WO2016188462A1 - 磁悬浮轴承开关功率放大器及其控制方法 - Google Patents

磁悬浮轴承开关功率放大器及其控制方法 Download PDF

Info

Publication number
WO2016188462A1
WO2016188462A1 PCT/CN2016/083589 CN2016083589W WO2016188462A1 WO 2016188462 A1 WO2016188462 A1 WO 2016188462A1 CN 2016083589 W CN2016083589 W CN 2016083589W WO 2016188462 A1 WO2016188462 A1 WO 2016188462A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch tube
bridge arm
bearing
diode
circuit
Prior art date
Application number
PCT/CN2016/083589
Other languages
English (en)
French (fr)
Inventor
黄辉
胡余生
郭伟林
贺永玲
李燕
胡叨福
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Publication of WO2016188462A1 publication Critical patent/WO2016188462A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the invention relates to the technical field of switching power amplifiers, in particular to a magnetic suspension bearing switching power amplifier and a control method thereof.
  • Magnetic suspension bearing control systems generally use switching power amplifiers, generally using H-bridge topology.
  • the current in the coil is unidirectional
  • the H-bridge topology is in the form of a half-bridge
  • the half-bridge is composed of two bridge arms, and each bridge arm is composed of one controllable switch. And a diode.
  • a half-bridge H-bridge controls a coil.
  • there are 10 bearing coils so 10 half-bridge H-bridges are required, that is, 20 controllable switches and 20 diodes are required.
  • the solution requires more power devices, higher hardware costs, and larger hardware.
  • the prior art discloses a full-bridge three-bridge power amplifier solution.
  • Three bridge arms control two coils, and six switch tubes are PWM-modulated by a space vector method.
  • this method reduces the use of power devices by sharing one bridge arm, it reduces the duty ratio of the six switching tubes by space vector technology, the control method is complicated, and the switching power consumption is large. .
  • the object of the present invention is to provide a magnetic suspension bearing switching power amplifier and a control method thereof, which reduce the volume of the switching power amplifier, reduce the cost, and have low switching loss, and the control method is simple and reliable.
  • the present invention adopts the following technical solutions:
  • a magnetic suspension bearing switching power amplifier comprises a main control circuit, a driving circuit, a three-bridge arm power main circuit and a current sampling circuit, the main control circuit, the driving circuit, the three-bridge arm power main circuit and the current
  • the sampling circuit is sequentially cyclically connected;
  • the three-bridge power main circuit includes three bridge arms and two bearing coils, and the two bearing coils are a first bearing coil L1 and a second bearing coil L2, respectively, and the three bridge arms are respectively a first bridge arm, a second bridge arm and a third bridge arm, the first bearing coil L1 is disposed between the first bridge arm and the second bridge arm, and the second bearing coil L2 is disposed at the second bridge arm And the third bridge arm, the first bearing coil L1 and the second bearing coil L2 share the second bridge arm;
  • a switch tube is disposed on the upper arm of the first bridge arm and the third bridge arm, and a switch tube is disposed on a lower arm of the shared second bridge arm, or the first bridge arm and the a switch tube is disposed on the lower arm of the third bridge arm, and a switch tube is disposed on the upper arm of the shared second bridge arm, and the driving signal of the switch tube on the shared second bridge arm is fixed Duty cycle.
  • the first bridge arm includes a first switch tube T1 and a first diode D1
  • the second bridge arm includes a second switch tube T2 and a second diode D2
  • the first The three bridge arm includes a third switch tube T3 and a third diode D3;
  • a base of the first switch T1 is connected to the driving circuit, and is adapted to input a first driving signal g1, and an emitter of the first switching transistor T1 is connected to a cathode of the first diode D1, the first An anode of a diode D1 is coupled to an emitter of the second switching transistor T2, a collector of the first switching transistor T1 is coupled to a cathode of the second diode D2, and a second diode D2 is The anode is connected to the collector of the second switching transistor T2, the base of the second switching transistor T2 is connected to the driving circuit, and is suitable for inputting the second driving signal g2;
  • the collector of the third switch T3 is connected to the cathode of the second diode D2, and the base of the third switch T3 is connected to the driving circuit, and is suitable for inputting a third driving signal g3.
  • the emitter of the third switch tube T3 is connected to the cathode of the third diode D3, and the anode of the third diode D3 is connected to the emitter of the second switch tube T2;
  • One end of the first bearing coil L1 is connected to the emitter of the first switch tube T1, the other end of the first bearing coil L1 is connected to the collector of the second switch tube T2, and the second bearing coil L2
  • One end of the second switch tube T2 is connected to the collector of the second switch tube T2, and the other end of the second switch tube L2 is connected to the emitter of the third switch tube T3.
  • the first bridge arm includes a first switch tube T1 and a first diode D1
  • the second bridge arm includes a second switch tube T2 and a second diode D2
  • the first The three bridge arm includes a third switch tube T3 and a third diode D3;
  • a cathode of the first diode D1 is connected to a collector of the second switch tube T2, and an anode of the first diode D1 is connected to a collector of the first switch tube T1, the first switch tube
  • the base of T1 is connected to the driving circuit, and is suitable for inputting a first driving signal g1, an emitter of the first switching transistor T1 is connected to an anode of the second diode D2, and a second diode D2 is The cathode is connected to the emitter of the second switching tube T2, the base of the second switching tube T2 is connected to the driving circuit, and is suitable for inputting the second driving signal g2;
  • a cathode of the third diode D3 is connected to a collector of the second switch tube T2, an anode of the third diode D3 is connected to a collector of the third switch tube T3, and the third switch tube
  • the emitter of T3 is connected to the anode of the second diode D2, the base of the third switch transistor T3 is connected to the driving circuit, and is suitable for inputting the third driving signal g3;
  • One end of the first bearing coil L1 is connected to the collector of the first switch tube T1, and the other end of the first bearing coil L1 is connected to the emitter of the second switch tube T2, and the second bearing coil L2
  • One end of the second switch tube T2 is connected to the emitter of the second switch tube T2
  • the other end of the second switch tube L2 is connected to the collector of the third switch tube T3.
  • the main control circuit includes a preset module, a PI control module, and a PWM generation module;
  • the preset module is adapted to preset the first reference current I ref1 and the second reference current I ref2 , and preset a duty ratio of the PWM2 signal corresponding to the switch tube on the second bridge arm;
  • the PI control module is adapted to perform PI adjustment according to an error of the actual current I fdb1 of the first bearing coil and a preset first reference current I ref1 according to an actual current I fdb2 of the second bearing coil and a preset The error of the second reference current I ref2 is PI adjusted;
  • the PWM generation module is adapted to generate and output a PWM1 signal to a PWM3 signal.
  • the PWM1 signal and the PWM3 signal are inverted from the PWM2 signal, and a low-level center of the PWM1 signal and the PWM3 signal is aligned with a high-level center of the PWM2 signal.
  • the current sampling circuit includes a first current sampling circuit and a second current sampling circuit, the first current sampling circuit is coupled to the first bearing coil L1, and is adapted to collect the first bearing The actual current of the coil L1; the second current sampling circuit is coupled to the second bearing coil L2 and adapted to collect the actual current of the second bearing coil L2.
  • the current sampling circuit further includes a first A/D conversion module and a second A/D conversion module, and the first A/D conversion module is disposed in the first current sampling circuit and the Between the main control circuits, the second A/D conversion module is disposed between the second current sampling circuit and the main control circuit.
  • the first A/D conversion module and the second A/D conversion module are A/D converters or operational amplifiers.
  • the three-leg power main circuit further includes a first resistor R1 and a second resistor R2, the first resistor R1 is disposed in series with the first bearing coil L1, and the second resistor R2 It is disposed in series with the second bearing coil L2.
  • the invention also relates to a control method for a magnetic suspension bearing switching power amplifier, which is used in the magnetic suspension bearing switching power amplifier according to any of the above, comprising the following steps:
  • the main control circuit outputs the PWM1 signal by adjusting the actual current I fdb1 of the first bearing coil transmitted by the first current sampling circuit and the preset first reference current I ref1 to control the duty ratio of the first driving signal. ;
  • the main control circuit outputs the PWM3 signal by adjusting the error of the actual current I fdb2 of the second bearing coil transmitted by the second current sampling circuit and the preset second reference current I ref2 to control the duty ratio of the third driving signal. .
  • the magnetic suspension bearing switching power amplifier and the control method thereof of the invention realize the current of two bearing coils of the active magnetic suspension bearing by three bridge arms by using the second bridge arm of the two bearing coils, and the second The switching tube on the bridge arm uses a PWM2 signal with a fixed duty ratio as a driving signal, which makes the control method simple and convenient.
  • the magnetic suspension bearing switching power amplifier of the present invention requires only five half-bridge three-bridge arm power main circuits when implementing five-degree-of-freedom suspension control, that is, a total of 15 controllable switching tubes and 15 diodes are required to reduce The volume of the amplifier reduces the cost of the amplifier and reduces the switching losses of the amplifier.
  • FIG. 1 is a schematic view of an embodiment of a magnetic suspension bearing switching power amplifier of the present invention
  • FIG. 2 is a schematic view of another embodiment of a magnetic suspension bearing switching power amplifier of the present invention.
  • FIG. 3 is a hardware control block diagram of a magnetic suspension bearing switching power amplifier of the present invention.
  • Figure 5 is a flow chart showing current control of the bearing coil 2 in the magnetic suspension bearing switching power amplifier of the present invention
  • Fig. 8 is a control waveform diagram when the duty ratio of the PWM2 signal is 60% in the present invention.
  • the magnetic suspension bearing switching power amplifier of the present invention comprises a main control circuit 100, a driving circuit 200, a three-bridge power main circuit 300 and a current sampling circuit 400, a main control circuit 100, and a driving The circuit 200, the three-leg power main circuit 300, and the current sampling circuit 400 are sequentially cyclically electrically connected.
  • the three-leg power main circuit 300 includes three bridge arms and two bearing coils, and the two bearing coils are a first bearing coil L1 and a second bearing coil L2, respectively, and the three bridge arms are respectively a first bridge arm, a second bridge arm and a third bridge arm, the first bearing coil L1 is disposed between the first bridge arm and the second bridge arm, and the second bearing coil L2 is disposed between the second bridge arm and the third bridge arm, that is, the first The bearing coil L1 and the second bearing coil L2 share the second bridge arm of the H-bridge, and three bridge arms are realized to control the currents of the two bearing coils of the active magnetic suspension bearing.
  • a switch tube is disposed on the upper arm or the lower arm of each bridge arm.
  • the upper arm of the first bridge arm and the third bridge arm are provided with a switch tube, and the lower arm of the shared second bridge arm A switch tube is provided on the upper side.
  • a switch tube is disposed on the lower arm of the first bridge arm and the third bridge arm, and a switch tube is disposed on the upper arm of the shared second bridge arm, and the switch of the switch tube on the second bridge arm is shared
  • the signal has a fixed duty cycle.
  • the current of the first bearing coil L1 can be controlled by controlling the duty ratio of the driving signal of the switching tube on the first bridge arm, and the duty ratio of the driving signal of the switching tube on the third bridge arm can be controlled.
  • the control of the current of the two-bearing coil L2 makes the control method simple and easy to implement.
  • the current sampling circuit 400 is adapted to collect the actual current of the two bearing coils and transmit the actual current of the two bearing coils collected to the main control circuit 100.
  • the current sampling circuit 400 includes a first current sampling circuit 401 and a second current sampling circuit 402.
  • the first current sampling circuit 401 is connected to the first bearing coil L1 and is adapted to collect the actual current of the first bearing coil L1 and transmit the actual current of the first bearing coil L1 to the main control circuit 100.
  • the second current sampling circuit 402 is connected to the second bearing coil L2 and is adapted to collect the actual current of the second bearing coil L2 and transmit the collected actual current of the second bearing coil L2 to the main control circuit 100.
  • the current sampling circuit 400 further includes a first A/D conversion module and a second A/D conversion module.
  • the first A/D conversion module is disposed between the first current sampling circuit 401 and the main control circuit 100, and is applicable.
  • the actual current of the first bearing coil L1 collected by the first current sampling circuit 401 is converted into a digital signal recognizable by the main control circuit 100.
  • the second A/D conversion module is disposed between the second current sampling circuit 402 and the main control circuit 100, and is adapted to convert the actual current of the second bearing coil L2 collected by the second current sampling circuit 402 into the main control circuit 100.
  • the recognized digital signal Preferably, the first A/D conversion module and the second A/D conversion module in this embodiment may be implemented by using an A/D converter or an operational amplifier.
  • the main control circuit 100 is adapted to output the PWM1 signal to the PWM3 signal. Specifically, the main control circuit 100 is adapted to preset the duty ratio of the PWM2 signal corresponding to the switch tube T2 on the second bridge arm, that is, the first bearing coil L1 and the second The duty ratio of the PWM2 signal corresponding to the switch tube T2 on the second bridge arm shared by the bearing coil L2 is fixed, so that the duty ratio of the second drive signal g2 is fixed. At the same time, the main control circuit 100 is adapted to output a PWM1 signal according to the actual current I fdb1 of the first bearing coil L1 and the preset first reference current I ref1 to control the duty ratio of the first driving signal g1.
  • the main control circuit 100 outputs a PWM3 signal according to the actual current I fdb2 of the second bearing coil L2 and the preset second reference current I ref2 to control the duty ratio of the third driving signal g3. This makes the control method of the magnetic suspension bearing switching power amplifier simple and reliable, and is easy to implement.
  • the driving circuit 200 is adapted to convert the PWM1 signal to the PWM3 signal into the first to third driving signals g1 to g3 of the three-leg power main circuit 300, and the three-bridge power main circuit 300 is driven according to the first driving signal g1 to the third.
  • Signal g3 controls the turn-on or turn-off of the corresponding switch tubes on the three bridge arms.
  • the first bridge arm includes a first switch tube T1 and a first diode D1
  • the second bridge arm includes a second switch tube T2 and a second diode D2
  • the third bridge arm includes a third The switch tube T3 and the third diode D3.
  • the first switch tube T1 is disposed on the upper bridge arm of the first bridge arm
  • the second switch tube T2 is disposed on the lower bridge arm of the second bridge arm
  • the third switch tube T3 is disposed on the third bridge.
  • the base of the first switch T1 is connected to the driving circuit 200, and is adapted to input the first driving signal g1.
  • the emitter of the first switching transistor T1 is connected to the cathode of the first diode D1, and the first diode D1
  • the anode is connected to the emitter of the second switching transistor T2, and the collector of the first switching transistor T1 is connected to the cathode of the second diode D2.
  • the anode of the second diode D2 is connected to the collector of the second switching transistor T2, and the base of the second switching transistor T2 is connected to the driving circuit 200, and is adapted to input the second driving signal g2.
  • the collector of the third switching transistor T3 is connected to the cathode of the second diode D2, and the base of the third switching transistor T3 is connected to the driving circuit 200, and is suitable for inputting the third driving signal g3, and the emitter of the third switching transistor T3 is connected.
  • the cathode of the third diode D3, the anode of the third diode D3 is connected to the emitter of the second switching transistor T2.
  • the first switch tube T1, the second switch tube T2, and the third switch tube T3 in this embodiment all adopt an NPN type transistor.
  • the first switch tube T1, the second switch tube T2, and the third switch tube may also be MOS tubes or IGBT tubes or the like.
  • One end of the first bearing coil L1 is connected to the emitter of the first switch tube T1, and the other end of the first bearing coil L1 is connected to the collector of the second switch tube T2, that is, one end of the first bearing coil L1 is connected to the first switch tube T1.
  • the other end of the first bearing coil L1 is connected to the respective common ends of the second switching transistor T2 and the second diode D2, with respective common ends of the first diode D1.
  • One end of the second bearing coil L2 is connected to the collector of the second switch tube T2, and the other end of the second bearing coil L2 is connected to the emitter of the third switch tube T3, that is, one end of the second bearing coil L2 is connected to the second switch tube T2.
  • the other end of the second bearing coil L2 is connected to a corresponding common end of the second diode D2 to the respective common ends of the third switching transistor T3 and the third diode D3.
  • the first bridge arm includes a first switch tube T1 and a first diode D1
  • the second bridge arm includes a second switch tube T2 and a second diode D2
  • the third bridge arm includes The three switching tubes T3 and the third diode D3.
  • the first switch tube T1 is disposed on the lower arm of the first bridge arm
  • the second switch tube T2 is disposed on the upper bridge arm of the second bridge arm
  • the third switch tube T3 is disposed on the lower bridge of the third bridge arm.
  • the arm On the arm.
  • the cathode of the first diode D1 is connected to the collector of the second switching transistor T2
  • the anode of the first diode D1 is connected to the collector of the first switching transistor T1
  • the base of the first switching transistor T1 is connected to the driving circuit. 200, suitable for inputting the first driving signal g1.
  • the emitter of the first switch T1 is connected to the anode of the second diode D2, the cathode of the second diode D2 is connected to the emitter of the second switch T2, and the base of the second switch T2 is connected to the drive circuit 200.
  • the second drive signal g2 is input.
  • the cathode of the third diode D3 is connected to the collector of the second switching transistor T2, the anode of the third diode D3 is connected to the collector of the third switching transistor T3, and the emitter of the third switching transistor T3 is connected to the second diode.
  • the anode of D2, the base of the third switching transistor T3 is connected to the driving circuit 200, and is adapted to input the third driving signal g3.
  • the first switch tube T1, the second switch tube T2, and the third switch tube T3 in this embodiment all adopt an NPN type transistor.
  • the first switch tube T1, the second switch tube T2, and the third switch tube may also be MOS tubes or IGBT tubes or the like.
  • One end of the first bearing coil L1 is connected to the collector of the first switch tube T1, the other end of the first bearing coil L1 is connected to the emitter of the second switch tube T2, and one end of the second bearing coil L2 is connected to the emission of the second switch tube T2.
  • the other end of the second bearing coil L2 is connected to the collector of the third switching transistor T3.
  • a fourth diode is connected in series between the emitter and the collector of the switching tube on each bridge arm.
  • the number of fourth diodes is three. That is, the emitter of the first switching transistor is connected to the anode of one of the fourth diodes, and the collector of the first switching transistor is connected to the cathode of the fourth diode.
  • the emitter of the second switching transistor is connected to the anode of one of the fourth diodes, and the collector of the second switching transistor is connected to the cathode of the fourth diode.
  • the emitter of the third switching transistor is connected to the anode of a fourth diode, and the collector of the third switching transistor is connected to the cathode of the fourth diode.
  • the magnetic suspension bearing switching power amplifier of the invention only needs five half-bridge three-bridge arm power main circuits when implementing five-degree-of-freedom suspension control, that is, 15 switching tubes and 15 diodes are required. Therefore, compared with the prior art, the magnetic suspension bearing switching power amplifier of the present invention has a small volume, a low cost, and a low switching loss, thereby saving resources.
  • the three-bridge power main circuit 300 further includes a first resistor R1 and a second resistor R2.
  • the first resistor R1 is disposed in series with the first bearing coil L1, and the first current sampling circuit 401 is connected to the first resistor R1 and the first resistor A corresponding common end of the bearing coil L1.
  • the second resistor R2 is disposed in series with the second bearing coil L2, and the second current sampling circuit 402 is coupled to the respective common ends of the second resistor R2 and the second bearing coil L2.
  • the first resistor R1 and the second resistor R2 function as current limiting to protect the first bearing coil L1 and the second bearing coil L2 from damage.
  • the main control circuit 100 includes a preset module, a PI control module, and a PWM generation module.
  • the main control circuit in this embodiment may use one or more of a processor such as a DSP (digital signal processor), an FPGA (Field-Programmable Gate Array), a single chip microcomputer, or an industrial computer.
  • the preset module is adapted to preset the first reference current I ref1 and the second reference current I ref2 , and preset a duty ratio of the PWM2 signal corresponding to the switch tube on the second bridge arm to control the second driving signal g2
  • the duty ratio is such that the duty ratio of the PWM2 signal corresponding to the switch tube T2 on the second bridge arm is fixed.
  • the PWM generation module is suitable for generating and outputting PWM1 signals to PWM3 signals.
  • the PI control module is adapted to perform PI adjustment according to the error of the actual current I fdb1 of the first bearing coil L1 and the preset first reference current I ref1 , and transmit the result of the PI adjustment to the PWM generating module, and the PWM generating module generates and The PWM1 signal is output to control the duty ratio of the first drive signal g1, thereby realizing the adjustment of the actual current of the first bearing coil L1 such that the actual current of the first bearing coil L1 approaches the preset first reference current I ref1 .
  • the PI control module performs PI adjustment according to the error of the actual current I fdb2 of the second bearing coil L2 and the preset second reference current I ref2 , and transmits the result of the PI adjustment to the PWM generation module, and the PWM generation module generates and The PWM3 signal is output to control the duty ratio of the third drive signal g3, thereby realizing the adjustment of the actual current of the second bearing coil L2 such that the actual current of the second bearing coil L2 approaches the preset second reference current I ref2 .
  • the PWM1 signal and the PWM3 signal are inverted from the PWM2 signal to prevent shoot-through.
  • the low-level center of the PWM1 signal and the PWM3 signal are aligned with the high-level center of the PWM2 signal, that is, the PWM1 signal and the PWM3 signal are both reference signals of the PWM2 signal.
  • the present invention further provides a control method for a magnetic suspension bearing switching power amplifier based on the same inventive concept, which is used in the magnetic suspension bearing switching power amplifier according to any of the above aspects, comprising the following steps:
  • the duty ratio of the PWM2 signal corresponding to the switch tube T2 on the second bridge arm of the three-leg power main circuit 300 is preset, so that the duty ratio of the second drive signal g2 is a fixed value;
  • the main control circuit 100 adjusts the error of the actual current I fdb1 of the first bearing coil L1 and the preset first reference current I ref1 transmitted by the first current sampling circuit 401 to the PWM1 signal to control the first driving signal g1. Duty cycle. Thereby, the actual current flowing through the first bearing coil L1 is adjusted such that the deviation of the actual current I fdb1 of the first bearing coil L1 from the preset first reference current I ref1 is close to zero.
  • the main control circuit 100 adjusts the error of the actual current I fdb2 of the second bearing coil L2 and the preset second reference current I ref2 transmitted by the second current sampling circuit 402 via the PI to output a PWM3 signal to control the third driving signal g3. Duty cycle. Thereby, the actual current flowing through the second bearing coil L2 is adjusted such that the deviation of the actual current I fdb2 of the second bearing coil L2 from the preset second reference current I ref2 is close to zero.
  • the main control circuit 100 adjusts the duty ratio of the PWM1 signal corresponding to the first switching transistor T1 by PI adjustment, thereby making the first bearing coil The actual current of L1 rises.
  • the main control circuit is adjusted by the PI to reduce the duty ratio of the PWM1 signal corresponding to the first switch tube, thereby making the actual of the first bearing coil L1 The current drops until the actual current of the first bearing coil L1 approaches the first reference current I ref1 .
  • the current adjustment process of the second bearing coil L2 is the same as the above process, and will not be described herein.
  • the duty ratio of the PWM2 signal corresponding to the second switch T2 is 50%.
  • the PWM1 signal corresponding to the first switch T1 and the PWM3 signal corresponding to the third switch T3 have a duty ratio greater than At 50%, the two bearing coils have two states of charging and freewheeling, and the actual current of the bearing coil is likely to rise, and the greater the duty ratio of the PWM1 signal and the PWM3 signal, the more the actual current of the bearing coil rises.
  • the two bearing coils have two states of discharge and freewheeling, the actual current of the bearing coil will drop, and the smaller the duty ratio of the PWM1 signal and the PWM3 signal, the more the actual current drop of the bearing coil, the actual current of the bearing coil The minimum value is 0.
  • the duty ratio of the PWM2 signal corresponding to the second switching transistor T2 is less than 50%, and the duty ratio of the PWM2 signal is 40%.
  • the PWM1 signal corresponding to the first switching transistor T1 is The duty ratio of the PWM3 signal corresponding to the third switch tube T3 is greater than 60%, and the two bearing coils have two states of charging and freewheeling, and the actual current of the bearing coil is likely to rise, and the duty ratio of the PWM1 signal and the PWM3 signal The larger the larger the actual current of the bearing coil is.
  • the two bearing coils have two states of discharge and freewheeling, the actual current of the bearing coil will drop, and the smaller the duty ratio of the PWM1 signal and the PWM3 signal, the more the actual current drop of the bearing coil, the actual current of the bearing coil The minimum value is 0.
  • the duty ratio of the PWM2 signal corresponding to the second switch T2 is greater than 50%, and the duty ratio of the PWM2 signal is 60%.
  • the PWM1 signal corresponding to the first switch T1 is The duty ratio of the PWM3 signal corresponding to the third switch tube T3 is greater than 40%, and the two bearing coils have two states of charging and freewheeling, and the actual current of the bearing coil may rise, and the duty ratio of the PWM1 signal and the PWM3 signal The larger the larger the actual current of the bearing coil is.
  • the two bearing coils have two states of discharge and freewheeling, the actual current of the bearing coil will drop, and the smaller the duty ratio of the PWM1 signal and the PWM3 signal, the more the actual current drop of the bearing coil, the actual current of the bearing coil The minimum value is 0.
  • the magnetic suspension bearing switching power amplifier and the control method thereof of the invention realize the current of two bearing coils of the active magnetic suspension bearing by three bridge arms by using the second bridge arm of the two bearing coils, and the second
  • the switching tube on the bridge arm uses a PWM signal with a fixed duty ratio as a driving signal, which not only makes the control method simple and convenient, but also Ming magnetic suspension bearing switching power amplifier requires only five half-bridge three-bridge power main circuits when implementing 5-degree-of-freedom suspension control, that is, a total of 15 controllable switching tubes and 15 diodes are required, which reduces the amplifier's
  • the volume reduces the cost of the amplifier and reduces the switching losses of the amplifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种磁悬浮轴承开关功率放大器,包括主控电路(100)、驱动电路(200)、三桥臂功率主电路(300)和电流采样电路(400);三桥臂功率主电路(300)包括三个桥臂和两个轴承线圈,第一桥臂和第三桥臂的上桥臂上设置有开关管,共用的第二桥臂的下桥臂上设置有开关管,或者第一桥臂和第三桥臂的下桥臂上设置有开关管,共用的第二桥臂的上桥臂上设置有开关管,且共用的第二桥臂上开关管的驱动信号具有固定的占空比。以及一种磁悬浮轴承开关功率放大器的控制方法。该磁悬浮轴承开关功率放大器及其控制方法,减小了放大器的体积,降低了放大器的开关损耗,而且控制方式简单便捷。

Description

磁悬浮轴承开关功率放大器及其控制方法
相关申请
本发明申请要求2015年05月27日申请的,申请号为201510278738.9,名称为“磁悬浮轴承开关功率放大器及其控制方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及开关功率放大器技术领域,特别是涉及一种磁悬浮轴承开关功率放大器及其控制方法。
背景技术
磁悬浮轴承控制系统普遍采用开关功率放大器,一般采用H桥拓扑结构。而在纯电磁轴承系统中,线圈中的电流是单向流动的,其H桥拓扑结构形式为半桥结构,半桥结构由2个桥臂组成,每个桥臂由1个可控开关管和1个二极管组成。一个半桥式H桥控制一个线圈,在一个5自由度磁悬浮轴承系统中,共有10个轴承线圈,故需要10个半桥式H桥,即需要20个可控开关管和20二极管,因此该方案所需的功率器件较多,硬件成本较高,且硬件体积较大。
现有技术公开了一种全桥式三桥臂功率放大器方案,三个桥臂控制两个线圈,采用空间矢量法对6个开关管进行PWM调制。这种方式虽然通过共用一个桥臂来控制两个线圈,减少了功率器件的使用,但是其是通过空间矢量技术控制6个开关管的占空比,控制方法较为复杂,且开关功耗较大。
发明内容
鉴于现有技术的现状,本发明的目的在于提供一种磁悬浮轴承开关功率放大器及其控制方法,减小了开关功率放大器的体积,降低了成本,且开关损耗较低,控制方法简单可靠。
为实现上述目的,本发明采用如下技术方案:
一种磁悬浮轴承开关功率放大器,包括主控电路、驱动电路、三桥臂功率主电路和电流采样电路,所述主控电路、所述驱动电路、所述三桥臂功率主电路和所述电流采样电路依次循环电连接;
所述三桥臂功率主电路包括三个桥臂和两个轴承线圈,两个所述轴承线圈分别为第一轴承线圈L1和第二轴承线圈L2,三个桥臂分别为第一桥臂、第二桥臂和第三桥臂,所述第一轴承线圈L1设置在所述第一桥臂和所述第二桥臂之间,所述第二轴承线圈L2设置在所述第二桥臂和所述第三桥臂之间,所述第一轴承线圈L1和所述第二轴承线圈L2共用所述第二桥臂;
所述第一桥臂和所述第三桥臂的上桥臂上设置有开关管,共用的所述第二桥臂的下桥臂上设置有开关管,或者所述第一桥臂和所述第三桥臂的下桥臂上设置有开关管,共用的所述第二桥臂的上桥臂上设置有开关管,且共用的所述第二桥臂上开关管的驱动信号具有固定的占空比。
在其中一个实施例中,所述第一桥臂包括第一开关管T1和第一二极管D1,所述第二桥臂包括第二开关管T2和第二二极管D2,所述第三桥臂包括第三开关管T3和第三二极管D3;
所述第一开关管T1的基极连接所述驱动电路,适用于输入第一驱动信号g1,所述第一开关管T1的发射极连接所述第一二极管D1的阴极,所述第一二极管D1的阳极连接所述第二开关管T2的发射极,所述第一开关管T1的集电极连接所述第二二极管D2的阴极,所述第二二极管D2的阳极连接所述第二开关管T2的集电极,所述第二开关管T2的基极连接所述驱动电路,适用于输入第二驱动信号g2;
所述第三开关管T3的集电极连接所述第二二极管D2的阴极,所述第三开关管T3的基极连接所述驱动电路,适用于输入第三驱动信号g3,所述第三开关管T3的发射极连接所述第三二极管D3的阴极,所述第三二极管D3的阳极连接所述第二开关管T2的发射极;
所述第一轴承线圈L1的一端连接所述第一开关管T1的发射极,所述第一轴承线圈L1的另一端连接所述第二开关管T2的集电极,所述第二轴承线圈L2的一端连接所述第二开关管T2的集电极,所述第二轴承线圈L2的另一端连接所述第三开关管T3的发射极。
在其中一个实施例中,所述第一桥臂包括第一开关管T1和第一二极管D1,所述第二桥臂包括第二开关管T2和第二二极管D2,所述第三桥臂包括第三开关管T3和第三二极管D3;
所述第一二极管D1的阴极连接所述第二开关管T2的集电极,所述第一二极管D1的阳极连接所述第一开关管T1的集电极,所述第一开关管T1的基极连接所述驱动电路,适用于输入第一驱动信号g1,所述第一开关管T1的发射极连接所述第二二极管D2的阳极,所述第二二极管D2的阴极连接所述第二开关管T2的发射极,所述第二开关管T2的基极连接所述驱动电路,适用于输入第二驱动信号g2;
所述第三二极管D3的阴极连接所述第二开关管T2的集电极,所述第三二极管D3的阳极连接所述第三开关管T3的集电极,所述第三开关管T3的发射极连接所述第二二极管D2的阳极,所述第三开关管T3的基极连接所述驱动电路,适用于输入第三驱动信号g3;
所述第一轴承线圈L1的一端连接所述第一开关管T1的集电极,所述第一轴承线圈L1的另一端连接所述第二开关管T2的发射极,所述第二轴承线圈L2的一端连接所述第二开关管T2的发射极,所述第二轴承线圈L2的另一端连接所述第三开关管T3的集电极。
在其中一个实施例中,所述主控电路包括预设模块、PI控制模块和PWM生成模块;
所述预设模块适用于预设第一参考电流Iref1和第二参考电流Iref2,并预设所述第二桥臂上开关管对应的PWM2信号的占空比;
所述PI控制模块适用于根据所述第一轴承线圈的实际电流Ifdb1与预设的第一参考电流Iref1的误差进行PI调节,根据所述第二轴承线圈的实际电流Ifdb2与预设的第二参考电流Iref2的误差进行PI调节;
所述PWM生成模块适用于生成并输出PWM1信号~PWM3信号。
在其中一个实施例中,所述PWM1信号和所述PWM3信号与所述PWM2信号反相,且所述PWM1信号和所述PWM3信号的低电平中心与所述PWM2信号的高电平中心对齐。
在其中一个实施例中,所述电流采样电路包括第一电流采样电路和第二电流采样电路,所述第一电流采样电路与所述第一轴承线圈L1连接,适用于采集所述第一轴承线圈L1的实际电流;所述第二电流采样电路与所述第二轴承线圈L2连接,适用于采集所述第二轴承线圈L2的实际电流。
在其中一个实施例中,所述电流采样电路还包括第一A/D转换模块和第二A/D转换模块,所述第一A/D转换模块设置在所述第一电流采样电路和所述主控电路之间,所述第二A/D转换模块设置在所述第二电流采样电路和所述主控电路之间。
在其中一个实施例中,所述第一A/D转换模块和所述第二A/D转换模块为A/D转换器或运算放大器。
在其中一个实施例中,所述三桥臂功率主电路还包括第一电阻R1和第二电阻R2,所述第一电阻R1与所述第一轴承线圈L1串联设置,所述第二电阻R2与所述第二轴承线圈L2串联设置。
本发明还涉及一种磁悬浮轴承开关功率放大器的控制方法,用于上述任一项所述的磁悬浮轴承开关功率放大器,包括如下步骤:
预设第一参考电流Iref1和第二参考电流Iref2
预设三桥臂功率主电路中的第二桥臂上开关管对应的PWM2信号的占空比,使得第二驱动信号的占空比为定值;
主控电路将第一电流采样电路传送的第一轴承线圈的实际电流Ifdb1与预设的第一参考电流Iref1的误差经PI调节后输出PWM1信号,以控制第一驱动信号的占空比;
主控电路将第二电流采样电路传送的第二轴承线圈的实际电流Ifdb2与预设的第二参考电流Iref2的误差经PI调节后输出PWM3信号,以控制第三驱动信号的占空比。
本发明的有益效果是:
本发明的磁悬浮轴承开关功率放大器及其控制方法,通过采用两个轴承线圈共用H桥的第二桥臂,实现了三个桥臂控制主动式磁悬浮轴承的两个轴承线圈的电流,且第二桥臂上开关管采用固定占空比的PWM2信号作为驱动信号,使得控制方式简单便捷。而且,本发明的磁悬浮轴承开关功率放大器在实现5自由度的悬浮控制时,仅需要5个半桥式三桥臂功率主电路,即共需要15个可控开关管和15个二极管,减小了放大器的体积,降低了放大器的成本,降低了放大器的开关损耗。
附图说明
图1为本发明的磁悬浮轴承开关功率放大器一实施例的示意图;
图2为本发明的磁悬浮轴承开关功率放大器另一实施例的示意图;
图3为本发明的磁悬浮轴承开关功率放大器的硬件控制框图;
图4为本发明的磁悬浮轴承开关功率放大器中轴承线圈1的电流控制流程图;
图5为本发明的磁悬浮轴承开关功率放大器中轴承线圈2的电流控制流程图;
图6为本发明中PWM2信号的占空比为50%时的控制波形图;
图7为本发明中PWM2信号的占空比为40%时的控制波形图;
图8为本发明中PWM2信号的占空比为60%时的控制波形图。
具体实施方式
为了使本发明的技术方案更加清楚,以下结合附图,对本发明的磁悬浮轴承开关功率放大器及其控制方法作进一步详细的说明。应当理解,此处所描述的具体实施例仅用以解释本发明并不用于限定本发明。
参见图1至图8,如图1所示,本发明的磁悬浮轴承开关功率放大器包括主控电路100、驱动电路200、三桥臂功率主电路300和电流采样电路400,主控电路100、驱动电路200、三桥臂功率主电路300和电流采样电路400依次循环电连接。
其中,三桥臂功率主电路300包括三个桥臂和两个轴承线圈,两个轴承线圈分别为第一轴承线圈L1和第二轴承线圈L2,三个桥臂分别为第一桥臂、第二桥臂和第三桥臂,第一轴承线圈L1设置在第一桥臂和第二桥臂之间,第二轴承线圈L2设置在第二桥臂和第三桥臂之间,即第一轴承线圈L1和第二轴承线圈L2共用H桥的第二桥臂,实现了三个桥臂来控制主动式磁悬浮轴承的两个轴承线圈的电流。
每个桥臂的上桥臂或下桥臂上设置有开关管,具体地,第一桥臂和第三桥臂的上桥臂上设置有开关管,共用的第二桥臂的下桥臂上设置有开关管。或者第一桥臂和第三桥臂的下桥臂上设置有开关管,共用的第二桥臂的上桥臂上设置有开关管,且共用的所述第二桥臂上开关管的驱动信号具有固定的占空比。这样,通过控制第一桥臂上开关管的驱动信号的占空比可以实现第一轴承线圈L1的电流的控制,通过控制第三桥臂上开关管的驱动信号的占空比可以实现对第二轴承线圈L2的电流的控制,使得控制方法简单,易于实现。
电流采样电路400适用于采集两个轴承线圈的实际电流,并将采集到的两个轴承线圈的实际电流传送至主控电路100。较优地,电流采样电路400包括第一电流采样电路401和第二电流采样电路402。第一电流采样电路401与第一轴承线圈L1连接,适用于采集第一轴承线圈L1的实际电流,并将第一轴承线圈L1的实际电流传送给主控电路100。第二电流采样电路402与第二轴承线圈L2连接,适用于采集第二轴承线圈L2的实际电流,并将采集到的第二轴承线圈L2的实际电流传送给主控电路100。
较优地,电流采样电路400还包括第一A/D转换模块和第二A/D转换模块,第一A/D转换模块设置在第一电流采样电路401和主控电路100之间,适用于将第一电流采样电路401采集到的第一轴承线圈L1的实际电流转化为主控电路100能够识别的数字信号。第二A/D转换模块设置在第二电流采样电路402和主控电路100之间,适用于将第二电流采样电路402采集到的第二轴承线圈L2的实际电流转化为主控电路100能够识别的数字信号。较优地,本实施例中的第一A/D转换模块和第二A/D转换模块可以采用A/D转换器或运算放大器实现。
主控电路100适用于输出PWM1信号~PWM3信号,具体地,主控电路100适用于预设第二桥臂上开关管T2对应的PWM2信号的占空比,即第一轴承线圈L1和第二轴承线圈L2共用的第二桥臂上开关管T2对应的PWM2信号的占空比固定,以使得第二驱动信号g2的占 空比固定。同时,主控电路100适用于根据第一轴承线圈L1的实际电流Ifdb1与预设的第一参考电流Iref1输出PWM1信号,以控制第一驱动信号g1的占空比。主控电路100根据第二轴承线圈L2的实际电流Ifdb2与预设的第二参考电流Iref2输出PWM3信号,以控制第三驱动信号g3的占空比。这样使得该磁悬浮轴承开关功率放大器的控制方法简单可靠,便于实现。
驱动电路200适用于将PWM1信号~PWM3信号转化为三桥臂功率主电路300的第一驱动信号g1~第三驱动信号g3,三桥臂功率主电路300根据第一驱动信号g1~第三驱动信号g3控制三个桥臂上对应开关管的导通或关断。
作为一种可实施方式,第一桥臂包括第一开关管T1和第一二极管D1,第二桥臂包括第二开关管T2和第二二极管D2,第三桥臂包括第三开关管T3和第三二极管D3。如图2所示,第一开关管T1设置在第一桥臂的上桥臂上,第二开关管T2设置在第二桥臂的下桥臂上,第三开关管T3设置在第三桥臂的上桥臂上。具体地,第一开关管T1的基极连接驱动电路200,适用于输入第一驱动信号g1,第一开关管T1的发射极连接第一二极管D1的阴极,第一二极管D1的阳极连接第二开关管T2的发射极,第一开关管T1的集电极连接第二二极管D2的阴极。
第二二极管D2的阳极连接第二开关管T2的集电极,第二开关管T2的基极连接驱动电路200,适用于输入第二驱动信号g2。第三开关管T3的集电极连接第二二极管D2的阴极,第三开关管T3的基极连接驱动电路200,适用于输入第三驱动信号g3,第三开关管T3的发射极连接第三二极管D3的阴极,第三二极管D3的阳极连接第二开关管T2的发射极。本实施例中的第一开关管T1、第二开关管T2和第三开关管T3均采用NPN型晶体三极管。在其他实施例中,第一开关管T1、第二开关管T2和第三开关管还可以采用MOS管或IGBT管等。
第一轴承线圈L1的一端连接第一开关管T1的发射极,第一轴承线圈L1的另一端连接第二开关管T2的集电极,即第一轴承线圈L1的一端连接至第一开关管T1与第一二极管D1的相应公共端,第一轴承线圈L1的另一端连接至第二开关管T2与第二二极管D2的相应公共端。第二轴承线圈L2的一端连接第二开关管T2的集电极,第二轴承线圈L2的另一端连接第三开关管T3的发射极,即第二轴承线圈L2的一端连接至第二开关管T2与第二二极管D2的相应公共端,第二轴承线圈L2的另一端连接至第三开关管T3与第三二极管D3的相应公共端。
作为另一种可实施方式,第一桥臂包括第一开关管T1和第一二极管D1,第二桥臂包括第二开关管T2和第二二极管D2,第三桥臂包括第三开关管T3和第三二极管D3。如图3所 示,第一开关管T1设置在第一桥臂的下桥臂上,第二开关管T2设置在第二桥臂的上桥臂上,第三开关管T3设置在第三桥臂的下桥臂上。具体地,第一二极管D1的阴极连接第二开关管T2的集电极,第一二极管D1的阳极连接第一开关管T1的集电极,第一开关管T1的基极连接驱动电路200,适用于输入第一驱动信号g1。
第一开关管T1的发射极连接第二二极管D2的阳极,第二二极管D2的阴极连接第二开关管T2的发射极,第二开关管T2的基极连接驱动电路200,适用于输入第二驱动信号g2。第三二极管D3的阴极连接第二开关管T2的集电极,第三二极管D3的阳极连接第三开关管T3的集电极,第三开关管T3的发射极连接第二二极管D2的阳极,第三开关管T3的基极连接驱动电路200,适用于输入第三驱动信号g3。本实施例中的第一开关管T1、第二开关管T2和第三开关管T3均采用NPN型晶体三极管。在其他实施例中,第一开关管T1、第二开关管T2和第三开关管还可以采用MOS管或IGBT管等。
第一轴承线圈L1的一端连接第一开关管T1的集电极,第一轴承线圈L1的另一端连接第二开关管T2的发射极,第二轴承线圈L2的一端连接第二开关管T2的发射极,第二轴承线圈L2的另一端连接第三开关管T3的集电极。
为了防止开关管T1~T3被击穿,提高该磁悬浮轴承开关功率放大器的稳定性及可靠性,每个桥臂上开关管的发射极和集电极之间均串接有第四二极管,第四二极管的数量为三个。即第一开关管的发射极连接其中一个第四二极管的阳极,第一开关管的集电极对应的连接该第四二极管的阴极。第二开关管的发射极连接其中一个第四二极管的阳极,第二开关管的集电极对应的连接该第四二极管的阴极。第三开关管的发射极连接一个第四二极管的阳极,第三开关管的集电极对应的连接该第四二极管的阴极。
本发明的磁悬浮轴承开关功率放大器,在实现5自由度的悬浮控制时,仅需要5个半桥式三桥臂功率主电路,即需要15个开关管和15个二极管。因此,相对于现有技术而言,本发明的磁悬浮轴承开关功率放大器的体积较小,成本较低,且开关损耗较低,节约了资源。
较优地,三桥臂功率主电路300还包括第一电阻R1和第二电阻R2,第一电阻R1与第一轴承线圈L1串联设置,第一电流采样电路401连接至第一电阻R1与第一轴承线圈L1的相应公共端。第二电阻R2与第二轴承线圈L2串联设置,第二电流采样电路402连接至第二电阻R2与第二轴承线圈L2的相应公共端。第一电阻R1和第二电阻R2起到了限流的作用,保护了第一轴承线圈L1和第二轴承线圈L2不被损坏。
作为一种可实施方式,主控电路100包括预设模块、PI控制模块和PWM生成模块。本 实施例中的主控电路可以采用DSP(digital signal processor,数字信号处理器)、FPGA(Field-Programmable Gate Array,可编程门阵列)、单片机或工控机等处理器中的一种或多种的组合。其中,预设模块适用于预设第一参考电流Iref1和第二参考电流Iref2,并预设第二桥臂上开关管对应的PWM2信号的占空比,以控制第二驱动信号g2的占空比,使得第二桥臂上的开关管T2对应的PWM2信号的占空比固定。PWM生成模块适用于生成并输出PWM1信号~PWM3信号。
PI控制模块适用于根据第一轴承线圈L1的实际电流Ifdb1与预设的第一参考电流Iref1的误差进行PI调节,并将PI调节后的结果传送给PWM生成模块,PWM生成模块生成并输出PWM1信号,以控制第一驱动信号g1的占空比,从而实现对第一轴承线圈L1的实际电流的调节,使得第一轴承线圈L1的实际电流接近预设的第一参考电流Iref1。同时,PI控制模块根据第二轴承线圈L2的实际电流Ifdb2与预设的第二参考电流Iref2的误差进行PI调节,并将PI调节后的结果传送至PWM生成模块,PWM生成模块生成并输出PWM3信号,以控制第三驱动信号g3的占空比,从而实现对第二轴承线圈L2的实际电流的调节,使得第二轴承线圈L2的实际电流接近预设的第二参考电流Iref2
较优地,PWM1信号和PWM3信号与PWM2信号反相,以防止直通。且PWM1信号和PWM3信号的低电平中心与PWM2信号的高电平中心对齐,即PWM1信号和PWM3信号均以PWM2信号为参考信号。
参见图4和图5所示,本发明还提供了一种基于同一发明构思的磁悬浮轴承开关功率放大器的控制方法,用于上述任一项所述的磁悬浮轴承开关功率放大器,包括如下步骤:
预设第一参考电流Iref1和第二参考电流Iref2
预设三桥臂功率主电路300中的第二桥臂上开关管T2对应的PWM2信号的占空比,使得第二驱动信号g2的占空比为定值;
主控电路100将第一电流采样电路401传送的第一轴承线圈L1的实际电流Ifdb1与预设的第一参考电流Iref1的误差经PI调节后输出PWM1信号,以控制第一驱动信号g1的占空比。从而调节流经第一轴承线圈L1的实际电流,使得第一轴承线圈L1的实际电流Ifdb1与预设的第一参考电流Iref1的偏差接近为0。
主控电路100将第二电流采样电路402传送的第二轴承线圈L2的实际电流Ifdb2与预设的第二参考电流Iref2的误差经PI调节后输出PWM3信号,以控制第三驱动信号g3的占空比。从而调节流经第二轴承线圈L2的实际电流,使得第二轴承线圈L2的实际电流Ifdb2与预设的 第二参考电流Iref2的偏差接近为0。
如图4所示,下面以第一轴承线圈L1为例说明电流调节过程:
当第一轴承线圈的实际电流Ifdb1小于第一参考电流Iref1时,主控电路100经过PI调节后使得第一开关管T1对应的PWM1信号的占空比增大,从而使得第一轴承线圈L1的实际电流上升。当第一轴承线圈L1的实际电流大于第一参考电流Iref1时,主控电路经过PI调节后使得第一开关管对应的PWM1信号的占空比减小,从而使得第一轴承线圈L1的实际电流下降,直至第一轴承线圈L1的实际电流接近第一参考电流Iref1。第二轴承线圈L2的电流调节过程与上述过程相同,此处不再赘述。
如图6所示,第二开关管T2对应的PWM2信号的占空比为50%,此时若第一开关管T1对应的PWM1信号与第三开关管T3对应的PWM3信号的占空比大于50%时,两个轴承线圈有充电和续流两种状态,轴承线圈的实际电流才有可能上升,且PWM1信号和PWM3信号的占空比越大,轴承线圈的实际电流上升越多。否则,两个轴承线圈有放电和续流两种状态,轴承线圈的实际电流将下降,且PWM1信号和PWM3信号的占空比越小,轴承线圈的实际电流下降越多,轴承线圈的实际电流的最小值为0。
如图7所示,第二开关管T2对应的PWM2信号的占空比小于50%,以PWM2信号的占空比为40%时为例,此时若第一开关管T1对应的PWM1信号与第三开关管T3对应的PWM3信号的占空比大于60%,两个轴承线圈有充电和续流两种状态,轴承线圈的实际电流才有可能上升,且PWM1信号和PWM3信号的占空比越大,轴承线圈的实际电流上升越多。否则,两个轴承线圈有放电和续流两种状态,轴承线圈的实际电流将下降,且PWM1信号和PWM3信号的占空比越小,轴承线圈的实际电流下降越多,轴承线圈的实际电流的最小值为0。
如图8所示,第二开关管T2对应的PWM2信号的占空比大于50%,以PWM2信号的占空比为60%时为例,此时若第一开关管T1对应的PWM1信号与第三开关管T3对应的PWM3信号的占空比大于40%,两个轴承线圈有充电和续流两种状态,轴承线圈的实际电流才有可能上升,且PWM1信号和PWM3信号的占空比越大,轴承线圈的实际电流上升越多。否则,两个轴承线圈有放电和续流两种状态,轴承线圈的实际电流将下降,且PWM1信号和PWM3信号的占空比越小,轴承线圈的实际电流下降越多,轴承线圈的实际电流的最小值为0。
本发明的磁悬浮轴承开关功率放大器及其控制方法,通过采用两个轴承线圈共用H桥的第二桥臂,实现了三个桥臂控制主动式磁悬浮轴承的两个轴承线圈的电流,且第二桥臂上开关管采用固定占空比的PWM信号作为驱动信号,不仅使得控制方式简单便捷,而且,本发 明的磁悬浮轴承开关功率放大器在实现5自由度的悬浮控制时,仅需要5个半桥式三桥臂功率主电路,即共需要15个可控开关管和15个二极管,减小了放大器的体积,降低了放大器的成本,降低了放大器的开关损耗。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种磁悬浮轴承开关功率放大器,其特征在于,包括主控电路(100)、驱动电路(200)、三桥臂功率主电路(300)和电流采样电路(400),所述主控电路(100)、所述驱动电路(200)、所述三桥臂功率主电路(300)和所述电流采样电路(400)依次循环电连接;
    所述三桥臂功率主电路(300)包括三个桥臂和两个轴承线圈,两个所述轴承线圈分别为第一轴承线圈L1和第二轴承线圈L2,三个桥臂分别为第一桥臂、第二桥臂和第三桥臂,所述第一轴承线圈L1设置在所述第一桥臂和所述第二桥臂之间,所述第二轴承线圈L2设置在所述第二桥臂和所述第三桥臂之间,所述第一轴承线圈L1和所述第二轴承线圈L2共用所述第二桥臂;
    所述第一桥臂和所述第三桥臂的上桥臂上设置有开关管,共用的所述第二桥臂的下桥臂上设置有开关管,或者所述第一桥臂和所述第三桥臂的下桥臂上设置有开关管,共用的所述第二桥臂的上桥臂上设置有开关管,且共用的所述第二桥臂上开关管的驱动信号具有固定的占空比。
  2. 根据权利要求1所述的磁悬浮轴承开关功率放大器,其特征在于,所述第一桥臂包括第一开关管T1和第一二极管D1,所述第二桥臂包括第二开关管T2和第二二极管D2,所述第三桥臂包括第三开关管T3和第三二极管D3;
    所述第一开关管T1的基极连接所述驱动电路(200),适用于输入第一驱动信号g1,所述第一开关管T1的发射极连接所述第一二极管D1的阴极,所述第一二极管D1的阳极连接所述第二开关管T2的发射极,所述第一开关管T1的集电极连接所述第二二极管D2的阴极,所述第二二极管D2的阳极连接所述第二开关管T2的集电极,所述第二开关管T2的基极连接所述驱动电路(200),适用于输入第二驱动信号g2;
    所述第三开关管T3的集电极连接所述第二二极管D2的阴极,所述第三开关管T3的基极连接所述驱动电路(200),适用于输入第三驱动信号g3,所述第三开关管T3的发射极连接所述第三二极管D3的阴极,所述第三二极管D3的阳极连接所述第二开关管T2的发射极;
    所述第一轴承线圈L1的一端连接所述第一开关管T1的发射极,所述第一轴承线圈L1的另一端连接所述第二开关管T2的集电极,所述第二轴承线圈L2的一端连接所述第二开关管T2的集电极,所述第二轴承线圈L2的另一端连接所述第三开关管T3的发射极。
  3. 根据权利要求1所述的磁悬浮轴承开关功率放大器,其特征在于,所述第一桥臂包括第一开关管T1和第一二极管D1,所述第二桥臂包括第二开关管T2和第二二极管D2,所述 第三桥臂包括第三开关管T3和第三二极管D3;
    所述第一二极管D1的阴极连接所述第二开关管T2的集电极,所述第一二极管D1的阳极连接所述第一开关管T1的集电极,所述第一开关管T1的基极连接所述驱动电路(200),适用于输入第一驱动信号g1,所述第一开关管T1的发射极连接所述第二二极管D2的阳极,所述第二二极管D2的阴极连接所述第二开关管T2的发射极,所述第二开关管T2的基极连接所述驱动电路(200),适用于输入第二驱动信号g2;
    所述第三二极管D3的阴极连接所述第二开关管T2的集电极,所述第三二极管D3的阳极连接所述第三开关管T3的集电极,所述第三开关管T3的发射极连接所述第二二极管D2的阳极,所述第三开关管T3的基极连接所述驱动电路(200),适用于输入第三驱动信号g3;
    所述第一轴承线圈L1的一端连接所述第一开关管T1的集电极,所述第一轴承线圈L1的另一端连接所述第二开关管T2的发射极,所述第二轴承线圈L2的一端连接所述第二开关管T2的发射极,所述第二轴承线圈L2的另一端连接所述第三开关管T3的集电极。
  4. 根据权利要求1所述的磁悬浮轴承开关功率放大器,其特征在于,所述主控电路(100)包括预设模块、PI控制模块和PWM生成模块;
    所述预设模块适用于预设第一参考电流Iref1和第二参考电流Iref2,并预设所述第二桥臂上开关管对应的PWM2信号的占空比;
    所述PI控制模块适用于根据所述第一轴承线圈的实际电流Ifdb1与预设的第一参考电流Iref1的误差进行PI调节,根据所述第二轴承线圈的实际电流Ifdb2与预设的第二参考电流Iref2的误差进行PI调节;
    所述PWM生成模块适用于生成并输出PWM1信号~PWM3信号。
  5. 根据权利要求4所述的磁悬浮轴承开关功率放大器,其特征在于,所述PWM1信号和所述PWM3信号与所述PWM2信号反相,且所述PWM1信号和所述PWM3信号的低电平中心与所述PWM2信号的高电平中心对齐。
  6. 根据要求1-5任一项所述的磁悬浮轴承开关功率放大器,其特征在于,所述电流采样电路(400)包括第一电流采样电路(401)和第二电流采样电路(402),所述第一电流采样电路(401)与所述第一轴承线圈L1连接,适用于采集所述第一轴承线圈L1的实际电流;所述第二电流采样电路(402)与所述第二轴承线圈L2连接,适用于采集所述第二轴承线圈L2的实际电流。
  7. 根据权利要求6所述的磁悬浮轴承开关功率放大器,其特征在于,所述电流采样电路(400)还包括第一A/D转换模块和第二A/D转换模块,所述第一A/D转换模块设置在所述 第一电流采样电路(401)和所述主控电路(100)之间,所述第二A/D转换模块设置在所述第二电流采样电路(402)和所述主控电路(100)之间。
  8. 根据权利要求7所述的磁悬浮轴承开关功率放大器,其特征在于,所述第一A/D转换模块和所述第二A/D转换模块为A/D转换器或运算放大器。
  9. 根据权利要求1-5任一项所述的磁悬浮轴承开关功率放大器,其特征在于,所述三桥臂功率主电路(300)还包括第一电阻R1和第二电阻R2,所述第一电阻R1与所述第一轴承线圈L1串联设置,所述第二电阻R2与所述第二轴承线圈L2串联设置。
  10. 一种磁悬浮轴承开关功率放大器的控制方法,用于权利要求1-9任一项所述的磁悬浮轴承开关功率放大器,其特征在于,包括如下步骤:
    预设第一参考电流Iref1和第二参考电流Iref2
    预设三桥臂功率主电路中的第二桥臂上开关管对应的PWM2信号的占空比,使得第二驱动信号的占空比为定值;
    主控电路将第一电流采样电路传送的第一轴承线圈的实际电流Ifdb1与预设的第一参考电流Iref1的误差经PI调节后输出PWM1信号,以控制第一驱动信号的占空比;
    主控电路将第二电流采样电路传送的第二轴承线圈的实际电流Ifdb2与预设的第二参考电流Iref2的误差经PI调节后输出PWM3信号,以控制第三驱动信号的占空比。
PCT/CN2016/083589 2015-05-27 2016-05-27 磁悬浮轴承开关功率放大器及其控制方法 WO2016188462A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510278738.9A CN106301036B (zh) 2015-05-27 2015-05-27 磁悬浮轴承开关功率放大器及其控制方法
CN201510278738.9 2015-05-27

Publications (1)

Publication Number Publication Date
WO2016188462A1 true WO2016188462A1 (zh) 2016-12-01

Family

ID=57392571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083589 WO2016188462A1 (zh) 2015-05-27 2016-05-27 磁悬浮轴承开关功率放大器及其控制方法

Country Status (2)

Country Link
CN (1) CN106301036B (zh)
WO (1) WO2016188462A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109780058A (zh) * 2019-03-07 2019-05-21 苏州赛得尔智能科技有限公司 一种磁悬浮轴承控制方法
CN117366106A (zh) * 2023-12-05 2024-01-09 洛阳嘉盛电控技术有限公司 基于三桥臂的双路双向磁轴承悬浮电流控制电路及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106763185B (zh) * 2017-03-07 2018-09-25 华中科技大学 一种用于多轴磁悬浮轴承的电力电子控制器
CN107448476B (zh) * 2017-09-18 2018-12-28 华中科技大学 一种用于多轴磁悬浮轴承的电流相反的电力电子控制器
CN110332234B (zh) * 2019-06-06 2020-08-04 清华大学 磁轴承开关功率放大器的控制方法及应用系统
CN112443575B (zh) * 2019-08-27 2022-01-21 株洲中车时代电气股份有限公司 一种磁悬浮轴承的控制系统及磁悬浮系统
CN110518888B (zh) * 2019-09-10 2023-04-28 东北大学 一种用于磁悬浮电机的开关功率放大器
CN112152499B (zh) * 2020-09-08 2021-09-28 珠海格力电器股份有限公司 功率放大器的控制装置、方法和电机
CN114738384A (zh) * 2022-03-21 2022-07-12 中国舰船研究设计中心 电励磁式三极磁悬浮轴承的驱动装置、控制装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057663A (en) * 1997-08-08 2000-05-02 Stmicroelectronics S.R.L. Current control in driving DC-brushless motor with independent windings
CN101144503A (zh) * 2007-08-24 2008-03-19 北京航空航天大学 一种用于磁轴承系统基于空间矢量技术的开关功率放大器
CN102801353A (zh) * 2012-08-10 2012-11-28 北京海斯德电机技术有限公司 一种基于空间矢量的纯电磁磁轴承系统开关功率放大器
CN202798516U (zh) * 2012-08-10 2013-03-13 北京海斯德电机技术有限公司 一种纯电磁磁轴承系统开关功率放大器
CN103825480A (zh) * 2014-02-25 2014-05-28 南京航空航天大学 一种多路输出的磁轴承开关功放数字单周期控制方法
CN204696950U (zh) * 2015-05-27 2015-10-07 珠海格力节能环保制冷技术研究中心有限公司 磁悬浮轴承开关功率放大器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100533938C (zh) * 2008-04-21 2009-08-26 南京航空航天大学 六桥臂五路输出电磁轴承开关功率放大器的控制方法
CN104935279B (zh) * 2015-06-24 2018-09-14 许继电源有限公司 一种三电平开关功率放大器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057663A (en) * 1997-08-08 2000-05-02 Stmicroelectronics S.R.L. Current control in driving DC-brushless motor with independent windings
CN101144503A (zh) * 2007-08-24 2008-03-19 北京航空航天大学 一种用于磁轴承系统基于空间矢量技术的开关功率放大器
CN102801353A (zh) * 2012-08-10 2012-11-28 北京海斯德电机技术有限公司 一种基于空间矢量的纯电磁磁轴承系统开关功率放大器
CN202798516U (zh) * 2012-08-10 2013-03-13 北京海斯德电机技术有限公司 一种纯电磁磁轴承系统开关功率放大器
CN103825480A (zh) * 2014-02-25 2014-05-28 南京航空航天大学 一种多路输出的磁轴承开关功放数字单周期控制方法
CN204696950U (zh) * 2015-05-27 2015-10-07 珠海格力节能环保制冷技术研究中心有限公司 磁悬浮轴承开关功率放大器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109780058A (zh) * 2019-03-07 2019-05-21 苏州赛得尔智能科技有限公司 一种磁悬浮轴承控制方法
CN109780058B (zh) * 2019-03-07 2021-05-04 苏州赛得尔智能科技有限公司 一种磁悬浮轴承控制方法
CN117366106A (zh) * 2023-12-05 2024-01-09 洛阳嘉盛电控技术有限公司 基于三桥臂的双路双向磁轴承悬浮电流控制电路及方法
CN117366106B (zh) * 2023-12-05 2024-02-23 洛阳嘉盛电控技术有限公司 基于三桥臂的双路双向磁轴承悬浮电流控制电路及方法

Also Published As

Publication number Publication date
CN106301036B (zh) 2019-01-01
CN106301036A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016188462A1 (zh) 磁悬浮轴承开关功率放大器及其控制方法
US11463016B2 (en) Modular power supply system
CN103138541B (zh) 驱动变压器隔离自适应驱动电路
US10135360B2 (en) Power converter
US8385092B1 (en) Power converter with current vector controlled dead time
US9748853B1 (en) Semi-dual-active-bridge converter system and methods thereof
WO2019128661A1 (zh) 一种谐振变换器、谐振变换器的控制方法及系统
WO2021175204A1 (en) Three-level active neutral-point-clamped converter and operating method therefor and control device
CN109104098B (zh) 变流器及其驱动方法
US11095158B2 (en) H-bridge gate control apparatus
KR101681958B1 (ko) 다단 멀티레벨 ac-ac 컨버터
US6414854B2 (en) Driving device and method of switching element in power conversion apparatus using current-controlled semiconductor switching element
JPH07222493A (ja) 電力用電子機器における直流アクチュエータの制御装置
CN105871217B (zh) 一种用于igbt驱动装置的推挽式隔离电源及方法
TWI539736B (zh) 五電平變換裝置
US20010038540A1 (en) Switching circuit of power conversion apparatus
EP2662966B1 (en) Three-level inverter
CN204696950U (zh) 磁悬浮轴承开关功率放大器
US10826377B2 (en) Power converter, control circuit and control method for the same
CN110113012B (zh) 一种提高线性功率放大器效率的电路拓扑及方法
WO2019196609A1 (zh) 一种含两种类型模组的双向直流变换器及其控制方法
WO2022052495A1 (zh) 功率放大器的控制装置、方法和电机
KR102005880B1 (ko) Dc-dc 변환 시스템
CN103762848A (zh) 一种开关式双端直流变换器的驱动电路
CN110138186B (zh) 功率开关器件驱动电路及电力电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799349

Country of ref document: EP

Kind code of ref document: A1