WO2016189945A1 - Glass substrate grinding method - Google Patents

Glass substrate grinding method Download PDF

Info

Publication number
WO2016189945A1
WO2016189945A1 PCT/JP2016/059231 JP2016059231W WO2016189945A1 WO 2016189945 A1 WO2016189945 A1 WO 2016189945A1 JP 2016059231 W JP2016059231 W JP 2016059231W WO 2016189945 A1 WO2016189945 A1 WO 2016189945A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
grinding
outer peripheral
shaped glass
grinding tool
Prior art date
Application number
PCT/JP2016/059231
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 片山
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201680011055.XA priority Critical patent/CN107249818B/en
Publication of WO2016189945A1 publication Critical patent/WO2016189945A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a method for grinding an outer peripheral end of a disk-shaped glass substrate by rotating a grinding tool.
  • a disk-shaped glass substrate is sometimes used as a support for supporting a semiconductor wafer in a back grinding process of the semiconductor wafer.
  • an orientation flat or a notch is formed at the outer peripheral end.
  • chamfering such as R chamfering and C chamfering on the formed orientation flat and notch.
  • a method of forming a notch at the outer peripheral edge of the semiconductor wafer with a grinding tool, and grinding the formed notch An example of a method for chamfering the notch is disclosed in Patent Document 1.
  • the notch is ground by rotating a grinding tool around an axis extending parallel to the main surface (front and back surfaces) of the semiconductor wafer.
  • An object of the present invention made in view of the above circumstances is to prevent the disk-shaped glass substrate from being damaged when the outer peripheral end of the disk-shaped glass substrate is ground by rotating a grinding tool.
  • the method according to the present invention which was devised to solve the above-mentioned problems, is a glass substrate grinding method for grinding an outer peripheral end of a disk-shaped glass substrate by rotating a grinding tool, wherein the grinding tool is It is characterized by rotating around an axis extending in the thickness direction of the glass substrate.
  • the outer peripheral edge of the disk-shaped glass substrate is rotated by the grinding tool. It is ground along a direction parallel to the surface (front and back surfaces). Therefore, it can prevent as much as possible that the force which acts on an outer peripheral edge part from a grinding tool acts on the thickness direction of a disk shaped glass substrate. Thereby, during the grinding of the outer peripheral end by the grinding tool, the occurrence of a situation in which the outer peripheral end swings along the thickness direction is avoided. As a result, it becomes possible to prevent the disk-shaped glass substrate from being damaged, such as cracking or chipping.
  • the disk-shaped glass substrate is rotated about the axis extending in the thickness direction at the center thereof, and the grinding tool is rotated around the disk-shaped glass substrate against the rotation direction of the disk-shaped glass substrate. It is preferable.
  • the grinding tool turns around the disk-shaped glass substrate against the direction of rotation of the disk-shaped glass substrate in the rotated state.
  • the direction and the traveling direction of the outer peripheral end are opposite to each other. Thereby, the time required for the grinding tool to grind the outer peripheral end can be shortened.
  • the grinding tool or the second grinding tool that rotates about the axis extending in the thickness direction of the disk-shaped glass substrate and is different from the grinding tool is used. Then, a positioning portion obtained by removing a part of the outer peripheral end portion for positioning the disc-shaped glass substrate may be formed at the outer peripheral end portion.
  • the positioning part is formed by removing a part of the outer peripheral edge of the disk-shaped glass substrate, the disk-shaped glass substrate is damaged when the positioning part is formed on the outer peripheral edge compared to when grinding the outer peripheral edge. It becomes easy.
  • the grinding tool or the second grinding tool is used for forming the positioning portion at the outer peripheral end, both of them rotate about the axis extending in the thickness direction of the disk-shaped glass substrate. Even when the positioning portion is formed, occurrence of a situation in which the outer peripheral end portion swings along the thickness direction is avoided. As a result, it is possible to form the positioning portion at the outer peripheral end without damaging the disk-shaped glass substrate.
  • the positioning portion is formed at the outer peripheral end after grinding the outer peripheral end, the positioning portion is formed after the rough shape of the disk-shaped glass substrate is determined by grinding the outer peripheral end. become. For this reason, when mass-producing the disk-shaped glass substrate which has a positioning part in an outer peripheral edge part, generation
  • the outer peripheral end portion of the disk-shaped glass substrate can be ground at high speed by using the grinding tool having a relatively large diameter.
  • the second grinding tool with a relatively small diameter is used to prevent the disk-shaped glass substrate from being damaged as much as possible. can do. Further, it is possible to form the positioning portion with high accuracy by using the second grinding tool having a relatively small diameter.
  • the positioning portion is a notch whose formation width gradually increases from the center side to the outer periphery side of the disk-shaped glass substrate, when the notch is formed, It is preferable to use a second grinding tool having a smaller diameter than a large one.
  • the notch is formed using the second grinding tool having a diameter smaller than the maximum width of the notch planned to be formed, the disc-shaped glass substrate is damaged as much as possible when the notch is formed. This can be prevented and the notch can be formed with high accuracy.
  • the smaller the diameter the higher the effect of preventing the disc-shaped glass substrate from being damaged during the formation of the positioning part and the effect of forming the positioning part with high accuracy.
  • a tool having a diameter of 2 mm or less is used as the second grinding tool, both of the above effects can be suitably expressed.
  • the outer peripheral end portion is chamfered along with the grinding of the outer peripheral end portion, and the chamfering process is performed on the positioning portion when forming the positioning portion. Therefore, it is preferable to use a tool in which the shape and size of the grinding groove formed on the outer peripheral portion of the second grinding tool are the same as the shape and size of the grinding groove formed on the outer peripheral portion of the grinding tool.
  • the chamfered portion between the portion excluding the positioning portion ground by the grinding tool and chamfered and the positioning portion ground by the second grinding tool and chamfered is processed.
  • the cross-sectional shape (the cross-sectional shape when the disk-shaped glass substrate is virtually cut in the thickness direction) is substantially the same. That is, it is possible to avoid a sudden change in the cross-sectional shape between the positioning portion and a portion connected to the positioning portion.
  • stress concentration tends to occur when some external force is applied to the disk-shaped glass substrate, and the risk of damage to the disk-shaped glass substrate increases.
  • the cross-sectional shape can be made substantially the same between the positioning portion and the portion connected to the positioning portion, it is possible to accurately eliminate the fear as described above.
  • the outer peripheral end of the disk-shaped glass substrate is ground along a direction parallel to the main surface of the disk-shaped glass substrate with a grinding tool, the front surface side and the back surface side of the disk-shaped glass substrate are It is possible to chamfer both at the same time. Thereby, the time which a chamfering process requires can be reduced significantly.
  • the grinding tool and the second grinding tool share the rotation axis.
  • the positioning part since the positioning part is formed in a state where the disk-shaped glass substrate is stationary, the positioning part can be formed with higher accuracy.
  • the strength of the outer peripheral end is reduced as compared with the case where the positioning portion is not formed.
  • the outer peripheral end is subjected to an etching process after the positioning portion is formed, defects such as microcracks included in the outer peripheral end can be removed. As a result, the strength of the outer peripheral end portion of the disk-shaped glass substrate can be improved.
  • a scribe line is formed on the outer peripheral end portion by rolling of the scribe wheel or laser irradiation, and the orientation flat is cut along the scribe line. May be formed.
  • the orientation flat is formed at the outer peripheral end, so that after the outline shape of the disk-shaped glass substrate is determined by grinding of the outer peripheral end, the orientation flat is Will be formed. For this reason, when mass-producing a disk-shaped glass substrate having an orientation flat at the outer peripheral end, it is possible to prevent the occurrence of a situation in which the shape of the disk-shaped glass substrates varies between each other. be able to.
  • the disk-shaped glass substrate when the outer peripheral end of the disk-shaped glass substrate is ground by rotating a grinding tool, the disk-shaped glass substrate can be prevented from being damaged.
  • a chamfering process for grinding the outer peripheral end 2a of the disk-shaped glass substrate 2 and chamfering it is performed using the grinding tool 1. (FIGS. 1 to 3).
  • a second grinding tool 3 different from the grinding tool 1 a notch forming step for forming the chamfered notch 4 on the outer peripheral end 2 a of the disk-shaped glass substrate 2 is performed ( FIG. 5).
  • an etching process is performed on the outer peripheral end 2a of the disk-shaped glass substrate 2 to execute a processing step for improving the strength of the outer peripheral end 2a.
  • the grinding tool 1 and the second grinding tool 3 are rotated about axes 5 and 6 extending in the thickness direction of the disk-shaped glass substrate 2 (hereinafter simply referred to as the thickness direction), respectively.
  • the disk-shaped glass substrate 2 to be ground in the present embodiment is a glass substrate that serves as a support for supporting the semiconductor wafer in the back grinding process of the semiconductor wafer.
  • the disc-shaped glass substrate 2 is placed in a flat position on a table 8 that can be rotated (spinned) in the A direction about an axis 7 extending along the thickness direction. It is placed.
  • the disc-shaped glass substrate 2 is placed on the table 8 so that the position of the center 2b of the disc-shaped glass substrate 2 coincides with the position of the axis 7 in plan view.
  • the table 8 has a support portion 8a for supporting the disk-shaped glass substrate 2 from below, and the support portion 8a is formed in a circle having a smaller diameter than the disk-shaped glass substrate 2 in plan view. Thereby, the outer peripheral end 2a of the disc-shaped glass substrate 2 placed on the table 8 is in a state of protruding from the outer peripheral end of the support portion 8a.
  • the support portion 8a is formed with a large number of holes 8aa, and each of the large number of holes 8aa is connected to negative pressure generating means (for example, a vacuum pump or the like) (not shown). Thereby, the support part 8a can adsorb
  • the grinding tool 1 rotates (spins) in the B direction around the axis 5 as the center of rotation, and turns around the disk-shaped glass substrate 2 in the C direction against the rotation direction (A direction) of the disk-shaped glass substrate 2. Is possible.
  • the grinding tool 1 rotates (spins) in a direction to grind the outer peripheral end 2a of the disk-shaped glass substrate 2 by a down cut method.
  • the grinding tool 1 may be rotated (rotated) in the direction of grinding the outer peripheral end 2a of the disk-shaped glass substrate 2 by an up-cut method.
  • the outer peripheral portion 1a of the grinding tool 1 has a large number of abrasives fixed by an adhesive (for example, a metal bond). It is composed of grains.
  • grinding grooves 9 for grinding the outer peripheral end portion 2a of the disc-shaped glass substrate 2 are formed in a plurality of upper and lower stages.
  • Each grinding groove 9 includes a bottom portion 9a for grinding the outer peripheral end surface 2aa of the disc-shaped glass substrate, and a pair of side walls for grinding the upper surface 2c and the lower surface 2d of the disc-shaped glass substrate 2 respectively. Part 9b.
  • Each grinding groove 9 is formed such that the groove width gradually increases as the grinding tool 9 moves to the outer peripheral side of the grinding tool 1.
  • Both the bottom 9a and the side wall 9b are smoothly connected by a curved surface curved with a constant curvature.
  • both the side wall portion 9b and the outer peripheral end surface 1aa of the grinding tool 1 are smoothly connected by a curved surface curved with a constant curvature.
  • the outer peripheral end 2a is formed in a cross-sectional shape corresponding to 9, and the chamfering process is completed.
  • an outer periphery is carried out from the center 2b side of the disk shaped glass substrate 2.
  • a notch 4 whose formation width gradually increases toward the side is formed in the outer peripheral end 2a. The notch 4 is formed by removing a part of the outer peripheral end 2a of the disc-shaped glass substrate 2 and, when the disc-shaped glass substrate 2 is viewed in plan, a positioning portion for determining the orientation and positioning the disc-shaped glass substrate 2 It is.
  • a tool having a diameter D2 smaller than the maximum width W of the notch 4 scheduled to be formed is used as the second grinding tool 3.
  • the diameter D2 of the second grinding tool 3 is smaller than the diameter D1 of the grinding tool 1 used in the chamfering process, and a tool having a diameter D2 of 2 mm or less is used.
  • a tool having a diameter D2 of 1.5 mm or less is used as the second grinding tool 3.
  • the outer peripheral portion 3a of the second grinding tool 3 is composed of a large number of abrasive grains fixed by an adhesive (for example, metal bond) in the same manner as the grinding tool 1 used in the chamfering process. Furthermore, the outer peripheral part 3a is formed with a plurality of upper and lower grinding grooves for forming a notch 4 in which the outer peripheral end part 2a of the disk-shaped glass substrate 2 is ground and chamfered. The shape and dimensions of the grinding grooves are the same as the grinding grooves 9 formed on the outer peripheral portion 1 a of the grinding tool 1.
  • the notch 4 having a shape following the track S is formed by grinding the outer peripheral end 2a of the disc-shaped glass substrate 2 while the second grinding tool 3 moves along the track S.
  • the notch 4 is chamfered to complete the notch formation process.
  • the entire periphery of the outer peripheral end 2a of the disc-shaped glass substrate 2 is etched. This etching process is performed, for example, by spraying hydrogen fluoride (HF) onto the outer peripheral end 2a.
  • HF hydrogen fluoride
  • the disc-shaped glass substrate 2 is rotated.
  • the outer peripheral edge 2a is ground along a direction parallel to the main surface (upper surface 2c, lower surface 2d) of the disk-shaped glass substrate 2 by the grinding tool 1 or the second grinding tool 3. Therefore, it is possible to prevent as much as possible that the force acting from the grinding tool 1 or the second grinding tool 3 to the outer peripheral end 2 a acts in the thickness direction of the disk-shaped glass substrate 2.
  • the grinding method of the glass substrate according to the present invention is not limited to the aspect described in the above embodiment.
  • the grinding tool is used for the chamfering process and the second grinding tool different from the grinding tool is used for the notch forming process.
  • the chamfering process and the notch forming process are performed.
  • the same grinding tool may be used for execution.
  • the outer peripheral edge of the disk shaped glass substrate 2 as a positioning part it is good also as an aspect which forms the orientation flat 10 in the part 2a.
  • the notch forming process is performed after the chamfering process for chamfering by grinding the outer peripheral edge of the disk-shaped glass substrate, but this is not restrictive.
  • a scribe line is formed on the outer peripheral edge of the disk-shaped glass substrate by rolling of the scribe wheel or laser irradiation, and the orientation flat is formed by cleaving along the scribe line. May be formed.
  • the said grinding tool and the 2nd grinding tool may be used, and grinding tools other than these may be used.
  • the grinding tool and the second grinding tool may share the rotation axis. That is, both grinding tools may be attached to the same rotating shaft, for example, in a state of being separated from each other in the axial direction.

Abstract

When grinding the outer circumferential edge (2a) of a disc-shaped glass substrate (2) by rotating a grinding tool (1), the grinding tool (1) is rotated with an axis line (5) that extends in the thickness direction of the disc-shaped glass substrate (2) as the center of rotation. As a result, the occurrence of situations in which said outer circumferential edge (2a) oscillates in the thickness direction during grinding of the outer circumferential edge (2a) by the grinding tool (1) is avoided and it is possible to prevent damage of the disc-shaped glass substrate (2).

Description

ガラス基板の研削方法Glass substrate grinding method
 本発明は、研削ツールを回転させることで円盤状ガラス基板の外周端部を研削する方法に関する。 The present invention relates to a method for grinding an outer peripheral end of a disk-shaped glass substrate by rotating a grinding tool.
 近年、半導体ウェハーのバック・グラインド工程において、半導体ウェハーを支持する支持体として円盤状ガラス基板が採用される場合がある。このような円盤状ガラス基板の製造工程では、その外周端部にオリエンテーションフラットやノッチが形成される。そして、形成したオリエンテーションフラットやノッチに対しては、R面取りやC面取り等に代表される面取り加工を施すことが通例となっている。 In recent years, a disk-shaped glass substrate is sometimes used as a support for supporting a semiconductor wafer in a back grinding process of the semiconductor wafer. In the manufacturing process of such a disk-shaped glass substrate, an orientation flat or a notch is formed at the outer peripheral end. And it is customary to perform chamfering such as R chamfering and C chamfering on the formed orientation flat and notch.
 ここで、円盤状ガラス基板ではなく、半導体ウェハーを加工の対象とするものであるが、研削ツールで半導体ウェハーの外周端部にノッチを形成する手法、及び、形成されたノッチを研削することで、当該ノッチに面取り加工を施す手法の一例が特許文献1に開示されている。同手法では、研削ツールを半導体ウェハーの主面(表裏面)と平行に延びる軸線を回転中心として回転させることで、ノッチの研削を行っている。 Here, not a disk-shaped glass substrate but a semiconductor wafer is to be processed, a method of forming a notch at the outer peripheral edge of the semiconductor wafer with a grinding tool, and grinding the formed notch An example of a method for chamfering the notch is disclosed in Patent Document 1. In this method, the notch is ground by rotating a grinding tool around an axis extending parallel to the main surface (front and back surfaces) of the semiconductor wafer.
特開平2-180554号公報Japanese Patent Laid-Open No. 2-180554
 しかしながら、靱性の高い半導体ウェハーを想定した上記の手法を脆性材料である円盤状ガラス基板の外周端部に形成されたノッチの加工に適用した場合には、以下のような解決すべき問題が発生している。すなわち、同手法を適用した場合、円盤状ガラス基板に形成されたノッチは、研削ツールによって円盤状ガラス基板の厚み方向に沿って研削されることになる。これにより、ノッチが形成された外周端部は、研削ツールから常に厚み方向に力が作用した状態に置かれる。その結果、研削ツールから作用する力で外周端部が厚み方向に沿って不当に揺動し、これに起因して割れや欠けが発生する等、円盤状ガラス基板が破損してしまう不具合が生じていた。 However, when the above method, which assumes a semiconductor wafer with high toughness, is applied to the processing of the notch formed on the outer peripheral edge of a disk-shaped glass substrate that is a brittle material, the following problems to be solved occur. is doing. That is, when the same method is applied, the notch formed in the disk-shaped glass substrate is ground along the thickness direction of the disk-shaped glass substrate by the grinding tool. Thereby, the outer peripheral end portion in which the notch is formed is always placed in a state in which force is applied in the thickness direction from the grinding tool. As a result, there is a problem that the disc-shaped glass substrate is damaged, such as the outer peripheral edge swings unduly along the thickness direction due to the force acting from the grinding tool, and this causes cracks and chips. It was.
 なお、このような問題は、上記の手法をノッチの面取り加工に適用した場合にのみ発生しているものではない。例えば、同手法と同様な態様で研削ツールを回転させることにより、円盤状ガラス基板の外周端部に形成されたオリエンテーションフラットを研削して面取り加工を施す場合のように、円盤状ガラス基板の外周端部の研削を伴う際に、上記の手法を適用した場合には同様に生じている問題である。 Note that such a problem does not occur only when the above method is applied to chamfering of a notch. For example, by rotating the grinding tool in the same manner as the same method, the outer periphery of the disk-shaped glass substrate is chamfered by grinding the orientation flat formed on the outer peripheral edge of the disk-shaped glass substrate. When the above method is applied when the end portion is ground, the same problem occurs.
 上記の事情に鑑みなされた本発明の目的は、研削ツールを回転させることで円盤状ガラス基板の外周端部を研削する場合に、当該円盤状ガラス基板の破損を防止することにある。 An object of the present invention made in view of the above circumstances is to prevent the disk-shaped glass substrate from being damaged when the outer peripheral end of the disk-shaped glass substrate is ground by rotating a grinding tool.
 上記の課題を解決するために創案された本発明に係る方法は、研削ツールを回転させることで円盤状ガラス基板の外周端部を研削するガラス基板の研削方法であって、研削ツールを、円盤状ガラス基板の厚み方向に延びる軸線を回転中心として回転させることに特徴付けられる。 The method according to the present invention, which was devised to solve the above-mentioned problems, is a glass substrate grinding method for grinding an outer peripheral end of a disk-shaped glass substrate by rotating a grinding tool, wherein the grinding tool is It is characterized by rotating around an axis extending in the thickness direction of the glass substrate.
 このような方法によれば、研削ツールを、円盤状ガラス基板の厚み方向に延びる軸線を回転中心として回転させることから、円盤状ガラス基板の外周端部は、研削ツールによって円盤状ガラス基板の主面(表裏面)と平行な方向に沿って研削されることになる。そのため、研削ツールから外周端部へと作用する力が、円盤状ガラス基板の厚み方向に作用することを可及的に防止できる。これにより、研削ツールによる外周端部の研削中に、当該外周端部が厚み方向に沿って揺動するような事態の発生が回避される。その結果、割れや欠けが発生する等、円盤状ガラス基板の破損を防止することが可能となる。 According to such a method, since the grinding tool is rotated about the axis extending in the thickness direction of the disk-shaped glass substrate, the outer peripheral edge of the disk-shaped glass substrate is rotated by the grinding tool. It is ground along a direction parallel to the surface (front and back surfaces). Therefore, it can prevent as much as possible that the force which acts on an outer peripheral edge part from a grinding tool acts on the thickness direction of a disk shaped glass substrate. Thereby, during the grinding of the outer peripheral end by the grinding tool, the occurrence of a situation in which the outer peripheral end swings along the thickness direction is avoided. As a result, it becomes possible to prevent the disk-shaped glass substrate from being damaged, such as cracking or chipping.
 上記の方法において、円盤状ガラス基板を、その中心で厚み方向に延びる軸線を回転中心として回転させると共に、研削ツールに、円盤状ガラス基板の回転方向に逆らって円盤状ガラス基板の周りを旋回させることが好ましい。 In the above method, the disk-shaped glass substrate is rotated about the axis extending in the thickness direction at the center thereof, and the grinding tool is rotated around the disk-shaped glass substrate against the rotation direction of the disk-shaped glass substrate. It is preferable.
 このようにすれば、自転した状態の円盤状ガラス基板の回転方向に逆らって、研削ツールが円盤状ガラス基板の周りを旋回するため、研削ツールによる外周端部の研削中に、研削ツールの進行方向と、外周端部の進行方向とが相互に逆向きとなる。これにより、研削ツールが外周端部を研削するのに要する時間を短縮することができる。 In this way, the grinding tool turns around the disk-shaped glass substrate against the direction of rotation of the disk-shaped glass substrate in the rotated state. The direction and the traveling direction of the outer peripheral end are opposite to each other. Thereby, the time required for the grinding tool to grind the outer peripheral end can be shortened.
 上記の方法において、外周端部を研削した後、上記研削ツール、又は、円盤状ガラス基板の厚み方向に延びる軸線を回転中心として回転し、且つ上記研削ツールとは異なる第二の研削ツールを用いて、円盤状ガラス基板の位置決めを行うために外周端部の一部が除去されてなる位置決め部を、外周端部に形成してもよい。 In the above method, after grinding the outer peripheral edge, the grinding tool or the second grinding tool that rotates about the axis extending in the thickness direction of the disk-shaped glass substrate and is different from the grinding tool is used. Then, a positioning portion obtained by removing a part of the outer peripheral end portion for positioning the disc-shaped glass substrate may be formed at the outer peripheral end portion.
 位置決め部は、円盤状ガラス基板の外周端部の一部が除去されてなるため、外周端部への位置決め部の形成時には、外周端部の研削時と比較して円盤状ガラス基板が破損しやすくなる。しかしながら、外周端部への位置決め部の形成に、上記研削ツール、又は、第二の研削ツールを用いれば、両者がいずれも円盤状ガラス基板の厚み方向に延びる軸線を回転中心として回転することから、位置決め部の形成時においても、外周端部が厚み方向に沿って揺動するような事態の発生が回避される。その結果、円盤状ガラス基板を破損させることなく、外周端部に位置決め部を形成することが可能となる。また、外周端部を研削した後で、当該外周端部に位置決め部を形成することから、外周端部の研削によって円盤状ガラス基板の概形が定まった後で、位置決め部が形成されることになる。このため、外周端部に位置決め部を有した円盤状ガラス基板を量産するような場合に、生産された円盤状ガラス基板の相互間で、その形状にバラつきが生じるような事態の発生を防止することができる。 Since the positioning part is formed by removing a part of the outer peripheral edge of the disk-shaped glass substrate, the disk-shaped glass substrate is damaged when the positioning part is formed on the outer peripheral edge compared to when grinding the outer peripheral edge. It becomes easy. However, if the grinding tool or the second grinding tool is used for forming the positioning portion at the outer peripheral end, both of them rotate about the axis extending in the thickness direction of the disk-shaped glass substrate. Even when the positioning portion is formed, occurrence of a situation in which the outer peripheral end portion swings along the thickness direction is avoided. As a result, it is possible to form the positioning portion at the outer peripheral end without damaging the disk-shaped glass substrate. In addition, since the positioning portion is formed at the outer peripheral end after grinding the outer peripheral end, the positioning portion is formed after the rough shape of the disk-shaped glass substrate is determined by grinding the outer peripheral end. become. For this reason, when mass-producing the disk-shaped glass substrate which has a positioning part in an outer peripheral edge part, generation | occurrence | production of the situation which the variation in the shape produces between the disk-shaped glass substrates produced is prevented. be able to.
 上記の方法において、第二の研削ツールとして、上記研削ツールよりも径の小さいツールを用いることが好ましい。 In the above method, it is preferable to use a tool having a smaller diameter than the grinding tool as the second grinding tool.
 このようにすれば、円盤状ガラス基板の外周端部の研削時には、相対的に径の大きい上記研削ツールを用いることで、外周端部を高速に研削することが可能となる。一方、円盤状ガラス基板の破損が生じやすい外周端部への位置決め部の形成時には、相対的に径の小さい第二の研削ツールを用いることにより、円盤状ガラス基板の破損を可及的に防止することができる。また、相対的に径の小さい第二の研削ツールを用いることで、位置決め部を高精度に形成することも可能である。 In this way, at the time of grinding the outer peripheral end portion of the disk-shaped glass substrate, the outer peripheral end portion can be ground at high speed by using the grinding tool having a relatively large diameter. On the other hand, when forming the positioning part at the outer peripheral edge where the disk-shaped glass substrate is likely to be damaged, the second grinding tool with a relatively small diameter is used to prevent the disk-shaped glass substrate from being damaged as much as possible. can do. Further, it is possible to form the positioning portion with high accuracy by using the second grinding tool having a relatively small diameter.
 上記の方法において、位置決め部が、円盤状ガラス基板の中心側から外周側に向かって漸次に形成幅が拡大するノッチである場合には、当該ノッチを形成するに際し、形成を予定したノッチの最大幅よりも径の小さい第二の研削ツールを用いることが好ましい。 In the above method, when the positioning portion is a notch whose formation width gradually increases from the center side to the outer periphery side of the disk-shaped glass substrate, when the notch is formed, It is preferable to use a second grinding tool having a smaller diameter than a large one.
 このようにすれば、形成を予定したノッチの最大幅よりも径の小さい第二の研削ツールを用いてノッチを形成することから、ノッチの形成時における円盤状ガラス基板の破損を可及的に防止できると共に、ノッチを高精度に形成することが可能となる。 In this way, since the notch is formed using the second grinding tool having a diameter smaller than the maximum width of the notch planned to be formed, the disc-shaped glass substrate is damaged as much as possible when the notch is formed. This can be prevented and the notch can be formed with high accuracy.
 上記の方法において、第二の研削ツールとして、径が2mm以下のツールを用いることが好ましい。 In the above method, it is preferable to use a tool having a diameter of 2 mm or less as the second grinding tool.
 第二の研削ツールとして、径が小さいツールを用いる程、位置決め部の形成時における円盤状ガラス基板の破損を防止する効果、及び、位置決め部を高精度に形成できる効果を高めることが可能となる。そして、第二の研削ツールとして、径が2mm以下のツールを用いれば、上記の両効果を好適に発現させることができる。 As the second grinding tool is used, the smaller the diameter, the higher the effect of preventing the disc-shaped glass substrate from being damaged during the formation of the positioning part and the effect of forming the positioning part with high accuracy. . If a tool having a diameter of 2 mm or less is used as the second grinding tool, both of the above effects can be suitably expressed.
 上記の方法において、外周端部の研削に伴って当該外周端部に面取り加工を施すと共に、位置決め部を形成する際に当該位置決め部に面取り加工を施すに際し、第二の研削ツールとして、研削のために当該第二の研削ツールの外周部に形成された研削溝の形状及び寸法が、上記研削ツールの外周部に形成された研削溝の形状及び寸法と同一であるツールを用いることが好ましい。 In the above method, the outer peripheral end portion is chamfered along with the grinding of the outer peripheral end portion, and the chamfering process is performed on the positioning portion when forming the positioning portion. Therefore, it is preferable to use a tool in which the shape and size of the grinding groove formed on the outer peripheral portion of the second grinding tool are the same as the shape and size of the grinding groove formed on the outer peripheral portion of the grinding tool.
 このようにすれば、上記研削ツールによって研削して面取り加工を施した位置決め部を除く部位と、第二の研削ツールによって研削して面取り加工を施した位置決め部との間で、面取り加工後の断面形状(円盤状ガラス基板を仮想的に厚み方向に切断した場合の断面形状)が略同一なものとなる。つまり、位置決め部と、当該位置決め部に連なる部位との間で、断面形状が急激に変化することを回避することができる。ここで、断面形状が急激に変化している場合、円盤状ガラス基板に何らかの外力が作用した際に応力集中が発生しやすくなり、円盤状ガラス基板が破損するおそれが高まってしまう。しかしながら、本方法によれば、位置決め部と、当該位置決め部に連なる部位との間で、断面形状を略同一とすることができるため、上記のようなおそれを的確に排除することが可能である。また、本方法では、円盤状ガラス基板の外周端部を、研削ツールによって円盤状ガラス基板の主面と平行な方向に沿って研削することから、円盤状ガラス基板の表面側と裏面側との双方に対して同時に面取り加工を施すことも可能である。これにより、面取り加工に要する時間を大幅に短縮することができる。 In this case, the chamfered portion between the portion excluding the positioning portion ground by the grinding tool and chamfered and the positioning portion ground by the second grinding tool and chamfered is processed. The cross-sectional shape (the cross-sectional shape when the disk-shaped glass substrate is virtually cut in the thickness direction) is substantially the same. That is, it is possible to avoid a sudden change in the cross-sectional shape between the positioning portion and a portion connected to the positioning portion. Here, when the cross-sectional shape is changing abruptly, stress concentration tends to occur when some external force is applied to the disk-shaped glass substrate, and the risk of damage to the disk-shaped glass substrate increases. However, according to this method, since the cross-sectional shape can be made substantially the same between the positioning portion and the portion connected to the positioning portion, it is possible to accurately eliminate the fear as described above. . Further, in this method, since the outer peripheral end of the disk-shaped glass substrate is ground along a direction parallel to the main surface of the disk-shaped glass substrate with a grinding tool, the front surface side and the back surface side of the disk-shaped glass substrate are It is possible to chamfer both at the same time. Thereby, the time which a chamfering process requires can be reduced significantly.
 上記の方法において、上記研削ツールと第二の研削ツールとが、その回転軸を共有していることが好ましい。 In the above method, it is preferable that the grinding tool and the second grinding tool share the rotation axis.
 このようにすれば、上記研削ツールを動作させるための駆動源と、第二の研削ツールを動作させるための駆動源とを別々に設ける必要が無くなる。そのため、低コスト化、及び省スペース化を図ることが可能となる。 In this way, it is not necessary to separately provide a drive source for operating the grinding tool and a drive source for operating the second grinding tool. Therefore, cost reduction and space saving can be achieved.
 上記の方法において、位置決め部を形成する際に、円盤状ガラス基板を静止させた状態に固定することが好ましい。 In the above method, it is preferable to fix the disk-shaped glass substrate in a stationary state when forming the positioning portion.
 このようにすれば、円盤状ガラス基板を静止させた状態の下で、位置決め部を形成することから、当該位置決め部を更に高精度に形成することができる。 In this way, since the positioning part is formed in a state where the disk-shaped glass substrate is stationary, the positioning part can be formed with higher accuracy.
 上記の方法において、位置決め部を形成した後、外周端部にエッチング処理を施すことが好ましい。 In the above method, it is preferable to perform an etching process on the outer peripheral edge after forming the positioning portion.
 円盤状ガラス基板の外周端部に位置決め部を形成した場合、位置決め部を形成しない場合と比較して外周端部の強度が低下する。しかしながら、位置決め部を形成した後、外周端部にエッチング処理を施せば、当該外周端部に含まれた微小クラック等の欠陥を取り除くことが可能となる。その結果、円盤状ガラス基板の外周端部の強度を向上させることができる。 When the positioning portion is formed at the outer peripheral end of the disc-shaped glass substrate, the strength of the outer peripheral end is reduced as compared with the case where the positioning portion is not formed. However, if the outer peripheral end is subjected to an etching process after the positioning portion is formed, defects such as microcracks included in the outer peripheral end can be removed. As a result, the strength of the outer peripheral end portion of the disk-shaped glass substrate can be improved.
 上記の方法において、外周端部を研削した後、スクライブホイールの転動、又は、レーザーの照射によって外周端部にスクライブラインを形成すると共に、このスクライブラインに沿って割断を行うことで、オリエンテーションフラットを形成してもよい。 In the above method, after grinding the outer peripheral end portion, a scribe line is formed on the outer peripheral end portion by rolling of the scribe wheel or laser irradiation, and the orientation flat is cut along the scribe line. May be formed.
 このようにすれば、外周端部を研削した後で、当該外周端部にオリエンテーションフラットを形成することから、外周端部の研削によって円盤状ガラス基板の概形が定まった後で、オリエンテーションフラットが形成されることになる。このため、外周端部にオリエンテーションフラットを有した円盤状ガラス基板を量産するような場合に、生産された円盤状ガラス基板の相互間で、その形状にバラつきが生じるような事態の発生を防止することができる。 In this way, after the outer peripheral end is ground, the orientation flat is formed at the outer peripheral end, so that after the outline shape of the disk-shaped glass substrate is determined by grinding of the outer peripheral end, the orientation flat is Will be formed. For this reason, when mass-producing a disk-shaped glass substrate having an orientation flat at the outer peripheral end, it is possible to prevent the occurrence of a situation in which the shape of the disk-shaped glass substrates varies between each other. be able to.
 本発明に係るガラス基板の研削方法によれば、研削ツールを回転させることで円盤状ガラス基板の外周端部を研削する場合に、当該円盤状ガラス基板の破損を防止することが可能となる。 According to the method for grinding a glass substrate according to the present invention, when the outer peripheral end of the disk-shaped glass substrate is ground by rotating a grinding tool, the disk-shaped glass substrate can be prevented from being damaged.
本発明の実施形態に係るガラス基板の研削方法を示す平面図である。It is a top view which shows the grinding method of the glass substrate which concerns on embodiment of this invention. 本発明の実施形態に係るガラス基板の研削方法を示す縦断側面図である。It is a vertical side view which shows the grinding method of the glass substrate which concerns on embodiment of this invention. 図2におけるE部を拡大して示す縦断側面図である。It is a vertical side view which expands and shows the E section in FIG. 本発明の実施形態に係るガラス基板の研削方法によって研削された円盤状ガラス基板を示す縦断側面図である。It is a vertical side view which shows the disk shaped glass substrate ground by the grinding method of the glass substrate which concerns on embodiment of this invention. 本発明の実施形態に係るガラス基板の研削方法を示す平面図である。It is a top view which shows the grinding method of the glass substrate which concerns on embodiment of this invention. 本発明の他の実施形態に係るガラス基板の研削方法を示す平面図である。It is a top view which shows the grinding method of the glass substrate which concerns on other embodiment of this invention.
 以下、本発明の実施形態に係るガラス基板の研削方法について、添付の図面を参照して説明する。 Hereinafter, a glass substrate grinding method according to an embodiment of the present invention will be described with reference to the accompanying drawings.
 本発明の実施形態に係るガラス基板の研削方法においては、まず、研削ツール1を用いて、円盤状ガラス基板2の外周端部2aを研削して面取り加工を施すための面取工程を実行する(図1~図3)。次に、研削ツール1とは異なる第二の研削ツール3を用いて、面取り加工が施されたノッチ4を円盤状ガラス基板2の外周端部2aに形成するためのノッチ形成工程を実行する(図5)。最後に、円盤状ガラス基板2の外周端部2aにエッチング処理を施して、当該外周端部2aの強度を向上させるための処理工程を実行する。 In the method for grinding a glass substrate according to the embodiment of the present invention, first, a chamfering process for grinding the outer peripheral end 2a of the disk-shaped glass substrate 2 and chamfering it is performed using the grinding tool 1. (FIGS. 1 to 3). Next, using a second grinding tool 3 different from the grinding tool 1, a notch forming step for forming the chamfered notch 4 on the outer peripheral end 2 a of the disk-shaped glass substrate 2 is performed ( FIG. 5). Finally, an etching process is performed on the outer peripheral end 2a of the disk-shaped glass substrate 2 to execute a processing step for improving the strength of the outer peripheral end 2a.
 このガラス基板の研削方法では、研削ツール1及び第二の研削ツール3を、それぞれ円盤状ガラス基板2の厚み方向(以下、単に厚み方向と表記する)に延びる軸線5,6を回転中心として回転させる。ここで、本実施形態で研削の対象となる円盤状ガラス基板2は、半導体ウェハーのバック・グラインド工程において半導体ウェハーを支持する支持体となるガラス基板である。 In this glass substrate grinding method, the grinding tool 1 and the second grinding tool 3 are rotated about axes 5 and 6 extending in the thickness direction of the disk-shaped glass substrate 2 (hereinafter simply referred to as the thickness direction), respectively. Let Here, the disk-shaped glass substrate 2 to be ground in the present embodiment is a glass substrate that serves as a support for supporting the semiconductor wafer in the back grinding process of the semiconductor wafer.
 まず、面取工程について説明する。 First, the chamfering process will be described.
 図1及び図2に示すように、円盤状ガラス基板2は、厚み方向に沿って延びる軸線7を回転中心としてA方向に回転(自転)することが可能なテーブル8の上に平置き姿勢で載置されている。なお、円盤状ガラス基板2は、平面視で当該円盤状ガラス基板2の中心2bの位置と、軸線7の位置とが一致するようにテーブル8上に載置されている。 As shown in FIGS. 1 and 2, the disc-shaped glass substrate 2 is placed in a flat position on a table 8 that can be rotated (spinned) in the A direction about an axis 7 extending along the thickness direction. It is placed. The disc-shaped glass substrate 2 is placed on the table 8 so that the position of the center 2b of the disc-shaped glass substrate 2 coincides with the position of the axis 7 in plan view.
 テーブル8は円盤状ガラス基板2を下方から支持する支持部8aを有し、この支持部8aは平面視で円盤状ガラス基板2よりも一回り径の小さい円形に形成されている。これにより、テーブル8上に載置された円盤状ガラス基板2の外周端部2aが、支持部8aの外周端から食み出した状態となっている。また、支持部8aには多数の孔8aaが形成されており、多数の孔8aaの各々は、図示省略の負圧発生手段(例えば、真空ポンプ等)と接続されている。これにより、負圧発生手段が多数の孔8aaを介して円盤状ガラス基板2に負圧を発生させることで、支持部8aが円盤状ガラス基板2を吸着することが可能となっている。 The table 8 has a support portion 8a for supporting the disk-shaped glass substrate 2 from below, and the support portion 8a is formed in a circle having a smaller diameter than the disk-shaped glass substrate 2 in plan view. Thereby, the outer peripheral end 2a of the disc-shaped glass substrate 2 placed on the table 8 is in a state of protruding from the outer peripheral end of the support portion 8a. The support portion 8a is formed with a large number of holes 8aa, and each of the large number of holes 8aa is connected to negative pressure generating means (for example, a vacuum pump or the like) (not shown). Thereby, the support part 8a can adsorb | suck the disk shaped glass substrate 2 because a negative pressure generation means produces | generates a negative pressure to the disk shaped glass substrate 2 through many holes 8aa.
 以上のことから、支持部8aに円盤状ガラス基板2を吸着させた状態で、テーブル8をA方向に回転させると、テーブル8上に載置された円盤状ガラス基板2が、軸線7を回転中心として偏心することなくA方向に回転(自転)する。 From the above, when the table 8 is rotated in the A direction while the disk-shaped glass substrate 2 is attracted to the support portion 8a, the disk-shaped glass substrate 2 placed on the table 8 rotates the axis 7. It rotates (spins) in the A direction without being eccentric as the center.
 研削ツール1は、軸線5を回転中心としてB方向に回転(自転)すると共に、円盤状ガラス基板2の回転方向(A方向)に逆らって円盤状ガラス基板2の周りをC方向に旋回することが可能となっている。この研削ツール1は、ダウンカット方式によって円盤状ガラス基板2の外周端部2aを研削する向きに回転(自転)している。なお、変形例として、研削ツール1を、アップカット方式で円盤状ガラス基板2の外周端部2aを研削する向きに回転(自転)させてもよい。 The grinding tool 1 rotates (spins) in the B direction around the axis 5 as the center of rotation, and turns around the disk-shaped glass substrate 2 in the C direction against the rotation direction (A direction) of the disk-shaped glass substrate 2. Is possible. The grinding tool 1 rotates (spins) in a direction to grind the outer peripheral end 2a of the disk-shaped glass substrate 2 by a down cut method. As a modification, the grinding tool 1 may be rotated (rotated) in the direction of grinding the outer peripheral end 2a of the disk-shaped glass substrate 2 by an up-cut method.
 図3(図2において丸で囲ったE部を拡大して示した図)に示すように、研削ツール1の外周部1aは、接着剤(例えば、メタルボンド等)によって固着された多数の砥粒で構成されている。この外周部1aには、円盤状ガラス基板2の外周端部2aを研削するための研削溝9が上下複数段に亘って形成されている。各研削溝9は、円盤状ガラス基板の外周端面2aaを研削するための底部9aと、当該底部9aに連なり、且つ円盤状ガラス基板2の上面2c及び下面2dをそれぞれ研削するための一対の側壁部9bとを有している。各研削溝9は、研削ツール1の外周側に移行するに連れて、その溝幅が漸次に拡大するように形成されている。底部9aと側壁部9bとの両者は、一定の曲率で湾曲した湾曲面によって滑らかに連なっている。同様に、側壁部9bと研削ツール1の外周端面1aaとの両者は、一定の曲率で湾曲した湾曲面によって滑らかに連なっている。 As shown in FIG. 3 (an enlarged view of the E portion circled in FIG. 2), the outer peripheral portion 1a of the grinding tool 1 has a large number of abrasives fixed by an adhesive (for example, a metal bond). It is composed of grains. In this outer peripheral portion 1a, grinding grooves 9 for grinding the outer peripheral end portion 2a of the disc-shaped glass substrate 2 are formed in a plurality of upper and lower stages. Each grinding groove 9 includes a bottom portion 9a for grinding the outer peripheral end surface 2aa of the disc-shaped glass substrate, and a pair of side walls for grinding the upper surface 2c and the lower surface 2d of the disc-shaped glass substrate 2 respectively. Part 9b. Each grinding groove 9 is formed such that the groove width gradually increases as the grinding tool 9 moves to the outer peripheral side of the grinding tool 1. Both the bottom 9a and the side wall 9b are smoothly connected by a curved surface curved with a constant curvature. Similarly, both the side wall portion 9b and the outer peripheral end surface 1aa of the grinding tool 1 are smoothly connected by a curved surface curved with a constant curvature.
 以上のことから、研削ツール1が円盤状ガラス基板2の周りを旋回しながら外周端部2aを研削することで、図4に示すように、研削ツール1の外周部1aに形成された研削溝9に対応した断面形状に外周端部2aが形成され、面取工程が完了する。 From the above, the grinding groove formed on the outer peripheral portion 1a of the grinding tool 1 as shown in FIG. 4 by grinding the outer peripheral end portion 2a while turning around the disc-shaped glass substrate 2 by the grinding tool 1 The outer peripheral end 2a is formed in a cross-sectional shape corresponding to 9, and the chamfering process is completed.
 次に、ノッチ形成工程について説明する。 Next, the notch formation process will be described.
 面取工程が完了すると、テーブル8の回転を停止させることにより、円盤状ガラス基板2の回転(A方向への回転)を停止させ、円盤状ガラス基板2を静止させた状態に固定する。なお、テーブル8の支持部8aによる円盤状ガラス基板2の吸着は継続して行う。 When the chamfering process is completed, the rotation of the table-like glass substrate 2 is stopped by stopping the rotation of the table 8, and the disc-shaped glass substrate 2 is fixed in a stationary state. In addition, adsorption | suction of the disk shaped glass substrate 2 by the support part 8a of the table 8 is performed continuously.
 そして、図5に示すように、第二の研削ツール3をF方向に回転(自転)させると共に、予め設定した軌道Sに沿って移動させることにより、円盤状ガラス基板2の中心2b側から外周側に向かって漸次に形成幅が拡大するノッチ4を外周端部2aに形成する。このノッチ4は、円盤状ガラス基板2の外周端部2aの一部が除去されてなると共に、円盤状ガラス基板2を平面視した場合に、その向きを判別して位置決めを行うための位置決め部である。 And as shown in FIG. 5, while rotating the 2nd grinding tool 3 to F direction (autorotation) and moving along the track | orbit S set beforehand, an outer periphery is carried out from the center 2b side of the disk shaped glass substrate 2. As shown in FIG. A notch 4 whose formation width gradually increases toward the side is formed in the outer peripheral end 2a. The notch 4 is formed by removing a part of the outer peripheral end 2a of the disc-shaped glass substrate 2 and, when the disc-shaped glass substrate 2 is viewed in plan, a positioning portion for determining the orientation and positioning the disc-shaped glass substrate 2 It is.
 ノッチ4の形成には、第二の研削ツール3として、形成を予定したノッチ4の最大幅Wよりも径D2が小さいツールを用いる。また、この第二の研削ツール3の径D2は、面取工程に用いた研削ツール1の径D1よりも小さくなっており、径D2が2mm以下のツールを用いている。なお、好ましくは、第二の研削ツール3としては、その径D2が1.5mm以下のツールを用いる。 In forming the notch 4, a tool having a diameter D2 smaller than the maximum width W of the notch 4 scheduled to be formed is used as the second grinding tool 3. The diameter D2 of the second grinding tool 3 is smaller than the diameter D1 of the grinding tool 1 used in the chamfering process, and a tool having a diameter D2 of 2 mm or less is used. Preferably, a tool having a diameter D2 of 1.5 mm or less is used as the second grinding tool 3.
 第二の研削ツール3の外周部3aは、面取工程に用いた研削ツール1と同様にして、接着剤(例えば、メタルボンド等)によって固着された多数の砥粒で構成されている。さらに、外周部3aには、円盤状ガラス基板2の外周端部2aを研削して面取り加工が施されたノッチ4を形成するための研削溝が上下複数段に亘って形成されている。この研削溝の形状及び寸法は、研削ツール1の外周部1aに形成された研削溝9と同一な形状及び寸法に形成されている。 The outer peripheral portion 3a of the second grinding tool 3 is composed of a large number of abrasive grains fixed by an adhesive (for example, metal bond) in the same manner as the grinding tool 1 used in the chamfering process. Furthermore, the outer peripheral part 3a is formed with a plurality of upper and lower grinding grooves for forming a notch 4 in which the outer peripheral end part 2a of the disk-shaped glass substrate 2 is ground and chamfered. The shape and dimensions of the grinding grooves are the same as the grinding grooves 9 formed on the outer peripheral portion 1 a of the grinding tool 1.
 以上のことから、第二の研削ツール3が軌道Sに沿って移動しながら円盤状ガラス基板2の外周端部2aを研削することにより、軌道Sに倣った形状のノッチ4が形成されると共に、当該ノッチ4に面取り加工が施され、ノッチ形成工程が完了する。 From the above, the notch 4 having a shape following the track S is formed by grinding the outer peripheral end 2a of the disc-shaped glass substrate 2 while the second grinding tool 3 moves along the track S. The notch 4 is chamfered to complete the notch formation process.
 最後に、処理工程について説明する。 Finally, the processing process will be described.
 ノッチ形成工程が完了すると、円盤状ガラス基板2の外周端部2aの全周に対してエッチング処理を施す。このエッチング処理は、例えば、フッ化水素(HF)を外周端部2aに噴き付けることで行う。この処理工程が完了することにより、本実施形態に係るガラス基板の研削方法の全工程が完了する。 When the notch formation process is completed, the entire periphery of the outer peripheral end 2a of the disc-shaped glass substrate 2 is etched. This etching process is performed, for example, by spraying hydrogen fluoride (HF) onto the outer peripheral end 2a. When this processing step is completed, all the steps of the glass substrate grinding method according to this embodiment are completed.
 以下、上記のガラス基板の研削方法による主たる作用・効果について説明する。 Hereinafter, main actions and effects of the above glass substrate grinding method will be described.
 上記のガラス基板の研削方法によれば、研削ツール1及び第二の研削ツール3を円盤状ガラス基板2の厚み方向に延びる軸線5,6を回転中心として回転させることから、円盤状ガラス基板2の外周端部2aは、研削ツール1、或いは、第二の研削ツール3によって円盤状ガラス基板2の主面(上面2c、下面2d)と平行な方向に沿って研削されることになる。そのため、研削ツール1、或いは、第二の研削ツール3から外周端部2aへと作用する力が、円盤状ガラス基板2の厚み方向に作用することを可及的に防止できる。これにより、研削ツール1による外周端部の研削中、及び、第二の研削ツール3によるノッチ4の形成中に、外周端部2aが厚み方向に沿って揺動するような事態の発生が回避される。その結果、割れや欠けが発生する等、円盤状ガラス基板2の破損を防止することが可能となる。 According to the above glass substrate grinding method, since the grinding tool 1 and the second grinding tool 3 are rotated about the axes 5 and 6 extending in the thickness direction of the disc-shaped glass substrate 2, the disc-shaped glass substrate 2 is rotated. The outer peripheral edge 2a is ground along a direction parallel to the main surface (upper surface 2c, lower surface 2d) of the disk-shaped glass substrate 2 by the grinding tool 1 or the second grinding tool 3. Therefore, it is possible to prevent as much as possible that the force acting from the grinding tool 1 or the second grinding tool 3 to the outer peripheral end 2 a acts in the thickness direction of the disk-shaped glass substrate 2. This avoids occurrence of a situation in which the outer peripheral end 2a swings in the thickness direction during grinding of the outer peripheral end by the grinding tool 1 and during formation of the notch 4 by the second grinding tool 3. Is done. As a result, it becomes possible to prevent the disk-shaped glass substrate 2 from being damaged, such as cracking or chipping.
 ここで、本発明に係るガラス基板の研削方法は、上記の実施形態で説明した態様に限定されるものではない。上記の実施形態では、面取工程の実行に研削ツールを用い、ノッチ形成工程の実行に上記研削ツールとは異なる第二の研削ツールを用いているが、面取工程の実行とノッチ形成工程の実行とに同一の研削ツールを用いてもよい。また、上記の実施形態では、位置決め部として、円盤状ガラス基板の外周端部にノッチを形成する態様となっているが、図6に示すように、位置決め部として円盤状ガラス基板2の外周端部2aにオリエンテーションフラット10を形成する態様としてもよい。 Here, the grinding method of the glass substrate according to the present invention is not limited to the aspect described in the above embodiment. In the above embodiment, the grinding tool is used for the chamfering process and the second grinding tool different from the grinding tool is used for the notch forming process. However, the chamfering process and the notch forming process are performed. The same grinding tool may be used for execution. Moreover, in said embodiment, although it becomes the aspect which forms a notch in the outer peripheral edge part of a disk shaped glass substrate as a positioning part, as shown in FIG. 6, the outer peripheral edge of the disk shaped glass substrate 2 as a positioning part It is good also as an aspect which forms the orientation flat 10 in the part 2a.
 さらに、上記の実施形態では、円盤状ガラス基板の外周端部を研削して面取り加工を施す面取工程を実行した後、ノッチ形成工程を実行しているが、この限りではない。面取工程を実行した後、スクライブホイールの転動、又は、レーザーの照射によって円盤状ガラス基板の外周端部にスクライブラインを形成すると共に、このスクライブラインに沿って割断を行うことで、オリエンテーションフラットを形成してもよい。この場合、形成後のオリエンテーションフラットを研削ツールで研削して面取り加工を施すことが好ましい。なお、この面取り加工に用いる研削ツールとしては、上記研削ツールや第二の研削ツールを用いてもよいし、これら以外の研削ツールを用いてもよい。そして、この面取り加工を実行する際にも、研削ツールを円盤状ガラス基板の厚み方向に延びる軸線を回転中心として回転させることが好ましい。 Furthermore, in the above embodiment, the notch forming process is performed after the chamfering process for chamfering by grinding the outer peripheral edge of the disk-shaped glass substrate, but this is not restrictive. After performing the chamfering process, a scribe line is formed on the outer peripheral edge of the disk-shaped glass substrate by rolling of the scribe wheel or laser irradiation, and the orientation flat is formed by cleaving along the scribe line. May be formed. In this case, it is preferable to chamfer the formed orientation flat by grinding it with a grinding tool. In addition, as a grinding tool used for this chamfering process, the said grinding tool and the 2nd grinding tool may be used, and grinding tools other than these may be used. And also when performing this chamfering process, it is preferable to rotate a grinding tool centering | focusing on the axis line extended in the thickness direction of a disk shaped glass substrate.
 加えて、上記の実施形態の変形例として、上記研削ツールと第二の研削ツールとが、その回転軸を共有していてもよい。すなわち、両研削ツールが、例えば、軸方向に相互に離間した状態で同一の回転軸に取り付けられていてもよい。 In addition, as a modification of the above embodiment, the grinding tool and the second grinding tool may share the rotation axis. That is, both grinding tools may be attached to the same rotating shaft, for example, in a state of being separated from each other in the axial direction.
 1     研削ツール
 1a    外周部
 1aa   外周端面
 2     円盤状ガラス基板
 2a    外周端部
 2aa   外周端面
 2b    中心
 2c    上面
 2d    下面
 3     第二の研削ツール
 3a    外周部
 4     ノッチ
 5     軸線
 6     軸線
 7     軸線
 8     テーブル
 8a    支持部
 8aa   孔
 9     研削溝
 9a    底部
 9b    側壁部
 10    オリエンテーションフラット
 A     回転方向
 B     回転方向
 C     旋回方向
 D1    径
 D2    径
 F     回転方向
 S     軌道
 W     最大幅
DESCRIPTION OF SYMBOLS 1 Grinding tool 1a Outer peripheral part 1aa Outer peripheral end surface 2 Disc-shaped glass substrate 2a Outer peripheral end part 2aa Outer peripheral end face 2b Center 2c Upper surface 2d Lower surface 3 Second grinding tool 3a Outer peripheral part 4 Notch 5 Axis 6 Axis 7 Axis 8 Table 8a Support part 8aa Hole 9 Grinding groove 9a Bottom portion 9b Side wall portion 10 Orientation flat A Rotating direction B Rotating direction C Turning direction D1 diameter D2 diameter F Rotating direction S Orbit W Maximum width

Claims (11)

  1.  研削ツールを回転させることで円盤状ガラス基板の外周端部を研削する方法であって、
     前記研削ツールを、前記円盤状ガラス基板の厚み方向に延びる軸線を回転中心として回転させることを特徴とするガラス基板の研削方法。
    A method of grinding an outer peripheral edge of a disk-shaped glass substrate by rotating a grinding tool,
    A method for grinding a glass substrate, wherein the grinding tool is rotated with an axis extending in a thickness direction of the disk-shaped glass substrate as a rotation center.
  2.  前記円盤状ガラス基板を、その中心で厚み方向に延びる軸線を回転中心として回転させると共に、
     前記研削ツールに、前記円盤状ガラス基板の回転方向に逆らって該円盤状ガラス基板の周りを旋回させることを特徴とする請求項1に記載のガラス基板の研削方法。
    The disk-shaped glass substrate is rotated with an axis extending in the thickness direction at the center thereof as a rotation center,
    The method for grinding a glass substrate according to claim 1, wherein the grinding tool is rotated around the disk-shaped glass substrate against the rotation direction of the disk-shaped glass substrate.
  3.  前記外周端部を研削した後、
     前記研削ツール、又は、前記円盤状ガラス基板の厚み方向に延びる軸線を回転中心として回転し、且つ前記研削ツールとは異なる第二の研削ツールを用いて、
     前記円盤状ガラス基板の位置決めを行うために前記外周端部の一部が除去されてなる位置決め部を、前記外周端部に形成することを特徴とする請求項1又は2に記載のガラス基板の研削方法。
    After grinding the outer peripheral edge,
    Using the grinding tool or a second grinding tool that rotates around an axis extending in the thickness direction of the disc-shaped glass substrate and is different from the grinding tool,
    3. The glass substrate according to claim 1, wherein a positioning portion formed by removing a part of the outer peripheral end portion is formed in the outer peripheral end portion in order to position the disk-shaped glass substrate. Grinding method.
  4.  前記第二の研削ツールとして、前記研削ツールよりも径の小さいツールを用いることを特徴とする請求項3に記載のガラス基板の研削方法。 The glass substrate grinding method according to claim 3, wherein a tool having a diameter smaller than that of the grinding tool is used as the second grinding tool.
  5.  前記位置決め部が、前記円盤状ガラス基板の中心側から外周側に向かって漸次に形成幅が拡大するノッチであり、
     該ノッチを形成するに際し、形成を予定した前記ノッチの最大幅よりも径の小さい前記第二の研削ツールを用いることを特徴とする請求項4に記載のガラス基板の研削方法。
    The positioning portion is a notch whose formation width gradually increases from the center side of the disk-shaped glass substrate toward the outer peripheral side,
    5. The method for grinding a glass substrate according to claim 4, wherein when forming the notch, the second grinding tool having a diameter smaller than the maximum width of the notch scheduled to be formed is used.
  6.  前記第二の研削ツールとして、径が2mm以下のツールを用いることを特徴とする請求項4又は5に記載のガラス基板の研削方法。 The glass substrate grinding method according to claim 4 or 5, wherein a tool having a diameter of 2 mm or less is used as the second grinding tool.
  7.  前記外周端部の研削に伴って該外周端部に面取り加工を施すと共に、前記位置決め部を形成する際に該位置決め部に面取り加工を施すに際し、
     前記第二の研削ツールとして、研削のために該第二の研削ツールの外周部に形成された研削溝の形状及び寸法が、前記研削ツールの外周部に形成された研削溝の形状及び寸法と同一であるツールを用いることを特徴とする請求項3~6のいずれかに記載のガラス基板の研削方法。
    When chamfering the outer peripheral end portion with grinding of the outer peripheral end portion, and when chamfering the positioning portion when forming the positioning portion,
    As the second grinding tool, the shape and size of the grinding groove formed on the outer peripheral portion of the second grinding tool for grinding are the shape and size of the grinding groove formed on the outer peripheral portion of the grinding tool. The glass substrate grinding method according to any one of claims 3 to 6, wherein the same tool is used.
  8.  前記研削ツールと前記第二の研削ツールとが、その回転軸を共有していることを特徴とする請求項4~6のいずれかに記載のガラス基板の研削方法。 The method for grinding a glass substrate according to any one of claims 4 to 6, wherein the grinding tool and the second grinding tool share the rotation axis thereof.
  9.  前記位置決め部を形成する際に、前記円盤状ガラス基板を静止させた状態に固定することを特徴とする請求項3~8のいずれかに記載のガラス基板の研削方法。 9. The method for grinding a glass substrate according to claim 3, wherein the disk-shaped glass substrate is fixed in a stationary state when the positioning portion is formed.
  10.  前記位置決め部を形成した後、前記外周端部にエッチング処理を施すことを特徴とする請求項3~9のいずれかに記載のガラス基板の研削方法。 10. The method of grinding a glass substrate according to claim 3, wherein after the positioning portion is formed, the outer peripheral end portion is etched.
  11.  前記外周端部を研削した後、
     スクライブホイールの転動、又は、レーザーの照射によって前記外周端部にスクライブラインを形成すると共に、該スクライブラインに沿って割断を行うことで、オリエンテーションフラットを形成することを特徴とする請求項1又は2に記載のガラス基板の研削方法。
    After grinding the outer peripheral edge,
    The orientation flat is formed by forming a scribe line at the outer peripheral end by rolling of a scribe wheel or laser irradiation, and cleaving along the scribe line. 3. The method for grinding a glass substrate according to 2.
PCT/JP2016/059231 2015-05-22 2016-03-23 Glass substrate grinding method WO2016189945A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680011055.XA CN107249818B (en) 2015-05-22 2016-03-23 Grinding method of glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-104640 2015-05-22
JP2015104640A JP6583663B2 (en) 2015-05-22 2015-05-22 Glass substrate grinding method

Publications (1)

Publication Number Publication Date
WO2016189945A1 true WO2016189945A1 (en) 2016-12-01

Family

ID=57394053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059231 WO2016189945A1 (en) 2015-05-22 2016-03-23 Glass substrate grinding method

Country Status (4)

Country Link
JP (1) JP6583663B2 (en)
CN (1) CN107249818B (en)
TW (1) TW201703926A (en)
WO (1) WO2016189945A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154933A (en) * 2016-03-02 2017-09-07 日本電気硝子株式会社 Plate glass and method for producing the same
WO2017149876A1 (en) * 2016-03-04 2017-09-08 日本電気硝子株式会社 Plate glass, method for producing same, and etching treatment device
JP2019204940A (en) * 2018-05-25 2019-11-28 力成科技股▲分▼有限公司 Wafer processing method using full edge trimming

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110281101B (en) * 2019-07-23 2021-10-29 西安奕斯伟材料科技有限公司 Edge grinding device and method
TW202134490A (en) * 2020-03-13 2021-09-16 鴻創應用科技有限公司 Method of manufacturing aluminum nitride wafer and the aluminum nitride wafer thereof
CN111941197B (en) * 2020-08-25 2022-01-28 广西益顺盈智能科技集团有限公司 Vertical edge grinding surface adsorption device for mobile phone liquid crystal display and using method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117546A (en) * 1989-06-21 1991-05-20 Silicon Technol Corp Notch grinding machine
JPH0578477U (en) * 1992-03-26 1993-10-26 フジオーゼックス株式会社 Grinding wheel for engine valve grinding
JPH07205001A (en) * 1993-11-16 1995-08-08 Tokyo Seimitsu Co Ltd Wafer chamfering machine
JP2000042887A (en) * 1998-05-18 2000-02-15 Tokyo Seimitsu Co Ltd Wafer chamfering method
JP2001030149A (en) * 1999-06-24 2001-02-06 Wacker Siltronic G Fuer Halbleitermaterialien Ag Method for grinding surface of work
JP2002283201A (en) * 2001-03-28 2002-10-03 Mitsubishi Materials Silicon Corp Manufacturing method of semiconductor wafer
JP2006205661A (en) * 2005-01-31 2006-08-10 Sumitomo Electric Ind Ltd Substrate manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165763A (en) * 1984-09-06 1986-04-04 Nippon Sheet Glass Co Ltd Grinding device for end face of a plate
JP2611829B2 (en) * 1988-12-31 1997-05-21 エムテック株式会社 Notch grinding method and apparatus for semiconductor wafer
JP3173144B2 (en) * 1992-07-09 2001-06-04 旭硝子株式会社 Inner / outer circumference processing method and apparatus for donut-shaped plate
JPH11320363A (en) * 1998-05-18 1999-11-24 Tokyo Seimitsu Co Ltd Wafer chamferring device
JP2007048780A (en) * 2005-08-05 2007-02-22 Tokyo Seimitsu Co Ltd Wafer chamfering device
JP2007044853A (en) * 2005-08-12 2007-02-22 Tokyo Seimitsu Co Ltd Method and apparatus for chamfering wafer
JP2008018502A (en) * 2006-07-13 2008-01-31 Ebara Corp Substrate polishing device, substrate polishing method, and substrate treating device
WO2009078421A1 (en) * 2007-12-19 2009-06-25 Nippon Electric Glass Co., Ltd. Glass substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117546A (en) * 1989-06-21 1991-05-20 Silicon Technol Corp Notch grinding machine
JPH0578477U (en) * 1992-03-26 1993-10-26 フジオーゼックス株式会社 Grinding wheel for engine valve grinding
JPH07205001A (en) * 1993-11-16 1995-08-08 Tokyo Seimitsu Co Ltd Wafer chamfering machine
JP2000042887A (en) * 1998-05-18 2000-02-15 Tokyo Seimitsu Co Ltd Wafer chamfering method
JP2001030149A (en) * 1999-06-24 2001-02-06 Wacker Siltronic G Fuer Halbleitermaterialien Ag Method for grinding surface of work
JP2002283201A (en) * 2001-03-28 2002-10-03 Mitsubishi Materials Silicon Corp Manufacturing method of semiconductor wafer
JP2006205661A (en) * 2005-01-31 2006-08-10 Sumitomo Electric Ind Ltd Substrate manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154933A (en) * 2016-03-02 2017-09-07 日本電気硝子株式会社 Plate glass and method for producing the same
WO2017149877A1 (en) * 2016-03-02 2017-09-08 日本電気硝子株式会社 Plate glass and method for producing same
US10773994B2 (en) 2016-03-02 2020-09-15 Nippon Electric Glass Co., Ltd. Plate glass and method for producing same
WO2017149876A1 (en) * 2016-03-04 2017-09-08 日本電気硝子株式会社 Plate glass, method for producing same, and etching treatment device
JP2019204940A (en) * 2018-05-25 2019-11-28 力成科技股▲分▼有限公司 Wafer processing method using full edge trimming

Also Published As

Publication number Publication date
TW201703926A (en) 2017-02-01
CN107249818B (en) 2020-06-16
CN107249818A (en) 2017-10-13
JP6583663B2 (en) 2019-10-02
JP2016215339A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
WO2016189945A1 (en) Glass substrate grinding method
JP6619685B2 (en) Processing method of SiC wafer
KR102277933B1 (en) Wafer processing method
JP6198618B2 (en) Wafer processing method
JP4892201B2 (en) Method and apparatus for processing step of outer peripheral edge of bonded workpiece
JP2018063987A (en) Wafer processing method
JP2010263084A (en) Method of manufacturing soi wafer
JP2010052084A (en) Blade with hub
JP2017195244A (en) SiC WAFER PROCESSING METHOD
JP5119614B2 (en) Wafer outer periphery grinding method
JP5623249B2 (en) Wafer chamfering method
JP2011187608A (en) Method for processing wafer
JP2006159334A (en) Dicing dressing table structure and dicer
JP2012222310A (en) Method for processing wafer
TWI804670B (en) Method and apparatus for manufacturing semiconductor device
JP4103808B2 (en) Wafer grinding method and wafer
JP2021072353A (en) Wafer processing method
JP2018069348A (en) Fairing method of chuck table
JP6803169B2 (en) Grinding method
JP2016007739A (en) Scribing wheel and manufacturing method of the same
JP6016473B2 (en) Wafer processing method
JP2008034875A (en) Semiconductor device and manufacturing method therefor
JP2010017820A (en) Blade with hub
KR101394226B1 (en) Method for processing eyeglass lens
KR100910916B1 (en) Method for grinding surface of silicon ingot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799653

Country of ref document: EP

Kind code of ref document: A1