WO2016188505A1 - Structure d'un réseau de semi-conducteurs - Google Patents

Structure d'un réseau de semi-conducteurs Download PDF

Info

Publication number
WO2016188505A1
WO2016188505A1 PCT/CN2016/090840 CN2016090840W WO2016188505A1 WO 2016188505 A1 WO2016188505 A1 WO 2016188505A1 CN 2016090840 W CN2016090840 W CN 2016090840W WO 2016188505 A1 WO2016188505 A1 WO 2016188505A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
semiconductor
light emitting
units
array
Prior art date
Application number
PCT/CN2016/090840
Other languages
English (en)
Inventor
Chen-Fu Chu
Chen-Hsien Chu
Original Assignee
Hiphoton Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/720,316 external-priority patent/US10910350B2/en
Application filed by Hiphoton Co., Ltd filed Critical Hiphoton Co., Ltd
Publication of WO2016188505A1 publication Critical patent/WO2016188505A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81909Post-treatment of the bump connector or bonding area
    • H01L2224/8192Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • This invention relates a structure of a semiconductor array, and more particularly to a structure of filling with a polymer in a street between semiconductor units.
  • the invention discloses a structure of a semiconductor array comprises multiple semiconductor units, an isolation layer and a decomposed or buffer unit. Multiple semiconductor units combined the semiconductor array. The isolation layer coated each semiconductor unit. The decomposed or buffer unit coated the isolation layer and filled between each semiconductor unit to enhance structure of the semiconductor units. Wherein, the isolation layer protected by edge of the semiconductor units and the decomposed or buffer unit.
  • the isolation layer and the polymer are provided to separate each single semiconductor light emitting unit. Two neighbor semiconductor light emitting unit structure could be separated by the isolation layer and the polymer. The light emitted from each semiconductor light emitting unit could be confined by said polymer. Each semiconductor light emitting unit could only propagate within a single semiconductor light emitting unit region.
  • the polymer provides continuous structure to connect the matrix array of the semiconductor light emitting units.
  • a color conversion layer is formed on top of each single semiconductor light emitting unit to convert the light from a first spectrum to a second spectrum.
  • FIG. 1 is a schematic cross section diagram of a semiconductor chip array on a substrate, and an isolation layer on the edge of each semiconductor unit.
  • FIG. 2 is a schematic cross section diagram of a semiconductor chip array and edge surrounding isolation layer mounting to a carrier.
  • FIG. 3 is a schematic cross section diagram of filling with the polymer in a street between semiconductor chip array units and the carrier.
  • FIG. 4 is a schematic cross section diagram of covering with the polymer layer in a street between semiconductor chip array units and the carrier and forming an air gap.
  • FIG. 5 is a schematic cross section diagram of FIG. 3 structure after removing the substrate.
  • FIG. 6 is a schematic cross section diagram of FIG. 4 structure after removing the substrate.
  • FIG. 7 is a schematic cross section diagram of multiple semiconductor light emitting array units filling with the polymer mounting on the backplane (driver) .
  • FIG. 8 is the top view of the FIG. 7, showing an example of 4x4 semiconductor light emitting array units filling with the polymer mounting on the backplane (driver) .
  • FIG 9 is a schematic cross section diagram of multiple semiconductor light emitting array units covering with the polymer layer mounting on the backplane (driver) .
  • FIG. 10 is the top view of the FIG. 9, showing an example of 4x4 semiconductor light emitting array units covering with the polymer mounting on the backplane (driver) .
  • FIG. 11 is a schematic cross section diagram of FIG. 7 structure after removing the substrate.
  • FIG. 12 is a schematic cross section diagram of FIG. 9 structure after removing the substrate.
  • FIG. 13 is the separated semiconductor light emitting array units on the backplane (driver) after removing the substrate and polymer.
  • FIG. 14 is a scheme cross section diagram, showing a conformal insulation layer could be coated on the FIG. 13 structure.
  • FIG. 15 is a schematic cross section diagram, showing an insulation polymer layer could be coated on the FIG. 13 structure.
  • FIG. 16A is a schematic cross section diagram of a dam array patterning on top of the FIG. 12 structure.
  • FIG. 16B is a schematic view showing a three dimensional view of FIG. 16A.
  • FIG. 17 is a schematic cross section diagram of color conversion layer patterning on the structure of FIG. 16 in accordance with UV emitted semiconductor light emitting array unit.
  • FIG. 1 shows the scheme cross section diagram of a semiconductor array 100 on a substrate 10, and an isolation layer 101 on the edge of each semiconductor unit 11. Multiple semiconductor units 11 combined the semiconductor array 100.
  • the semiconductor unit 11 and a street 12 could be defined by photolithography and patterning.
  • the isolation layer 101 could be deposited and patterning to form on the edge of the semiconductor unit 11. In option, the isolation layer 101 could be patterned proportion on top of the semiconductor unit 11.
  • the isolation layer 101 could be deposited by dielectric material such as SiO x , Si x N y , Al 2 O 3 , TiO 2 using plasma enhance chemical vapor deposition, chemical vapor deposition, physical vapor deposition, atomic layer deposition.
  • the isolation layer 101 could be polymer such as polyimide, silicone, and epoxy.
  • FIG. 2 shows the scheme cross section diagram of semiconductor array 100 and edge surrounding isolation layer 101 mounting to a carrier 20.
  • the carrier 20 could be hard material such as Si wafer, glass, sapphire, or any semiconductor wafers.
  • the carrier 20 could be flexible material such as polyimide, plastics, thin glass or any material having flexible and soft properties.
  • the mounting process could be selected form solder bonding, glue attach, stamping.
  • a street 12 could be formed between the semiconductor unit 11 and the carrier 20.
  • the invention provides a decomposed or buffer unit.
  • the decomposed or buffer unit can be satisfied by a polymer.
  • FIG. 3 shows the scheme cross section diagram of filling with the polymer 30 in a street 12 between semiconductor units 11 and the carrier 20.
  • FIG. 4 shows the scheme cross section diagram of covering with the polymer 30 in a street 12 between semiconductor units 11 and the carrier 20 and forming an air gap 40.
  • the polymer 30 could be single layer or multiple layers covering into the semiconductor array units.
  • the polymer 30 could be cured by thermal curing, UV curing, or IR curing after photolithography patterning or filling.
  • the polymer 30 could be selected from the hard materials, such as gels, glues, sol-gels, epoxy, silicone, polyimide, phenyl-silicone; photo-sensitive resister, UV cure able glues, and thermal cure able glues.
  • the polymer 30 could be also selected from the stretch materials, such as gels, glues, epoxy, polyimide, parylene, silicone, methyl-silicone, cohesive gels, silicone gels, PMMA, photosensitive photoresist, UV or thermal cure able glues.
  • the polymer 30 formed in street could help to make the structure of the semiconductor units 11 more robust.
  • one sandwich structure 31 could be formed by the polymer 30, isolation layer 101 and the semiconductor units 11.
  • the semiconductor unit 11 and the polymer 30 sandwich the isolation layer 101.
  • the isolation layer 101 could be supported well by the sandwich structure.
  • the isolation layer 101 could be protected by the edge of the semiconductor units 11 and the polymer 30 which in the street 12.
  • the continuous interfacial structure underneath of the substrate 10 could help to enhance the entire semiconductor array 100 strength. For any additional further process steps, the continuous structure could be sustained with no damage.
  • the polymer 30 when applying a physical force to remove the substrate 10, the polymer 30 could provide a continuous robust strength structure for the entire semiconductor units 11 on the carrier 20 to prevent the damage/crack of hard materials (or called brittle materials) .
  • the hard material (or called brittle material) could be the semiconductor chips layers, the isolation layer 101, and the cured polymer 30.
  • one sandwich structure 41 could be formed by air gap 40, the polymer 30, isolation layer 101 and the semiconductor units 11.
  • FIG. 5 shows the scheme cross section diagram of FIG. 3 structure after removing the substrate 10.
  • FIG. 6 shows the scheme cross section diagram of FIG. 4 structure after removing the substrate 10.
  • the substrate 10 could be removed through different technologies.
  • the removing of the substrate 10 could be performed through laser irradiation technology, substrate 10 grinding technology, chemical wet etching technology, planer, and mechanical substrate 10 removal technology.
  • substrate 10 is performed through laser irradiation technology, the semiconductor units 11 and polymer 30 are decomposed materials.
  • the continuous materials structure underneath of the interface of substrate 10 could connect and hold all of the materials together as a completely connecting structure.
  • the isolation layer 101, polymer 30, and the semiconductor unit 11 could be completely protected by the completely compact connecting structure.
  • the completely compact connecting structure underneath of the substrate 10 could provide enough strength to keep the whole structure more robust on the carrier 20 without damage during the violent grinding process.
  • the substrate 10 may be removed or etched by violent chemical solution.
  • the continuous materials structure underneath of the interface of substrate 10 could connect and hold all of the materials together as a completely connecting structure.
  • the sandwich structure of the connecting materials could provide a compact continuous layer to stop the chemical solution penetration.
  • the continuous compact interfacial structure underneath of the substrate 10 could protect the entire structures on the carrier 20 without chemical damaging.
  • the laser could irradiate through the substrate 10 and interacting on the interface of the material underneath the substrate 10.
  • the interfacial layers underneath of the substrate 10 could be decomposed or not decomposed.
  • the continuous materials structure underneath of the interface of substrate 10 could connect and hold all the materials together as a completely compact connecting structure.
  • the polymer 30 is to fix a shape of the semiconductor units 11 and buffer a stress of the semiconductor units 11.
  • the isolation layer 101, polymer 30, and the semiconductor unit 11 could be completely protected by the completely compact connecting structure.
  • the substrate 10 could be delaminated by additional physical force from the completely compact connecting structure.
  • the connecting structure of isolation layer 101, polymer 30, and the semiconductor unit 11 could be no change before and after applying laser and another physical force to remove the substrate.
  • the semiconductor units 11 and the polymer 30 are decomposed materials when the removing of the substrate 10 is performed through laser irradiation technology; the semiconductor units 11 is decomposed materials when the removing of the substrate 10 is performed through chemical wet etching technology.
  • this method could be applied to any suitable process in different application filed such as semiconductor light emitting array unit display, touch panel, light emitting diode solid state lighting, micro engineering mechanical system, high power devices, solar cell, lithium battery, and other suitable semiconductor process.
  • semiconductor light emitting array unit display flexible solar cell, flexible battery (flexible lithium battery)
  • flexible light emitting diode solid state lighting flexible sensors, flexible panels, flexible electronics
  • the forming of the polymer 30 in sandwich structures (31 or 41) and applying laser irradiation to transfer thin film devices to a flexible carrier could be very useful methods to protect devices completely and save cost.
  • the substrate 10 could be replaced to any transparent material called “transparent substrate” for laser passing through.
  • the semiconductor unit 11 could be replaced to any material having laser decomposition properties material called “first laser decompose able unit” .
  • the isolation layer 101 could be replaced to any laser non-decomposition properties material called “laser non-decompose able unit”
  • the polymer 30 could be replaced to any laser decomposition material called “second laser decompose able unit” .
  • the decomposing interfacial layer is a portion the “first and second laser decompose able unit” .
  • the continuous materials structure underneath of the “transparent substrate 10” could connect and hold all the materials together as a completely connecting structure.
  • the “first laser decompose able unit” , and “second laser decompose able unit” sandwich the “laser non-decompose able unit” .
  • the completely compact connecting structure could be robust to sustain any other physical force.
  • the “transparent substrate 10” could be delaminated by additional physical force from the completely compact connecting structure.
  • laser non-decompose able unit deposited on the “transparent substrate 10” could be peeled from the “transparent substrate 10" without damage due to well sandwich structure of the “first laser decompose able unit” and “second laser decompose able unit” .
  • the polymer 30 in the street 12 could be provided as stretch properties to allow the bending force acting on the flexible devices without damaging.
  • the stretch material could help to support the semiconductor units and provide flex properties to prevent the crack or damage of hard materials in the structure.
  • the stretch property of polymer 30 could provide a well supporting to maintain the integrity for the structure of FIG. 5 and FIG. 6. During the bending action, the stretch polymer 30 could be extended well without separation.
  • FIG. 7 shows the scheme cross section diagram of multiple semiconductor units 11 filling with the polymer 30 mounting on the driver.
  • each semiconductor units 11 is satisfied by a semiconductor light emitting unit.
  • the semiconductor units 11 includes n-type layer 11a, active layer 11b, p-type layer 11c, n-electrode 11d, eutectic (solder) 11e, cathode 11f, p-electrode 11g and anode 11h.
  • Single semiconductor light emitting unit is the direct bandgap compound semiconductor light emitting diode (LED) .
  • the LED epitaxy structure grown on the substrate 10 consists of the initial growth epitaxy layer (n-type layer 11a) , the active layer 11b, and the p-type layer 11c.
  • the semiconductor light emitting unit structure consists of the reflector layers, the isolation layer 101, the n-electrode layers, the p-electrode layers, and the eutectic (solder) layers.
  • the electrodes of semiconductor light emitting unit is mounted to the cathode 11f (for n-electrode 11d) , anode 11h (for p-electrode 11g) of the backplane (driver) by using eutectic (solder) 11e.
  • a street region is formed (isolated) as a street to separate each single semiconductor light emitting unit.
  • the single semiconductor light emitting unit could be provided as a light engine array unit of a sub-pixel.
  • the direct bandgap semiconductor light emitting unit has self-emissive characteristics by current driving.
  • Each sub-pixel light engine unit could be controlled individually by the backplane (driver) to display images.
  • the polymer 30 is complete filling up to the edges of the single semiconductor light emitting unit and the backplane (driver) .
  • the polymer 30 fills up and covers on the bottom surface of the substrate 10 and covers on the top surface of the backplane (driver) .
  • the isolation layer 101 (insulation layer) is forming on the edge of the each semiconductor light emitting unit.
  • the polymer 30 fills up and covers the isolation layer 101.
  • the polymer 30 fills up and covers the sidewalls of electrodes (n-electrode 11d and p-electrode 11g) of each semiconductor light emitting unit.
  • the polymer 30 fills up and covers the sidewall of the eutectic (solder) 11e layer, and the sidewall of the electrodes (cathode 11f and anode 11h) of backplane (driver) .
  • the polymer 30 fill in the street region could be as a function of black matrix of array.
  • the light emitted from each sub-pixel light engine array unit could be confined to propagate the light only in each single sub-pixel region.
  • the light generated from each sub-pixel light engine array unit could be irradiated to any angle and emitted to the neighbor sub-pixels region.
  • the emitting light of each sub-pixel light engine array unit could be absorbed (or said stopped) by street polymers.
  • the polymer 30 formed in the street could be a function of black matrix array to prevent the light crosstalk effect.
  • the polymer 30 underneath of the substrate 10 in the street region could connect all individual sub-pixel light engine array units together.
  • the continuous materials underneath of the substrate 10 including the initial growth epitaxy layer, the isolation layer 101, the polymer 30, could be connected together to form a robust continuous structure.
  • the region between cathode 11f and anode 11h within a single semiconductor light emitting unit could be completely filled up polymer.
  • the semiconductor light emitting unit could be selected from different types of chip structure such as flip chip type, or vertical type, or resonant cavity type light emitting diode (RCLED) , or vertical cavity surface emitted laser (VCSEL) , or laser diode.
  • the semiconductor light emitting unit composites the epitaxy structure could be formed by direct bandgap compound semiconductor light emitting diode.
  • the emitting wavelength of semiconductor light emitting unit could be determined by the energy bandgap of direct bandgap semiconductor.
  • Different direct energy bandgap of the semiconductor light emitting material could be selected from III-V compound semiconductor such as In x Ga 1-x N, GaN, Al x Ga 1-x N, In x Ga 1-x As, InGaP, GaAs, GaAsP, InP, (Al x Ga 1-x ) y In 1-y P, GaP.
  • III-V compound semiconductor such as In x Ga 1-x N, GaN, Al x Ga 1-x N, In x Ga 1-x As, InGaP, GaAs, GaAsP, InP, (Al x Ga 1-x ) y In 1-y P, GaP.
  • the reflector underneath the p-type layer 11c could be formed by high reflectivity metal layers such as Ni/Ag, Ni/Al, Ag alloyed, and Al alloyed metallization.
  • the reflector layer could be formed by a semi-transparent contact such as Indium Tin Oxide (ITO) to make the contact to p-type layer 11c and spread the current.
  • ITO Indium Tin Oxide
  • a distributed Bragg reflector (DBR) layers could be deposited to reflect the high compact and directional light beam.
  • the emitting light spectrum width of sub-pixel light engine could be narrowed by the DBR structure.
  • the p-electrode 11g and n-electrode 11d could be deposited underneath of the semiconductor light emitting unit by selecting metal layers.
  • the electrode metal layers could be formed by selecting the metals from Ni, Cu, Al, Au, Ti, and its alloy.
  • the thickness of the electrodes metal layers could be greater than that of the thickness of one third epitaxy growth thickness.
  • a eutectic metal layer or solder metal layers could be deposited underneath of the electrodes of the semiconductor light emitting units.
  • the eutectic (solder) 11e layers as a connecting layers could be selected from AuSn, CuSn, Sn, CuAgSn, Indium, SnBi, or any suitable eutectic (soldering) metallization.
  • the eutectic (soldering) metallization could be replaced to be an anisotropic conductive adhesive material could be forcefully connect the LED to the backplane (driver) , the P-type and N-type can become fully insulated.
  • anisotropic conductive adhesive material it has metallic powder covering with nonconductive shield mixing in a polymer.
  • the nonconductive shield could be broken by thermal bonding technology to provide anisotropic conductive function.
  • the mixing polymer should have semi-transparent properties.
  • the backplane (driver) could be hard material such as glass, sapphire, Si wafer, or any suitable semiconductor wafer.
  • the backplane (driver) could be flexible or stretchable material such as polyimide, plastic, thin glass.
  • the data-lines and scan-lines of the backplane could be formed by passive matrix (PM) driving mode or active matrix (AM) driving mode to control the images display as commonly used display backplane (driver) .
  • the cathodes and anodes could be separated and patterned to form on top of the array circuit lines such as scan-lines and data-lines.
  • Each sub-pixel light engine array unit could be switched on and off by scanning to control the data-lines, and scan-lines circuit.
  • the data-lines and scan-lines could be active mode driving mode and fabricated by Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) , Complementary Metal-Oxide-Semiconductor (CMOS) , Thin-Film Transistor (TFT) , Low Temperature Poly-silicon (LTPS) , Indium Gallium Zinc Oxide (IGZO) methods to achieve.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • CMOS Complementary Metal-Oxide-Semiconductor
  • TFT Thin-Film Transistor
  • LTPS Low Temperature Poly-silicon
  • IGZO Indium Gallium Zinc Oxide
  • CMOS array module By using IC technologies, a matrix of CMOS array module could be formed on the backplane (driver) .
  • Each CMOS array unit could be integrated circuit design to connect with data line and scan line.
  • Each sub-pixel light engine array turn-on or turn-off could be switched by each CMOS array unit.
  • each sub-pixel contrast ratio, each sub-pixel brightness, each sub-pixel switch speed, each sub-pixel gray level could be programmed, adjusted, tuning.
  • Each CMOS array unit could be controlled by image display control IC.
  • the backplane (driver) could be formed on any suitable transparent hard carriers, such as sapphire, glass, quartz, acrylic, epoxy, PMMA etc., to provide a transparent carrier for some particular application such as double side transparent display.
  • the circuit of the data-lines, scan-lines, electrodes could be formed by transparent contact metallization or semitransparent contact metallization such as ITO, IGZO, nano silver lines, or Graphene.
  • the material of the backplane (driver) could be selected from curve able, flexible, soft materials, such as polyimide, plastic, soft and thin glass, epoxy, PMMA, silicone, to provide a carrier for the curved and flexible display application.
  • the commonly active matrix (AM) driving methods such as MOSFET, CMOS, TFT (Thin-Film Transistor) , LTPS (low temperature poly-silicon) , and IGZO (indium gallium zinc oxide) could be formed on the flexible material.
  • AM active matrix
  • passive matrix driving methods such as stacking circuit with cathodes, and anodes could be formed by using 3D stacking circuit, flexible printed circuit film, Flexible Panel Circuit (FPC) , Chip On Film (COF) fabrication technology on the flexible material.
  • the polymer 30 could be formed by patterning and filling.
  • the polymer 30 could be cured by thermal curing, UV curing, or IR curing after photolithography patterning or filling.
  • the polymer 30 could be selected from the hard materials, such as gels, glues, sol-gels, epoxy, silicone, polyimide, phenyl-silicone; photo-sensitive resister, UV cure able glues, and thermal cure able glues.
  • the polymer 30 could be also selected from the stretch materials, such as gels, glues, epoxy, polyimide, parylene, silicone, methyl-silicone, cohesive gels, silicone gels, PMMA, photosensitive photoresist, UV or thermal cure able glues.
  • the polymer 30 could be purposed as black matrix array to absorb the light.
  • the polymer 30 could be selected from dyeing hard materials, such as gels, glues, sol-gels, epoxy, silicone, polyimide, phenyl-silicone; photo-sensitive resister, UV cure able glues, and thermal cure able glues.
  • the polymer 30 could be also selected from dyeing stretch materials, such as gels, glues, epoxy, polyimide, parylene, silicone, methyl-silicone, cohesive gels, silicone gels, PMMA, photosensitive photoresister, UV or thermal cure able glues.
  • the polymer 30 could be also purposed as black matrix to confine the light within a sub-pixel region.
  • the polymer 30 could be selected from mixing the polymer with sub-micro size powders.
  • the powders could be selected from TiO 2 , Al 2 O 3 , SiO 2 , ZnO, Si.
  • the light hit the black matrix, the light could be refracted and reflected back to single sub-pixel region by the sub-micro size powders mixing polymer.
  • FIG. 8 shows an example of the 4x4 matrix semiconductor light emitting unit array.
  • the region between two semiconductor light emitting array units is called the street region.
  • Each semiconductor light emitting array unit could be separated by a street and the street could be occupied completely by polymer 30.
  • FIG. 8 illustrates each semiconductor light emitting unit has one interfacial epitaxy image (Called image 1) which is the initial interfacial growth epitaxy layer underneath of the substrate 10.
  • an isolation layer 101 could be deposited surround on each semiconductor light emitting unit has the second interfacial image (Called image 2) which is the isolation layer 101 underneath of the substrate 10.
  • the isolation layer 101 is surrounding covered on the edge of each semiconductor light emitting unit.
  • the polymer 30 underneath of the substrate 10 shows another different interfacial image (Called image 3) .
  • the polymer 30 formed in the street region could help to make the structure of the semiconductor light emitting units more robust.
  • One sandwich structure could be formed by the polymer 30 and the semiconductor light emitting units.
  • the semiconductor light emitting unit and the polymer 30 sandwich the isolation layer 101.
  • the isolation layer 101 could be supported well by the sandwich structure.
  • the isolation layer 101 could be protected by the edge of the semiconductor light emitting units and the street polymer 30.
  • the continuous interfacial structure underneath of the substrate 10 could help to enhance the entire matrix array structure strength. For any additional further process steps, the continuous structure could be sustained with no damage.
  • the polymer 30 when applying a physical force to remove the substrate 10, the polymer 30 could provide a continuous robust strength structure for the entire array sub-pixel light engines to prevent the damage/crack of hard materials (or called brittle materials) .
  • the polymer 30 is to fix a shape of the semiconductor units 11 and buffer a stress of the semiconductor units 11.
  • the hard material (or called brittle material) could be the epi structure layer, the isolation layer 101, and the cured polymer 30.
  • FIG. 9 shows the scheme cross section diagram of multiple semiconductor light emitting units covering with the polymer 30 layer mounting on the backplane (driver) .
  • each single semiconductor light emitting unit is the compound semiconductor light emitting diode (LED) .
  • the LED epitaxy structure grown on the substrate 10 consists of the initial growth epitaxy layer (n-type layer 11a) , the active layer 11b, and the p-type layer 11c.
  • the semiconductor light emitting unit structure consists of the reflector layer, the isolation layer 101, the n-electrode layer 11d, the p-electrode layer 11g, the eutectic (solder) 11e layer.
  • the electrodes of semiconductor light emitting units is mounted to the cathode 11f (for n-electrode 11d) , anode 11h (for p-electrode 11g) of the backplane (driver) by using eutectic (solder) layer. Between two neighbor semiconductor light emitting units, a street region is formed (isolated) as a street to separate each single semiconductor light emitting unit. Between the semiconductor light emitting unit and the backplane (driver) , a region is formed as another street to isolate the p-electrode 11g and n-electrode 11d.
  • the single semiconductor light emitting unit could be provided as a single sub-pixel light engine unit.
  • the direct bandgap semiconductor light emitting unit has self-emissive characteristics. Each sub-pixel light engine array unit could be controlled individually by the backplane (driver) to display images.
  • FIG. 9 shows the polymer 30 layer could cover the bottom surface of the substrate 10, the single semiconductor light emitting unit sidewall edge and the top surface of the backplane (driver) .
  • the polymer 30 is a covering layer covers on the isolation layer 101 surround on the sidewall edge of the single semiconductor light emitting unit.
  • the polymer 30 is a covering layer covers on the sidewalls of electrodes (cathode 11f and anode 11h) of the single semiconductor light emitting unit, the sidewall of the eutectic (solder) 11e layer, and the sidewall of electrodes (cathode11f and anode 11h) of backplane (driver) .
  • the polymer 30 is only a covering layer and an Air gap 40 could be formed.
  • the covering polymer 30 in the street region could be as a function of black matrix of array.
  • the light emitted from each sub-pixel light engine array could be controlled to propagate in each single sub-pixel region.
  • the light generated from each sub-pixel light engine array could be irradiated to any angle and emitted to the neighbor sub-pixels region.
  • the emitting light of each sub-pixel light engine array could be absorbed, stopped, or reflected by street polymers.
  • the polymer 30 formed in the street could be a black matrix array function to prevent the light crosstalk effect.
  • the polymer 30 underneath of the substrate 10 in the street region could connect all individual sub-pixel light engine array units together.
  • the continuous materials underneath of the substrate 10 including the initial growth epitaxy layer, the isolation layer 101, the polymer 30, could be connected together to form a robust structure.
  • the polymer 30 could be only formed as a layer underneath of the isolation layer 101 and on top of the backplane (driver) .
  • the polymer 30 is a covering layer covers on the sidewalls of electrodes (cathode, and anode) of the single semiconductor light emitting unit, the sidewall of the eutectic (solder) layer, and the sidewall of electrodes (cathode 11f and anode 11h) of backplane (driver) .
  • the Air gap 40 could be formed in the region between cathode 11f and anode 11h within a single semiconductor light emitting unit.
  • FIG. 10 shows an example of the 4x4 matrix semiconductor light emitting unit array covering with the polymer 30 layer in the street.
  • FIG. 10 illustrates each semiconductor light emitting unit has one interfacial epitaxy image (Called image 1) which is the initial interfacial growth epitaxy layer underneath of the substrate 10.
  • an isolation layer 101 could be deposited surround on each semiconductor light emitting unit has the second interfacial image (Called image 2) which is the isolation layer 101 underneath of the substrate 10.
  • the isolation layer 101 is surrounding covered on the edge of each semiconductor light emitting unit.
  • the region between two semiconductor light emitting units is called the street region.
  • the polymer 30 covering on the isolation layer 101 has another interfacial image (Called image 3) .
  • the image of the polymer 30 covering on top surface of the backplane (driver) could be reflected through the air gap 40 and mixing with the polymer 30 covers on the bottom surface of substrate 10 in the middle of the street to show another image (Called image 4) .
  • the covering polymer 30 layer formed in the street region could connect all the semiconductor light emitting units together.
  • the covering polymer 30 layer could help to make the structure of the semiconductor light emitting units more robust.
  • the Air gap 40 was formed after the polymer 30 covering.
  • the Air gap 40 in the specific region could be a function of air buffer to allow the structure of the semiconductor light emitting units more flexible after substrate 10 removal.
  • the polymer 30 formed in the street region could help to make the structure of the semiconductor light emitting units more robust.
  • One sandwich structure could be formed by the covering street polymer 30and the semiconductor light emitting units.
  • the isolation layer 101 could be sandwiched by the covering street polymer layer and the semiconductor light emitting unit.
  • the isolation layer 101 could be supported well by the sandwich structure.
  • the isolation layer 101 could be protected by the edge of the semiconductor light emitting units and the covering street polymer layer.
  • the continuous interfacial structure underneath of the substrate 10 could help to enhance the entire matrix array structure strength. For any additional further process steps, the continuous structure could be sustained with no damage.
  • the polymer when applying a physical force to remove the substrate 10, the polymer could provide a continuous robust strength structure for the entire array sub-pixel light engines to prevent the damage/crack of hard materials (or called brittle materials) .
  • the hard material (or called brittle material) could be the epitaxy structure layer, the isolation layer 101, and the cured polymer 30.
  • the air gap 40 could be a buffer to provide a buffer room for the entire matrix array structure more flexible to sustain the additional physical force.
  • the epi growth substrate 10 could be removed through different technologies.
  • the removing of the growth substrate 10 could be performed through laser irradiation technology, substrate 10 grinding technology, chemical lift-off technology, and mechanical substrate 10 removal technology.
  • Polymer 30 is to fix a shape of the semiconductor units 11 and buffer a stress of the semiconductor units 11.
  • the substrate 10 For the laser irradiation technology, as the laser irradiate through the substrate 10 and interacting on the interface of the material underneath the substrate 10. The major portion of the interfacial materials underneath of the substrate 10 may be decomposed. In some particular case, some interfacial material underneath of the substrate 10 may stick on the substrate 10 without decomposition. In another particular case, some interfacial material underneath of the substrate 10 could be decomposed, but stick back to the substrate 10 after laser irradiation. Thus, after laser irradiation, the substrate 10 could be removed by applying additional physical force. After laser irradiation, there may remain some interfacial material still stick on the underneath of the substrate 10.
  • the image 1 interface layer could be decomposed by laser to be a metallic residue and a gas.
  • the metallic residue could help the semiconductor light emitting unit still fixing on the substrate.
  • the metallic residue is not a strong fixing material and could be peeled off by additional physical force.
  • the image 2 interface layer could not be decomposed by laser and still well stick on the substrate.
  • the image 3 and image 4 interface layer could be decomposed to carbon residue.
  • the carbon residue could help the polymer still fixing on the substrate.
  • the carbon residue is not a strong fixing material and could be peeled off by additional physical force.
  • the continuous materials structure underneath of the interface of substrate 10 could connect and hold all the materials together as a completely compact connecting structure.
  • the isolation layer 101, polymer 30, and the semiconductor light emitting unit could be completely protected by the completely compact connecting structure.
  • the substrate 10 could be delaminated by applying additional physical force from the completely compact connecting structure.
  • the isolation layer 101, polymer 30, and the semiconductor light emitting unit could be no change before and after applying laser irradiation and another physical force.
  • the metallic residue and carbon residue could be then cleaned up by chemical solutions.
  • the grinding of substrate 10 has violent physical force to remove the substrate 10.
  • the continuous materials structure underneath of the interface of substrate 10 could connect and hold all of the materials together as a completely connecting structure.
  • the isolation layer 101, polymer 30, and the semiconductor light emitting unit could be completely protected by the completely compact connecting structure.
  • the completely compact connecting structure underneath of the substrate 10 could provide enough strength to keep the whole structure more robust without damage during the violent grinding process.
  • the substrate 10 may be removed by violent chemical solution.
  • the invented structure of FIG. 1, and FIG. 3 could provide a strong chemical resistant material underneath of the substrate 10.
  • the initial growth epi layer, isolation layer 101 and the polymer 30 are continuous structure in the street region.
  • the continuous compact interfacial structure underneath of the substrate 10 could protect the entire structures of the semiconductor light emitting unit without chemical damaging.
  • a temporary layer could be initial grown on the substrate 10.
  • the temporary layer is purposed to provide a mechanical lift off interfacial layer.
  • the substrate 10 could be removed by applying a strong physical force such as rotating or pulling up substrate 10 to delaminate the temporary layer.
  • the continuous materials structure underneath of the interface of substrate 10 could connect and hold all of the materials together as a completely connecting structure.
  • the isolation layer 101, polymer 30, and the semiconductor light emitting unit could be completely protected by the completely compact connecting structure.
  • the invented structure of FIG. 1, and FIG. 3 with completely connecting structure underneath of the substrate 10 could provide a well supporting to prevent any mechanical damage.
  • FIG. 11 shows the scheme cross section structure of FIG. 7 after removing the substrate 10.
  • the semiconductor light emitting units on the backplane (driver) could still perform three different images.
  • the three different images are the Initial growth epitaxy layer (image 1) , the isolation layer 101 (image 2) , and the polymer 30 (image 3) .
  • the semiconductor light emitting units on backplane (driver) after substrate 10 removal has the same height of materials meaning that the image 1, image 2, and image 3 are at the same level.
  • the same height materials could simplify additional fabricating process such as forming the color conversion layer on top of the semiconductor light emitting unit.
  • the polymer 30 in the street region could be purposed as a function of black matrix of array to absorb, stop or reflect the light escaping from the edge of semiconductor light emitting unit and prevent the crosstalk effect.
  • the substrate 10 might not need to be removed.
  • the non-transparent polymer 30 in the street region as a black matrix could prevent the light crosstalk issue.
  • FIG. 12 shows the scheme cross section structure of FIG. 9 after removing of the substrate 10.
  • the semiconductor light emitting array units on backplane (driver) could still perform four different images.
  • the four images are the Initial growth epitaxy layer (image 1) , the isolation layer 101 (image 2) , the polymer 30 in the edge region of the street covering the isolation layer 101 (image 3) , the polymer 30 covering on top surface of the backplane (driver) could be reflected through the air gap 40 and mixing with the polymer 30 in the middle of the street (image 4) .
  • the semiconductor light emitting units on backplane (driver) after substrate 10 removal has the same height of materials, image 1, image 2, image 3, and image 4. The same height materials could simplify additional fabricating process.
  • the polymer 30 in the street region could be purposed as a function of black matrix of array to absorb, stop or reflect the light escaping from the edge of semiconductor light emitting array unit and prevent the crosstalk effect.
  • the substrate 10 might not need to be removed.
  • the non-transparent polymer 30 in the street region as a black matrix could prevent the light crosstalk issue.
  • the polymer 30 in the street could be provided as stretch properties to allow the bending force acting on the display matrix.
  • the polymer 30 could be selected from the stretch materials, such as gels, glues, epoxy, polyimide, parylene, silicone, methyl-silicone, cohesive gels, silicone gels, PMMA, photosensitive resister, UV or thermal cure able glues.
  • the stretch material described above could help to support the semiconductor light emitting array units and provide flex properties to prevent the crack or damage of hard materials in the structure.
  • the hard materials such as the epitaxy structure, the isolation layer 101 are very thin in the structure.
  • the semiconductor light emitting array unit as a pixel light engine unit with isolation layer 101 surrounding on the edge could be very hard and brittle materials.
  • the stretch property of polymer 30 could provide a well supporting to maintain the integrity for the structure of FIG. 11, and the structure of FIG. 12.
  • additional physical force to bend the display is a fundamental requirement.
  • the stretch polymer 30 could grip to clamp the semiconductor light emitting units and provide a flex buffer room to allow the bending force working on the semiconductor light emitting array units without damaging the structure.
  • the size of the semiconductor light emitting unit are ranging from 0.5 ⁇ m to 1000 ⁇ m, the stretch polymer 30 allow a wide angle of bending for curved or flexible display application. During the bending action, the stretch polymer 30 could be extended well without separation.
  • the street polymer 30 could be removed after removing the substrate 10. After removing substrate 10, top of the semiconductor light emitting units and the polymer 30 will form a flat plane P.
  • FIG. 13 shows the street polymer 30 is removed.
  • Each semiconductor light emitting array unit could be separated only by an air gap 40 in the street.
  • three images could be obtained from the top view.
  • the initial growth epitaxy image1
  • the isolation layer 101 image 2
  • the air gap the backplane (driver) surface
  • image 5 the mono color display module
  • the empty street region and the top of the semiconductor light emitting array units could be formed an insulation layer as a passivation layer.
  • the insulation layer could be a conformal layer selecting from depositing parylene, SiN x , SiO 2 or other suitable passivation materials.
  • FIG. 14 shows a conformal insulation layer could be coated on the FIG. 13 structure. In FIG. 14, the street region still remains an air buffer structure after conformal insulation layer coating. The FIG. 14 structure could be applied for flexible mono color display application.
  • the passivation layer could be another polymer 30 layer coating on top of the semiconductor light emitting array unit and fill in the street region.
  • FIG. 15 shows a polymer 30 layer coated on the FIG. 13 structure. The entire FIG. 15 structure could keep a flat top surface for further process steps. Please note that the thickness of the polymer 30 layer should be better selected to be less than 10 ⁇ m to prevent the waveguide effect the light emitted from the sub-pixel light engine light guiding to the neighbor sub-pixel region.
  • the backplane (driver) is flexible and could be selected from polyimide, plastic, thin glass.
  • the covering polymer 30 of FIG. 15 structure could be selected from stretch material such as gels, glues, epoxy, polyimide, parylene, silicone, methyl-silicone, cohesive gels, silicone gels, PMMA, photosensitive photoresist, UV or thermal cure able glues.
  • the color conversion layers could be patterning on top of the FIG. 11, FIG. 12, FIG. 13, FIG. 14, and FIG. 15 structure in each one semiconductor light emitting array unit.
  • a dam array could be first formed on top of the street region of FIG. 12 structure.
  • FIG. 16 shows a dam array could be directly patterned on top surface of the flat street of FIG. 12 structure.
  • FIG. 16B is a schematic view showing a three dimensional view of FIG. 16A. Multiple dams D set on the flat plane and top of the polymer to combine a dam array.
  • the dam array could be as a black matrix to distinguish the light from each semiconductor light emitting array unit.
  • the dam array could be deposited on top flat surface to cover the polymer 30, isolator, and a portion of n-type layer. Please note that the dam array could be only selected forming on top of the polymer 30 within the street.
  • the dam array could be patterned through black dyeing photoresist, or could be patterned by metal deposition.
  • FIG. 17 shows a different color conversion (wavelength conversion) layers could be formed in the dam directly on top of the FIG. 16A structure.
  • Multiple color conversion layers C set on the flat plane P and filled in the dam array to convert the light of semiconductor light emitting units from the a first spectrum to a second spectrum.
  • a blue conversion layer could be proportion patterned inside the dam on top of the n-type layer of the UV semiconductor light emitting array unit
  • a green conversion layer could be proportion patterned inside the dam on top of the n-type layer of the UV semiconductor light emitting array unit
  • a red conversion layer could be proportion patterned inside the dam on top of the n-type layer of the UV semiconductor light emitting array unit.
  • the color conversion layers could be formed by using selective color converting phosphors, selective color converting quantum dots, and other materials having the various color converting properties.
  • the patterning of the color converters could be formed by mixing phosphors or QDs with photo-sensitive polymer 30 for photolithography.
  • the photo-sensitive polymer 30 could be photo-sensitive silicone, photo-sensitive PMMA, photo-sensitive polyimide, photo-sensitive epoxy, photo-sensitive gels, gules.
  • the patterning of the color conversion layers could be fabricated by photolithography, micro screen printing, micro jetting, micro inkjet printing, micro contacting printing, micro dispensing, nano-imprinting, self-assembly, or other lithographic and photolithographic technologies.
  • the color conversion layers could be a color phosphor.
  • the color phosphor could be selected to be micro and sub-micro size mixing with polymer for better color uniformity.
  • the color phosphor for example could be selected from the material such as Ca 2 PO 4 Cl: Eu 2+ , RbBaPO 4 : Eu 2+ (RBP) phosphor for blue color conversion.
  • the color phosphor for example could be selected from the material such as (Ca, Sr, Ba, ) 2 (Mg, Zn) Si 2 O 7 : Eu, (Ba, Sr) 2 SiO 4 : Eu 2+ phosphor for green color conversion.
  • the color phosphor for example could be selected from the material such as Sr 2 Si 5 N 8 , CaAlSiN 3 : Eu phosphor for red color conversion.
  • the wavelength conversion layer could be a color phosphor.
  • the color phosphor could be selected to be sub-micro size mixing with polymer for better color uniformity.
  • the color phosphor for example could be selected from the material such as (Sr, Ga, Ba) S: Eu, SrSiON: Eu phosphor for green color conversion.
  • the color phosphor for example could be selected from the material such as (SrCa) AlSiN 3 : Eu, (Ca, Sr, Ba) S: Eu phosphor for red color conversion.
  • the red (R) phosphor, green (G) phosphor, blue (B) phosphor could be proportionally patterning and filling by using micro dropping, micro dispensing, micro screen printing, direct self-assembly, micro contacting printing, micro inkjet printing, or other lithographic and photolithographic technologies.
  • the color conversion layers could be selected from Blue, Green, and Red quantum dots (QDs) .
  • the color converter material could be formed by size selective quantum dots (QDs) in polylaurylmethacrylate (PLMA) or polymethyl methacrylate (PMMA) .
  • the QDs can be selected from CdSe/ZnS.
  • the fill in process could be done by using micro dropping, micro dispensing, micro screen printing, direct self-assembly, micro contacting printing, micro inkjet printing, or other lithographic and photolithographic technologies.
  • the color conversion layers could be selected from mixing polymer, full color spectrum phosphor, and color filter photoresist.
  • the color filter photoresist could be selected from red, green, and blue colors. When the UV or blue light hit the full color spectrum phosphor, the light could be converted to a full color spectrum. The full color spectrum light will be absorbed by the color filter photoresist. The full color spectrum light will only emit the color of its color filter spectrum. For example of mixing red color filter photoresist, the full color spectrum light after phosphor will only emit the red color.
  • the semiconductor light emitting array units could be the blue light emitting emission spectrum as the sub-pixel light engine.
  • the blue conversion layer in FIG. 17 could be replaced to a transparent material.
  • the structure of FIG. 17 could be fabricated by using another embodiment, the dam array and the color conversion (wavelength conversion) layers could be first formed on another transparent material (not shown in here) .
  • the patterning color wavelength conversion layers and the dam array could be formed on the transparent material.
  • the transparent material having patterning color conversion layers and dam array could be then aligned and mounted onto the semiconductor light emitting array unit to provide a full color display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

Structure d'un réseau de semi-conducteurs comprenant de multiples unités semi-conductrices, une couche d'isolation et une unité tampon ou décomposée. De multiples unités semi-conductrices sont combinées au réseau de semi-conducteurs. La couche d'isolation recouvre chaque unité semi-conductrice. L'unité tampon ou décomposée recouvre la couche d'isolation et est chargée entre chaque unité semi-conductrice afin d'améliorer la structure des unités semi-conductrices. La couche d'isolation est protégée par le bord des unités semi-conductrices et de l'unité tampon ou décomposée.
PCT/CN2016/090840 2015-05-22 2016-07-21 Structure d'un réseau de semi-conducteurs WO2016188505A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/720,316 2015-05-22
US14/720,316 US10910350B2 (en) 2014-05-24 2015-05-22 Structure of a semiconductor array

Publications (1)

Publication Number Publication Date
WO2016188505A1 true WO2016188505A1 (fr) 2016-12-01

Family

ID=57395740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090840 WO2016188505A1 (fr) 2015-05-22 2016-07-21 Structure d'un réseau de semi-conducteurs

Country Status (1)

Country Link
WO (1) WO2016188505A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3065322A1 (fr) * 2017-04-18 2018-10-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de realisation d'un dispositif d'affichage a matrice de leds
WO2019028314A1 (fr) * 2017-08-03 2019-02-07 Cree, Inc. Puces del pixelisées à haute densité et dispositifs à réseau de puces, et procédés de fabrication
US10312224B2 (en) 2016-04-12 2019-06-04 Cree, Inc. High density pixelated LED and devices and methods thereof
US10529773B2 (en) 2018-02-14 2020-01-07 Cree, Inc. Solid state lighting devices with opposing emission directions
CN111106221A (zh) * 2018-10-28 2020-05-05 广东众元半导体科技有限公司 一种圆片级深紫外led的封装方式
US10734363B2 (en) 2017-08-03 2020-08-04 Cree, Inc. High density pixelated-LED chips and chip array devices
CN111785751A (zh) * 2020-06-23 2020-10-16 东莞市中晶半导体科技有限公司 可区块电测的Micro LED晶圆及转移方法
US10903265B2 (en) 2018-12-21 2021-01-26 Cree, Inc. Pixelated-LED chips and chip array devices, and fabrication methods
CN112382716A (zh) * 2020-10-28 2021-02-19 厦门三安光电有限公司 一种led发光装置及其制造方法
US11160148B2 (en) 2017-06-13 2021-10-26 Ideal Industries Lighting Llc Adaptive area lamp
WO2022003323A1 (fr) * 2020-06-29 2022-01-06 Plessey Semiconductors Ltd Procédé de formation d'un dispositif d'affichage et dispositif d'affichage
CN113985512A (zh) * 2021-11-25 2022-01-28 京东方科技集团股份有限公司 滤光片bank的制备方法、滤光片bank、滤光片及显示装置
US11437548B2 (en) 2020-10-23 2022-09-06 Creeled, Inc. Pixelated-LED chips with inter-pixel underfill materials, and fabrication methods
US11792898B2 (en) 2012-07-01 2023-10-17 Ideal Industries Lighting Llc Enhanced fixtures for area lighting
US11817526B2 (en) 2019-10-29 2023-11-14 Creeled, Inc. Texturing for high density pixelated-LED chips and chip array devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6649489B1 (en) * 2003-02-13 2003-11-18 Taiwan Semiconductor Manufacturing Company Poly etching solution to improve silicon trench for low STI profile
JP2006245046A (ja) * 2005-02-28 2006-09-14 Toshiba Microelectronics Corp 半導体装置の製造方法
CN102468241A (zh) * 2010-11-15 2012-05-23 三星电子株式会社 制造非易失性存储器装置的方法
CN102760683A (zh) * 2011-04-27 2012-10-31 海力士半导体有限公司 具有包括空气间隙的间隔体的半导体器件的制造方法
CN103377982A (zh) * 2012-04-20 2013-10-30 爱思开海力士有限公司 半导体器件及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6649489B1 (en) * 2003-02-13 2003-11-18 Taiwan Semiconductor Manufacturing Company Poly etching solution to improve silicon trench for low STI profile
JP2006245046A (ja) * 2005-02-28 2006-09-14 Toshiba Microelectronics Corp 半導体装置の製造方法
CN102468241A (zh) * 2010-11-15 2012-05-23 三星电子株式会社 制造非易失性存储器装置的方法
CN102760683A (zh) * 2011-04-27 2012-10-31 海力士半导体有限公司 具有包括空气间隙的间隔体的半导体器件的制造方法
CN103377982A (zh) * 2012-04-20 2013-10-30 爱思开海力士有限公司 半导体器件及其制造方法

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11792898B2 (en) 2012-07-01 2023-10-17 Ideal Industries Lighting Llc Enhanced fixtures for area lighting
US10529696B2 (en) 2016-04-12 2020-01-07 Cree, Inc. High density pixelated LED and devices and methods thereof
US10312224B2 (en) 2016-04-12 2019-06-04 Cree, Inc. High density pixelated LED and devices and methods thereof
US11387221B2 (en) 2016-04-12 2022-07-12 Creeled, Inc. High density pixelated LED and devices and methods thereof
TWI668835B (zh) * 2016-04-12 2019-08-11 美商克里公司 高密度像素化發光二極體及其之裝置和方法
US10910352B2 (en) 2016-04-12 2021-02-02 Cree, Inc. High density pixelated LED and devices and methods thereof
US11776938B2 (en) 2016-04-12 2023-10-03 Creeled, Inc. High density pixelated LED and devices and methods thereof
TWI676261B (zh) * 2016-04-12 2019-11-01 美商克里公司 高密度像素化發光二極體及其之裝置和方法
US10468436B2 (en) 2017-04-18 2019-11-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of manufacturing a LED matrix display device
FR3065322A1 (fr) * 2017-04-18 2018-10-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de realisation d'un dispositif d'affichage a matrice de leds
EP3392918A1 (fr) * 2017-04-18 2018-10-24 Commissariat à l'énergie atomique et aux énergies alternatives Procede de realisation d'un dispositif d'affichage a matrice de leds
US11160148B2 (en) 2017-06-13 2021-10-26 Ideal Industries Lighting Llc Adaptive area lamp
US10734363B2 (en) 2017-08-03 2020-08-04 Cree, Inc. High density pixelated-LED chips and chip array devices
JP2020529738A (ja) * 2017-08-03 2020-10-08 クリー インコーポレイテッドCree Inc. 高密度ピクセル化ledチップ、チップアレイデバイス、及びその製造方法
WO2019028314A1 (fr) * 2017-08-03 2019-02-07 Cree, Inc. Puces del pixelisées à haute densité et dispositifs à réseau de puces, et procédés de fabrication
JP7290001B2 (ja) 2017-08-03 2023-06-13 クリーエルイーディー・インコーポレーテッド 高密度ピクセル化ledチップ、チップアレイデバイス、及びその製造方法
US11417635B2 (en) 2017-08-03 2022-08-16 Creeled, Inc. High density pixelated-LED chips and chip array devices
US10651357B2 (en) 2017-08-03 2020-05-12 Cree, Inc. High density pixelated-led chips and chip array devices
US10529773B2 (en) 2018-02-14 2020-01-07 Cree, Inc. Solid state lighting devices with opposing emission directions
CN111106221A (zh) * 2018-10-28 2020-05-05 广东众元半导体科技有限公司 一种圆片级深紫外led的封装方式
US10903268B2 (en) 2018-12-21 2021-01-26 Cree, Inc. Pixelated-LED chips and chip array devices, and fabrication methods
US11664407B2 (en) 2018-12-21 2023-05-30 Creeled, Inc. Pixelated-LED chips and chip array devices, and fabrication methods
US10903265B2 (en) 2018-12-21 2021-01-26 Cree, Inc. Pixelated-LED chips and chip array devices, and fabrication methods
US11817526B2 (en) 2019-10-29 2023-11-14 Creeled, Inc. Texturing for high density pixelated-LED chips and chip array devices
CN111785751A (zh) * 2020-06-23 2020-10-16 东莞市中晶半导体科技有限公司 可区块电测的Micro LED晶圆及转移方法
WO2022003323A1 (fr) * 2020-06-29 2022-01-06 Plessey Semiconductors Ltd Procédé de formation d'un dispositif d'affichage et dispositif d'affichage
US11437548B2 (en) 2020-10-23 2022-09-06 Creeled, Inc. Pixelated-LED chips with inter-pixel underfill materials, and fabrication methods
CN112382716A (zh) * 2020-10-28 2021-02-19 厦门三安光电有限公司 一种led发光装置及其制造方法
CN113985512A (zh) * 2021-11-25 2022-01-28 京东方科技集团股份有限公司 滤光片bank的制备方法、滤光片bank、滤光片及显示装置

Similar Documents

Publication Publication Date Title
US20210125971A1 (en) Structure of a semiconductor array
WO2016188505A1 (fr) Structure d'un réseau de semi-conducteurs
US20230101190A1 (en) Semiconductor continuous array layer
US10205055B2 (en) Light engine array
US10096647B2 (en) Display apparatus having a plurality of reflective electrodes
CN107393940B (zh) Led显示设备及其制造方法
US10297722B2 (en) Micro-light emitting diode with metal side mirror
US20190326330A1 (en) Micro led display substrate, method for manufacturing the same, and display device
EP3332404B1 (fr) Dispositif d'affichage et procédé de fabrication
US11915962B2 (en) High-resolution micro-LED display panel and manufacturing method of the same
US20160181476A1 (en) Micro led with dielectric side mirror
CN113725249B (zh) 一种芯片结构、制作方法和显示装置
EP3076442A1 (fr) Dispositif d'affichage utilisant un dispositif électroluminescent à semi-conducteur
CN111048497B (zh) 一种有源矩阵彩色显示器件的制造方法
US11764196B2 (en) Optoelectronic device comprising light-emitting diodes
CN110993647B (zh) 一种有源矩阵显示器件的制造方法
CN209929349U (zh) 显示面板
EP4160703A1 (fr) Micro-del et module d'affichage la comprenant
CN209929308U (zh) 显示面板
CN209929348U (zh) 显示面板
KR20190117968A (ko) 디스플레이 장치 및 그의 제조 방법
CN111863871A (zh) 一种显示面板及其制备方法
CN110993761A (zh) 有源矩阵彩色显示器件
WO2022209824A1 (fr) Procédé de fabrication de dispositif d'affichage d'image, et dispositif d'affichage d'image
US20230197915A1 (en) Light-emitting device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799392

Country of ref document: EP

Kind code of ref document: A1