WO2016188427A1 - 包括机械致动装置的流体输注设备及其制造方法 - Google Patents

包括机械致动装置的流体输注设备及其制造方法 Download PDF

Info

Publication number
WO2016188427A1
WO2016188427A1 PCT/CN2016/083284 CN2016083284W WO2016188427A1 WO 2016188427 A1 WO2016188427 A1 WO 2016188427A1 CN 2016083284 W CN2016083284 W CN 2016083284W WO 2016188427 A1 WO2016188427 A1 WO 2016188427A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
fluid
infusion
kinetic energy
patient
Prior art date
Application number
PCT/CN2016/083284
Other languages
English (en)
French (fr)
Inventor
李鑫
薛跃强
Original Assignee
美敦力公司
美敦力(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美敦力公司, 美敦力(上海)有限公司 filed Critical 美敦力公司
Publication of WO2016188427A1 publication Critical patent/WO2016188427A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons

Definitions

  • This invention relates to the field of fluid delivery and, more particularly, to a fluid infusion device comprising a mechanical actuation device for administering a patient and a method of making same.
  • Diabetes is a metabolic disease characterized by high blood sugar.
  • Hyperglycemia is generally caused by defects in insulin secretion or its biological effects, or a combination of both.
  • the long-term hyperglycemia in diabetic patients can cause chronic damage and dysfunction of multiple body organs (such as eyes, kidneys, heart, blood vessels, nervous system, etc.).
  • Type 1 diabetes also known as insulin-dependent diabetes
  • Type 1 diabetes is a congenital family genetic disorder that usually occurs in children or adolescents.
  • Type 1 diabetes is an autoimmune disease in which the body's immune system attacks the beta cells that produce insulin in the body, ultimately leading to the inability to produce insulin in the body.
  • Such patients need to be injected with exogenous insulin to control blood sugar levels in the body.
  • Type 1 diabetes patients typically require 24-hour exposure to an electronic insulin pump, such as the Medtronic Minimed insulin pump.
  • Type 2 diabetes also known as non-insulin-dependent diabetes, is generally caused by adults, especially obese people, whose condition can lead to weight loss.
  • Possible causes include: insulin resistance, which prevents the body from using insulin effectively; the reduction in insulin secretion does not meet the body's needs.
  • insulin resistance which prevents the body from using insulin effectively
  • the reduction in insulin secretion does not meet the body's needs.
  • Early type 2 diabetes patients can control and even cure diabetes by improving their lifestyles (eg, healthy eating, moderate exercise, safe weight loss, smoking cessation, and avoidance of secondhand smoke).
  • Most patients can use oral hypoglycemic drugs to help control blood sugar in the body or stage insulin injections.
  • type 1 diabetes electronic insulin pumps are a mature treatment option.
  • type 2 diabetes most patients in the clinic currently use insulin pen injectors, such as Novo, Lilly and other brands, this technology currently has major drawbacks.
  • the insulin pen is shaped like a pen and usually consists of a pen body, a pen holder and a pen cover. Before injecting insulin, it is necessary to install the matching insulin refill into the pen holder, then rotate the adjustment knob, control the injection amount by the movement of the screw, and finally press the injection button to drive the piston in the refill through the screw head to complete the quantitative injection. In general, insulin pen treatment requires a separate injection before three meals a day.
  • the present invention provides a fluid infusion device including a mechanical actuating device capable of controlling a flow rate of a delivery infusion fluid, and a method of manufacturing the same.
  • the infusion fluid in the chamber is delivered to the patient's kinetic energy through the infusion set and controls the flow of infusion fluid to the patient by controlling the amount of kinetic energy.
  • the mechanical actuating device includes: a power providing mechanism for storing mechanical energy and generating rotational kinetic energy using the stored mechanical energy; and a transmission mechanism for transmitting rotational kinetic energy generated by the power providing mechanism to the liquid storage chamber; A flow control mechanism for controlling the magnitude of rotational kinetic energy generated by the power providing mechanism to control the flow of the infusion fluid from the reservoir to the patient.
  • the power supply mechanism can include: a spring that is configured to be compressible to store mechanical energy and can be released to release mechanical energy; and a first gear that is coupled to the transmission and flow control, respectively
  • the mechanism is coupled and rigidly coupled to one end of the spring, configured to generate rotational kinetic energy based on mechanical energy released by the spring and to transmit rotational kinetic energy to the transmission mechanism, and the magnitude of the rotational kinetic energy is controlled by the flow control mechanism.
  • the transmission mechanism may include: a gear transmission group and a screw transmission group, wherein the gear transmission group is configured to connect the first gear and the screw transmission group for transmitting the rotational kinetic energy generated by the first gear to the spiral Drive set; screw drive set is set to connect gear drive set, and storage
  • the liquid chamber is connected by a piston for converting rotational kinetic energy transmitted from the gear train into linear kinetic energy for application to the infusion fluid in the reservoir through the piston.
  • the screw drive set can be a lead screw nut pair comprising a slidably connected lead screw and a nut, wherein the lead screw is coupled to the gear drive set and the nut is coupled to the piston.
  • the gear transmission set may include a first shift gear set and a reverse gear set that mesh with each other, wherein the first shift gear set is coupled to the first gear for transmitting rotational kinetic energy to the redirecting gear set;
  • the group is coupled to the screw drive set for changing the direction of transmission of the rotational kinetic energy and transmitting rotational kinetic energy to the helical drive train.
  • the first shifting gear set includes at least one shifting gear.
  • the reverse gear set includes at least one of a combination of at least two of a spur gear, a disk gear, a bevel gear, a worm gear, and a worm.
  • the flow control mechanism can control the magnitude of the rotational kinetic energy generated by the power providing mechanism by the vibration frequency it generates.
  • the flow control mechanism comprises: a balance spring arranged to generate a fixed vibration frequency; a pallet fork connected to the balance spring, configured to swing according to a fixed frequency of the balance of the balance; and an escape wheel, and an escapement
  • the longitudinal fork is engaged and coupled to the first gear, wherein the escape wheel is arranged to rotate in accordance with the swing of the pallet to control the rotational kinetic energy generated by the first gear.
  • the escape wheel is coupled to the first gear by a second shifting gear set including at least one shifting gear.
  • the fluid infusion device further comprises: a pill dose actuating member coupled to the piston for transmitting a driving force for the pill dose injection to the piston.
  • the pill dose actuating member includes an interconnecting button and a push rod
  • the lead screw in the screw drive set is a hollow screw rod through which the push rod is coupled to the piston.
  • the pill dose actuating component comprises an interconnecting knob and a rotating rod, the rotating rod being connected to the screw rod in the screw transmission set, configured to transmit the rotational force transmitted by the knob to the screw rod, and through the screw transmission group It is converted into a driving force acting on the piston.
  • a method of manufacturing a fluid infusion device for administering a patient comprising: providing a housing; providing a housing for containing an infusion fluid a reservoir; providing an infusion set in fluid communication with the reservoir, the infusion set being configured to deliver an infusion fluid within the reservoir to the patient; providing a housing within the housing and coupled to the reservoir A mechanical actuation device configured to provide kinetic energy to deliver the infusion fluid within the reservoir to the patient through the infusion set and to control delivery of the infusion fluid to the patient by controlling the magnitude of the kinetic energy.
  • the fluid infusion device of the present invention for administering a patient can mechanically deliver an infusion fluid at a controlled flow rate.
  • the fluid infusion device of the present invention includes a mechanical actuating device, and the mechanical actuating device includes a power providing mechanism, a flow control mechanism, and a transmission mechanism, the mechanical actuating device is capable of storing mechanical energy and utilizing stored mechanical energy to generate rotation Kinetic energy to deliver infusion fluid to a patient while controlling the magnitude of rotational kinetic energy to control the flow of infusion fluid from the reservoir to the patient, i.e., mechanically capable of delivering the infusion fluid and controlling delivery flow, such that the present invention
  • the fluid infusion device enables automatic continuous injection of the infusion fluid in a short period of time (eg, 1-7 days) and the delivery flow is stable.
  • the fluid infusion device of the present invention can further include a pill dose actuating member, the functions of the basic amount injection and the pill dose injection can be simultaneously achieved. Furthermore, the volume of the fluid infusion device can also be reduced by using the mechanical actuating device of the present invention, which can be applied to the patient's skin (eg, the housing can be adapted to be worn on the patient's skin), or worn on a belt Put it on, put it in your pocket, etc., it is convenient for the patient to wear, and it is convenient for normal working life such as going out.
  • the mechanical actuating device of the present invention which can be applied to the patient's skin (eg, the housing can be adapted to be worn on the patient's skin), or worn on a belt Put it on, put it in your pocket, etc., it is convenient for the patient to wear, and it is convenient for normal working life such as going out.
  • FIG. 1 is a schematic structural view of a fluid infusion device including a mechanical actuating device according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view of the fluid infusion device of Figure 1;
  • FIG. 3 is a schematic diagram of a method for making a fluid infusion device in accordance with an embodiment of the present invention.
  • 1-fluid infusion device 10-mechanical actuating device, 11-power supply mechanism, 111-spring, 112-axis, 113-first gear, 12-flow control mechanism, 121-spring balance ,1211-hairspring,1212-balance wheel,122- ⁇ longitudinal fork,123- escapement wheel,131-spiral rotating group,1311-threaded rod,1312-nut,132-piston,133-direction gear set,1331- Worm gear, 1332-worm, 134-first shift gear set, 135-second shift gear set, 14-pill dose actuating part, 141-button/knob, 142-push rod/turn rod, 20-reservoir, 30-infusion assembly, 40-shell.
  • Embodiments of the invention disclosed herein provide a fluid infusion device that is capable of using mechanical energy to drive an infusion fluid infusion and that can control delivery flow, the device being capable of a flow-stable infusion and that is small in size and convenient for patient wear.
  • the disclosure herein also provides methods for making such hydraulic actuation devices and corresponding fluid infusion devices.
  • an exemplary embodiment of the present invention is directed to a fluid infusion device including a mechanical actuation device that can store mechanical energy that utilizes stored mechanical energy to generate a driving force to deliver an infusion fluid to a patient, And the flow rate of the infusion fluid can be controlled to achieve a continuous and stable infusion fluid base volume injection.
  • the flow rate is the amount of fluid of the infusion fluid delivered to the patient per unit time, and the amount of fluid can be calculated in volume.
  • the fluid can include a liquid drug, such as insulin, and the like.
  • the unit of flow rate can be unit/hour, wherein the conversion ratio of the unit/ml in the unit/hour is 100:1, that is, 1 ml is 100 units.
  • the fluid infusion device can include: a housing; a reservoir located within the housing and configured to receive an infusion fluid; and an infusion set in fluid communication with the reservoir for use in the reservoir An infusion fluid is delivered to the patient; and a mechanical actuation device is located within the housing and coupled to the reservoir for providing kinetic energy to deliver the infusion fluid within the reservoir to the patient through the infusion set and by controlling kinetic energy The size is used to control the flow of infusion fluid to the patient.
  • the mechanical actuating device comprises: a power providing mechanism for storing mechanical energy and generating rotational kinetic energy by using stored mechanical energy; and a transmission mechanism for transmitting rotational kinetic energy generated by the power providing mechanism to the liquid storage chamber; And a flow control mechanism for controlling the magnitude of the rotational kinetic energy generated by the power providing mechanism to control the flow of the infusion fluid from the reservoir to the patient.
  • the fluid infusion device 1 may include a housing 40 (eg, the housing may be adapted to be worn on a patient's skin to facilitate portable use by the patient, or may be non-wearable to the patient's skin but convenient for the patient to carry.
  • a housing 40 eg, the housing may be adapted to be worn on a patient's skin to facilitate portable use by the patient, or may be non-wearable to the patient's skin but convenient for the patient to carry.
  • a reservoir 20 located within the housing and for containing an infusion fluid (eg, insulin or other medication, etc.); an infusion set 30, In fluid communication with the reservoir for delivering the infusion fluid within the reservoir to the patient; and mechanical actuation device 10 located within the housing and coupled to the reservoir for providing the reservoir 20
  • the infusion fluid is delivered to the patient's kinetic energy through the infusion set 30 and controls the flow of the infusion fluid to the patient by controlling the magnitude of the kinetic energy.
  • the infusion set 30 can be partially located within the housing, partially piercing the housing into the patient, such as may be comprised of a needle and silicone pad for piercing the patient.
  • the mechanical actuating device 10 provides kinetic energy on the upstream side of the reservoir 20 to apply a driving force to the infusion fluid in the reservoir 20, the infusion set 30 being located on the downstream side of the reservoir 20 and delivering an infusion to the patient fluid.
  • the mechanical actuating device 10 includes a power supply mechanism 11 for storing mechanical energy and generating rotational kinetic energy using stored mechanical energy, and a flow control mechanism 12 for controlling the magnitude of rotational kinetic energy generated by the power providing mechanism to control the fluid from the reservoir to the patient A flow rate for delivering the infusion fluid; a transmission mechanism for transmitting rotational kinetic energy generated by the power supply mechanism 11 to the reservoir 20.
  • the power supply mechanism 11 may include a spring 111 and a first gear 113.
  • the spring 111 is configured to be compressible to store mechanical energy and can be loosened to release mechanical energy, typically made of a metallic or plastic material, such as a resilient stainless steel, typically in the form of a sheet and that can be crimped.
  • the first gear 113 is respectively connected to the transmission mechanism and the flow control mechanism 12, and is rigidly connected to one end of the spring 111, and is configured to generate rotational kinetic energy according to the mechanical energy released by the spring 111 and transmit the rotational kinetic energy to the transmission mechanism, and the rotational kinetic energy
  • the size is controlled by the flow control mechanism.
  • the power supply mechanism 11 may further include a bar shaft 112.
  • the spring 111 By fixing one end of the spring 111 to the bar shaft 112, the spring 111 is wound up on the bar shaft 112 to tighten the spring, and at this time, the state of storing mechanical energy is stored.
  • the spring is gradually loosened by the elasticity of the spring itself or the spring is manually released to gradually release the spring to release the stored mechanical energy.
  • the first gear 113 can be fixed on the shaft 112, that is, through the shaft 112. It is rigidly connected to one end of the spring 111 or may be rigidly connected to the other end of the spring so as to rotate when the spring is gradually released to generate rotational kinetic energy.
  • the power supply mechanism 11 may not include the strip shaft 112, and the spring is tightened by curling the spring 111 itself from one end, at this time, the mechanical energy state is stored; the spring is gradually loosened by the elasticity of the spring itself or Manually releasing the spring to gradually release the spring to release the stored mechanical energy.
  • the first gear 113 can be rigidly connected with the releasable end of the spring 111, thereby rotating when the spring is gradually released to generate rotational kinetic energy. .
  • the transmission mechanism may include a screw transmission group 131 and a gear transmission group, wherein the gear transmission group is set In order to connect the first gear 113 and the screw transmission group 131, the rotational kinetic energy generated by the first gear 113 is transmitted to the screw transmission group 131, and the screw transmission group 131 is disposed to connect the gear transmission group and pass through the piston 132 with the liquid storage chamber 20.
  • the connection is for converting the rotational kinetic energy transmitted from the gear train into a linear thrust kinetic energy, and applying the converted linear thrust kinetic energy to the infusion fluid in the reservoir 20 through the piston 132.
  • the screw drive set 131 is a lead screw nut pair that includes a slidably coupled lead screw 1311 and a nut 1312, wherein the lead screw 1311 is coupled to a gear drive set and the nut 1312 is coupled to the piston 132.
  • the screw 1311 can be rotated to push the nut 1312 to move.
  • the gear train includes a first shifting gear set 134 and a reversing gear set 133 that are in mesh with each other, wherein the first shifting gear set 134 is coupled to the first gear 113 for transmitting rotational kinetic energy to the redirecting gear set 133;
  • the reverse gear set 133 is coupled to the screw drive set 131 for varying the direction of transmission of the rotational kinetic energy and transmitting rotational kinetic energy to the helical drive set 131.
  • the first shift gear set 134 is coupled to the first gear 113 of the power supply mechanism 11 and the reverse gear set 133 for transmitting the rotational kinetic energy generated by the power supply mechanism 11 to the reverse gear set 133.
  • the first shifting gear set 134 can include at least one shifting gear.
  • the first shifting gear set 134 can include a shifting gear 1341.
  • the shift gear 1341 is meshed with the first gear 113.
  • the first shifting gear set 134 is not limited to the above configuration.
  • a multi-stage transmission shifting gear set including a different number of shifting gears may be designed according to the final required conveying speed, for example, the shifting gear.
  • the gear set may include one or two or more shifting gears, or the first shifting gear set 134 may be omitted, the first gear 113 directly meshing with the redirecting gear of the direction changing gear set.
  • the reversing gear set 133 can include at least one reversing gear.
  • the direction changing gear set may include at least one of a combination of at least two of a spur gear, a disk gear, a bevel gear, a worm wheel, and a worm according to actual conditions.
  • the reversing gear set 133 may include a worm wheel 1331 and a worm gear 1332.
  • the worm wheel 1331 is engaged with the shift gear 1341, and the worm 1332 is connected with the screw rod 1311.
  • the rotation of the first gear 113 drives the shift gear 1341 to rotate to drive the worm wheel.
  • the 1331 rotates to drive the worm 1332 to rotate to drive the screw 1311 to rotate.
  • the reversing gear set 133 is not limited to the above configuration. In other embodiments, different reversing gear sets may be designed as needed, or the reversing gear set may be omitted.
  • the first shifting gear set 134 is directly connected to the lead screw 1311. The connection is made (for example, the shift gear 1341 is meshed with the screw 1311, and the screw 1311 is rotated according to the rotation of the shift gear 1341).
  • the flow control mechanism 12 controls the magnitude of the rotational kinetic energy generated by the power supply mechanism 11 by the vibration frequency generated thereby.
  • the flow control mechanism 12 can include a sprung balance 121 that is configured to generate a fixed vibration frequency (eg, the sprung balance 121 can include a balance spring 1211 and a balance 1212, for example, both ends of the balance spring 1211 can be respectively secured to the swing shaft and the swing plate (not shown), the pallet fork 122 connected to the balance wheel 121 (for example, connected to the balance wheel 1212 through the swing shaft, can be set to swing according to the fixed frequency of the balance spring 121), and
  • the escapement wheel 122 is engaged with the escape wheel 123 (the escape wheel 123 is coupled to the first gear 113 and is arranged to rotate in accordance with the swing of the pallet to control the rotational kinetic energy generated by the first gear 113).
  • the first gear 113 and the escape wheel 123 may be directly or indirectly connected.
  • a second shifting gear set 135 including at least one shifting gear may be disposed between the first gear 113 and the escape wheel 123.
  • the second shifting gear set may include intermeshing the second shifting gear 1351 and the third shifting gear 1352.
  • the second shifting gear 1351 meshes with the first gear 113
  • the third shifting gear 1352 meshes with the escape wheel 123. Since the rotational speed of the balance spring in the downstream wire balance wheel 121 is normal, the rotation speed of the escape wheel 123 is also fast, so that the mechanical energy stored by the power supply mechanism 11 can generate the rotational kinetic energy for a long time to finally drive the transmission.
  • the fluid injection that is, the uniform conveying for a long time, may be provided between the first gear 113 and the escape wheel 123 according to specific needs, and the shift gear set may be designed as a multi-stage transmission including different numbers of shifting gears.
  • the shifting gear set for example, the shifting gear set may include one or two or three or more shifting gears.
  • the flow control mechanism 12 is driven to start motion by the power supply mechanism 11, and then the balance spring 121 generates a fixed vibration frequency, and the swing of the pallet 122 is controlled by the fixed vibration frequency of the balance wheel 121, thereby controlling the escapement.
  • the rotation of the wheel 123 causes it to rotate at a constant speed.
  • the second shifting gear group is stepwise decelerated, the first gear 113 is rotated at a fixed rotational speed.
  • the fluid infusion device is tightened to the spring 111 at the time of manufacture by the manufacturer, and the spring 111 is wound up on the shaft 112, that is, in a state of stored mechanical energy at the time of shipment.
  • the spring button can be rotated to release the spring, the spring 111 first drives the first gear 113 to rotate, and the first gear 113 drives the intermeshing second shift gear set 135 (the plurality of shifting gears) 1351, 1352) rotates to drive the escape wheel 123 to rotate, and the escape wheel 123 drives the pallet fork 122 to swing to start the balance of the balance spring 121.
  • the balance 1212 is biased against its balance.
  • the hairspring 1211 When the position begins to swing, the hairspring 1211 is twisted to generate potential energy (also commonly referred to as recovery torque). Thereafter, the elasticity of the balance spring 1211 itself causes the movement of the balance wheel 1212 to become a regular reciprocating motion, that is, the vibration frequency of the balance spring 121 is its own natural vibration frequency, so that the pallet fork 122 connected to the balance of the balance spring 121
  • the positive direction swings for half a period of vibration, and the other half of the vibration period is swung in the opposite direction, so that the escape wheel 123 rotates at a constant speed to control the second shifting gear set 135 (the plurality of shifting gears 1352) that mesh with the escape wheel 123.
  • the rotational speed of 1351 causes the first gear 113 to rotate at a fixed speed.
  • the spring 111 is released to release mechanical energy at a fixed speed to provide controllable rotational kinetic energy which is subsequently converted into power that causes the piston 132 to move linearly, as described below.
  • the first shifting gear set 134 (ie, the shifting gear 1341) is rotated by the first gear 113 rotating at a fixed speed, thereby driving the turning gear set 133 (ie, the worm wheel 1331 and the worm 1332) that meshes with the shifting gear 1341 to rotate, thereby
  • the screw 1311 is rotated at a fixed speed, and the nut 1312 is linearly moved at a fixed speed to finally accurately push the piston 132 linearly, and the infusion fluid (for example, insulin) is controlled to be delivered to the patient at a certain delivery flow rate. That is, the transfer mechanism transmits the controlled kinetic energy (power) provided by the power supply mechanism to the reservoir to push the piston motion to deliver the infusion fluid to the patient.
  • the fluid infusion device may further include a pill dose actuating member 14 coupled to the piston 132 for transmitting a pump for the pill dose injection to the piston 132, for example, before a three-day meal. force.
  • the pill dose actuation member 14 can include a button 141 and a push rod 142 that are interconnected, the lead screw 1311 in the screw drive set 131 being a hollow screw rod, and the push rod 142 being coupled to the piston 132 through the lead screw 1311.
  • the shot dose injection can be accomplished by directly pressing the button 141 of the pill dose brake member 14 to directly control the piston movement.
  • a scale can be placed on the push rod 142, and the button 141 can complete a shot dose every time a scale is pressed or pressed all at once.
  • the amount of bolus dose may be determined according to the specific needs of the patient, for example, a minimum unit injection per one scale is performed, and all of the bolus doses may be completed.
  • the pill dose actuating member 14 also includes a knob 141 and a rotating lever 142 that are coupled to each other.
  • the rotating lever 142 is coupled to the screw 1311 of the screw drive set 131, and is configured to transmit the rotational force transmitted from the knob 141 to the lead screw. 1311 and converted into a driving force acting on the piston 132 by the screw transmission group 131.
  • the rotation of the rotating rod 142 does not drive the reverse rotation of the direction changing gear set.
  • the rotating rod 142 may not contact the direction changing gear set, or the turning gear of the direction changing gear set may be set to be reversed. Rotating gear with self-locking function.
  • Pill dose injection can be accomplished by rotating the knob 141 of the pill dose brake member 14 to directly drive the lead screw and nut.
  • the knob 141 can complete a shot dose injection every revolution of a certain angle or every revolution.
  • the amount of bolus dose injection depends on the specific needs of the patient, for example, a minimum unit injection is performed every one revolution of the knob 141, and a bolus dose injection can be completed by rotating a plurality of turns.
  • the fluid infusion device of the present invention is not limited to including a pill dose actuating member.
  • the pill dose injection function may be abandoned depending on the needs of the patient, the pill dose actuating member may be omitted, or the pill dose may be changed.
  • the position and structure of the moving parts may be expired depending on the needs of the patient, the pill dose actuating member may be omitted, or the pill dose may be changed.
  • Embodiments of the present invention also provide a method of making a fluid infusion device for administering a patient.
  • 3 is a schematic diagram of a method for making a fluid infusion device in accordance with an embodiment of the present invention. As shown in FIG. 3, the method includes: S101, providing a housing; S102, providing a reservoir in the housing for containing the infusion fluid; S103, providing an infusion assembly in fluid communication with the reservoir, The infusion set is configured to deliver an infusion fluid within the reservoir to the patient; S104, providing a mechanical actuation device located within the housing and coupled to the reservoir, the mechanical actuation device configured to provide the reservoir The infusion fluid within the fluid chamber is delivered to the patient's kinetic energy through the infusion set and controls the flow of the infusion fluid to the patient by controlling the magnitude of the kinetic energy.

Abstract

一种用于对患者进行给药的包括机械致动装置的流体输注设备(1)及其制造方法。流体输注设备(1)包括:壳体(40);储液室(20),位于壳体(40)内且用于容纳输注流体;输注组件(30),与储液室(20)流体连通,用于将储液室(20)内的输注流体输送至患者体内;以及机械致动装置(10),位于壳体(40)内并与储液室(20)相连接,用于提供将该储液室(20)内的输注流体通过输注组件(30)输送至患者的动能并且通过控制动能的大小来控制向患者输送输注流体的流量。上述设备和方法能够实现输注流体在短期内的自动持续注射,且输送流量稳定;可以缩小胰岛素泵体积,且利于患者穿戴。

Description

包括机械致动装置的流体输注设备及其制造方法
本申请要求于2015年5月25日提交中国国家知识产权局、申请号为201510272228.0、发明名称为“包括机械致动装置的流体输注设备及其制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及流体输送领域,更为具体而言,涉及一种用于对患者进行给药的包括机械致动装置的流体输注设备及其制造方法。
背景技术
糖尿病是一种以高血糖为特征的代谢性疾病。高血糖一般是由于胰岛素分泌缺陷或其生物作用受损,或两者综合作用引起。糖尿病患者体内长期存在的高血糖会导致多个身体器官(例如眼、肾、心脏、血管、神经系统等)的慢性损害、功能障碍。
糖尿病临床诊断可分为1型糖尿病和2型糖尿病。1型糖尿病,也称为胰岛素依赖型糖尿病,患者病状通常出现在儿童或青少年时期,是一种先天性家族遗传疾病。1型糖尿病属于一种自体免疫性疾病,身体的免疫系统对体内生产胰岛素的β细胞做出攻击,最终导致体内无法生产胰岛素。这类患者需要注射外源性的胰岛素来控制体内的血糖水平。1型糖尿病患者一般需要24小时佩戴电子式胰岛素泵治疗,例如,美敦力Minimed系列胰岛素泵。2型糖尿病,也称非胰岛素依赖型糖尿病,一般患者为成年人,特别是肥胖人群,其病症会导致消瘦。可能的病因包括:胰岛素抵抗,使身体不能有效地使用胰岛素;胰岛素分泌的减少,无法满足身体所需。早期的2型糖尿病患者可以通过改善生活方式(例如,健康饮食、适量运动、安全减肥、戒烟及避免二手烟等)来控制,甚至治愈糖尿病。大多数患者可通过口服降糖药物来帮助控制体内血糖或者阶段性胰岛素注射。
对于1型糖尿病,电子式胰岛素泵已是一种成熟的治疗方案。而对于2型糖尿病的治疗,目前临床多数患者采用胰岛素笔式注射器,如诺和、礼来等品牌,这种技术目前存在较大弊端。
胰岛素笔的外形类似一支钢笔,通常包括笔身、笔架和笔盖三个部分。在注射胰岛素前,需要把配套的胰岛素笔芯安装至笔架内,然后旋转调节旋钮,通过螺杆的移动控制注射量,最后按压注射按钮,通过螺杆头部驱动笔芯内的活塞来完成定量注射。通常,胰岛素笔治疗需要每日三餐前分别完成注射。
这使得胰岛素笔无法实现持续性治疗,只能一日三餐前间断性注射,并且不便于外出活动时治疗,同时多次注射对于患者的舒适度较差,并容易导致患者注射处皮肤的硬化。
发明内容
为解决上述的技术问题,本发明提供了一种包括能够控制输送输注流体的流量的机械致动装置的流体输注设备及其制造方法。
根据本发明实施方式的第一方面,提供了一种用于对患者进行给药的流体输注设备,该设备可包括:壳体;储液室,位于壳体内且用于容纳输注流体;输注组件,与储液室流体连通,用于将储液室内的输注流体输送至患者体内;以及机械致动装置,位于壳体内并与储液室相连接,用于提供将该储液室内的输注流体通过输注组件输送至患者的动能并且通过控制动能的大小来控制向患者输送输注流体的流量。
在一些实施方式中,该机械致动装置包括:动力提供机构,用于存储机械能并利用存储的机械能产生旋转动能;传动机构,用于将动力提供机构产生的旋转动能传送至储液室;以及流量控制机构,用于控制动力提供机构产生的旋转动能的大小从而控制从储液室向患者输送输注流体的流量。
在进一步的实施方式中,该动力提供机构可包括:发条,设置为可被压缩以存储机械能并可被松开以释放机械能;以及第一齿轮,该第一齿轮分别与传动机构和流量控制机构相连接,并且与发条的一端刚性连接,设置为根据发条释放的机械能产生旋转动能并将旋转动能传送至传动机构,并且旋转动能的大小受流量控制机构控制。
在进一步的实施方式中,该传动机构可包括:齿轮传动组和螺旋传动组,其中,齿轮传动组设置为连接第一齿轮和螺旋传动组,用于将第一齿轮产生的旋转动能传送至螺旋传动组;螺旋传动组设置为连接齿轮传动组,并与储 液室通过活塞相连接,用于将齿轮传动组传送来的旋转动能转换成直线推动动能,从而通过活塞施加至储液室内的输注流体。优选地,螺旋传动组可为丝杆螺母副,包括可滑动连接的丝杆和螺母,其中丝杆与齿轮传动组相连接,螺母与活塞相连接。优选地,齿轮传动组可包括相互啮合的第一变速齿轮组和变向齿轮组,其中,第一变速齿轮组与第一齿轮相连接,用于向变向齿轮组传送旋转动能;变向齿轮组与螺旋传动组相连接,用于改变旋转动能的传送方向并向螺旋传动组传送旋转动能。更为优选地,第一变速齿轮组包括至少一个变速齿轮。变向齿轮组包括直齿轮、盘齿轮、锥齿轮、蜗轮、蜗杆中至少两个的组合的至少一个以上。
在进一步的实施方式中,该流量控制机构可通过其产生的振动频率来控制所述动力提供机构产生的旋转动能的大小。优选地,该流量控制机构包括:游丝摆轮,设置为产生固定振动频率;擒纵叉,与游丝摆轮相连接,设置为根据游丝摆轮的固定频率而摆动;以及擒纵轮,与擒纵叉相啮合,并与第一齿轮相连接,其中,擒纵轮设置为根据擒纵叉的摆动而旋转,以控制第一齿轮产生的旋转动能。在更优选的实施方式中,擒纵轮与第一齿轮通过包括至少一个变速齿轮的第二变速齿轮组相连接。
在进一步的实施方式中,流体输注设备还包括:丸剂量致动部件,其与活塞相连接,用于向活塞传送用于丸剂量注射的驱动力。可选地,丸剂量致动部件包括相互连接的按钮和推动杆,并且螺旋传动组中的丝杆为空心丝杆,推动杆穿过丝杆与活塞相连接。可选地,丸剂量致动部件包括相互连接的旋钮和转动杆,转动杆与螺旋传动组中的丝杆相连接,设置为将旋钮传送来的旋转力传送至丝杆,并通过螺旋传动组转化为向活塞作用的驱动力。
根据本发明实施方式的第二方面,提供了一种制造用于对患者进行给药的流体输注设备的方法,该方法包括:提供壳体;提供位于壳体内且用于容纳输注流体的储液室;提供与储液室流体连通的输注组件,将该输注组件配置成用于将储液室内的输注流体输送至患者体内;提供位于壳体内且与储液室相连接的机械致动装置,该机械致动装置配置成提供将该储液室内的输注流体通过输注组件输送至患者的动能并且通过控制所述动能的大小来控制向患者输送输注流体的流量。
与传统的电子式流体输注设备(例如电子式胰岛素泵)和手动流体输注 设备(例如胰岛素笔)不同,本发明的用于对患者进行给药的流体输注设备可采用机械方式以可控的流量输送输注流体。具体而言,由于本发明的流体输注设备包括机械致动装置,并且该机械致动装置包括动力提供机构、流量控制机构以及传动机构,机械致动装置能够存储机械能并利用存储的机械能产生旋转动能以向患者输送输注流体,同时能够控制旋转动能的大小以控制从储液室向患者输送输注流体的流量,即能够使用机械能使输注流体输送并可控制输送流量,使得本发明的流体输注设备能够实现输注流体在短期内(例如1-7天)的自动持续注射,并且输送流量稳定。同时,由于本发明的流体输注设备还可包括丸剂量致动部件,因此可以同时实现基础量注射和丸剂量注射的功能。此外,通过使用本发明中的机械致动装置也可以缩小流体输注设备的体积,该流体输注设备可贴敷于患者皮肤(例如壳体可适于佩戴于患者皮肤),或戴在腰带上、放在口袋里等,便于患者穿戴,方便进行外出活动等正常工作生活。
附图说明
参考以下附图描述非限制性的和非穷尽性的特征,其中相同的附图标记在各个附图中指代相同的部分:
图1为根据本发明一种实施方式的包括机械致动装置的流体输注设备的结构示意图;
图2为图1中的流体输注设备的分解示意图;
图3为根据本发明一种实施方式的用于制造流体输注设备的方法示意图。
图中,1-流体输注设备,10-机械致动装置,11-动力提供机构,111-发条,112-条轴,113-第一齿轮,12-流量控制机构,121-游丝摆轮,1211-游丝,1212-摆轮,122-擒纵叉,123-擒纵轮,131-螺旋转动组,1311-丝杆,1312-螺母,132-活塞,133-变向齿轮组,1331-蜗轮,1332-蜗杆,134-第一变速齿轮组,135-第二变速齿轮组,14-丸剂量致动部件,141-按钮/旋钮,142-推动杆/转动杆,20-储液室,30-输注组件,40-壳体。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。需要注意的是,本发明并不限于附图所示的部件构造和/或布置,在不脱离本发明实质的情况下,还可以对本发明的各种实施方式进行各种不同的组合。本文公开的本发明的实施方式提供了能够使用机械能驱动输注流体输注并可控制输送流量的流体输注设备,该设备可持续进行流量稳定的输注,并且体积小、便于患者穿戴。本文公开的内容还提供用于制造这种液压致动装置以及相应流体输注设备的方法。
如下文详细描述的那样,本发明的典型实施方式涉及包括机械致动装置的流体输注设备,该机械致动装置可存储机械能,利用存储的机械能产生驱动力以将输注流体输送至患者,并且可以控制输送输注流体的流量,以实现持续稳定的输注流体基础量注射。其中,流量为单位时间内向患者输送的输注流体的流体量,流体量可以以体积进行计算。在一些实施方式中,流体可包括液体药物,例如,胰岛素等。在输注的流体为胰岛素的情形下,流量的单位可以为单位/小时(unit/hour),其中,单位/小时中的单位和毫升的换算比是100:1,也就是说,1毫升是100个单位。在一些实施方式中,该流体输注设备可包括:壳体;储液室,位于壳体内且用于容纳输注流体;输注组件,与储液室流体连通,用于将储液室内的输注流体输送至患者体内;以及机械致动装置,位于壳体内并与储液室相连接,用于提供将该储液室内的输注流体通过输注组件输送至患者的动能并且通过控制动能的大小来控制向患者输送输注流体的流量。在进一步的实施方式中,该机械致动装置包括:动力提供机构,用于存储机械能并利用存储的机械能产生旋转动能;传动机构,用于将动力提供机构产生的旋转动能传送至储液室;以及流量控制机构,用于控制动力提供机构产生的旋转动能的大小从而控制从储液室向患者输送输注流体的流量。
【第一实施方式】
图1为根据本发明一种实施方式的包括机械致动装置的流体输注设备的结构示意图。图2为图1中的流体输注设备的分解示意图。如图1至图2所示,流体输注设备1可包括:壳体40(例如,壳体可适于佩戴于患者皮肤以便于患者便携使用,或者可为非佩戴于患者皮肤但便于患者便携使用的其他 设置,例如使流体输注设备戴在腰带上、放在口袋里等);储液室20,位于壳体内且用于容纳输注流体(例如,胰岛素或其他药物等);输注组件30,与储液室流体连通,用于将储液室内的输注流体输送至患者体内;以及机械致动装置10,位于壳体内并与储液室相连接,用于提供将该储液室20内的输注流体通过输注组件30输送至患者的动能并且通过控制动能的大小来控制向患者输送输注流体的流量。例如,输注组件30可部分位于壳体内,部分穿出壳体刺入患者体内,例如可由用于刺入患者体内的针和硅胶垫组成。例如,机械致动装置10在储液室20的上游侧提供动能以向储液室20中的输注流体施加驱动力,输注组件30位于储液室20的下游侧并向患者输送输注流体。
机械致动装置10包括:动力提供机构11,用于存储机械能并利用存储的机械能产生旋转动能;流量控制机构12,用于控制动力提供机构产生的旋转动能的大小从而控制从储液室向患者输送输注流体的流量;传动机构,用于将动力提供机构11产生的旋转动能传送至储液室20。
例如,动力提供机构11可包括发条111以及第一齿轮113。发条111被设置为可被压缩以存储机械能并可被松开以释放机械能,通常可由金属材料或塑料材料制成,例如弹性好的不锈钢,通常为片状并可被卷曲。第一齿轮113分别与传动机构和流量控制机构12相连接,并且与发条111的一端刚性连接,设置为根据发条111释放的机械能产生旋转动能并将旋转动能传送至传动机构,并且旋转动能的大小受流量控制机构控制。例如,动力提供机构11还可包括条轴112,通过将发条111的一端固定在条轴112上,将发条111卷紧在条轴112上来上紧发条,此时为存储机械能的状态;利用发条自身的弹性使发条逐渐松开或者手动释放发条使发条逐渐松开以释放存储的机械能,此时,第一齿轮113可固定在条轴112上,即通过条轴112与发条111的一端刚性连接,或者也可以与发条的另一端刚性连接,从而在发条逐渐松开时进行转动产生旋转动能。例如,动力提供机构11也可不包括条轴112,通过将发条111自身从一端开始卷曲来上紧发条,此时为存储机械能的状态;利用发条自身的弹性使发条逐渐松开或者手动释放发条使发条逐渐松开以释放存储的机械能,此时,第一齿轮113可与发条111的可松开的一端刚性连接,从而在发条逐渐松开时进行转动产生旋转动能。
传动机构可包括螺旋传动组131和齿轮传动组,其中,齿轮传动组设置 为连接第一齿轮113和螺旋传动组131,用于将第一齿轮113产生的旋转动能传送至螺旋传动组131,螺旋传动组131设置为连接齿轮传动组,并与储液室20通过活塞132相连接,用于将齿轮传动组传送来的旋转动能转换成直线推动动能,并通过活塞132将转换成的直线推动动能施加至储液室20内的输注流体。
例如,螺旋传动组131为丝杆螺母副,包括可滑动连接的丝杆1311和螺母1312,其中丝杆1311与齿轮传动组相连接,螺母1312与活塞132相连接。其中,丝杆1311可被转动以推动螺母1312移动。
例如,齿轮传动组包括相互啮合的第一变速齿轮组134和变向齿轮组133,其中,第一变速齿轮组134与第一齿轮113相连接,用于向变向齿轮组133传送旋转动能;变向齿轮组133与螺旋传动组131相连接,用于改变旋转动能的传送方向并向螺旋传动组131传送旋转动能。
例如,第一变速齿轮组134连接动力提供机构11的第一齿轮113和变向齿轮组133,用于将动力提供机构11产生的旋转动能传送至变向齿轮组133。第一变速齿轮组134可包括至少一个变速齿轮。例如,第一变速齿轮组134可包括一个变速齿轮1341。该变速齿轮1341与第一齿轮113相啮合。但是,第一变速齿轮组134并不限定于上述构造,在其他实施方式中,也可以根据最终所需输送速度的不同,设计包括不同数量变速齿轮的多级传动的变速齿轮组,例如该变速齿轮组可包括一个或两个或更多个变速齿轮,或者可以省略第一变速齿轮组134,第一齿轮113直接与变向齿轮组的变向齿轮相啮合。
例如,变向齿轮组133可包括至少一个变向齿轮。可选地,变向齿轮组可以根据实际情况需要包括直齿轮、盘齿轮、锥齿轮、蜗轮、蜗杆中至少两个的组合的至少一个以上。例如,其中,变向齿轮组133可包括蜗轮1331和蜗杆1332,蜗轮1331与变速齿轮1341相啮合,蜗杆1332与丝杆1311相连接,通过第一齿轮113的旋转带动变速齿轮1341旋转以带动蜗轮1331旋转,从而带动蜗杆1332转动以带动丝杆1311转动。但是,变向齿轮组133并不限定于上述构造,在其他实施方式中,也可以根据需要设计不同的变向齿轮组,或者省略变向齿轮组,第一变速齿轮组134直接与丝杆1311相连接(例如变速齿轮1341与丝杆1311相啮合连接,丝杆1311根据变速齿轮1341的转动而转动)。
流量控制机构12通过其产生的振动频率来控制动力提供机构11产生的旋转动能的大小。该流量控制机构12可包括设置为产生固定振动频率的游丝摆轮121(例如,游丝摆轮121可包括游丝1211和摆轮1212,例如,游丝1211的两端可分别固定在摆轴和摆夹板(未示出)上)、与游丝摆轮121相连接的擒纵叉122(例如,与摆轮1212通过摆轴相连接,可设置为根据游丝摆轮121的固定频率而摆动)、以及与擒纵叉122相啮合的擒纵轮123(该擒纵轮123与第一齿轮113相连接,设置为根据擒纵叉的摆动而旋转,以控制第一齿轮113产生的旋转动能)。第一齿轮113和擒纵轮123可直接连接也可间接连接。
例如,为降低第一齿轮113的转动速度,第一齿轮113和擒纵轮123之间还可设置有包括至少一个变速齿轮的第二变速齿轮组135。例如,第二变速齿轮组可包括相互啮合第二变速齿轮1351和第三变速齿轮1352。第二变速齿轮1351与第一齿轮113相啮合,第三变速齿轮1352与擒纵轮123相啮合。由于通常情况下游丝摆轮121中游丝的转动速度很快,使得擒纵轮123的转动速度也很快,为能够使动力提供机构11存储的机械能能够长时间均匀的产生旋转动能以最终驱动输注流体输送,即进行长时间匀速输送,可根据具体需要在第一齿轮113和擒纵轮123之间设置变速齿轮组,该变速齿轮组可被设计为包括不同数量变速齿轮的多级传动的变速齿轮组,例如该变速齿轮组可包括一个或两个或三个或更多个变速齿轮。
通常情况下,流量控制机构12受动力提供机构11驱动开始运动,之后游丝摆轮121会产生固定振动频率,通过游丝摆轮121的固定振动频率来控制擒纵叉122的摆动,从而控制擒纵轮123的转动,使其以一定速度转动。之后通过第二变速齿轮组逐级减速后,使得第一齿轮113按固定的旋转速度进行转动。
在上述最优选的实施方式中,流体输注设备在厂家生产时就上紧发条111,将发条111卷紧在条轴112上,即出厂时处于已存储机械能的状态。患者穿戴上输注设备后,当需要注射时,可旋转按钮释放发条,发条111先带动第一齿轮113转动,第一齿轮113带动互相啮合的第二变速齿轮组135(多个变速齿轮1351、1352)转动,以带动擒纵轮123转动,擒纵轮123带动擒纵叉122摆动从而使游丝摆轮121开始运动。这样,在摆轮1212受力偏离其平衡 位置开始摆动时,游丝1211便被扭转而产生位能(通常也被称为恢复力矩)。之后,游丝1211自身的弹性使得摆轮1212的运动变为规律的往复运动,即此时游丝摆轮121的振动频率为自身的固有振动频率,使得连接在游丝摆轮121上的擒纵叉122正方向摆动半个振动周期,再反方向摆动另半个振动周期,从而使擒纵轮123匀速转动,以控制与擒纵轮123相啮合的第二变速齿轮组135(多个变速齿轮1352、1351)的旋转速度,从而使得第一齿轮113按照固定速度旋转。由此,使得发条111按照固定速度释放机械能,提供可控的旋转动能,如下所述,所述旋转动能随后被转换成使活塞132直线运动的动力。通过按固定速度旋转的第一齿轮113带动第一变速齿轮组134(即变速齿轮1341)旋转,从而带动与变速齿轮1341相啮合的变向齿轮组133(即蜗轮1331和蜗杆1332)旋转,从而使得丝杆1311按固定速度转动,螺母1312按照固定速度进行直线运动,最终精确推动活塞132直线运动,控制输注流体(例如胰岛素)以一定的输送流量输送至患者。即,传送机构将动力提供机构提供的受控制后的动能(动力)传送至储液室,以推动活塞运动向患者输送输注流体。
同时,例如在一日三餐前,若需要增加丸剂量注射,流体输注设备还可包括丸剂量致动部件14,与活塞132相连接,用于向活塞132传送用于丸剂量注射的驱动力。
例如,丸剂量致动部件14可包括相互连接的按钮141和推动杆142,螺旋传动组131中的丝杆1311为空心丝杆,推动杆142穿过丝杆1311与活塞132相连接。可以通过直接按压丸剂量制动部件14的按钮141以直接控制活塞移动完成丸剂量注射。通常,例如,推动杆142上可设置刻度,按钮141每按下一个刻度或每次全部按下即可完成一次丸剂量注射。可选地,丸剂量注射的量视患者具体需求而定,例如每按下一个刻度进行一次最小单位注射,全部可完成一次丸剂量注射。
例如,丸剂量致动部件14也包括相互连接的旋钮141和转动杆142,转动杆142与螺旋传动组131中的丝杆1311相连接,设置为将旋钮141传送来的旋转力传送至丝杆1311,并通过螺旋传动组131转化为向活塞132作用的驱动力。同时,转动杆142的转动不会带动变向齿轮组的反向旋转,例如,转动杆142可不接触变向齿轮组,或变向齿轮组的变向齿轮设置为不能反向 旋转的有自锁功能的齿轮。可以通过旋转丸剂量制动部件14的旋钮141以直接驱动丝杆和螺母完成丸剂量注射。通常,例如,旋钮141每旋转一定角度或每旋转一圈即可完成一次丸剂量注射。可选地,丸剂量注射的量视患者具体需求而定,例如每旋转一圈旋钮141进行一次最小单位注射,旋转多圈可完成一次丸剂量注射。
但是,本发明的流体输注设备并不限定于包括丸剂量致动部件,在其他实施方式中,也可视患者的需要放弃丸剂量注射功能,省略丸剂量致动部件,或改变丸剂量致动部件的位置和结构。
【第二实施方式】
本发明的实施方式还提供了一种制造用于对患者进行给药的流体输注设备的方法。图3为根据本发明一种实施方式的用于制造流体输注设备的方法示意图。如图3所示,该方法包括:S101,提供壳体;S102,提供位于壳体内且用于容纳输注流体的储液室;S103,提供与储液室流体连通的输注组件,将该输注组件设置成用于将储液室内的输注流体输送至患者体内;S104,提供位于壳体内且与储液室相连接的机械致动装置,该机械致动装置配置成提供将该储液室内的输注流体通过输注组件输送至患者的动能并且通过控制动能的大小来控制向患者输送输注流体的流量。
应当指出的是,尽管上述设备和方法等的各方面是按特定的顺序和特定的结构布置进行描述,但这仅用于举例说明,对本发明不构成限定,所请求保护的主题并不限于所述的顺序和结构布置。本领域技术人员应当理解,在不脱离本发明实质的情形下,可以对发明作出各种修改,并且可以进行等同替换。因此,本发明所请求保护的主题并不限于上述公开的具体实施方式,还可包括落入权利要求保护范围的所有技术方案以及与之等同的技术方案。此外,在权利要求中,除非另有说明,所有的术语应按最宽泛合理的意思进行理解。

Claims (15)

  1. 一种用于对患者进行给药的流体输注设备,其特征在于,所述流体输注设备包括:
    壳体;
    储液室,位于所述壳体内且用于容纳输注流体;
    输注组件,与所述储液室流体连通,用于将所述储液室内的输注流体输送至患者体内;以及
    机械致动装置,位于所述壳体内并与所述储液室相连接,用于提供将该储液室内的输注流体通过所述输注组件输送至患者的动能并且通过控制所述动能的大小来控制向所述患者输送输注流体的流量。
  2. 根据权利要求1所述的流体输注设备,其特征在于,所述机械致动装置包括:
    动力提供机构,用于存储机械能并利用存储的机械能产生旋转动能;
    传动机构,用于将所述动力提供机构产生的旋转动能传送至所述储液室;以及
    流量控制机构,用于控制所述动力提供机构产生的旋转动能的大小从而控制从所述储液室向所述患者输送输注流体的流量。
  3. 根据权利要求2所述的流体输注设备,其特征在于,所述动力提供机构包括:
    发条,设置为可被压缩以存储机械能并可被松开以释放机械能;以及
    第一齿轮,所述第一齿轮分别与所述传动机构和所述流量控制机构相连接,并且与所述发条的一端刚性连接,设置为根据所述发条释放的机械能产生旋转动能并将旋转动能传送至所述传动机构,并且旋转动能的大小受所述流量控制机构控制。
  4. 根据权利要求3所述的流体输注设备,其特征在于,所述传动机构包括:齿轮传动组和螺旋传动组,其中,
    齿轮传动组设置为连接所述第一齿轮和所述螺旋传动组,用于将所述第一齿轮产生的旋转动能传送至螺旋传动组,
    螺旋传动组设置为连接所述齿轮传动组,并与所述储液室通过活塞相连接,用于将齿轮传动组传送来的旋转动能转换成直线推动动能,从而通过活塞施加至储液室内的输注流体。
  5. 根据权利要求4所述的流体输注设备,所述螺旋传动组为丝杆螺母副,包括可滑动连接的丝杆和螺母,其中所述丝杆与所述齿轮传动组相连接,所述螺母与所述活塞相连接。
  6. 根据权利要求4所述的流体输注设备,所述齿轮传动组包括相互啮合的第一变速齿轮组和变向齿轮组,其中,
    所述第一变速齿轮组与所述第一齿轮相连接,用于向所述变向齿轮组传送旋转动能;
    所述变向齿轮组与所述螺旋传动组相连接,用于改变旋转动能的传送方向并向所述螺旋传动组传送旋转动能。
  7. 根据权利要求6所述的流体输注设备,所述第一变速齿轮组包括至少一个变速齿轮。
  8. 根据权利要求6所述的流体输注设备,其特征在于,所述变向齿轮组包括直齿轮、盘齿轮、锥齿轮、蜗轮、蜗杆中至少两个的组合的至少一个以上。
  9. 根据权利要求4所述的流体输注设备,其特征在于,所述流量控制机构通过其产生的振动频率来控制所述动力提供机构产生的旋转动能的大小。
  10. 根据权利要求3所述的流体输注设备,其特征在于,所述流量控制机构包括:
    游丝摆轮,设置为产生固定振动频率;
    擒纵叉,与所述游丝摆轮相连接,设置为根据游丝摆轮的固定频率而摆动;以及
    擒纵轮,与所述擒纵叉相啮合,并与所述第一齿轮相连接,其中,所述擒纵轮设置为根据擒纵叉的摆动而旋转,以控制第一齿轮产生的旋转动能。
  11. 根据权利要求10所述的流体输注设备,其特征在于,所述擒纵轮与所述第一齿轮通过包括至少一个变速齿轮的第二变速齿轮组相连接。
  12. 根据权利要求5所述的流体输注设备,其特征在于,所述流体输注设备还包括:丸剂量致动部件,与所述活塞相连接,用于向所述活塞传送用于丸剂量注射的驱动力。
  13. 根据权利要求12所述的流体输注设备,其特征在于,所述丸剂量致动部件包括相互连接的按钮和推动杆,所述螺旋传动组中的丝杆为空心丝杆,所述推动杆穿过所述丝杆与所述活塞相连接。
  14. 根据权利要求12所述的流体输注设备,其特征在于,所述丸剂量致动部件包括相互连接的旋钮和转动杆,所述转动杆与螺旋传动组中的丝杆相连接,设置为将旋钮传送来的旋转力传送至所述丝杆,并通过所述螺旋传动组转化为向所述活塞作用的驱动力。
  15. 一种制造用于对患者进行给药的流体输注设备的方法,其特征在于,所述方法包括:
    提供壳体;
    提供位于所述壳体内且用于容纳输注流体的储液室;
    提供与所述储液室流体连通的输注组件,将该输注组件配置成用于将所述储液室内的输注流体输送至患者体内;
    提供位于所述壳体内且与所述储液室相连接的机械致动装置,该机械致动装置配置成提供将该储液室内的输注流体通过所述输注组件输送至患者的动能并且通过控制所述动能的大小来控制向所述患者输送输注流体的流量。
PCT/CN2016/083284 2015-05-25 2016-05-25 包括机械致动装置的流体输注设备及其制造方法 WO2016188427A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510272228.0 2015-05-25
CN201510272228.0A CN106267459A (zh) 2015-05-25 2015-05-25 包括机械致动装置的流体输注设备及其制造方法

Publications (1)

Publication Number Publication Date
WO2016188427A1 true WO2016188427A1 (zh) 2016-12-01

Family

ID=57392534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083284 WO2016188427A1 (zh) 2015-05-25 2016-05-25 包括机械致动装置的流体输注设备及其制造方法

Country Status (2)

Country Link
CN (1) CN106267459A (zh)
WO (1) WO2016188427A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113663158A (zh) * 2019-05-17 2021-11-19 上海移宇科技股份有限公司 双边驱动闭环人工胰腺
WO2022047258A3 (en) * 2020-08-28 2022-04-07 Harris John David Mechanically wound infusion pump
CN115382047A (zh) * 2022-08-31 2022-11-25 江苏义倍医疗科技股份有限公司 一种便于调节流量的新型输液器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11590279B2 (en) 2017-07-20 2023-02-28 Flex Ltd. Clock mechanism flow regulator
CN111330115B (zh) * 2018-12-18 2022-06-24 重庆倍加医疗器械有限公司 注射器及其制造方法
CN109513357A (zh) * 2018-12-21 2019-03-26 北京工业大学 一种现配现用的家用双乳液生成装置
CN109701109B (zh) * 2019-03-13 2024-01-30 深圳中科生物医疗电子有限公司 一种输注机构
CN112870966A (zh) * 2021-01-20 2021-06-01 南阳师范学院 用于空气净化的纳米半导体光催化装置
CN113531370A (zh) * 2021-07-28 2021-10-22 燕山大学 高精度机械式定时润滑剂释放装置
CN113559352B (zh) * 2021-09-27 2022-01-18 时新(上海)产品设计有限公司 微剂量输出结构、微剂量分泌泵及胰岛素泵

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059110A (en) * 1976-10-07 1977-11-22 Timex Corporation Clockwork driven hypodermic syringe
US4676122A (en) * 1984-06-15 1987-06-30 Daltex Medical Sciences, Inc. Fail-safe mechanical drive for syringe
CN2041182U (zh) * 1988-06-16 1989-07-19 杨德祖 机械式均匀推注器
US6464663B1 (en) * 1997-03-11 2002-10-15 Omrix Biopharmaceuticals Sa Applicator for applying a single—or multicomponent fluid and method for spraying such a fluid
US20040054326A1 (en) * 2002-08-30 2004-03-18 Edgar Hommann Device for controlled delivery of an injectable liquid
CN2882645Y (zh) * 2005-04-26 2007-03-28 周晓欣 医用半自动注射器
WO2014166900A1 (en) * 2013-04-10 2014-10-16 Sanofi Automatic drug injection device with sophisticated drive mechanism
CN204932474U (zh) * 2015-05-25 2016-01-06 美敦力公司 用于对患者进行给药的流体输注设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059110A (en) * 1976-10-07 1977-11-22 Timex Corporation Clockwork driven hypodermic syringe
US4676122A (en) * 1984-06-15 1987-06-30 Daltex Medical Sciences, Inc. Fail-safe mechanical drive for syringe
CN2041182U (zh) * 1988-06-16 1989-07-19 杨德祖 机械式均匀推注器
US6464663B1 (en) * 1997-03-11 2002-10-15 Omrix Biopharmaceuticals Sa Applicator for applying a single—or multicomponent fluid and method for spraying such a fluid
US20040054326A1 (en) * 2002-08-30 2004-03-18 Edgar Hommann Device for controlled delivery of an injectable liquid
CN2882645Y (zh) * 2005-04-26 2007-03-28 周晓欣 医用半自动注射器
WO2014166900A1 (en) * 2013-04-10 2014-10-16 Sanofi Automatic drug injection device with sophisticated drive mechanism
CN204932474U (zh) * 2015-05-25 2016-01-06 美敦力公司 用于对患者进行给药的流体输注设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113663158A (zh) * 2019-05-17 2021-11-19 上海移宇科技股份有限公司 双边驱动闭环人工胰腺
WO2022047258A3 (en) * 2020-08-28 2022-04-07 Harris John David Mechanically wound infusion pump
CN115382047A (zh) * 2022-08-31 2022-11-25 江苏义倍医疗科技股份有限公司 一种便于调节流量的新型输液器
CN115382047B (zh) * 2022-08-31 2023-06-20 江苏义倍医疗科技股份有限公司 一种便于调节流量的新型输液器

Also Published As

Publication number Publication date
CN106267459A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016188427A1 (zh) 包括机械致动装置的流体输注设备及其制造方法
US8663167B2 (en) Device for delivering liquid medicament
US9731067B2 (en) Mechanical injection pump and method of use
RU2608622C2 (ru) Ручное устройство для базально-болюсной доставки лекарственного средства
CN204932474U (zh) 用于对患者进行给药的流体输注设备
US4601707A (en) Insulin infusion device
CN113543823B (zh) 药物输注装置
EP1691883B1 (en) Dispenser for patient infusion device
US6656158B2 (en) Dispenser for patient infusion device
JP6685236B2 (ja) カテーテル挿入デバイス
US20080319394A1 (en) Portable infusion device with reduced level of operational noise
JP2009529961A (ja) 注入装置用ポンプ
CN111939386B (zh) 双边驱动的多输注模式药物输注装置
CN111939387B (zh) 具有多种输注模式的药物输注装置
RU130852U1 (ru) Впрыскиватель для лекарств
CN107469186B (zh) 流体输注装置及其驱动机构
CN209075694U (zh) 流体输注装置及其驱动机构
JPS605797B2 (ja) 微量注入ポンプ装置
US20240108800A1 (en) Dual wheel actuator
MX2010014118A (es) Bomba para la administracion controlada y alternada de liquidos a travez de un mismo canal.
US20170095610A1 (en) Personal injection device
US20230047034A1 (en) Infusion pumps and methods with shape memory wire driven syringe mechanism
CN110882445A (zh) 微量给药装置
TWM455506U (zh) 自動餵食器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799315

Country of ref document: EP

Kind code of ref document: A1