WO2016186186A1 - Condensed polycyclic aromatic compound - Google Patents

Condensed polycyclic aromatic compound Download PDF

Info

Publication number
WO2016186186A1
WO2016186186A1 PCT/JP2016/064945 JP2016064945W WO2016186186A1 WO 2016186186 A1 WO2016186186 A1 WO 2016186186A1 JP 2016064945 W JP2016064945 W JP 2016064945W WO 2016186186 A1 WO2016186186 A1 WO 2016186186A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
compound represented
polycyclic aromatic
condensed polycyclic
Prior art date
Application number
PCT/JP2016/064945
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 新見
秀典 薬師寺
俊文 井内
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2017519406A priority Critical patent/JP6619806B2/en
Publication of WO2016186186A1 publication Critical patent/WO2016186186A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a novel condensed polycyclic aromatic compound that can be used for a photoelectric conversion element, an imaging element, an optical sensor, an organic semiconductor device, and the like.
  • the characteristics of the organic electronic device include flexibility, a large area, and enabling an inexpensive and high-speed printing method in the electronic device manufacturing process.
  • Typical examples of the organic electronic device include an organic EL element, an organic solar cell element, an organic photoelectric conversion element, and an organic transistor element.
  • the organic EL element is expected as a main target for next-generation flat panel display applications, and is applied to mobile phone displays, TVs, and the like, and development aimed at further enhancement of functionality is continued.
  • Organic solar cell elements and the like are used as flexible and inexpensive energy sources, and organic transistor elements and the like are used as flexible displays and inexpensive IC components.
  • organic photoelectric conversion elements are expected to be developed into next-generation imaging elements, and reports have been made by several groups.
  • a quinacridone derivative or a quinazoline derivative is used for a photoelectric conversion element (Patent Document 4)
  • a diketopyrrolopyrrole derivative There is a report of an example (Patent Document 6).
  • an image pickup device achieves higher contrast and lower power consumption by reducing dark current. Therefore, a method of inserting a hole block layer or an electron block layer between the photoelectric conversion unit and the electrode unit is used for the purpose of reducing the leakage current from the photoelectric conversion unit in the dark.
  • the hole blocking layer and the electron blocking layer are generally widely used in the field of organic electronic devices, and in each of the constituent films of the device, there are electrodes or conductive films and other films. It is arranged at the interface and controls reverse movement of holes or electrons. Further, the hole blocking layer and the electron blocking layer are for adjusting unnecessary leakage of holes or electrons. Depending on the application of the device, considering properties such as heat resistance, transmission wavelength, and film forming method, these are appropriately selected and used. However, since the required performance of materials for photoelectric conversion elements is particularly high, the conventional hole blocking layer or electron blocking layer has sufficient performance in terms of leakage current prevention characteristics and heat resistance to process temperature. It cannot be said that it has been used commercially.
  • the present invention has been made in view of such a situation, including a photoelectric conversion element excellent in hole or electron leakage prevention characteristics and heat resistance against process temperature, an organic transistor excellent in heat resistance, and the like.
  • An object of the present invention is to provide a novel condensed polycyclic aromatic compound that can be used in various electronic devices.
  • the present inventors have found that the above problems can be solved by using a compound represented by the following formula (1), and have completed the present invention. That is, the present invention is as follows.
  • a condensed polycyclic aromatic compound represented by: [2] A method for producing a condensed polycyclic aromatic compound represented by the formula (1) according to the above [1], wherein the following formula (4) And a compound represented by the following formula (5) (In the formula (5), X represents a halogen atom), a method for producing a condensed polycyclic aromatic compound, comprising reacting a compound represented by the formula: [3]
  • An imaging device having (A) a first electrode film, (B) a second electrode film, and (C) a photoelectric conversion unit disposed between the first electrode film and the second electrode film.
  • the organic thin film layer other than the photoelectric conversion layer contains the condensed polycyclic aromatic compound according to the above [1], and the method includes the step (c-2) of depositing an organic thin film layer other than the photoelectric conversion layer by a vapor deposition method.
  • Forming a photoelectric conversion element for an image pickup device comprising: [5] (c-2) The photoelectric conversion element for an image sensor according to [4], wherein the organic thin film layer other than the photoelectric conversion layer is an electron block layer, a hole block layer, an electron transport layer, or a hole transport layer And [6] (c-2) The method for producing a photoelectric conversion element for an image sensor according to [5] above, wherein the organic thin film layer other than the photoelectric conversion layer is an electron block layer or a hole block layer.
  • a photoelectric conversion element for an image sensor excellent in required characteristics such as hole or electron leakage prevention and heat resistance, an organic transistor excellent in heat resistance, and the like.
  • FIG. 1 is a cross-sectional view illustrating an embodiment of a photoelectric conversion element for an image sensor according to the present invention.
  • the condensed polycyclic aromatic compound represented by the formula (1) of the present invention is, for example, 4-halogeno-1,1 ′: 4 ′, 1 ′′ -terphenyl (a compound represented by the following formula (2) 2-([1,1 ′: 4 ′, 1 ′′ -terphenyl]-) obtained by reacting bis (pinacolato) diboron (a compound represented by the following formula (3)) with a halogen atom in 4-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (a compound represented by the following formula (4)) and 2,7-dihalogeno [1] benzothieno [3,2 -B] [1] It can be synthesized by a reaction with benzothiophene (a compound represented by the following formula (5)).
  • X in formula (2) and formula (5) independently represents a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the purification method of the compound represented by the above formula (1) is not particularly limited, and known methods such as recrystallization, column chromatography, and vacuum sublimation purification can be employed. These methods can be combined as necessary.
  • the photoelectric conversion element for an image sensor obtained by the production method of the present invention is (A) the first electrode film and (B) the second.
  • (C) is an element in which a photoelectric conversion unit is disposed between two electrode films, and (A) the first electrode film or (B) light is photoelectrically converted from above the second electrode film. It is incident on the part.
  • the photoelectric conversion unit generates electrons and holes according to the amount of incident light, and is a device in which a signal corresponding to the electric charge is read out by a semiconductor and indicates the amount of incident light according to the absorption wavelength of the photoelectric conversion unit. .
  • a reading transistor is connected to the electrode film on which light is not incident.
  • the photoelectric conversion element is an imaging element because it indicates incident position information in addition to the incident light quantity. If the photoelectric conversion element arranged closer to the light source does not shield (transmit) the absorption wavelength of the photoelectric conversion element arranged behind the light source when viewed from the light source side, a plurality of photoelectric conversion elements are stacked. It may be used. By stacking a plurality of photoelectric conversion elements each having a different absorption wavelength in the visible light region, it can be used as a multicolor imaging element (full color photodiode array).
  • the condensed polycyclic aromatic compound represented by the formula (1) of the present invention is used as a material constituting the (C) photoelectric conversion part.
  • the photoelectric conversion part is (c-1) from the group consisting of a photoelectric conversion layer, an electron transport layer, a hole transport layer, an electron block layer, a hole block layer, a crystallization prevention layer, an interlayer contact improvement layer, and the like.
  • One or a plurality of selected (c-2) organic thin film layers other than the photoelectric conversion layer may be included.
  • the photoelectric conversion element material for an image sensor of the present invention can be used for both (c-1) a photoelectric conversion layer and (c-2) an organic thin film layer other than the photoelectric conversion layer. It is preferable to use for organic thin film layers other than the layer.
  • the (A) first electrode film and (B) second electrode film included in the photoelectric conversion element of the present invention are included in (C) the photoelectric conversion unit described later.
  • C-1) The photoelectric conversion layer transports holes.
  • c-2) an organic thin film layer other than the photoelectric conversion layer (hereinafter, the organic thin film layer other than the photoelectric conversion layer is simply referred to as “(c-2)) an organic thin film layer”).
  • a hole transport layer having a hole transport property plays a role of collecting and collecting holes from the (c-1) photoelectric conversion layer and the (c-2) organic thin film layer, and ( C)
  • the (c-1) photoelectric conversion layer included in the photoelectric conversion portion has an electron transporting property
  • the organic thin film layer is an electron transporting layer having an electron transporting property
  • the (c -1) Takes out electrons from the photoelectric conversion layer and (c-2) the organic thin film layer and discharges them.
  • the material that can be used as (A) the first electrode film and (B) the second electrode film is not particularly limited as long as it has a certain degree of conductivity, but the adjacent (c-1) photoelectric conversion layer (C-2) It is preferable to select in consideration of adhesion to the organic thin film layer, electron affinity, ionization potential, stability and the like.
  • Examples of materials that can be used for (A) the first electrode film and (B) the second electrode film include tin oxide (NESA), indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO).
  • Conductive metal oxide metals such as gold, silver, platinum, chromium, aluminum, iron, cobalt, nickel and tungsten; inorganic conductive materials such as copper iodide and copper sulfide; conductive polymers such as polythiophene, polypyrrole and polyaniline Carbon etc. are mentioned. When a plurality of these materials are used, they may be used in combination, or two or more layers containing each material may be stacked and used.
  • the conductivity of the material used for (A) the first electrode film and (B) the second electrode film is not particularly limited as long as it does not obstruct the light reception of the photoelectric conversion element more than necessary, but the signal intensity and consumption of the photoelectric conversion element It is preferable that it is as high as possible from the viewpoint of electric power.
  • an ITO film having a sheet resistance value of 300 ⁇ / ⁇ or less functions well as (A) the first electrode film and (B) the second electrode film, but has a conductivity of several ⁇ / ⁇ . Since a commercial product of a substrate provided with an ITO film having the above is also available, it is desirable to use a substrate having such high conductivity.
  • the thickness of the ITO film can be arbitrarily selected in consideration of conductivity, but is usually about 5 to 500 nm, preferably about 10 to 300 nm.
  • Examples of a method for forming a film such as ITO include conventionally known vapor deposition methods, electron beam methods, sputtering methods, chemical reaction methods, and coating methods.
  • the ITO film provided on the substrate may be subjected to UV-ozone treatment, plasma treatment or the like as necessary.
  • the transmittance of light incident through the transparent electrode film at the absorption peak wavelength of the photoelectric conversion layer is preferably 60% or more, more preferably 80% or more, and 95% or more. It is particularly preferred.
  • the electrode films used between the respective photoelectric conversion layers (this is other than (A) the first electrode film and (B) the second electrode film) It is necessary to transmit light having a wavelength other than the light detected by each photoelectric conversion layer, and the electrode film is preferably made of a material that transmits 90% or more of incident light. It is more preferable to use a material that transmits at least% of light.
  • the electrode film is preferably made plasma-free.
  • plasma-free means that no plasma is generated when the electrode film is formed, or the distance from the plasma generation source to the substrate is 2 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and reaches the substrate. It means a state where plasma is reduced.
  • Examples of an apparatus that does not generate plasma when forming an electrode film include an electron beam vapor deposition apparatus (EB vapor deposition apparatus) and a pulse laser vapor deposition apparatus.
  • EB vapor deposition apparatus electron beam vapor deposition apparatus
  • pulse laser vapor deposition apparatus a method of forming a transparent electrode film using an EB vapor deposition apparatus is referred to as an EB vapor deposition method
  • a method of forming a transparent electrode film using a pulse laser vapor deposition apparatus is referred to as a pulse laser vapor deposition method.
  • a plasma-free film formation apparatus As an apparatus capable of realizing a state in which plasma can be reduced during film formation (hereinafter referred to as a plasma-free film formation apparatus), for example, an opposed target sputtering apparatus, an arc plasma deposition apparatus, or the like can be considered.
  • the transparent conductive film is an electrode film (for example, the first conductive film)
  • a DC short circuit or an increase in leakage current may occur.
  • One of the causes is that fine cracks generated in the photoelectric conversion layer are covered with a dense film such as TCO (Transparent Conductive Oxide), and the opposite electrode film (second conductive film) from the transparent conductive film This is thought to be due to the increased conduction between the two. For this reason, when a material such as Al that is inferior in film quality is used for the electrode, an increase in leakage current is unlikely to occur.
  • TCO Transparent Conductive Oxide
  • the resistance value increases rapidly.
  • the sheet resistance of the conductive film in the photoelectric conversion element for an image sensor according to the present embodiment is usually 100 to 10,000 ⁇ / ⁇ , and the degree of freedom in film thickness is large.
  • the thinner the transparent conductive film the smaller the amount of light that is absorbed and the higher the light transmittance. High light transmittance is very preferable because light absorbed by the photoelectric conversion layer is increased and the photoelectric conversion performance is improved.
  • the (C) photoelectric conversion part of the photoelectric conversion element of the present invention includes at least (c-1) a photoelectric conversion layer and (c-2) an organic thin film layer other than the photoelectric conversion layer.
  • the organic semiconductor film is generally used for the photoelectric conversion layer constituting the photoelectric conversion part.
  • the organic semiconductor film may be a single layer or a plurality of layers.
  • a P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film thereof (bulk heterostructure) is used.
  • a plurality of layers it is about 2 to 10 layers, and has a structure in which any one of a P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film (bulk heterostructure) is laminated, A buffer layer may be inserted between the layers.
  • the organic semiconductor film of the photoelectric conversion layer has a triarylamine compound, a benzidine compound, a pyrazoline compound, a styrylamine compound, a hydrazone compound, a triphenylmethane compound, a carbazole compound, a polysilane compound depending on the wavelength band to be absorbed.
  • the organic thin film layer constituting the photoelectric conversion portion is (c-1) a layer other than the photoelectric conversion layer, for example, an electron transport layer, a hole transport layer, It is also used as an electron blocking layer, a hole blocking layer, a crystallization preventing layer, an interlayer contact improving layer, or the like.
  • a thin film layer selected from the group consisting of an electron transport layer, a hole transport layer, an electron block layer and a hole block layer an element capable of efficiently converting into an electric signal even with weak light energy can be obtained. Therefore, it is preferable.
  • the electron transport layer has (c-1) a role of transporting electrons generated in the photoelectric conversion layer to (A) the first electrode film or (B) the second electrode film, and (c) -1) Plays the role of blocking the movement of holes to the photoelectric conversion layer.
  • the hole transport layer has the role of transporting the generated holes from (c-1) the photoelectric conversion layer to (A) the first electrode film or (B) the second electrode film, and the hole transport destination electrode film (C-1) serves to block the movement of electrons to the photoelectric conversion layer.
  • the electron blocking layer prevents movement of electrons from (A) the first electrode film or (B) second electrode film to (c-1) the photoelectric conversion layer, and (c-1) It serves to prevent recombination and reduce dark current.
  • the hole blocking layer prevents the movement of holes from (A) the first electrode film or (B) the second electrode film to (c-1) the photoelectric conversion layer, and (c-1) It has a function of preventing recombination at the time and reducing dark current.
  • a film containing a hole blocking substance may be used alone, or two or more kinds of films may be laminated. Alternatively, it may be formed by mixing a plurality of hole blocking substances.
  • the hole blocking substance is not particularly limited as long as it is a compound that can prevent holes from flowing out of the element from the electrode.
  • the (c-2) organic thin film layer containing the compound represented by the general formula (1) can be suitably used as a hole blocking layer, but other compounds such as bathophenanthroline and bathocuproin Can be used in combination with phenanthroline derivatives, silole derivatives, quinolinol derivative metal complexes, oxadiazole derivatives, oxazole derivatives, quinoline derivatives, and the like.
  • the hole blocking layer should be thick, but from the standpoint of obtaining a sufficient amount of current when reading the signal at the time of light incidence, the thickness should be as thin as possible. .
  • the film thickness of the (C-1) photoelectric conversion portion including the (c-1) photoelectric conversion layer and (c-2) the organic thin film layer is generally about 5 to 500 nm. Is preferred.
  • the hole blocking layer and the electron blocking layer preferably have a high absorption wavelength transmittance in the (c-1) photoelectric conversion layer in order not to disturb the light absorption of the (c-1) photoelectric conversion layer. It is preferable to use it in a thin film.
  • FIG. 1 illustrates in detail a typical element structure of a photoelectric conversion element for an image sensor according to the present invention, but the present invention is not limited to these structures.
  • 1 is an insulating part
  • 2 is one electrode film (first electrode film or second electrode film)
  • 3 is an electron block layer
  • 4 is a photoelectric conversion layer
  • 5 is a hole block.
  • a layer, 6 represents the other electrode film (second electrode film or first electrode film)
  • 7 represents an insulating base material, or a stacked photoelectric conversion element.
  • the readout transistor (not shown in the drawing) only needs to be connected to either the electrode film 2 or 6, for example, if the photoelectric conversion layer 4 is transparent, the side opposite to the light incident side It may be formed on the outer side of the electrode film (the upper side of the electrode 2 or the lower side of the electrode 6). If the thin film layer (electron block layer, hole block layer, etc.) other than the photoelectric conversion layer constituting the photoelectric conversion element does not extremely shield the absorption wavelength of the photoelectric conversion layer, the direction in which light is incident is the upper side (Fig. 1 or the lower portion (the insulating substrate or the other photoelectric conversion element 7 side in FIG. 1). The electron block layer 3 and the hole block layer 5 may be interchanged.
  • the method for forming the (c-1) photoelectric conversion layer and the (c-2) organic thin film layer in the photoelectric conversion element of the present invention is generally a vacuum process such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination.
  • Coating methods such as casting, solution process casting, spin coating, dip coating, blade coating, wire bar coating, spray coating, etc., printing methods such as inkjet printing, screen printing, offset printing, letterpress printing, micro contact printing method, etc.
  • the method of soft lithography, etc., and further a method combining a plurality of these methods can be employed.
  • each layer depends on the resistance value and charge mobility of each substance and cannot be limited, but is usually in the range of 0.5 to 5000 nm, preferably in the range of 1 to 1000 nm, more preferably 5 It is the range of thru
  • the condensed polycyclic aromatic compound represented by the formula (1) of the present invention is also suitably used as a material for organic thin films of organic electronic devices such as organic EL devices, organic solar cell devices, and organic transistor devices.
  • An organic transistor element has two electrodes (source electrode and drain electrode) in contact with an organic semiconductor, and controls the current flowing between the electrodes with a voltage applied to another electrode called a gate electrode.
  • the organic thin film containing the condensed polycyclic aromatic compound of the present invention is particularly preferably used as a semiconductor layer of an organic transistor element.
  • Examples of a method for forming an organic thin film in an organic electronic device such as an organic transistor element include a dry process such as a vapor deposition method and various solution processes, but a solution process is preferable.
  • Examples of the solution process include spin coating, drop casting, dip coating, spraying, flexographic printing, relief printing such as relief printing, flat printing such as offset printing, dry offset printing, and pad printing. , Intaglio printing methods such as gravure printing methods, screen printing methods, stencil printing methods, stencil printing methods such as lingraph printing methods, ink jet printing methods, micro contact printing methods, etc., and also a combination of these methods .
  • the block layer described in the examples may be either a hole block layer or an electron block layer.
  • Production of the photoelectric conversion elements of Comparative Examples 1 to 3 and 9 was performed with a vapor deposition machine, and application measurement of current voltage was performed in the atmosphere.
  • the photoelectric conversion elements of Example 2 and Comparative Examples 4 to 8 were produced by a vapor deposition machine integrated with a glove box, and the produced photoelectric conversion elements were sealed in a glove box in a nitrogen atmosphere in a sealed bottle-type measurement chamber (AELS).
  • AELS sealed bottle-type measurement chamber
  • a photoelectric conversion element was installed in (Technology Co., Ltd.), and current voltage application measurement was performed. Current voltage application measurements were performed using a semiconductor parameter analyzer 4200-SCS (Keithley Instruments) unless otherwise specified.
  • Irradiation of incident light was performed using PVL-3300 (manufactured by Asahi Spectroscope) at an irradiation light wavelength of 550 nm and an irradiation light half width of 20 nm unless otherwise specified.
  • the light / dark ratio in the examples indicates a value obtained by dividing the current value in the case of light irradiation by the current value in a dark place.
  • the phase change point was measured using a thermal analyzer TGA / DSC 1 (METTLER TOLEDO) at a heating rate of 10 ° C./min.
  • Example 1 (Synthesis of the condensed polycyclic aromatic compound of the present invention represented by the formula (1)) (Process 1) 200 parts of toluene, 5 parts of 4-bromo-1,1 ′: 4 ′, 1 ′′ -terphenyl, 5 parts of bis (pinacolato) diboron, 3 parts of potassium acetate and [1,1′-bis (diphenylphosphino) ) Ferrocene] palladium (II) dichloride 0.5 part of dichloromethane adduct was mixed and stirred at reflux temperature for 4 hours under nitrogen atmosphere. After cooling the obtained reaction liquid to room temperature, 20 parts of silica gel was added and stirred for 5 minutes.
  • Process 1 200 parts of toluene, 5 parts of 4-bromo-1,1 ′: 4 ′, 1 ′′ -terphenyl, 5 parts of bis (pinacolato) diboron, 3 parts of potassium acetate and [1,1′-bis (diphenylphosphino
  • 120 parts of DMF is represented by the following formula (6) and is generally available ([1,1 ′: 4 ′, 1 ′′ -terphenyl] -4-yl) 2.6 parts of boronic acid, 2,7
  • a mixture of 2.0 parts of diiodo [1] benzothieno [3,2-b] [1] benzothiophene, 14 parts of tripotassium phosphate and 0.2 part of tetrakis (triphenylphosphine) palladium (0) The mixture was stirred at 90 ° C. for 6 hours. After cooling the obtained reaction liquid to room temperature, 120 parts of water was added, and solid content was separated by filtration.
  • Example 2 (Production and Evaluation of Photoelectric Conversion Device Using Condensed Polycyclic Aromatic Compound Represented by Formula (1)) 2,7-bis (1,1 ′: 4 ′, 1 ′′ -terphenyl-4-yl) obtained in Example 1 on an ITO transparent conductive glass (manufactured by Geomat Co., Ltd., ITO film thickness 150 nm) -[1] benzothieno [3,2-b] [1] benzothiophene was deposited as a blocking layer to a thickness of 50 nm by resistance heating vacuum deposition. Next, quinacridone was formed into a 100 nm vacuum film as a photoelectric conversion layer on the block layer.
  • Comparative Example 1 (Preparation of photoelectric conversion element using comparative compound and its evaluation) A photoelectric conversion element for a comparative imaging device according to the description of Example 2 except that the compound represented by the following formula (11) was used instead of the condensed polycyclic aromatic compound represented by the formula (1).
  • the light / dark ratio was 600 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes.
  • the phase change point of the compound represented by the following formula (11) was 366 ° C.
  • Comparative Example 2 (Production and Evaluation of Photoelectric Conversion Element Using Comparative Compound)
  • the light / dark ratio was 3500 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes.
  • the phase change point of the compound represented by the following formula (12) was 269 ° C.
  • Comparative Example 3 (Production and Evaluation of Photoelectric Conversion Element Using Comparative Compound)
  • the light / dark ratio was 3900 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes.
  • the phase change point of the compound represented by the following formula (13) was 260 ° C.
  • Comparative Example 4 (Production of photoelectric conversion element using comparative compound and its evaluation) A photoelectric conversion element for a comparative imaging device according to the description of Example 2 except that the compound represented by the following formula (14) was used instead of the condensed polycyclic aromatic compound represented by the formula (1). Was made.
  • the light / dark ratio was 15000 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes.
  • the phase change point of the compound represented by the following formula (14) was 422 ° C.
  • Comparative Example 5 (Preparation of photoelectric conversion element using comparative compound and its evaluation) A photoelectric conversion element for a comparative imaging device according to the description of Example 2 except that the compound represented by the following formula (15) was used instead of the condensed polycyclic aromatic compound represented by the formula (1). Was made.
  • the contrast ratio was 1800 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes.
  • the phase change point of the compound represented by the following formula (15) was 314 ° C.
  • Comparative Example 6 (Preparation of photoelectric conversion element using comparative compound and its evaluation) A photoelectric conversion element for a comparative imaging device according to the description of Example 2 except that the compound represented by the following formula (16) was used instead of the condensed polycyclic aromatic compound represented by the formula (1). Was made. The light / dark ratio was 690 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes. The phase change point of the compound represented by the following formula (16) was 379 ° C.
  • Comparative Example 7 (Production of photoelectric conversion element using comparative compound and its evaluation) A photoelectric conversion element for a comparative imaging device according to the description of Example 2 except that the compound represented by the following formula (17) was used instead of the condensed polycyclic aromatic compound represented by the formula (1). Was made.
  • the light / dark ratio was 240 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes.
  • the phase change point of the compound represented by the following formula (17) was 316 ° C.
  • Comparative Example 8 (Production of photoelectric conversion element using comparative compound and its evaluation) A photoelectric conversion element for a comparative imaging device according to the description of Example 2 except that the compound represented by the following formula (18) was used instead of the condensed polycyclic aromatic compound represented by the formula (1). Was made. The contrast ratio was 47 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes. The phase change point of the compound represented by the following formula (18) was 371 ° C.
  • Comparative Example 9 (Production and Evaluation of Photoelectric Conversion Element Using Comparative Compound) A comparative photoelectric conversion element for an image sensor was prepared according to the description of Example 2 except that tris (8-quinolinolato) aluminum was used instead of the condensed polycyclic aromatic compound represented by the formula (1). .
  • the contrast ratio was 31 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes.
  • the compound represented by the formula (1) of the present invention has high heat resistance, and the photoelectric conversion element for the image sensor of Example 1 using the compound is the image sensor of Comparative Examples 1 to 9. It is clear that it has characteristics superior to those of photoelectric conversion elements for use.
  • the condensed polycyclic aromatic compound represented by the formula (1) of the present invention has excellent performance in organic photoelectric conversion characteristics, and an organic imaging device having high resolution and high response is
  • organic electronics devices such as organic EL elements, organic solar cell elements and organic transistor elements, optical sensors, infrared sensors, ultraviolet sensors, devices such as X-ray sensors and photon counters, and cameras, video cameras, and infrared cameras using them. Application to such fields is expected.

Abstract

The present invention provides the condensed polycyclic aromatic compound represented by formula (1); a method for producing the condensed polycyclic aromatic compound; and a method for producing a photoelectric conversion element by using the condensed polycyclic aromatic compound. By using the compound represented by formula (1), it is possible to produce a photoelectric conversion element having excellent hole leakage and electron leakage prevention characteristics and excellent heat resistance to processing temperatures, and to produce a variety of electronic devices, such as organic transistors, having excellent heat resistance.

Description

縮合多環芳香族化合物Fused polycyclic aromatic compounds
 本発明は光電変換素子、撮像素子、光センサー及び有機半導体デバイス等に用い得る新規な縮合多環芳香族化合物に関する。 The present invention relates to a novel condensed polycyclic aromatic compound that can be used for a photoelectric conversion element, an imaging element, an optical sensor, an organic semiconductor device, and the like.
 近年、有機エレクトロニクスデバイスへの関心が高まっている。有機エレクトロニクスデバイスの特徴としてはフレキシブルであること、大面積化が可能であること、更にはエレクトロニクスデバイス製造プロセスにおいて安価で高速の印刷方法を可能にすること等が挙げられる。有機エレクトロニクスデバイスの代表的な例としては有機EL素子、有機太陽電池素子、有機光電変換素子、有機トランジスタ素子などが挙げられる。有機EL素子は、次世代フラットパネルディスプレイ用途のメインターゲットとして期待され、携帯電話のディスプレイやTVなどに応用され、更に高機能化を目指した開発が継続されている。有機太陽電池素子などは、フレキシブルで安価なエネルギー源として、また、有機トランジスタ素子などはフレキシブルなディスプレイや安価なICの部品として利用されるため、研究開発がなされている。 In recent years, interest in organic electronics devices has increased. The characteristics of the organic electronic device include flexibility, a large area, and enabling an inexpensive and high-speed printing method in the electronic device manufacturing process. Typical examples of the organic electronic device include an organic EL element, an organic solar cell element, an organic photoelectric conversion element, and an organic transistor element. The organic EL element is expected as a main target for next-generation flat panel display applications, and is applied to mobile phone displays, TVs, and the like, and development aimed at further enhancement of functionality is continued. Organic solar cell elements and the like are used as flexible and inexpensive energy sources, and organic transistor elements and the like are used as flexible displays and inexpensive IC components.
 有機エレクトロニクスデバイスの開発には、そのデバイスを構成する材料の開発が非常に重要である。そのため数多くの材料が検討されているが、十分な性能を有しているとは言えず、現在でも各種デバイスに有用な材料の開発が精力的に行われている。その中で、ベンゾチエノベンゾチオフェン等を母骨格とした化合物も、有機エレクトロニクス材料として開発されている(特許文献1-3)。ベンゾチエノベンゾチオフェンのアルキル誘導体は、印刷プロセスで半導体薄膜を形成するのに十分な溶媒溶解度を有するものの、アルキル鎖長に対する縮環数が相対的に少ないことにより低温で相転移を起こしやすく、それを用いた有機エレクトロニクスデバイスは、耐熱性が劣ってしまうという問題がある。 In the development of organic electronic devices, it is very important to develop the materials that make up the devices. For this reason, many materials have been studied, but it cannot be said that they have sufficient performance, and at present, the development of materials useful for various devices is energetically performed. Among them, compounds having benzothienobenzothiophene or the like as a mother skeleton have also been developed as organic electronics materials (Patent Documents 1-3). Alkyl derivatives of benzothienobenzothiophene have sufficient solvent solubility to form semiconductor thin films in the printing process, but they tend to undergo phase transition at low temperatures due to the relatively small number of condensed rings relative to the alkyl chain length. There is a problem that the organic electronic device using the heat resistance is inferior.
 また、近年の有機エレクトロニクスデバイスの中で、有機光電変換素子は、次世代の撮像素子への展開が期待されており、いくつかのグループからその報告がなされている。例えば、キナクリドン誘導体、又はキナゾリン誘導体を光電変換素子に用いた例(特許文献4)、キナクリドン誘導体を用いた光電変換素子を撮像素子へ応用した例(特許文献5)、ジケトピロロピロール誘導体を用いた例(特許文献6)等の報告がある。一般的に、撮像素子は、暗電流の低減化によって、高コントラスト化、省電力化すると考えられる。そこで、暗時の光電変換部からのリーク電流を減らす目的で、光電変換部と電極部との間に、正孔ブロック層、又は電子ブロック層を挿入する手法が用いられる。 Also, among recent organic electronic devices, organic photoelectric conversion elements are expected to be developed into next-generation imaging elements, and reports have been made by several groups. For example, an example in which a quinacridone derivative or a quinazoline derivative is used for a photoelectric conversion element (Patent Document 4), an example in which a photoelectric conversion element using a quinacridone derivative is applied to an imaging element (Patent Document 5), a diketopyrrolopyrrole derivative There is a report of an example (Patent Document 6). In general, it is considered that an image pickup device achieves higher contrast and lower power consumption by reducing dark current. Therefore, a method of inserting a hole block layer or an electron block layer between the photoelectric conversion unit and the electrode unit is used for the purpose of reducing the leakage current from the photoelectric conversion unit in the dark.
 正孔ブロック層、及び電子ブロック層は、有機エレクトロニクスデバイスの分野では一般的に広く用いられており、それぞれ、デバイスの構成膜中において、電極又は導電性を有する膜と、それ以外の膜との界面に配置され、正孔又は電子の逆移動を制御するものである。また、正孔ブロック層、及び電子ブロック層は、不必要な正孔又は電子の漏れを調整するものでもある。デバイスの用途により、耐熱性、透過波長、成膜方法等の特性を考慮し、これらは適宜選択して用いられる。しかしながら、特に光電変換素子用途の材料の要求性能は高いため、これまでの正孔ブロック層、又は電子ブロック層では、リーク電流防止特性、プロセス温度に対する耐熱性などの面で、十分な性能を有しているとは言えず、商業的に活用されるに至っていない。 The hole blocking layer and the electron blocking layer are generally widely used in the field of organic electronic devices, and in each of the constituent films of the device, there are electrodes or conductive films and other films. It is arranged at the interface and controls reverse movement of holes or electrons. Further, the hole blocking layer and the electron blocking layer are for adjusting unnecessary leakage of holes or electrons. Depending on the application of the device, considering properties such as heat resistance, transmission wavelength, and film forming method, these are appropriately selected and used. However, since the required performance of materials for photoelectric conversion elements is particularly high, the conventional hole blocking layer or electron blocking layer has sufficient performance in terms of leakage current prevention characteristics and heat resistance to process temperature. It cannot be said that it has been used commercially.
特開2008-258592号公報JP 2008-2558592 A 国際公開第2008/047896号International Publication No. 2008/047896 国際公開第2010/098372号International Publication No. 2010/098372 特許第4945146号Patent No. 4945146 特許第5022573号Patent No. 5022573 特開第2008-290963号公報JP 2008-290963 A
 本発明は、この様な状況に鑑みてなされたものであり、正孔又は電子リーク防止特性、そしてプロセス温度に対する耐熱性等に優れた光電変換素子や、耐熱性に優れた有機トランジスタ等をはじめとする種々のエレクトロニクスデバイスに用い得る新規の縮合多環芳香族化合物を提供することを目的とする。 The present invention has been made in view of such a situation, including a photoelectric conversion element excellent in hole or electron leakage prevention characteristics and heat resistance against process temperature, an organic transistor excellent in heat resistance, and the like. An object of the present invention is to provide a novel condensed polycyclic aromatic compound that can be used in various electronic devices.
 本発明者は、上記課題を解決すべく、鋭意努力した結果、下記式(1)で表される化合物を用いることにより前記諸課題を解決することを見出し、本発明を完成するに至った。
即ち、本発明は、下記の通りである。
As a result of diligent efforts to solve the above problems, the present inventors have found that the above problems can be solved by using a compound represented by the following formula (1), and have completed the present invention.
That is, the present invention is as follows.
[1]下記式(1)
Figure JPOXMLDOC01-appb-C000006
で表される縮合多環芳香族化合物、
[2]前記[1]に記載の式(1)で表される縮合多環芳香族化合物の製造方法であって、下記式(4)
Figure JPOXMLDOC01-appb-C000007
で表される化合物と、下記式(5)
Figure JPOXMLDOC01-appb-C000008
(式(5)中、Xはハロゲン原子を表す。)で表される化合物を反応させることを含む、縮合多環芳香族化合物の製造方法、
[3]前記[1]に記載の式(1)で表される縮合多環芳香族化合物の製造方法であって、下記式(6)
Figure JPOXMLDOC01-appb-C000009
で表される化合物と、下記式(5)
Figure JPOXMLDOC01-appb-C000010
(式(5)中、Xはハロゲン原子を表す。)で表される化合物を反応させることを含む、縮合多環芳香族化合物の製造方法、
[4](A)第一の電極膜、(B)第二の電極膜及び該第一の電極膜と該第二の電極膜の間に配置された(C)光電変換部を有する撮像素子用光電変換素子の製造方法であって、前記(C)光電変換部が少なくとも(c-1)光電変換層及び(c-2)光電変換層以外の有機薄膜層を含み、前記(c-2)光電変換層以外の有機薄膜層が、前記[1]に記載の縮合多環芳香族化合物を含み、前記方法は、前記(c-2)光電変換層以外の有機薄膜層を、蒸着法により形成することを含む、撮像素子用光電変換素子の製造方法、
[5](c-2)光電変換層以外の有機薄膜層が電子ブロック層、正孔ブロック層、電子輸送層又は正孔輸送層である、前記[4]に記載の撮像素子用光電変換素子の製造方法、及び
[6](c-2)光電変換層以外の有機薄膜層が電子ブロック層又は正孔ブロック層である、前記[5]に記載の撮像素子用光電変換素子の製造方法。
[1] The following formula (1)
Figure JPOXMLDOC01-appb-C000006
A condensed polycyclic aromatic compound represented by:
[2] A method for producing a condensed polycyclic aromatic compound represented by the formula (1) according to the above [1], wherein the following formula (4)
Figure JPOXMLDOC01-appb-C000007
And a compound represented by the following formula (5)
Figure JPOXMLDOC01-appb-C000008
(In the formula (5), X represents a halogen atom), a method for producing a condensed polycyclic aromatic compound, comprising reacting a compound represented by the formula:
[3] A method for producing a condensed polycyclic aromatic compound represented by the formula (1) according to the above [1], wherein the following formula (6)
Figure JPOXMLDOC01-appb-C000009
And a compound represented by the following formula (5)
Figure JPOXMLDOC01-appb-C000010
(In the formula (5), X represents a halogen atom), a method for producing a condensed polycyclic aromatic compound, comprising reacting a compound represented by the formula:
[4] An imaging device having (A) a first electrode film, (B) a second electrode film, and (C) a photoelectric conversion unit disposed between the first electrode film and the second electrode film. A method for producing a photoelectric conversion element for use in which the (C) photoelectric conversion part includes at least (c-1) a photoelectric conversion layer and (c-2) an organic thin film layer other than the photoelectric conversion layer, ) The organic thin film layer other than the photoelectric conversion layer contains the condensed polycyclic aromatic compound according to the above [1], and the method includes the step (c-2) of depositing an organic thin film layer other than the photoelectric conversion layer by a vapor deposition method. Forming a photoelectric conversion element for an image pickup device, comprising:
[5] (c-2) The photoelectric conversion element for an image sensor according to [4], wherein the organic thin film layer other than the photoelectric conversion layer is an electron block layer, a hole block layer, an electron transport layer, or a hole transport layer And [6] (c-2) The method for producing a photoelectric conversion element for an image sensor according to [5] above, wherein the organic thin film layer other than the photoelectric conversion layer is an electron block layer or a hole block layer.
 本発明により、正孔又は電子のリーク防止性及び耐熱性等の要求特性に優れた撮像素子用光電変換素子や、耐熱性に優れた有機トランジスタ等を提供することができる。 According to the present invention, it is possible to provide a photoelectric conversion element for an image sensor excellent in required characteristics such as hole or electron leakage prevention and heat resistance, an organic transistor excellent in heat resistance, and the like.
図1は、本発明の撮像素子用光電変換素子の実施態様を例示した断面図を示す。FIG. 1 is a cross-sectional view illustrating an embodiment of a photoelectric conversion element for an image sensor according to the present invention.
 本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づくものであるが、本発明はそのような実施態様や具体例に限定されるものではない。 The contents of the present invention will be described in detail. The description of the constituent elements described below is based on typical embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples.
 本発明の式(1)で表される縮合多環芳香族化合物は、例えば、4-ハロゲノ-1,1’:4’,1’’-ターフェニル(下記式(2)で表される化合物)中のハロゲン原子にビス(ピナコラト)ジボロン(下記式(3)で表される化合物)を反応させて得られた2-([1,1’:4’,1’’-ターフェニル]-4-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(下記式(4)で表される化合物)と、2,7-ジハロゲノ[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン(下記式(5)で表される化合物)との反応により合成することができる。 The condensed polycyclic aromatic compound represented by the formula (1) of the present invention is, for example, 4-halogeno-1,1 ′: 4 ′, 1 ″ -terphenyl (a compound represented by the following formula (2) 2-([1,1 ′: 4 ′, 1 ″ -terphenyl]-) obtained by reacting bis (pinacolato) diboron (a compound represented by the following formula (3)) with a halogen atom in 4-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (a compound represented by the following formula (4)) and 2,7-dihalogeno [1] benzothieno [3,2 -B] [1] It can be synthesized by a reaction with benzothiophene (a compound represented by the following formula (5)).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記反応式において、式(2)及び式(5)におけるXは、独立してハロゲン原子を表す。ハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子・ヨウ素原子などが挙げられる。 In the above reaction formula, X in formula (2) and formula (5) independently represents a halogen atom. Specific examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 また、上記式(4)で表される化合物の代りに下記式(6)で表される([1,1’:4’,1’’-ターフェニル]-4-イル)ボロン酸を用いて、上記式(5)で表される化合物と反応にさせることにより式(1)で表される縮合多環芳香族化合物を得ることも出来る。 Further, ([1,1 ′: 4 ′, 1 ″ -terphenyl] -4-yl) boronic acid represented by the following formula (6) is used instead of the compound represented by the above formula (4). Thus, the condensed polycyclic aromatic compound represented by the formula (1) can be obtained by reacting with the compound represented by the above formula (5).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(1)で表される化合物の精製方法は、特に限定されず、再結晶、カラムグロマトグラフィー、及び真空昇華精製等の公知の方法が採用できる。また必要に応じてこれらの方法を組み合わせることができる。 The purification method of the compound represented by the above formula (1) is not particularly limited, and known methods such as recrystallization, column chromatography, and vacuum sublimation purification can be employed. These methods can be combined as necessary.
 本発明の製造方法により得られる撮像素子用光電変換素子(以下、単に「本発明の光電変換素子」ということもある。)は、対向する(A)第一の電極膜と(B)第二の電極膜との二つの電極膜間に、(C)光電変換部を配置した素子であって、(A)第一の電極膜又は(B)第二の電極膜の上方から光が光電変換部に入射されるものである。光電変換部は入射する光量に応じて電子と正孔を発生するものであり、半導体により前記電荷に応じた信号が読み出され、光電変換部の吸収波長に応じた入射光量を示す素子である。光が入射しない側の電極膜には読み出しのためのトランジスタが接続される場合もある。光電変換素子は、アレイ状に多数配置されている場合は、入射光量に加え入射位置情報をも示すため、撮像素子となる。また、より光源近くに配置された光電変換素子が、光源側から見てその背後に配置された光電変換素子の吸収波長を遮蔽しない(透過する)場合は、複数の光電変換素子を積層して用いてもよい。可視光領域にそれぞれ異なる吸収波長を有する複数の光電変換素子を積層することにより、多色の撮像素子(フルカラーフォトダイオードアレイ)として用いることができる。 The photoelectric conversion element for an image sensor obtained by the production method of the present invention (hereinafter, also simply referred to as “the photoelectric conversion element of the present invention”) is (A) the first electrode film and (B) the second. (C) is an element in which a photoelectric conversion unit is disposed between two electrode films, and (A) the first electrode film or (B) light is photoelectrically converted from above the second electrode film. It is incident on the part. The photoelectric conversion unit generates electrons and holes according to the amount of incident light, and is a device in which a signal corresponding to the electric charge is read out by a semiconductor and indicates the amount of incident light according to the absorption wavelength of the photoelectric conversion unit. . In some cases, a reading transistor is connected to the electrode film on which light is not incident. In the case where a large number of photoelectric conversion elements are arranged in an array, the photoelectric conversion element is an imaging element because it indicates incident position information in addition to the incident light quantity. If the photoelectric conversion element arranged closer to the light source does not shield (transmit) the absorption wavelength of the photoelectric conversion element arranged behind the light source when viewed from the light source side, a plurality of photoelectric conversion elements are stacked. It may be used. By stacking a plurality of photoelectric conversion elements each having a different absorption wavelength in the visible light region, it can be used as a multicolor imaging element (full color photodiode array).
 本発明の式(1)で表される縮合多環芳香族化合物は、上記(C)光電変換部を構成する材料として用いられる。
 (C)光電変換部は、(c-1)光電変換層と、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層及び層間接触改良層等からなる群より選択される一種又は複数種の(c-2)光電変換層以外の有機薄膜層とを含むことができる。本発明の撮像素子用光電変換素子材料は(c-1)光電変換層及び(c-2)光電変換層以外の有機薄膜層のいずれにも用いることができるが、(c-2)光電変換層以外の有機薄膜層に用いることが好ましい。
The condensed polycyclic aromatic compound represented by the formula (1) of the present invention is used as a material constituting the (C) photoelectric conversion part.
(C) The photoelectric conversion part is (c-1) from the group consisting of a photoelectric conversion layer, an electron transport layer, a hole transport layer, an electron block layer, a hole block layer, a crystallization prevention layer, an interlayer contact improvement layer, and the like. One or a plurality of selected (c-2) organic thin film layers other than the photoelectric conversion layer may be included. The photoelectric conversion element material for an image sensor of the present invention can be used for both (c-1) a photoelectric conversion layer and (c-2) an organic thin film layer other than the photoelectric conversion layer. It is preferable to use for organic thin film layers other than the layer.
 本発明の光電変換素子が有する(A)第一の電極膜及び(B)第二の電極膜は、後述する(C)光電変換部に含まれる(c-1)光電変換層が正孔輸送性を有する場合や、(c-2)光電変換層以外の有機薄膜層(以下、光電変換層以外の有機薄膜層を、単に「(c-2))有機薄膜層」とも表記する)が正孔輸送性を有する正孔輸送層である場合は、該(c-1)光電変換層や該(c-2)有機薄膜層から正孔を取り出してこれを捕集する役割を果たし、また(C)光電変換部に含まれる(c-1)光電変換層が電子輸送性を有する場合や、(c-2)有機薄膜層が電子輸送性を有する電子輸送層である場合は、該(c-1)光電変換層や該(c-2)有機薄膜層から電子を取り出してこれを吐出する役割を果たすものである。よって、(A)第一の電極膜及び(B)第二の電極膜として用い得る材料は、ある程度の導電性を有するものであれば特に限定されないが、隣接する(c-1)光電変換層や(c-2)有機薄膜層との密着性や電子親和力、イオン化ポテンシャル、安定性等を考慮して選択することが好ましい。(A)第一の電極膜及び(B)第二の電極膜として用い得る材料としては、例えば、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)及び酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル及びタングステン等の金属;ヨウ化銅及び硫化銅等の無機導電性物質;ポリチオフェン、ポリピロール及びポリアニリン等の導電性ポリマー;炭素等が挙げられる。これらの材料を複数を用いる場合は、混合して用いてもよいし、各材料を含む層を2層以上積層して用いてもよい。(A)第一の電極膜及び(B)第二の電極膜に用いる材料の導電性も光電変換素子の受光を必要以上に妨げなければ特に限定されないが、光電変換素子の信号強度や、消費電力の観点から出来るだけ高いことが好ましい。例えばシート抵抗値が300Ω/□以下の導電性を有するITO膜であれば(A)第一の電極膜及び(B)第二の電極膜として充分機能するが、数Ω/□程度の導電性を有するITO膜を備えた基板の市販品も入手可能となっていることから、この様な高い導電性を有する基板を使用することが望ましい。ITO膜(電極膜)の厚さは導電性を考慮して任意に選択することができるが、通常5乃至500nm、好ましくは10乃至300nm程度である。ITOなどの膜を形成する方法としては、従来公知の蒸着法、電子線ビーム法、スパッタリング法、化学反応法及び塗布法等が挙げられる。基板上に設けられたITO膜には必要に応じUV-オゾン処理やプラズマ処理等を施してもよい。 The (A) first electrode film and (B) second electrode film included in the photoelectric conversion element of the present invention are included in (C) the photoelectric conversion unit described later. (C-1) The photoelectric conversion layer transports holes. Or (c-2) an organic thin film layer other than the photoelectric conversion layer (hereinafter, the organic thin film layer other than the photoelectric conversion layer is simply referred to as “(c-2)) an organic thin film layer”). In the case of a hole transport layer having a hole transport property, it plays a role of collecting and collecting holes from the (c-1) photoelectric conversion layer and the (c-2) organic thin film layer, and ( C) When the (c-1) photoelectric conversion layer included in the photoelectric conversion portion has an electron transporting property, or (c-2) the organic thin film layer is an electron transporting layer having an electron transporting property, the (c -1) Takes out electrons from the photoelectric conversion layer and (c-2) the organic thin film layer and discharges them. Therefore, the material that can be used as (A) the first electrode film and (B) the second electrode film is not particularly limited as long as it has a certain degree of conductivity, but the adjacent (c-1) photoelectric conversion layer (C-2) It is preferable to select in consideration of adhesion to the organic thin film layer, electron affinity, ionization potential, stability and the like. Examples of materials that can be used for (A) the first electrode film and (B) the second electrode film include tin oxide (NESA), indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO). Conductive metal oxide; metals such as gold, silver, platinum, chromium, aluminum, iron, cobalt, nickel and tungsten; inorganic conductive materials such as copper iodide and copper sulfide; conductive polymers such as polythiophene, polypyrrole and polyaniline Carbon etc. are mentioned. When a plurality of these materials are used, they may be used in combination, or two or more layers containing each material may be stacked and used. The conductivity of the material used for (A) the first electrode film and (B) the second electrode film is not particularly limited as long as it does not obstruct the light reception of the photoelectric conversion element more than necessary, but the signal intensity and consumption of the photoelectric conversion element It is preferable that it is as high as possible from the viewpoint of electric power. For example, an ITO film having a sheet resistance value of 300Ω / □ or less functions well as (A) the first electrode film and (B) the second electrode film, but has a conductivity of several Ω / □. Since a commercial product of a substrate provided with an ITO film having the above is also available, it is desirable to use a substrate having such high conductivity. The thickness of the ITO film (electrode film) can be arbitrarily selected in consideration of conductivity, but is usually about 5 to 500 nm, preferably about 10 to 300 nm. Examples of a method for forming a film such as ITO include conventionally known vapor deposition methods, electron beam methods, sputtering methods, chemical reaction methods, and coating methods. The ITO film provided on the substrate may be subjected to UV-ozone treatment, plasma treatment or the like as necessary.
 (A)第一の電極膜及び(B)第二の電極膜のうち、少なくとも光が入射する側の何れか一方に用いられる透明電極膜の材料としては、ITO、IZO、SnO、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO、FTO(フッ素ドープ酸化スズ)等が挙げられる。(c-1)光電変換層の吸収ピーク波長における透明電極膜を介して入射した光の透過率は、60%以上であることが好ましく、80%以上であることがより好ましく、95%以上であることが特に好ましい。 Among the materials for the transparent electrode film used on at least one of the light incident side of (A) the first electrode film and (B) the second electrode film, ITO, IZO, SnO 2 , ATO ( Antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide), GZO (gallium-doped zinc oxide), TiO 2 , FTO (fluorine-doped tin oxide), and the like. (C-1) The transmittance of light incident through the transparent electrode film at the absorption peak wavelength of the photoelectric conversion layer is preferably 60% or more, more preferably 80% or more, and 95% or more. It is particularly preferred.
 また、検出する波長の異なる光電変換層を複数積層する場合、それぞれの光電変換層の間に用いられる電極膜(これは(A)第一の電極膜及び(B)第二の電極膜以外の電極膜である)は、それぞれの光電変換層が検出する光以外の波長の光を透過させる必要があり、該電極膜には入射光の90%以上を透過する材料を用いることが好ましく、95%以上の光を透過する材料を用いることがより好ましい。 When a plurality of photoelectric conversion layers having different wavelengths to be detected are stacked, the electrode films used between the respective photoelectric conversion layers (this is other than (A) the first electrode film and (B) the second electrode film) It is necessary to transmit light having a wavelength other than the light detected by each photoelectric conversion layer, and the electrode film is preferably made of a material that transmits 90% or more of incident light. It is more preferable to use a material that transmits at least% of light.
 電極膜はプラズマフリーで作製することが好ましい。プラズマフリーでこれらの電極膜を作製することにより、電極膜が設けられる基板にプラズマ与える影響が低減され、光電変換素子の光電変換特性を良好にすることができる。ここで、プラズマフリーとは、電極膜の成膜時にプラズマが発生しないか、又はプラズマ発生源から基板までの距離が2cm以上、好ましくは10cm以上、更に好ましくは20cm以上であり、基板に到達するプラズマが減少するような状態を意味する。 The electrode film is preferably made plasma-free. By producing these electrode films in a plasma-free manner, the influence of plasma on the substrate on which the electrode films are provided is reduced, and the photoelectric conversion characteristics of the photoelectric conversion element can be improved. Here, plasma-free means that no plasma is generated when the electrode film is formed, or the distance from the plasma generation source to the substrate is 2 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and reaches the substrate. It means a state where plasma is reduced.
 電極膜の成膜時にプラズマが発生しない装置としては、例えば、電子線蒸着装置(EB蒸着装置)やパルスレーザー蒸着装置等が挙げられる。以下では、EB蒸着装置を用いて透明電極膜の成膜を行う方法をEB蒸着法と言い、パルスレーザー蒸着装置を用いて透明電極膜の成膜を行う方法をパルスレーザー蒸着法と言う。 Examples of an apparatus that does not generate plasma when forming an electrode film include an electron beam vapor deposition apparatus (EB vapor deposition apparatus) and a pulse laser vapor deposition apparatus. Hereinafter, a method of forming a transparent electrode film using an EB vapor deposition apparatus is referred to as an EB vapor deposition method, and a method of forming a transparent electrode film using a pulse laser vapor deposition apparatus is referred to as a pulse laser vapor deposition method.
 成膜中プラズマを減ずることが出来るような状態を実現できる装置(以下、プラズマフリーである成膜装置という)としては、例えば、対向ターゲット式スパッタ装置やアークプラズマ蒸着装置等が考えられる。 As an apparatus capable of realizing a state in which plasma can be reduced during film formation (hereinafter referred to as a plasma-free film formation apparatus), for example, an opposed target sputtering apparatus, an arc plasma deposition apparatus, or the like can be considered.
 透明導電膜を電極膜(例えば第一の導電膜)とした場合、DCショート、あるいはリーク電流の増大が生じる場合がある。この原因の一つは、光電変換層に発生する微細なクラックがTCO(Transparent Conductive Oxide)などの緻密な膜によって被覆され、透明導電膜とは反対側の電極膜(第二の導電膜)との間の導通が増すためと考えられる。そのため、Alなど膜質が比較して劣る材料を電極に用いた場合、リーク電流の増大は生じにくい。電極膜の膜厚を、光電変換層の膜厚(クラックの深さ)に応じて制御することにより、リーク電流の増大を抑制することができる。 When the transparent conductive film is an electrode film (for example, the first conductive film), a DC short circuit or an increase in leakage current may occur. One of the causes is that fine cracks generated in the photoelectric conversion layer are covered with a dense film such as TCO (Transparent Conductive Oxide), and the opposite electrode film (second conductive film) from the transparent conductive film This is thought to be due to the increased conduction between the two. For this reason, when a material such as Al that is inferior in film quality is used for the electrode, an increase in leakage current is unlikely to occur. By controlling the film thickness of the electrode film according to the film thickness (crack depth) of the photoelectric conversion layer, an increase in leakage current can be suppressed.
 通常、導電膜を所定の値より薄くすると、急激な抵抗値の増加が起こる。本実施形態の撮像素子用光電変換素子における導電膜のシート抵抗は、通常100乃至10000Ω/□であり、膜厚の自由度が大きい。また、透明導電膜が薄いほど吸収する光の量が少なくなり、一般に光透過率が高くなる。光透過率が高くなると、光電変換層で吸収される光が増加して光電変換能が向上するため非常に好ましい。 Usually, when the conductive film is made thinner than a predetermined value, the resistance value increases rapidly. The sheet resistance of the conductive film in the photoelectric conversion element for an image sensor according to the present embodiment is usually 100 to 10,000 Ω / □, and the degree of freedom in film thickness is large. In addition, the thinner the transparent conductive film, the smaller the amount of light that is absorbed and the higher the light transmittance. High light transmittance is very preferable because light absorbed by the photoelectric conversion layer is increased and the photoelectric conversion performance is improved.
 本発明の光電変換素子が有する(C)光電変換部は、少なくとも(c-1)光電変換層及び(c-2)光電変換層以外の有機薄膜層を含む。 The (C) photoelectric conversion part of the photoelectric conversion element of the present invention includes at least (c-1) a photoelectric conversion layer and (c-2) an organic thin film layer other than the photoelectric conversion layer.
 (C)光電変換部を構成する(c-1)光電変換層には一般的に有機半導体膜が用いられるが、その有機半導体膜は一層、又は複数の層であってもよく、一層の場合は、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)が用いられる。一方、複数の層である場合は、2~10層程度であり、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)のいずれかを積層した構造を有し、層間にバッファ層が挿入されていてもよい。 (C) An organic semiconductor film is generally used for the photoelectric conversion layer constituting the photoelectric conversion part. (C-1) The organic semiconductor film may be a single layer or a plurality of layers. A P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film thereof (bulk heterostructure) is used. On the other hand, in the case of a plurality of layers, it is about 2 to 10 layers, and has a structure in which any one of a P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film (bulk heterostructure) is laminated, A buffer layer may be inserted between the layers.
 (c-1)光電変換層の有機半導体膜には、吸収する波長帯に応じ、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、カルバゾール誘導体、ナフタレン誘導体、アントラセン誘導体、クリセン誘導体、フェナントレン誘導体、ペンタセン誘導体、フェニルブタジエン誘導体、スチリル誘導体、キノリン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体、キナクリドン誘導体、クマリン誘導体、ポルフィリン誘導体、フラーレン誘導体や金属錯体(Ir錯体、Pt錯体、Eu錯体など)等を用いることができる。 (C-1) The organic semiconductor film of the photoelectric conversion layer has a triarylamine compound, a benzidine compound, a pyrazoline compound, a styrylamine compound, a hydrazone compound, a triphenylmethane compound, a carbazole compound, a polysilane compound depending on the wavelength band to be absorbed. Thiophene compound, phthalocyanine compound, cyanine compound, merocyanine compound, oxonol compound, polyamine compound, indole compound, pyrrole compound, pyrazole compound, polyarylene compound, carbazole derivative, naphthalene derivative, anthracene derivative, chrysene derivative, phenanthrene derivative, pentacene derivative, Phenylbutadiene derivatives, styryl derivatives, quinoline derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene derivatives, quinac Don derivatives, coumarin derivatives, porphyrin derivatives, fullerene derivatives and metal complexes (Ir complexes, Pt complexes, Eu complexes, etc.), or the like can be used.
 本発明の光電変換素子において、(C)光電変換部を構成する(c-2)有機薄膜層は、(c-1)光電変換層以外の層、例えば、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層又は層間接触改良層等としても用いられる。特に電子輸送層、正孔輸送層、電子ブロック層及び正孔ブロック層からなる群より選択される一種以上の薄膜層として用いることにより、弱い光エネルギーでも効率よく電気信号に変換する素子が得られるため好ましい。 In the photoelectric conversion element of the present invention, (C) the organic thin film layer constituting the photoelectric conversion portion is (c-1) a layer other than the photoelectric conversion layer, for example, an electron transport layer, a hole transport layer, It is also used as an electron blocking layer, a hole blocking layer, a crystallization preventing layer, an interlayer contact improving layer, or the like. In particular, when used as one or more thin film layers selected from the group consisting of an electron transport layer, a hole transport layer, an electron block layer and a hole block layer, an element capable of efficiently converting into an electric signal even with weak light energy can be obtained. Therefore, it is preferable.
 電子輸送層は、(c-1)光電変換層で発生した電子を(A)第一の電極膜又は(B)第二の電極膜へ輸送する役割と、電子輸送先の電極膜から(c-1)光電変換層に正孔が移動するのをブロックする役割とを果たす。 The electron transport layer has (c-1) a role of transporting electrons generated in the photoelectric conversion layer to (A) the first electrode film or (B) the second electrode film, and (c) -1) Plays the role of blocking the movement of holes to the photoelectric conversion layer.
 正孔輸送層は、発生した正孔を(c-1)光電変換層から(A)第一の電極膜又は(B)第二の電極膜へ輸送する役割と、正孔輸送先の電極膜から(c-1)光電変換層に電子が移動するのをブロックする役割とを果たす。 The hole transport layer has the role of transporting the generated holes from (c-1) the photoelectric conversion layer to (A) the first electrode film or (B) the second electrode film, and the hole transport destination electrode film (C-1) serves to block the movement of electrons to the photoelectric conversion layer.
 電子ブロック層は、(A)第一の電極膜又は(B)第二の電極膜から(c-1)光電変換層への電子の移動を妨げ、(c-1)光電変換層内での再結合を防ぎ、暗電流を低減する役割を果たす。 The electron blocking layer prevents movement of electrons from (A) the first electrode film or (B) second electrode film to (c-1) the photoelectric conversion layer, and (c-1) It serves to prevent recombination and reduce dark current.
 正孔ブロック層は、(A)第一の電極膜又は(B)第二の電極膜から(c-1)光電変換層への正孔の移動を妨げ、(c-1)光電変換層内での再結合を防ぎ、暗電流を低減する機能を有する。 The hole blocking layer prevents the movement of holes from (A) the first electrode film or (B) the second electrode film to (c-1) the photoelectric conversion layer, and (c-1) It has a function of preventing recombination at the time and reducing dark current.
 正孔ブロック層としては、正孔阻止性物質を含む膜を単独で用いてもよいし、二種類以上の膜を積層してもよい。あるいは、複数の正孔阻止性物質を混合することにより形成してもよい。正孔阻止性物質としては、正孔が電極から素子外部に流出するのを阻止することができる化合物であれば特に限定されない。 As the hole blocking layer, a film containing a hole blocking substance may be used alone, or two or more kinds of films may be laminated. Alternatively, it may be formed by mixing a plurality of hole blocking substances. The hole blocking substance is not particularly limited as long as it is a compound that can prevent holes from flowing out of the element from the electrode.
 これらのうち、上記一般式(1)で表される化合物を含む(c-2)有機薄膜層は、特に正孔ブロック層として好適に用いることが出来るが、他の化合物、例えばバソフェナントロリン及びバソキュプロイン等のフェナントロリン誘導体、シロール誘導体、キノリノール誘導体金属錯体、オキサジアゾール誘導体、オキサゾール誘導体、キノリン誘導体などと併用することができる。リーク電流を防止するという観点からは正孔ブロック層の膜厚は厚い方が良いが、光入射時の信号読み出しの際に充分な電流量を得るという観点からは膜厚はなるべく薄い方が良い。これら相反する特性を両立するために、一般的には(c-1)光電変換層及び(c-2)有機薄膜層を含む(C)光電変換部の膜厚が5乃至500nm程度であることが好ましい。 Among these, the (c-2) organic thin film layer containing the compound represented by the general formula (1) can be suitably used as a hole blocking layer, but other compounds such as bathophenanthroline and bathocuproin Can be used in combination with phenanthroline derivatives, silole derivatives, quinolinol derivative metal complexes, oxadiazole derivatives, oxazole derivatives, quinoline derivatives, and the like. From the standpoint of preventing leakage current, the hole blocking layer should be thick, but from the standpoint of obtaining a sufficient amount of current when reading the signal at the time of light incidence, the thickness should be as thin as possible. . In order to achieve both of these conflicting characteristics, the film thickness of the (C-1) photoelectric conversion portion including the (c-1) photoelectric conversion layer and (c-2) the organic thin film layer is generally about 5 to 500 nm. Is preferred.
 また、正孔ブロック層及び電子ブロック層は、(c-1)光電変換層の光吸収を妨げないために、(c-1)光電変換層における吸収波長の透過率が高いことが好ましく、また薄膜で用いることが好ましい。 In addition, the hole blocking layer and the electron blocking layer preferably have a high absorption wavelength transmittance in the (c-1) photoelectric conversion layer in order not to disturb the light absorption of the (c-1) photoelectric conversion layer. It is preferable to use it in a thin film.
 図1に本発明の撮像素子用光電変換素子の代表的な素子構造を詳細に説明するが、本発明はこれらの構造には限定されるものではない。図1の態様例においては、1が絶縁部、2が一方の電極膜(第一の電極膜又は第二の電極膜)、3が電子ブロック層、4が光電変換層、5が正孔ブロック層、6が他方の電極膜(第二の電極膜又は第一の電極膜)、7が絶縁基材、もしくは積層された光電変換素子をそれぞれ表す。読み出しのトランジスタ(図中には未記載)は、2又は6いずれかの電極膜と接続されていればよく、例えば、光電変換層4が透明であれば、光が入射する側とは反対側の電極膜の外側(電極2の上側、又は電極6の下側)に成膜されていてもよい。光電変換素子を構成する光電変換層以外の薄膜層(電子ブロック層や正孔ブロック層等)が光電変換層の吸収波長を極度に遮蔽しないものであれば、光が入射する方向は上部(図1における絶縁部1側)又は下部(図1における絶縁基板又は他の光電変換素子7側)のいずれでもよい。なお、電子ブロック層3と、正孔ブロック層5は入れ替わってもよい。 FIG. 1 illustrates in detail a typical element structure of a photoelectric conversion element for an image sensor according to the present invention, but the present invention is not limited to these structures. In the embodiment of FIG. 1, 1 is an insulating part, 2 is one electrode film (first electrode film or second electrode film), 3 is an electron block layer, 4 is a photoelectric conversion layer, and 5 is a hole block. A layer, 6 represents the other electrode film (second electrode film or first electrode film), 7 represents an insulating base material, or a stacked photoelectric conversion element. The readout transistor (not shown in the drawing) only needs to be connected to either the electrode film 2 or 6, for example, if the photoelectric conversion layer 4 is transparent, the side opposite to the light incident side It may be formed on the outer side of the electrode film (the upper side of the electrode 2 or the lower side of the electrode 6). If the thin film layer (electron block layer, hole block layer, etc.) other than the photoelectric conversion layer constituting the photoelectric conversion element does not extremely shield the absorption wavelength of the photoelectric conversion layer, the direction in which light is incident is the upper side (Fig. 1 or the lower portion (the insulating substrate or the other photoelectric conversion element 7 side in FIG. 1). The electron block layer 3 and the hole block layer 5 may be interchanged.
 本発明の光電変換素子における(c-1)光電変換層及び(c-2)有機薄膜層の形成方法には、一般的に、真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等、更にはこれらの手法を複数組み合わせた方法を採用しうる。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定することはできないが、通常は0.5乃至5000nmの範囲であり、好ましくは1乃至1000nmの範囲、より好ましくは5乃至500nmの範囲である。 The method for forming the (c-1) photoelectric conversion layer and the (c-2) organic thin film layer in the photoelectric conversion element of the present invention is generally a vacuum process such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination. Coating methods such as casting, solution process casting, spin coating, dip coating, blade coating, wire bar coating, spray coating, etc., printing methods such as inkjet printing, screen printing, offset printing, letterpress printing, micro contact printing method, etc. The method of soft lithography, etc., and further a method combining a plurality of these methods can be employed. The thickness of each layer depends on the resistance value and charge mobility of each substance and cannot be limited, but is usually in the range of 0.5 to 5000 nm, preferably in the range of 1 to 1000 nm, more preferably 5 It is the range of thru | or 500 nm.
 本発明の式(1)で表される縮合多環芳香族化合物は、有機EL素子、有機太陽電池素子及び有機トランジスタ素子等の有機エレクトロニクスデバイスの有機薄膜の材料としても好適に用いられる。 The condensed polycyclic aromatic compound represented by the formula (1) of the present invention is also suitably used as a material for organic thin films of organic electronic devices such as organic EL devices, organic solar cell devices, and organic transistor devices.
 有機トランジスタ素子は、有機半導体に接して2つの電極(ソース電極及びドレイン電極)があり、その電極間に流れる電流を、ゲート電極と呼ばれるもう一つの電極に印加する電圧で制御するものであって、本発明の縮合多環芳香族化合物を含む有機薄膜は、有機トランジスタ素子の半導体層として特に好ましく用いられる。 An organic transistor element has two electrodes (source electrode and drain electrode) in contact with an organic semiconductor, and controls the current flowing between the electrodes with a voltage applied to another electrode called a gate electrode. The organic thin film containing the condensed polycyclic aromatic compound of the present invention is particularly preferably used as a semiconductor layer of an organic transistor element.
 有機トランジスタ素子等の有機エレクトロニクスデバイス中の有機薄膜の形成方法としては、蒸着法などのドライプロセスや種々の溶液プロセスなどがあげられるが、溶液プロセスで形成することが好ましい。溶液プロセスとしてはたとえば、スピンコート法、ドロップキャスト法、ディップコート法、スプレー法、フレキソ印刷、樹脂凸版印刷などの凸版印刷法、オフセット印刷法、ドライオフセット印刷法、パッド印刷法などの平板印刷法、グラビア印刷法などの凹版印刷法、スクリーン印刷法、謄写版印刷法、リングラフ印刷法などの孔版印刷法、インクジェット印刷法、マイクロコンタクトプリント法等、さらにはこれらの手法を複数組み合わせた方法が挙げられる。溶液プロセスで成膜する場合、上記の塗布、印刷したのち、溶剤を蒸発させて薄膜を形成することが好ましい。 Examples of a method for forming an organic thin film in an organic electronic device such as an organic transistor element include a dry process such as a vapor deposition method and various solution processes, but a solution process is preferable. Examples of the solution process include spin coating, drop casting, dip coating, spraying, flexographic printing, relief printing such as relief printing, flat printing such as offset printing, dry offset printing, and pad printing. , Intaglio printing methods such as gravure printing methods, screen printing methods, stencil printing methods, stencil printing methods such as lingraph printing methods, ink jet printing methods, micro contact printing methods, etc., and also a combination of these methods . In the case of forming a film by a solution process, it is preferable to form a thin film by evaporating the solvent after applying and printing.
 以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 実施例中に記載のブロック層は正孔ブロック層及び電子ブロック層のいずれでもよい。比較例1乃至3及び9の光電変換素子の作製は蒸着機で行い、大気下で電流電圧の印加測定を行った。実施例2及び比較例4及至8の光電変換素子の作製はグローブボックスと一体化した蒸着機で行い、作製した光電変換素子は窒素雰囲気のグローブボックス内で密閉式のボトル型計測チャンバー(エイエルエステクノロジー社製)に光電変換素子を設置し、電流電圧の印加測定を行った。電流電圧の印加測定は、特に指定のない限り、半導体パラメータアナライザ4200-SCS(ケースレーインスツルメンツ社)を用いて行った。入射光の照射は、特に指定のない限り、PVL-3300(朝日分光社製)を用い、照射光波長550nm、照射光半値幅20nmにて行った。実施例中の明暗比は光照射を行った場合の電流値を暗所での電流値で割ったものを示す。相変化点は熱分析装置TGA/DSC 1(METTLER TOLEDO社)を用いて、昇温速度10℃/minで測定した。 The block layer described in the examples may be either a hole block layer or an electron block layer. Production of the photoelectric conversion elements of Comparative Examples 1 to 3 and 9 was performed with a vapor deposition machine, and application measurement of current voltage was performed in the atmosphere. The photoelectric conversion elements of Example 2 and Comparative Examples 4 to 8 were produced by a vapor deposition machine integrated with a glove box, and the produced photoelectric conversion elements were sealed in a glove box in a nitrogen atmosphere in a sealed bottle-type measurement chamber (AELS). A photoelectric conversion element was installed in (Technology Co., Ltd.), and current voltage application measurement was performed. Current voltage application measurements were performed using a semiconductor parameter analyzer 4200-SCS (Keithley Instruments) unless otherwise specified. Irradiation of incident light was performed using PVL-3300 (manufactured by Asahi Spectroscope) at an irradiation light wavelength of 550 nm and an irradiation light half width of 20 nm unless otherwise specified. The light / dark ratio in the examples indicates a value obtained by dividing the current value in the case of light irradiation by the current value in a dark place. The phase change point was measured using a thermal analyzer TGA / DSC 1 (METTLER TOLEDO) at a heating rate of 10 ° C./min.
実施例1(式(1)で表される本発明の縮合多環芳香族化合物の合成)
(工程1)
 トルエン200部に、4-ブロモ-1,1’:4’,1’’-ターフェニル5部、ビス(ピナコラト)ジボロン5部、酢酸カリウム3部及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物0.5部を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル20部を加え、5分間撹拌した。その後、固形分をろ別し、溶媒を減圧除去することにより下記式(4)で表される2-([1,1’:4’,1’’-ターフェニル]-4-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン5.5部を白色固体として得た。
Example 1 (Synthesis of the condensed polycyclic aromatic compound of the present invention represented by the formula (1))
(Process 1)
200 parts of toluene, 5 parts of 4-bromo-1,1 ′: 4 ′, 1 ″ -terphenyl, 5 parts of bis (pinacolato) diboron, 3 parts of potassium acetate and [1,1′-bis (diphenylphosphino) ) Ferrocene] palladium (II) dichloride 0.5 part of dichloromethane adduct was mixed and stirred at reflux temperature for 4 hours under nitrogen atmosphere. After cooling the obtained reaction liquid to room temperature, 20 parts of silica gel was added and stirred for 5 minutes. Thereafter, the solid content is filtered off, and the solvent is removed under reduced pressure to give 2-([1,1 ′: 4 ′, 1 ″ -terphenyl] -4-yl)-represented by the following formula (4): There were obtained 5.5 parts of 4,4,5,5-tetramethyl-1,3,2-dioxaborolane as a white solid.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(工程2A)
 DMF120部に、工程1で得られた2-([1,1’:4’,1’’-ターフェニル]-4-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン3.5部、2,7-ジヨード[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン2.1部、リン酸三カリウム14部、水4.0部及びテトラキス(トリフェニルホスフィン)パラジウム(0)0.3部を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水120部を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、式(1)で表される2,7-ビス(1,1’:4’,1’’-ターフェニル-4-イル)-[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェンを3.0部得た。
(Process 2A)
To 120 parts of DMF, 2-([1,1 ′: 4 ′, 1 ″ -terphenyl] -4-yl) -4,4,5,5-tetramethyl-1,3, obtained in Step 1 was added. 2-dioxaborolane 3.5 parts, 2,7-diiodo [1] benzothieno [3,2-b] [1] benzothiophene 2.1 parts, tripotassium phosphate 14 parts, water 4.0 parts and tetrakis (tri Phenylphosphine) palladium (0) 0.3 part was mixed and stirred at 90 ° C. for 6 hours under nitrogen atmosphere. After cooling the obtained reaction liquid to room temperature, 120 parts of water was added, and solid content was separated by filtration. The obtained solid content was washed with acetone, dried, and then purified by sublimation to obtain 2,7-bis (1,1 ′: 4 ′, 1 ″ -terphenyl- 3.0 parts of 4-yl)-[1] benzothieno [3,2-b] [1] benzothiophene were obtained.
(工程2B)
 前記工程2Aとは別の合成方法によっても、式(1)で表される2,7-ビス(1,1’:4’,1’’-ターフェニル-4-イル)-[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェンの化合物を得た。合成方法は以下の通りである。すなわち、DMF120部に、下記式(6)で表され一般に入手可能な([1,1’:4’,1’’-ターフェニル]-4-イル)ボロン酸2.6部、2,7-ジヨード[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン2.0部、リン酸三カリウム14部及びテトラキス(トリフェニルホスフィン)パラジウム(0)0.2部を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水120部を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、式(1)で表される2,7-ビス(1,1’:4’,1’’-ターフェニル-4-イル)-[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェンを1.2部得た。
Figure JPOXMLDOC01-appb-C000014
(Process 2B)
2,7-bis (1,1 ′: 4 ′, 1 ″ -terphenyl-4-yl)-[1] benzothieno represented by the formula (1) can also be obtained by a synthesis method different from the step 2A A compound of [3,2-b] [1] benzothiophene was obtained. The synthesis method is as follows. That is, 120 parts of DMF is represented by the following formula (6) and is generally available ([1,1 ′: 4 ′, 1 ″ -terphenyl] -4-yl) 2.6 parts of boronic acid, 2,7 A mixture of 2.0 parts of diiodo [1] benzothieno [3,2-b] [1] benzothiophene, 14 parts of tripotassium phosphate and 0.2 part of tetrakis (triphenylphosphine) palladium (0) The mixture was stirred at 90 ° C. for 6 hours. After cooling the obtained reaction liquid to room temperature, 120 parts of water was added, and solid content was separated by filtration. The obtained solid content was washed with acetone, dried, and then purified by sublimation to obtain 2,7-bis (1,1 ′: 4 ′, 1 ″ -terphenyl- 1.2 parts of 4-yl)-[1] benzothieno [3,2-b] [1] benzothiophene were obtained.
Figure JPOXMLDOC01-appb-C000014
実施例2(式(1)で表される縮合多環芳香族化合物を用いた光電変換素子の作製およびその評価)
 ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、実施例1で得られた2,7-ビス(1,1’:4’,1’’-ターフェニル-4-イル)-[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェンを、ブロック層として抵抗加熱真空蒸着により50nm成膜した。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、本発明の光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は140000であった。また、実施例1で得られた化合物の相変化点は482℃であった。
Example 2 (Production and Evaluation of Photoelectric Conversion Device Using Condensed Polycyclic Aromatic Compound Represented by Formula (1))
2,7-bis (1,1 ′: 4 ′, 1 ″ -terphenyl-4-yl) obtained in Example 1 on an ITO transparent conductive glass (manufactured by Geomat Co., Ltd., ITO film thickness 150 nm) -[1] benzothieno [3,2-b] [1] benzothiophene was deposited as a blocking layer to a thickness of 50 nm by resistance heating vacuum deposition. Next, quinacridone was formed into a 100 nm vacuum film as a photoelectric conversion layer on the block layer. Finally, 100 nm of aluminum was vacuum-deposited on the photoelectric conversion layer as an electrode to produce the photoelectric conversion element of the present invention. The light / dark ratio was 140000 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes. The phase change point of the compound obtained in Example 1 was 482 ° C.
比較例1(比較用の化合物を用いた光電変換素子の作製およびその評価)
 式(1)で表される縮合多環芳香族化合物の代りに下記式(11)で表される化合物を用いたこと以外は実施例2の記載に準じて比較用の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は600であった。また、下記式(11)で表される化合物の相変化点は366℃であった。
Comparative Example 1 (Preparation of photoelectric conversion element using comparative compound and its evaluation)
A photoelectric conversion element for a comparative imaging device according to the description of Example 2 except that the compound represented by the following formula (11) was used instead of the condensed polycyclic aromatic compound represented by the formula (1). Was made. The light / dark ratio was 600 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes. The phase change point of the compound represented by the following formula (11) was 366 ° C.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
比較例2(比較用の化合物を用いた光電変換素子の作製およびその評価)
 式(1)で表される縮合多環芳香族化合物の代りに下記式(12)で表される化合物を用いたこと以外は実施例2の記載に準じて比較用の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は3500であった。また、下記式(12)で表される化合物の相変化点は269℃であった。
Comparative Example 2 (Production and Evaluation of Photoelectric Conversion Element Using Comparative Compound)
A photoelectric conversion element for an image sensor for comparison according to the description of Example 2 except that the compound represented by the following formula (12) was used instead of the condensed polycyclic aromatic compound represented by the formula (1). Was made. The light / dark ratio was 3500 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes. The phase change point of the compound represented by the following formula (12) was 269 ° C.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
比較例3(比較用の化合物を用いた光電変換素子の作製およびその評価)
 式(1)で表される縮合多環芳香族化合物の代りに下記式(13)で表される化合物を用いたこと以外は実施例2の記載に準じて比較用の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は3900であった。また、下記式(13)で表される化合物の相変化点は260℃であった。
Comparative Example 3 (Production and Evaluation of Photoelectric Conversion Element Using Comparative Compound)
A photoelectric conversion element for a comparative imaging device according to the description of Example 2 except that the compound represented by the following formula (13) was used instead of the condensed polycyclic aromatic compound represented by the formula (1). Was made. The light / dark ratio was 3900 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes. The phase change point of the compound represented by the following formula (13) was 260 ° C.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
比較例4(比較用の化合物を用いた光電変換素子の作製およびその評価)
 式(1)で表される縮合多環芳香族化合物の代りに下記式(14)で表される化合物を用いたこと以外は実施例2の記載に準じて比較用の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は15000であった。また、下記式(14)で表される化合物の相変化点は422℃であった。
Comparative Example 4 (Production of photoelectric conversion element using comparative compound and its evaluation)
A photoelectric conversion element for a comparative imaging device according to the description of Example 2 except that the compound represented by the following formula (14) was used instead of the condensed polycyclic aromatic compound represented by the formula (1). Was made. The light / dark ratio was 15000 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes. The phase change point of the compound represented by the following formula (14) was 422 ° C.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
比較例5(比較用の化合物を用いた光電変換素子の作製およびその評価)
 式(1)で表される縮合多環芳香族化合物の代りに下記式(15)で表される化合物を用いたこと以外は実施例2の記載に準じて比較用の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は1800であった。また、下記式(15)で表される化合物の相変化点は314℃であった。
Comparative Example 5 (Preparation of photoelectric conversion element using comparative compound and its evaluation)
A photoelectric conversion element for a comparative imaging device according to the description of Example 2 except that the compound represented by the following formula (15) was used instead of the condensed polycyclic aromatic compound represented by the formula (1). Was made. The contrast ratio was 1800 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes. The phase change point of the compound represented by the following formula (15) was 314 ° C.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
比較例6(比較用の化合物を用いた光電変換素子の作製およびその評価)
 式(1)で表される縮合多環芳香族化合物の代りに下記式(16)で表される化合物を用いたこと以外は実施例2の記載に準じて比較用の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は690であった。また、下記式(16)で表される化合物の相変化点は379℃であった。
Comparative Example 6 (Preparation of photoelectric conversion element using comparative compound and its evaluation)
A photoelectric conversion element for a comparative imaging device according to the description of Example 2 except that the compound represented by the following formula (16) was used instead of the condensed polycyclic aromatic compound represented by the formula (1). Was made. The light / dark ratio was 690 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes. The phase change point of the compound represented by the following formula (16) was 379 ° C.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
比較例7(比較用の化合物を用いた光電変換素子の作製およびその評価)
 式(1)で表される縮合多環芳香族化合物の代りに下記式(17)で表される化合物を用いたこと以外は実施例2の記載に準じて比較用の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は240であった。また、下記式(17)で表される化合物の相変化点は316℃であった。
Comparative Example 7 (Production of photoelectric conversion element using comparative compound and its evaluation)
A photoelectric conversion element for a comparative imaging device according to the description of Example 2 except that the compound represented by the following formula (17) was used instead of the condensed polycyclic aromatic compound represented by the formula (1). Was made. The light / dark ratio was 240 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes. The phase change point of the compound represented by the following formula (17) was 316 ° C.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
比較例8(比較用の化合物を用いた光電変換素子の作製およびその評価)
 式(1)で表される縮合多環芳香族化合物の代りに下記式(18)で表される化合物を用いたこと以外は実施例2の記載に準じて比較用の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は47であった。また、下記式(18)で表される化合物の相変化点は371℃であった。
Comparative Example 8 (Production of photoelectric conversion element using comparative compound and its evaluation)
A photoelectric conversion element for a comparative imaging device according to the description of Example 2 except that the compound represented by the following formula (18) was used instead of the condensed polycyclic aromatic compound represented by the formula (1). Was made. The contrast ratio was 47 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes. The phase change point of the compound represented by the following formula (18) was 371 ° C.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
比較例9(比較用の化合物を用いた光電変換素子の作製およびその評価)
 式(1)で表される縮合多環芳香族化合物の代りにトリス(8-キノリノラト)アルミニウムを用いたこと以外は実施例2の記載に準じて比較用の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として透明導電ガラス側に5V電圧印加したときの明暗比は31であった。
Comparative Example 9 (Production and Evaluation of Photoelectric Conversion Element Using Comparative Compound)
A comparative photoelectric conversion element for an image sensor was prepared according to the description of Example 2 except that tris (8-quinolinolato) aluminum was used instead of the condensed polycyclic aromatic compound represented by the formula (1). . The contrast ratio was 31 when a voltage of 5 V was applied to the transparent conductive glass side using ITO and aluminum as electrodes.
 上記の評価結果より、本発明の式(1)で表される化合物は高い耐熱性を有し、それを用いた実施例1の撮像素子用光電変換素子が、比較例1乃至9の撮像素子用光電変換素子よりも優れた特性を有することは明らかである。 From the above evaluation results, the compound represented by the formula (1) of the present invention has high heat resistance, and the photoelectric conversion element for the image sensor of Example 1 using the compound is the image sensor of Comparative Examples 1 to 9. It is clear that it has characteristics superior to those of photoelectric conversion elements for use.
 以上の様に、本発明の式(1)で表される縮合多環芳香族化合物は、有機光電変換特性に優れた性能を有しており、高解像度と高応答性を有する有機撮像素子はもとより有機EL素子、有機太陽電池素子及び有機トランジスタ素子等の有機エレクトロニクスデバイス、光センサー、赤外センサー、紫外センサー、X線センサーやフォトンカウンター等のデバイスやそれらを利用したカメラ、ビデオカメラ、赤外線カメラ等の分野への応用が期待される。 As described above, the condensed polycyclic aromatic compound represented by the formula (1) of the present invention has excellent performance in organic photoelectric conversion characteristics, and an organic imaging device having high resolution and high response is Naturally, organic electronics devices such as organic EL elements, organic solar cell elements and organic transistor elements, optical sensors, infrared sensors, ultraviolet sensors, devices such as X-ray sensors and photon counters, and cameras, video cameras, and infrared cameras using them. Application to such fields is expected.
1 絶縁部
2 上部電極
3 電子ブロック層
4 光電変換部
5 正孔ブロック層
6 下部電極
7 絶縁基材又は他の光電変換素子
 
 
 
DESCRIPTION OF SYMBOLS 1 Insulation part 2 Upper electrode 3 Electron block layer 4 Photoelectric conversion part 5 Hole block layer 6 Lower electrode 7 Insulation base material or other photoelectric conversion element

Claims (6)

  1. 下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    で表される縮合多環芳香族化合物。
    Following formula (1)
    Figure JPOXMLDOC01-appb-C000001
    A condensed polycyclic aromatic compound represented by the formula:
  2. 請求項1に記載の式(1)で表される縮合多環芳香族化合物の製造方法であって、下記式(4)
    Figure JPOXMLDOC01-appb-C000002
    で表される化合物と、下記式(5)
    Figure JPOXMLDOC01-appb-C000003
    (式(5)中、Xはハロゲン原子を表す。)で表される化合物を反応させることを含む、縮合多環芳香族化合物の製造方法。
    It is a manufacturing method of the condensed polycyclic aromatic compound represented by Formula (1) of Claim 1, Comprising: following formula (4)
    Figure JPOXMLDOC01-appb-C000002
    And a compound represented by the following formula (5)
    Figure JPOXMLDOC01-appb-C000003
    (In Formula (5), X represents a halogen atom.) The manufacturing method of a condensed polycyclic aromatic compound including reacting the compound represented.
  3. 請求項1に記載の式(1)で表される縮合多環芳香族化合物の製造方法であって、下記式(6)
    Figure JPOXMLDOC01-appb-C000004
    で表される化合物と、下記式(5)
    Figure JPOXMLDOC01-appb-C000005
    (式(5)中、Xはハロゲン原子を表す。)で表される化合物を反応させることを含む、縮合多環芳香族化合物の製造方法。
    It is a manufacturing method of the condensed polycyclic aromatic compound represented by Formula (1) of Claim 1, Comprising: following formula (6)
    Figure JPOXMLDOC01-appb-C000004
    And a compound represented by the following formula (5)
    Figure JPOXMLDOC01-appb-C000005
    (In Formula (5), X represents a halogen atom.) The manufacturing method of a condensed polycyclic aromatic compound including reacting the compound represented.
  4. (A)第一の電極膜、(B)第二の電極膜及び該第一の電極膜と該第二の電極膜の間に配置された(C)光電変換部を有する撮像素子用光電変換素子の製造方法であって、前記(C)光電変換部が少なくとも(c-1)光電変換層及び(c-2)光電変換層以外の有機薄膜層を含み、前記(c-2)光電変換層以外の有機薄膜層が、請求項1に記載の縮合多環芳香族化合物を含み、前記方法は、前記(c-2)光電変換層以外の有機薄膜層を、蒸着法により形成することを含む、撮像素子用光電変換素子の製造方法。 (A) First electrode film, (B) Second electrode film, and (C) Photoelectric conversion for image sensor having a photoelectric conversion unit disposed between the first electrode film and the second electrode film A method for producing an element, wherein (C) the photoelectric conversion part includes at least (c-1) a photoelectric conversion layer and (c-2) an organic thin film layer other than the photoelectric conversion layer, and (c-2) the photoelectric conversion The organic thin film layer other than the layer contains the condensed polycyclic aromatic compound according to claim 1, and the method comprises forming the organic thin film layer other than the (c-2) photoelectric conversion layer by a vapor deposition method. A method for manufacturing a photoelectric conversion element for an imaging element.
  5. 前記(c-2)光電変換層以外の有機薄膜層が電子ブロック層、正孔ブロック層、電子輸送層又は正孔輸送層である、請求項4に記載の撮像素子用光電変換素子の製造方法。 5. The method for producing a photoelectric conversion element for an imaging element according to claim 4, wherein the organic thin film layer other than the (c-2) photoelectric conversion layer is an electron block layer, a hole block layer, an electron transport layer or a hole transport layer. .
  6. (c-2)光電変換層以外の有機薄膜層が電子ブロック層又は正孔ブロック層である、請求項5に記載の撮像素子用光電変換素子の製造方法。
     
     
     
    (C-2) The method for producing a photoelectric conversion element for an imaging element according to claim 5, wherein the organic thin film layer other than the photoelectric conversion layer is an electron block layer or a hole block layer.


PCT/JP2016/064945 2015-05-20 2016-05-19 Condensed polycyclic aromatic compound WO2016186186A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017519406A JP6619806B2 (en) 2015-05-20 2016-05-19 Fused polycyclic aromatic compounds

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-102455 2015-05-20
JP2015102455 2015-05-20
JP2015-148834 2015-07-28
JP2015148834 2015-07-28

Publications (1)

Publication Number Publication Date
WO2016186186A1 true WO2016186186A1 (en) 2016-11-24

Family

ID=57320443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064945 WO2016186186A1 (en) 2015-05-20 2016-05-19 Condensed polycyclic aromatic compound

Country Status (3)

Country Link
JP (1) JP6619806B2 (en)
TW (1) TW201704240A (en)
WO (1) WO2016186186A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022033978A (en) * 2017-10-23 2022-03-02 ソニーグループ株式会社 Synthesizing method of thiophene or selenophene-based material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3582275B1 (en) * 2017-02-07 2023-09-06 Canon Kabushiki Kaisha Photoelectric conversion element, optical area sensor using same, imaging element, and imaging device
WO2021172185A1 (en) * 2020-02-28 2021-09-02 日本化薬株式会社 Fused polycyclic aromatic compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203447A (en) * 2008-02-29 2009-09-10 Ricoh Co Ltd POLYMER CONTAINING BENZOTHIENO [3,2-b] BENZOTHIOPHENE STRUCTURE
JP2009275032A (en) * 2008-04-17 2009-11-26 Ricoh Co Ltd [1]BENZOTHIENO[3,2-b][1]BENZOTHIOPHENE DERIVATIVE HAVING LEAVING GROUP AND [1]BENZOTHIENO
JP2010232413A (en) * 2009-03-27 2010-10-14 Chiba Univ Vertical organic semiconductor device
WO2015163349A1 (en) * 2014-04-25 2015-10-29 日本化薬株式会社 Material for photoelectric conversion element for use in imaging element, and photoelectric conversion element including same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077888A1 (en) * 2005-01-19 2006-07-27 National University Of Corporation Hiroshima University Novel condensed polycyclic aromatic compound and use thereof
JP2009152355A (en) * 2007-12-20 2009-07-09 Konica Minolta Holdings Inc Manufacturing method of organic thin film transistor, and organic thin film transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203447A (en) * 2008-02-29 2009-09-10 Ricoh Co Ltd POLYMER CONTAINING BENZOTHIENO [3,2-b] BENZOTHIOPHENE STRUCTURE
JP2009275032A (en) * 2008-04-17 2009-11-26 Ricoh Co Ltd [1]BENZOTHIENO[3,2-b][1]BENZOTHIOPHENE DERIVATIVE HAVING LEAVING GROUP AND [1]BENZOTHIENO
JP2010232413A (en) * 2009-03-27 2010-10-14 Chiba Univ Vertical organic semiconductor device
WO2015163349A1 (en) * 2014-04-25 2015-10-29 日本化薬株式会社 Material for photoelectric conversion element for use in imaging element, and photoelectric conversion element including same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022033978A (en) * 2017-10-23 2022-03-02 ソニーグループ株式会社 Synthesizing method of thiophene or selenophene-based material
US11770974B2 (en) 2017-10-23 2023-09-26 Sony Corporation P active materials for organic photoelectric conversion layers in organic photodiodes

Also Published As

Publication number Publication date
TW201704240A (en) 2017-02-01
JP6619806B2 (en) 2019-12-11
JPWO2016186186A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP6803362B2 (en) Photoelectric conversion element for image sensor
JP6739290B2 (en) Material for photoelectric conversion element for imaging device and photoelectric conversion element including the same
JP6618785B2 (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element including the same
JP6986887B2 (en) Photoelectric conversion element for image sensor
JP7128584B2 (en) Materials for photoelectric conversion devices and photoelectric conversion devices
JP6836591B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6619806B2 (en) Fused polycyclic aromatic compounds
JP2018190755A (en) Photoelectric conversion element for imaging device
JP6906357B2 (en) Photoelectric conversion element for image sensor
JP6862277B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6864561B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6890469B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6784639B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6759075B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP2020010024A (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element
JP6906388B2 (en) Photoelectric conversion element for image sensor
JP2017041559A (en) Photoelectric conversion element, imaging device, optical sensor, and material for photoelectric conversion element
JP2018046267A (en) Photoelectric conversion element material for image pickup element, and photoelectric conversion element including the same
JP2017079317A (en) Material for photoelectric conversion element for image pickup device and photoelectric conversion element including the same
JP2017052749A (en) Photoelectric conversion element material for image pickup device and photoelectric conversion element containing the same
JP2017041560A (en) Photoelectric conversion element, imaging device, optical sensor, and material for photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796579

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017519406

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796579

Country of ref document: EP

Kind code of ref document: A1