フィルタ(DPF:Diesel Particulate Filter)が用いられている。DPFで捕集されたPMは圧損上昇の原因となるため、定期的に高温に上げPMを燃焼することにより、DPFの再生を行う。このとき、燃費改善や材料の耐久性向上のため、より低温で再生することが望ましく、DPFにはPM酸化触媒が担持される。   The gas discharged from the internal combustion engine contains harmful substances such as particulate matter (PM) generated by combustion, ash composed of additives in oil, and the like. Among such harmful substances, particulate substances are known as air pollutants that adversely affect animals and plants. Therefore, a purification filter (DPF: Diesel Particulate Filter) is used to collect particulate matter contained in the exhaust gas discharged from the internal combustion engine. Since PM collected by the DPF causes an increase in pressure loss, the DPF is regenerated by periodically raising the temperature to a high temperature and burning the PM. At this time, it is desirable to regenerate at a lower temperature in order to improve fuel consumption and durability of the material, and a PM oxidation catalyst is supported on the DPF.

このようなPM酸化触媒としては、特開2009−45584号公報(特許文献1)には、内燃機関から排出される排ガス中の粒子状物質を浄化するための排ガス浄化触媒であって、アルカリ土類金属元素、遷移金属元素、第12族元素、及び第13族元素よりなる群から選ばれる少なくとも2以上の元素を含む酸素放出能を有する複合酸化物(LaMnO、CeZrO、CoTa等)と、この複合酸化物に共担持されたAg及び貴金属(Ru、Pd、及びPt等)とを有する排ガス浄化触媒及びこれを用いた排ガス浄化装置が開示されている。しかしながら、特許文献1に開示されている排ガス浄化触媒は、Ag触媒は燃料中やオイル中に含まれる硫黄成分によって被毒され、活性が著しく低下してしまうという問題がある。特に、セリア等の塩基性の高い担体を用いた触媒では初期では非常に高い活性を示すが硫黄成分による活性の低下が顕著である等、硫黄を含むガスに曝された場合のPM酸化活性が十分なものではなかった。 As such a PM oxidation catalyst, Japanese Unexamined Patent Application Publication No. 2009-45584 (Patent Document 1) discloses an exhaust gas purification catalyst for purifying particulate matter in exhaust gas discharged from an internal combustion engine. A complex oxide having an oxygen releasing ability (LaMnO 3 , CeZrO 2 , CoTa 2 O 6) containing at least two elements selected from the group consisting of group metal elements, transition metal elements, group 12 elements, and group 13 elements Etc.), and an exhaust gas purification catalyst having Ag and noble metals (Ru, Pd, Pt, etc.) co-supported on the composite oxide, and an exhaust gas purification device using the same. However, the exhaust gas purifying catalyst disclosed in Patent Document 1 has a problem that the Ag catalyst is poisoned by a sulfur component contained in the fuel or oil, and the activity is significantly reduced. In particular, the catalyst using a highly basic carrier such as ceria shows very high activity at the beginning, but the activity is significantly reduced by the sulfur component. For example, the PM oxidation activity when exposed to sulfur-containing gas is high. It was not enough.

また、特開2011−218295号公報(特許文献2)には、内燃機関の排ガス通路に配設され、上記内燃機関から排出される排ガス中のパティキュレートを捕集して排ガスの浄化を行う排ガス浄化フィルタにおいて、外周壁と、該外周壁内に多角形格子状に配設された多孔質のセル壁と、該セル壁内に区画されてなる複数のセルとを有し、該セルのうち、排ガスを流入させる流入側通路となる入りガス側セルの下流端と、上記セル壁を通過した排ガスを排出させる排出側通路となる出ガス側セルの上流端とを栓部によって閉塞してなるハニカム構造体を備え、上記セル壁には、Agを含有する層状アルミナにAgを分散してなる触媒材料からなるPM燃焼触媒と、上記排ガス中の少なくともCOを酸化させる酸化触媒とが担持されており、上記入りガス側セルの壁面には、上記酸化触媒を担持することなく上記PM燃焼触媒が担持され、上記出ガス側セルの壁面には少なくとも上記酸化触媒が担持されていることを特徴とする排ガス浄化フィルタが開示されている。しかしながら、特許文献2に開示されている排ガス浄化フィルタにおいても、アルミナ上に担持されたAg触媒は分散性が低く、Ag粒子が粗大となるため、PMとの接触性が低くなる。このため、硫黄被毒によって硫酸銀に変化すると活性が低下してしまう等、硫黄を含むガスに曝された場合のPM酸化活性が十分なものではなかった。   Japanese Patent Laid-Open No. 2011-218295 (Patent Document 2) discloses an exhaust gas that is disposed in an exhaust gas passage of an internal combustion engine and collects particulates in the exhaust gas discharged from the internal combustion engine to purify the exhaust gas. The purification filter includes an outer peripheral wall, a porous cell wall disposed in a polygonal lattice shape in the outer peripheral wall, and a plurality of cells partitioned in the cell wall, A plug portion closes the downstream end of the incoming gas side cell that serves as the inflow side passage through which the exhaust gas flows and the upstream end of the outgas side cell that serves as the discharge side passage that discharges the exhaust gas that has passed through the cell wall. The cell wall includes a PM combustion catalyst made of a catalyst material in which Ag is dispersed in layered alumina containing Ag, and an oxidation catalyst that oxidizes at least CO in the exhaust gas. Cage The exhaust gas characterized in that the PM combustion catalyst is supported on the wall surface of the inlet gas side cell without supporting the oxidation catalyst, and at least the oxidation catalyst is supported on the wall surface of the outlet gas side cell. A purification filter is disclosed. However, even in the exhaust gas purification filter disclosed in Patent Document 2, the Ag catalyst supported on alumina has low dispersibility and the Ag particles become coarse, so that the contact property with PM becomes low. For this reason, the PM oxidation activity when exposed to a gas containing sulfur is not sufficient, for example, the activity decreases when it is changed to silver sulfate by sulfur poisoning.

更に、特開平06−55075号公報(特許文献3)には、白金、パラジウム、ロジウム、金、銀、ルテニウム、イリジウム、ニッケル、セリウム、コバルト、銅、及びストロンチウムからえらばれた少くとも1つの金属、その塩又は酸化物を、リン酸塩に担持させた排気ガス浄化用触媒が開示されている。しかしながら、特許文献3に開示されている排気ガス浄化用触媒においても、リン酸アルミニウム等のリン酸塩の担体上に担持された銀等の触媒活性を有する金属は分散性が低く、銀粒子等の活性金属粒子が粗大となるため、PMとの接触性が低くなる。このため、硫黄を含むガスに曝された場合のPM酸化活性が十分なものではなかった。   Furthermore, Japanese Patent Laid-Open No. 06-55075 (Patent Document 3) describes at least one metal selected from platinum, palladium, rhodium, gold, silver, ruthenium, iridium, nickel, cerium, cobalt, copper, and strontium. In addition, an exhaust gas purifying catalyst having a salt or oxide supported on a phosphate is disclosed. However, even in the exhaust gas purifying catalyst disclosed in Patent Document 3, a metal having catalytic activity such as silver supported on a phosphate carrier such as aluminum phosphate has low dispersibility, such as silver particles. Since the active metal particles become coarse, the contact property with PM becomes low. For this reason, PM oxidation activity when exposed to a gas containing sulfur was not sufficient.

また、特開2012−219715号公報(特許文献4)には、Caの硫酸塩及びリン酸塩からなる群より選択される少なくとも1種の金属塩からなる担体と、該担体に担持された銀、酸化銀、炭酸銀、硫酸銀及びリン酸銀からなる群より選択される少なくとも1種である銀含有物質とを備える酸化触媒を備える排ガス浄化装置が開示されている。同公報の記載によれば、アッシュの堆積による粒子状物質の酸化性能の低下が十分に抑制され、アッシュの堆積後においても優れた粒子状物質の酸化性能を発揮することが可能な排ガス浄化装置を提供することが可能となっている。しかしながら、近年は、排ガス浄化用触媒に対する要求特性が益々高まっており、硫黄を含むガスに曝されてもより十分に高いPM酸化活性を発揮することが可能な排ガス浄化用触媒が求められるようになってきた。   Japanese Patent Laid-Open No. 2012-219715 (Patent Document 4) discloses a support made of at least one metal salt selected from the group consisting of Ca sulfate and phosphate, and silver supported on the support. An exhaust gas purification apparatus including an oxidation catalyst including at least one silver-containing material selected from the group consisting of silver oxide, silver carbonate, silver sulfate, and silver phosphate is disclosed. According to the description of the publication, the exhaust gas purification device capable of sufficiently suppressing the reduction in the oxidation performance of the particulate matter due to the ash deposition and exhibiting the excellent oxidation performance of the particulate matter even after the ash deposition. It is possible to provide. However, in recent years, the required characteristics for exhaust gas purification catalysts have been increasing, so that there is a need for exhaust gas purification catalysts that can exhibit sufficiently higher PM oxidation activity even when exposed to sulfur-containing gas. It has become.

特開2009−45584号公報JP 2009-45584 A 特開2011−218295号公報JP 2011-218295 A 特開平06−55075号公報Japanese Patent Laid-Open No. 06-55075 特開2012−219715号公報JP 2012-219715 A

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、硫黄を含むガスに曝されても十分に高いPM酸化活性を発揮することが可能な排ガス浄化用触媒、それを用いた排ガス浄化フィルタ及び排ガス浄化方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and uses an exhaust gas purifying catalyst capable of exhibiting sufficiently high PM oxidation activity even when exposed to a gas containing sulfur, and the same. An object is to provide an exhaust gas purification filter and an exhaust gas purification method.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、アルミナを主成分とする担体に銀含有物質及びリン酸含有物質を担持させることにより、驚くべきことに得られる排ガス浄化用触媒が硫黄を含むガスに曝されても高いPM酸化活性を発揮することが可能となることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention surprisingly obtain exhaust gas purification by supporting a silver-containing substance and a phosphoric acid-containing substance on a support mainly composed of alumina. It has been found that even if the catalyst is exposed to sulfur-containing gas, it can exhibit high PM oxidation activity, and the present invention has been completed.

すなわち、本発明のPM酸化触媒は、アルミナを主成分とする担体と、該担体に担持されている銀含有物質及びリン酸含有物質と、を備えることを特徴とするものである。 That is, the PM oxidation catalyst of the present invention is characterized by comprising a carrier mainly composed of alumina, and a silver-containing substance and a phosphoric acid-containing substance supported on the carrier.

本発明のPM酸化触媒においては、前記銀含有物質と前記リン酸含有物質とを兼ねるものとしてリン酸銀が前記担体に担持されていることが好ましい。 In the PM oxidation catalyst of the present invention, it is preferable that silver phosphate is supported on the carrier as the silver-containing substance and the phosphoric acid-containing substance.

また、本発明のPM酸化触媒においては、前記PM酸化触媒中の銀(Ag)に対するリン(P)の原子比率(P/Ag)が0.2〜4であることが好ましい。 In the PM oxidation catalyst of the present invention, the atomic ratio (P / Ag) of phosphorus (P) to silver (Ag) in the PM oxidation catalyst is preferably 0.2 to 4.

更に、本発明のPM酸化触媒においては、前記銀含有物質の担持量が、前記担体と前記銀含有物質及び前記リン酸含有物質との総量に対して金属銀換算で3〜50質量%であることが好ましい。 Furthermore, in the PM oxidation catalyst of the present invention, the supported amount of the silver-containing material is 3 to 50% by mass in terms of metallic silver with respect to the total amount of the carrier, the silver-containing material, and the phosphoric acid-containing material. It is preferable.

また、本発明のPM酸化触媒においては、前記PM酸化触媒中のアルミニウム(Al)に対するリン(P)の原子比率(P/Al)が0.15〜0.5であり、かつ、前記リン酸含有物質がリン酸アルミニウムの結晶相を含有していることが好ましい。 In the PM oxidation catalyst of the present invention, the atomic ratio (P / Al) of phosphorus (P) to aluminum (Al) in the PM oxidation catalyst is 0.15 to 0.5, and the phosphoric acid It is preferable that the contained material contains an aluminum phosphate crystal phase.

本発明の排ガス浄化フィルタは、上記本発明のPM酸化触媒を通気性基材に担持せしめてなることを特徴とするものである。 The exhaust gas purification filter of the present invention is characterized in that the PM oxidation catalyst of the present invention is supported on a gas permeable substrate.

また、本発明の排ガス浄化方法は、上記本発明のPM酸化触媒に内燃機関からの排ガスを接触せしめて粒子状物質(PM)を酸化除去することを特徴とする方法である。 Moreover, the exhaust gas purification method of the present invention is a method characterized in that particulate matter (PM) is oxidized and removed by bringing the exhaust gas from the internal combustion engine into contact with the PM oxidation catalyst of the present invention.

なお、本発明の排ガス浄化用触媒、それを用いた排ガス浄化フィルタ及び排ガス浄化方法によって、硫黄を含むガスに曝されても十分に高いPM酸化活性を発揮することが可能となる理由は必ずしも定かではないが、本発明者らは以下のように推察する。   The reason why the exhaust gas purification catalyst of the present invention, the exhaust gas purification filter using the exhaust gas purification method, and the exhaust gas purification method can exhibit sufficiently high PM oxidation activity even when exposed to a gas containing sulfur is not necessarily determined. However, the present inventors speculate as follows.

すなわち、本発明において、アルミナを主成分とする担体に担持して用いるリン酸含有物質は、硫黄の吸着を抑制し硫黄被毒を緩和するため硫黄被毒を受けにくい。また、活性種として用いる銀含有物質とリン酸含有物質とが共存すると、高いPM酸化活性を奏することができ、十分に高いPM酸化活性が発揮される。このように、担体としてアルミナを主成分とする担体に、活性種として銀含有物質及びリン酸含有物質を備えた触媒とすることにより、硫黄を含むガスに曝されても高いPM酸化活性を保持することが可能となる。これにより、硫黄を含むガスに曝されても十分に高いPM酸化活性を達成できるものと本発明者らは推察する。   That is, in the present invention, the phosphoric acid-containing substance used by being supported on a carrier mainly composed of alumina is less susceptible to sulfur poisoning because sulfur adsorption is suppressed and sulfur poisoning is mitigated. Further, when the silver-containing substance and the phosphoric acid-containing substance used as active species coexist, high PM oxidation activity can be achieved, and sufficiently high PM oxidation activity is exhibited. In this way, by using a carrier mainly composed of alumina as a carrier and a catalyst comprising a silver-containing substance and a phosphoric acid-containing substance as active species, high PM oxidation activity is maintained even when exposed to a gas containing sulfur. It becomes possible to do. As a result, the present inventors speculate that a sufficiently high PM oxidation activity can be achieved even when exposed to a gas containing sulfur.

本発明によれば、硫黄を含むガスに曝されても十分に高いPM酸化活性を発揮することが可能な排ガス浄化用触媒、それを用いた排ガス浄化フィルタ及び排ガス浄化方法を提供することが可能となる。   According to the present invention, it is possible to provide an exhaust gas purification catalyst capable of exhibiting sufficiently high PM oxidation activity even when exposed to a gas containing sulfur, an exhaust gas purification filter and an exhaust gas purification method using the same. It becomes.

実施例1〜3及び比較例1〜2で得られた硫黄被毒再生処理後における排ガス浄化用触媒の50%PM酸化温度を示すグラフである。It is a graph which shows the 50% PM oxidation temperature of the catalyst for exhaust gas purification after the sulfur poisoning regeneration process obtained in Examples 1-3 and Comparative Examples 1-2. 実施例4〜6、比較例1及び3で得られた硫黄被毒再生処理後における排ガス浄化用触媒の50%PM酸化温度を示すグラフである。It is a graph which shows the 50% PM oxidation temperature of the catalyst for exhaust gas purification after the sulfur poisoning regeneration process obtained in Examples 4 to 6 and Comparative Examples 1 and 3. 実施例1、5、6及び比較例1で得られた排ガス浄化用触媒のXRDスペクトルを示すグラフである。2 is a graph showing XRD spectra of exhaust gas purifying catalysts obtained in Examples 1, 5, 6 and Comparative Example 1. FIG.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

先ず、本発明の排ガス浄化用触媒について説明する。本発明の排ガス浄化用触媒は、アルミナを主成分とする担体と、該担体に担持されている銀含有物質及びリン酸含有物質と、を備えるものである。このようなアルミナを主成分とする担体に活性種として銀含有物質及びリン酸含有物質を担持されているものとすることによって、本発明の排ガス浄化用触媒は、硫黄を含むガスに曝されても十分に高いPM酸化活性を発揮することが可能なものとなる。したがって、本発明の排ガス浄化用触媒は、例えば、ディーゼルエンジン等の内燃機関からの排ガス中の粒子状物質(PM)を酸化除去し排ガスを浄化するPM酸化触媒として好適に採用することができる。より好ましくは、本発明の排ガス浄化用触媒は、ディーゼル用PM酸化触媒として採用することができる。   First, the exhaust gas purifying catalyst of the present invention will be described. The exhaust gas purifying catalyst of the present invention comprises a support mainly composed of alumina, and a silver-containing substance and a phosphoric acid-containing substance supported on the support. By making such a support mainly composed of alumina carry a silver-containing substance and a phosphoric acid-containing substance as active species, the exhaust gas purifying catalyst of the present invention is exposed to a gas containing sulfur. It is also possible to exhibit sufficiently high PM oxidation activity. Therefore, the exhaust gas purifying catalyst of the present invention can be suitably employed as a PM oxidation catalyst for purifying exhaust gas by oxidizing and removing particulate matter (PM) in exhaust gas from an internal combustion engine such as a diesel engine. More preferably, the exhaust gas purifying catalyst of the present invention can be employed as a PM oxidation catalyst for diesel.

(担体)
本発明にかかる担体は、アルミナ(Al)を主成分とする担体であることが必要である。このようなアルミナを主成分とする担体は、アルミナを主成分とすること以外は特に制限されない。ここで、「アルミナを主成分とする」とは、前記担体がアルミナのみから構成されるもの、或いは、主としてアルミナからなり他の成分を含み構成されるものであることを意味する。他の成分としては、この種の用途の排ガス浄化用触媒の担体として用いられる他の化合物を用いることができる。後者の場合、担体におけるアルミナの含有量は、担体の全質量100質量%に対して90質量%以上であることが好ましく、95質量%以上であることがより好ましく、98質量%以上であることが特に好ましい。このような担体におけるアルミナの含有量が前記下限未満では、添加成分とリン酸銀が反応し、活性が低下する傾向にある。
(Carrier)
The carrier according to the present invention needs to be a carrier mainly composed of alumina (Al 2 O 3 ). Such a carrier containing alumina as a main component is not particularly limited except that it contains alumina as a main component. Here, “mainly composed of alumina” means that the carrier is composed only of alumina, or is composed mainly of alumina and includes other components. As other components, other compounds used as a carrier for an exhaust gas purifying catalyst for this type of application can be used. In the latter case, the content of alumina in the carrier is preferably 90% by mass or more, more preferably 95% by mass or more, and 98% by mass or more with respect to 100% by mass of the total mass of the carrier. Is particularly preferred. If the content of alumina in such a carrier is less than the lower limit, the additive component and silver phosphate react and the activity tends to decrease.

なお、このような担体におけるアルミナは、ベーマイト型、擬ベーマイト型、χ型、κ型、ρ型、η型、γ型、擬γ型、δ型、θ型及びα型からなる群から選択される少なくとも一種のアルミナとすることができるが、耐熱性の観点から、α−アルミナ、γ−アルミナを用いることが好ましく、活性の高いγ−アルミナを用いることが特に好ましい。   The alumina in such a carrier is selected from the group consisting of boehmite type, pseudo boehmite type, χ type, κ type, ρ type, η type, γ type, pseudo γ type, δ type, θ type and α type. However, from the viewpoint of heat resistance, α-alumina and γ-alumina are preferably used, and γ-alumina having high activity is particularly preferable.

また、このようなアルミナを主成分とする担体に含有するアルミナ以外の他の成分としては、担体の熱安定性や触媒活性の観点から、例えば、イットリウム(Y)、ランタン(La)、プラセオジウム(Pr)、セリウム(Ce)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、スカンジウム(Sc)、バナジウム(V)等の希土類、アルカリ金属、アルカリ土類金属、遷移金属等の金属の酸化物を用いることができる。   In addition, other components other than alumina contained in the support mainly composed of alumina include, for example, yttrium (Y), lanthanum (La), praseodymium (from the viewpoint of thermal stability and catalytic activity of the support. Pr), cerium (Ce), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium ( Rare earths such as Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), scandium (Sc), vanadium (V) Metal oxides such as alkali metals, alkaline earth metals and transition metals can be used .

また、このようなアルミナを主成分とする担体としては、耐熱性の観点からは、担体の全質量100質量%に対して90質量%以上のアルミナと、イットリウム(Y)、ランタン(La)、プラセオジウム(Pr)、セリウム(Ce)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、スカンジウム(Sc)及びバナジウム(V)からなる群から選択される少なくとも1種の金属の酸化物とからなる担体がより好ましい。   Moreover, as a support | carrier which has such an alumina as a main component, from a heat resistant viewpoint, 90 mass% or more of alumina with respect to the total mass of 100 mass% of a support | carrier, yttrium (Y), lanthanum (La), Praseodymium (Pr), cerium (Ce), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), From erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), scandium (Sc) and vanadium (V) More preferred is a support comprising at least one metal oxide selected from the group consisting of

更に、このようなアルミナを主成分とする担体の比表面積としては、特に制限されないが、好ましくは5〜300m/gであり、より好ましくは10〜200m/gである。前記比表面積が前記上限を超えると、担体自体の耐熱性が低下するため、触媒の耐熱性が低下する傾向にあり、他方、前記下限未満では、活性種(銀含有物質及びリン酸含有物質)の分散性が低下する傾向にある。このような比表面積は、吸着等温線からBET等温吸着式を用いてBET比表面積として算出することができる。 Further, the specific surface area of such a carrier mainly composed of alumina is not particularly limited, but is preferably 5 to 300 m 2 / g, more preferably 10 to 200 m 2 / g. When the specific surface area exceeds the upper limit, the heat resistance of the support itself decreases, and therefore the heat resistance of the catalyst tends to decrease. On the other hand, when the specific surface area is lower than the lower limit, active species (silver-containing substance and phosphoric acid-containing substance) The dispersibility tends to decrease. Such a specific surface area can be calculated as a BET specific surface area from the adsorption isotherm using the BET isotherm adsorption equation.

また、このようなアルミナを主成分とする担体の形状としては、特に制限されないが、リング状、球状、円柱状、ペレット状等、従来公知の形状のものを用いることができる。なお、活性種(銀含有物質及びリン酸含有物質)を分散性の高い状態で多く含有することができるという観点から、粒子状のものを用いることが好ましい。担体が粒子状のものである場合には、前記担体の粒子の平均一次粒子径が1〜1000nmの粒子であることが好ましく、5〜500nmの粒子であることがより好ましい。なお、このような担体の平均一次粒子径は、X線回折装置を用いて粉末X線回折ピークの線幅からシェラーの式(Scherrer’s equation)を用いて算出することにより測定することができる。また、このようなアルミナを主成分とする担体の平均粒子径は定法(例えば乳鉢で粉砕する方法や冷間等方圧プレス法(CIP)等)により適宜変更できる。また、排ガス浄化用触媒を製造後に、その触媒の平均粒子径を定法により変更することにより、触媒中における前記アルミナを主成分とする担体の粉末の平均粒子径を変更してもよい。 In addition, the shape of such a carrier containing alumina as a main component is not particularly limited, and a conventionally known shape such as a ring shape, a spherical shape, a cylindrical shape, or a pellet shape can be used. In addition, it is preferable to use a particulate thing from a viewpoint that many active species (a silver containing material and phosphoric acid containing material) can be contained in a highly dispersible state. When the carrier is in the form of particles, the average primary particle size of the carrier particles is preferably 1 to 1000 nm , more preferably 5 to 500 nm. The average primary particle diameter of such a carrier can be measured by calculating from the line width of the powder X-ray diffraction peak using the Scherrer's equation using an X-ray diffractometer. . Further, the average particle size of such a carrier mainly composed of alumina can be appropriately changed by a conventional method (for example, a method of pulverizing with a mortar or a cold isostatic pressing method (CIP)). Further, after the exhaust gas purifying catalyst is manufactured, the average particle diameter of the carrier powder containing alumina as a main component in the catalyst may be changed by changing the average particle diameter of the catalyst by a usual method.

更に、このような担体の製造方法としては、特に制限されないが、前記アルミナを主成分とする担体を製造することが可能な公知の方法を適宜利用することができる。また、このような担体としては市販のアルミナ又はアルミナを主成分とする複合酸化物等を利用してもよく、ボールミル等によりミリングして、そのサイズを適宜調整してもよい。 Furthermore, a method for producing such a carrier is not particularly limited, and a known method capable of producing a carrier containing alumina as a main component can be appropriately used. In addition, as such a carrier, commercially available alumina or a composite oxide containing alumina as a main component may be used, and the size may be appropriately adjusted by milling with a ball mill or the like.

(銀含有物質)
本発明にかかる銀含有物質は、アルミナを主成分とする担体に担持されている活性種であって、銀及び/又は銀化合物を含有する物質であることが必要である。このような銀含有物質は、銀及び/又は銀を含む化合物を含有する物質であること以外は特に制限されない。このような銀含有物質としては、具体的には、銀(金属単体、Ag、メタル銀)、銀の酸化物、ハロゲン化銀、炭酸銀、硫酸銀、リン酸銀、硝酸銀、クロム酸銀、シュウ酸銀、銀フェライト、等が挙げられる。中でも、リン酸との反応性の観点から、銀、銀の酸化物、ハロゲン化銀、硫酸銀及びリン酸銀からなる群から選択される少なくとも一種であることが好ましく、銀粒子の分散性の観点から銀、硫酸銀、リン酸銀及び硝酸銀からなる群から選択される少なくとも一種であることがより好ましい。
(Silver-containing material)
The silver-containing material according to the present invention is an active species supported on a carrier mainly composed of alumina and needs to be a material containing silver and / or a silver compound. Such a silver-containing material is not particularly limited except that it is a material containing silver and / or a compound containing silver. Specific examples of such a silver-containing substance include silver (metal simple substance, Ag, metal silver), silver oxide, silver halide, silver carbonate, silver sulfate, silver phosphate, silver nitrate, silver chromate, Examples thereof include silver oxalate and silver ferrite. Among these, from the viewpoint of reactivity with phosphoric acid , it is preferably at least one selected from the group consisting of silver, silver oxide, silver halide, silver sulfate and silver phosphate, and the dispersibility of silver particles From the viewpoint, it is more preferably at least one selected from the group consisting of silver, silver sulfate, silver phosphate and silver nitrate.

なお、前記銀含有物質と前記リン酸含有物質とを兼ねるものとしてリン酸銀が前記担体に担持されていることが好ましい。このようなリン酸銀としては、具体的には、オルトリン酸銀(AgPO)、ピロリン酸銀(Ag)、トリリン酸銀(Ag10)、メタリン酸銀(AgPO)等が挙げられる。 In addition, it is preferable that the silver phosphate is carry | supported by the said support | carrier as what serves as the said silver containing substance and the said phosphoric acid containing substance. Specific examples of such silver phosphate include silver orthophosphate (Ag 3 PO 4 ), silver pyrophosphate (Ag 4 P 2 O 7 ), silver triphosphate (Ag 5 P 3 O 10 ), and metaphosphate. silver (AgPO 3), and the like.

このような本発明において用いる銀含有物質の担持量としては、特に制限されないが、前記担体と前記銀含有物質及び前記リン酸含有物質との総量に対して金属銀(Ag)換算で3〜50質量%であることが好ましく、5〜30質量%であることがより好ましく、7〜15質量%であることが特に好ましい。このような銀含有物質の担持量が前記下限未満では粒子状物質の酸化性能を十分に高度なものとすることができなくなる傾向にあり、他方、前記上限を超えると酸化性能が飽和してしまうためコストが高くなる傾向にある。 The amount of the silver-containing material used in the present invention is not particularly limited, but is 3 to 50 in terms of metallic silver (Ag) with respect to the total amount of the carrier, the silver-containing material, and the phosphoric acid-containing material. The mass is preferably 5% by mass , more preferably 5-30% by mass, and particularly preferably 7-15% by mass. If the amount of such a silver-containing substance supported is less than the lower limit, the oxidation performance of the particulate matter tends to be not sufficiently advanced. On the other hand, if the upper limit is exceeded, the oxidation performance is saturated. Therefore, the cost tends to increase.

また、このような銀含有物質の平均結晶子径(平均一次粒子径)としては、特に制限されないが、0.1〜300nmであることが好ましく、1〜200nmであることがより好ましい。このような銀含有物質の平均結晶子径が前記下限未満では担体と強く結合し、活性が低下する傾向にあり、他方、前記上限を超えると反応に寄与する粒子数が減り、活性が低下する傾向にある。なお、このような銀含有物質の平均結晶子径(平均一次粒子径)は、例えば、X線回折装置を用いて粉末X線回折ピークの線幅からシェラーの式(Scherrer’s equation)を用いて算出することにより測定することができる。   Further, the average crystallite size (average primary particle size) of such a silver-containing substance is not particularly limited, but is preferably 0.1 to 300 nm, and more preferably 1 to 200 nm. If the average crystallite size of such a silver-containing substance is less than the lower limit, it strongly binds to the support and the activity tends to decrease. On the other hand, if it exceeds the upper limit, the number of particles contributing to the reaction decreases and the activity decreases. There is a tendency. Note that the average crystallite size (average primary particle size) of such a silver-containing substance is calculated using, for example, Scherrer's equation from the line width of the powder X-ray diffraction peak using an X-ray diffractometer. It can be measured by calculating.

(リン酸含有物質)
本発明にかかるリン酸含有物質は、アルミナを主成分とする担体に担持されている活性種であって、リン酸及び/又はリン酸塩を含有する物質であることが必要である。このようなリン酸含有物質は、リン酸及び/又はリン酸塩を含有する物質であること以外は特に制限されない。このようなリン酸含有物質としては、具体的には、リン酸として、オルトリン酸(HPO)、ピロリン酸(H)、トリリン酸(H10)、メタリン酸(HPO)等が挙げられる。また、リン酸塩として、オルトリン酸塩、ピロリン酸塩、トリリン酸塩、ポリリン酸塩、メタリン酸塩、ウルトラリン酸塩等が、更にこれらのアルカリ金属塩、他の金属塩、アンモニウム塩等が挙げられる。その中でも、活性種の分散性の観点からオルトリン酸塩、ピロリン酸塩、トリリン酸塩及びこれらのアルカリ金属塩からなる群から選択される少なくとも一種であることが好ましく、オルトリン酸塩、ピロリン酸塩及びこれらのアルカリ金属塩からなる群から選択される少なくとも一種であることがより好ましい。
(Phosphoric acid-containing substance)
The phosphoric acid-containing substance according to the present invention is an active species supported on a carrier mainly composed of alumina and needs to be a substance containing phosphoric acid and / or phosphate. Such a phosphoric acid-containing substance is not particularly limited except that it is a substance containing phosphoric acid and / or phosphate. As such a phosphoric acid-containing substance, specifically, as phosphoric acid, orthophosphoric acid (H 3 PO 4 ), pyrophosphoric acid (H 4 P 2 O 7 ), triphosphoric acid (H 5 P 3 O 10 ), metaphosphoric acid (HPO 3), and the like. In addition, as phosphates, orthophosphates, pyrophosphates, triphosphates, polyphosphates, metaphosphates, ultraphosphates, etc., these alkali metal salts, other metal salts, ammonium salts, etc. Can be mentioned. Among these, from the viewpoint of dispersibility of active species, at least one selected from the group consisting of orthophosphates, pyrophosphates, triphosphates and alkali metal salts thereof is preferable. Orthophosphates, pyrophosphates And at least one selected from the group consisting of these alkali metal salts.

このような本発明において用いるリン酸含有物質の担持量としては、特に制限されないが、前記排ガス浄化用触媒中の銀(Ag)に対するリン(P)の原子比率(P/Ag)が0.2〜6となる担持量であることが好ましく、0.3〜5.5となる担持量であることがより好ましく、0.4〜3となる担持量であることが特に好ましい。このようなリン酸含有物質の担持量が、前記原子比率(P/Ag)として前記下限未満では粒子状物質の酸化性能を十分に高度なものとすることができなくなる傾向にあり、他方、前記上限を超えると酸化性能が飽和してしまうためコストが高くなる傾向にある。 The amount of the phosphoric acid-containing substance used in the present invention is not particularly limited, but the atomic ratio (P / Ag) of phosphorus (P) to silver (Ag) in the exhaust gas purification catalyst is 0.2. The supported amount is preferably ˜6 , more preferably 0.3˜5.5, and particularly preferably 0.4˜3. If the amount of the phosphoric acid-containing substance supported is less than the lower limit as the atomic ratio (P / Ag), the oxidation performance of the particulate matter tends to be insufficient, while If the upper limit is exceeded, the oxidation performance will be saturated and the cost tends to increase.

また、このような本発明において用いるリン酸含有物質の担持量としては、特に制限されないが、前記排ガス浄化用触媒中のアルミニウム(Al)に対するリン(P)の原子比率(P/Al)が0.15〜0.5となる担持量であることが好ましく、0.2〜0.45となる担持量であることがより好ましく、0.3〜0.4となる担持量であることが特に好ましい。このようなリン酸含有物質の担持量が、前記原子比率(P/Al)として前記下限未満では、粒子状物質の酸化性能を十分に高度なものとすることができなくなる傾向にあり、他方、前記上限を超えると比表面積が低下し、活性が低下してしまう傾向にある。 Further, the amount of the phosphoric acid-containing substance used in the present invention is not particularly limited, but the atomic ratio (P / Al) of phosphorus (P) to aluminum (Al) in the exhaust gas purification catalyst is 0. The loading amount is preferably 15 to 0.5 , more preferably 0.2 to 0.45, and particularly preferably 0.3 to 0.4. preferable. If the amount of the phosphoric acid-containing material supported is less than the lower limit as the atomic ratio (P / Al), the oxidation performance of the particulate material tends not to be sufficiently advanced, When the upper limit is exceeded, the specific surface area tends to decrease and the activity tends to decrease.

更に、本発明にかかるアルミナを主成分とする担体に担持されている活性種としてのリン酸含有物質としては、リン酸アルミニウム(AlPO)の結晶相を含有していることが好ましい。このようなリン酸アルミニウム(AlPO)の結晶相を含有することにより、硫黄を含むガスに曝されても担体に吸着する硫黄成分を抑制して触媒の硫黄被毒を緩和することが可能となる。 Furthermore, it is preferable that the phosphoric acid-containing substance as the active species supported on the carrier mainly composed of alumina according to the present invention contains a crystalline phase of aluminum phosphate (AlPO 4 ). By including such a crystalline phase of aluminum phosphate (AlPO 4 ), it is possible to suppress sulfur poisoning of the catalyst by suppressing sulfur components adsorbed on the carrier even when exposed to sulfur-containing gas. Become.

また、本発明の排ガス浄化用触媒においては、前記排ガス浄化用触媒中のアルミニウム(Al)に対するリン(P)の原子比率(P/Al)が0.15〜0.5であり、かつ、前記リン酸含有物質がリン酸アルミニウムの結晶相を含有していることがより好ましい。このようなリン酸含有物質を担持する排ガス浄化用触媒とすることにより、硫黄を含むガスに曝されてもより十分に高いPM酸化活性を発揮することが可能となる。   In the exhaust gas purifying catalyst of the present invention, the atomic ratio (P / Al) of phosphorus (P) to aluminum (Al) in the exhaust gas purifying catalyst is 0.15 to 0.5, and More preferably, the phosphoric acid-containing substance contains an aluminum phosphate crystal phase. By using such a phosphoric acid-containing substance-supporting exhaust gas-purifying catalyst, a sufficiently higher PM oxidation activity can be exhibited even when exposed to sulfur-containing gas.

更に、このようなリン酸含有物質は、多くは水溶性であるが、溶けないものの場合の平均結晶子径(平均一次粒子径)としては、特に制限されないが、0.1〜300nmであることが好ましく、1〜200nmであることがより好ましい。このようなリン酸含有物質の平均結晶子径が前記上限を超えると分散性が低くなる傾向にある。なお、このようなリン酸含有物質の平均結晶子径(平均一次粒子径)は、例えば、X線回折装置を用いて粉末X線回折ピークの線幅からシェラーの式(Scherrer’s equation)を用いて算出することにより測定することができる。   Further, many of such phosphoric acid-containing substances are water-soluble, but the average crystallite diameter (average primary particle diameter) in the case of insoluble substances is not particularly limited, but is 0.1 to 300 nm. Is preferable, and it is more preferable that it is 1-200 nm. When the average crystallite diameter of such a phosphoric acid-containing substance exceeds the upper limit, the dispersibility tends to be lowered. Note that the average crystallite size (average primary particle size) of such a phosphoric acid-containing substance is obtained by, for example, the Scherrer's equation from the line width of the powder X-ray diffraction peak using an X-ray diffractometer. It can measure by calculating using.

本発明においては、活性種としてこのような銀含有物質及びリン酸含有物質を用いることによって、アルミナを主成分とする担体に担持して用いるリン酸含有物質は硫黄の吸着を抑制し硫黄被毒を緩和するため硫黄被毒を受けにくい。また、活性種として用いる銀含有物質及びリン酸含有物質が共存することにより、高いPM酸化活性を奏することができ、十分に高いPM酸化活性を発揮することが可能となる。このように、担体としてアルミナを主成分とする担体に、活性種として銀含有物質及びリン酸含有物質を備えた触媒とすることにより、硫黄を含むガスに曝されても高いPM酸化活性を保持することができ、十分に高いPM酸化活性を発揮させることが可能となる。   In the present invention, by using such a silver-containing substance and phosphoric acid-containing substance as active species, the phosphoric acid-containing substance used by being supported on a carrier mainly composed of alumina suppresses sulfur adsorption and sulfur poisoning. It is less susceptible to sulfur poisoning. In addition, the coexistence of the silver-containing substance and the phosphoric acid-containing substance used as active species can exhibit high PM oxidation activity and can exhibit sufficiently high PM oxidation activity. In this way, by using a carrier mainly composed of alumina as a carrier and a catalyst comprising a silver-containing substance and a phosphoric acid-containing substance as active species, high PM oxidation activity is maintained even when exposed to a gas containing sulfur. And a sufficiently high PM oxidation activity can be exhibited.

なお、前記担体の種類やその担体に担持されている銀含有物質及びリン酸含有物質等は、X線回折測定をしてX線回折パターンを求めて、ピークの位置から存在する結晶の種類を求めることにより確認できる。   The type of the carrier, the silver-containing substance and the phosphoric acid-containing substance supported on the carrier, etc. are determined by X-ray diffraction measurement to obtain an X-ray diffraction pattern, and the type of crystal present from the peak position. It can be confirmed by seeking.

また、このような銀含有物質及びリン酸含有物質をアルミナを主成分とする担体に担持する方法としては、特に制限されないが、公知の方法を適宜利用することができ、例えば、銀含有物質或いはそれらの前駆体の分散液やゾル、及びリン酸含有物質或いはそれらの前駆体の分散液やゾルをそれぞれ用いて、アルミナを主成分とする担体に順次又は同時に被覆(その後必要に応じて焼成)する方法や、蒸着法(例えば、化学蒸着法、物理蒸着法、スパッタ蒸着法)等を用いることによりアルミナを主成分とする担体に担持する方法等を適宜採用することができる。   Further, a method for supporting such a silver-containing substance and a phosphoric acid-containing substance on a carrier mainly composed of alumina is not particularly limited, but a known method can be used as appropriate, for example, a silver-containing substance or The precursor dispersion or sol, and the phosphoric acid-containing substance or the precursor dispersion or sol are used to coat the alumina-based carrier sequentially or simultaneously (and then fired as necessary). Or a method of supporting alumina on a carrier as a main component by using a vapor deposition method (for example, chemical vapor deposition method, physical vapor deposition method, sputter vapor deposition method) or the like can be appropriately employed.

(排ガス浄化用触媒)
本発明における排ガス浄化用触媒は、前記アルミナを主成分とする担体と、該担体に担持されている銀含有物質及びリン酸含有物質とを備えていればよく、その形態としては、特に制限されないが、ペレット形状のペレット触媒の形態等としてもよく、フィルタに担持した形態としてもよい。
(Exhaust gas purification catalyst)
The exhaust gas-purifying catalyst in the present invention is not particularly limited as long as it comprises a carrier mainly composed of the alumina, and a silver-containing substance and a phosphoric acid-containing substance supported on the carrier. However, it may be in the form of a pellet-shaped pellet catalyst or the like, or may be supported on a filter.

(排ガス浄化用触媒の製造方法)
本発明の排ガス浄化用触媒の製造方法としては、特に制限されず、公知の方法を適宜利用することができ、例えば、前記アルミナを主成分とする担体に銀含有物質及びリン酸含有物質のイオン等を含む水溶液を含浸させる工程、加熱し焼成を行う工程により作製される。なお、前記含浸においては、銀含有物質及びリン酸含有物質のイオン等を含む水溶液を含浸させてもよく、又は、銀含有物質のイオン等を含む水溶液及びリン酸含有物質のイオン等を含む水溶液をそれぞれ用意し、個別に順番に又は同時に含浸させてもよい。具体的には、銀含有物質及びリン酸含有物質を所定の濃度で含有する溶液を、前記アルミナを主成分とする担体に接触させることにより、所定量の銀含有物質及びリン酸含有物質を含む溶液を前記担体に含浸(担持)させた後、これを加熱し焼成する方法を採用することができる。更に、このような排ガス浄化用触媒の製造方法としては、先ず、リン酸含有物質のイオン等を含む水溶液を担体としてのアルミナを主成分とする担体に含浸せしめた後に焼成してリン酸含有物質が担持した担体を得、次いで、得られたリン酸含有物質担持担体を銀含有物質のイオン等を含む水溶液に含浸せしめた後に焼成してアルミナを主成分とする担体に銀含有物質及びリン酸含有物質を担持する方法を採用することができる。
(Manufacturing method of exhaust gas purification catalyst)
The method for producing the exhaust gas purifying catalyst of the present invention is not particularly limited, and a known method can be used as appropriate. For example, the carrier containing alumina as a main component has ions of silver-containing substance and phosphoric acid-containing substance. It is produced by a step of impregnating with an aqueous solution containing, etc., a step of heating and baking. The impregnation may be impregnated with an aqueous solution containing silver-containing substance and phosphoric acid-containing substance ions, or an aqueous solution containing silver-containing substance ions and an aqueous solution containing phosphoric acid-containing substance ions. May be prepared and impregnated individually or sequentially. Specifically, a solution containing a silver-containing substance and a phosphoric acid-containing substance at a predetermined concentration is brought into contact with the carrier mainly composed of alumina, thereby containing a predetermined amount of the silver-containing substance and the phosphoric acid-containing substance. It is possible to employ a method of impregnating (supporting) the solution on the carrier and then heating and baking the solution. Furthermore, as a method for producing such an exhaust gas purifying catalyst, first, an aqueous solution containing ions of a phosphoric acid-containing substance is impregnated into a carrier mainly composed of alumina as a carrier and then calcined and then phosphoric acid-containing substance. Then, the resulting phosphoric acid-containing material-supported carrier is impregnated with an aqueous solution containing silver-containing material ions, etc., and then baked to prepare a carrier containing mainly alumina as a silver-containing material and phosphoric acid. A method of supporting the contained substance can be employed.

また、このような銀含有物質及びリン酸含有物質を含浸させた後における加熱焼成(焼成工程)は大気中で実施してもよい。また、このような焼成工程における焼成温度としては200〜700℃が好ましい。このような焼成温度が前記下限未満になると、前記銀含有物質及びリン酸含有物質を担体に担持することが困難となり、排ガス浄化用触媒の十分なPM酸化活性が得られなくなる傾向にあり、他方、前記上限を超えると、アルミナを主成分とする担体の比表面積の低下が起こり易くなり、これにより酸化活性が低下してしまう傾向にある。また、焼成時間としては0.1〜100時間が好ましい。このような焼成時間が前記下限未満になると銀含有物質及びリン酸含有物質を担持することが困難となり、得られる排ガス浄化用触媒(PM酸化触媒)の酸化活性が低下する傾向にあり、他方、前記上限を超えてもそれ以上の効果は得られず、触媒を調製するためのコストの増大に繋がる傾向にある。   Moreover, you may implement the heat baking (baking process) after impregnating such a silver containing material and a phosphoric acid containing material in air | atmosphere. Moreover, as a baking temperature in such a baking process, 200-700 degreeC is preferable. When such a calcination temperature is less than the lower limit, it becomes difficult to support the silver-containing substance and the phosphoric acid-containing substance on the carrier, and there is a tendency that sufficient PM oxidation activity of the exhaust gas purifying catalyst cannot be obtained, When the upper limit is exceeded, the specific surface area of the support mainly composed of alumina tends to decrease, and the oxidation activity tends to decrease. The firing time is preferably 0.1 to 100 hours. When such a calcination time is less than the lower limit, it becomes difficult to support the silver-containing material and the phosphoric acid-containing material, and the oxidation activity of the obtained exhaust gas purifying catalyst (PM oxidation catalyst) tends to decrease, Even if the upper limit is exceeded, no further effect is obtained, and the cost for preparing the catalyst tends to increase.

(排ガス浄化用装置)
前記本発明の排ガス浄化用触媒は、内燃機関から排出されるガス(排ガス)に含まれる粒子状物質に対して高いPM酸化活性を発揮しPMを酸化して除去することができるため、前記排ガス浄化用触媒に前記排ガスが接触することが可能なように前記排ガス浄化用触媒を配置して排ガス浄化用装置を構成することができる。
(Exhaust gas purification equipment)
Since the exhaust gas purifying catalyst of the present invention can exhibit high PM oxidation activity against particulate matter contained in gas (exhaust gas) discharged from an internal combustion engine and oxidize and remove PM, the exhaust gas The exhaust gas purification device can be configured by arranging the exhaust gas purification catalyst so that the exhaust gas can come into contact with the purification catalyst.

このような排ガス浄化用装置は、排ガス中に含有される粒子状物質(PM)を酸化して浄化するための排ガス浄化装置であって、前記本発明の排ガス浄化用触媒を備えるものであればよい。このような排ガス浄化装置においては、内燃機関から排出されるガス(排ガス)に含まれる粒子状物質を酸化して浄化(除去)するため、排ガス浄化用装置に前記排ガスが接触することが可能なように前記排ガス浄化用装置を配置すればよく、例えば、内燃機関からの排ガスが流通する排ガス管内のガス流路に前記排ガス浄化用装置を配置した形態としてもよい。なお、このような内燃機関としては特に制限されず、公知の内燃機関を適宜用いることができ、例えば、自動車のエンジン(ガソリンエンジン、ディーゼルエンジン等)であってもよい。   Such an exhaust gas purifying device is an exhaust gas purifying device for oxidizing and purifying particulate matter (PM) contained in the exhaust gas as long as it includes the exhaust gas purifying catalyst of the present invention. Good. In such an exhaust gas purification device, particulate matter contained in the gas (exhaust gas) discharged from the internal combustion engine is oxidized and purified (removed), so that the exhaust gas can contact the exhaust gas purification device. For example, the exhaust gas purification device may be arranged in a gas flow path in an exhaust gas pipe through which exhaust gas from an internal combustion engine flows. In addition, it does not restrict | limit especially as such an internal combustion engine, A well-known internal combustion engine can be used suitably, For example, the engine (a gasoline engine, a diesel engine, etc.) of a motor vehicle may be sufficient.

[排ガス浄化フィルタ]
次に、本発明の排ガス浄化フィルタについて説明する。本発明の排ガス浄化フィルタは、前記本発明の排ガス浄化用触媒を通気性基材(フィルタ)に担持せしめてなることを特徴とする。
[Exhaust gas purification filter]
Next, the exhaust gas purification filter of the present invention will be described. The exhaust gas purification filter of the present invention is characterized in that the exhaust gas purification catalyst of the present invention is supported on a gas permeable substrate (filter).

このような本発明の排ガス浄化フィルタとしては、前記本発明の排ガス浄化用触媒を通気性基材に担持せしめてなること以外は特に制限されない。このような排ガス浄化フィルタの通気性基材としては、公知の通気性基材(フィルタ)を適宜利用することができ、例えば、パティキュレートフィルタ、モノリス状のフィルタ、ハニカム状のフィルタ、ペレット状のフィルタ、プレート状のフィルタ、発泡状セラミック製のフィルタ等が挙げられる。なお、前記本発明の排ガス浄化用触媒を通気性基材(フィルタ)に担持した形態のものとする場合においては、より高度な粒子状物質(PM)の酸化性能が得られることから、前記本発明の排ガス浄化用触媒をパティキュレートフィルタに担持した形態のものとすることがより好ましい。   The exhaust gas purification filter of the present invention is not particularly limited except that the exhaust gas purification catalyst of the present invention is supported on a gas permeable substrate. As the breathable substrate of such an exhaust gas purification filter, a known breathable substrate (filter) can be appropriately used. For example, a particulate filter, a monolith filter, a honeycomb filter, a pellet filter Examples thereof include a filter, a plate-like filter, and a foamed ceramic filter. When the exhaust gas purifying catalyst of the present invention is supported on a gas permeable substrate (filter), a higher level of particulate matter (PM) oxidation performance can be obtained. More preferably, the exhaust gas purifying catalyst of the present invention is supported on a particulate filter.

また、このような排ガス浄化フィルタの通気性基材の材質としては、特に制限されないが、公知の材料を適宜利用することができ、例えば、コージエライト、炭化ケイ素、ムライト、チタン酸アルミニウム等のセラミックス、クロム及びアルミニウムを含むステンレススチール等の金属等が挙げられる。   Further, the material of the breathable substrate of such an exhaust gas purification filter is not particularly limited, but a known material can be used as appropriate, for example, cordierite, silicon carbide, mullite, ceramics such as aluminum titanate, Examples thereof include metals such as stainless steel including chrome and aluminum.

更に、このような排ガス浄化フィルタとしては、平均細孔径が1〜300μmの細孔を有するものを用いることが好ましい。このような平均細孔径を有する基材を用いることで、より効率よく粒子状物質を酸化して浄化することが可能となる。   Further, as such an exhaust gas purification filter, it is preferable to use a filter having pores having an average pore diameter of 1 to 300 μm. By using a base material having such an average pore diameter, it becomes possible to oxidize and purify the particulate matter more efficiently.

また、このような排ガス浄化フィルタとしては、前記本発明の排ガス浄化用触媒によるコート層が形成されていることが好ましく、そのコート層の厚みは0.025〜25μmであることが好ましく、0.035〜10μmであることがより好ましい。前記コート層の厚みが前記下限未満では前記アルミナを主成分とする担体と該担体に担持されている銀含有物質及びリン酸含有物質とを備える触媒によりフィルタの表面を十分に被覆できず、粒子状物質との接触点が減少して十分に高度な酸化性能を付与することが困難となる傾向にあり、他方、前記上限を超えると、前記アルミナを主成分とする担体と該担体に担持されている銀含有物質及びリン酸含有物質とを備える触媒によりフィルタの細孔が閉塞され、排ガスの圧力損失が増大してエンジン効率が低下する傾向にある。   Moreover, as such an exhaust gas purification filter, it is preferable that the coat layer by the exhaust gas purification catalyst of the present invention is formed, and the thickness of the coat layer is preferably 0.025 to 25 μm. It is more preferable that it is 035-10 micrometers. If the thickness of the coating layer is less than the lower limit, the surface of the filter cannot be sufficiently covered with a catalyst comprising a carrier mainly composed of the alumina and a silver-containing substance and a phosphoric acid-containing substance supported on the carrier, and particles However, when the upper limit is exceeded, the carrier mainly composed of alumina and the carrier are supported on the carrier. The catalyst containing the silver-containing material and the phosphoric acid-containing material is clogged with the pores of the filter, and the pressure loss of the exhaust gas increases, and the engine efficiency tends to decrease.

更に、このような排ガス浄化フィルタとしては、前記通気性基材に担持する前記触媒の量は、特に制限されないが、内燃機関等に応じてその量を適宜調整することができ、前記通気性基材の体積1リットルに対して1〜300gであることが好ましく、10〜100gであることがより好ましい。このような担持量が前記下限未満では、十分に高度な触媒性能を発揮することが困難となる傾向にあり、他方、前記上限を超えると前記担体と前記銀含有物質とを備える触媒により前記通気性基材の細孔が閉塞され、排ガスの圧力損失が増大してエンジン効率が低下する傾向にある。   Further, in such an exhaust gas purification filter, the amount of the catalyst supported on the breathable base material is not particularly limited, but the amount can be appropriately adjusted according to the internal combustion engine or the like, and the breathable group It is preferable that it is 1-300g with respect to 1 liter of volume of a material, and it is more preferable that it is 10-100g. If the amount is less than the lower limit, it tends to be difficult to exhibit sufficiently high catalyst performance. On the other hand, if the amount exceeds the upper limit, the aeration is performed by a catalyst including the support and the silver-containing substance. The pores of the conductive base material are blocked, and the pressure loss of the exhaust gas increases and the engine efficiency tends to decrease.

また、このような排ガス浄化フィルタとしては、気孔率が30〜70%(より好ましくは40〜65%)であるものが好ましい。ここにいう「気孔率」とは、前記通気性基材内部の空洞部分の体積率をいう。また、このような気孔率が前記下限未満では、排ガス中の粒子状物質により細孔が閉塞し易くなる傾向にあり、他方、前記上限を超えると、排ガス中の粒子状物質を捕集しにくくなるとともにフィルタの強度が低下する傾向にある。   Moreover, as such an exhaust gas purification filter, what has a porosity of 30 to 70% (more preferably 40 to 65%) is preferable. Here, the “porosity” refers to the volume ratio of the hollow portion inside the breathable substrate. In addition, when the porosity is less than the lower limit, the pores tend to be clogged by the particulate matter in the exhaust gas. On the other hand, when the porosity exceeds the upper limit, it is difficult to collect the particulate matter in the exhaust gas. The strength of the filter tends to decrease.

更に、このような排ガス浄化フィルタにおいては、前記通気性基材に前記本発明の排ガス浄化用触媒を担持する方法は特に制限されず、例えば、予め前記アルミナを主成分とする担体と該担体に担持されている銀含有物質及びリン酸含有物質とを備える触媒を調製しておき、それを通気性基材に担持する方法や、通気性基材に対して担体を担持する工程と前記通気性基材に担持された前記担体に対し銀含有物質及びリン酸含有物質を担持せしめる工程とを実施することにより前記アルミナを主成分とする担体と該担体に担持されている銀含有物質及びリン酸含有物質とを備える触媒をフィルタに担持する方法等を適宜採用することができる。また、触媒や担体、銀含有物質及びリン酸含有物質を通気性基材に担持する方法は特に制限されず、公知の方法を適宜採用でき、例えば、触媒又は担体等のスラリーを調製し、そのスラリーを通気性基材に被覆(その後必要に応じて焼成)する方法等を適宜利用することができる。なお、このような排ガス浄化用触媒としては本発明の効果を損なわない範囲において粒子状物質を酸化するための触媒に用いることが可能な公知の他の成分を適宜用いてもよい。   Furthermore, in such an exhaust gas purification filter, the method for supporting the exhaust gas purification catalyst of the present invention on the breathable base material is not particularly limited. For example, the carrier mainly composed of the alumina and the carrier in advance. Preparation of a catalyst comprising a supported silver-containing material and phosphoric acid-containing material, a method of supporting the catalyst on a breathable substrate, a step of supporting a carrier on the breathable substrate, and the breathability And carrying the step of supporting the silver-containing substance and the phosphoric acid-containing substance on the carrier supported on the base material, and the silver-containing substance and phosphoric acid supported on the carrier. For example, a method of supporting a catalyst having a contained substance on a filter can be appropriately employed. In addition, the method for supporting the catalyst, the carrier, the silver-containing material and the phosphoric acid-containing material on the air-permeable substrate is not particularly limited, and a known method can be appropriately employed. For example, a method of coating the slurry on a breathable base material (after that, firing if necessary) can be used as appropriate. In addition, as such an exhaust gas purifying catalyst, other known components that can be used as a catalyst for oxidizing particulate matter may be used as long as the effects of the present invention are not impaired.

[排ガス浄化方法]
次に、本発明の排ガス浄化方法について説明する。本発明の排ガス浄化方法は、前記本発明の排ガス浄化用触媒に内燃機関からの排ガスを接触せしめて粒子状物質(PM)を酸化除去することを特徴とする方法である。
[Exhaust gas purification method]
Next, the exhaust gas purification method of the present invention will be described. The exhaust gas purification method of the present invention is a method characterized in that exhaust gas from an internal combustion engine is brought into contact with the exhaust gas purification catalyst of the present invention to oxidize and remove particulate matter (PM).

このよう本発明の排ガス浄化方法において、前記排ガス浄化用触媒に排ガスを接触させる方法としては、特に制限されず、公知の方法を適宜採用することができ、例えば、内燃機関から排出されるガスが流通する排ガス管内に上記本発明にかかる排ガス浄化用触媒を配置することにより、排ガス浄化用触媒に対して内燃機関からの排ガスを接触させる方法を採用してもよい。   As described above, in the exhaust gas purification method of the present invention, the method for bringing the exhaust gas into contact with the exhaust gas purification catalyst is not particularly limited, and a known method can be adopted as appropriate. For example, the gas discharged from the internal combustion engine A method of bringing the exhaust gas from the internal combustion engine into contact with the exhaust gas purification catalyst by disposing the exhaust gas purification catalyst according to the present invention in a circulating exhaust gas pipe may be adopted.

なお、本発明の排ガス浄化方法において用いる前記本発明の排ガス浄化用触媒は、硫黄を含むガスに曝されても高いPM酸化活性を保持することができるものであるため、硫黄を含むガスに曝されても十分に高いPM酸化活性を発揮することが可能であり、このような前記本発明の排ガス浄化用触媒に、例えば、ディーゼルエンジン等の内燃機関からの排ガスを接触させることで、十分に排ガス中の粒子状物質(PM)を酸化除去し排ガスを浄化することが可能となり、更に、硫黄を含むガスに曝されても十分に排ガス中の粒子状物質(PM)を酸化除去し排ガスを浄化することが可能となる。このような観点から、本発明の排ガス浄化方法は、例えば、ディーゼルエンジン等の内燃機関から排出されるような排ガス中の粒子状物質(PM)を浄化するための方法等として好適に採用することができる。   Note that the exhaust gas purifying catalyst of the present invention used in the exhaust gas purifying method of the present invention can maintain high PM oxidation activity even when exposed to a gas containing sulfur. However, it is possible to exhibit sufficiently high PM oxidation activity. By contacting exhaust gas from an internal combustion engine such as a diesel engine with the exhaust gas purifying catalyst of the present invention, Particulate matter (PM) in the exhaust gas can be oxidized and removed to purify the exhaust gas. Furthermore, the particulate matter (PM) in the exhaust gas can be oxidized and removed sufficiently even when exposed to sulfur-containing gas. It becomes possible to purify. From such a viewpoint, the exhaust gas purification method of the present invention is preferably employed as a method for purifying particulate matter (PM) in exhaust gas discharged from an internal combustion engine such as a diesel engine, for example. Can do.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example .

(実施例1)
先ず、オルトリン酸ナトリウム(Alfa Aesar社製)0.61gをイオン交換水(200g)に溶解させてリン酸塩水溶液を調製した。続いて、硝酸銀(和光純薬工業製)1.57gをイオン交換水(100g)に溶解させて硝酸銀水溶液を調製した。
Example 1
First, an aqueous phosphate solution was prepared by dissolving 0.61 g of sodium orthophosphate (Alfa Aesar) in ion-exchanged water (200 g). Subsequently, 1.57 g of silver nitrate (manufactured by Wako Pure Chemical Industries) was dissolved in ion-exchanged water (100 g) to prepare a silver nitrate aqueous solution.

次に、前記得られたリン酸塩水溶液を、担体としてのアルミナ粉末(日揮ユニバーサル株式会社製、γ−Al粉末、TN4、比表面積150m/g)8.7gに含浸させ、更に、これを撹拌しながら前記得られた硝酸銀水溶液を添加して沈殿を形成せしめた。次いで、得られた沈殿(沈殿物)をろ過し、110℃で一晩乾燥させた後、500℃で3時間焼成して、前記アルミナ担体にリン酸銀(AgPO)を担持して触媒粉末を得た。次いで、この粉末を乳鉢にて混合し、定法(冷間等方圧プレス法(CIP))によって粒子径0.3〜0.5mmのペレット形状に成形して、ペレット形状の触媒(AgPO/Al)とした。なお、触媒中の銀(Ag)に対するリン(P)の原子比率(P/Ag)は、仕込み量から0.33であった。また、銀含有物質の担持量は、触媒総量に対して金属銀(Ag)換算で10質量%であった。 Next, 8.7 g of alumina powder (JGC Universal Co., Ltd., γ-Al 2 O 3 powder, TN4, specific surface area 150 m 2 / g) as a carrier is impregnated with the obtained phosphate aqueous solution, While stirring this, the obtained silver nitrate aqueous solution was added to form a precipitate. Next, the obtained precipitate (precipitate) is filtered, dried at 110 ° C. overnight, and then calcined at 500 ° C. for 3 hours to carry silver phosphate (Ag 3 PO 4 ) on the alumina carrier. A catalyst powder was obtained. Next, this powder was mixed in a mortar and formed into a pellet shape having a particle diameter of 0.3 to 0.5 mm by a conventional method (cold isostatic pressing (CIP)), and a pellet-shaped catalyst (Ag 3 PO 4 / Al 2 O 3 ). The atomic ratio (P / Ag) of phosphorus (P) to silver (Ag) in the catalyst was 0.33 from the charged amount. Further, the supported amount of the silver-containing material was 10% by mass in terms of metallic silver (Ag) with respect to the total amount of the catalyst.

(実施例2)
リン酸塩源としてオルトリン酸ナトリウムの代わりにピロリン酸ナトリウム(Alfa Aesar社製)0.63gを用い、アルミナ粉末の添加量を8.6gとした以外は、実施例1と同様にしてペレット形状の触媒(Ag/Al)を得た。なお、触媒中の銀(Ag)に対するリン(P)の原子比率(P/Ag)は仕込み量から0.5であった。また、銀含有物質の担持量は、触媒総量に対して金属銀(Ag)換算で10質量%であった。
(Example 2)
In the same manner as in Example 1, except that 0.63 g of sodium pyrophosphate (Alfa Aesar) was used instead of sodium orthophosphate as the phosphate source, and the amount of alumina powder added was 8.6 g. A catalyst (Ag 4 P 2 O 7 / Al 2 O 3 ) was obtained. The atomic ratio (P / Ag) of phosphorus (P) to silver (Ag) in the catalyst was 0.5 from the charged amount. Further, the supported amount of the silver-containing material was 10% by mass in terms of metallic silver (Ag) with respect to the total amount of the catalyst.

(実施例3)
リン酸塩源としてオルトリン酸ナトリウムの代わりにメタリン酸ナトリウム(和光純薬工業製)1.11gを用い、アルミナ粉末の添加量を8.3gとした以外は、実施例1と同様にしてペレット形状の触媒(AgPO/Al)を得た。なお、触媒中の銀(Ag)に対するリン(P)の原子比率(P/Ag)は仕込み量から1.0であった。また、銀含有物質の担持量は、触媒総量に対して金属銀(Ag)換算で10質量%であった。
Example 3
Pellet shape in the same manner as in Example 1 except that 1.11 g of sodium metaphosphate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of sodium orthophosphate as the phosphate source, and the amount of alumina powder added was 8.3 g. Catalyst (AgPO 3 / Al 2 O 3 ) was obtained. The atomic ratio (P / Ag) of phosphorus (P) to silver (Ag) in the catalyst was 1.0 from the charged amount. Further, the supported amount of the silver-containing material was 10% by mass in terms of metallic silver (Ag) with respect to the total amount of the catalyst.

(実施例4)
先ず、硝酸銀(和光純薬工業製)6.28gをイオン交換水(250g)に溶解させて硝酸銀水溶液を調製した。
Example 4
First, 6.28 g of silver nitrate (manufactured by Wako Pure Chemical Industries) was dissolved in ion-exchanged water (250 g) to prepare a silver nitrate aqueous solution.

次に、得られた硝酸銀水溶液を、担体としてのアルミナ粉末(日揮ユニバーサル株式会社製、γ−Al粉末、TN4、比表面積150m/g)36.0gに含浸させて蒸発乾固し、110℃で一晩乾燥させた後、500℃で3時間焼成し、前記アルミナ担体に銀を担持した粉末を得た。 Next, the obtained silver nitrate aqueous solution is impregnated in 36.0 g of alumina powder (manufactured by JGC Universal Co., Ltd., γ-Al 2 O 3 powder, TN4, specific surface area 150 m 2 / g) as a carrier and evaporated to dryness. And dried at 110 ° C. overnight and then calcined at 500 ° C. for 3 hours to obtain a powder carrying silver on the alumina carrier.

次いで、85%リン酸(Alfa Aesar社製)1.07gをイオン交換水(200g)に溶解させてリン酸水溶液を調製し、これを前記得られた粉末10.0gに含浸させて蒸発乾固し、110℃で一晩乾燥させた後、500℃で3時間焼成し、前記アルミナ担体に銀及びリン酸を担持して触媒粉末を得た。次いで、この粉末を乳鉢にて混合し、定法(冷間等方圧プレス法(CIP))によって粒子径0.3〜0.5mmのペレット形状に成形して、ペレット形状の触媒(Ag+HPO/Al)とした。なお、触媒中の銀(Ag)に対するリン(P)の原子比率(P/Ag)は仕込み量から1.0であった。また、銀含有物質の担持量は、触媒総量に対して金属銀(Ag)換算で9.4質量%であった。 Next, 1.07 g of 85% phosphoric acid (manufactured by Alfa Aesar) was dissolved in ion-exchanged water (200 g) to prepare a phosphoric acid aqueous solution, which was impregnated with 10.0 g of the obtained powder and evaporated to dryness. Then, after drying at 110 ° C. overnight, firing was performed at 500 ° C. for 3 hours, and silver and phosphoric acid were supported on the alumina support to obtain catalyst powder. Next, this powder is mixed in a mortar and formed into a pellet shape with a particle diameter of 0.3 to 0.5 mm by a conventional method (cold isostatic pressing (CIP)), and a pellet-shaped catalyst (Ag + H 3 PO 4 / Al 2 O 3 ). The atomic ratio (P / Ag) of phosphorus (P) to silver (Ag) in the catalyst was 1.0 from the charged amount. Further, the supported amount of the silver-containing material was 9.4% by mass in terms of metallic silver (Ag) with respect to the total amount of the catalyst.

(実施例5)
触媒中の銀(Ag)に対するリン(P)の原子比率(P/Ag)が2.0となるようにリン酸の添加量を変更した以外は、実施例4と同様にしてペレット形状の触媒(Ag+HPO/Al)を得た。なお、触媒中の銀(Ag)に対するリン(P)の原子比率(P/Ag)は仕込み量から2.0であった。また、銀含有物質の担持量は、触媒総量に対して金属銀(Ag)換算で8.8質量%であった。
(Example 5)
A pellet-shaped catalyst in the same manner as in Example 4 except that the addition amount of phosphoric acid was changed so that the atomic ratio (P / Ag) of phosphorus (P) to silver (Ag) in the catalyst was 2.0. (Ag + H 3 PO 4 / Al 2 O 3 ) was obtained. The atomic ratio (P / Ag) of phosphorus (P) to silver (Ag) in the catalyst was 2.0 from the charged amount. Further, the supported amount of the silver-containing material was 8.8% by mass in terms of metallic silver (Ag) with respect to the total amount of the catalyst.

(実施例6)
先ず、85%リン酸(Alfa Aesar社製)5.36gをイオン交換水(200g)に溶解させてリン酸水溶液を調製した。
(Example 6)
First, 5.36 g of 85% phosphoric acid (manufactured by Alfa Aesar) was dissolved in ion exchange water (200 g) to prepare a phosphoric acid aqueous solution.

次に、得られたリン酸水溶液を、担体としてのアルミナ粉末(日揮ユニバーサル株式会社製、γ−Al粉末、TN4、比表面積150m/g)9.04gに含浸させて蒸発乾固し、110℃で一晩乾燥させた後、500℃で3時間焼成し、前記アルミナ担体にリン酸を担持した粉末を得た。 Next, 9.04 g of the obtained phosphoric acid aqueous solution was impregnated into alumina powder (JGC Universal Co., Ltd., γ-Al 2 O 3 powder, TN4, specific surface area 150 m 2 / g) as a carrier, and evaporated to dryness. And dried at 110 ° C. overnight and then calcined at 500 ° C. for 3 hours to obtain a powder having phosphoric acid supported on the alumina carrier.

次いで、硝酸銀(和光純薬工業製)1.48gをイオン交換水(250g)に溶解させて硝酸銀水溶液を調製し、これを前記得られた粉末11.56gに含浸させて蒸発乾固し、110℃で一晩乾燥させた後、500℃で3時間焼成し、前記アルミナ担体に銀及びリン酸を担持して触媒粉末を得た。次いで、この粉末を乳鉢にて混合し、定法(冷間等方圧プレス法(CIP))によって粒子径0.3〜0.5mmのペレット形状に成形して、ペレット形状の触媒(Ag/(HPO+Al)、又は、Ag/HPO/Al)とした。なお、触媒中の銀(Ag)に対するリン(P)の原子比率(P/Ag)は仕込み量から5.0であった。また、銀含有物質の担持量は、触媒総量に対して金属銀(Ag)換算で7.5質量%であった。 Next, 1.48 g of silver nitrate (manufactured by Wako Pure Chemical Industries) is dissolved in ion-exchanged water (250 g) to prepare an aqueous silver nitrate solution, which is impregnated with 11.56 g of the obtained powder and evaporated to dryness. After drying overnight at 50 ° C., it was calcined at 500 ° C. for 3 hours, and silver and phosphoric acid were supported on the alumina carrier to obtain a catalyst powder. Next, this powder was mixed in a mortar and formed into a pellet shape having a particle diameter of 0.3 to 0.5 mm by a conventional method (cold isostatic pressing (CIP)), and a pellet-shaped catalyst (Ag / ( H 3 PO 4 + Al 2 O 3 ) or Ag / H 3 PO 4 / Al 2 O 3 ). The atomic ratio (P / Ag) of phosphorus (P) to silver (Ag) in the catalyst was 5.0 from the amount charged. Further, the supported amount of the silver-containing material was 7.5% by mass in terms of metallic silver (Ag) with respect to the total amount of the catalyst.

(比較例1)
硝酸銀(和光純薬工業製)6.28gをイオン交換水(250g)に溶解させて硝酸銀水溶液を調製した。次に、得られた硝酸銀水溶液を、アルミナ粉末(日揮ユニバーサル製、γ−Al粉末、TN4、比表面積150m/g)36.00gに含浸させて蒸発乾固し、110℃で一晩乾燥させた後、500℃で3時間焼成して、前記アルミナ粉末に銀(Ag)を担持して比較用触媒粉末を得た。次いで、この粉末を乳鉢にて混合し、定法(冷間等方圧プレス法(CIP))によって粒子径0.3〜0.5mmのペレット形状に成形して、ペレット形状の比較用触媒(Ag/Al)とした。なお、触媒中の銀(Ag)に対するリン(P)の原子比率(P/Ag)は仕込み量から0.0であった。また、銀含有物質の担持量は、触媒総量に対して金属銀(Ag)換算で10.0質量%であった。
(Comparative Example 1)
A silver nitrate aqueous solution was prepared by dissolving 6.28 g of silver nitrate (manufactured by Wako Pure Chemical Industries) in ion-exchanged water (250 g). Next, the obtained silver nitrate aqueous solution was impregnated in 36.00 g of alumina powder (manufactured by JGC Universal, γ-Al 2 O 3 powder, TN4, specific surface area 150 m 2 / g) and evaporated to dryness. After drying overnight, it was calcined at 500 ° C. for 3 hours, and silver (Ag) was supported on the alumina powder to obtain a comparative catalyst powder. Next, this powder was mixed in a mortar and formed into a pellet shape having a particle diameter of 0.3 to 0.5 mm by a conventional method (cold isostatic pressing (CIP)), and a pellet-shaped comparative catalyst (Ag / Al 2 O 3 ). The atomic ratio (P / Ag) of phosphorus (P) to silver (Ag) in the catalyst was 0.0 from the charged amount. In addition, the supported amount of the silver-containing material was 10.0% by mass in terms of metallic silver (Ag) with respect to the total amount of the catalyst.

(比較例2)
担体としてのアルミナ粉末(γ−Al粉末)の代わりにリン酸カルシウム(Ca(PO)粉末(和光純薬工業製、比表面積10m/g)8.7gを用いた以外は、実施例1と同様にしてペレット形状の比較用触媒(AgPO/Ca(PO)を得た。なお、触媒中の銀(Ag)に対するリン(P)の原子比率(P/Ag)は仕込み量から6.5であった。また、銀含有物質の担持量は、触媒総量に対して金属銀(Ag)換算で10.0質量%であった。
(Comparative Example 2)
Except for using 8.7 g of calcium phosphate (Ca 3 (PO 4 ) 2 ) powder (made by Wako Pure Chemical Industries, specific surface area 10 m 2 / g) instead of alumina powder (γ-Al 2 O 3 powder) as a carrier. In the same manner as in Example 1, a pellet-shaped comparative catalyst (Ag 3 PO 4 / Ca 3 (PO 4 ) 2 ) was obtained. The atomic ratio (P / Ag) of phosphorus (P) to silver (Ag) in the catalyst was 6.5 based on the amount charged. In addition, the supported amount of the silver-containing material was 10.0% by mass in terms of metallic silver (Ag) with respect to the total amount of the catalyst.

(比較例3)
硝酸銀(和光純薬工業製)1.57gをイオン交換水(250g)に溶解させて硝酸銀水溶液を調製した。次に、得られた硝酸銀水溶液を、リン酸アルミニウム粉末(Alfa Aesar社製、AlPO粉末、比表面積2.3m/g)9.00gに含浸させて蒸発乾固し、110℃で一晩乾燥させた後、500℃で3時間焼成して、前記リン酸アルミニウム粉末に銀(Ag)を担持して比較用触媒粉末を得た。次いで、この粉末を乳鉢にて混合し、定法(冷間等方圧プレス法(CIP))によって粒子径0.3〜0.5mmのペレット形状に成形して、ペレット形状の比較用触媒(Ag/AlPO )とした。なお、触媒中の銀(Ag)に対するリン(P)の原子比率(P/Ag)は仕込み量から8.0であった。また、銀含有物質の担持量は、触媒総量に対して金属銀(Ag)換算で10.0質量%であった。
(Comparative Example 3)
A silver nitrate aqueous solution was prepared by dissolving 1.57 g of silver nitrate (manufactured by Wako Pure Chemical Industries) in ion-exchanged water (250 g). Next, the obtained silver nitrate aqueous solution was impregnated in 9.00 g of aluminum phosphate powder (Alfa Aesar, AlPO 4 powder, specific surface area 2.3 m 2 / g), evaporated to dryness, and then at 110 ° C. overnight. After drying, firing was performed at 500 ° C. for 3 hours, and silver (Ag) was supported on the aluminum phosphate powder to obtain a comparative catalyst powder. Next, this powder was mixed in a mortar and formed into a pellet shape having a particle diameter of 0.3 to 0.5 mm by a conventional method (cold isostatic pressing (CIP)), and a pellet-shaped comparative catalyst (Ag / AlPO 4 ). The atomic ratio (P / Ag) of phosphorus (P) to silver (Ag) in the catalyst was 8.0 from the amount charged. In addition, the supported amount of the silver-containing material was 10.0% by mass in terms of metallic silver (Ag) with respect to the total amount of the catalyst.

[実施例1〜6及び比較例1〜3で得られた触媒の特性の評価]
<ICP発光分析>
前記実施例1〜6及び比較例1〜3で得られた触媒中の銀(Ag)に対するリン(P)の原子比率(P/Ag)及び触媒中のアルミニウム(Al)に対するリン(P)の原子比率(P/Al)の測定を、ICP(Inductively Coupled Plasma)発光分析により行った。
[Evaluation of characteristics of catalysts obtained in Examples 1 to 6 and Comparative Examples 1 to 3]
<ICP emission analysis>
The atomic ratio (P / Ag) of phosphorus (P) to silver (Ag) in the catalysts obtained in Examples 1 to 6 and Comparative Examples 1 to 3 and phosphorus (P) to aluminum (Al) in the catalyst The atomic ratio (P / Al ) was measured by ICP (Inductively Coupled Plasma) emission analysis.

すなわち、先ず、得られた前記各触媒粉末に対して、誘導結合プラズマ(ICP)発光装置(リガク社製、CIROS 120EOP)を用いてICP発光分析を実施し、触媒粉末上に存在する銀原子(Ag)及びリン原子(P)の含有質量を定量し、銀(Ag)に対するリン(P)の原子比率(P/Ag)を算出することにより求めた。また、触媒粉末上に存在するアルミニウム原子(Al)及びリン原子(P)の含有質量を定量し、アルミニウム(Al)に対するリン(P)の原子比率(P/Al)を算出することにより求めた。得られた結果を表1に示す。   That is, first, an ICP emission analysis was performed on each of the obtained catalyst powders using an inductively coupled plasma (ICP) light-emitting device (CIROS 120EOP, manufactured by Rigaku Corporation), and silver atoms ( The mass content of Ag (Ag) and phosphorus atom (P) was quantified, and the atomic ratio (P / Ag) of phosphorus (P) to silver (Ag) was calculated. Moreover, the content mass of the aluminum atom (Al) and phosphorus atom (P) which exist on a catalyst powder was quantified, and it calculated | required by calculating the atomic ratio (P / Al) of phosphorus (P) with respect to aluminum (Al). . The obtained results are shown in Table 1.

表1に示した実施例1〜6及び比較例1〜3の結果から明らかなように、いずれの触媒でも概ね仕込みどおりのP/Ag原子比率の触媒が作製されていることが確認された。   As is clear from the results of Examples 1 to 6 and Comparative Examples 1 to 3 shown in Table 1, it was confirmed that any catalyst was prepared with a P / Ag atomic ratio almost as prepared.

<PM酸化活性評価試験>
上記初期状態の実施例1〜6及び比較例1〜3で得られた触媒をそれぞれ用いて、以下のようにしてPM酸化活性を測定した。なお、ここにいう「初期状態」とは触媒の製造後において後述する耐熱試験や硫黄被毒試験等のいずれも施していない状態をいう。
<PM oxidation activity evaluation test>
Using the catalysts obtained in Examples 1 to 6 and Comparative Examples 1 to 3 in the initial state, PM oxidation activity was measured as follows. Here, the “initial state” refers to a state in which neither a heat test or a sulfur poisoning test, which will be described later, has been performed after the production of the catalyst.

(硫黄被毒処理)
すなわち、先ず、固定床流通式反応装置を用い、内径15mmの石英反応管に実施例1〜6及び比較例1〜3で得られた初期状態のペレット状の触媒試料1.1gを充填し、更に供給するSOを十分に酸化するために前記触媒試料の前段に十分にS被毒されたPt/Al(0.5g)を配置した。次いで、O(10%)+CO(10%)+HO(10%)/N(残部)からなる混合ガスを流通させ、400℃まで昇温した。次に、前記装置内に、SO(66ppm)、O(10%)、CO(10%)、HO(10%)及びN(残部)からなる混合ガス(入りガス)を、400℃(入りガス温度)、55.5分、ガス流量7L/分の条件で供給した(硫黄被毒処理)。なお、このような硫黄被毒処理において供給された硫黄成分の全供給量は1.0g/30g−catである。
(Sulfur poisoning treatment)
That is, first, using a fixed bed flow reactor, a quartz reaction tube having an inner diameter of 15 mm was charged with 1.1 g of the pellet-shaped catalyst sample in the initial state obtained in Examples 1 to 6 and Comparative Examples 1 to 3, and Further, Pt / Al 2 O 3 (0.5 g) sufficiently poisoned with S was placed in front of the catalyst sample in order to sufficiently oxidize the supplied SO 2 . Then, O 2 (10%) + CO 2 (10%) + H 2 O (10%) / N 2 was passed through a mixed gas consisting of (balance), it was heated to 400 ° C.. Next, a mixed gas (filled gas) composed of SO 2 (66 ppm), O 2 (10%), CO 2 (10%), H 2 O (10%) and N 2 (remainder) is put into the apparatus. , 400 ° C. (entering gas temperature), 55.5 minutes, and gas flow rate of 7 L / min (sulfur poisoning treatment). In addition, the total supply amount of the sulfur component supplied in such a sulfur poisoning process is 1.0 g / 30 g-cat.

(PM混合処理I)
次に、試験研究用回転架台を用い、内径20mmの円筒形のサンプル管に硫黄被毒処理後の触媒試料及び模擬パティキュレート(模擬PM)としてカーボン粉末(東海カーボン(株)製、品名「シースト9(SAF)」、平均粒径19nm)を充填し、試験研究用回転架台で1時間回転することにより混合し、触媒試料を作製した。なお、このようなPM混合処理による前記触媒への模擬PMの混合量は、触媒と模擬PMの重量比で49:1となる量であった。
(PM mixing process I)
Next, using a rotating frame for testing and research, a catalyst sample after sulfur poisoning treatment and a simulated particulate (simulated PM) on a cylindrical sample tube with an inner diameter of 20 mm are used as carbon powder (made by Tokai Carbon Co., Ltd. 9 (SAF) ", average particle size 19 nm), and mixed by rotating for 1 hour on a rotating frame for test research to prepare a catalyst sample. It should be noted that the amount of the simulated PM mixed with the catalyst by such a PM mixing process was an amount of 49: 1 by weight ratio of the catalyst to the simulated PM.

(硫黄被毒再生処理)
次いで、硫黄被毒処理−PM混合処理I後の前記触媒試料に対して、O(10%)+HO(10%)/N(残部)からなる混合ガス(入りガス)を、触媒への入りガス温度を20℃/分の昇温速度で120℃から720℃まで昇温しながら、ガス流量10L/分の条件で供給し、硫黄被毒再生処理を行った。
(Sulfur poisoning regeneration treatment)
Next, a mixed gas (filled gas) composed of O 2 (10%) + H 2 O (10%) / N 2 (remainder) is applied to the catalyst sample after the sulfur poisoning treatment-PM mixing treatment I. While the temperature of the gas entering was increased from 120 ° C. to 720 ° C. at a rate of temperature increase of 20 ° C./min, the gas was supplied at a gas flow rate of 10 L / min to perform sulfur poisoning regeneration treatment.

(PM混合処理II)
次に、硫黄被毒再生処理後の触媒試料とカーボン粉末(模擬PM)とを、前記PM混合処理Iと同様にして混合し、評価用試料を作製した。なお、このようなPM混合処理による前記触媒への模擬PMの混合量は、触媒と模擬PMの重量比で49:1となる量であった。
(PM mixing treatment II)
Next, the catalyst sample after the sulfur poisoning regeneration treatment and the carbon powder (simulated PM) were mixed in the same manner as in the PM mixing treatment I to prepare an evaluation sample. It should be noted that the amount of the simulated PM mixed with the catalyst by such a PM mixing process was an amount of 49: 1 by weight ratio of the catalyst to the simulated PM.

(硫黄被毒再生処理後の触媒のPM酸化活性の測定:PM浄化処理)
次いで、実施例1〜3及び比較例1〜2のPM混合処理II後の前記評価用試料に対してO(10%)+HO(10%)/N(残部)からなる混合ガス(入りガス)を、触媒への入りガス温度を20℃/分の昇温速度で120℃から720℃まで昇温しながら、ガス流量10L/分の条件で供給した。そして、前記混合ガスの供給開始から供給終了までの間に、前記装置から排出される出ガス中に含まれるCOの濃度を測定した。そして、このような出ガス中のCOの濃度と、入りガスの温度とに基づいて、各評価用試料に付着したカーボンの50%が酸化されるのに必要な混合ガスの温度(PM50%酸化温度)を算出し、硫黄被毒再生処理後の触媒のPM酸化活性の指標とした。
(Measurement of PM oxidation activity of catalyst after sulfur poisoning regeneration treatment: PM purification treatment)
Next, a mixed gas composed of O 2 (10%) + H 2 O (10%) / N 2 (remainder) with respect to the sample for evaluation after the PM mixing treatment II of Examples 1 to 3 and Comparative Examples 1 to 2 (Enter gas) was supplied under the condition of a gas flow rate of 10 L / min while increasing the temperature of the gas entering the catalyst from 120 ° C. to 720 ° C. at a rate of temperature increase of 20 ° C./min. Then, until the end of the supply from the start of the supply of the mixed gas to determine the concentration of CO 2 contained in the output gas discharged from the device. Then, based on the concentration of CO 2 in the output gas and the temperature of the input gas, the temperature of the mixed gas necessary for oxidizing 50% of the carbon adhering to each evaluation sample (PM 50%) The oxidation temperature was calculated and used as an index of the PM oxidation activity of the catalyst after the sulfur poisoning regeneration treatment.

得られた結果を表2に示す。なお、PM50%酸化温度が低いほど、硫黄被毒再生処理後の触媒のPM酸化活性が高いと言える。また、硫黄被毒再生処理後の触媒のPM酸化活性として、実施例1〜3及び比較例1〜2で得られた硫黄被毒再生処理後における排ガス浄化用触媒の50%PM酸化温度を示すグラフを図1に示す。   The obtained results are shown in Table 2. In addition, it can be said that the PM oxidation activity of the catalyst after the sulfur poisoning regeneration treatment is higher as the PM 50% oxidation temperature is lower. Further, as the PM oxidation activity of the catalyst after the sulfur poisoning regeneration treatment, the 50% PM oxidation temperature of the exhaust gas purification catalyst after the sulfur poisoning regeneration treatment obtained in Examples 1-3 and Comparative Examples 1-2 is shown. The graph is shown in FIG.

更に、実施例4〜6及び比較例3で得られた触媒の硫黄被毒再生処理後におけるPM浄化処理(PM酸化活性)評価のために、硫黄被毒処理において実施例4〜6及び比較例3の触媒試料の銀量が実施例1の触媒試料の銀量と同じになるように調製した触媒試料を用い、PM浄化処理におけるガス流量を7L/分とした以外は前記実施例1と同様にして、硫黄被毒処理、PM混合処理I、硫黄被毒再生処理、PM混合処理II及びPM浄化処理を行い、前記と同様にして硫黄被毒再生処理後における排ガス浄化用触媒のCOの濃度を測定し、PM50%酸化温度を算出し、PM酸化活性の指標とした。なお、実施例4〜6との比較のために、比較例1の評価用試料について、PM浄化処理におけるガス流量を7L/分とした以外は前記と同様にしてCOの濃度を測定し、PM50%酸化温度を算出し、PM酸化活性の指標とした。 Furthermore, in order to evaluate the PM purification treatment (PM oxidation activity) after the sulfur poisoning regeneration treatment of the catalysts obtained in Examples 4 to 6 and Comparative Example 3, Examples 4 to 6 and Comparative Examples were conducted in the sulfur poisoning treatment. 3 except that the catalyst sample prepared in such a manner that the silver amount of the catalyst sample of No. 3 is the same as the silver amount of the catalyst sample of Example 1 and the gas flow rate in the PM purification treatment was 7 L / min. The sulfur poisoning process, the PM mixing process I, the sulfur poisoning regeneration process, the PM mixing process II and the PM purification process are performed, and the exhaust gas purification catalyst CO 2 after the sulfur poisoning regeneration process is processed in the same manner as described above. The concentration was measured, the PM 50% oxidation temperature was calculated, and used as an index of PM oxidation activity. For comparison with Examples 4 to 6, the concentration of CO 2 was measured in the same manner as described above except that the gas flow rate in the PM purification treatment was set to 7 L / min for the evaluation sample of Comparative Example 1. The PM 50% oxidation temperature was calculated and used as an index of PM oxidation activity.

得られた結果を表3に示す。また、硫黄被毒再生処理後の触媒のPM酸化活性として、実施例4〜6、比較例1及び3で得られた硫黄被毒再生処理後における排ガス浄化用触媒の50%PM酸化温度を示すグラフを図2に示す。   The obtained results are shown in Table 3. Further, as the PM oxidation activity of the catalyst after the sulfur poisoning regeneration treatment, the 50% PM oxidation temperature of the exhaust gas purification catalyst after the sulfur poisoning regeneration treatment obtained in Examples 4 to 6 and Comparative Examples 1 and 3 is shown. A graph is shown in FIG.

<評価結果>
表2及び表3、図1及び2に記載した結果からも明らかなように、本発明の実施例1〜6の排ガス浄化用触媒は、硫黄を含むガスに曝されても十分に高いPM酸化活性を発揮することが可能な排ガス浄化用触媒であることが確認された。
<Evaluation results>
As is apparent from the results described in Tables 2 and 3 and FIGS. 1 and 2, the exhaust gas purifying catalysts of Examples 1 to 6 of the present invention are sufficiently high in PM oxidation even when exposed to a gas containing sulfur. It was confirmed that it is an exhaust gas purifying catalyst capable of exhibiting activity.

なお、図1に記載した結果からも明らかなように、本発明の実施例1〜3のリン酸銀化合物をアルミナに担持した排ガス浄化用触媒は、銀をアルミナに担持した比較例1に比較してPM酸化活性が高く、硫黄被毒に対する耐性が高いことが確認された。また、図2に記載した結果からも明らかなように、本発明の実施例4〜6の銀及びリン酸を添加し共存させてアルミナに担持した排ガス浄化用触媒においても、比較例1に比較してPM酸化活性が高く、リン酸銀化合物を担持した場合と同様に硫黄被毒に対する耐性が高いことが確認された。なお、実施例6の排ガス浄化用触媒は、実施例4〜5よりも更にPM酸化活性が高く、硫黄被毒に対する耐性が更に高いことが確認された。これは、実施例6ではリン酸アルミニウムの結晶が見られたことから実施例6の排ガス浄化用触媒のリン酸含有物質がリン酸アルミニウムの結晶相を含有しており、担体に吸着する硫黄成分を抑制し、被毒緩和したためと考えられる。これに対して、比較例3のリン酸アルミニウム担体に銀を担持した比較用触媒は、PM酸化活性がかなり低いことが確認された。比較例3の比較用触媒は、担体であるリン酸アルミニウム上での銀の分散性が低いため活性が低かったものと考えらえれる。   As is clear from the results shown in FIG. 1, the exhaust gas purifying catalyst in which the silver phosphate compounds of Examples 1 to 3 of the present invention are supported on alumina is compared with Comparative Example 1 in which silver is supported on alumina. Thus, it was confirmed that PM oxidation activity was high and resistance to sulfur poisoning was high. As is clear from the results shown in FIG. 2, the exhaust gas purifying catalyst in which silver and phosphoric acid of Examples 4 to 6 of the present invention were added and coexisted on alumina was also compared with Comparative Example 1. Thus, it was confirmed that the PM oxidation activity is high and the resistance to sulfur poisoning is high as in the case of carrying a silver phosphate compound. In addition, it was confirmed that the exhaust gas purifying catalyst of Example 6 has higher PM oxidation activity than Examples 4 to 5, and further resistance to sulfur poisoning. This is because, in Example 6, crystals of aluminum phosphate were observed, so the phosphoric acid-containing material of the exhaust gas purifying catalyst of Example 6 contained a crystalline phase of aluminum phosphate, and the sulfur component adsorbed on the carrier This is thought to be due to the suppression of poisoning and the reduction of poisoning. On the other hand, it was confirmed that the comparative catalyst in which silver was supported on the aluminum phosphate support of Comparative Example 3 had considerably low PM oxidation activity. It can be considered that the comparative catalyst of Comparative Example 3 had a low activity due to the low dispersibility of silver on the aluminum phosphate as the carrier.

<X線回折(XRD)測定>
実施例1、5、6及び比較例1で得られた各触媒を測定試料として、粉末X線回折装置(リガク社製、商品名「試料水平型X線回折装置UltimaIV」)を用いて、X線源:CuKα線(λ=0.15406nm)、スキャンステップ:0.02°、保持時間:0.12秒、加速電圧:40kV、加速電流:40mAの条件で粉末X線回折(XRD)測定を行なった。図3に、実施例1、5、6及び比較例1で得られた排ガス浄化用触媒のXRDスペクトルを示す。
<X-ray diffraction (XRD) measurement>
Using each catalyst obtained in Examples 1, 5, 6 and Comparative Example 1 as a measurement sample, a powder X-ray diffractometer (manufactured by Rigaku Corporation, trade name “sample horizontal X-ray diffractometer Ultima IV”) is used. Powder X-ray diffraction (XRD) measurement under the conditions of radiation source: CuKα ray (λ = 0.15406 nm), scan step: 0.02 °, holding time: 0.12 seconds, acceleration voltage: 40 kV, acceleration current: 40 mA I did it. FIG. 3 shows XRD spectra of the exhaust gas purifying catalysts obtained in Examples 1, 5, 6 and Comparative Example 1.

図3に記載した結果(XRDスペクトル)から明らかなように、実施例6の排ガス浄化用触媒では、リン酸銀(AgPO)のピークに加えてリン酸アルミニウム(AlPO)のピークが観察され、添加されたリン酸が担体のアルミナとも反応していることが確認された。また、実施例1及び5の排ガス浄化用触媒では、AgPOのピークが見られ、銀(Ag)由来のシグナルは観測されなかった。これより、実施例1及び5では、担持された銀(Ag)は、添加したリン酸及びリン酸塩によってAgPOになったものと考えられる。 As is clear from the results shown in FIG. 3 (XRD spectrum), in the exhaust gas purification catalyst of Example 6, the peak of aluminum phosphate (AlPO 4 ) was added in addition to the peak of silver phosphate (Ag 3 PO 4 ). Observed and confirmed that the added phosphoric acid also reacted with the support alumina. In the exhaust gas purifying catalysts of Examples 1 and 5, Ag 3 PO 4 peak was observed, and no signal derived from silver (Ag) was observed. Thus, in Examples 1 and 5, the supported silver (Ag) is considered to be Ag 3 PO 4 by the added phosphoric acid and phosphate.

以上の結果より、アルミナを主成分とする担体に銀含有物質及びリン酸含有物質を担持させた排ガス浄化用触媒とすることにより、硫黄を含むガスに曝されても十分に高いPM酸化活性を発揮することが確認された。また、本発明の触媒は硫黄被毒を受けた後も低温から高い酸化活性を保持することができ、PMを酸化する触媒として有用であることが確認された。   From the above results, by using an exhaust gas purifying catalyst in which a silver-containing substance and a phosphoric acid-containing substance are supported on a support mainly composed of alumina, a sufficiently high PM oxidation activity can be obtained even when exposed to sulfur-containing gas. It has been confirmed that it works. In addition, it was confirmed that the catalyst of the present invention can maintain high oxidation activity even at low temperatures even after being subjected to sulfur poisoning and is useful as a catalyst for oxidizing PM.

以上説明したように、本発明によれば、硫黄を含むガスに曝されても十分に高いPM酸化活性を発揮することが可能な排ガス浄化用触媒、それを用いた排ガス浄化フィルタ並びに排ガス浄化方法を提供することが可能となる。
したがって、本発明の排ガス浄化用触媒、それを用いた排ガス浄化フィルタ及び排ガス浄化方法は、ディーゼルエンジン等の内燃機関からの排ガス中に含まれる粒子状物質を浄化するためのPM酸化触媒、それを用いた排ガス浄化フィルタ又は排ガス浄化方法等として特に有用である。
As described above, according to the present invention, an exhaust gas purifying catalyst capable of exhibiting sufficiently high PM oxidation activity even when exposed to sulfur-containing gas, an exhaust gas purifying filter and an exhaust gas purifying method using the same. Can be provided.
Therefore, the exhaust gas purifying catalyst of the present invention, the exhaust gas purifying filter and the exhaust gas purifying method using the same, a PM oxidation catalyst for purifying particulate matter contained in exhaust gas from an internal combustion engine such as a diesel engine, It is particularly useful as the exhaust gas purification filter or exhaust gas purification method used.

Claims (7)

アルミナを主成分とする担体と、該担体に担持されている銀含有物質及びリン酸含有物質と、を備えることを特徴とするPM酸化触媒A PM oxidation catalyst comprising: a carrier mainly composed of alumina; and a silver-containing material and a phosphoric acid-containing material supported on the carrier. 前記銀含有物質と前記リン酸含有物質とを兼ねるものとしてリン酸銀が前記担体に担持されていることを特徴とする請求項1に記載のPM酸化触媒2. The PM oxidation catalyst according to claim 1, wherein silver phosphate is supported on the carrier as the silver-containing material and the phosphoric acid-containing material. 前記PM酸化触媒中の銀(Ag)に対するリン(P)の原子比率(P/Ag)が0.2〜6であることを特徴とする請求項1又は2に記載のPM酸化触媒 PM oxidation catalyst according to claim 1 or 2, wherein the PM atomic ratio of phosphorus (P) with respect to silver in the oxidation catalyst (Ag) (P / Ag) is characterized in that 0.2 to 6. 前記銀含有物質の担持量が、前記担体と前記銀含有物質及び前記リン酸含有物質との総量に対して金属銀換算で3〜50質量%であることを特徴とする請求項1〜3のうちのいずれか一項に記載のPM酸化触媒The amount of the silver-containing material supported is 3 to 50% by mass in terms of metallic silver with respect to the total amount of the carrier, the silver-containing material, and the phosphoric acid-containing material. PM oxidation catalyst as described in any one of them. 前記PM酸化触媒中のアルミニウム(Al)に対するリン(P)の原子比率(P/Al)が0.15〜0.5であり、かつ、前記リン酸含有物質がリン酸アルミニウムの結晶相を含有していることを特徴とする請求項1〜4のうちのいずれか一項に記載のPM酸化触媒The atomic ratio (P / Al) of phosphorus (P) to aluminum (Al) in the PM oxidation catalyst is 0.15 to 0.5, and the phosphoric acid-containing substance contains a crystalline phase of aluminum phosphate PM oxidation catalyst as described in any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜5のうちのいずれか一項に記載のPM酸化触媒を通気性基材に担持せしめてなることを特徴とする排ガス浄化フィルタ。 An exhaust gas purification filter comprising the PM oxidation catalyst according to any one of claims 1 to 5 supported on a breathable base material. 請求項1〜5のうちのいずれか一項に記載のPM酸化触媒に内燃機関からの排ガスを接触せしめて粒子状物質(PM)を酸化除去することを特徴とする排ガス浄化方法。 An exhaust gas purification method comprising oxidizing and removing particulate matter (PM) by bringing exhaust gas from an internal combustion engine into contact with the PM oxidation catalyst according to any one of claims 1 to 5.
JP2015028462A 2014-04-03 2015-02-17 PM oxidation catalyst, exhaust gas purification filter and exhaust gas purification method using the same Expired - Fee Related JP6061406B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015028462A JP6061406B2 (en) 2014-04-03 2015-02-17 PM oxidation catalyst, exhaust gas purification filter and exhaust gas purification method using the same
PCT/JP2015/058850 WO2015151920A1 (en) 2014-04-03 2015-03-24 Exhaust gas purifying catalyst, exhaust gas purifying filter using same and exhaust gas purification method
RU2016142710A RU2652113C1 (en) 2014-04-03 2015-03-24 Exhaust gas purification catalyst, as well as filter and method of purifying exhaust gases using it
DE112015001661.9T DE112015001661B4 (en) 2014-04-03 2015-03-24 Catalyst for purifying exhaust gas and using the same or a filter comprising same for purifying exhaust gas
BR112016022596A BR112016022596A2 (en) 2014-04-03 2015-03-24 CATALYST FOR PURIFICATION OF EXHAUST GAS, AND FILTER AND METHOD FOR PURIFICATION OF EXHAUST GAS USING THIS CATALYST

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014077105 2014-04-03
JP2014077105 2014-04-03
JP2015028462A JP6061406B2 (en) 2014-04-03 2015-02-17 PM oxidation catalyst, exhaust gas purification filter and exhaust gas purification method using the same

Publications (3)

Publication Number Publication Date
JP2015199061A JP2015199061A (en) 2015-11-12
JP2015199061A5 JP2015199061A5 (en) 2016-09-29
JP6061406B2 true JP6061406B2 (en) 2017-01-18

Family

ID=54240247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015028462A Expired - Fee Related JP6061406B2 (en) 2014-04-03 2015-02-17 PM oxidation catalyst, exhaust gas purification filter and exhaust gas purification method using the same

Country Status (5)

Country Link
JP (1) JP6061406B2 (en)
BR (1) BR112016022596A2 (en)
DE (1) DE112015001661B4 (en)
RU (1) RU2652113C1 (en)
WO (1) WO2015151920A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257367A (en) * 1995-03-27 1996-10-08 Riken Corp Nitrogen oxide removing material, production thereof and nitrogen oxide removing method
JPH08309194A (en) * 1995-05-17 1996-11-26 Sumitomo Metal Mining Co Ltd Catalyst for exhaust gas purification and exhaust gas purification method
JP3924341B2 (en) * 1997-01-24 2007-06-06 財団法人石油産業活性化センター Method for catalytic reduction of nitrogen oxides
JPH10337443A (en) * 1997-06-03 1998-12-22 Riken Corp Waste gas purification material and method for purifying waste gas
RU2414300C1 (en) * 2009-08-04 2011-03-20 Инфра Текнолоджиз Лтд. Exothermic process catalyst support and catalyst based on said support

Also Published As

Publication number Publication date
DE112015001661B4 (en) 2019-08-29
JP2015199061A (en) 2015-11-12
RU2652113C1 (en) 2018-04-25
BR112016022596A2 (en) 2017-08-15
WO2015151920A1 (en) 2015-10-08
DE112015001661T5 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
RU2698675C2 (en) Inorganic oxide material
US10350581B2 (en) Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification
JP5565569B2 (en) Exhaust gas purification catalyst
JP6875615B1 (en) Exhaust gas purification catalyst, exhaust gas purification method, and exhaust gas purification catalyst manufacturing method
JP5791439B2 (en) Exhaust gas purification catalyst and carrier
JP6187770B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
JP6061406B2 (en) PM oxidation catalyst, exhaust gas purification filter and exhaust gas purification method using the same
JP6401740B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5956496B2 (en) Exhaust gas purification catalyst, exhaust gas purification filter and exhaust gas purification method using the same
JP6194699B2 (en) Manufacturing method of particulate filter with catalyst
US9908106B2 (en) Carrier for exhaust gas purification catalyst and exhaust gas purification catalyst
WO2019172284A1 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP2017176900A (en) Catalyst for exhaust gas purification and method for producing the same, and exhaust gas purification filter and purification method
JP6096818B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
JP6770265B2 (en) Exhaust gas purification catalyst
WO2016190294A1 (en) Exhaust gas purifying catalyst, exhaust gas purifying filter using same and exhaust gas purification method
JP2019034291A (en) Exhaust gas cleaning system and exhaust gas cleaning method
JP6774654B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2018176054A (en) Exhaust gas purification catalyst, and exhaust gas purification filter, and exhaust gas purification method
JP2015208712A (en) Catalyst for exhaust gas purification and selective reduction method of nitrogen oxide and oxidative removal method of solid carbon ingredient using the same
CN118159362A (en) Exhaust gas purifying catalyst, exhaust gas purifying method, and method for producing exhaust gas purifying catalyst
JP2016203159A (en) Catalyst material for exhaust gas purification, method for producing the same, and particulate filter with the catalyst
WO2015029320A1 (en) Exhaust gas purification catalyst and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161209

R150 Certificate of patent or registration of utility model

Ref document number: 6061406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees